WO2018027530A1 - 红外光源的亮度调节方法与装置、光学动捕摄像机 - Google Patents

红外光源的亮度调节方法与装置、光学动捕摄像机 Download PDF

Info

Publication number
WO2018027530A1
WO2018027530A1 PCT/CN2016/094113 CN2016094113W WO2018027530A1 WO 2018027530 A1 WO2018027530 A1 WO 2018027530A1 CN 2016094113 W CN2016094113 W CN 2016094113W WO 2018027530 A1 WO2018027530 A1 WO 2018027530A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixels
infrared light
light source
brightness
distance
Prior art date
Application number
PCT/CN2016/094113
Other languages
English (en)
French (fr)
Inventor
姚劲
Original Assignee
深圳市瑞立视多媒体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市瑞立视多媒体科技有限公司 filed Critical 深圳市瑞立视多媒体科技有限公司
Priority to CN201680003664.0A priority Critical patent/CN107113379B/zh
Priority to PCT/CN2016/094113 priority patent/WO2018027530A1/zh
Priority to CN201710293062.XA priority patent/CN107181918B/zh
Publication of WO2018027530A1 publication Critical patent/WO2018027530A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/72Combination of two or more compensation controls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means

Definitions

  • the invention belongs to the technical field of light source brightness adjustment, and particularly relates to a method and device for adjusting brightness of an infrared light source and an optical motion capture camera.
  • Optical motion capture systems are widely used in film animation stunt production, large-scale game production, and life science research.
  • VR Virtual Reality
  • the core component of the optical motion capture system is the optical motion capture camera.
  • the optical motion capture camera is mainly composed of an image sensor, a lens, an infrared band pass filter unit, an infrared light source, and a camera control circuit.
  • the infrared light emitted by the infrared light source is irradiated onto the captured object (human, animal, etc.), and the reflective ball bound to the captured object reflects the infrared light, and the reflected light passes through the lens and the infrared band pass filter unit and is then used by the image sensor. recording.
  • the image sensor has a relatively low quantum efficiency in the infrared light band, so an infrared light source with a higher brightness is required.
  • the infrared light source needs to emit infrared light with higher brightness to ensure the brightness. Reflected light with sufficient brightness can be recorded by the image sensor.
  • the brightness of the infrared light source is always adjusted to the maximum to ensure that the captured object has sufficient brightness to reflect light when it is moved farther from the camera lens.
  • the large-intensity infrared light source emits a large amount of heat, which shortens the service life of the infrared light source and may even affect the normal operation of the camera. Therefore, in the prior art, the brightness of the infrared light source of the optical motion capture camera is always adjusted to the maximum, which causes the life of the infrared light source to be shortened and affects the normal operation of the camera.
  • the object of the present invention is to provide a method for adjusting the brightness of an infrared light source, which aims to solve the problem that the brightness of the infrared light source of the optical motion capture camera of the prior art is always adjusted to the maximum, thereby shortening the service life of the infrared light source and affecting the normal operation of the camera.
  • the problem of work is to provide a method for adjusting the brightness of an infrared light source, which aims to solve the problem that the brightness of the infrared light source of the optical motion capture camera of the prior art is always adjusted to the maximum, thereby shortening the service life of the infrared light source and affecting the normal operation of the camera.
  • the present invention is implemented by the method for adjusting the brightness of an infrared light source, wherein the infrared light source is disposed in an optical motion capture camera; and the brightness adjustment method of the infrared light source includes:
  • the brightness of the infrared light source is adjusted according to the distance.
  • the step of acquiring the distance between the captured object and the infrared light source is specifically:
  • the distance is calculated by the number, the number of longitudinal pixels of the image sensor, the diameter of the reflective ball, and the longitudinal viewing angle of the optical camera lens.
  • the step of adjusting the brightness of the infrared light source according to the distance is specifically:
  • the brightness of the infrared light source is adjusted according to the distance and the correspondence between the distance and the brightness.
  • Another object of the present invention is to provide a brightness adjusting device for an infrared light source, wherein the infrared light source is disposed in an optical camera; the brightness adjusting device of the infrared light source includes:
  • a distance acquiring module configured to acquire a distance between the captured object and the infrared light source
  • a brightness adjustment module configured to adjust brightness of the infrared light source according to the distance.
  • the distance acquisition module includes:
  • An effective radial pixel number obtaining unit configured to obtain a number of horizontal radial effective pixels or a number of vertical radial effective pixels of the reflective ball bound to the captured object;
  • a distance calculating unit configured to calculate the distance according to the number of the horizontal radial effective pixels, the number of horizontal pixels of the image sensor, the diameter of the reflective ball, and the lateral viewing angle of the optical camera lens, or according to the The distance is calculated by the number of vertical radial effective pixels, the number of vertical pixels of the image sensor, the diameter of the reflective sphere, and the longitudinal viewing angle of the optical camera lens.
  • a scene image acquisition subunit configured to acquire a scene shot image
  • a region image information acquisition subunit configured to acquire, from the scene captured image, a plurality of region image information corresponding to the plurality of reflective balls bound on the captured object;
  • a bright pixel number obtaining sub-unit configured to acquire, for each row of pixels or each column of pixels of each of the region image information, a number of bright pixels whose pixel gray value is greater than a preset gray threshold;
  • a maximum number of bright pixel number acquisition subunits configured to acquire a maximum of the plurality of bright pixel numbers according to the number of the plurality of bright pixels corresponding to all the row pixels or all the column pixels of each of the area image information Number
  • An effective radial pixel number acquisition subunit configured to correspond to image information of the plurality of regions
  • the number of the plurality of maximum bright pixels is the minimum of the plurality of maximum bright pixels, and the minimum is the number of horizontal radial effective pixels or the number of vertical radial effective pixels.
  • the process of adjusting the brightness of the infrared light source according to the distance is specifically:
  • the brightness of the infrared light source is adjusted according to the distance and the correspondence between the distance and the brightness.
  • Another object of the present invention is to provide an optical motion capture camera including the above-described infrared light source brightness adjusting device.
  • the brightness adjustment method of the infrared light source includes: acquiring a distance between the captured object and the infrared light source; and adjusting the brightness of the infrared light source according to the distance. Therefore, the infrared light source can provide infrared light of sufficient brightness when the captured object is far away from the camera lens, and the light emitting brightness of the infrared light source is appropriately reduced when the captured object is closer to the camera lens, thereby reducing
  • the heat generated by the infrared light source avoids the problem that the infrared light source is set to the maximum brightness for a long time and the life of the infrared light source is shortened, which may affect the normal operation of the camera.
  • FIG. 1 is a flowchart of implementing a method for adjusting brightness of an infrared light source according to an embodiment of the present invention
  • step S1 shown in FIG. 1;
  • FIG. 3 is a flowchart of an implementation of step S10 shown in FIG. 2;
  • FIG. 5 is a schematic structural diagram of a brightness adjusting device for an infrared light source according to another embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a brightness adjusting device for an infrared light source according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a brightness adjusting device for an infrared light source according to another embodiment of the present invention.
  • FIG. 1 is a flowchart showing an implementation process of a method for adjusting brightness of an infrared light source according to an embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, which are described in detail as follows:
  • the infrared light source is disposed in the optical motion capture camera.
  • step S1 the distance between the captured object and the infrared light source is acquired.
  • step S1 is as shown in FIG. 2, and the details are as follows:
  • step S10 the number of horizontal radial effective pixels or the number of vertical radial effective pixels of the reflective ball bound to the captured object is obtained.
  • the reflective ball is used to reflect the infrared light that is irradiated onto the surface thereof, so that the reflected infrared light is recorded by the image sensor after passing through the camera lens and the infrared band pass filter unit.
  • step S10 is as shown in FIG. 3, and the details are as follows:
  • step S100 a scene captured image is acquired.
  • step S200 a plurality of area image information corresponding to the plurality of reflective balls bound to the captured object are acquired from the scene captured image.
  • the region image information corresponding to the plurality of reflective balls bound to the plurality of captured objects is obtained from the scene captured image, wherein each region image The information is the image portion of each of the reflective balls in the scene captured image.
  • the image processing method is used to distinguish the image portions corresponding to each of the reflective balls in the scene captured image. For example, when a reflective ball has a diameter of 16 mm and is 15.2 meters away from the lens of a camera having a certain parameter, the image information of the region corresponding to the reflective ball is as shown in FIG. 4 .
  • step S300 the number of bright pixels in which the pixel gray value of each row of pixels or each column of pixels of each region image information is greater than a preset grayscale threshold is acquired.
  • the step S300 is specifically: in the row pixel or the column pixel, the pixel gray value is greater than the preset grayscale
  • the pixels of the threshold are bright pixels, and the number of bright pixels in each row of pixels or each column of pixels of image information of each region is acquired.
  • step S400 the number of the largest number of bright pixels among the plurality of bright pixels is obtained according to the number of the plurality of bright pixels corresponding to all the row pixels or all the column pixels of each area image information.
  • each row of pixels corresponds to one bright pixel number
  • one area image information includes multiple rows of pixels. Therefore, the plurality of rows of pixels correspond to the number of the plurality of bright pixels, and the number of the plurality of bright pixels Get the maximum value, which is the maximum number of bright pixels.
  • an area image information includes 5 rows of pixels, and the number of bright pixels corresponding to each row of pixels is 1, 3, 4, 3, 1, respectively, and the maximum of the number of the plurality of bright pixels is 4, therefore, the maximum brightness is The number of pixels is 4.
  • each column of pixels corresponds to a number of bright pixels
  • an area image information includes a plurality of columns of pixels.
  • the plurality of columns of pixels correspond to the number of the plurality of bright pixels, and the maximum value is obtained from the plurality of bright pixels, and the maximum value is The maximum number of bright pixels.
  • the current position captured image includes 5 columns of pixels, and the number of bright pixels corresponding to each column of pixels is 1, 3, 4, 3, 1, respectively, and the maximum of the plurality of bright pixels is 4, therefore, the maximum brightness is The number of pixels is 4.
  • step S500 a minimum of the plurality of maximum bright pixels is obtained according to the plurality of maximum bright pixel numbers corresponding to the plurality of area image information, and the minimum value is the horizontal radial effective pixel number or the vertical radial effective pixel. Number.
  • the step S500 is specifically: the image information of each area corresponds to a maximum number of bright pixels, and the plurality of area image information corresponds to the number of the plurality of largest bright pixels, and the minimum value is selected from the plurality of maximum bright pixels, the minimum The value is the number of effective pixels in the horizontal radial direction or the number of effective pixels in the vertical radial direction. If the number of the plurality of maximum bright pixels corresponding to the image information of the plurality of regions is obtained according to the row pixels, the minimum value is The number of effective pixels in the horizontal direction; if the number of the plurality of maximum bright pixels corresponding to the image information of the plurality of regions is obtained according to the column pixels, the minimum value is the number of vertical radial effective pixels.
  • step S20 the distance is calculated according to the number of effective pixels in the horizontal radial direction, the number of lateral pixels of the image sensor, the diameter of the reflective sphere, and the lateral viewing angle of the optical camera lens, or the number of effective pixels in the vertical and horizontal directions, and the image.
  • the number of vertical pixels of the sensor, the diameter of the reflective ball, and the optical motion capture camera Calculate the distance from the longitudinal viewing angle of the lens.
  • the number of lateral pixels of the image sensor, the lateral viewing angle of the optical camera lens, the number of vertical pixels of the image sensor, and the longitudinal viewing angle of the optical camera lens are predetermined values of the optical camera system.
  • the step of calculating the distance according to the number of effective pixels in the horizontal radial direction, the number of horizontal pixels of the image sensor, the diameter of the reflective ball, and the lateral viewing angle of the optical camera lens is specifically:
  • N 1 represents the number of horizontal pixels of the image sensor
  • SIZE represents the diameter of the reflective sphere
  • n 1 represents the number of effective pixels in the transverse radial direction
  • FOV 1 represents the lateral viewing angle of the optical camera lens
  • the step of calculating the distance according to the number of vertical radial effective pixels, the number of vertical pixels of the image sensor, the diameter of the reflective ball, and the longitudinal viewing angle of the optical camera lens is specifically:
  • N 2 is the number of vertical pixels of the image sensor
  • SIZE is the diameter of the reflective sphere
  • n 2 is the number of vertical radial effective pixels
  • FOV 2 is the longitudinal viewing angle of the optical camera lens.
  • step S2 the brightness of the infrared light source is adjusted according to the distance.
  • step S2 is specifically: adjusting the brightness of the infrared light source according to the distance and the correspondence between the distance and the brightness.
  • the brightness required at the current distance can be obtained, thereby adjusting the brightness of the infrared light source to the brightness required at the current distance.
  • the correspondence between the distance and the brightness can be determined according to actual engineering tests.
  • the following engineering test method can be used: the reflective ball is placed at a distance of a meter from the camera lens, and the brightness of the infrared light source is continuously adjusted according to the image of the reflective ball captured at the distance, thereby finding a suitable infrared at the distance.
  • Light source brightness A determines the correspondence between the distance a and the brightness A.
  • FIG. 5 shows a structure of a brightness adjusting device for an infrared light source according to another embodiment of the present invention. For convenience of description, only parts related to the embodiment of the present invention are shown, which are described in detail as follows:
  • the brightness adjusting device of the infrared light source comprises a distance acquiring module 100 and a brightness adjusting module 200, wherein the infrared light source is disposed in the optical camera.
  • the distance acquisition module 100 is configured to acquire a distance between the captured object and the infrared light source.
  • the brightness adjustment module 200 is configured to adjust the brightness of the infrared light source according to the distance.
  • the brightness adjustment module 200 adjusts the brightness of the infrared light source according to the distance and the correspondence between the distance and the brightness. Further specifically, the brightness adjustment module 200 obtains the brightness required at the current distance according to the distance between the captured object and the infrared light source and the correspondence between the distance and the brightness, thereby adjusting the brightness of the infrared light source to the brightness required at the current distance. .
  • the correspondence between the distance and the brightness can be determined according to actual engineering tests.
  • the following engineering test method can be used: the reflective ball is placed at a distance of a meter from the camera lens, and the brightness of the infrared light source is continuously adjusted according to the image of the reflective ball captured at the distance, thereby finding a suitable infrared at the distance.
  • the brightness A of the light source determines the correspondence between the distance a and the brightness A.
  • the distance acquisition module 100 includes an effective radial pixel number acquisition unit 101 and a distance calculation unit 102.
  • the effective radial pixel number obtaining unit 101 is configured to acquire the number of horizontal radial effective pixels or the number of vertical radial effective pixels of the reflective ball bound to the captured object.
  • the reflective ball is used to reflect the infrared light that is irradiated onto the surface thereof, so that the reflected infrared light is recorded by the image sensor after passing through the camera lens and the infrared band pass filter unit.
  • the distance calculating unit 102 is configured to calculate the distance according to the number of effective pixels in the horizontal radial direction, the number of horizontal pixels of the image sensor, the diameter of the reflective ball, and the lateral viewing angle of the optical camera lens, or according to The distance is calculated by the number of vertical radial effective pixels, the number of vertical pixels of the image sensor, the diameter of the reflective sphere, and the longitudinal viewing angle of the optical camera lens.
  • the number of lateral pixels of the image sensor, the lateral viewing angle of the optical camera lens, the number of vertical pixels of the image sensor, and the longitudinal viewing angle of the optical camera lens are predetermined values of the optical camera system.
  • the distance calculating unit 102 calculates the distance according to the number of effective pixels in the radial direction, the number of horizontal pixels of the image sensor, the diameter of the reflective ball, and the lateral viewing angle of the optical camera lens.
  • N 1 represents the number of horizontal pixels of the image sensor
  • SIZE represents the diameter of the reflective sphere
  • n 1 represents the number of effective pixels in the transverse radial direction
  • FOV 1 represents the lateral viewing angle of the optical camera lens
  • the distance calculation unit 102 calculates the distance according to the number of vertical radial effective pixels, the number of vertical pixels of the image sensor, the diameter of the reflective sphere, and the longitudinal viewing angle of the optical camera lens.
  • N 2 is the number of vertical pixels of the image sensor
  • SIZE is the diameter of the reflective sphere
  • n 2 is the number of vertical radial effective pixels
  • FOV 2 is the longitudinal viewing angle of the optical camera lens.
  • the effective radial pixel number obtaining unit 101 includes a scene image acquiring subunit 110, an area image acquiring subunit 111, a bright pixel number obtaining subunit 112, and a maximum bright pixel.
  • the scene image acquisition sub-unit 110 is configured to acquire a scene shot image.
  • the area image information acquisition sub-unit 111 is configured to acquire a binding from the scene-captured image and is arrested A plurality of regional image information corresponding to a plurality of reflective balls on the object.
  • regional image information corresponding to the plurality of reflective balls bound to the plurality of captured objects is acquired from the scene captured image, wherein each of the regional images
  • the information is the image portion of each of the reflective balls in the scene captured image.
  • the image processing method is used to distinguish the image portions corresponding to each of the reflective balls in the scene captured image. For example, when a reflective ball has a diameter of 16 mm and is 15.2 meters away from the lens of a camera having a certain parameter, the image information of the region corresponding to the reflective ball is as shown in FIG. 4 .
  • the bright pixel number obtaining sub-unit 112 is configured to acquire, for each row of pixels or each column of pixels of each of the region image information, a number of bright pixels whose pixel gray value is greater than a preset gray threshold.
  • the pixel whose pixel gray value is greater than the preset gray threshold is a bright pixel, and the number of bright pixels in each row of pixels or each column of pixels of each region image information is acquired.
  • the maximum bright pixel number obtaining sub-unit 113 is configured to obtain the largest bright pixel of the plurality of bright pixel numbers according to the number of the plurality of bright pixels corresponding to all the row pixels or all the column pixels of each of the area image information. Number.
  • each row of pixels corresponds to one bright pixel number
  • one area image information includes multiple rows of pixels. Therefore, the plurality of rows of pixels correspond to the number of the plurality of bright pixels, and the number of the plurality of bright pixels Get the maximum value, which is the maximum number of bright pixels.
  • an area image information includes 5 rows of pixels, and the number of bright pixels corresponding to each row of pixels is 1, 3, 4, 3, 1, respectively, and the maximum of the number of the plurality of bright pixels is 4, therefore, the maximum brightness is The number of pixels is 4.
  • each column of pixels corresponds to a number of bright pixels
  • an area image information includes a plurality of columns of pixels.
  • the plurality of columns of pixels correspond to the number of the plurality of bright pixels, and the maximum value is obtained from the plurality of bright pixels, and the maximum value is The maximum number of bright pixels.
  • the current position captured image includes 5 columns of pixels, and the number of bright pixels corresponding to each column of pixels is 1, 3, 4, 3, 1, respectively, and the maximum of the plurality of bright pixels is 4, therefore, the maximum brightness is The number of pixels is 4.
  • the effective radial pixel number obtaining sub-unit 114 is configured to obtain a minimum value of the plurality of maximum bright pixel numbers according to the plurality of maximum bright pixel numbers corresponding to the plurality of the area image information, the minimum value It is the number of effective pixels in the horizontal direction or the number of effective pixels in the vertical direction.
  • each area image information corresponds to a maximum number of bright pixels
  • multiple area image information corresponds to a plurality of maximum bright pixels
  • a minimum value is selected from a plurality of maximum bright pixels
  • the minimum value is a transverse diameter.
  • the number of effective pixels or the number of vertical radial effective pixels wherein if the number of the plurality of maximum bright pixels corresponding to the plurality of regional image information is obtained according to the row pixels, the minimum value is the horizontal radial effective pixel If the number of the plurality of maximum bright pixels corresponding to the image information of the plurality of regions is obtained according to the column pixels, the minimum value is the number of vertical radial effective pixels.
  • the present invention also provides another preferred embodiment of the brightness adjusting device of the infrared light source, and FIG. 7 shows another structure of the brightness adjusting device of the infrared light source, and the brightness adjusting device of the infrared light source includes a processor 30 (processor) , Communication Interface 31 (Communications Interface), Memory 32 (memory), Bus 33.
  • processor 30 processor
  • Communication Interface 31 Communication Interface
  • Memory 32 memory
  • Bus 33 Bus 33
  • the processor 30, the communication interface 31, and the memory 32 complete communication with each other via the bus 33.
  • the communication interface 31 is for communicating with an external device, such as a personal computer, a server, or the like.
  • the processor 30 is configured to execute the program 34.
  • program 34 may include program code, the program code including computer operating instructions.
  • the processor 30 may be a central processing unit CPU, or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits configured to implement embodiments of the present invention.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • the memory 32 is used to store the program 34.
  • Memory 32 may include high speed RAM memory and may also include non-volatile memory, such as at least one disk memory.
  • the program 34 may specifically include:
  • the distance obtaining module 100 is configured to acquire a distance between the captured object and the infrared light source.
  • the brightness adjustment module 200 is configured to adjust the brightness of the infrared light source according to the distance.
  • the present invention also provides an optical motion capture camera including the above-described infrared light source brightness adjusting device.
  • the brightness adjustment method of the infrared light source includes: acquiring the captured object and the infrared light The distance between the sources; the brightness of the infrared source is adjusted according to the distance. Therefore, the infrared light source can provide infrared light of sufficient brightness when the captured object is far away from the camera lens, and the light emitting brightness of the infrared light source is appropriately reduced when the captured object is closer to the camera lens, thereby reducing
  • the heat generated by the infrared light source avoids the problem that the infrared light source is set to the maximum brightness for a long time and the life of the infrared light source is shortened, which may affect the normal operation of the camera.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Graphics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Studio Devices (AREA)

Abstract

红外光源的亮度调节方法包括:获取被捕捉物与所述红外光源之间的距离(S1);根据所述距离调节红外光源的亮度(S2)。因此,既可实现在被捕捉物距离摄像机镜头较远时,红外光源能够提供足够亮度的红外光,又能实现在被捕捉物距离摄像机镜头较近时,红外光源的发光亮度适当降低,从而减少了红外光源的发热量,避免了红外光源长时间设置为最大亮度而造成红外光源使用寿命缩短且会影响摄像机正常工作的问题。

Description

红外光源的亮度调节方法与装置、光学动捕摄像机 技术领域
本发明属于光源亮度调节技术领域,尤其涉及一种红外光源的亮度调节方法与装置、光学动捕摄像机。
背景技术
光学动作捕捉系统被广泛应用于电影动画特技制作、大型游戏制作、生命科学研究等领域。近年来随着虚拟现实(Virtual Reality,VR)技术的发展,光学动作捕抓系统开始被应用于VR技术领域。
光学动作捕捉系统的核心器件是光学动捕摄像机。光学动捕摄像机主要由图像传感器、镜头、红外带通滤光单元、红外光源以及摄像机控制电路组成。红外光源发出的红外光照射到被捕捉物(人、动物等)上,绑定在被捕捉物上的反光球将该红外光反射,反射光通过镜头和红外带通滤光单元后被图像传感器记录。一般情况下,图像传感器对红外光波段的量子效率都比较低,因此需要较高亮度的红外光源,同时,被捕捉物距离镜头越远,就需要红外光源发出亮度越强的红外光,以确保有足够亮度的反射光能被图像传感器记录。一般情况下,由于被捕捉物是运动的,将红外光源的发光亮度始终调节到最大以确保当被捕捉物移动到距离摄像机镜头较远的时候都能有足够亮度的反射光。然而大亮度的红外光源所发出的热量较大,因此会缩短红外光源的使用寿命,甚至会影响摄像机的正常工作。因此,现有技术存在光学动捕摄像机的红外光源的发光亮度始终调节至最大而造成红外光源使用寿命缩短且会影响摄像机正常工作的问题。
技术问题
本发明的目的在于提供一种红外光源的亮度调节方法,旨在解决现有技术所存在的光学动捕摄像机的红外光源的发光亮度始终调节至最大而造成红外光源使用寿命缩短且会影响摄像机正常工作的问题。
技术解决方案
本发明是这样实现的,一种红外光源的亮度调节方法,所述红外光源设置于光学动捕摄像机中;所述红外光源的亮度调节方法包括:
获取被捕捉物与所述红外光源之间的距离;
根据所述距离调节所述红外光源的亮度。
所述获取被捕捉物与所述红外光源之间的距离的步骤具体为:
获取绑定在所述被捕捉物上的反光球的横径向有效像素个数或纵径向有效像素个数;
根据所述横径向有效像素个数、图像传感器的横向像素个数、所述反光球的直径以及光学动捕摄像机镜头的横向视野角计算所述距离,或根据所述纵径向有效像素个数、图像传感器的纵向像素个数、所述反光球的直径以及光学动捕摄像机镜头的纵向视野角计算所述距离。
所述获取绑定在所述被捕捉物上的反光球的横径向有效像素个数或纵径向有效像素个数的步骤具体为:
获取场景拍摄图像;
从所述场景拍摄图像中获取绑定在被捕捉物上的多个反光球所对应的多个区域图像信息;
获取每个所述区域图像信息的每一行像素或每一列像素中像素灰度值大于预设灰度阈值的亮像素个数;
根据每个所述区域图像信息的所有行像素或所有列像素所对应的多个亮像素个数获取所述多个亮像素个数中的最大亮像素个数;
根据多个所述区域图像信息所对应的多个最大亮像素个数获取所述多个最大亮像素个数中的最小值,所述最小值为横径向有效像素个数或纵径向有效像素个数。
所述根据所述距离调节所述红外光源的亮度的步骤具体为:
根据所述距离以及距离与亮度的对应关系调节所述红外光源的亮度。
本发明的另一目的还在于提供一种红外光源的亮度调节装置,所述红外光源设置于光学动捕摄像机中;所述红外光源的亮度调节装置包括:
距离获取模块,用于获取被捕捉物与所述红外光源之间的距离;
亮度调节模块,用于根据所述距离调节所述红外光源的亮度。
所述距离获取模块包括:
有效径向像素个数获取单元,用于获取绑定在所述被捕捉物上的反光球的横径向有效像素个数或纵径向有效像素个数;
距离计算单元,用于根据所述横径向有效像素个数、图像传感器的横向像素个数、所述反光球的直径以及光学动捕摄像机镜头的横向视野角计算所述距离,或根据所述纵径向有效像素个数、图像传感器的纵向像素个数、所述反光球的直径以及光学动捕摄像机镜头的纵向视野角计算所述距离。
所述有效径向像素个数获取单元包括:
场景图像获取子单元,用于获取场景拍摄图像;
区域图像信息获取子单元,用于从所述场景拍摄图像中获取绑定在被捕捉物上的多个反光球所对应的多个区域图像信息;
亮像素个数获取子单元,用于获取每个所述区域图像信息的每一行像素或每一列像素中像素灰度值大于预设灰度阈值的亮像素个数;
最大亮像素个数获取子单元,用于根据每个所述区域图像信息的所有行像素或所有列像素所对应的多个亮像素个数获取所述多个亮像素个数中的最大亮像素个数;
有效径向像素个数获取子单元,用于根据多个所述区域图像信息所对应的 多个最大亮像素个数获取所述多个最大亮像素个数中的最小值,所述最小值为横径向有效像素个数或纵径向有效像素个数。
所述根据所述距离调节所述红外光源的亮度的过程具体为:
根据所述距离以及距离与亮度的对应关系调节所述红外光源的亮度。
本发明的另一目的还在于提供一种包括上述红外光源的亮度调节装置的光学动捕摄像机。
有益效果
在本发明中,红外光源的亮度调节方法包括:获取被捕捉物与所述红外光源之间的距离;根据所述距离调节红外光源的亮度。因此,既可实现在被捕捉物距离摄像机镜头较远时,红外光源能够提供足够亮度的红外光,又能实现在被捕捉物距离摄像机镜头较近时,红外光源的发光亮度适当降低,从而减少了红外光源的发热量,避免了红外光源长时间设置为最大亮度而造成红外光源使用寿命缩短且会影响摄像机正常工作的问题。
附图说明
图1是本发明实施例提供的红外光源的亮度调节方法的实现流程图;
图2是图1所示步骤S1的实现流程图;
图3是图2所示步骤S10的实现流程图;
图4是本发明另一实施例提供的某一反光球所对应的区域图像信息;
图5是本发明另一实施例提供的红外光源的亮度调节装置的结构示意图;
图6是本发明另一实施例提供的红外光源的亮度调节装置的结构示意图;
图7是本发明另一实施例提供的红外光源的亮度调节装置的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实 施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1示出了本发明实施例提供的红外光源的亮度调节方法的实现流程,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
对于本发明实施例所提供的红外光源的亮度调节方法,其中,红外光源设置于光学动捕摄像机中。
在步骤S1中,获取被捕捉物与红外光源之间的距离。
具体的,步骤S1的具体实现流程如图2所示,详述如下:
在步骤S10中,获取绑定在被捕捉物上的反光球的横径向有效像素个数或纵径向有效像素个数。
具体的,反光球用于对照射到其表面上的红外光进行反射,从而使反射的红外光通过摄像机镜头、红外带通滤光单元后被图像传感器所记录。
具体的,步骤S10的具体实现流程如图3所示,详述如下:
在步骤S100中,获取场景拍摄图像。
具体的,对某一场景进行拍照获取场景拍摄图像。
在步骤S200中,从场景拍摄图像中获取绑定在被捕捉物上的多个反光球所对应的多个区域图像信息。
具体的,当拍摄的场景中包含多个被捕捉物时,从场景拍摄图像中获取绑定在多个被捕捉物上的多个反光球分别所对应的区域图像信息,其中,每一区域图像信息为场景拍摄图像中每个反光球的图像部分。进一步具体的,基于图像处理方法对场景拍摄图像中每个反光球所对应的图像部分进行区分。例如:当某一反光球直径为16毫米,且距离具有某特定参数的摄像机的镜头15.2米时,该反光球所对应的区域图像信息如图4所示。
在步骤S300中,获取每个区域图像信息的每一行像素或每一列像素中像素灰度值大于预设灰度阈值的亮像素个数。
具体的,步骤S300具体为:行像素或列像素中,像素灰度值大于预设灰度 阈值的像素为亮像素,获取每个区域图像信息的每一行像素或每一列像素中亮像素的个数。
在步骤S400中,根据每个区域图像信息的所有行像素或所有列像素所对应的多个亮像素个数获取多个亮像素个数中的最大亮像素个数。
具体的,对于每一区域图像信息,其每一行像素对应一个亮像素个数,一区域图像信息包括多行像素,因此,多行像素对应多个亮像素个数,从多个亮像素个数中获取最大值,该最大值即为最大亮像素个数。例如:一区域图像信息包括5行像素,每一行像素所对应的亮像素个数分别为1、3、4、3、1,多个亮像素个数中的最大值为4,因此,最大亮像素个数为4。或者,每一列像素对应一个亮像素个数,一区域图像信息包括多列像素,因此,多列像素对应多个亮像素个数,从多个亮像素个数中获取最大值,该最大值即为最大亮像素个数。例如:当前位置拍摄图像包括5列像素,每一列像素所对应的亮像素个数分别为1、3、4、3、1,多个亮像素个数中的最大值为4,因此,最大亮像素个数为4。
在步骤S500中,根据多个区域图像信息所对应的多个最大亮像素个数获取多个最大亮像素个数中的最小值,最小值为横径向有效像素个数或纵径向有效像素个数。
具体的,步骤S500具体为:每个区域图像信息对应一个最大亮像素个数,多个区域图像信息对应多个最大亮像素个数,从多个最大亮像素个数中选取最小值,该最小值即为横径向有效像素个数或纵径向有效像素个数,其中,若多个区域图像信息所对应的多个最大亮像素个数均是根据行像素获取的,则该最小值为横径向有效像素个数;若多个区域图像信息所对应的多个最大亮像素个数均是根据列像素获取的,则该最小值为纵径向有效像素个数。
在步骤S20中,根据横径向有效像素个数、图像传感器的横向像素个数、反光球的直径以及光学动捕摄像机镜头的横向视野角计算距离,或根据纵径向有效像素个数、图像传感器的纵向像素个数、反光球的直径以及光学动捕摄像 机镜头的纵向视野角计算距离。
具体的,图像传感器的横向像素个数、光学动捕摄像机镜头的横向视野角、图像传感器的纵向像素个数以及光学动捕摄像机镜头的纵向视野角均为光学动捕摄像机系统的预定值。
具体的,根据横径向有效像素个数、图像传感器的横向像素个数、反光球的直径以及光学动捕摄像机镜头的横向视野角计算距离的步骤具体为:
Figure PCTCN2016094113-appb-000001
其中,L表示距离,N1表示图像传感器的横向像素个数,SIZE表示反光球的直径,n1表示横径向有效像素个数,FOV1表示光学动捕摄像机镜头的横向视野角。
具体的,根据纵径向有效像素个数、图像传感器的纵向像素个数、反光球的直径以及光学动捕摄像机镜头的纵向视野角计算距离的步骤具体为:
Figure PCTCN2016094113-appb-000002
其中,L表示距离,N2表示图像传感器的纵向像素个数,SIZE表示反光球的直径,n2表示纵径向有效像素个数,FOV2表示光学动捕摄像机镜头的纵向视野角。
在步骤S2中,根据距离调节红外光源的亮度。
具体的,步骤S2具体为:根据距离以及距离与亮度的对应关系调节红外光源的亮度。
具体的,根据计算出的距离以及距离与亮度的对应关系可以得到当前距离下所需要的亮度,从而将红外光源的亮度调节到当前距离下所需要的亮度。
具体的,在应用中,当光学动捕摄像机的软件和硬件均确定后,可根据实际工程测试来确定距离与亮度的对应关系。例如可采用以下工程测试方法:将反光球放置于距离摄像机镜头a米远的位置,根据该距离下所拍摄到的反光球图像来不断调整红外光源的亮度,从而找到该距离下较为合适的红外光源亮度 A,进而确定了距离a与亮度A的对应关系。通过不断调整反光球与摄像机镜头之间的距离,从而可确定多个距离分别所对应的红外光源亮度。
图5示出了本发明另一实施例提供的红外光源的亮度调节装置的结构,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:
红外光源的亮度调节装置包括距离获取模块100和亮度调节模块200,其中,红外光源设置于光学动捕摄像机中。
距离获取模块100用于获取被捕捉物与红外光源之间的距离。
亮度调节模块200用于根据距离调节红外光源的亮度。
具体的,亮度调节模块200根据距离以及距离与亮度的对应关系调节红外光源的亮度。进一步具体的,亮度调节模块200根据被捕捉物与红外光源之间的距离以及距离与亮度的对应关系得到当前距离下所需要的亮度,从而将红外光源的亮度调节到当前距离下所需要的亮度。
具体的,在应用中,当光学动捕摄像机的软件和硬件均确定后,可根据实际工程测试来确定距离与亮度的对应关系。例如可采用以下工程测试方法:将反光球放置于距离摄像机镜头a米远的位置,根据该距离下所拍摄到的反光球图像来不断调整红外光源的亮度,从而找到该距离下较为合适的红外光源亮度A,进而确定了距离a与亮度A的对应关系。通过不断调整反光球与摄像机镜头之间的距离,从而可确定多个距离分别所对应的红外光源亮度。
作为本发明一实施例,如图6所示,距离获取模块100包括有效径向像素个数获取单元101和距离计算单元102。
有效径向像素个数获取单元101用于获取绑定在被捕捉物上的反光球的横径向有效像素个数或纵径向有效像素个数。
具体的,反光球用于对照射到其表面上的红外光进行反射,从而使反射的红外光通过摄像机镜头、红外带通滤光单元后被图像传感器所记录。
距离计算单元102用于根据横径向有效像素个数、图像传感器的横向像素个数、反光球的直径以及光学动捕摄像机镜头的横向视野角计算距离,或根据 纵径向有效像素个数、图像传感器的纵向像素个数、反光球的直径以及光学动捕摄像机镜头的纵向视野角计算距离。
具体的,图像传感器的横向像素个数、光学动捕摄像机镜头的横向视野角、图像传感器的纵向像素个数以及光学动捕摄像机镜头的纵向视野角均为光学动捕摄像机系统的预定值。
具体的,距离计算单元102根据横径向有效像素个数、图像传感器的横向像素个数、反光球的直径以及光学动捕摄像机镜头的横向视野角计算距离的过程具体为:
Figure PCTCN2016094113-appb-000003
其中,L表示距离,N1表示图像传感器的横向像素个数,SIZE表示反光球的直径,n1表示横径向有效像素个数,FOV1表示光学动捕摄像机镜头的横向视野角。
具体的,距离计算单元102根据纵径向有效像素个数、图像传感器的纵向像素个数、反光球的直径以及光学动捕摄像机镜头的纵向视野角计算距离的过程具体为:
Figure PCTCN2016094113-appb-000004
其中,L表示距离,N2表示图像传感器的纵向像素个数,SIZE表示反光球的直径,n2表示纵径向有效像素个数,FOV2表示光学动捕摄像机镜头的纵向视野角。
作为本发明一实施例,如图6所示,有效径向像素个数获取单元101包括场景图像获取子单元110、区域图像获取子单元111、亮像素个数获取子单元112、最大亮像素个数获取子单元113及有效径向像素个数获取子单元114。
场景图像获取子单元110用于获取场景拍摄图像。
具体的,对某一场景进行拍照获取场景拍摄图像。
区域图像信息获取子单元111用于从所述场景拍摄图像中获取绑定在被捕 捉物上的多个反光球所对应的多个区域图像信息。
具体的,当拍摄的场景中包含多个被捕捉物时,从场景拍摄图像中获取绑定在多个被捕捉物上的多个反光球分别所对应的区域图像信息,其中,每个区域图像信息为场景拍摄图像中每个反光球的图像部分。进一步具体的,基于图像处理方法对场景拍摄图像中每个反光球所对应的图像部分进行区分。例如:当某一反光球直径为16毫米,且距离具有某特定参数的摄像机的镜头15.2米时,该反光球所对应的区域图像信息如图4所示。
亮像素个数获取子单元112用于获取每个所述区域图像信息的每一行像素或每一列像素中像素灰度值大于预设灰度阈值的亮像素个数。
具体的,行像素或列像素中,像素灰度值大于预设灰度阈值的像素为亮像素,获取每个区域图像信息的每一行像素或每一列像素中亮像素的个数。
最大亮像素个数获取子单元113用于根据每个所述区域图像信息的所有行像素或所有列像素所对应的多个亮像素个数获取所述多个亮像素个数中的最大亮像素个数。
具体的,对于每一区域图像信息,其每一行像素对应一个亮像素个数,一区域图像信息包括多行像素,因此,多行像素对应多个亮像素个数,从多个亮像素个数中获取最大值,该最大值即为最大亮像素个数。例如:一区域图像信息包括5行像素,每一行像素所对应的亮像素个数分别为1、3、4、3、1,多个亮像素个数中的最大值为4,因此,最大亮像素个数为4。或者,每一列像素对应一个亮像素个数,一区域图像信息包括多列像素,因此,多列像素对应多个亮像素个数,从多个亮像素个数中获取最大值,该最大值即为最大亮像素个数。例如:当前位置拍摄图像包括5列像素,每一列像素所对应的亮像素个数分别为1、3、4、3、1,多个亮像素个数中的最大值为4,因此,最大亮像素个数为4。
有效径向像素个数获取子单元114用于根据多个所述区域图像信息所对应的多个最大亮像素个数获取所述多个最大亮像素个数中的最小值,所述最小值 为横径向有效像素个数或纵径向有效像素个数。
具体的,每个区域图像信息对应一个最大亮像素个数,多个区域图像信息对应多个最大亮像素个数,从多个最大亮像素个数中选取最小值,该最小值即为横径向有效像素个数或纵径向有效像素个数,其中,若多个区域图像信息所对应的多个最大亮像素个数均是根据行像素获取的,则该最小值为横径向有效像素个数;若多个区域图像信息所对应的多个最大亮像素个数均是根据列像素获取的,则该最小值为纵径向有效像素个数。
本发明还提供了红外光源的亮度调节装置的另一种优先的实施例,图7示出了红外光源的亮度调节装置的另一种结构,红外光源的亮度调节装置包括处理器30(processor),通信接口31(Communications Interface),存储器32(memory),总线33。
处理器30,通信接口31,存储器32通过总线33完成相互间的通信。
通信接口31,用于与外界设备,例如,个人电脑、服务器等通信。
处理器30,用于执行程序34。
具体地,程序34可以包括程序代码,所述程序代码包括计算机操作指令。
处理器30可能是一个中央处理器CPU,或者是特定集成电路ASIC(Application Specific Integrated Circuit),或者是被配置成实施本发明实施例的一个或多个集成电路。
存储器32,用于存放程序34。存储器32可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。程序34具体可以包括:
距离获取模块100,用于获取被捕捉物与红外光源之间的距离。
亮度调节模块200,用于根据距离调节红外光源的亮度。
基于上述红外光源的亮度调节装置在光学动捕摄像机中的应用优势,本发明还提供一种包括上述红外光源的亮度调节装置的光学动捕摄像机。
在本发明中,红外光源的亮度调节方法包括:获取被捕捉物与所述红外光 源之间的距离;根据所述距离调节红外光源的亮度。因此,既可实现在被捕捉物距离摄像机镜头较远时,红外光源能够提供足够亮度的红外光,又能实现在被捕捉物距离摄像机镜头较近时,红外光源的发光亮度适当降低,从而减少了红外光源的发热量,避免了红外光源长时间设置为最大亮度而造成红外光源使用寿命缩短且会影响摄像机正常工作的问题。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种红外光源的亮度调节方法,所述红外光源设置于光学动捕摄像机中;其特征在于,所述红外光源的亮度调节方法包括:
    获取被捕捉物与所述红外光源之间的距离;
    根据所述距离调节所述红外光源的亮度。
  2. 如权利要求1所述的红外光源的亮度调节方法,其特征在于,所述获取被捕捉物与所述红外光源之间的距离的步骤具体为:
    获取绑定在所述被捕捉物上的反光球的横径向有效像素个数或纵径向有效像素个数;
    根据所述横径向有效像素个数、图像传感器的横向像素个数、所述反光球的直径以及光学动捕摄像机镜头的横向视野角计算所述距离,或根据所述纵径向有效像素个数、图像传感器的纵向像素个数、所述反光球的直径以及光学动捕摄像机镜头的纵向视野角计算所述距离。
  3. 如权利要求2所述的红外光源的亮度调节方法,其特征在于,所述获取绑定在所述被捕捉物上的反光球的横径向有效像素个数或纵径向有效像素个数的步骤具体为:
    获取场景拍摄图像;
    从所述场景拍摄图像中获取绑定在被捕捉物上的多个反光球所对应的多个区域图像信息;
    获取每个所述区域图像信息的每一行像素或每一列像素中像素灰度值大于预设灰度阈值的亮像素个数;
    根据每个所述区域图像信息的所有行像素或所有列像素所对应的多个亮像素个数获取所述多个亮像素个数中的最大亮像素个数;
    根据多个所述区域图像信息所对应的多个最大亮像素个数获取所述多个最大亮像素个数中的最小值,所述最小值为横径向有效像素个数或纵径向有效像素个数。
  4. 如权利要求1所述的红外光源的亮度调节方法,其特征在于,所述根据所述距离调节所述红外光源的亮度的步骤具体为:
    根据所述距离以及距离与亮度的对应关系调节所述红外光源的亮度。
  5. 一种红外光源的亮度调节装置,所述红外光源设置于光学动捕摄像机中;其特征在于,所述红外光源的亮度调节装置包括:
    距离获取模块,用于获取被捕捉物与所述红外光源之间的距离;
    亮度调节模块,用于根据所述距离调节所述红外光源的亮度。
  6. 如权利要求5所述的红外光源的亮度调节装置,其特征在于,所述距离获取模块包括:
    有效径向像素个数获取单元,用于获取绑定在所述被捕捉物上的反光球的横径向有效像素个数或纵径向有效像素个数;
    距离计算单元,用于根据所述横径向有效像素个数、图像传感器的横向像素个数、所述反光球的直径以及光学动捕摄像机镜头的横向视野角计算所述距离,或根据所述纵径向有效像素个数、图像传感器的纵向像素个数、所述反光球的直径以及光学动捕摄像机镜头的纵向视野角计算所述距离。
  7. 如权利要求6所述的红外光源的亮度调节装置,其特征在于,所述有效径向像素个数获取单元包括:
    场景图像获取子单元,用于获取场景拍摄图像;
    区域图像信息获取子单元,用于从所述场景拍摄图像中获取绑定在被捕捉物上的多个反光球所对应的多个区域图像信息;
    亮像素个数获取子单元,用于获取每个所述区域图像信息的每一行像素或每一列像素中像素灰度值大于预设灰度阈值的亮像素个数;
    最大亮像素个数获取子单元,用于根据每个所述区域图像信息的所有行像素或所有列像素所对应的多个亮像素个数获取所述多个亮像素个数中的最大亮像素个数;
    有效径向像素个数获取子单元,用于根据多个所述区域图像信息所对应的 多个最大亮像素个数获取所述多个最大亮像素个数中的最小值,所述最小值为横径向有效像素个数或纵径向有效像素个数。
  8. 如权利要求5所述的红外光源的亮度调节装置,其特征在于,所述根据所述距离调节所述红外光源的亮度的过程具体为:
    根据所述距离以及距离与亮度的对应关系调节所述红外光源的亮度。
  9. 一种光学动捕摄像机,其特征在于,所述光学动捕摄像机包括如权利要求5-8任一项所述的红外光源的亮度调节装置。
PCT/CN2016/094113 2016-08-09 2016-08-09 红外光源的亮度调节方法与装置、光学动捕摄像机 WO2018027530A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680003664.0A CN107113379B (zh) 2016-08-09 2016-08-09 红外光源的亮度调节方法与装置、光学动捕摄像机
PCT/CN2016/094113 WO2018027530A1 (zh) 2016-08-09 2016-08-09 红外光源的亮度调节方法与装置、光学动捕摄像机
CN201710293062.XA CN107181918B (zh) 2016-08-09 2017-04-28 一种光学动捕摄像机的拍摄控制方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/094113 WO2018027530A1 (zh) 2016-08-09 2016-08-09 红外光源的亮度调节方法与装置、光学动捕摄像机

Publications (1)

Publication Number Publication Date
WO2018027530A1 true WO2018027530A1 (zh) 2018-02-15

Family

ID=59676516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094113 WO2018027530A1 (zh) 2016-08-09 2016-08-09 红外光源的亮度调节方法与装置、光学动捕摄像机

Country Status (2)

Country Link
CN (2) CN107113379B (zh)
WO (1) WO2018027530A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107864342B (zh) * 2017-10-27 2020-04-17 深圳市瑞立视多媒体科技有限公司 图像亮度调节方法及装置
CN108156372A (zh) * 2017-12-08 2018-06-12 深圳天珑无线科技有限公司 参数调整方法、参数调整系统及用户终端
CN109963085B (zh) 2017-12-26 2020-08-25 深圳市优必选科技有限公司 一种调整快门速度的方法、装置及机器人
CN108174180B (zh) * 2018-01-02 2019-07-30 京东方科技集团股份有限公司 一种显示装置、显示系统及三维显示方法
CN108509867B (zh) * 2018-03-12 2020-06-05 Oppo广东移动通信有限公司 控制方法、控制装置、深度相机和电子装置
WO2019174436A1 (zh) 2018-03-12 2019-09-19 Oppo广东移动通信有限公司 控制方法、控制装置、深度相机和电子装置
CN110826376B (zh) * 2018-08-10 2022-08-12 广东虚拟现实科技有限公司 标记物识别方法、装置、终端设备及存储介质
CN109634027B (zh) * 2019-01-04 2020-11-10 广东智媒云图科技股份有限公司 一种光源亮度及位置的调节方法及装置
CN110463183A (zh) * 2019-06-28 2019-11-15 深圳市汇顶科技股份有限公司 识别装置及方法
WO2021046793A1 (zh) * 2019-09-12 2021-03-18 深圳市汇顶科技股份有限公司 图像采集方法、装置及存储介质
TWI777141B (zh) * 2020-03-06 2022-09-11 技嘉科技股份有限公司 人臉辨識方法以及人臉辨識裝置
CN112217988B (zh) * 2020-09-21 2022-03-04 深圳市美格智联信息技术有限公司 基于人工智能的光伏相机运动模糊自适应调整方法与系统
CN118210372A (zh) * 2022-12-16 2024-06-18 高通科技公司 调控方法及追踪方法、系统、设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201274062Y (zh) * 2008-10-09 2009-07-15 北京迪生通博科技有限公司 双模式动作捕捉红外跟踪器
CN102843518A (zh) * 2012-09-26 2012-12-26 武汉烽火众智数字技术有限责任公司 一种智能调节红外灯光强的方法及其装置
US20130229491A1 (en) * 2012-03-02 2013-09-05 Samsung Electronics Co., Ltd. Method of operating a three-dimensional image sensor
CN203289539U (zh) * 2013-06-09 2013-11-13 广州市晶华光学电子有限公司 一种智能亮度控制猎物相机
CN104202537A (zh) * 2014-09-05 2014-12-10 天彩电子(深圳)有限公司 一种红外摄像机的调光方法
CN104349041A (zh) * 2013-08-02 2015-02-11 松下电器产业株式会社 光量调整方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102203669B (zh) * 2008-10-31 2013-04-17 Nec显示器解决方案株式会社 投影仪、用于调节投影图像的亮度的方法、以及程序
CN101895723A (zh) * 2009-05-22 2010-11-24 深圳市菲特数码技术有限公司 监控设备
CN102314044A (zh) * 2010-07-02 2012-01-11 原相科技股份有限公司 距离测量系统及其方法
CN104580924B (zh) * 2014-12-30 2017-10-17 广东欧珀移动通信有限公司 一种闪光灯功率的调整方法及终端
TWI560512B (en) * 2014-12-31 2016-12-01 Hon Hai Prec Ind Co Ltd System and method for controlling flash

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201274062Y (zh) * 2008-10-09 2009-07-15 北京迪生通博科技有限公司 双模式动作捕捉红外跟踪器
US20130229491A1 (en) * 2012-03-02 2013-09-05 Samsung Electronics Co., Ltd. Method of operating a three-dimensional image sensor
CN102843518A (zh) * 2012-09-26 2012-12-26 武汉烽火众智数字技术有限责任公司 一种智能调节红外灯光强的方法及其装置
CN203289539U (zh) * 2013-06-09 2013-11-13 广州市晶华光学电子有限公司 一种智能亮度控制猎物相机
CN104349041A (zh) * 2013-08-02 2015-02-11 松下电器产业株式会社 光量调整方法
CN104202537A (zh) * 2014-09-05 2014-12-10 天彩电子(深圳)有限公司 一种红外摄像机的调光方法

Also Published As

Publication number Publication date
CN107113379B (zh) 2018-06-12
CN107181918A (zh) 2017-09-19
CN107181918B (zh) 2019-10-25
CN107113379A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2018027530A1 (zh) 红外光源的亮度调节方法与装置、光学动捕摄像机
JP7057454B2 (ja) 改良されたカメラ較正システム、標的、およびプロセス
CN108702437B (zh) 计算深度图的方法、系统、设备和存储介质
TWI810304B (zh) 用於產生影像圖框之設備及方法
US10547779B2 (en) Smart image sensor having integrated memory and processor
TWI624170B (zh) 影像掃描系統及其方法
US10237481B2 (en) Event camera for generation of event-based images
WO2020259474A1 (zh) 追焦方法、装置、终端设备、计算机可读存储介质
US20170059305A1 (en) Active illumination for enhanced depth map generation
CN112750168B (zh) 事件相机内参的标定方法、装置、计算机设备和存储介质
US20210385383A1 (en) Method for processing image by using artificial neural network, and electronic device supporting same
US11657535B2 (en) System and method for optimal camera calibration
CN110891170B (zh) 对经受光照图案的对象的图像获取进行优化的方法和设备
CN106524909B (zh) 三维图像采集方法及装置
US10827125B2 (en) Electronic device for playing video based on movement information and operating method thereof
CN113545028B (zh) 用于面部认证的增益控制
WO2019037105A1 (zh) 功率控制方法、测距模块及电子装置
CN110544278B (zh) 刚体运动捕捉方法及装置、agv位姿捕捉系统
EP4004874A1 (en) Joint environmental reconstruction and camera calibration
CN114659523A (zh) 一种大范围高精度姿态测量方法及装置
TWM560035U (zh) 影像追蹤裝置
CN110533577B (zh) 鱼眼图像校正方法及装置
TWI604196B (zh) 一種光流測速模組與其測速方法
CN117128892A (zh) 一种三维信息测量装置、测量方法和电子设备
TWI469089B (zh) 影像判斷方法以及物件座標計算裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16911985

Country of ref document: EP

Kind code of ref document: A1