WO2019037059A1 - 一种表面微图案设计的牙种植体及其构建方法 - Google Patents
一种表面微图案设计的牙种植体及其构建方法 Download PDFInfo
- Publication number
- WO2019037059A1 WO2019037059A1 PCT/CN2017/098922 CN2017098922W WO2019037059A1 WO 2019037059 A1 WO2019037059 A1 WO 2019037059A1 CN 2017098922 W CN2017098922 W CN 2017098922W WO 2019037059 A1 WO2019037059 A1 WO 2019037059A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dental implant
- nano
- construction method
- thread
- micro
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61C—DENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
- A61C13/00—Dental prostheses; Making same
- A61C13/01—Palates or other bases or supports for the artificial teeth; Making same
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/06—Titanium or titanium alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/02—Local etching
Definitions
- the invention relates to the technical field of dental implant surface treatment.
- the surface characteristics of titanium implants affect the speed and quality of bone healing.
- Micron-scale surface topography increases osseointegration area and mechanical chimerism, stabilizes fibrin clots and immobilizes fragile extracellular matrix scaffolds, providing a stable microenvironment for osteoblasts.
- the method of increasing the surface roughness of titanium implants mainly utilizes surface oxidation, surface blasting, chemical etching treatment and the like.
- Chinese patents CN102552044 and CN102912349 respectively disclose a method for preparing a dental implant surface with a multi-scale complex structure and a titanium implant surface preparation method for a micro-nano composite structure, which is obtained by sandblasting to obtain a tens of micrometer undulating structure, and then The sub-acid corrosion treatment results in a micro-nano composite multi-scale composite structure.
- a method for preparing a multi-stage nanostructure on a titanium implant surface and a method for preparing a micro-nano structure on a titanium implant surface disclosed in Chinese Patent No.
- CN102921037 and CN102912357 are also a method combining sandblasting and acid treatment.
- these micro/nano composite structures and their osseointegration areas and mechanical fitting forces are not ideal due to surface morphology and specific surface area.
- the titanium implants currently used in commercial applications lack the ideal physico-chemical combined surface composite microstructure, and there is a problem that the long-term application interface stability effect is not ideal.
- the invention provides a method for constructing a dental implant with a surface micropattern design, which is used for improving the mechanical fitting force and bone binding area of the dental implant and the human bone tissue, and solving the clinical problems such as poor initial stability and falling off of the existing oral implant.
- a method for constructing a dental implant with a surface micropattern design includes the following steps:
- the compressed air pressure is 4-8 bar
- the spraying distance is 50-150 mm
- the spraying time is 5-30 seconds
- the surface of the dental implant is further formed into a nano-scale concave-convex structure by chemical treatment.
- the dental implants were sequentially ultrasonically washed in acetone, 75% ethanol, and deionized water, and then dried.
- the depth of the laser etched trench of step 2 is deepened from top to bottom.
- the surface roughness of the dental implant is 2-8 micrometers; and the abrasive used in the sandblasting treatment is one or more of zirconia, quartz sand and white corundum.
- the nano-scale concave-convex structure described in the step 4 is in the form of a honeycomb, a tube array or a nano-cluster; the chemical treatment refers to one of acid etching, anodizing, and lye processing.
- Dental implants having a surface micropattern design prepared by the above construction method are also disclosed.
- the surface treatment method combining physical method and chemical method is applied to the field of oral implants, and the device is simple, convenient to operate, low in production cost, and suitable for industrial production.
- the thread surface of the dental implant surface is laser-etched to form a gradient-deep "groove"-like structure on the surface; further through the sandblasting process, Increased surface roughness, rough surface promotes proliferation and differentiation of osteoblasts.
- Nano-treatment etching, anodizing, lye treatment, etc.
- nano-treatment on the surface of the roughened dental implant can further induce calcium phosphate mineralization, thereby improving the formation of surrounding bone tissue and enhancing the surface of the implant. Strongly combined.
- Figure 1 is a SEM picture of a dental implant after laser etching
- Figure 2 is a SEM picture of the dental implant after sand blasting
- Figure 3 is a SEM picture of the dental implant after acid etching
- Figure 4 is a SEM picture of the dental implant after anodizing
- Figure 5 is a SEM picture of the dental implant lye.
- the reagents used in the present invention are all commercially available reagents.
- the measurement methods and the like used in the present invention are mostly conventional methods in the art, and will not be further described herein.
- Micro-level sand blasting is applied to the surface of the dental implant by using 40-80 mesh abrasive.
- the abrasive is one or more of zirconia, quartz sand and white corundum, and the compressed air pressure is 4-8 bar.
- the spraying distance is 50-150 mm, the spraying time is 5-30 seconds, and the surface roughness is 2 micrometers, as shown in FIG. 2;
- the surface of the dental implant is further formed by acid etching to form a nano-scale nano-cluster structure as shown in FIG.
- the dental implants were sequentially ultrasonically washed in acetone, 75% ethanol, and deionized water, and then dried.
- step 4 uses an anodizing treatment to further form the surface of the dental implant to form a nano-scale honeycomb structure as shown in FIG.
- step 4 uses a lye treatment to further form the surface of the dental implant to form a nano-scale tube array structure as shown in FIG.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Transplantation (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Dentistry (AREA)
- Dental Prosthetics (AREA)
Abstract
一种表面微图案设计的牙种植体以及其构建方法。该构建方法能将物理方法与化学方法结合的表面处理方法应用在口腔种植体领域,设备简单、操作方便、生产成本低和适用于工业生产;还可促进成骨细胞的增殖和分化;并且能进一步的诱导磷酸钙矿化,进而提高周围的骨组织的形成,增强种植体表面的牢固结合。
Description
技术领域
本发明涉及牙种植体表面处理技术领域。
背景技术
钛种植体表面特性尤其是表面微结构影响着骨愈合的速度和质量。微米级表面形貌增大骨结合面积和机械嵌合力,稳定纤维蛋白血凝块及固定脆弱的细胞外基质支架,为成骨细胞提供稳定的微环境。
目前,增加钛种植体表面粗糙度的方法主要是利用表面氧化,表面喷砂,化学腐蚀处理等手段。中国专利CN102552044和CN102912349分别公开了一种多尺度复杂结构的牙种植体表面的制备方法和一种微纳复合结构的钛种植体表面制备方法,通过喷砂得到十几微米起伏结构,再经过多次酸腐蚀处理得到微纳复合的多尺度复合结构。类似的,中国专利CN102921037和CN102912357分别公开的一种钛种植体表面制备多级纳米结构的方法和一种钛种植体表面制备微纳结构的方法,也同样是结合了喷砂与酸处理的方法,然而,由于表面形态及比表面积等原因,这些微纳复合结构及其骨结合面积和机械嵌合力并不理想。现商业应用的钛种植体缺乏理想的物理-化学相结合表面复合微结构,存在长期应用界面稳定效果不理想的问题。
发明内容
本发明提供一种构建表面微图案设计的牙种植体的方法,用以提高牙种植体与人体骨组织机械嵌合力及骨结合面积,解决现有口腔种植体初期稳固性差以及脱落等临床问题。
一种表面微图案设计的牙种植体的构建方法,包括以下步骤:
1)将牙种植体表面设为具有螺纹;
2)采用激光刻蚀的方式,在牙种植体螺纹面形成与螺纹平行的沟槽,所述沟槽深度在20μm~200μm;
3)采用40~80目的磨料对牙种植体表面进行微米级的喷砂处理,压缩空气压力为4~8bar,喷射距离为50~150mm,喷射时间为5~30秒;
4)通过化学处理将牙种植体表面进一步形成纳米级的凹凸结构。
其中,每一步骤之后都将牙种植体依次置于丙酮、75%乙醇、去离子水中分别超声清洗,然后干燥。
进一步,所述步骤2激光蚀刻的沟槽的深度自上而下梯度加深。所述步骤3喷砂处理后牙种植体的表面粗糙度为2~8微米;所述喷砂处理所使用的磨料为氧化锆、石英砂、白刚玉中的一种或多种混合。步骤4所述的纳米级的凹凸结构为蜂窝状、管阵列状或纳米簇形态;所述的化学处理是指酸蚀、阳极氧化、碱液处理中的一种。
还公开了由上述构建方法制备的、具有表面微图案设计的牙种植体。
本发明公开的表面微图案设计的牙种植体构建方法具有如下有益效果:
a.将物理方法与化学方法结合的表面处理方法应用在口腔种植体领域,设备简单、操作方便、生产成本低和适用于工业生产。
b.通过对牙种植体螺纹表面进行微图案结构设计及处理,将牙种植体表螺纹面进行激光刻蚀处理,在表面形成梯度深浅的“沟槽”状结构;进一步通过喷砂处理工艺,增加表面粗糙度,粗糙的表面可促进成骨细胞的增殖和分化。
c.在粗化处理的牙种植体表面进行纳米化处理(酸蚀,阳极氧化,碱液处理等)能进一步的诱导磷酸钙矿化,进而提高周围的骨组织的形成,增强种植体表面的牢固结合。
附图说明
图1为牙种植体激光刻蚀后的SEM图片;
图2为牙种植体喷砂后的SEM图片;
图3为牙种植体酸蚀后的SEM图片;
图4为牙种植体阳极氧化处理后的SEM图片;
图5为牙种植体碱液处理后的SEM图片。
具体实施方式
为了更好的理解本发明,下面结合说明书附图和具体实施例对本发明做进一步说明。本发明中使用的试剂均为市售试剂。本发明中使用的测定方法等多为本领域的常规方法,在此不再一一赘述。
实施例1:
1)将牙种植体表面设为具有螺纹;
2)如图1所示采用激光刻蚀的方式,在牙种植体螺纹面形成与螺纹平行的沟槽,所述沟槽深度在20μm~200μm;
3)采用40~80目的磨料对牙种植体表面进行微米级的喷砂处理,所述磨料为氧化锆、石英砂、白刚玉中的一种或多种混合,压缩空气压力为4~8bar,喷射距离为50~150mm,喷射时间为5~30秒,使表面粗糙度达到2微米,如图2所示;
4)通过酸蚀将牙种植体表面进一步形成如图3所示的纳米级的纳米簇结构。
其中,每一步骤之后都将牙种植体依次置于丙酮、75%乙醇、去离子水中分别超声清洗,然后干燥。
实施例2:
其与实施例1的区别点在于步骤4采用阳极氧化的处理方式将牙种植体表面进一步形成如图4所示的纳米级的蜂窝状结构。
实施例3:
其与实施例1的区别点在于步骤4采用碱液处理的处理方式将牙种植体表面进一步形成如图5所示的纳米级的管阵列状结构。
以上对本发明的较佳实施方式进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。
Claims (8)
- 一种表面微图案设计的牙种植体的构建方法,其特征在于,包括以下步骤:1)将牙种植体表面设为具有螺纹;2)采用激光刻蚀的方式,在牙种植体螺纹面形成与螺纹平行的沟槽,所述沟槽深度在20μm~200μm;3)采用40~80目的磨料对牙种植体表面进行微米级的喷砂处理,压缩空气压力为4~8bar,喷射距离为50~150mm,喷射时间为5~30秒;4)通过化学处理将牙种植体表面进一步形成纳米级的凹凸结构。
- 根据权利要求1所述的构建方法,其特征在于,每一步骤之后都将牙种植体依次置于丙酮、75%乙醇、去离子水中分别超声清洗,然后干燥。
- 根据权利要求1所述的构建方法,其特征在于,所述步骤2激光蚀刻的沟槽的深度自上而下梯度加深。
- 根据权利要求1所述的构建方法,其特征在于,所述步骤3喷砂处理后牙种植体的表面粗糙度为2~8微米。
- 根据根据权利要求1所述的构建方法,其特征在于,所述步骤3喷砂处理所使用的磨料为氧化锆、石英砂、白刚玉中的一种或多种混合。
- 根据权利要求1所述的构建方法,其特征在于,步骤4所述的纳米级的凹凸结构为蜂窝状、管阵列状或纳米簇形态。
- 根据权利要求1所述的构建方法,其特征在于,步骤4所述的化学处理是指酸蚀、阳极氧化、碱液处理中的一种。
- 一种表面微图案设计的牙种植体,其特征在于由权利要求1~7任一项构建方法制得。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/098922 WO2019037059A1 (zh) | 2017-08-25 | 2017-08-25 | 一种表面微图案设计的牙种植体及其构建方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/098922 WO2019037059A1 (zh) | 2017-08-25 | 2017-08-25 | 一种表面微图案设计的牙种植体及其构建方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019037059A1 true WO2019037059A1 (zh) | 2019-02-28 |
Family
ID=65438314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/098922 WO2019037059A1 (zh) | 2017-08-25 | 2017-08-25 | 一种表面微图案设计的牙种植体及其构建方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019037059A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040153154A1 (en) * | 2003-01-23 | 2004-08-05 | Wolfgang Dinkelacker | Bone implant and method for manufacturing same |
CN101773413A (zh) * | 2009-01-09 | 2010-07-14 | 沈阳天贺新材料开发有限公司 | 一种钛牙种植体的制备方法 |
CN102732898A (zh) * | 2012-06-29 | 2012-10-17 | 西安交通大学 | 在医用钛或钛合金表面制备微纳米复合结构的方法 |
CN105537589A (zh) * | 2016-01-28 | 2016-05-04 | 佛山市安齿生物科技有限公司 | 一种slm成型钛种植体表面处理方法 |
CN105624763A (zh) * | 2016-03-11 | 2016-06-01 | 河北工业大学 | 一种钛基体表面制备微纳复合结构的方法 |
CN106917127A (zh) * | 2017-03-06 | 2017-07-04 | 浙江工业大学 | 一种激光与阳极氧化复合制备钛合金仿生涂层的方法 |
-
2017
- 2017-08-25 WO PCT/CN2017/098922 patent/WO2019037059A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040153154A1 (en) * | 2003-01-23 | 2004-08-05 | Wolfgang Dinkelacker | Bone implant and method for manufacturing same |
CN101773413A (zh) * | 2009-01-09 | 2010-07-14 | 沈阳天贺新材料开发有限公司 | 一种钛牙种植体的制备方法 |
CN102732898A (zh) * | 2012-06-29 | 2012-10-17 | 西安交通大学 | 在医用钛或钛合金表面制备微纳米复合结构的方法 |
CN105537589A (zh) * | 2016-01-28 | 2016-05-04 | 佛山市安齿生物科技有限公司 | 一种slm成型钛种植体表面处理方法 |
CN105624763A (zh) * | 2016-03-11 | 2016-06-01 | 河北工业大学 | 一种钛基体表面制备微纳复合结构的方法 |
CN106917127A (zh) * | 2017-03-06 | 2017-07-04 | 浙江工业大学 | 一种激光与阳极氧化复合制备钛合金仿生涂层的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105537589B (zh) | 一种slm成型钛种植体表面处理方法 | |
Gulati et al. | Titania nanopores with dual micro-/nano-topography for selective cellular bioactivity | |
Meyle et al. | Surface micromorphology and cellular interactions | |
Parcharoen et al. | Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications | |
Fu et al. | Modulation of the mechanosensing of mesenchymal stem cells by laser-induced patterning for the acceleration of tissue reconstruction through the Wnt/β-catenin signaling pathway activation | |
CN105441960A (zh) | 钛牙种植体表面超亲水性微/纳分级结构的构建方法 | |
CN105689709A (zh) | 一种slm成型钛种植体表面微纳分级结构的构建方法 | |
Parkinson et al. | The potential of nanoporous anodic aluminium oxide membranes to influence skin wound repair | |
CN101536936B (zh) | 一种基于光固化成形的仿生支架多孔结构的制造工艺 | |
WO2013109078A1 (ko) | 거시-미세-나노규모의 삼중 구조를 지니는 임플란트의 골 유착 능력을 향상시키기 위한 다공성 표면과 그 제조 방법 | |
CN105696054A (zh) | 一种喷砂酸蚀钛表面形成含钙纳米薄片膜层的制备方法 | |
CN102793949B (zh) | 一种具有生物活性的CaO-SiO2/PAA复合膜材料的制备方法 | |
Brammer et al. | TiO 2 nanotube structures for enhanced cell and biological functionality | |
Zhang et al. | Effect of microtopography on osseointegration of implantable biomaterials and its modification strategies | |
WO2019037059A1 (zh) | 一种表面微图案设计的牙种植体及其构建方法 | |
CN110584803A (zh) | 一种3d打印氧化锆修复体及其制备方法以及其与牙体的粘接方法 | |
Meng et al. | Osteoblast behavior on hierarchical micro-/nano-structured titanium surface | |
Hara et al. | Effect of nano modified titanium surface on adsorption of rat periodontal ligament cells | |
CN211409456U (zh) | 一种3d打印氧化锆修复体 | |
CN206621458U (zh) | 一种表面多孔的髋臼杯假体 | |
Akasaka et al. | Adhesion of osteoblast-like cells (Saos-2) on micro-/submicro-patterned apatite scaffolds fabricated with apatite cement paste by micro-molding | |
CN111449777A (zh) | 一种3d打印牙齿种植体及其制备方法与应用 | |
BR102016012926A8 (pt) | Processo de deposição nanométrica de fosfato de cálcio na superfície de implante de titânio anodizado | |
WO2019039485A1 (ja) | 細胞シート形成部材、細胞シート形成部材の製造方法、および、細胞シートの製造方法 | |
CN208823016U (zh) | 一种牙槽骨塑形器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17922443 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17922443 Country of ref document: EP Kind code of ref document: A1 |