WO2019035720A1 - Récipient flottant de pisciculture - Google Patents

Récipient flottant de pisciculture Download PDF

Info

Publication number
WO2019035720A1
WO2019035720A1 PCT/NO2018/050207 NO2018050207W WO2019035720A1 WO 2019035720 A1 WO2019035720 A1 WO 2019035720A1 NO 2018050207 W NO2018050207 W NO 2018050207W WO 2019035720 A1 WO2019035720 A1 WO 2019035720A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
floatable
water
centre axis
fish
Prior art date
Application number
PCT/NO2018/050207
Other languages
English (en)
Inventor
Alf Reidar Sandstad
Original Assignee
Spring Innovation As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spring Innovation As filed Critical Spring Innovation As
Publication of WO2019035720A1 publication Critical patent/WO2019035720A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/60Floating cultivation devices, e.g. rafts or floating fish-farms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the invention relates to a floatable container for fish farming. More specifically, the invention relates to a container for fish farming with sufficient stability in all operating positions and all positions between a normal operational draught and an elevated position with reduced draught.
  • a container for fish farming may also be called a sea pen or a fish cage. Similar to all is that they constitute a confined space for breeding of fish.
  • sea pens that float in water and form an enclosure for fish are known within fish farming.
  • Such sea pens can be of an open type, where the wall of the pen is formed of a net constituting a water permeable wall and bottom.
  • Such open pens can in their bottom be provided with a dense cloth material for collection of faeces and feed.
  • sea pens can be half-open, with a dense wall and a water permeable bottom section, such as a net.
  • Another alternative is closed sea pens, with a dense wall and a dense bottom section.
  • a dense wall may be formed from a cloth-shaped, soft material, or from a stiff material.
  • the wall may be constructed from elements, such as stiff panels.
  • closed sea pens One advantage with closed sea pens is that it is easier to collect faeces and feed such that the environmental impact is reduced.
  • a closed sea pen may also prevent parasites, e.g. salmon lice, and algae from reaching the fish due to improved control of the water supply. Examples of closed sea pens are known from the patent documents WO2010/016769 and WO2010/099590.
  • Document WO2010/016769 discloses a hemispherical fish pen made from a rigid material and having an outlet for effluent.
  • Document WO2010/099590 discloses a solid wall closed containment system. It comprises floatation panels forming a continuous side wall contiguous with a continuous bottom. The bottom is shaped like a cone and tapered down towards a central drain abutment end.
  • the cage is made from glass reinforced plastic (GRP) and has a downwardly sloped bottom cone for collection of waste from the fish.
  • GRP glass reinforced plastic
  • Patent document NO 175341 discloses a further example of a closed sea pen. It has a cylindrical upper portion and a downwardly pointing, conical lower portion.
  • the pen may be made from steel, concrete or a soft, reinforced plastic fabric.
  • Water is pumped into the pen at the upper portion of the pen, through a horizontal supply pipe.
  • the supply pipe is arranged with a rotatable outlet at its end portion inside the pen to control the water flow in the desired direction, both horizontally and vertically.
  • the conical lower portion has a funnel-shaped outlet in its lower part.
  • All the examples of sea pens according to the prior art mentioned above have bottom sections that are either shaped as a downwards pointing cone or a downwards pointing hemisphere. The lowest point of the bottom is located in the centre of the pen.
  • the shape is favourable for gathering waste, as the waste will slide towards the lowest point, and be collected via an outlet at the bottom.
  • a challenge with a downwards conical- or hemispherical-shaped bottom is that the displaced volume of the cone/hemisphere is close to the centre axis, resulting in a low or negative initial stability when raising the pen such that the conical bottom is at the waterline.
  • the sea pen may heel and in the worst case capsize.
  • the invention has for its object to remedy or to reduce at least one of the drawbacks of the prior art, or at least provide a useful alternative to prior art.
  • the object is achieved through features, which are specified in the description below and in the claims that follow.
  • the invention relates to a floatable container for fish farming, wherein an internal volume of the container is distributed away from a vertical centre axis of the container.
  • the vertical centre axis should be understood as being vertical in an operable condition.
  • the container may be shaped such that the bulk of the internal volume is arranged towards a periphery of the container.
  • the container may contain a level of water, thus a vertical water column close to the centre axis may be lower than a vertical water column further away from the centre axis.
  • the invention solves the above-mentioned challenges by improving the stability of the container, when the container is floating in water in an elevated position with the cone at a water surface, as compared to a container where the internal volume is centred around the centre axis.
  • the container may be drained for water to elevate the container and thus increase a freeboard.
  • Stability may also be defined as metacentric height and is a measure of a floating body's initial stability against overturning.
  • the metacentric height is the distance between the centre of gravity (G) of the body and the metacentre (M). Higher GM means that the floating body is stiffer and quicker to return to its initial posi- tion.
  • the invention has a heeled centre of buoyancy which may be further away from the original centre of buoyancy as compared to a container, i.e. a fish cage, of the known prior art with downwards pointing bottom cone.
  • the invention reduces the need for additional stabilisation means such as pontoons to maintain stability in an elevated position.
  • the invention has a further advantage of reducing a draught of the container in the elevated position as compared to a conventional fish cages with downwards pointing bottom cone, wherein a water level is the same in both.
  • At least a portion of a bottom of the container is inclined upwards towards the vertical centre axis.
  • An inclined bottom may be a favourable way of distributing the internal volume away from the centre axis. It may further guide dropped objects, for example faeces, uneaten feed and dead fish, towards a lowest portion of the bottom of the container, as the waste will slide downwards due to gravity. The lowest point may be near the wall. The lowest portion of the bottom may form a gutter surrounding the centre axis.
  • the bottom may incline upwards from a peripherical wall towards the vertical centre axis.
  • a portion of the bottom is inclined downwards towards the vertical centre axis.
  • Inclining a portion of the bottom downwards may increase the internal volume of the container, thus increasing the capacity to store for example fish.
  • a portion of the bottom may incline downwards from the peripherical wall and towards the centre axis, before inclining upwards towards the centre axis.
  • the container may comprise at least two floatable volumes.
  • the floatable volumes may increase the stability of the container when the container is filled with water.
  • the floatable volumes may increase the freeboard of the container without reducing the fluid level in the container.
  • the floatable volumes may be arranged on an outer part of the container.
  • the container may comprise four floatable volumes arranged with substantially equal spacing around the container.
  • a freeboard of the container may be altered by adjusting a fluid level in the container.
  • the container must be watertight. This may be achieved by making the structure, walls and bottom, from a stiff watertight material such as steel, concrete or glass reinforced plastic.
  • the bottom may be made from a flexible cloth-like material, for example a watertight fabric. Fluid may be supplied into or drained from the container by means of a pump. To ensure that the container is not overfilled and thus run the risk of sinking, it may be arranged with a spillway that drains the water rising above a predetermined level in the container.
  • the container may comprise at least one outlet for effluent and waste.
  • the at least one outlet may be arranged at the lowest point in the container. This is favourable as waste such as faeces, uneaten feed and dead fish will sink and slide along the bottom towards the lowest point.
  • the container may comprise at least one inlet for water supply and/or live fish supply.
  • the water may be supplied from surrounding water, from shore supplies, from recirculated water, or from storage tanks.
  • the water may be supplied from a sea, from a depth where there is little risk of the water containing for example salmon lice.
  • at least one inlet may be arranged substantially in the centre of the container.
  • at least one inlet may be arranged at an elevation between the bottom of the wall and the top of the wall.
  • the container may be provided with means for creating a flow of water in the container.
  • a nozzle may direct pumped water into the container to create a circular flow of the water in the container.
  • the pumped water may be supplied from the container and/or surrounding water. If the inlet for fresh water supply is arranged in the centre of the container, the supplied water may start flowing in the same circular direction as the existing water in the container. As more water is supplied, it will displace the existing water outwards, creating a spiral flow out from the centre.
  • the existing water may gradually be drained such that the water is replaced continuously as the container is in use.
  • a further effect of circulating water is that it will take on a concave surface shape, with a depression towards the rotational axis. This is due to an outward pressure gradient developed from the inertial centrifugal force from rotating the water, where the pressure is higher along the perimeter of the flow than in the centre. This effect may contribute to pulling a bottom made from a flexible material upwards, contributing to keeping it tight.
  • the container may comprise a vent for ventilation of air trapped under the container.
  • air may be trapped under the container.
  • the air may affect the hydrody- namic properties of the container when it is floating in water.
  • the vent may let the trapped air escape so it may be displaced by water.
  • the vent may be arranged in the centre of the container.
  • the vent may be arranged at the highest elevation of the bottom section.
  • the vent may be configured as an inlet to supply air under the container for assisting when elevating the container in water.
  • the container may comprise at least two support members spanning between the longitudinal centre axis and the peripherical wall. The support members may strengthen the container against wave, current and mooring generated forces.
  • a walkway may be arranged at an upper edge of the peripherical wall.
  • the walkway may enable personnel access around the container for example to carry out maintenance, inspection or feeding.
  • At least one walkway may span between the longitudinal centre axis and the upper edge of the peripherical wall.
  • the at least one walkway may enable personnel access to the centre of the container for example to carry out maintenance, inspection or feeding. It may also be used for relocating equipment for feeding and monitoring, and the bird net.
  • the container may comprise means for delivering fish into the container.
  • the means may be positioned such that the fish is delivered from a side of the container.
  • the means for delivering fish may be operable when the container is being elevated.
  • the means for delivering fish may be operable when the container is in a elevated position.
  • Fig. 1 shows an isometric view of the semi-submersible container according to one embodiment of the invention
  • Fig. 2a shows a vertical cross-section A-A of the container in figure 1 , but in a different scale
  • Fig. 2b shows a detail A of a means for creating a flow of water in the container according one embodiment of the invention
  • Fig. 2c shows a horizontal cross-section C-C through detail A from figure 2b;
  • Fig. 2d shows a horizontal cross-section B-B through the container in figure 1 ;
  • Fig. 3a shows the container floating in water in a submerged operating condition
  • Fig. 3b shows the container floating in water in an elevated service position.
  • the reference numeral 1 indicates a floatable container according to one embodiment of the invention.
  • the floatable container 1 includes a cylindrical wall 4 connected to a bottom 14, the bottom 14 being inclined upwards from the wall 4 towards a vertical centre axis 6.
  • Figure 1 shows a semi-submersible container 1 in accordance with one embodiment of the invention.
  • the container 1 has a cylindrical peripherical wall 4.
  • the upper edge 2 of the wall 4 is provided with a walkway 3.
  • a water inlet 7 is arranged with its longitudinal axis coinciding with the centre axis 6 of the container 1 .
  • the water inlet 7 comprises a foraminous vertical pipe 8 for supplying water over a height through the water column in the container 1 .
  • the vertical pipe 8 comprises a support member for a proximal end 91 of each of four horizontal support members 9.
  • a distant end 92 of each of the four support members 9 is connected to the wall 4.
  • Buoyancy members 1 1 are arranged externally on the container 1 .
  • the buoyancy members 1 1 may increase the freeboard and improve the stability of the container 1 .
  • a pair of slots 10 are recessed in the wall 4. There are four pairs of slots 10 evenly distributed around the container 1 , i.e. with a 90-degree angular distance between each other. These will be explained in further detail below.
  • Figure 2a shows a vertical cross-section A-A through the centre of the container 1 .
  • the bottom 14 has an upwardly pointing cone shape, with the highest section being in the centre of the container 1 .
  • the lowest section 13 of the bottom 14 is near the peripherical wall 4.
  • Four outlets 12 are located at the lowest section 13.
  • the shape of the bottom 14 ensures that waste, such as faeces, uneaten feed and dead fish, slide down along the bottom 14 towards the lowest section 13 and to the outlets 12.
  • Figure 2a also shows that the internal volume 1 10 is distributed away from the centre axis 6, with a larger portion of the volume 1 10 being closer to the wall 4. The more volume 1 10 that is shifted away from the centre axis, the higher the initial stability will be.
  • Water 1 00a flows into an inlet 10a and is diverted through a pump 101 .
  • the water 100a is then pumped through an outlet 10b, and back into the container 1 .
  • the outlet 10b directs the water 1 00a such that it creates a circular flow of water in the container 1 .
  • the speed of the flow 100b increases.
  • Four pairs of recessed slots 10 are distributed around the container 1 .
  • the top of the inlet 1 0a is arranged with a spillway 1 02.
  • the spillway 102 will ensure that the water level 1 6 in the container 1 does not exceed a predetermined level.
  • the spillway 102 is arranged such that it will always be above the surrounding waterline 1 5 to avoid flooding the container 1 .
  • the pump 101 is also arranged to drain the container 1 . Instead of pumping all the water from the inlet 10a to the outlet 10b, some of it can be pumped out. The drainage is controlled by a valve (not shown), such that some of the water is still diverted to the container 1 to maintain the flow. If the container contains fish, for example salmon, it is important for their well-being to maintain the flow of water in the container during drainage.
  • the pump 101 is arranged such that it will be under water both when the container is in an operable condition and a service position, see figure 3a and 3b.
  • Fig. 2d shows a horizontal cross-section B-B of the container 1 .
  • the water inlet 7 is positioned in the centre of the container 1 and supplies fresh water.
  • the existing water in the container has a circular flow, and the fresh water will start flowing in the same direction. As more fresh water is supplied, it will displace the existing water outwards, creating a spiral flow 100 from the centre and outwards. Some of the existing water will exit via the outlets for effluent 12 on the bottom and some will exit via the spillway 102. Thus, the water in the container 1 will gradually be replaced.
  • the spi- ral flow 1 00 may also contribute to getting rid of waste, as it will push the waste away from the centre, towards the outlets 12.
  • Fig. 3a shows the container 1 in an operating condition.
  • the container 1 is supplied with water such that the waterline 16 inside the container 1 is substantially equal to the waterline 1 5 outside the container 1 .
  • the freeboard may be adjusted by either altering the water level inside the container 1 , and/or adding buoyancy elements 1 1 . Buoyancy elements 1 1 may also increase the stability of the container 1 in the operating condition.
  • Fig. 3b shows the container 1 in a service position.
  • the container 1 is drained for water such that the freeboard is increased.
  • the container 1 will float stable as a result of its shape. Additional stability may be obtained by arranging buoyancy elements 1 1 on the wall 4.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Packages (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

L'invention concerne un récipient flottant (1) de pisciculture. Selon l'invention, un volume interne du récipient (1) est distribué à distance d'un axe central vertical (6) du récipient (1).
PCT/NO2018/050207 2017-08-15 2018-08-14 Récipient flottant de pisciculture WO2019035720A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20171356A NO343420B1 (en) 2017-08-15 2017-08-15 Floatable container for fish farming
NO20171356 2017-08-15

Publications (1)

Publication Number Publication Date
WO2019035720A1 true WO2019035720A1 (fr) 2019-02-21

Family

ID=65362302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO2018/050207 WO2019035720A1 (fr) 2017-08-15 2018-08-14 Récipient flottant de pisciculture

Country Status (2)

Country Link
NO (1) NO343420B1 (fr)
WO (1) WO2019035720A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220071179A1 (en) * 2018-11-06 2022-03-10 Spring Innovation As Method for assembly of a fish cage, a kit of parts for assembling a fish cage and a fish cage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016769A1 (fr) * 2008-08-08 2010-02-11 Maritime Oppdrett As Enclos de pisciculture
WO2012092380A2 (fr) * 2010-12-29 2012-07-05 Ocean Spar Llc Parc à poissons à espar central
US20150150223A1 (en) * 2012-06-26 2015-06-04 Agrimarine Industries Inc. Aquaculture rearing enclosure and circulation induction system
GB2547417A (en) * 2016-02-11 2017-08-23 Sogn Ind As Fish tank and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016769A1 (fr) * 2008-08-08 2010-02-11 Maritime Oppdrett As Enclos de pisciculture
WO2012092380A2 (fr) * 2010-12-29 2012-07-05 Ocean Spar Llc Parc à poissons à espar central
US20150150223A1 (en) * 2012-06-26 2015-06-04 Agrimarine Industries Inc. Aquaculture rearing enclosure and circulation induction system
GB2547417A (en) * 2016-02-11 2017-08-23 Sogn Ind As Fish tank and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220071179A1 (en) * 2018-11-06 2022-03-10 Spring Innovation As Method for assembly of a fish cage, a kit of parts for assembling a fish cage and a fish cage

Also Published As

Publication number Publication date
NO343420B1 (en) 2019-03-04
NO20171356A1 (en) 2019-02-18

Similar Documents

Publication Publication Date Title
US10918094B2 (en) Floating fish farming plant and assembly of plants
US11445708B2 (en) Floating marine plant for containing marine organisms
NO20110254A1 (no) Merdkonstruksjon
WO2017179989A1 (fr) Installation de pisciculture flottante et ensemble d'installations
DK180606B1 (en) Fish farm made of a rigid material
WO2020013703A1 (fr) Cage d'élevage de poissons
CN109068618B (zh) 用于鱼类养殖的装置和方法
ES2843545T3 (es) Dispositivo flotante para producir una ola estacionaria
CN110913688A (zh) 用于鱼类养殖的罐
NO346484B1 (en) AquaOcean Semi Submersible Fish Farm
WO2019035720A1 (fr) Récipient flottant de pisciculture
DK202170501A1 (en) Fish cage with improved water exchange and farming condition
NO347024B1 (en) A fish farming facility comprising a water outlet cleaning device
BR112018001788B1 (pt) Instalações com ondas artificiais dinâmicas para a prática do surf
KR101587853B1 (ko) 민물뱀장어 자어(Leptocephalus)의 양식수조장치
NO347536B1 (en) Fish farming cage and method for exchanging water in a fish farming cage.
WO2023106930A1 (fr) Ferme piscicole submersible auto-stabilisante
GB2026823A (en) Improvements relating to the rearing of fish and other marine creatures
WO2024147742A1 (fr) Ferme piscicole flottante fermée ou semi-fermée
KR101973337B1 (ko) 착저형 저서 가두리 양식장치
NO20231233A1 (en) Fish farming cage utilizing live biomass as driving force for water exchange
NO347982B1 (en) Aquaculture system for raising aquatic organisms and method of raising aquatic organisms
RU2707942C2 (ru) Погружное садковое разделяемое устройство для выращивания водных организмов
NO20230003A1 (no) Flytende lukket eller semilukket oppdrettsanlegg
CN118338780A (zh) 用于渔业养殖设施的泵送和清洁系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18846402

Country of ref document: EP

Kind code of ref document: A1