WO2019035442A1 - 合成樹脂部材の溶着方法 - Google Patents

合成樹脂部材の溶着方法 Download PDF

Info

Publication number
WO2019035442A1
WO2019035442A1 PCT/JP2018/030194 JP2018030194W WO2019035442A1 WO 2019035442 A1 WO2019035442 A1 WO 2019035442A1 JP 2018030194 W JP2018030194 W JP 2018030194W WO 2019035442 A1 WO2019035442 A1 WO 2019035442A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic resin
convex portion
welding
resin member
top surface
Prior art date
Application number
PCT/JP2018/030194
Other languages
English (en)
French (fr)
Inventor
隆行 森
憲一 廣▲崎▼
航 奥村
大介 森
吉宏 岩野
和昭 天岡
Original Assignee
トヨタ自動車株式会社
国立大学法人名古屋大学
石川県
東レ株式会社
三菱自動車工業株式会社
スズキ株式会社
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 国立大学法人名古屋大学, 石川県, 東レ株式会社, 三菱自動車工業株式会社, スズキ株式会社, 帝人株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201880052475.1A priority Critical patent/CN111479669B/zh
Priority to US16/636,551 priority patent/US11235536B2/en
Priority to EP18845572.9A priority patent/EP3670152B1/en
Publication of WO2019035442A1 publication Critical patent/WO2019035442A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1648Laser beams characterised by the way of heating the interface radiating the edges of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • B29C65/1667Laser beams characterised by the way of heating the interface making use of several radiators at the same time, i.e. simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • B29C65/782Positioning the parts to be joined, e.g. aligning, indexing or centring by setting the gap between the parts to be joined
    • B29C65/7823Positioning the parts to be joined, e.g. aligning, indexing or centring by setting the gap between the parts to be joined by using distance pieces, i.e. by using spacers positioned between the parts to be joined and forming a part of the joint
    • B29C65/7829Positioning the parts to be joined, e.g. aligning, indexing or centring by setting the gap between the parts to be joined by using distance pieces, i.e. by using spacers positioned between the parts to be joined and forming a part of the joint said distance pieces being integral with at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/22Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns
    • B29C66/223Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being in the form of recurring patterns being in the form of a triangle wave or of a sawtooth wave, e.g. zigzagged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3034Particular design of joint configurations the joint involving an anchoring effect making use of additional elements, e.g. meshes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/32Measures for keeping the burr form under control; Avoiding burr formation; Shaping the burr
    • B29C66/322Providing cavities in the joined article to collect the burr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81415General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81463General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a plurality of single pressing elements, e.g. a plurality of sonotrodes, or comprising a plurality of single counter-pressing elements, e.g. a plurality of anvils, said plurality of said single elements being suitable for making a single joint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/816General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8161General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the mounting of the pressing elements, e.g. of the welding jaws or clamps said pressing elements being supported or backed-up by springs or by resilient material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon

Definitions

  • the present invention relates to a method of welding synthetic resin members.
  • Patent Document 1 the first member having high laser beam permeability and the second member having high laser beam absorbability (low laser beam permeability) are overlapped, and the laser beam from the first member side is used. And the surface of the second member (that is, the surface superimposed on the first member) is melted by the laser light transmitted through the inside of the first member, and the molten synthetic resin material is the first member and the first member. Spread between the two members. Thereafter, the synthetic resin material spread between the first member and the second member cools and solidifies. Thereby, the first member and the second member are welded.
  • the end faces of the first and second cylindrical members are vertically irradiated with laser light, and the end faces are butted in a state where the end face (surface) is melted (cited reference 2) See Figure 6). Thereafter, the melted portion cools and solidifies. Thereby, the first member and the second member are welded.
  • FIGS. 2 and 4 of Patent Document 2 for example, a deep box-like first member opened upward and a shallow box-like (lid-like) second matter opened downward
  • the members are welded.
  • the upper end surface of the side wall portion of the first member is formed in a step-like shape. That is, the upper surface of the side wall gradually increases in the direction from the outside to the inside in the wall thickness direction of the side wall of the first member.
  • the lower end surface of the side wall portion of the second member is also formed stepwise. The lower end surface of the side wall portion of the second member and the upper end portion of the side wall portion of the first member are vertically symmetrical.
  • Patent Document 3 a bonding material formed in a plate shape between a first member and a second member, and a bonding material made of a synthetic resin having high absorbability of laser light is sandwiched, and the bonding material A laser beam is irradiated to the end face of the to melt the bonding material, and the melted bonding material spreads between the first member and the second member. Thereafter, the bonding material spread between the first member and the second member cools and solidifies. Thereby, the first member and the second member are welded.
  • JP 2008-302700 A JP 2012-091400 A JP, 2014-180843, A
  • patent document 1 it is presupposed that a member with high permeability of laser light is adopted as the first member. Therefore, members having high laser light absorbability can not be joined together using the method of Patent Document 1.
  • the surfaces (receiving surfaces 1f, 3f) perpendicular to the optical axis of the laser light are mainly melted in the groove.
  • a step shape remains in the groove. Therefore, when the second member is pressed to the first member side, the unmelted portions (remaining step-like portions) in the groove abut each other. Therefore, it is difficult to spread the molten synthetic resin material in the groove and fill the groove with the molten synthetic resin material. Therefore, it is difficult to set the welding strength of the first member and the second member high.
  • the welding strength between the first member and the second member is influenced by the material of the bonding material. That is, when the mechanical strength (for example, shear strength) of the bonding material is low, the welding strength between the first member and the second member, and the part formed by welding the first member and the second member Stiffness is reduced.
  • the present invention has been made to address the above-mentioned problems, and an object thereof is to weld synthetic resin members having high absorbability of laser light, which can set welding strength high. To provide a way.
  • the reference numerals of corresponding parts of the embodiment are described in parentheses in order to facilitate understanding of the present invention, but each component of the present invention is It should not be construed as limited to the configuration of the corresponding portion indicated by the reference numerals of the embodiment.
  • the feature of the present invention is a welding method of a synthetic resin member for welding a first member (10, 100) made of a synthetic resin and a second member (20, 200),
  • the side surface of the convex portion is irradiated with a laser beam in a state where the convex portion (12, 121, 122) is provided on the first member and the top surface of the convex portion of the first member abuts on the second member.
  • the melted portion is solidified to form the first member and the second member.
  • a welding method of a synthetic resin member for welding with a member is provided.
  • the convex portion is extended in a predetermined direction, and the side surface of the convex portion is irradiated with a laser beam and scanned in the predetermined direction to melt at least the entire top surface of the convex portion. After the contact portion of the second member with the top surface is melted by the heat of the molten top surface, the melted portion may be solidified to weld the first member and the second member. .
  • the first member is provided with the convex portion, and the top surface of the convex portion is abutted against the second member.
  • a gap is formed between the first member and the second member by the convex portion.
  • Laser light is applied to the side surface of the convex portion from the gap to melt the convex portion.
  • the side surface of the convex portion is irradiated with laser light to melt the entire top surface of the convex portion, and the heat is further transmitted to the contact surface of the second member with the convex portion, The surface of the member is melted.
  • the welding strength between the first member and the second member can be set high by melting the entire region in which the first member and the second member are in contact with each other.
  • the synthetic resin material on the side of the melted first member and the side of the second member are irradiated by irradiating the convex portion with a laser beam while applying an external force to make the first member and the second member approach each other.
  • the synthetic resin material of (1) can be spread between the first member and the second member while being mixed together.
  • the welding strength between the first member and the second member can be set even higher.
  • another feature of the present invention is that a method of welding a synthetic resin member, in which a part of the spot of the laser beam is located at the boundary between the first member and the second member.
  • the side surface of the convex portion and the surface of the second member are directly melted by the laser light, and their heat is further transmitted to the top surface of the convex portion and the convex portion of the second member. It is transmitted to the contact surface, and the top surface and the contact surface melt. Therefore, as compared with the case where heat is transmitted only to the side surface of the convex portion and the heat is transmitted to the top surface and the contact surface of the convex portion starting from only the side surface of the convex portion, the ceiling of the convex portion The surface and the abutment surface can be melted reliably and quickly.
  • Another feature of the present invention is that, while irradiating laser light to both side surfaces of the convex portion, scanning is performed in the predetermined direction to melt at least the entire top surface of the convex portion, and A method of welding a synthetic resin member, wherein the heat of the surface melts the contact portion of the second member with the top surface, and then the melted portion is solidified to weld the first member and the second member.
  • the said convex part can be fuse
  • a groove portion (G) along the convex portion is provided in the second member, and at least a part of the molten synthetic resin material is made to flow into the groove portion.
  • Another feature of the present invention is a synthetic resin member, wherein the convex portion is extended so as to meander in a predetermined linear direction, and the laser beam is scanned along the predetermined linear direction. It is in the method of welding.
  • the bonding area per unit distance in the predetermined linear direction can be set larger. Therefore, welding strength between the first member and the second member can be further enhanced.
  • Another feature of the present invention is a protrusion (ST) disposed along the extending direction of the protrusion and protruding from the surface of the first member or the second member, and the protrusion height thereof Welding a synthetic resin member provided with a projection set smaller than the projection height of the projection, melting only the projection out of the projection and the projection, and not melting the projection It was in the way.
  • ST protrusion
  • the convex portion melts and spreads between the first member and the second member, thereby reducing the distance between the first member and the second member, but at that time, the first member or the second member It is regulated that the two members abut on the projection and the distance becomes smaller than that. That is, according to the present invention, the dimension of the gap between the first member and the second member after welding can be set constant.
  • the width of the tip end side portion of the convex portion is set smaller than the width of the distal end side of the convex portion.
  • the front end side of the convex portion means the top surface side of the convex portion
  • the terminal side of the convex portion means an end portion on the opposite side to the front end side in the projecting direction of the convex portion. According to this, the tip side of the convex portion can be melted preferentially.
  • another feature of the present invention is that a method of welding synthetic resin members, wherein the first member and the second member are made of the same synthetic resin material.
  • the synthetic resin material that constitutes the first member is different from the synthetic resin material that constitutes the second member, one of the first member and the second member is mechanically damaged due to the difference in the material.
  • the strength may be smaller than the other mechanical strength.
  • the welding strength of both members may be affected by the mechanical strength of the one member.
  • the mechanical strength of both members is the same. Therefore, welding strength can be kept high.
  • the first member and the second member are made of a carbon fiber reinforced resin material containing carbon fibers, and the convex portion is integrated with the main portion of the first member. It is in being set as the welding method of the synthetic resin member currently formed.
  • the projection and the main body of the first member are integrally formed using an injection molding method, a press molding method, an extrusion molding method or the like. According to this, when the convex portion and the second member melt, the carbon fiber contained in the convex portion and the carbon fiber contained in the second member are easily entangled. As a result, welding strength can be further enhanced.
  • the first member 10 and the second member 20 are both made of synthetic resin. More specifically, the first member 10 and the second member 20 are made of carbon fiber reinforced resin (CFRP).
  • CFRP carbon fiber reinforced resin
  • the absorbency of the laser beam of the 1st member 10 and the 2nd member 20 is high. That is, the laser light hardly transmits through the first member 10 and the second member 20.
  • the thermal conductivity of the first member 10 and the second member 20 is high. For example, when the blending ratio of carbon fibers in the first member 10 and the second member 20 is 40% by weight, the thermal conductivity of the first member 10 and the second member 20 is set to 2 W / (m ⁇ K) Be done.
  • the first member 10 and the second member 20 are each formed in a rectangular plate shape.
  • the thickness direction of the first member 10 and the second member 20 will be referred to as the vertical direction. Further, the longitudinal direction of the first member 10 and the second member 20 is referred to as the left and right direction. Further, the width direction of the first member 10 and the second member 20 (direction perpendicular to the thickness direction and perpendicular to the longitudinal direction) is referred to as the front-rear direction.
  • the first member 10 has a main body portion 11 formed in a rectangular flat plate shape, and a convex portion 12 formed on the upper surface of the main body portion 11.
  • the main body portion 11 and the convex portion 12 are integrally formed using an injection molding method.
  • the convex portion 12 is extended in the left-right direction on the upper surface of the main body portion 11.
  • the protrusion 12 is located slightly behind the front end of the main body 11.
  • the convex portion 12 extends from the right end to the left end of the main body portion 11.
  • the convex portion 12 In a cross section perpendicular to the longitudinal direction (left and right direction) of the first member 10, the convex portion 12 has a rectangular shape.
  • the top surface 12 a of the convex portion 12 is a plane perpendicular to the vertical direction.
  • the dimension (length) in the left-right direction of the first member 10 is, for example, 160 mm.
  • the dimension (width) of the first member 10 in the front-rear direction is, for example, 25 mm.
  • the dimension (thickness) in the vertical direction of the first member 10 is, for example, 3 mm.
  • the dimension of the front-back direction of the convex part 12 is 2 mm, for example.
  • the protrusion height of the convex part 12 from the upper surface of the main-body part 11 is 1.5 mm, for example.
  • the thermal conductivity of the first member 10 is relatively high, when the side surface of the convex portion 12 is irradiated with the laser light, heat is generated from the spot position of the laser light on the side surface of the convex portion 12 It is easy to be transmitted to 12a.
  • the dimension (width) in the front-rear direction of the convex portion 12 is set to 0.5 mm to 1.0 mm, it is easy to melt the entire portion of the top surface 12 a in the vicinity of the spot position of the laser beam. can do.
  • the second member 20 includes the main body 21 formed in a rectangular flat plate shape, and does not have a convex portion such as the first member 10.
  • the outer dimension of the second member 20 is equal to the outer dimension of the first member 10.
  • the first member 10 is placed on a base not shown, and the second member 20 is superimposed on the upper side thereof.
  • the top surface of the convex portion 12 abuts against the lower surface of the main body portion 21.
  • the main body 11 and the main body 21 are parallel to each other.
  • the pressing device 30 has a base 31, a pressing pin 32 and a spring 33.
  • the base 31 supports the pressing pin 32.
  • the pressing pin 32 is movable in the vertical direction with respect to the base 31.
  • the spring 33 is provided between the base 31 and the pressing pin 32 to bias the pressing pin 32.
  • Each pressing device 30 is attached to the lower surface of the support plate 40 extending in the left-right direction.
  • a plurality of pressing devices 30 are arranged in the left-right direction.
  • the tip of each pressing pin 32 is formed in a flat plate shape perpendicular to the vertical direction.
  • each pressing pin 32 is directed downward, and the upper surface of each base 31 is fixed to the lower surface of the support plate 40.
  • the base 31 is pushed downward by the support plate 40 in a state in which the tip of each pressing pin 32 is in contact with the upper surface of the main body 21.
  • each spring 33 is elastically deformed, and their elastic force (spring load) is applied to the upper surface of the main body portion 31, and the main body portion 21 is pressed downward.
  • the position of the support plate 40 in the vertical direction is set so that, for example, the spring load of each spring 33 is 15N.
  • the laser device 50 includes a laser light source, an optical fiber for transmitting laser light emitted from the laser light source, and an emitting device including one or more convex lenses for focusing the laser light emitted from the optical fiber and emitting the laser light L as the laser light L to the outside. Equipped with The wavelength of the laser light L emitted from the laser device 50 is, for example, 974 nm.
  • the spot diameter of the laser beam L is, for example, 0.5 mm.
  • the focal length of the laser light L is, for example, 100 mm.
  • the intensity (output) of the laser light L is, for example, 30 W.
  • the emission device of the laser device 50 is disposed to face the side surface (front surface) of the convex portion 12.
  • the distance between the emission port of the emission device of the laser device 50 and the side surface (front surface) of the convex portion 12 is the same as the focal distance of the laser light L.
  • the position of the light emitting device of the laser device 50 is set such that the spot of the laser light L is positioned at the central portion in the vertical direction of the side surface of the convex portion 12.
  • the emitting device of the laser device 50 is attached to a robot hand (not shown). When the robot hand moves the emitting device of the laser device 50 in the left and right direction, the laser light L is scanned in the left and right direction.
  • the scanning speed of the laser beam L is, for example, 2 mm / sec.
  • the portion (spot position) irradiated with the laser beam L becomes hot and starts to melt. Then, heat is radially transmitted from the spot position in the convex portion 12 and portions of the convex portion 12 located above, below and behind the spot position are melted.
  • the melting region extends to the upper end, the lower end and the rear surface of the projection 12. That is, as a result of the heat being transmitted to the spot position and its peripheral portion in the convex portion 12 as well as the side surface (front surface) of the convex portion 12, the portion near the spot position in the top surface 12 a is entirely To melt.
  • the heat of the upper surface 12 a of the convex portion 12 is also transmitted to the second member 20, and the lower surface of the second member 20.
  • the surface of the portion of the convex portion 12 in contact with the molten top surface 12 a melts.
  • the first member 10 and the second member 20 are made of carbon fiber reinforced resin and have a relatively high thermal conductivity, the heat of the convex portion 12 relatively easily melts the second member 20.
  • a plurality of pressing devices 30 for pressing the second member 20 downward are arranged in the left-right direction on the front portion of the second member 20 (above the convex portion 12).
  • the first member 10 and the second member 20 are welded in order from the right end to the left end thereof.
  • the convex portion 12 is provided on the first member 10, and the top surface 12a of the convex portion 12 is abutted against the lower surface of the plate-like second member 20.
  • a gap is formed between the first member 10 and the second member 20 by the convex portion 12.
  • the laser light L is applied to the side surface of the convex portion 12 from the gap to melt the convex portion 12.
  • the laser light L does not have to be transmitted through the first member 10 or the second member 20. Therefore, even if the first member 10 and the second member 20 are members having high absorbability of laser light as in the present embodiment, both can be welded.
  • the side surface of the convex portion 12 is irradiated with the laser light L to melt the entire portion of the top surface 12 a of the convex portion 12 in the vicinity of the spot position, and further heat of the portion in the second member 20 The surface of the second member 20 is melted by being transmitted to the contact surface with the portion 12.
  • the welding strength between the first member 10 and the second member 20 can be set high by melting the entire region where the first member 10 and the second member 20 are in contact with each other.
  • the laser light L is irradiated to the convex part 12 in the state which applied the external force which makes the 1st member 10 and the 2nd member 20 approach mutually using the press apparatus 30. As shown in FIG.
  • the molten synthetic resin material on the side of the first member 10 and the synthetic resin material on the side of the second member 20 can be mixed and spread between the first member 10 and the second member 20. Therefore, compared with the method of patent document 2, welding strength of the 1st member 10 and the 2nd member 20 can be set highly. Further, when the convex portion 12 and the second member 20 are melted, the carbon fibers contained in the convex portion 12 and the carbon fibers contained in the second member 20 are easily entangled. As a result, welding strength can be further enhanced.
  • the welding strength (shear strength (resistance to external force for shifting the first member 10 and the second member 20 in the back and forth direction)) of the welded portion is about 20 MPa, and the strength equivalent to that using the hot plate welding method is It was obtained.
  • the welding strength between the first member 10 and the second member 20 and the rigidity of the parts formed by welding the first member 10 and the second member 20 are mechanical of other members such as a bonding material. Not affected by strength.
  • the synthetic resin material which constitutes the first member 10 and the synthetic resin material which constitutes the second member 20 are different from each other, the first member 10 and the second member 20 are made of the material difference.
  • the mechanical strength of one of them may be smaller than the mechanical strength of the other.
  • the welding strength of both members may be affected by the mechanical strength of the one member.
  • the mechanical strength of both members is the same. Therefore, welding strength can be kept high.
  • the convex portion 12 is linearly extended in the left-right direction.
  • the convex portion 12 may meander. That is, the distance from the predetermined straight line to the convex portion 12 is set to be periodically changed as it goes from one end side to the other end side of the predetermined straight line (for example, the front side of the first member 10) It is also good.
  • the convex portion 12 is set in a triangular wave shape.
  • the meandering width w of the convex portion 12 is, for example, 25 mm.
  • the angle ⁇ of the apex is, for example, 60 °.
  • the bonding area per unit length in the left-right direction is larger than that in the example of FIG. Therefore, welding strength between the first member 10 and the second member 20 can be further enhanced.
  • the laser beam L is not a perfect parallel beam, even if the focal length is relatively long and can be regarded as a parallel beam, it is sufficient to move the emitting device of the laser device 50 in the left and right direction. There is no need to move in the direction.
  • the control (control of the robot hand) for moving the emitting device of the laser device 50 is simple.
  • the control of the robot hand is somewhat complicated, when scanning the laser light L, the emission device of the laser device 50 so that the distance between the convex portion 12 and the emission opening of the laser light L always matches the focal length. And may be moved in the front-rear direction as well as in the left-right direction.
  • the laser light L is emitted to one side surface (front surface) of the convex portion 12.
  • the laser light L may be applied to both side surfaces (front and rear surfaces) of the convex portion 12.
  • the substantially plate-shaped 1st member 10 and the 2nd member 20 are welded, and the substantially plate-shaped component is formed.
  • the invention is also applicable to the formation of parts of other shapes.
  • the example which welds the 1st member 100 and the 2nd member 200, and forms a cylindrical component is demonstrated.
  • the first member 100 and the second member 200 are made of carbon fiber reinforced resin.
  • the first member 100 has a main body portion 110 and a convex portion 120.
  • the main body portion 110 includes a top plate portion 111, a front swash plate portion 112 obliquely extending forward and downward from the front end of the top plate portion 111, and a rear side slant obliquely extending backward and downward from the rear end of the top plate portion 111. It consists of a plate portion 113.
  • the convex portion 120 includes a pair of front and rear convex portions 121 and 122.
  • the convex portion 121 is extended downward from the front end of the front swash plate portion 112. Further, the convex portion 122 is extended downward from the rear end of the rear side swash plate portion 113.
  • Top surfaces (lower surfaces) 121a and 122a of the convex portions 121 and 122 are planes perpendicular to the vertical direction.
  • the second member 200 includes a main body portion 210 formed in a plate shape.
  • the first member 100 is placed on the upper side of the second member 200, and the top surfaces 121 a and 122 a of the convex portions 121 and 122 abut on the upper surface of the second member 200.
  • the upper surfaces of the front end portion and the rear end portion of the first member 100 are pressed downward by the plurality of pressing devices 300.
  • the configuration of the pressing device 300 is substantially the same as that of the pressing device 30. That is, the pressing device 300 has a base 310, a pressing pin 320 and a spring 330.
  • the configurations of the base 310 and the spring 330 are the same as the base 31 and the spring 33 of the pressing device 30.
  • the configuration of the pressing pin 320 is slightly different from that of the pressing pin 32 of the pressing device 30.
  • the lower surface of the pressing pin 32 of the pressing device 30 of the above embodiment is a plate shape perpendicular to the vertical direction
  • the lower surface of the pressing pin 320 is the upper surface of the front swash plate 112 and the rear swash plate 113 It is formed diagonally to follow each.
  • Each pressing device 300 is supported by the support plate 400 as in the above embodiment. In FIG. 5, the support plate 400 is omitted.
  • the front surface and the rear surface of the convex portion 121 are irradiated with the laser light L and scanned in the left-right direction (the direction perpendicular to the paper surface).
  • the laser beam L is scanned from the right end of the convex portion 121 to the left end.
  • a portion of the top surface 121 a of the convex portion 121 near the spot position of the laser beam L melts, and the contact surface of the second member 200 with the top surface 121 a of the melted convex portion 121. Melts.
  • the front end of the first member 100 and the front end of the second member 200 are welded.
  • the front and back surfaces of the convex portion 122 are irradiated with the laser light L, and scanned in the left-right direction (the direction perpendicular to the paper surface).
  • the laser beam L is scanned from the right end of the convex portion 122 to the left end.
  • a portion of the top surface 122 a of the convex portion 122 near the spot position of the laser beam L melts, and the contact surface with the top surface 122 a of the melted convex portion 122 of the second member 200. Melts.
  • FIG. 6C the rear end of the first member 100 and the rear end of the second member 200 are welded.
  • the laser beam L is irradiated to the both sides of the convex part 121 and the convex part 122, compared with the case where the laser light L is irradiated to only one side of the convex part 121 and the convex part 122,
  • the contact surface between the top surface 121a of the convex portion 121 and the top surface 122a of the convex portion 122 and the second top surface of the second member 200 can be melted reliably and quickly. . Therefore, the scanning speed of the laser beam L can be increased.
  • the stopper ST is provided to set the amount of crushing of the convex portion 12 (the dimension of the gap between the first member 10 and the second member 20 after welding) constant. Good.
  • the stopper ST is extended in parallel to the convex portion 12.
  • the stopper ST is formed integrally with the main body portion 11.
  • the protrusion height of the stopper ST is smaller than the protrusion height of the protrusion 12.
  • the laser beam L is irradiated only to the convex portion 12 and is not irradiated to the stopper ST.
  • the lower surface of the second member 20 is the upper surface of the stopper ST before the convex portion 12 is completely crushed. Abut on. Therefore, the convex part 12 is not crushed further. Thereby, the amount of collapse of convex part 12 (dimension of a crevice between the 1st member 10 and the 2nd member 20 after welding) can be set up uniformly.
  • the stopper ST is formed separately from the first member 10 using a material different from the first member 10 (a material that does not melt even when irradiated with the laser light L), and is formed on the upper surface of the main body 11 It may be attached. In this case, the stopper ST may be insert-molded in the main body portion 11. Further, the stoppers ST do not have to be formed in parallel to the convex portion 12 and may be scattered at a plurality of places separated from the convex portion 12.
  • the stopper ST when forming the tubular part by welding the first member 100 and the second member 200, the stopper ST is provided on the first member 100 (or the second member 200). You may leave it.
  • convex parts are provided on both sides of the cylindrical part, and the convex parts are melted by a laser to weld the first member 100 and the second member 200. There is a need.
  • FIG. 6B in the case where the convex portions are melted sequentially from one convex portion, if only the convex portion on one side is excessively melted, the heights of the convex portions on both sides become uneven.
  • grooves G and G may be provided on the upper surface of the second member 200 so as to extend in the left-right direction (direction perpendicular to the drawing).
  • the grooves G, G are separated in the front-rear direction.
  • the convex portion 121 abuts on a flat portion between the front groove portion G and the rear groove portion G.
  • the front groove portion G is formed along the front surface of the convex portion 121
  • the rear groove portion G is formed along the rear surface of the convex portion 121.
  • grooves G and G may be formed on the front and back of the convex portion 122.
  • the width (dimension in the front-rear direction) of the tip end side (the top surface 12a (121a, 122a) side) of the convex portion 12 (121, 122) The width may be set smaller than the width of the plate portion 112 and the rear side swash plate portion 113). In this case, as shown in the figure, the width may be set so as to gradually decrease from the end of the convex portion 12 (121, 122) toward the tip. According to this, it is possible to preferentially melt the tip side of the convex portion 12 (121, 122) (that is, the top surface 12a (121a, 122a) side).
  • the laser light L is obliquely applied to the side surface of the convex portion 12 (convex portions 121 and 122), and the center of the spot of the laser light L is the convex portion 12 (convex portions 121 and 122).
  • the surface of the second member 20 (second member 200) That is, a part of the spot may be positioned on the side surface of the convex portion 12 (convex portions 121 and 122), and a portion of the spot may be positioned on the surface of the second member 20 (second member 200).
  • the side surface of the convex portion 12 (121, 122) and the surface of the second member 20 (second member 200) are directly melted by the laser light L, and the heat thereof is further melted by the convex portion 12 (121, 122) transmitted to the contact surface of the top surface 12a (121a, 122a) of the second member 20 (200) with the convex portion 12 (121, 122), and the top surface 12a (121a, 122a) and the contact surface Melts.
  • the laser beam L is irradiated only to the side surface of the convex portion 12 (121, 122), and the top surface 12a (121a, 121a, 121) of the convex portion 12 (121, 122) starts from only the side surface of the convex portion 12 (121, 122).
  • the top surface 12a (121a, 122a) of the convex portion 12 (121, 122) and the contact surface can be melted reliably and quickly as compared with the case where heat is transferred to the contact surface 122a) and the contact surface. In this case, as shown in FIG.
  • the irradiation angle of the laser light L to the side surface of the convex portion 12 may be finely adjusted using a mirror M that reflects the laser light L. .
  • the mirror M may be moved by a robot hand (not shown).
  • the first member 10 (the first member 100) or the second member 20 (the second member 200) is abutted while the convex portion 12 (the convex portions 121 and 122) butts against the second member 20 (the second member 200).
  • the synthetic resin materials of the melted portions of the first member 10 (the first member 100) and the second member 20 (the second member 200) are mixed with each other by the vibration. Thereafter, the mixed portion cools and solidifies. Thereby, welding strength of the 1st member 10 (the 1st member 100) and the 2nd member 20 (the 2nd member 200) can be raised more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)

Abstract

合成樹脂製の第1部材10に凸部12を設けておき、第1部材10の凸部12の天面を合成樹脂製の第2部材20に突き当てた状態で、凸部12の側面にレーザー光Lを照射して凸部12の少なくとも前記天面全体を溶融させるとともに、前記溶融した凸部12の前記天面の熱によって第2部材20における凸部12との当接部を溶融させた後、前記溶融した部分を固化させて第1部材10と第2部材20とを溶着する。

Description

合成樹脂部材の溶着方法
 本発明は、合成樹脂部材の溶着方法に関する。
 下記特許文献1乃至3に記載されているように、合成樹脂部材同士(第1部材及び第2部材)を突き合わせておき、その突き合わせ部にレーザー光を照射して前記突き合わせ部を溶融させた後に固化させることにより、前記合成樹脂部材同士を溶着する方法は知られている。
 特許文献1においては、レーザー光の透過性の高い第1部材と、レーザー光の吸収性が高い(レーザー光の透過性が低い)第2部材とが重ね合わせられ、第1部材側からレーザー光が照射されて、第1部材内を透過したレーザー光によって第2部材の表面(つまり、第1部材に重ね合わせられた面)が溶融されて、前記溶融した合成樹脂材が第1部材と第2部材との間に広がる。その後、前記第1部材と第2部材との間に広がった合成樹脂材が冷えて固化する。これにより、第1部材と第2部材とが溶着される。
 特許文献2においては、例えば、円筒状の第1部材及び第2部材の端面にレーザー光が垂直に照射され、前記端面(表面)が溶融した状態で、前記端面同士が突き合わせられる(引用文献2の図6参照)。その後、前記溶融した部分が冷えて固化する。これにより、第1部材と第2部材とが溶着される。
 また、特許文献2の図2及び図4に記載されているように、例えば、上方へ開放された深い箱状の第1部材と、下方へ開放された浅い箱状(蓋状)の第2部材とが溶着される。特許文献2の図4(b)の例において、第1部材の側壁部の上端面は階段状に形成されている。すなわち、第1部材の側壁部の壁厚方向における外側から内側へ向かうに従って、側壁部の上面が段階的に高くなっていく。一方、第2部材の側壁部の下端面も階段状に形成されている。第2部材の側壁部の下端面と第1部材の側壁部の上端部とは上下対称である。第1部材の側壁部の上端面と第2部材の側壁部の下端面とが突き合わせられる。この状態において、第1部材の側壁部の上端面と第2部材の側壁部の下端面との間には、箱の外側へ向かって開放された溝部が形成されている(特許文献2の図4(b))。この溝部内にレーザー光が照射され、第1部材の側壁部の上端面と第2部材の側壁部の下端面とが溶融される。第2部材が第1部材側へ押圧され、前記溶融した合成樹脂材が前記溝部内に広がる。そして、前記溝部内に広がった合成樹脂材が冷えて固化する。これにより、第1部材と第2部材とが溶着される。
 特許文献3においては、第1部材と第2部材との間に、板状に形成された接合材であって、レーザー光の吸収性の高い合成樹脂製の接合材が挟み込まれ、前記接合材の端面にレーザー光が照射されて前記接合材が溶融されて、前記溶融した接合材が第1部材と第2部材との間に広がる。その後、前記第1部材と第2部材との間に広がった接合材が冷えて固化する。これにより、第1部材と第2部材とが溶着される。
特開2008-302700号公報 特開2012-091400号公報 特開2014-180843号公報
 特許文献1においては、第1部材として、レーザー光の透過性の高い部材を採用することを前提としている。したがって、特許文献1の方法を用いて、レーザー光の吸収性が高い部材同士を接合することはできない。
 また、特許文献2の図4(b)の例における前記溝部内にレーザー光が照射されたとき、前記溝部内においてレーザー光の光軸に垂直な面(受け面1f,3f)が主に溶融する。この例においては、前記溝部の内面(表面)が溶融されるだけで、前記溝部内には階段形状が残存する。したがって、第2部材を第1部材側へ押圧すると前記溝部内において溶融しなかった部分(残存する階段状部)同士が当接する。そのため、前記溝部内に前記溶融した合成樹脂材を広がらせて、前記溝部内を溶融した合成樹脂材で満たすことは困難である。したがって、第1部材と第2部材との溶着強度を高く設定することは困難である。
 また、特許文献3の方法を用いる場合、接合材が必要である。したがって、特許文献1又は特許文献2の方法に比べて部品点数が多い。また、第1部材と第2部材との溶着強度は、接合材の材質の影響を受ける。つまり、接合材の機械的強度(例えば、せん断強度)が低い場合には、第1部材と第2部材との溶着強度、及び第1部材と第2部材とを溶着して形成された部品の剛性が低くなる。
 本発明は上記問題に対処するためになされたもので、その目的は、レーザー光の吸収性が高い合成樹脂部材同士を溶着可能であって、その溶着強度を高く設定可能な合成樹脂部材の溶着方法を提供することにある。なお、下記本発明の各構成要件の記載においては、本発明の理解を容易にするために、実施形態の対応箇所の符号を括弧内に記載しているが、本発明の各構成要件は、実施形態の符号によって示された対応箇所の構成に限定解釈されるべきものではない。
 上記目的を達成するために、本発明の特徴は、合成樹脂製の第1部材(10,100)と第2部材(20,200)とを溶着する合成樹脂部材の溶着方法であって、前記第1部材に凸部(12,121,122)を設けておき、前記第1部材の凸部の天面を前記第2部材に突き当てた状態で、前記凸部の側面にレーザー光を照射して、前記凸部の少なくとも前記天面全体を溶融させるとともに第2部材における前記天面との当接部を溶融させた後、前記溶融した部分を固化させて前記第1部材と前記第2部材とを溶着する、合成樹脂部材の溶着方法としたことにある。
 この場合、前記凸部を所定の方向に延設しておき、前記凸部の側面にレーザー光を照射しつつ前記所定の方向に走査して前記凸部の少なくとも前記天面全体を溶融させるとともに、前記溶融した前記天面の熱によって第2部材における前記天面との当接部を溶融させた後、前記溶融した部分を固化させて前記第1部材と前記第2部材とを溶着するとよい。
 本発明では、第1部材に凸部を設けておき、この凸部の天面を第2部材に突き当てている。前記凸部によって第1部材と第2部材との間に隙間が形成される。この隙間からレーザー光を前記凸部の側面に照射して前記凸部を溶融させている。このように、本発明では、特許文献1の方法とは異なり、レーザー光が第1部材又は第2部材の中を透過する必要がない。したがって、第1部材及び第2部材がレーザー光の吸収性の高い部材であっても、両者を溶着できる。
 また、前記凸部の側面にレーザー光を照射して前記凸部の天面を全体的に溶融させ、さらにその熱を第2部材における前記凸部との当接面に伝達させて、第2部材の表面を溶融させている。このように、第1部材と第2部材とが接する領域を全体的に溶融させることにより、第1部材と第2部材との溶着強度を高く設定できる。さらに、第1部材と第2部材とを互いに近接させるような外力を加えた状態で前記凸部にレーザー光を照射することで、前記溶融した第1部材側の合成樹脂材と第2部材側の合成樹脂材を混ぜ合わせつつ第1部材と第2部材との間に広がらせることができる。よって、第1部材と第2部材との溶着強度をより一層高く設定できる。
 また、特許文献3のような接合材を用いる必要がないので、特許文献3の方法に比べて部品点数を削減できる。また、第1部材と第2部材との溶着強度、及び第1部材と第2部材とを溶着して形成された部品の剛性は、接合材のような他の部材の機械的強度の影響を受けない。
 また、本発明の他の特徴は、前記レーザー光のスポットの一部が前記第1部材と前記第2部材との境界部に位置している、合成樹脂部材の溶着方法としたことにある。
 これによれば、レーザー光によって、前記凸部の側面と第2部材の表面とが直接的に溶融され、さらにそれらの熱が前記凸部の天面、及び第2部材における前記凸部との当接面に伝わり、前記天面及び前記当接面が溶融する。したがって、前記凸部の側面にのみレーザー光が照射され、前記凸部の側面のみを起点として前記凸部の天面及び前記当接面に熱を伝達させる場合に比べて、前記凸部の天面及び前記当接面を確実かつ迅速に溶融させることができる。
 また、本発明の他の特徴は、前記凸部の両側面にレーザー光を照射しつつ前記所定の方向に走査して前記凸部の少なくとも前記天面全体を溶融させるとともに、前記溶融した前記天面の熱によって第2部材における前記天面との当接部を溶融させた後、前記溶融した部分を固化させて前記第1部材と前記第2部材とを溶着する、合成樹脂部材の溶着方法としたことにある。
 これによれば、前記凸部の一方の側面にのみレーザー光が照射される場合に比べて、前記凸部を確実かつ迅速に溶融させることができる。
 また、本発明の他の特徴は。前記凸部に沿った溝部(G)を前記第2部材に設けておき、前記溶融した合成樹脂材の少なくとも一部を前記溝部内へ流入させる、合成樹脂部材の溶着方法としたことにある。
 これによれば、前記凸部にレーザー光が照射されて溶融したとき、その溶融した合成樹脂材の一部が前記溝部内へ流入する。これにより、前記溶融した合成樹脂材が第1部材と第2部材から外側へはみ出すことを抑制できる。
 また、本発明の他の特徴は、前記凸部が所定の直線方向に対して蛇行するように延設されており、前記レーザー光を前記所定の直線方向に沿って走査させる、合成樹脂部材の溶着方法としたことにある。
 これによれば、前記凸部が前記所定の直線方向に直線的に延設されている場合に比べて、前記所定の直線方向における単位距離あたりの接合面積を大きく設定できる。したがって、第1部材と第2部材との溶着強度をさらに高めることができる。
 また、本発明の他の特徴は、前記凸部の延設方向に沿って配置され、前記第1部材又は前記第2部材の表面から突出した突出部(ST)であって、その突出高さが前記凸部の突出高さよりも小さく設定された突出部を設けておき、前記凸部及び前記突出部のうちの前記凸部のみを溶融させ、前記突出部を溶融させない、合成樹脂部材の溶着方法としたことにある。
 これによれば、前記凸部が溶融して第1部材と第2部材との間に広がることにより、第1部材と第2部材との距離が小さくなるが、その際、第1部材又は第2部材が前記突出部に当接して、前記距離がそれ以上小さくなることが規制される。すなわち、本発明によれば、溶着後の第1部材と第2部材との隙間の寸法を一定に設定できる。
 また、本発明の他の特徴は、前記凸部の先端側の部分の幅が前記凸部の末端側の幅よりも小さく設定されていることにある。前記凸部の先端側とは、前記凸部の天面側を意味し、前記凸部の末端側とは、前記凸部の突出方向における前記先端側とは反対側の端部を意味する。これによれば、前記凸部の先端側を優先的に溶融させることができる。
 また、本発明の他の特徴は、前記第1部材と前記第2部材とが同一の合成樹脂材料で構成されている、合成樹脂部材の溶着方法としたことにある。第1部材を構成する合成樹脂材料と第2部材を構成する合成樹脂材料が異なっていた場合には、その材料の違いに起因して、第1部材及び第2部材のうちの一方の機械的強度が他方の機械的強度よりも小さくなる可能性がある。この場合、両部材の溶着強度が前記一方の部材の機械的強度の影響を受ける虞がある。本発明によれば、第1部材及び第2部材が同一の合成樹脂材料で構成されているので、両部材の機械的強度が同一である。したがって、溶着強度を高く保つことができる。
 また、本発明の他の特徴は、前記第1部材と前記第2部材とが炭素繊維を含む炭素繊維強化樹脂材料で構成され、前記凸部は、前記第1部材の本体部と一体的に形成されている、合成樹脂部材の溶着方法としたことにある。なお、射出成形法、プレス成形法、押出成形法などを用いて凸部と第1部材の本体部とが一体的に形成されると良い。これによれば、凸部と第2部材とが溶融した際、凸部に含まれていた炭素繊維と第2部材に含まれていた炭素繊維とが絡み合い易い。その結果、溶着強度をより一層高めることができる。
第1部材及び第2部材の斜視図である。 第1部材と第2部材とを溶着する工程を示す斜視図である。 所定の直線方向に対して蛇行した凸部を有する第1部材の斜視図である。 筒状の部材を形成するための第1部材及び第2部材の斜視図である。 図4の第1部材及び第2部材を溶着する工程を示す斜視図である。 図4の第1部材及び第2部材の長手方向に垂直な断面を示す図であって、前端部を溶着する工程を示す断面図である。 図4の第1部材及び第2部材の長手方向に垂直な断面を示す図であって、後端部を溶着する工程を示す断面図である。 図4の第1部材及び第2部材を溶着して形成された筒状の部材の長手方向に垂直な断面図である。 図1の第1部材にストッパーを設けた例を示す斜視図である。 図3の第1部材にストッパーを設けた例を示す斜視図である。 図4の第1部材にストッパーを設けた例を示す斜視図である。 図4の第2部材にストッパーを設けた例を示す斜視図である。 凸部の先端の幅を末端の幅よりも小さくした例を示す斜視図である。 レーザー光のスポットを、凸部の側面と第2部材の表面との境界部に位置させた例を示す斜視図である。 凸部の側面に対するレーザー光の角度を微調整するミラーを設けた例を示す概略図である。
 以下、本発明の一実施形態に係る合成樹脂部材の溶着方法について説明する。本実施形態では、図1に示すような略板状の第1部材10と第2部材20とを溶着して略板状の部品を形成する例を説明する。まず、第1部材10及び第2部材20の構成について説明しておく。
 第1部材10及び第2部材20は、いずれも合成樹脂製である。より具体的には、第1部材10及び第2部材20は炭素繊維強化樹脂製(CFRP)である。第1部材10及び第2部材20のレーザー光の吸収性は高い。すなわち、レーザー光は、第1部材10及び第2部材20をほとんど透過しない。また、第1部材10及び第2部材20の熱伝導率は高い。例えば、第1部材10及び第2部材20における炭素繊維の配合割合が40重量%である場合には、第1部材10及び第2部材20の熱伝導率は2W/(m×K)に設定される。第1部材10及び第2部材20は、長方形の板状にそれぞれ形成されている。以下の説明において、第1部材10及び第2部材20の板厚方向を上下方向と呼ぶ。また、第1部材10及び第2部材20の長手方向を左右方向と呼ぶ。また、第1部材10及び第2部材20の幅方向(板厚方向に垂直且つ長手方向に垂直な方向)を前後方向と呼ぶ。
 第1部材10は、長方形の平板状に形成された本体部11と、本体部11の上面に形成された凸部12とを有する。本体部11と凸部12とが、射出成形法を用いて一体的に形成されている。凸部12は、本体部11の上面にて左右方向に延設されている。凸部12は、本体部11の前端より少し後方に位置している。凸部12は、本体部11の右端から左端に亘る。第1部材10の長手方向(左右方向)に垂直な断面において、凸部12は、矩形を呈する。凸部12の天面12aは、上下方向に垂直な平面である。第1部材10の左右方向の寸法(長さ)は、例えば、160mmである。第1部材10の前後方向の寸法(幅)は、例えば、25mmである。第1部材10の上下方向の寸法(厚さ)は、例えば、3mmである。また、凸部12の前後方向の寸法は、例えば、2mmである。また、本体部11の上面からの凸部12の突出高さは、例えば、1.5mmである。上記のように、第1部材10の熱伝導率は比較的高いので、凸部12の側面にレーザー光が照射された場合、その側面におけるレーザー光のスポット位置から熱が凸部12の天面12aへ伝達され易い。なお、凸部12の前後方向の寸法(幅)を、0.5mm~1.0mmに設定することにより、天面12aのうち、レーザー光のスポット位置の近傍の部分を全体的に溶融させ易くすることができる。
 第2部材20は、長方形の平板状に形成された本体部21からなり、第1部材10のような凸部は有していない。第2部材20の外形寸法は、第1部材10の外形寸法と同等である。
 第1部材10が、図示しない基台に載置され、その上側に第2部材20が重ねられる。凸部12の天面が本体部21の下面に突き当てられる。なお、本体部11と本体部21とが平行である。
つぎに、図2に示すように、本体部21の上面における前端部(凸部12の上方に位置する部分)が、複数の押圧装置30によって下方へ押圧される。押圧装置30は、基部31、押圧ピン32及びバネ33を有する。基部31は、押圧ピン32を支持する。押圧ピン32は、基部31に対して上下方向に移動可能である。バネ33は、基部31と押圧ピン32との間に設けられ、押圧ピン32を付勢する。各押圧装置30は、左右方向に延びる支持板40の下面に取り付けられている。複数の押圧装置30が左右方向に並べられている。各押圧ピン32の先端は、上下方向に垂直な平板状に形成されている。各押圧ピン32の先端が下方へ向けられて、各基部31の上面が支持板40の下面に固定されている。各押圧ピン32の先端が本体部21の上面に当接された状態で、基部31が支持板40によって下方へ押される。これにより、各バネ33が弾性変形し、それらの弾性力(バネ荷重)が本体部31の上面に印加され、本体部21が下方へ押圧される。なお、例えば、各バネ33のバネ荷重が15Nになるように、支持板40の上下方向における位置が設定される。
 つぎに、レーザー装置50からレーザー光Lが出射されて凸部12の側面(前面)に照射される。レーザー装置50は、レーザー光源、レーザー光源から出射されたレーザー光を伝送する光ファイバー、光ファイバーから出射されたレーザー光を集束させてレーザー光Lとして外部へ出射する1つ又は複数の凸レンズを含む出射装置を備える。レーザー装置50から出射されるレーザー光Lの波長は、例えば、974nmである。また、レーザー光Lのスポット径は、例えば、0.5mmである。また、レーザー光Lの焦点距離は、例えば、100mmである。また、レーザー光Lの強度(出力)は、例えば、30Wである。
 レーザー装置50の出射装置は、凸部12の側面(前面)に対向配置されている。レーザー装置50の出射装置の出射口と凸部12の側面(前面)との距離は、レーザー光Lの焦点距離と同一である。レーザー光Lのスポットが凸部12の側面の上下方向における中央部に位置するように、レーザー装置50の出射装置の位置が設定されている。レーザー装置50の出射装置が図示しないロボットハンドに取り付けられている。このロボットハンドがレーザー装置50の出射装置を左右方向へ移動させることにより、レーザー光Lが左右方向に走査される。レーザー光Lの走査速度は、例えば、2mm/秒である。
 凸部12の側面(前面)にレーザー光Lが照射されると、レーザー光Lが照射された部分(スポット位置)が高温になり溶融し始める。そして、前記スポット位置から凸部12内において放射状に熱が伝わり、凸部12のうち前記スポット位置の上方、下方及び後方に位置する部分が溶融していく。溶融領域は、凸部12の上端、下端及び後面まで達する。つまり、凸部12の側面(前面)のみならず、凸部12のうち、前記スポット位置及びその周辺部に熱が伝達する結果、天面12aのうち、前記スポット位置の近傍の部分が全体的に溶融する。また、凸部12の天面12aは第2部材20の下面に突き当てられているので、凸部12の天面12aの熱が第2部材20にも伝わり、第2部材20の下面であって、凸部12のうち前記溶融した天面12aに当接している部分の表面が溶融する。特に、本実施形態では、第1部材10及び第2部材20が炭素繊維強化樹脂製であり、熱伝導率が比較的高いので、凸部12の熱によって第2部材20が比較的容易に溶融する。第2部材20の前部(凸部12の上方)には、第2部材20を下方へ押圧する複数の押圧装置30が左右方向に並べられている。凸部12のうち前記溶融した部分の上方に位置する押圧装置30によって当該部分が押し潰され、前記溶融した第1部材10側の合成樹脂材と第2部材20側の合成樹脂が混ざり合いながら、第1部材10と第2部材20との間に広がる。その後、第1部材10と第2部材20との間に広がった合成樹脂材が冷えて固化することにより、第1部材10と第2部材20とが溶着される。例えば、レーザー光Lが凸部12の右端から左端へ向かって走査されると、凸部12はその右端から左端へ向かって順に溶融し、凸部12は、その右端から左端へ向かって順に押し潰されていく。このようにして、第1部材10と第2部材20とが、それらの右端から左端へ向かって順に溶着されていく。
 本実施形態では、第1部材10に凸部12を設けておき、この凸部12の天面12aを板状の第2部材20の下面に突き当てている。この凸部12によって第1部材10と第2部材20との間に隙間が形成される。この隙間からレーザー光Lを凸部12の側面に照射して凸部12を溶融させている。このように、本実施形態では、特許文献1の方法とは異なり、レーザー光Lが第1部材10又は第2部材20の中を透過する必要がない。したがって、本実施形態のように第1部材10及び第2部材20がレーザー光の吸収性の高い部材であっても、両者を溶着できる。
 また、凸部12の側面にレーザー光Lを照射して、凸部12の天面12aのうち、前記スポット位置の近傍の部分を全体的に溶融させ、さらにその熱を第2部材20における凸部12との当接面に伝達させて、第2部材20の表面を溶融させている。このように、第1部材10と第2部材20とが接する領域を全体的に溶融させることにより、第1部材10と第2部材20との溶着強度を高く設定できる。さらに、押圧装置30を用いて、第1部材10と第2部材20とを互いに近接させるような外力を加えた状態で凸部12にレーザー光Lを照射している。これにより、前記溶融した第1部材10側の合成樹脂材と第2部材20側の合成樹脂材を混ぜ合わせつつ第1部材10と第2部材20との間に広がらせることができる。よって、特許文献2の方法に比べて、第1部材10と第2部材20との溶着強度を高く設定できる。また、凸部12と第2部材20とが溶融した際、凸部12に含まれていた炭素繊維と第2部材20に含まれていた炭素繊維とが絡み合い易い。その結果、溶着強度をより一層高めることができる。例えば、溶着部の溶着強度(せん断強度(第1部材10と第2部材20とを前後方向にずらす外力に対する耐力))は約20MPaであり、熱板溶着法を用いた場合と同等の強度が得られた。
 また、特許文献3のような接合材を用いる必要がないので、特許文献3の方法に比べて部品点数を削減できる。また、第1部材10と第2部材20との溶着強度、及び第1部材10と第2部材20とを溶着して形成された部品の剛性は、接合材のような他の部材の機械的強度の影響を受けない。また、第1部材10を構成する合成樹脂材料と第2部材20を構成する合成樹脂材料が異なっていた場合には、その材料の違いに起因して、第1部材10及び第2部材20のうちの一方の機械的強度が他方の機械的強度よりも小さくなる可能性がある。この場合、両部材の溶着強度が前記一方の部材の機械的強度の影響を受ける虞がある。本実施形態によれば、第1部材10及び第2部材20が同一の合成樹脂材料で構成されているので、両部材の機械的強度が同一である。したがって、溶着強度を高く保つことができる。
 さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
 例えば、上記実施形態では、凸部12が左右方向に直線状に延設されている。これに代えて、図3に示すように、凸部12が蛇行していてもよい。つまり、所定の直線(例えば、第1部材10の前辺)の一端側から他端側へ向かうに従って、前記所定の直線から凸部12までの距離が周期的に変化するにように設定してもよい。図3に示す例では、凸部12を三角波状に設定している。この例において、凸部12の蛇行幅wは、例えば、25mmである。また、頂点の角度θは、例えば、60°である。これによれば、左右方向の単位長さあたりの接合面積が、図1の例に比べて大きい。したがって、第1部材10と第2部材20との溶着強度をさらに高めることができる。なお、この場合、レーザー光Lを1つ又は複数のレンズからなる光学系を用いて平行光に変換することが好ましい。この場合、レーザー装置50の出射装置を左右方向に移動させるだけで良く、前後方向に移動させる必要はない。また、レーザー光Lが完全な平行光ではなくても、焦点距離が比較的長く、平行光とみなせる程度である場合にも、レーザー装置50の出射装置を左右方向に移動させるだけで良く、前後方向に移動させる必要はない。これによれば、レーザー装置50の出射装置を移動させる制御(ロボットハンドの制御)が簡単である。ただし、ロボットハンドの制御が多少複雑になるが、レーザー光Lを走査する際、凸部12とレーザー光Lの出射口との距離が焦点距離に常に一致するように、レーザー装置50の出射装置を左右方向に移動させるとともに前後方向にも移動させても良い。
 また、上記実施形態では、凸部12の一方の側面(前面)にレーザー光Lを照射している。これに代えて、凸部12の両方の側面(前面及び後面)にレーザー光Lを照射してもよい。
 また、上記実施形態では、略板状の第1部材10及び第2部材20を溶着して、略板状の部品を形成している。しかし、本発明は他の形状の部品の形成にも適用可能である。例えば、図4に示すように、第1部材100と第2部材200とを溶着して筒状の部品を形成する例について説明する。この例においても、第1部材100及び第2部材200は、炭素繊維強化樹脂製である。第1部材100は、本体部110と凸部120とを有する。本体部110は、天板部111と、天板部111の前端から前方かつ下方へ斜めに延びる前側斜板部112と、天板部111の後端から後方かつ下方へ斜めに延びる後側斜板部113とからなる。凸部120は、前後一対の凸部121,122とからなる。凸部121は、前側斜板部112の前端から下方へ延設されている。また、凸部122は、後側斜板部113の後端から下方へ延設されている。凸部121,122の天面(下面)121a,122aは、上下方向に垂直な平面である。また、第2部材200は、板状に形成された本体部210を有する。
 図5に示すように、第2部材200の上側に第1部材100が載置され、凸部121,122の天面121a,122aが第2部材200の上面に突き当てられる。第1部材100の前端部及び後端部の上面が、複数の押圧装置300によって下方へ押される。押圧装置300の構成は、押圧装置30と略同一である。すなわち、押圧装置300は、基部310、押圧ピン320及びバネ330を有する。基部310及びバネ330の構成は、押圧装置30の基部31及びバネ33と同一である。押圧ピン320の構成は、押圧装置30の押圧ピン32とは少し異なる。すなわち、上記実施形態の押圧装置30の押圧ピン32の下面が上下方向に垂直な板状であるのに対し、押圧ピン320の下面は、前側斜板部112及び後側斜板部113の上面にそれぞれ沿うように斜めに形成されている。各押圧装置300は、上記実施形態と同様に、支持板400によって支持されている。なお、図5においては、支持板400は省略されている。
 つぎに、図6Aに示すように、まず、凸部121の前面及び後面にレーザー光Lが照射されるとともに、左右方向(紙面に垂直な方向)に走査される。例えば、凸部121の右端から左端へレーザー光Lが走査される。これにより、凸部121の天面121aのうち、レーザー光Lのスポット位置の近傍の部分が溶融するとともに、第2部材200のうち、前記溶融した凸部121の天面121aとの当接面が溶融する。このようにして、第1部材100の前端部と第2部材200の前端部とが溶着される。つぎに、図6Bに示すように、凸部122の前面及び後面にレーザー光Lが照射されるとともに、左右方向(紙面に垂直な方向)に走査される。例えば、凸部122の右端から左端へレーザー光Lが走査される。これにより、凸部122の天面122aのうち、レーザー光Lのスポット位置の近傍の部分が溶融するとともに、第2部材200のうち、前記溶融した凸部122の天面122aとの当接面が溶融する。このようにして、、図6Cに示すように、第1部材100の後端部と第2部材200の後端部とが溶着される。これによれば、凸部121及び凸部122の両側面にレーザー光Lが照射されるので、凸部121及び凸部122の一方の側面にのみレーザー光Lが照射される場合に比べて、凸部121の天面121a及び凸部122の天面122a、並びに第2部材200のうち、前記溶融した天面121a及び天面122aにとの当接面を確実かつ迅速に溶融させることができる。したがって、レーザー光Lの走査速度を速めることができる。
 また、図7及び図8に示すように、凸部12の潰れ量(溶着後の第1部材10と第2部材20との隙間の寸法)を一定に設定するためのストッパーSTを設けてもよい。同図に示す例においては、ストッパーSTは、凸部12に平行に延設されている。ストッパーSTは、本体部11に一体的に形成されている。ストッパーSTの突出高さは、凸部12の突出高さよりも小さい。レーザー光Lは、凸部12にのみ照射され、ストッパーSTには照射されない。これによれば、凸部12が溶融して、押圧装置30によって凸部12が押し潰され始めると、凸部12が完全に押し潰される前に、第2部材20の下面がストッパーSTの上面に当接する。そのため、凸部12がそれ以上押し潰されない。これにより、凸部12の潰れ量(溶着後の第1部材10と第2部材20との隙間の寸法)を一定に設定できる。なお、ストッパーSTが、第1部材10とは別の材料(レーザー光Lが照射されても溶融しない材料)を用いて、第1部材10とは別体として形成され、本体部11の上面に取り付けられてもよい。この場合、ストッパーSTが本体部11にインサート成型されてもよい。また、ストッパーSTは、凸部12に平行に形成される必要はなく、凸部12から離れた複数個所に点在していてもよい。
 また、図9に示すように、第1部材100と第2部材200とを溶着して筒状の部品を形成する際に、第1部材100(又は第2部材200)にストッパーSTを設けておいてもよい。図9に示すような筒状の部品を形成する場合には、筒状部品の両側に凸部を設けてその凸部をレーザーにより溶融させて第1部材100と第2部材200とを溶着させる必要がある。しかしながら、図6Bに示すように一方の凸部から順番に凸部を溶融させる場合、片側の凸部のみが過度に溶融してしまうと、両側の凸部の高さが不均一となる。第1部材100の両側の凸部にストッパーSTを設けることで、片側の凸部のみが過度に溶融することを防止することができる。その結果、筒状の部材の両側の高さを一定に保ちやすい。さらに、図6Bに示すように、第1部材100と第2部材200とを加圧しながらレーザー溶着する場合に、凸部の高さが部材の両側で不均一であると、レーザー照射中におけるそれぞれの凸部にかかる加圧力が異なる結果、部材の両側における接合強度にバラツキが生じる。図9の構成によれば、部材の両側における凸部の高さの不均一を抑制することができるので、上記課題を解消することができる。
 また、例えば、図10に示すように、第2部材200の上面に左右方向(紙面に垂直な方向)に延びる溝部G,Gを設けてもよい。この場合、溝部G,Gは前後方向に離れている。凸部121が前側の溝部Gと後側の溝部Gとの間の平面部に突き当てられる。言い換えれば、前側の溝部Gは、凸部121の前面に沿って形成されており、後側の溝部Gは、凸部121の後面に沿って形成されている。なお、図10では省略しているが、凸部122の前後にも溝部G,Gを形成してもよい。この場合、凸部121,122にレーザー光Lが照射されて溶融したとき、その溶融した合成樹脂材の一部が溝部G内へ流入する。これにより、前記溶融した合成樹脂材が第1部材100と第2部材200の前端及び後端からはみ出すことを抑制できる。
 また、図11に示すように、凸部12(121,122)の先端側(天面12a(121a,122a)側)の幅(前後方向の寸法)を、末端側(本体部11(前側斜板部112,後側斜板部113)側)の幅よりも小さく設定しても良い。この場合、同図に示すように、凸部12(121,122)の末端側から先端側へ向かうに従って、その幅が徐々に小さくなるように設定するとよい。これによれば、凸部12(121,122)の先端側(つまり、天面12a(121a,122a)側)を優先的に溶融させることができる。
 また、図12に示すように、レーザー光Lを凸部12(凸部121,122)の側面に対して斜めに照射し、レーザー光Lのスポットの中心を凸部12(凸部121,122)の側面と第2部材20(第2部材200)の表面との境界部に位置させてもよい。すなわち、前記スポットの一部を凸部12(凸部121,122)の側面に位置させ、前記スポットの一部を第2部材20(第2部材200)の表面に位置させてもよい。これにより、レーザー光Lによって、凸部12(121,122)の側面と第2部材20(第2部材200)の表面とが直接的に溶融され、さらにそれらの熱が凸部12(121,122)の天面12a(121a,122a)、及び第2部材20(200)における凸部12(121,122)との当接面に伝わり、天面12a(121a,122a)及び前記当接面が溶融する。したがって、凸部12(121,122)の側面にのみレーザー光Lが照射され、凸部12(121,122)の側面のみを起点として凸部12(121,122)の天面12a(121a,122a)及び前記当接面に熱を伝達させる場合に比べて、凸部12(121,122)の天面12a(121a,122a)及び前記当接面を確実かつ迅速に溶融させることができる。なお、この場合、図13に示すように、レーザー光Lを反射するミラーMを用いて、凸部12(凸部121,122)の側面に対するレーザー光Lの照射角度を微調整してもよい。この場合、レーザー装置50の出射装置と同様に、ミラーMを図示しないロボットハンドによって移動させればよい。
 また、凸部12(凸部121,122)を第2部材20(第2部材200)に突き当てつつ、第1部材10(第1部材100)又は第2部材20(第2部材200)を振動させても良い。これによれば、第1部材10(第1部材100)及び第2部材20(第2部材200)のうち溶融した部分の合成樹脂材が、前記振動によって互いに混ざり合う。その後、前記混ざり合った部分が冷えて固化する。これにより、第1部材10(第1部材100)と第2部材20(第2部材200)との溶着強度をより高めることができる。

Claims (10)

  1.  合成樹脂製の第1部材と第2部材とを溶着する合成樹脂部材の溶着方法であって、
     前記第1部材に凸部を設けておき、
     前記第1部材の凸部の天面を前記第2部材に突き当てた状態で、前記凸部の側面にレーザー光を照射して、前記凸部の少なくとも前記天面全体を溶融させるとともに前記第2部材における前記天面との当接部を溶融させた後、前記溶融した部分を固化させて前記第1部材と前記第2部材とを溶着する、合成樹脂部材の溶着方法。
  2.  請求項1に記載の合成樹脂部材の溶着方法において、
     前記レーザー光のスポットの一部が前記第1部材と前記第2部材との境界部に位置している、合成樹脂部材の溶着方法。
  3.  請求項1又は2に記載の合成樹脂部材の溶着方法において、
     前記凸部を所定の方向に延設しておき、
     前記凸部の側面にレーザー光を照射しつつ前記所定の方向に走査して前記凸部の少なくとも前記天面全体を溶融させるとともに、前記溶融した前記天面の熱によって前記第2部材における前記天面との当接部を溶融させた後、前記溶融した部分を固化させて前記第1部材と前記第2部材とを溶着する、合成樹脂部材の溶着方法。
  4.  請求項3に記載の合成樹脂部材の溶着方法において、
     前記凸部の両側面にレーザー光を照射しつつ前記所定の方向に走査して前記凸部の少なくとも前記天面全体を溶融させるとともに、前記溶融した前記天面の熱によって前記第2部材における前記天面との当接部を溶融させた後、前記溶融した部分を固化させて前記第1部材と前記第2部材とを溶着する、合成樹脂部材の溶着方法。
  5.  請求項3又は4に記載の合成樹脂部材の溶着方法において、
     前記凸部に沿った溝部を前記第2部材に設けておき、前記溶融した合成樹脂材の少なくとも一部を前記溝部内へ流入させる、合成樹脂部材の溶着方法。
  6.  請求項3乃至5のうちのいずれか1つに記載の合成樹脂部材の溶着方法において、
     前記凸部が所定の直線方向に対して蛇行するように延設されており、
     前記レーザー光を前記所定の直線方向に沿って走査させる、合成樹脂部材の溶着方法。
  7.  請求項3乃至6のうちのいずれか1つに記載の合成樹脂部材の溶着方法において、
     前記凸部の延設方向に沿って配置され、前記第1部材又は前記第2部材の表面から突出した突出部であって、その突出高さが前記凸部の突出高さよりも小さく設定された突出部を設けておき、
     前記凸部及び前記突出部のうちの前記凸部のみを溶融させ、前記突出部を溶融させない、合成樹脂部材の溶着方法。
  8.  請求項1乃至7のうちのいずれか1つに記載の合成樹脂部材の溶着方法において、
     前記凸部の先端側の部分の幅が前記凸部の末端側の幅よりも小さく設定されている、合成樹脂部材の溶着方法。
  9.  請求項1乃至8のうちのいずれか1つに記載の合成樹脂部材の溶着方法において、
     前記第1部材と前記第2部材とが同一の合成樹脂材料で構成されている、合成樹脂部材の溶着方法。
  10.  請求項9に記載の合成樹脂部材の溶着方法において、
     前記第1部材と前記第2部材とが炭素繊維を含む炭素繊維強化樹脂材料で構成され、前記凸部は、前記第1部材の本体部と一体的に形成されている、合成樹脂部材の溶着方法。
PCT/JP2018/030194 2017-08-14 2018-08-13 合成樹脂部材の溶着方法 WO2019035442A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880052475.1A CN111479669B (zh) 2017-08-14 2018-08-13 合成树脂构件的熔接方法
US16/636,551 US11235536B2 (en) 2017-08-14 2018-08-13 Method for welding synthetic resin member
EP18845572.9A EP3670152B1 (en) 2017-08-14 2018-08-13 Method for welding synthetic resin member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017156489A JP6884664B2 (ja) 2017-08-14 2017-08-14 合成樹脂部材の溶着方法
JP2017-156489 2017-08-14

Publications (1)

Publication Number Publication Date
WO2019035442A1 true WO2019035442A1 (ja) 2019-02-21

Family

ID=65361939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030194 WO2019035442A1 (ja) 2017-08-14 2018-08-13 合成樹脂部材の溶着方法

Country Status (5)

Country Link
US (1) US11235536B2 (ja)
EP (1) EP3670152B1 (ja)
JP (1) JP6884664B2 (ja)
CN (1) CN111479669B (ja)
WO (1) WO2019035442A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12011186B2 (en) 2021-10-28 2024-06-18 Neuravi Limited Bevel tip expandable mouth catheter with reinforcing ring

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283457A (ja) * 2001-03-26 2002-10-03 Toyota Motor Corp 樹脂部品のレーザ溶着方法
JP2004154999A (ja) * 2002-11-05 2004-06-03 Toyota Motor Corp レーザ溶着された組立体
JP2004223935A (ja) * 2003-01-24 2004-08-12 Toyoda Mach Works Ltd 樹脂部品のレーザ溶着方法
JP2008302700A (ja) 2008-07-29 2008-12-18 Denso Corp 樹脂材のレーザ溶着方法
JP2012091400A (ja) 2010-10-27 2012-05-17 Akita Prefectural Univ レーザ接合方法及びレーザ接合物
JP2014180843A (ja) 2013-03-21 2014-09-29 Honda Motor Co Ltd 樹脂製部材の溶着方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726008A (en) * 1986-10-20 1988-02-16 Eastman Kodak Company Optical disk assembly
JP3961737B2 (ja) * 2000-02-29 2007-08-22 株式会社小糸製作所 車両用灯具およびその製造方法
US6974207B2 (en) * 2002-11-19 2005-12-13 Lexmark International, Inc. Laser welding methods and structures and control therefor including welded inkjet printheads
JP2005288934A (ja) 2004-04-01 2005-10-20 Denso Corp 樹脂材のレーザ溶着方法
USRE44290E1 (en) * 2005-09-21 2013-06-11 Orient Chemical Industries, Ltd. Laser-welded article
JP2007111926A (ja) * 2005-10-19 2007-05-10 Toyota Motor Corp 熱可塑性樹脂部材のレーザ溶着方法およびレーザ溶着装置
US8790483B2 (en) * 2008-11-24 2014-07-29 Corning Incorporated Method of weldbonding and a device comprising weldbonded components
US8227112B2 (en) * 2008-12-12 2012-07-24 Toyota Jidosha Kabushiki Kaisha Sealed battery and manufacturing method thereof, vehicle mounting the sealed battery, and battery mounting device mounting the sealed battery
US7767920B1 (en) * 2009-03-04 2010-08-03 Niles America Wintech, Inc. Switch and welding method of same
AU2010302988B2 (en) * 2009-09-30 2015-01-15 Sanofi-Aventis Deutschland Gmbh Method for treating a plastic part, method for manufacturing a drug delivery device and drug delivery device
FR2959692B1 (fr) * 2010-05-07 2013-12-27 Renault Sa Dispositif d'assemblage de deux pieces en materiaux thermoplastiques par soudage laser par transparence et procede d'assemblage associe
US8474868B2 (en) * 2011-04-19 2013-07-02 Ford Global Technologies, Llc Active bolster with hermetic seal
JP2011255683A (ja) 2011-10-03 2011-12-22 Hamamatsu Photonics Kk 樹脂部材の接合方法
JP5862315B2 (ja) * 2012-01-12 2016-02-16 トヨタ紡織株式会社 樹脂成形品の製造方法
JP2016117225A (ja) * 2014-12-22 2016-06-30 株式会社デンソー 樹脂部品のレーザ溶着構造
JP6565403B2 (ja) * 2015-07-15 2019-08-28 浜名湖電装株式会社 樹脂成形品の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283457A (ja) * 2001-03-26 2002-10-03 Toyota Motor Corp 樹脂部品のレーザ溶着方法
JP2004154999A (ja) * 2002-11-05 2004-06-03 Toyota Motor Corp レーザ溶着された組立体
JP2004223935A (ja) * 2003-01-24 2004-08-12 Toyoda Mach Works Ltd 樹脂部品のレーザ溶着方法
JP2008302700A (ja) 2008-07-29 2008-12-18 Denso Corp 樹脂材のレーザ溶着方法
JP2012091400A (ja) 2010-10-27 2012-05-17 Akita Prefectural Univ レーザ接合方法及びレーザ接合物
JP2014180843A (ja) 2013-03-21 2014-09-29 Honda Motor Co Ltd 樹脂製部材の溶着方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3670152A4

Also Published As

Publication number Publication date
CN111479669A (zh) 2020-07-31
JP6884664B2 (ja) 2021-06-09
EP3670152B1 (en) 2024-01-24
US20210162678A1 (en) 2021-06-03
EP3670152A4 (en) 2021-05-12
JP2019034461A (ja) 2019-03-07
US11235536B2 (en) 2022-02-01
EP3670152A1 (en) 2020-06-24
CN111479669B (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
JP6367978B2 (ja) 熱可塑性合成材料製の2つの接合部材の溶接シームに沿うレーザ溶接方法及び装置
JP4868887B2 (ja) 樹脂溶着方法、樹脂部品
JP3973792B2 (ja) 車両用灯具の製造方法
JP3913435B2 (ja) 車両用灯具の製造方法
US20100307676A1 (en) Method and apparatus for laser welding thermoplastic resin members
DK2747984T3 (en) A method and apparatus for laser welding two plastic parts to be joined
EP1777057A2 (en) Method and apparatus for laser welding thermoplastic resin members
KR20000052487A (ko) 레이저 접합 방법 및 플라스틱으로 제작된 다른 공작물을접합시키기 위한 장치 또는 플라스틱을 다른 재료에접합시키기 위한 장치
JP2001334578A (ja) レーザによる樹脂の溶着加工方法
JP2005339873A (ja) 車輌用灯具の製造方法
US20050121137A1 (en) Joint designs for laser welding of thermoplastics
CN100471656C (zh) 结构塑料制品的激光连接方法
JP2009500174A (ja) 光導波路を介したスキャン溶接やスキャンマーキングの方法及びそのための光導波路
WO2019035442A1 (ja) 合成樹脂部材の溶着方法
JP2016078075A (ja) レーザ溶接方法及びレーザ溶接装置
JP4230826B2 (ja) レーザ加工方法
US20180099456A1 (en) Laser Welding System and Method for Producing Image-Containing Weld Seam
JP4944918B2 (ja) 樹脂材および樹脂材のレーザー溶着方法
JP2013196891A (ja) 車両用灯具の製造方法
JP5553155B2 (ja) レーザー溶着を用いた車両用灯具製造方法
JP5547883B2 (ja) 樹脂材の溶着方法
JP5108321B2 (ja) レーザ溶接方法
JP2013022922A (ja) レーザ照射による樹脂部材の溶融接合方法
JP2012091400A (ja) レーザ接合方法及びレーザ接合物
JP2004058581A (ja) 樹脂部材のレーザー溶着方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018845572

Country of ref document: EP

Effective date: 20200316