WO2019035290A1 - Torque detector - Google Patents

Torque detector Download PDF

Info

Publication number
WO2019035290A1
WO2019035290A1 PCT/JP2018/025894 JP2018025894W WO2019035290A1 WO 2019035290 A1 WO2019035290 A1 WO 2019035290A1 JP 2018025894 W JP2018025894 W JP 2018025894W WO 2019035290 A1 WO2019035290 A1 WO 2019035290A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
rotating shaft
torque detector
layer
joined
Prior art date
Application number
PCT/JP2018/025894
Other languages
French (fr)
Japanese (ja)
Inventor
祐希 瀬戸
石倉 義之
里奈 小笠原
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Priority to KR1020207002934A priority Critical patent/KR102333525B1/en
Priority to CN201880051544.7A priority patent/CN111033198B/en
Publication of WO2019035290A1 publication Critical patent/WO2019035290A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/108Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating

Definitions

  • the present invention relates to a torque detector that detects torque applied to a rotating shaft.
  • a metal strain gauge is attached to the peripheral surface of the rotating shaft as one of the methods to detect the torque applied to the rotating shaft, and the magnitude of shear stress generated on the peripheral surface of the rotating shaft by torque There is a method of detecting by value change.
  • a bridge circuit is configured by mounting four or more metal strain gauges at 45 degrees with respect to the axial direction of the rotating shaft.
  • the present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a torque detector that improves the detection accuracy of torque.
  • the torque detector according to the present invention has a resistance gauge, and a substrate layer in which strain occurs in response to an external force, and one surface is joined to at least both ends of the substrate layer, and both longitudinal direction ends of opposing surfaces facing the one surface are rotated. And an insulating layer bonded to the shaft.
  • FIGS. 4A and 4B are diagrams showing a state in which the strain sensor according to Embodiment 1 of the present invention is attached to a rotating shaft, FIG.
  • FIG. 4A is a top view
  • FIG. 4B is a side view.
  • 5A and 5B are diagrams for explaining the basic operation principle of the torque detector
  • FIG. 5A is a side view showing the torque applied to the rotating shaft
  • FIG. 5B is a strain sensor based on the torque shown in FIG.
  • It is a figure which shows an example of the stress distribution which generate
  • It is a side view which shows another structural example of the distortion sensor in Embodiment 1 of this invention.
  • FIG. 11A is a top view showing another arrangement example of the resistance gauge in accordance with the first embodiment of the present invention
  • FIG. 11B is a view showing a construction example of a half bridge circuit constituted by the resistance gauge shown in FIG. 11A.
  • 12A to 12C are back views showing another configuration example of the silicon layer in the first embodiment of the present invention.
  • FIG. 1 is a view showing a configuration example of a torque detector according to Embodiment 1 of the present invention.
  • the torque detector detects the torque applied to the rotating shaft 5 (see FIG. 4).
  • a drive system 6 such as a motor is connected to one end in the axial direction, and a load system such as a robot hand is connected to the other end.
  • the torque detector includes a strain sensor 1 as shown in FIG.
  • the strain sensor 1 is a semiconductor strain gauge attached to the rotating shaft 5 and outputting a voltage according to external shear stress (tensile stress and compressive stress).
  • the strain sensor 1 is realized by MEMS (Micro Electro Mechanical Systems).
  • the strain sensor 1 has a silicon layer (substrate layer) 11 and an insulating layer 12 as shown in FIGS.
  • the silicon layer 11 is a single crystal silicon in which strain is generated in response to an external force, and is a sensor layer having a Wheatstone bridge circuit composed of a plurality of resistance gauges (diffusion resistances) 13.
  • a groove 111 is formed in the center of the back surface (one surface) of the silicon layer 11.
  • the thin portion 112 is formed in the silicon layer 11 by the groove portion 111.
  • the resistance gauge 13 is formed on the thin portion 112.
  • the thickness of the thin portion 112 is appropriately designed in accordance with the rigidity and the like of the silicon layer 11. For example, when the rigidity of the silicon layer 11 is low, the thin portion 112 is thick, and when the rigidity of the silicon layer 11 is high, the thin portion 112 is thin.
  • the resistance gauge 13 is formed, for example, in the ⁇ 110> direction of the silicon layer 11 whose crystal orientation on the surface is (100).
  • four resistance gauges 13 (R1 to R4) constituting a full bridge circuit (Wheatstone bridge circuit) are formed in a diagonal direction (45 degrees direction) with respect to the side direction of the silicon layer 11. Shows the case of detecting shear stress in two directions.
  • the above-mentioned oblique direction is not limited to 45 degrees direction, but the characteristic of distortion sensor 1 46 degrees direction etc) is acceptable.
  • the insulating layer 12 is a pedestal in which the upper surface (one surface) is joined to at least both ends of the back surface of the silicon layer 11 and the longitudinal opposite ends of the back surface (facing surface facing the one surface) are joined to the rotating shaft 5.
  • glass or sapphire can be used as the insulating layer 12.
  • FIG. 1 shows the case where the upper surface of the insulating layer 12 is bonded to the entire surface of the back surface of the silicon layer 11.
  • a groove portion 121 is formed in a region excluding both ends in the longitudinal direction of the back surface. Bonding portions 122 are formed at both ends in the longitudinal direction of the back surface of the insulating layer 12 by the groove portions 121. Then, as shown in FIG. 4, the bonding portion 122 of the insulating layer 12 is directly bonded to the rotating shaft 5.
  • a plurality of resistance gauges 13 are formed in the silicon layer 11 by ion implantation (Step ST1). Then, a plurality of resistance gauges 13 form a Wheatstone bridge circuit.
  • the groove portion 111 is formed on the back surface of the silicon layer 11 by etching (step ST2). Thereby, the portion of the silicon layer 11 where the resistance gauge 13 is formed is made to be the thin portion 112.
  • the groove 121 is formed by etching in the region excluding the both ends in the longitudinal direction of the back surface of the insulating layer 12 (step ST3).
  • the bonding portions 122 are formed at both ends in the longitudinal direction of the back surface of the insulating layer 12.
  • the back surface of the silicon layer 11 and the top surface of the insulating layer 12 are bonded by, for example, anodic bonding (step ST4).
  • FIG. 4 shows a state in which the strain sensor 1 is attached to the rotating shaft 5.
  • the strain sensor 1 is disposed such that the resistance gauge 13 is directed obliquely (45 degrees) with respect to the axial direction of the rotating shaft 5. That is, the resistance gauge 13 is disposed so as to face the generation direction of the shear stress generated when the torque is applied to the rotating shaft 5.
  • the above-mentioned oblique direction is not limited to 45 degrees direction, but the characteristic of distortion sensor 1 46 degrees direction etc) is acceptable.
  • FIG. 5A the drive system 6 is connected to one end of the rotary shaft 5 to which the strain sensor 1 is attached, and a state where torque is applied to the rotary shaft 5 by the drive system 6 is shown.
  • FIG. 5A by applying torque to the rotating shaft 5, the strain sensor 1 attached to the rotating shaft 5 is strained, and shear stress as shown in FIG. 5B is generated on the surface of the strain sensor 1. .
  • FIG. 5 shows that the deeper the color, the stronger the tensile stress, and the lighter the color, the stronger the compressive stress.
  • And resistance gauge 13 which turned to a diagonal direction (45 degrees direction) to the axial direction of axis of rotation 5 changes resistance value according to this shear stress, and strain sensor 1 changes according to change of resistance value. Output voltage.
  • the torque detector detects the torque applied to the rotating shaft 5 from the voltage output by the strain sensor 1.
  • bonding portions 122 are formed on both ends in the longitudinal direction of the back surface of the insulating layer 12, and only the bonding portions 122 are bonded to the rotating shaft 5.
  • the relative amount of strain increases as the mounting position becomes farther in the axial direction of the rotating shaft 5. Therefore, by setting the joint portion 122 of the strain sensor 1 only to the outside in the axial direction, the largest displacement difference can be transmitted to the strain sensor 1, and the detection sensitivity to the torque applied to the rotating shaft 5 is improved.
  • the insulating layer 12 should be made of a harder material.
  • the effect is higher. For example, using sapphire or the like as the insulating layer 12 is more effective than using glass.
  • the thin portion 112 is formed by forming the groove portion 111 in the center of the back surface of the silicon layer 11, and the resistance gauge 13 is formed in the thin portion 112. Thereby, the stress can be concentrated on the thin portion 112 in which the resistance gauge 13 is formed, and the detection sensitivity to the torque applied to the rotating shaft 5 is improved.
  • the present invention is not limited to this.
  • the insulating layer (first insulating layer) 123 and the insulating layer (second insulating layer) 124 in which the insulating layer 12 is divided into two at the center are used. Good. Thereby, the deformation of the rotating shaft 5 can be transmitted to the strain sensor 1 more efficiently.
  • the present invention is not limited to this, as long as only both longitudinal ends of the insulating layer 12 are joined to the rotating shaft 5.
  • two plate-like insulating layers (a first insulating layer, a second insulating layer) disposed as an insulating layer 12 with a gap and facing only both ends in the longitudinal direction of the silicon layer 11
  • the two insulating layers 125 and 126 may be directly bonded to the rotating shaft 5 using 125 and 126.
  • a column member 14 with high rigidity is joined to both ends in the longitudinal direction of the back surface of the plate-like insulating layer 12, and the insulating layer 12 is connected to the rotary shaft 5 via the column member 14. It may be configured to be bonded to For example, as shown in FIG. 9, both ends in the longitudinal direction of the back surface of the plate-like insulating layer 12 may be directly bonded to the rotating shaft 5 by an adhesive member (adhesive, solder or the like) 15.
  • the arrangement of the four resistance gauges 13 is not limited to the arrangement shown in FIG. 2, but may be an arrangement as shown in FIG. 10, for example.
  • a communication groove portion 113 may be formed on the back surface of the silicon layer 11 so as to communicate the groove portion 111 with the side surface of the silicon layer 11.
  • a temperature of about 400 ° C. is applied by anodic bonding. Therefore, when the communication groove portion 113 is not present, the air present in the groove portion 111 between the silicon layer 11 and the insulating layer 12 is sealed in a high temperature state at the time of anodic bonding, and when the temperature drops to normal temperature As a result, the thin-walled portion 112 may be deformed and the zero point of the strain sensor 1 may be displaced.
  • the communication groove portion 113 air present in the groove portion 111 can be released to the outside at the time of anodic bonding, and deformation of the thin portion 112 can be avoided.
  • the silicon layer 11 needs to be configured so as to be partially thinned by the groove portion 111 and the communication groove portion 113 so as not to be entirely thinned.
  • the present invention is not limited to this, and a semiconductor strain cage of another shape (for example, a shape without the thin portion 112) may be used.
  • the silicon layer 11 having the resistance gauge 13 and one surface are joined to at least both ends of the silicon layer 11, and both longitudinal direction ends of the opposing surface facing the one surface are rotation axes Since the insulating layer 12 joined to the body 5 is provided, the torque detection accuracy is improved.
  • the silicon layer 11 was used as a board
  • substrate layer was shown in the above, it does not restrict to this, and should just be a member which distortion produces according to external force.
  • an insulator such as glass
  • the resistance gauge 13 is formed by depositing a film on the insulator by sputtering or the like.
  • the resistance gauge 13 is formed by sputtering the metal via an insulating film.
  • the silicon layer 11 may be used as a substrate layer, and the resistance gauge 13 may be formed on the silicon layer 11 by sputtering or the like.
  • the gauge factor becomes higher than that of a general metal strain gauge. Further, when the resistance gauge 13 is formed by film formation, the gauge ratio does not change depending on the crystal orientation as opposed to the case where the resistance gauge 13 is formed in the silicon layer 11 by ion implantation, that is, the direction needs to be limited. There is no On the other hand, the gauge factor is 4 to 10 times higher in the case where the resistance gauge 13 is formed by ion implantation in the silicon layer 11 than when the resistance gauge 13 is formed by film formation.
  • the torque detector according to the present invention is suitable for use in, for example, a torque detector that detects a torque applied to a rotating shaft because the torque detection accuracy is improved.
  • Reference Signs List 1 strain sensor 5 rotating shaft 6 driving system 11 silicon layer (substrate layer) 12 insulation layer 13 resistance gauge (diffusion resistance) 14 Column member 15 Bonding member 111 Groove portion 112 Thin portion 113 Communication groove portion 121 Groove portion 122 Bonding portion 123 Insulating layer (first insulating layer) 124 Insulating layer (second insulating layer) 125 insulating layer (first insulating layer) 126 insulating layer (second insulating layer)

Abstract

The present invention is provided with: a silicon layer (11) provided with a resistance gauge (13); and an insulation layer (12) of which one surface is joined to at least both ends of the silicon layer (11), and of which both ends in the longitudinal direction of a facing surface facing the one surface are joined to a rotational shaft (5).

Description

トルク検出器Torque detector
 この発明は、回転軸体に加わるトルクを検出するトルク検出器に関する。 The present invention relates to a torque detector that detects torque applied to a rotating shaft.
 回転軸体に加わるトルクを検出する方式の一つとして、回転軸体の周面に金属歪ゲージを取付け、トルクにより回転軸体の周面に生じるせん断応力の大きさを、金属歪ゲージにおける抵抗値変化により検出する方式がある。この方式では、4つ以上の金属歪ゲージを回転軸体の軸方向に対して45度方向に取付けてブリッジ回路を構成している。
 しかしながら、金属歪ゲージでは、ゲージ率が小さいため、微小な歪を高精度に検出することは困難である。
A metal strain gauge is attached to the peripheral surface of the rotating shaft as one of the methods to detect the torque applied to the rotating shaft, and the magnitude of shear stress generated on the peripheral surface of the rotating shaft by torque There is a method of detecting by value change. In this method, a bridge circuit is configured by mounting four or more metal strain gauges at 45 degrees with respect to the axial direction of the rotating shaft.
However, with a metal strain gauge, it is difficult to detect minute strain with high accuracy because the gauge factor is small.
 一方、トルクの検出感度を上げる方法として、回転軸体の剛性を下げ、歪量を増大させる方式が考えられる。特許文献1では、回転軸体に様々な加工を施して梁部を形成することで、感度の向上を実現している。 On the other hand, as a method of increasing the detection sensitivity of torque, there is considered a method of decreasing the rigidity of the rotating shaft and increasing the amount of distortion. In patent document 1, the improvement of sensitivity is implement | achieved by giving various processes to a rotating shaft and forming a beam part.
特開2016-109568号公報JP, 2016-109568, A
 しかしながら、回転軸体の剛性を下げる方式では、応力増大によるヒステリシスの問題(感度とヒステリシスとのトレードオフの問題)が発生し、精度の向上は望めない。
 また、従来方式では、金属歪ゲージを少なくとも4つ以上配置する必要がある。よって、各金属歪ゲージの相対位置及び角度を厳密に合わせる必要があり、困難であるという課題がある。
However, in the method of reducing the rigidity of the rotating shaft, a problem of hysteresis due to stress increase (a problem of trade-off between sensitivity and hysteresis) occurs, and improvement in accuracy can not be expected.
In the conventional method, it is necessary to arrange at least four metal strain gauges. Therefore, it is necessary to exactly match the relative positions and angles of the metal strain gauges, which causes a problem of difficulty.
 ここで、産業用ロボットでは、その動作を制御するためにトルクの検出が不可欠である。そのため、従来から、トルク検出器が産業用ロボットに取付けられ、ロボットアームの各関節のトルクを検出している。
 一方、近年では、産業用ロボットに対し、人と隔たりなく共存するために、人又は物等の物体に接触した際に、瞬時に接触を検知して動作が止まるような安全性が求められている。しかしながら、産業用ロボットは、自身の重み及び保持する物体の重みを有し、更に動作スピードを考慮した堅牢な筐体であることから、従来の金属歪ゲージでは高精度にトルクを検出することは難しい。
Here, in an industrial robot, detection of torque is essential to control its operation. Therefore, conventionally, a torque detector is attached to the industrial robot to detect the torque of each joint of the robot arm.
On the other hand, in recent years, in order for industrial robots to coexist with people without being separated, there is a demand for safety that instantaneously detects contact and stops operation when touching an object such as a person or a thing. There is. However, since the industrial robot has its own weight and the weight of the object to be held, and it is a robust casing in consideration of the operation speed, it is not possible to detect the torque with high accuracy with the conventional metal strain gauge. difficult.
 この発明は、上記のような課題を解決するためになされたもので、トルクの検出精度が向上するトルク検出器を提供することを目的としている。 The present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a torque detector that improves the detection accuracy of torque.
 この発明に係るトルク検出器は、抵抗ゲージを有し、外力に応じて歪みが生じる基板層と、一面が基板層の少なくとも両端に接合され、当該一面に対向する対向面における長手方向両端が回転軸体に接合される絶縁層とを備えたことを特徴とする。 The torque detector according to the present invention has a resistance gauge, and a substrate layer in which strain occurs in response to an external force, and one surface is joined to at least both ends of the substrate layer, and both longitudinal direction ends of opposing surfaces facing the one surface are rotated. And an insulating layer bonded to the shaft.
 この発明によれば、上記のように構成したので、トルクの検出精度が向上する。 According to this invention, since it comprised as mentioned above, detection accuracy of a torque improves.
図1A~図1Cは、この発明の実施の形態1に係るトルク検出器の構成例を示す図であり、図1Aは上面図であり、図1Bは側面図であり、図1CはA-A’線断面図である。1A to 1C are diagrams showing a configuration example of a torque detector according to Embodiment 1 of the present invention, FIG. 1A is a top view, FIG. 1B is a side view, and FIG. 1C is AA FIG. 図2Aはこの発明の実施の形態1における抵抗ゲージの配置例を示す上面図であり、図2Bは図2Aに示す抵抗ゲージにより構成されるフルブリッジ回路の構成例を示す図である。FIG. 2A is a top view showing an arrangement example of the resistance gauges according to the first embodiment of the present invention, and FIG. 2B is a view showing a construction example of a full bridge circuit constituted by the resistance gauges shown in FIG. 2A. この発明の実施の形態1における歪センサの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the distortion sensor in Embodiment 1 of this invention. 図4A、図4Bは、この発明の実施の形態1における歪センサが回転軸体に取付けられた状態を示す図であり、図4Aは上面図であり、図4Bは側面図である。FIGS. 4A and 4B are diagrams showing a state in which the strain sensor according to Embodiment 1 of the present invention is attached to a rotating shaft, FIG. 4A is a top view, and FIG. 4B is a side view. 図5A、図5Bは、トルク検出器の基本動作原理を説明する図であり、図5Aは回転軸体に加えられたトルクを示す側面図であり、図5Bは図5Aに示すトルクにより歪センサに発生した応力分布の一例を示す図である。5A and 5B are diagrams for explaining the basic operation principle of the torque detector, and FIG. 5A is a side view showing the torque applied to the rotating shaft, and FIG. 5B is a strain sensor based on the torque shown in FIG. It is a figure which shows an example of the stress distribution which generate | occur | produced in. この発明の実施の形態1における歪センサの別の構成例を示す側面図である。It is a side view which shows another structural example of the distortion sensor in Embodiment 1 of this invention. この発明の実施の形態1における歪センサの別の構成例を示す側面図(歪センサが回転軸体に取付けられた状態を示す図)である。It is a side view (figure which shows the state in which the distortion sensor was attached to the rotating shaft) which shows another structural example of the distortion sensor in Embodiment 1 of this invention. この発明の実施の形態1における歪センサの別の構成例を示す側面図(歪センサが回転軸体に取付けられた状態を示す図)である。It is a side view (figure which shows the state in which the distortion sensor was attached to the rotating shaft) which shows another structural example of the distortion sensor in Embodiment 1 of this invention. この発明の実施の形態1における歪センサの別の構成例を示す側面図(歪センサが回転軸体に取付けられた状態を示す図)である。It is a side view (figure which shows the state in which the distortion sensor was attached to the rotating shaft) which shows another structural example of the distortion sensor in Embodiment 1 of this invention. 図10A~図10Cは、この発明の実施の形態1における抵抗ゲージの別の配置例を示す上面図である。10A to 10C are top views showing another example of arrangement of the resistance gauges according to the first embodiment of the present invention. 図11Aはこの発明の実施の形態1における抵抗ゲージの別の配置例を示す上面図であり、図11Bは図11Aに示す抵抗ゲージにより構成されるハーフブリッジ回路の構成例を示す図である。FIG. 11A is a top view showing another arrangement example of the resistance gauge in accordance with the first embodiment of the present invention, and FIG. 11B is a view showing a construction example of a half bridge circuit constituted by the resistance gauge shown in FIG. 11A. 図12A~図12Cは、この発明の実施の形態1におけるシリコン層の別の構成例を示す裏面図である。12A to 12C are back views showing another configuration example of the silicon layer in the first embodiment of the present invention.
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係るトルク検出器の構成例を示す図である。
 トルク検出器は、回転軸体5(図4参照)に加わるトルクを検出する。回転軸体5は、軸方向における一端にモータ等の駆動系6が接続され、他端にロボットハンド等の負荷系が接続される。トルク検出器は、図1に示すように、歪センサ1を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1
FIG. 1 is a view showing a configuration example of a torque detector according to Embodiment 1 of the present invention.
The torque detector detects the torque applied to the rotating shaft 5 (see FIG. 4). In the rotating shaft 5, a drive system 6 such as a motor is connected to one end in the axial direction, and a load system such as a robot hand is connected to the other end. The torque detector includes a strain sensor 1 as shown in FIG.
 歪センサ1は、回転軸体5に取付けられ、外部からのせん断応力(引張応力及び圧縮応力)に応じた電圧を出力する半導体歪ゲージである。歪センサ1は、MEMS(Micro Electro Mechanical Systems)により実現される。歪センサ1は、図1,2に示すように、シリコン層(基板層)11及び絶縁層12を有する。 The strain sensor 1 is a semiconductor strain gauge attached to the rotating shaft 5 and outputting a voltage according to external shear stress (tensile stress and compressive stress). The strain sensor 1 is realized by MEMS (Micro Electro Mechanical Systems). The strain sensor 1 has a silicon layer (substrate layer) 11 and an insulating layer 12 as shown in FIGS.
 シリコン層11は、外力に応じて歪みが生じる単結晶シリコンであり、複数の抵抗ゲージ(拡散抵抗)13から成るホイートストンブリッジ回路を有するセンサ層である。シリコン層11には、裏面(一面)の中央に、溝部111が形成されている。溝部111により、シリコン層11には薄肉部112が構成される。抵抗ゲージ13は、この薄肉部112に形成される。 The silicon layer 11 is a single crystal silicon in which strain is generated in response to an external force, and is a sensor layer having a Wheatstone bridge circuit composed of a plurality of resistance gauges (diffusion resistances) 13. A groove 111 is formed in the center of the back surface (one surface) of the silicon layer 11. The thin portion 112 is formed in the silicon layer 11 by the groove portion 111. The resistance gauge 13 is formed on the thin portion 112.
 なお、薄肉部112の厚さは、シリコン層11の剛性等に応じて適宜設計される。例えば、シリコン層11の剛性が低い場合には薄肉部112は厚くされ、シリコン層11の剛性が高い場合には薄肉部112は薄くされる。 The thickness of the thin portion 112 is appropriately designed in accordance with the rigidity and the like of the silicon layer 11. For example, when the rigidity of the silicon layer 11 is low, the thin portion 112 is thick, and when the rigidity of the silicon layer 11 is high, the thin portion 112 is thin.
 また、単結晶シリコンは、結晶異方性を有し、p型シリコン(100)面において、<110>方向のときに最もピエゾ抵抗係数が大きくなる。そのため、抵抗ゲージ13は、例えば表面の結晶方位が(100)であるシリコン層11の<110>方向に形成される。
 図2では、フルブリッジ回路(ホイートストンブリッジ回路)を構成する4つの抵抗ゲージ13(R1~R4)が、シリコン層11の辺方向に対して斜め方向(45度方向)に形成され、歪センサ1が2方向のせん断応力を検知する場合を示している。なおここでは、上記斜め方向の具体例として45度方向とした場合を示したが、上記斜め方向は45度方向に限定されず、歪センサ1の特性上、ある程度のずれ(例えば44度方向又は46度方向等)は許容される。
In addition, single crystal silicon has crystal anisotropy, and in the p-type silicon (100) plane, the piezoresistance coefficient is largest in the <110> direction. Therefore, the resistance gauge 13 is formed, for example, in the <110> direction of the silicon layer 11 whose crystal orientation on the surface is (100).
In FIG. 2, four resistance gauges 13 (R1 to R4) constituting a full bridge circuit (Wheatstone bridge circuit) are formed in a diagonal direction (45 degrees direction) with respect to the side direction of the silicon layer 11. Shows the case of detecting shear stress in two directions. Here, although the case where it is 45 degrees direction was shown as a specific example of the above-mentioned oblique direction, the above-mentioned oblique direction is not limited to 45 degrees direction, but the characteristic of distortion sensor 1 46 degrees direction etc) is acceptable.
 絶縁層12は、上面(一面)がシリコン層11の裏面の少なくとも両端に接合され、裏面(一面に対向する対向面)の長手方向両端が回転軸体5に接合される台座である。この絶縁層12としては、例えばガラス又はサファイア等を用いることができる。
 図1では、絶縁層12の上面がシリコン層11における裏面の全面に接合された場合を示している。また、絶縁層12には、裏面の長手方向両端を除く領域に、溝部121が形成されている。溝部121により、絶縁層12の裏面の長手方向両端には接合部122が構成される。そして、図4に示すように、絶縁層12の接合部122が、直接、回転軸体5に接合される。
The insulating layer 12 is a pedestal in which the upper surface (one surface) is joined to at least both ends of the back surface of the silicon layer 11 and the longitudinal opposite ends of the back surface (facing surface facing the one surface) are joined to the rotating shaft 5. For example, glass or sapphire can be used as the insulating layer 12.
FIG. 1 shows the case where the upper surface of the insulating layer 12 is bonded to the entire surface of the back surface of the silicon layer 11. Further, in the insulating layer 12, a groove portion 121 is formed in a region excluding both ends in the longitudinal direction of the back surface. Bonding portions 122 are formed at both ends in the longitudinal direction of the back surface of the insulating layer 12 by the groove portions 121. Then, as shown in FIG. 4, the bonding portion 122 of the insulating layer 12 is directly bonded to the rotating shaft 5.
 次に、歪センサ1の製造方法の一例について、図3を参照しながら説明する。
 歪センサ1の製造方法では、図3に示すように、まず、シリコン層11に、イオン注入により複数の抵抗ゲージ13を形成する(ステップST1)。そして、複数の抵抗ゲージ13によりホイートストンブリッジ回路を形成する。
 次いで、シリコン層11の裏面に、エッチングにより溝部111を形成する(ステップST2)。これにより、シリコン層11の抵抗ゲージ13が形成された箇所を薄肉部112とさせる。
 また、絶縁層12の裏面の長手方向両端を除く領域に、エッチングにより溝部121を形成する(ステップST3)。これにより、絶縁層12の裏面の長手方向両端に接合部122が構成される。
 次いで、シリコン層11の裏面と絶縁層12の上面とを、例えば陽極接合により接合する(ステップST4)。
Next, an example of a method of manufacturing the strain sensor 1 will be described with reference to FIG.
In the method of manufacturing the strain sensor 1, as shown in FIG. 3, first, a plurality of resistance gauges 13 are formed in the silicon layer 11 by ion implantation (Step ST1). Then, a plurality of resistance gauges 13 form a Wheatstone bridge circuit.
Next, the groove portion 111 is formed on the back surface of the silicon layer 11 by etching (step ST2). Thereby, the portion of the silicon layer 11 where the resistance gauge 13 is formed is made to be the thin portion 112.
Further, the groove 121 is formed by etching in the region excluding the both ends in the longitudinal direction of the back surface of the insulating layer 12 (step ST3). Thus, the bonding portions 122 are formed at both ends in the longitudinal direction of the back surface of the insulating layer 12.
Next, the back surface of the silicon layer 11 and the top surface of the insulating layer 12 are bonded by, for example, anodic bonding (step ST4).
 また上記のようにして製造された歪センサ1を回転軸体5に取付ける場合には、絶縁層12の接合部122と回転軸体5とを例えばはんだ接合により接合する。この際、絶縁層12の接合部122及び回転軸体5の接合部位をメタライズした上で、はんだ接合を行う。図4は、歪センサ1が回転軸体5に取付けられた状態を示している。 When the strain sensor 1 manufactured as described above is attached to the rotating shaft 5, the joint portion 122 of the insulating layer 12 and the rotating shaft 5 are joined by, for example, solder bonding. At this time, solder bonding is performed after metalizing the bonding portion 122 of the insulating layer 12 and the bonding portion of the rotating shaft 5. FIG. 4 shows a state in which the strain sensor 1 is attached to the rotating shaft 5.
 また、歪センサ1は、抵抗ゲージ13が回転軸体5の軸方向に対して斜め方向(45度方向)を向くように配置される。すなわち、抵抗ゲージ13は、回転軸体5にトルクが加わった際に発生するせん断応力の発生方向を向くように配置される。なおここでは、上記斜め方向の具体例として45度方向とした場合を示したが、上記斜め方向は45度方向に限定されず、歪センサ1の特性上、ある程度のずれ(例えば44度方向又は46度方向等)は許容される。 Further, the strain sensor 1 is disposed such that the resistance gauge 13 is directed obliquely (45 degrees) with respect to the axial direction of the rotating shaft 5. That is, the resistance gauge 13 is disposed so as to face the generation direction of the shear stress generated when the torque is applied to the rotating shaft 5. Here, although the case where it is 45 degrees direction was shown as a specific example of the above-mentioned oblique direction, the above-mentioned oblique direction is not limited to 45 degrees direction, but the characteristic of distortion sensor 1 46 degrees direction etc) is acceptable.
 次に、トルク検出器の基本動作原理について、図5を参照しながら説明する。図5Aでは、歪センサ1が取付けられた回転軸体5の一端に駆動系6が接続され、この駆動系6により回転軸体5にトルクが加えられた状態を示している。
 図5Aに示すように、回転軸体5にトルクが加えられることで、回転軸体5に取付けられた歪センサ1が歪み、歪センサ1の表面に図5Bに示すようなせん断応力が発生する。図5では、色が濃い点ほど引張応力が強い状態であり、色が薄い点ほど圧縮応力が強い状態であることを示している。そして、回転軸体5の軸方向に対して斜め方向(45度方向)を向いた抵抗ゲージ13は、このせん断応力に応じて抵抗値が変化し、歪センサ1は、抵抗値の変化に応じた電圧を出力する。そして、トルク検出器は、この歪センサ1により出力された電圧から回転軸体5に加えられたトルクを検出する。
Next, the basic operation principle of the torque detector will be described with reference to FIG. In FIG. 5A, the drive system 6 is connected to one end of the rotary shaft 5 to which the strain sensor 1 is attached, and a state where torque is applied to the rotary shaft 5 by the drive system 6 is shown.
As shown in FIG. 5A, by applying torque to the rotating shaft 5, the strain sensor 1 attached to the rotating shaft 5 is strained, and shear stress as shown in FIG. 5B is generated on the surface of the strain sensor 1. . FIG. 5 shows that the deeper the color, the stronger the tensile stress, and the lighter the color, the stronger the compressive stress. And resistance gauge 13 which turned to a diagonal direction (45 degrees direction) to the axial direction of axis of rotation 5 changes resistance value according to this shear stress, and strain sensor 1 changes according to change of resistance value. Output voltage. The torque detector detects the torque applied to the rotating shaft 5 from the voltage output by the strain sensor 1.
 実施の形態1に係るトルク検出器では、絶縁層12の裏面の長手方向両端に接合部122が形成され、この接合部122のみが回転軸体5に接合されている。
 ここで、回転軸体5に歪センサ1が直接取付けられた場合、取付け位置が回転軸体5の軸方向に距離が離れるほど相対的な歪量が増える。そこで、歪センサ1の接合部122が軸方向の外側のみとされることで、最も大きな変位差を歪センサ1に伝達でき、回転軸体5に加わるトルクに対する検出感度が向上する。
In the torque detector according to the first embodiment, bonding portions 122 are formed on both ends in the longitudinal direction of the back surface of the insulating layer 12, and only the bonding portions 122 are bonded to the rotating shaft 5.
Here, in the case where the strain sensor 1 is directly attached to the rotating shaft 5, the relative amount of strain increases as the mounting position becomes farther in the axial direction of the rotating shaft 5. Therefore, by setting the joint portion 122 of the strain sensor 1 only to the outside in the axial direction, the largest displacement difference can be transmitted to the strain sensor 1, and the detection sensitivity to the torque applied to the rotating shaft 5 is improved.
 なお、この方式では、歪センサ1自体、特に絶縁層12の剛性が低い場合には、回転軸体5の変形が歪センサ1に伝達され難いため、絶縁層12をより硬い材料で構成することで効果がより高くなる。例えば、絶縁層12としてサファイア等を用いた方が、ガラスを用いた場合に対して効果的となる。 In this method, when the strain sensor 1 itself, in particular, the rigidity of the insulating layer 12 is low, the deformation of the rotary shaft 5 is hard to be transmitted to the strain sensor 1, so the insulating layer 12 should be made of a harder material. The effect is higher. For example, using sapphire or the like as the insulating layer 12 is more effective than using glass.
 なお上記のトルク検出器では、シリコン層11の裏面中央に溝部111が形成されることで薄肉部112が構成され、抵抗ゲージ13がこの薄肉部112に形成されている。これにより、抵抗ゲージ13が形成された薄肉部112に応力を集中させることができ、回転軸体5に加わるトルクに対する検出感度が向上する。 In the torque detector described above, the thin portion 112 is formed by forming the groove portion 111 in the center of the back surface of the silicon layer 11, and the resistance gauge 13 is formed in the thin portion 112. Thereby, the stress can be concentrated on the thin portion 112 in which the resistance gauge 13 is formed, and the detection sensitivity to the torque applied to the rotating shaft 5 is improved.
 また上記では、絶縁層12の上面がシリコン層11の裏面の全面に接合された場合を示した。しかしながら、これに限らず、例えば図6に示すように、絶縁層12が中央で2つに分断された絶縁層(第1絶縁層)123及び絶縁層(第2絶縁層)124を用いてもよい。これにより、回転軸体5の変形を更に効率よく歪センサ1に伝達できる。 In the above, the case where the upper surface of the insulating layer 12 is bonded to the entire back surface of the silicon layer 11 is shown. However, the present invention is not limited to this. For example, as shown in FIG. 6, even if the insulating layer (first insulating layer) 123 and the insulating layer (second insulating layer) 124 in which the insulating layer 12 is divided into two at the center are used. Good. Thereby, the deformation of the rotating shaft 5 can be transmitted to the strain sensor 1 more efficiently.
 また上記では、絶縁層12の裏面に溝部121が形成された場合を示した。しかしながら、これに限らず、絶縁層12の長手方向両端側のみが回転軸体5に接合されていればよい。
 例えば図7に示すように、絶縁層12として、間隙を有して配置され、シリコン層11の長手方向両端のみに対向する2つの板状の絶縁層(第1絶縁層、第2絶縁層)125,126を用い、この2つの絶縁層125,126が、直接、回転軸体5に接合されてもよい。
 また、例えば図8に示すように、板状の絶縁層12の裏面の長手方向両端に、剛性の高い柱部材14が接合され、絶縁層12は、この柱部材14を介して回転軸体5に接合されるように構成してもよい。
 また例えば図9に示すように、板状の絶縁層12の裏面の長手方向両端が、接着部材(接着剤又ははんだ等)15により、直接、回転軸体5に接合されてもよい。
In the above, the case where the groove portion 121 is formed on the back surface of the insulating layer 12 is shown. However, the present invention is not limited to this, as long as only both longitudinal ends of the insulating layer 12 are joined to the rotating shaft 5.
For example, as shown in FIG. 7, two plate-like insulating layers (a first insulating layer, a second insulating layer) disposed as an insulating layer 12 with a gap and facing only both ends in the longitudinal direction of the silicon layer 11 The two insulating layers 125 and 126 may be directly bonded to the rotating shaft 5 using 125 and 126.
For example, as shown in FIG. 8, a column member 14 with high rigidity is joined to both ends in the longitudinal direction of the back surface of the plate-like insulating layer 12, and the insulating layer 12 is connected to the rotary shaft 5 via the column member 14. It may be configured to be bonded to
For example, as shown in FIG. 9, both ends in the longitudinal direction of the back surface of the plate-like insulating layer 12 may be directly bonded to the rotating shaft 5 by an adhesive member (adhesive, solder or the like) 15.
 また、4つの抵抗ゲージ13の配置は図2に示す配置に限らず、例えば図10に示すような配置としてもよい。 Further, the arrangement of the four resistance gauges 13 is not limited to the arrangement shown in FIG. 2, but may be an arrangement as shown in FIG. 10, for example.
 また上記では、ホイートストンブリッジ回路として、4つの抵抗ゲージ13(R1~R4)から成るフルブリッジ回路を用いた場合を示した。しかしながら、これに限らず、図11に示すように、ホイートストンブリッジ回路として、2つの抵抗ゲージ13(R1,R2)から成るハーフブリッジ回路を用いてもよい。なお、図11BにおけるRは、固定抵抗である。 Also, in the above description, the case where a full bridge circuit composed of four resistance gauges 13 (R1 to R4) is used as the Wheatstone bridge circuit is shown. However, the present invention is not limited to this, and as shown in FIG. 11, a half bridge circuit composed of two resistance gauges 13 (R1 and R2) may be used as a Wheatstone bridge circuit. Note that R in FIG. 11B is a fixed resistance.
 また図12に示すように、シリコン層11の裏面に、溝部111をシリコン層11の側面に連通する連通溝部113が形成されてもよい。ここで、シリコン層11と絶縁層12との接合では、陽極接合により400度程度の温度が加えられる。そのため、連通溝部113が無い場合には、陽極接合の際に、シリコン層11と絶縁層12との間の溝部111に存在する空気が高温状態で封止されてしまい、常温に下がるとその空気が収縮するため、薄肉部112が変形し、歪センサ1のゼロ点がずれてしまう恐れがある。一方、連通溝部113が設けられることで、陽極接合の際に、溝部111に存在する空気を外部に逃がすことができ、薄肉部112の変形を回避できる。
 なお、シリコン層11は、溝部111及び連通溝部113により、全体が薄くならないように、一部のみが薄くなるように構成される必要がある。
Further, as shown in FIG. 12, a communication groove portion 113 may be formed on the back surface of the silicon layer 11 so as to communicate the groove portion 111 with the side surface of the silicon layer 11. Here, in the bonding of the silicon layer 11 and the insulating layer 12, a temperature of about 400 ° C. is applied by anodic bonding. Therefore, when the communication groove portion 113 is not present, the air present in the groove portion 111 between the silicon layer 11 and the insulating layer 12 is sealed in a high temperature state at the time of anodic bonding, and when the temperature drops to normal temperature As a result, the thin-walled portion 112 may be deformed and the zero point of the strain sensor 1 may be displaced. On the other hand, by providing the communication groove portion 113, air present in the groove portion 111 can be released to the outside at the time of anodic bonding, and deformation of the thin portion 112 can be avoided.
The silicon layer 11 needs to be configured so as to be partially thinned by the groove portion 111 and the communication groove portion 113 so as not to be entirely thinned.
 また上記では、歪センサ1として、応力を集中させるための薄肉部112を有する半導体歪ゲージを用いた場合を示した。しかしながら、これに限らず、その他の形状(例えば薄肉部112の無い形状)の半導体歪ケージを用いてもよい。 Moreover, in the above, the case where the semiconductor strain gauge which has the thin part 112 for making stress concentrate was used as the strain sensor 1 was shown. However, the present invention is not limited to this, and a semiconductor strain cage of another shape (for example, a shape without the thin portion 112) may be used.
 以上のように、この実施の形態1によれば、抵抗ゲージ13を有するシリコン層11と、一面がシリコン層11の少なくとも両端に接合され、当該一面に対向する対向面における長手方向両端が回転軸体5に接合される絶縁層12とを備えたので、トルクの検出精度が向上する。 As described above, according to the first embodiment, the silicon layer 11 having the resistance gauge 13 and one surface are joined to at least both ends of the silicon layer 11, and both longitudinal direction ends of the opposing surface facing the one surface are rotation axes Since the insulating layer 12 joined to the body 5 is provided, the torque detection accuracy is improved.
 なお上記では、基板層として、シリコン層11を用いた場合を示したが、これに限らず、外力に応じて歪みが生じる部材であればよい。例えば、基板層として、絶縁体(ガラス等)又は金属を用いることができる。ここで、基板層が絶縁体である場合には、抵抗ゲージ13は、当該絶縁体にスパッタリング等により成膜されることで形成される。また、基板層が金属である場合には、抵抗ゲージ13は、当該金属に絶縁膜を介してスパッタリング等により成膜されることで形成される。また、基板層としてシリコン層11を用い、抵抗ゲージ13が、当該シリコン層11にスパッタリング等により成膜されることで形成されてもよい。
 基板層として上記絶縁体又は金属を用いた場合でも、一般的な金属歪ゲージよりもゲージ率が高くなる。また、成膜によって抵抗ゲージ13を形成した場合には、シリコン層11にイオン注入により抵抗ゲージ13を形成した場合に対し、結晶方位によってゲージ率が変わることはなく、すなわち、方向を限定する必要がなくなる。
 一方、ゲージ率は、成膜によって抵抗ゲージ13を形成した場合に対し、シリコン層11にイオン注入により抵抗ゲージ13を形成した場合の方が、4~10倍以上高くなる。
In addition, although the case where the silicon layer 11 was used as a board | substrate layer was shown in the above, it does not restrict to this, and should just be a member which distortion produces according to external force. For example, as the substrate layer, an insulator (such as glass) or a metal can be used. Here, when the substrate layer is an insulator, the resistance gauge 13 is formed by depositing a film on the insulator by sputtering or the like. When the substrate layer is metal, the resistance gauge 13 is formed by sputtering the metal via an insulating film. Alternatively, the silicon layer 11 may be used as a substrate layer, and the resistance gauge 13 may be formed on the silicon layer 11 by sputtering or the like.
Even when the above-mentioned insulator or metal is used as the substrate layer, the gauge factor becomes higher than that of a general metal strain gauge. Further, when the resistance gauge 13 is formed by film formation, the gauge ratio does not change depending on the crystal orientation as opposed to the case where the resistance gauge 13 is formed in the silicon layer 11 by ion implantation, that is, the direction needs to be limited. There is no
On the other hand, the gauge factor is 4 to 10 times higher in the case where the resistance gauge 13 is formed by ion implantation in the silicon layer 11 than when the resistance gauge 13 is formed by film formation.
 なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, modifications of optional components of the embodiment or omission of optional components of the embodiment is possible.
 本発明に係るトルク検出器は、トルクの検出精度が向上するので、例えば、回転軸体に加わるトルクを検出するトルク検出器で用いるのに適している。 The torque detector according to the present invention is suitable for use in, for example, a torque detector that detects a torque applied to a rotating shaft because the torque detection accuracy is improved.
1 歪センサ
5 回転軸体
6 駆動系
11 シリコン層(基板層)
12 絶縁層
13 抵抗ゲージ(拡散抵抗)
14 柱部材
15 接着部材
111 溝部
112 薄肉部
113 連通溝部
121 溝部
122 接合部
123 絶縁層(第1絶縁層)
124 絶縁層(第2絶縁層)
125 絶縁層(第1絶縁層)
126 絶縁層(第2絶縁層)
Reference Signs List 1 strain sensor 5 rotating shaft 6 driving system 11 silicon layer (substrate layer)
12 insulation layer 13 resistance gauge (diffusion resistance)
14 Column member 15 Bonding member 111 Groove portion 112 Thin portion 113 Communication groove portion 121 Groove portion 122 Bonding portion 123 Insulating layer (first insulating layer)
124 Insulating layer (second insulating layer)
125 insulating layer (first insulating layer)
126 insulating layer (second insulating layer)

Claims (9)

  1.  抵抗ゲージを有し、外力に応じて歪みが生じる基板層と、
     一面が前記基板層の少なくとも両端に接合され、当該一面に対向する対向面における長手方向両端が回転軸体に接合される絶縁層と
     を備えたトルク検出器。
    A substrate layer which has a resistance gauge and is distorted in response to an external force;
    An insulating layer, one surface of which is joined to at least both ends of the substrate layer, and the opposite longitudinal ends of the opposing surface opposed to the one surface are joined to the rotating shaft.
  2.  前記基板層はシリコン層である
     ことを特徴とする請求項1記載のトルク検出器。
    The torque detector according to claim 1, wherein the substrate layer is a silicon layer.
  3.  前記シリコン層は、表面の結晶方位が(100)である
     ことを特徴とする請求項2記載のトルク検出器。
    The crystal orientation of the surface of the said silicon layer is (100). The torque detector of Claim 2 characterized by the above-mentioned.
  4.  前記抵抗ゲージは、前記基板層に成膜されることで形成された
     ことを特徴とする請求項1から請求項3のうちの何れか1項記載のトルク検出器。
    The torque detector according to any one of claims 1 to 3, wherein the resistance gauge is formed by forming a film on the substrate layer.
  5.  前記抵抗ゲージは、前記シリコン層の<110>方向に形成された
     ことを特徴とする請求項2又は請求項3記載のトルク検出器。
    The said resistance gauge was formed in the <110> direction of the said silicon layer. The torque detector of Claim 2 or Claim 3 characterized by the above-mentioned.
  6.  前記絶縁層の前記対向面に形成され、当該対向面における長手方向両端に接合部を構成させる溝部を備え、
     前記接合部は、直接、前記回転軸体に接合される
     ことを特徴とする請求項1から請求項5のうちの何れか1項記載のトルク検出器。
    A groove is formed on the facing surface of the insulating layer and has a bonding portion at both ends in the longitudinal direction of the facing surface.
    The said junction part is directly joined to the said rotating shaft. The torque detector in any one of the Claims 1-5 characterized by the above-mentioned.
  7.  前記絶縁層は、間隙を有して配置された第1絶縁層及び第2絶縁層から成り、
     前記第1絶縁層及び前記第2絶縁層は、直接、前記回転軸体に接合される
     ことを特徴とする請求項1から請求項5のうちの何れか1項記載のトルク検出器。
    The insulating layer comprises a first insulating layer and a second insulating layer disposed with a gap,
    The torque detector according to any one of claims 1 to 5, wherein the first insulating layer and the second insulating layer are directly bonded to the rotating shaft.
  8.  一面が前記絶縁層の前記対向面における長手方向両端に接合され、当該一面に対向する対向面が、直接、前記回転軸体に接合される柱部材を備え、
     前記絶縁層は、前記柱部材を介して前記回転軸体に接合される
     ことを特徴とする請求項1から請求項5のうちの何れか1項記載のトルク検出器。
    One surface is joined to both ends in the longitudinal direction of the facing surface of the insulating layer, and the facing surface facing the one surface is provided with a pillar member directly joined to the rotary shaft.
    The said insulating layer is joined to the said rotating shaft via the said pillar member. The torque detector in any one of the Claims 1-5 characterized by the above-mentioned.
  9.  前記絶縁層は、接着部材により、直接、前記回転軸体に接合される
     ことを特徴とする請求項1から請求項5のうちの何れか1項記載のトルク検出器。
    The torque detector according to any one of claims 1 to 5, wherein the insulating layer is directly bonded to the rotating shaft by an adhesive member.
PCT/JP2018/025894 2017-08-14 2018-07-09 Torque detector WO2019035290A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207002934A KR102333525B1 (en) 2017-08-14 2018-07-09 torque detector
CN201880051544.7A CN111033198B (en) 2017-08-14 2018-07-09 Torque detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-156382 2017-08-14
JP2017156382A JP6820101B2 (en) 2017-08-14 2017-08-14 Torque detector

Publications (1)

Publication Number Publication Date
WO2019035290A1 true WO2019035290A1 (en) 2019-02-21

Family

ID=65362284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025894 WO2019035290A1 (en) 2017-08-14 2018-07-09 Torque detector

Country Status (4)

Country Link
JP (1) JP6820101B2 (en)
KR (1) KR102333525B1 (en)
CN (1) CN111033198B (en)
WO (1) WO2019035290A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112798151A (en) * 2021-01-26 2021-05-14 松诺盟科技有限公司 Torque sensor arm structure and torque sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266324A (en) * 1987-04-24 1988-11-02 Nekushii Kenkyusho:Kk Moment detector
JPH0846218A (en) * 1994-08-04 1996-02-16 Mitsubishi Electric Corp Semiconductor pressure detector
JPH0989692A (en) * 1995-09-25 1997-04-04 Nissan Motor Co Ltd Steering torque sensor
JP2001272287A (en) * 2000-03-27 2001-10-05 Tadahiro Kato Strain-detecting sensor
US20110203385A1 (en) * 2010-02-24 2011-08-25 Jan Huels Device for measuring torsions, bendings, and the like, and corresponding manufacturing method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8408502D0 (en) * 1984-04-03 1984-05-16 Trw Probe Electronics Co Ltd Torque sensing apparatus
JPS61223625A (en) * 1985-03-29 1986-10-04 Nec Corp Sensor
JP2006220574A (en) * 2005-02-14 2006-08-24 Hitachi Ltd Rotating-body dynamic quantity measuring instrument and rotating-body dynamic quantity measurement system
JP4566227B2 (en) * 2007-09-25 2010-10-20 株式会社日立製作所 Semiconductor strain sensor and method of mounting semiconductor strain sensor
JP2010197219A (en) * 2009-02-25 2010-09-09 Hitachi Ltd Sensor device and measuring system
CN202814608U (en) * 2012-06-13 2013-03-20 内蒙古科技大学 Torque measuring device
KR20140067650A (en) * 2012-11-27 2014-06-05 현대자동차주식회사 Torque sensor
CN103926028B (en) * 2014-03-25 2016-05-18 慧石(上海)测控科技有限公司 A kind of structural design of foil gauge and manufacture craft
JP6216879B2 (en) * 2014-06-09 2017-10-18 日立オートモティブシステムズ株式会社 Torque detection device
JP2016109568A (en) 2014-12-08 2016-06-20 パナソニックIpマネジメント株式会社 Torque sensor
US9739673B2 (en) * 2015-08-05 2017-08-22 Sensata Technologies, Inc. Sensor substrate
CN205138699U (en) * 2015-12-01 2016-04-06 福建省莆田市衡力传感器有限公司 Wainscot formula is drawn to press and is turned round special sensor
CN106706188A (en) * 2016-12-08 2017-05-24 陕西电器研究所 High rigidity torque sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63266324A (en) * 1987-04-24 1988-11-02 Nekushii Kenkyusho:Kk Moment detector
JPH0846218A (en) * 1994-08-04 1996-02-16 Mitsubishi Electric Corp Semiconductor pressure detector
JPH0989692A (en) * 1995-09-25 1997-04-04 Nissan Motor Co Ltd Steering torque sensor
JP2001272287A (en) * 2000-03-27 2001-10-05 Tadahiro Kato Strain-detecting sensor
US20110203385A1 (en) * 2010-02-24 2011-08-25 Jan Huels Device for measuring torsions, bendings, and the like, and corresponding manufacturing method

Also Published As

Publication number Publication date
CN111033198B (en) 2021-09-28
JP2019035637A (en) 2019-03-07
JP6820101B2 (en) 2021-01-27
CN111033198A (en) 2020-04-17
KR20200019244A (en) 2020-02-21
KR102333525B1 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
JP5459890B1 (en) Force sensor
WO2019035290A1 (en) Torque detector
WO2019069620A1 (en) Torque detection device
JP6698595B2 (en) Torque detector
JP2020067295A (en) Actuating unit
WO2019035291A1 (en) Torque detector, and method for producing torque detector
JP4925272B2 (en) Semiconductor device
WO2019069683A1 (en) Torque detector
JP6820817B2 (en) Torque detector
JP6139377B2 (en) Sensor device and manufacturing method thereof
WO2019035289A1 (en) Torque detector, and method for producing torque detector
JP4277655B2 (en) Multi-axis magnetic sensor device and manufacturing method thereof
WO2020195386A1 (en) Physical quantity sensor
JP4925273B2 (en) Semiconductor device
JP4925274B2 (en) Semiconductor device
JP5547054B2 (en) Capacitance type acceleration sensor
JP2011179850A (en) Vibration pressure sensor
JP6773437B2 (en) Stress sensor
JP2010216837A (en) Sensor for detecting dynamic quantity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846368

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207002934

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18846368

Country of ref document: EP

Kind code of ref document: A1