JP2010216837A - Sensor for detecting dynamic quantity - Google Patents

Sensor for detecting dynamic quantity Download PDF

Info

Publication number
JP2010216837A
JP2010216837A JP2009060862A JP2009060862A JP2010216837A JP 2010216837 A JP2010216837 A JP 2010216837A JP 2009060862 A JP2009060862 A JP 2009060862A JP 2009060862 A JP2009060862 A JP 2009060862A JP 2010216837 A JP2010216837 A JP 2010216837A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
frame
displacement portion
mechanical quantity
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009060862A
Other languages
Japanese (ja)
Inventor
Eiji Umetsu
英治 梅津
Toshinori Watanabe
利徳 渡辺
Satoshi Waga
聡 和賀
Eiichi Komai
栄一 駒井
Kenichi Tanaka
健一 田中
Hidenori Gocho
英紀 牛膓
Toshihiro Kobayashi
俊宏 小林
Kazusato Igarashi
一聡 五十嵐
Masahiko Ishizone
昌彦 石曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2009060862A priority Critical patent/JP2010216837A/en
Publication of JP2010216837A publication Critical patent/JP2010216837A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor for detecting the dynamic quantity which is of high sensitivity, of which the other axis sensitivity ratio is small and which accurately detects the dynamic quantity. <P>SOLUTION: The sensor for detecting the dynamic quantity includes: a first semiconductor substrate wherein a frame, a displacement part positioned inside the frame and beams supporting the displacement part so that the displacement part can rock in relation to the frame, are formed, a second semiconductor substrate wherein a support having an opening and connected with the frame and a weight connected with the displacement part in the opening are formed and which is laid on the first semiconductor substrate by the medium of an insulating layer; and detecting elements which are provided on the first semiconductor substrate and output signals according to the dynamic quantity, based on the amount of deflection of the beams. Each of the beams is fixed, at one end, to the frame, while being fixed, at the other end, to the displacement part, and is provided in extension along the outer peripheral surface of the displacement part with a prescribed space left between the outer peripheral surface of the displacement part and it. The other end of the beam is thick relatively. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、互いに直交するX軸、Y軸及びZ軸の3軸方向の加速度を検出可能な力学量検出センサに関する。   The present invention relates to a mechanical quantity detection sensor capable of detecting acceleration in three axial directions of an X axis, a Y axis, and a Z axis that are orthogonal to each other.

自動車産業や機械産業では、加速度を正確に検出できる小型の力学量検出センサの需要が高まっている。このような力学量検出センサとして、互いに直交する3軸方向の加速度を同時に検出できる加速度センサが知られている(例えば、特許文献1参照)。この加速度センサは、シリコン製の第1の半導体基板、酸化シリコン製の絶縁層、シリコン製の第2の半導体基板を接合した3層構造のSOI基板をエッチングして形成される。   In the automobile industry and the machine industry, there is an increasing demand for small mechanical quantity detection sensors that can accurately detect acceleration. As such a mechanical quantity detection sensor, an acceleration sensor that can simultaneously detect accelerations in three axial directions orthogonal to each other is known (see, for example, Patent Document 1). This acceleration sensor is formed by etching a three-layer SOI substrate obtained by bonding a first semiconductor substrate made of silicon, an insulating layer made of silicon oxide, and a second semiconductor substrate made of silicon.

第1の半導体基板にはエッチングにより枠体と、枠体の中央に位置する変位部と、枠体の四辺から変位部に連なる梁部とが形成され、第2の半導体基板にはエッチングにより枠体に接合された支持部と、変位部に接合された錘部とが形成される。また、各梁部の上面には検出素子が配置されており、錘部に慣性力が作用して各梁部が撓み変形することで、3軸方向の加速度が検出される。   The first semiconductor substrate is formed with a frame body by etching, a displacement portion located at the center of the frame body, and a beam portion continuous from the four sides of the frame body to the displacement portion, and the second semiconductor substrate by frame etching. A support part joined to the body and a weight part joined to the displacement part are formed. In addition, a detection element is disposed on the upper surface of each beam portion, and an inertial force acts on the weight portion to cause each beam portion to bend and deform, thereby detecting acceleration in three axes.

特開2007−322300号公報JP 2007-322300 A

このような四つの梁を有する力学量検出センサにおいては、感度を高くするために梁の幅を細くすると、他軸感度比率(他軸感度/主軸感度)も大きくなってしまい、正確に力学量を検出することができなくなるという問題がある。   In such a mechanical quantity detection sensor having four beams, if the width of the beam is narrowed to increase the sensitivity, the other axis sensitivity ratio (other axis sensitivity / principal axis sensitivity) also increases, and the mechanical quantity is accurately determined. There is a problem that it becomes impossible to detect.

本発明はかかる点に鑑みてなされたものであり、高感度であり、かつ、他軸感度比率が小さく、正確に力学量を検出することができる力学量検出センサを提供することを目的とする。   The present invention has been made in view of such points, and an object thereof is to provide a mechanical quantity detection sensor that is highly sensitive and has a small other-axis sensitivity ratio and can accurately detect a mechanical quantity. .

本発明の力学量検出センサは、枠体と、前記枠体の内側に位置する変位部と、前記枠体に対し前記変位部を揺動可能に支持する梁部とが形成された第1の半導体基板と、開口部を有し、前記枠体に接続された支持部と、前記開口部内で前記変位部に接続された錘部とが形成されており、前記第1の半導体基板に絶縁層を介して積層された第2の半導体基板と、前記第1の半導体基板上に設けられており、前記梁部の撓み量に基づいて力学量に応じた信号を出力する検出素子とを備え、前記梁は、一端が前記枠体に固定され、他端が前記変位部に固定されると共に、前記変位部の外周面との間に所定の間隔をとって前記変位部の外周面に沿って延設されており、前記梁の他端が相対的に太いことを特徴とする。   The mechanical quantity detection sensor of the present invention includes a first frame body, a displacement portion positioned inside the frame body, and a beam portion that supports the displacement portion so as to be swingable with respect to the frame body. A semiconductor substrate, a support portion having an opening and connected to the frame, and a weight portion connected to the displacement portion in the opening are formed, and an insulating layer is formed on the first semiconductor substrate. A second semiconductor substrate stacked via the first semiconductor substrate, and a detection element that is provided on the first semiconductor substrate and outputs a signal corresponding to a mechanical amount based on a deflection amount of the beam portion, One end of the beam is fixed to the frame, the other end is fixed to the displacement portion, and a predetermined distance is provided between the beam and the outer peripheral surface of the displacement portion, along the outer peripheral surface of the displacement portion. The other end of the beam is relatively thick.

本発明の力学量検出センサは、枠体と、前記枠体の内側に位置する変位部と、前記枠体に対し前記変位部を揺動可能に支持する梁部とが形成された第1の半導体基板と、開口部を有し、前記枠体に接続された支持部と、前記開口部内で前記変位部に接続された錘部とが形成されており、前記第1の半導体基板に絶縁層を介して積層された第2の半導体基板と、前記第1の半導体基板上に設けられており、前記梁部の撓み量に基づいて力学量に応じた信号を出力する検出素子とを備え、前記検出素子が前記梁及び前記変位部上に形成された下部電極と、前記下部電極上に形成された圧電薄膜と、前記圧電薄膜上に部分的に形成された上部電極とで構成されており、前記梁は、一端が前記枠体に固定され、他端が前記変位部に固定されると共に、前記変位部の外周面との間に所定の間隔をとって前記変位部の外周面に沿って延設されており、前記梁の他端が相対的に太いことを特徴とする。   The mechanical quantity detection sensor of the present invention includes a first frame body, a displacement portion positioned inside the frame body, and a beam portion that supports the displacement portion so as to be swingable with respect to the frame body. A semiconductor substrate, a support portion having an opening and connected to the frame, and a weight portion connected to the displacement portion in the opening are formed, and an insulating layer is formed on the first semiconductor substrate. A second semiconductor substrate stacked via the first semiconductor substrate, and a detection element that is provided on the first semiconductor substrate and outputs a signal corresponding to a mechanical amount based on a deflection amount of the beam portion, The detection element includes a lower electrode formed on the beam and the displacement portion, a piezoelectric thin film formed on the lower electrode, and an upper electrode partially formed on the piezoelectric thin film. The beam has one end fixed to the frame and the other end fixed to the displacement portion. Serial and extends along the outer peripheral surface of the displacement portion taking a predetermined gap between the outer peripheral surface of the displacement portion, the other end of the beam is equal to or relatively thick.

これらの構成によれば、変位部を揺動自在に支持する4つの梁が、一端が枠体に固定され、他端が前記変位部に固定されると共に、前記変位部の外周面との間に所定の間隔をとって前記変位部の外周面に沿って延設されており、前記梁の他端が相対的に太いので、高感度であり、かつ、他軸感度比率が小さく、正確に力学量を検出することができる。   According to these configurations, the four beams that support the swinging portion of the displacement portion are fixed to the frame body at one end, fixed to the displacement portion at the other end, and between the outer peripheral surface of the displacement portion. Is extended along the outer peripheral surface of the displacement portion at a predetermined interval, and the other end of the beam is relatively thick, so that the sensitivity is high and the other-axis sensitivity ratio is small. A mechanical quantity can be detected.

本発明によれば、いわゆる梁首部分が相対的に太いので、高感度であり、かつ、他軸感度比率が小さく、正確に力学量を検出することができる力学量検出センサを提供することができる。   According to the present invention, a so-called beam neck portion is relatively thick, so that it is possible to provide a mechanical quantity detection sensor that is highly sensitive, has a small other-axis sensitivity ratio, and can accurately detect a mechanical quantity. it can.

本発明の実施の形態に係る力学量検出センサを示す斜視図である。It is a perspective view which shows the mechanical quantity detection sensor which concerns on embodiment of this invention. 図1に示す力学量検出センサの分解斜視図である。It is a disassembled perspective view of the mechanical quantity detection sensor shown in FIG. (a)は、本発明の実施の形態に係る力学量検出センサを示す平面図であり、(b)は、(a)に示す検出素子を説明するための図である。(A) is a top view which shows the mechanical quantity detection sensor which concerns on embodiment of this invention, (b) is a figure for demonstrating the detection element shown to (a). 梁の幅と他軸感度比率及び感度との間の関係を示す図である。It is a figure which shows the relationship between the width | variety of a beam, an other-axis sensitivity ratio, and a sensitivity. 梁首幅と他軸感度比率及び感度との間の関係を示す図である。It is a figure which shows the relationship between a beam neck width, an other-axis sensitivity ratio, and a sensitivity. (a)〜(d)は、本発明の実施の形態に係る力学量検出センサの製造方法を説明するための図である。(A)-(d) is a figure for demonstrating the manufacturing method of the mechanical quantity detection sensor which concerns on embodiment of this invention. (a)〜(c)は、本発明の実施の形態に係る力学量検出センサの製造方法を説明するための図である。(A)-(c) is a figure for demonstrating the manufacturing method of the mechanical quantity detection sensor which concerns on embodiment of this invention. 力学量検出センサの検出動作説明図であり、(a)は錘部がX軸回りに回動する際の検出動作説明図であり、(b)は錘部がZ軸方向に直動する際の検出動作説明図である。It is a detection operation explanatory view of a mechanical quantity detection sensor, (a) is a detection operation explanatory view when the weight portion rotates around the X axis, (b) when the weight portion linearly moves in the Z axis direction FIG. 本発明の実施の形態に係る力学量センサを示す回路の一例を示す図である。It is a figure which shows an example of the circuit which shows the mechanical quantity sensor which concerns on embodiment of this invention.

以下、本発明の実施の形態について添付図面を参照して詳細に説明する。図1は、本発明の実施の形態に係る力学量検出センサの斜視図である。図2は、本発明の実施の形態に係る力学量検出センサの分解斜視図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a perspective view of a mechanical quantity detection sensor according to an embodiment of the present invention. FIG. 2 is an exploded perspective view of the mechanical quantity detection sensor according to the embodiment of the present invention.

図1及び図2に示すように、力学量検出センサ1は、第1の半導体基板2と第2の半導体基板3とを絶縁層4を介して接合して構成されている。力学量検出センサ1は、例えば、第1の半導体基板2をシリコン層、絶縁層4を酸化シリコン層、第2の半導体基板3をシリコン層とした3層構造をなすSOI(Silicon On Insulator)基板を用いて製造可能である。   As shown in FIGS. 1 and 2, the mechanical quantity detection sensor 1 is configured by joining a first semiconductor substrate 2 and a second semiconductor substrate 3 via an insulating layer 4. The mechanical quantity detection sensor 1 is, for example, an SOI (Silicon On Insulator) substrate having a three-layer structure in which a first semiconductor substrate 2 is a silicon layer, an insulating layer 4 is a silicon oxide layer, and a second semiconductor substrate 3 is a silicon layer. Can be manufactured.

第1の半導体基板2には、第2の半導体基板3と比較して相対的に薄板状のシリコン層で構成され、収納空間が形成された矩形枠状の枠体11と、枠体11の内側に配置された変位部12と、枠体11の四辺と変位部12とを接続する4つの梁部13とが形成されている。枠体11、変位部12、梁部13は、第1の半導体基板2をエッチングにより変位部12の周囲に上面視L字状の4つの開口を設けることで形成される。   The first semiconductor substrate 2 includes a rectangular frame 11 having a relatively thin plate-like silicon layer as compared with the second semiconductor substrate 3 and having a storage space. The displacement part 12 arrange | positioned inside and the four beam parts 13 which connect the four sides of the frame 11 and the displacement part 12 are formed. The frame body 11, the displacement portion 12, and the beam portion 13 are formed by providing four openings that are L-shaped in top view around the displacement portion 12 by etching the first semiconductor substrate 2.

枠体11は、L字状の4つの開口により変位部12を囲うように形成されている。変位部12は、略正方形状に形成され、枠体11の枠内中央に配置されている。4つの梁部13は、それぞれ枠体11の一辺から対向辺に向かって延在する長尺部15と、長尺部15に連なり、変位部12の四隅に接続される短尺部16とから構成される。このように、4つの梁部13は、長尺部15を有しているため、撓み易い構成となっている。   The frame 11 is formed so as to surround the displacement portion 12 by four L-shaped openings. The displacement part 12 is formed in a substantially square shape, and is disposed in the center of the frame 11. Each of the four beam portions 13 includes a long portion 15 extending from one side of the frame 11 toward the opposite side, and a short portion 16 connected to the four corners of the displacement portion 12 connected to the long portion 15. Is done. Thus, since the four beam parts 13 have the elongate part 15, they become the structure which is easy to bend.

各梁部13の長尺部15の上面には、それぞれ検出素子17が設けられており、この検出素子17により各梁部13の撓み量が検出される。検出素子17は、いわゆる圧電素子であり、図示しない下地膜の上面に、下部電極25、圧電薄膜26、上部電極27の順に蒸着などにより成膜することで形成される。検出素子17は、梁部13に生じた撓みにより変形し、この変形による圧力を電圧に変換して出力する。   A detection element 17 is provided on the upper surface of the long portion 15 of each beam portion 13, and the deflection amount of each beam portion 13 is detected by the detection element 17. The detection element 17 is a so-called piezoelectric element, and is formed by depositing the lower electrode 25, the piezoelectric thin film 26, and the upper electrode 27 in this order on the upper surface of a base film (not shown) by vapor deposition or the like. The detection element 17 is deformed by the bending generated in the beam portion 13, and the pressure generated by the deformation is converted into a voltage and output.

第2の半導体基板3には、第1の半導体基板2と比較して相対的に厚板状のシリコン層で構成され、矩形状の開口部23を有する支持部21と、開口部23の内側に配置された錘部22とが形成されている。支持部21および錘部22は、第1の半導体基板2をエッチングにより錘部22の周囲に矩形枠状の開口を設けることで形成される。   The second semiconductor substrate 3 is composed of a relatively thick silicon layer compared to the first semiconductor substrate 2, and has a support portion 21 having a rectangular opening 23 and an inner side of the opening 23. The weight part 22 arrange | positioned in this is formed. The support portion 21 and the weight portion 22 are formed by providing a rectangular frame-shaped opening around the weight portion 22 by etching the first semiconductor substrate 2.

支持部21は、上面視において枠体11に対応した形状を有しており、枠体11の下面に絶縁層4を介して接合されている。錘部22は、略直方体形状に形成されており、変位部12の下面に絶縁層4を介して接合されている。したがって、このように、錘部22は、枠体11の収納空間及び支持部21の開口部23の内側において、変位部12を介して4つの梁部13により揺動自在に支持される。よって、錘部22の重心位置に慣性力が作用すると、X軸回りの回動、Y軸回りの回動、Z軸方向の直動が可能となっている。   The support portion 21 has a shape corresponding to the frame body 11 in a top view, and is joined to the lower surface of the frame body 11 via the insulating layer 4. The weight portion 22 is formed in a substantially rectangular parallelepiped shape, and is joined to the lower surface of the displacement portion 12 via the insulating layer 4. Therefore, in this way, the weight portion 22 is supported by the four beam portions 13 via the displacement portion 12 in a swingable manner in the storage space of the frame 11 and the inside of the opening portion 23 of the support portion 21. Therefore, when an inertial force acts on the position of the center of gravity of the weight portion 22, rotation about the X axis, rotation about the Y axis, and linear movement in the Z axis direction are possible.

図3(a)は、本発明の実施の形態に係る力学量検出センサを示す平面図である。図3(a)に示すように、梁13は、一端が枠体に固定されており、他端が変位部12に固定されている。図3(a)においては、枠体を省略して図示している。梁13は、それぞれ変位部12の外周面との間に所定の間隔をとって変位部12の外周面に沿って延設されている。また、梁13の他端(梁首13e)が相対的に太くなっている。ここで、梁首13eが太いということは、図3(a)において、梁13の幅Wに対して梁首13eの幅Wが相対的に太くなっていることを意味する。 FIG. 3A is a plan view showing a mechanical quantity detection sensor according to the embodiment of the present invention. As shown in FIG. 3A, one end of the beam 13 is fixed to the frame body, and the other end is fixed to the displacement portion 12. In FIG. 3A, the frame is not shown. Each of the beams 13 extends along the outer peripheral surface of the displacement portion 12 with a predetermined interval between the beam 13 and the outer peripheral surface of the displacement portion 12. Moreover, the other end (beam neck 13e) of the beam 13 is relatively thick. Here, the fact that the beam neck 13e is thick means that the width W n of the beam neck 13e is relatively thick with respect to the width W b of the beam 13 in FIG.

図3(a)に示すように、屈曲型の4本梁の構成の場合、感度を高くするためには梁の幅を細くすることが考えられる。梁の幅を全体で均一とした状態で梁の幅を細くすると、図4に示すように、感度は高くなるが、他軸感度比率(検出軸(主軸)の感度に他軸感度が含まれる割、他軸感度/主軸感度)も大きくなってしまう。しかしながら、図3(a)に示すように、梁首13eの太さを太くすると、図5に示すように、感度を落とさずに、他軸感度の影響を小さくすることが可能となる。このように、梁首を相対的に太くすることにより、高感度であり、かつ、他軸感度比率が小さく、正確に力学量を検出することができる力学量検出センサを実現することができる。   As shown in FIG. 3 (a), in the case of a bent four-beam structure, it is conceivable to reduce the width of the beam in order to increase the sensitivity. If the beam width is narrowed with the beam width uniform throughout, the sensitivity increases as shown in FIG. 4, but the sensitivity of the other axis includes the other axis sensitivity in the sensitivity of the detection axis (main axis). The other axis sensitivity / main axis sensitivity) also increases. However, if the thickness of the beam neck 13e is increased as shown in FIG. 3A, the influence of the sensitivity of other axes can be reduced without decreasing the sensitivity as shown in FIG. In this way, by making the beam neck relatively thick, it is possible to realize a mechanical quantity detection sensor that is highly sensitive and has a small other-axis sensitivity ratio and can accurately detect the mechanical quantity.

検出素子17は、図3(b)に示すように、梁13及び変位部12上に形成された下部電極25と、この下部電極25上に形成された圧電薄膜26と、圧電薄膜26上に部分的に形成された上部電極27とで構成されている。上部電極27は、下部電極25/圧電薄膜26の積層体のうち、力学量が加わったときに応力が集中する応力集中部分に形成する。このような構成によれば、応力集中部分に下部電極25/圧電薄膜26/上部電極27の3層の積層体を形成する場合に比べて、アライメントずれなく、応力集中部分に上部電極27を形成することが可能となる。   As shown in FIG. 3B, the detection element 17 includes a lower electrode 25 formed on the beam 13 and the displacement portion 12, a piezoelectric thin film 26 formed on the lower electrode 25, and a piezoelectric thin film 26. The upper electrode 27 is partially formed. The upper electrode 27 is formed in a stress concentration portion where stress is concentrated when a mechanical quantity is applied in the laminate of the lower electrode 25 / piezoelectric thin film 26. According to such a configuration, the upper electrode 27 is formed in the stress concentration portion without misalignment as compared with the case where the three-layered structure of the lower electrode 25 / piezoelectric thin film 26 / upper electrode 27 is formed in the stress concentration portion. It becomes possible to do.

次に、図6及び図7を参照して、力学量検出センサの加工プロセスの一例について説明する。図6(a)〜(d)及び図7(a)〜(c)は、本発明の実施の形態に係る力学量検出センサの製造方法を説明するための図である。   Next, an example of the machining process of the mechanical quantity detection sensor will be described with reference to FIGS. 6 (a) to 6 (d) and FIGS. 7 (a) to 7 (c) are views for explaining a method of manufacturing a mechanical quantity detection sensor according to the embodiment of the present invention.

図6(a)に示すように、第1の半導体基板2、絶縁層4、第2の半導体基板3を積層したSOI基板を準備し、第1の半導体基板2の上面にサポート基板30が配置される。次に、図6(b)に示すように、第2の半導体基板3の下面が研磨され薄化されると共に、第2の半導体基板3がフォトリソグラフィ及びエッチング(deep RIE)により加工されて支持部21及び錘部22が形成される。   As shown in FIG. 6A, an SOI substrate in which the first semiconductor substrate 2, the insulating layer 4, and the second semiconductor substrate 3 are stacked is prepared, and the support substrate 30 is disposed on the upper surface of the first semiconductor substrate 2. Is done. Next, as shown in FIG. 6B, the lower surface of the second semiconductor substrate 3 is polished and thinned, and the second semiconductor substrate 3 is processed and supported by photolithography and etching (deep RIE). A portion 21 and a weight portion 22 are formed.

次に、図6(c)に示すように、第3の基板31がフォトリソグラフィ及びエッチングにより加工されて凹部31aが形成され、第2の半導体基板3の下面に接合される。次に、図6(d)に示すように、第1の半導体基板2の上面からサポート基板30が剥離され、第1の半導体基板2の上面が研磨されて所望の厚みに薄化される。   Next, as shown in FIG. 6C, the third substrate 31 is processed by photolithography and etching to form a recess 31 a and bonded to the lower surface of the second semiconductor substrate 3. Next, as shown in FIG. 6D, the support substrate 30 is peeled from the upper surface of the first semiconductor substrate 2, and the upper surface of the first semiconductor substrate 2 is polished and thinned to a desired thickness.

次に、図7(a)に示すように、第1の半導体基板2の上面にスパッタリングにより絶縁材料が被着される。次に、図7(b)に示すように、絶縁層18の梁部13領域を含む領域上に、検出素子17が形成される。検出素子17は、梁13及び変位部12上に形成された下部電極25と、下部電極25上に形成された圧電薄膜26と、圧電薄膜26上に部分的に形成された上部電極27とから構成されている。まず、梁13及び変位部12上に、スパッタリングにより下部電極用の金属材料、圧電材料及び上部電極用の金属材料をこの順で被着し、フォトリソグラフィ及びエッチングにより金属材料及び圧電材料をパターンニングして下部電極25、圧電薄膜26及び上部電極用の金属層を形成する。その後、再度フォトリソグラフィ及びエッチングにより上部電極用の金属層をパターンニングして上部電極27を形成する。   Next, as shown in FIG. 7A, an insulating material is deposited on the upper surface of the first semiconductor substrate 2 by sputtering. Next, as shown in FIG. 7B, the detection element 17 is formed on the region including the beam portion 13 region of the insulating layer 18. The detection element 17 includes a lower electrode 25 formed on the beam 13 and the displacement portion 12, a piezoelectric thin film 26 formed on the lower electrode 25, and an upper electrode 27 partially formed on the piezoelectric thin film 26. It is configured. First, a metal material for a lower electrode, a piezoelectric material, and a metal material for an upper electrode are deposited in this order on the beam 13 and the displacement portion 12 by sputtering, and the metal material and the piezoelectric material are patterned by photolithography and etching. Then, the lower electrode 25, the piezoelectric thin film 26, and the metal layer for the upper electrode are formed. After that, the upper electrode 27 is formed by patterning the metal layer for the upper electrode again by photolithography and etching.

次に、図7(c)に示すように、第1の半導体基板2を絶縁層4,18と共に部分的に除去することにより、梁部13及び変位部12を設ける。このようにして、図3に示す力学量検出センサを得ることができる。   Next, as shown in FIG. 7C, the beam portion 13 and the displacement portion 12 are provided by partially removing the first semiconductor substrate 2 together with the insulating layers 4 and 18. In this way, the mechanical quantity detection sensor shown in FIG. 3 can be obtained.

次に、図8を参照して、力学量検出センサの動作について簡単に説明する。図8は、力学量検出センサの検出動作説明図であり、(a)は錘部がX軸回りに回動する際の検出動作説明図であり、(b)は錘部がZ軸方向に直動する際の検出動作説明図である。   Next, the operation of the mechanical quantity detection sensor will be briefly described with reference to FIG. 8A and 8B are explanatory diagrams of detection operation of the mechanical quantity detection sensor. FIG. 8A is an explanatory diagram of detection operation when the weight portion rotates around the X axis. FIG. 8B is an explanatory diagram of the weight portion in the Z-axis direction. It is detection operation explanatory drawing at the time of linear motion.

図8(a)に示すように、力学量検出センサに対して加速度が働いて、錘部22に対してY軸方向に慣性力が作用すると、錘部22はX軸回りに回動する。このとき、梁部13a,13bの変位部12側がZ軸方向下方に移動して、梁部13a,13bの枠体11側にZ方向上方に力が作用する。また、梁部13c,13dの変位部12側がZ軸方向上方に移動して、梁部13c,13dの枠体11側にZ軸方向下方に力が作用する。そして、梁部13a,13bの枠体11側はZ軸方向上方に膨らむように撓み、梁部13c,13dの枠体11側はZ軸方向下方に凹むように撓む。   As shown in FIG. 8A, when acceleration acts on the mechanical quantity detection sensor and an inertial force acts on the weight part 22 in the Y-axis direction, the weight part 22 rotates about the X-axis. At this time, the displacement portion 12 side of the beam portions 13a and 13b moves downward in the Z-axis direction, and a force acts upward in the Z direction on the frame body 11 side of the beam portions 13a and 13b. Further, the displacement portion 12 side of the beam portions 13c and 13d moves upward in the Z-axis direction, and a force acts downward in the Z-axis direction on the frame body 11 side of the beam portions 13c and 13d. The frame 11 side of the beam portions 13a and 13b is bent so as to swell upward in the Z-axis direction, and the frame 11 side of the beam portions 13c and 13d is bent so as to be recessed downward in the Z-axis direction.

検出素子17a,17bは、それぞれ梁部13a,13bの枠体11側の撓みに合わせてZ軸方向上方に膨らむように変形し、変形に応じた電圧を出力する。また、検出素子17c,17dは、それぞれ梁部13c,13dの枠体11側の撓みに合わせてZ軸方向下方に凹むように変形し、変形に応じた電圧を出力する。各検出素子17a,17b,17c,17dから出力された電圧は、図示しない演算回路において演算され、加速度が算出される。   The detection elements 17a and 17b are deformed so as to swell upward in the Z-axis direction in accordance with the bending of the beam portions 13a and 13b on the frame body 11 side, and output a voltage corresponding to the deformation. The detection elements 17c and 17d are deformed so as to be recessed downward in the Z-axis direction in accordance with the bending of the beam portions 13c and 13d on the frame body 11 side, and output a voltage corresponding to the deformation. The voltages output from the detection elements 17a, 17b, 17c, and 17d are calculated by an arithmetic circuit (not shown) to calculate acceleration.

なお、錘部22がY軸回りに回動する場合には、逆に、梁部13a,13bの枠体11側にZ軸方向下方に力が作用し、梁部13c,13dの枠体11側にZ軸方向上方に力が作用する。したがって、検出素子17a,17bは、それぞれ梁部13a,13bの枠体11側の撓みに合わせてZ軸方向下方に凹むように変形し、検出素子17c,17dは、それぞれ梁部13c,13dの枠体11側の撓みに合わせてZ軸方向上方に膨らむように変形する。   When the weight portion 22 rotates about the Y axis, conversely, a force acts downward in the Z axis direction on the frame body 11 side of the beam portions 13a and 13b, and the frame body 11 of the beam portions 13c and 13d. A force acts upward in the Z-axis direction. Accordingly, the detection elements 17a and 17b are deformed so as to be recessed downward in the Z-axis direction in accordance with the bending of the beam portions 13a and 13b on the frame body 11 side, and the detection elements 17c and 17d are respectively formed on the beam portions 13c and 13d. It deforms so as to swell upward in the Z-axis direction in accordance with the bending on the frame body 11 side.

図8(b)に示すように、力学量検出センサに対して加速度が働いて、錘部22に対してZ軸方向下方に慣性力が作用すると、錘部22はZ方向下方に直動する。このとき、梁部13a,13b,13c,13dの変位部12側がZ軸方向下方に移動して、梁部13a,13b,13c,13dの枠体11側にZ軸方向上方に力が作用する。そして、梁部13a,13b,13c,13dの枠体11側はZ軸方向上方に膨らむように撓み、検出素子17a,17b,17c,17dもZ軸方向上方に膨らむように変形する。そして、各検出素子17a,17b,17c,17dから出力された電圧は、図示しない演算回路において演算され、加速度が算出される。   As shown in FIG. 8B, when acceleration acts on the mechanical quantity detection sensor and an inertial force acts on the weight part 22 in the Z-axis direction downward, the weight part 22 moves linearly downward in the Z-direction. . At this time, the displacement portion 12 side of the beam portions 13a, 13b, 13c, and 13d moves downward in the Z-axis direction, and a force acts upward in the Z-axis direction on the frame body 11 side of the beam portions 13a, 13b, 13c, and 13d. . The frame 11 side of the beam portions 13a, 13b, 13c, and 13d is bent so as to swell upward in the Z-axis direction, and the detection elements 17a, 17b, 17c, and 17d are also deformed so as to swell upward in the Z-axis direction. And the voltage output from each detection element 17a, 17b, 17c, 17d is calculated in the arithmetic circuit which is not shown in figure, and an acceleration is calculated.

本発明の力学量検出センサは、それぞれに検出素子17を備えた4つの梁部13を備えており、この4つの梁部13の検出素子17を用いて各感度軸方向の力学量を出力する。図9は、本発明の実施の形態に係る力学量センサを示す回路の一例を示す図である。   The mechanical quantity detection sensor of the present invention includes four beam portions 13 each having a detection element 17, and outputs the mechanical quantities in the respective sensitivity axis directions using the detection elements 17 of the four beam portions 13. . FIG. 9 is a diagram showing an example of a circuit showing the mechanical quantity sensor according to the embodiment of the present invention.

図9に示す回路図において、力学量検出センサ1の検出結果(センサ出力)が演算回路5に出力されるようになっている。演算回路5は、差動回路53と、加算回路54と、力学量検出センサ1からの入力を切り替えるスイッチ51,52と、演算結果を切り替えるスイッチ55と、から主に構成されている。   In the circuit diagram shown in FIG. 9, the detection result (sensor output) of the mechanical quantity detection sensor 1 is output to the arithmetic circuit 5. The arithmetic circuit 5 mainly includes a differential circuit 53, an adder circuit 54, switches 51 and 52 for switching inputs from the mechanical quantity detection sensor 1, and a switch 55 for switching calculation results.

演算回路5において、差動回路53への検出素子の入力は、検出素子A及び検出素子Bが入力されるようにする状態と、検出素子C及び検出素子Dが入力されるようにする状態とがあり、スイッチ51,52で切り替えを行う。一方、加算回路54への検出素子の入力は、検出素子A、検出素子B、検出素子C及び検出素子Dが入力されるようにする。差動回路53の出力と加算回路54の出力との間の切り替えはスイッチ55で行う。スイット51,52,55の切り替えタイミングは、演算結果の出力のタイミング(X軸出力タイミング、Y軸出力タイミング、Z軸出力タイミング)に同期させる。   In the arithmetic circuit 5, the detection element input to the differential circuit 53 includes a state in which the detection element A and the detection element B are input, and a state in which the detection element C and the detection element D are input. The switch 51, 52 is used for switching. On the other hand, the detection element A, the detection element B, the detection element C, and the detection element D are input to the addition circuit 54. Switching between the output of the differential circuit 53 and the output of the adder circuit 54 is performed by a switch 55. The switching timing of the switches 51, 52, and 55 is synchronized with the output timing of the calculation result (X-axis output timing, Y-axis output timing, Z-axis output timing).

なお、図9に示す回路構成は一例であり、4つの梁部13にそれぞれ設けた検出素子の検出結果を用いて1出力の力学量検出結果(演算結果)を得る構成であれば、特に制限はない。   Note that the circuit configuration shown in FIG. 9 is an example, and is particularly limited as long as it is a configuration that obtains one output of the dynamic quantity detection result (calculation result) using the detection results of the detection elements provided in the four beam portions 13 respectively. There is no.

例えば、演算回路5においては、X軸方向の力学量を検出する場合には、力学量検出センサ1の検出素子Aのセンサ出力と検出素子Bのセンサ出力との間の差分を力学量検出結果として出力する。したがって、X軸方向の力学量を検出する場合には、差動回路53に検出素子A及び検出素子Bが入力するようにスイッチ51,52を切り替え、差動回路53からの出力が力学量検出結果(演算結果)となるようにスイッチ55を切り替える。このようにして、検出素子Aの出力と検出素子Bの出力との間の差分(A−B)からX軸方向の力学量検出結果が得られ、それが出力となる。   For example, in the arithmetic circuit 5, when detecting the mechanical quantity in the X-axis direction, the difference between the sensor output of the detection element A of the mechanical quantity detection sensor 1 and the sensor output of the detection element B is obtained as a result of the mechanical quantity detection. Output as. Therefore, when detecting the mechanical quantity in the X-axis direction, the switches 51 and 52 are switched so that the detection element A and the detection element B are input to the differential circuit 53, and the output from the differential circuit 53 is detected as the dynamic quantity. The switch 55 is switched so that a result (calculation result) is obtained. In this manner, the mechanical quantity detection result in the X-axis direction is obtained from the difference (AB) between the output of the detection element A and the output of the detection element B, and this is the output.

また、演算回路5においては、Y軸方向の力学量を検出する場合には、力学量検出センサ1の検出素子Cのセンサ出力と検出素子Dのセンサ出力との間の差分を力学量検出結果として出力する。したがって、Y軸方向の力学量を検出する場合には、差動回路53に検出素子C及び検出素子Dが入力するようにスイッチ51,52を切り替え、差動回路53からの出力が力学量検出結果(演算結果)となるようにスイッチ55を切り替える。このようにして、検出素子Cの出力と検出素子Dの出力との間の差分(C−D)からY軸方向の力学量検出結果が得られ、それが出力となる。   Further, in the arithmetic circuit 5, when detecting the mechanical quantity in the Y-axis direction, the difference between the sensor output of the detection element C of the mechanical quantity detection sensor 1 and the sensor output of the detection element D is obtained as a result of the mechanical quantity detection. Output as. Therefore, when detecting the mechanical quantity in the Y-axis direction, the switches 51 and 52 are switched so that the detection element C and the detection element D are input to the differential circuit 53, and the output from the differential circuit 53 is detected as the dynamic quantity. The switch 55 is switched so that a result (calculation result) is obtained. In this manner, a mechanical quantity detection result in the Y-axis direction is obtained from the difference (C−D) between the output of the detection element C and the output of the detection element D, and this is the output.

また、演算回路5においては、Z軸方向の力学量を検出する場合には、力学量検出センサ1の検出素子Aのセンサ出力、検出素子Bのセンサ出力、検出素子Cのセンサ出力及び検出素子Dのセンサ出力の和を力学量検出結果として出力する。したがって、Z軸方向の力学量を検出する場合には、加算回路54に検出素子A、検出素子B、検出素子C及び検出素子Dが入力し、加算回路54からの出力が力学量検出結果(演算結果)となるようにスイッチ55を切り替える。このようにして、検出素子Aの出力、検出素子Bの出力、検出素子Cの出力及び検出素子Dの出力の和(A+B+C+D)からZ軸方向の力学量検出結果が得られ、それが出力となる。   Further, in the arithmetic circuit 5, when detecting the mechanical quantity in the Z-axis direction, the sensor output of the detection element A of the mechanical quantity detection sensor 1, the sensor output of the detection element B, the sensor output of the detection element C, and the detection element The sum of the sensor outputs of D is output as the mechanical quantity detection result. Therefore, when the mechanical quantity in the Z-axis direction is detected, the detection element A, the detection element B, the detection element C, and the detection element D are input to the addition circuit 54, and the output from the addition circuit 54 is the mechanical quantity detection result ( The switch 55 is switched so that the calculation result is obtained. In this way, the mechanical quantity detection result in the Z-axis direction is obtained from the sum (A + B + C + D) of the output of the detection element A, the output of the detection element B, the output of the detection element C, and the output of the detection element D. Become.

このように、4つの梁部13のそれぞれに設けた検出素子17から各軸方向の力学量を検出することができるので、簡易な回路構成で多軸方向の力学量を検出することが可能となる。   As described above, since the mechanical quantities in the respective axial directions can be detected from the detection elements 17 provided in each of the four beam portions 13, it is possible to detect the dynamic quantities in the multi-axial directions with a simple circuit configuration. Become.

なお、力学量検出センサにおいて、錘部22及び変位部12の質量、各梁部13のバネ定数などを適宜変更することによってセンサ感度を任意に調整することも可能である。   In the mechanical quantity detection sensor, the sensor sensitivity can be arbitrarily adjusted by appropriately changing the masses of the weight portion 22 and the displacement portion 12, the spring constant of each beam portion 13, and the like.

このように、本発明の力学量検出センサによれば、変位部12を揺動自在に支持する4つの梁13が、一端が前記枠体11に固定され、他端が前記変位部12に固定されると共に、前記変位部12の外周面との間に所定の間隔をとって前記変位部12の外周面に沿って延設されており、前記梁13の他端が相対的に太いので、高感度であり、かつ、他軸感度比率が小さく、正確に力学量を検出することができる。また、検出素子17の上部電極27が、下部電極25/圧電薄膜26の積層体のうち、力学量が加わったときに応力が集中する応力集中部分に形成されているので、応力集中部分に下部電極25/圧電薄膜26/上部電極27の3層の積層体を形成する場合に比べて、アライメントずれなく、応力集中部分に上部電極27を形成することが可能となる。   As described above, according to the mechanical quantity detection sensor of the present invention, the four beams 13 that support the displacement portion 12 in a swingable manner are fixed at one end to the frame 11 and fixed at the other end to the displacement portion 12. And is extended along the outer peripheral surface of the displacement portion 12 with a predetermined interval between the outer peripheral surface of the displacement portion 12 and the other end of the beam 13 is relatively thick. It is highly sensitive and the other-axis sensitivity ratio is small, and the mechanical quantity can be accurately detected. Further, since the upper electrode 27 of the detection element 17 is formed in a stress concentration portion where stress is concentrated when a mechanical quantity is applied in the laminated body of the lower electrode 25 / piezoelectric thin film 26, the lower portion is placed in the stress concentration portion. Compared to the case of forming a three-layered structure of electrode 25 / piezoelectric thin film 26 / upper electrode 27, it is possible to form the upper electrode 27 in the stress concentration portion without misalignment.

また、上記した実施の形態においては、検出素子として圧電素子を例示して説明したが、この構成に限定されるものではない。梁部の撓みに基づいて力学量に応じた信号を出力する構成であればよく、例えば、圧電素子の代わりにピエゾ素子を用いてもよい。   In the above-described embodiment, the piezoelectric element is exemplified as the detection element. However, the present invention is not limited to this configuration. Any structure that outputs a signal corresponding to the mechanical quantity based on the deflection of the beam portion may be used. For example, a piezoelectric element may be used instead of the piezoelectric element.

また、今回開示された実施の形態は、全ての点で例示であってこの実施の形態に制限されるものではない。本発明の範囲は、上記した実施の形態のみの説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。   The embodiment disclosed this time is illustrative in all respects and is not limited to this embodiment. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims for patent.

本発明は、互いに直交するX軸、Y軸及びZ軸の3軸方向の加速度を検出する力学量検出センサに有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for a mechanical quantity detection sensor that detects acceleration in three axial directions of the X axis, the Y axis, and the Z axis orthogonal to each other.

1 力学量検出センサ
2 第1の半導体基板(第1の基板)
3 第2の半導体基板(第2の基板)
4,18 絶縁層
5 演算回路
11 枠体
12 変位部
13 梁部
17 検出素子
21 支持部
22 錘部
23 開口部
25 下部電極
26 圧電薄膜
27 上部電極
31 第3の基板
51,52,55 スイッチ
53 差動回路
54 加算回路
DESCRIPTION OF SYMBOLS 1 Mechanical quantity detection sensor 2 1st semiconductor substrate (1st board | substrate)
3 Second semiconductor substrate (second substrate)
4, 18 Insulating layer 5 Arithmetic circuit 11 Frame 12 Displacement part 13 Beam part 17 Detection element 21 Support part 22 Weight part 23 Opening part 25 Lower electrode 26 Piezoelectric thin film 27 Upper electrode 31 Third substrate 51, 52, 55 Switch 53 Differential circuit 54 Adder circuit

Claims (2)

枠体と、前記枠体の内側に位置する変位部と、前記枠体に対し前記変位部を揺動可能に支持する梁部とが形成された第1の半導体基板と、
開口部を有し、前記枠体に接続された支持部と、前記開口部内で前記変位部に接続された錘部とが形成されており、前記第1の半導体基板に絶縁層を介して積層された第2の半導体基板と、
前記第1の半導体基板上に設けられており、前記梁部の撓み量に基づいて力学量に応じた信号を出力する検出素子とを備え、
前記梁は、一端が前記枠体に固定され、他端が前記変位部に固定されると共に、前記変位部の外周面との間に所定の間隔をとって前記変位部の外周面に沿って延設されており、前記梁の他端が相対的に太いことを特徴とする力学量検出センサ。
A first semiconductor substrate formed with a frame, a displacement portion located inside the frame, and a beam portion that swingably supports the displacement portion with respect to the frame;
A support portion having an opening, connected to the frame, and a weight portion connected to the displacement portion in the opening is formed, and stacked on the first semiconductor substrate via an insulating layer A second semiconductor substrate,
A detection element that is provided on the first semiconductor substrate and outputs a signal corresponding to a mechanical quantity based on a deflection amount of the beam portion;
One end of the beam is fixed to the frame, the other end is fixed to the displacement portion, and a predetermined distance is provided between the beam and the outer peripheral surface of the displacement portion, along the outer peripheral surface of the displacement portion. A mechanical quantity detection sensor that is extended and has the other end of the beam relatively thick.
枠体と、前記枠体の内側に位置する変位部と、前記枠体に対し前記変位部を揺動可能に支持する梁部とが形成された第1の半導体基板と、
開口部を有し、前記枠体に接続された支持部と、前記開口部内で前記変位部に接続された錘部とが形成されており、前記第1の半導体基板に絶縁層を介して積層された第2の半導体基板と、
前記第1の半導体基板上に設けられており、前記梁部の撓み量に基づいて力学量に応じた信号を出力する検出素子とを備え、
前記検出素子が前記梁及び前記変位部上に形成された下部電極と、前記下部電極上に形成された圧電薄膜と、前記圧電薄膜上に部分的に形成された上部電極とで構成されており、前記梁は、一端が前記枠体に固定され、他端が前記変位部に固定されると共に、前記変位部の外周面との間に所定の間隔をとって前記変位部の外周面に沿って延設されており、前記梁の他端が相対的に太いことを特徴とする力学量検出センサ。
A first semiconductor substrate formed with a frame, a displacement portion located inside the frame, and a beam portion that swingably supports the displacement portion with respect to the frame;
A support portion having an opening, connected to the frame, and a weight portion connected to the displacement portion in the opening is formed, and stacked on the first semiconductor substrate via an insulating layer A second semiconductor substrate,
A detection element that is provided on the first semiconductor substrate and outputs a signal corresponding to a mechanical amount based on a deflection amount of the beam portion;
The detection element includes a lower electrode formed on the beam and the displacement portion, a piezoelectric thin film formed on the lower electrode, and an upper electrode partially formed on the piezoelectric thin film. The beam has one end fixed to the frame, the other end fixed to the displacement portion, and a predetermined distance from the outer peripheral surface of the displacement portion along the outer peripheral surface of the displacement portion. A mechanical quantity detection sensor, wherein the other end of the beam is relatively thick.
JP2009060862A 2009-03-13 2009-03-13 Sensor for detecting dynamic quantity Withdrawn JP2010216837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060862A JP2010216837A (en) 2009-03-13 2009-03-13 Sensor for detecting dynamic quantity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009060862A JP2010216837A (en) 2009-03-13 2009-03-13 Sensor for detecting dynamic quantity

Publications (1)

Publication Number Publication Date
JP2010216837A true JP2010216837A (en) 2010-09-30

Family

ID=42975859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060862A Withdrawn JP2010216837A (en) 2009-03-13 2009-03-13 Sensor for detecting dynamic quantity

Country Status (1)

Country Link
JP (1) JP2010216837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109596859A (en) * 2019-01-18 2019-04-09 中国电子科技集团公司第十三研究所 Piezoresistance type acceleration sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109596859A (en) * 2019-01-18 2019-04-09 中国电子科技集团公司第十三研究所 Piezoresistance type acceleration sensor
CN109596859B (en) * 2019-01-18 2021-08-31 中国电子科技集团公司第十三研究所 Piezoresistive acceleration sensor

Similar Documents

Publication Publication Date Title
JP6020341B2 (en) Capacitive physical quantity sensor and manufacturing method thereof
JP6123613B2 (en) Physical quantity sensor and manufacturing method thereof
WO2018003692A1 (en) Physical quantity sensor
JP2005283428A (en) Dynamic quantity sensor unit
JP3938205B1 (en) Sensor element
JP2008008672A (en) Acceleration sensor
JP2007194572A (en) Wafer level package structure and sensor element
JP2010216837A (en) Sensor for detecting dynamic quantity
JP2011196966A (en) Inertia sensor
JP2010216842A (en) Dynamic quantity detection sensor
JP2010127648A (en) Acceleration sensor
JP5239048B2 (en) Manufacturing method of piezoelectric acceleration sensor
JP2007173637A (en) Sensor module
JP4665733B2 (en) Sensor element
JP2008064647A (en) Triaxial acceleration sensor
JP4983107B2 (en) Inertial sensor and method of manufacturing inertial sensor
JP2010164569A (en) Multiaxial acceleration sensor
JP2010216843A (en) Sensor for detecting dynamic quantity
JP2010216834A (en) Sensor for detecting dynamic quantity
JP2011220765A (en) Inertial sensor and manufacturing method thereof
JP5069410B2 (en) Sensor element
JP2010216841A (en) Dynamic quantity detection sensor
JP2010216836A (en) Dynamic quantity detection sensor
JP2010216840A (en) Method of manufacturing dynamic quantity detection sensor
JP4611005B2 (en) Sensor element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605