JP2010164569A - Multiaxial acceleration sensor - Google Patents

Multiaxial acceleration sensor Download PDF

Info

Publication number
JP2010164569A
JP2010164569A JP2010029787A JP2010029787A JP2010164569A JP 2010164569 A JP2010164569 A JP 2010164569A JP 2010029787 A JP2010029787 A JP 2010029787A JP 2010029787 A JP2010029787 A JP 2010029787A JP 2010164569 A JP2010164569 A JP 2010164569A
Authority
JP
Japan
Prior art keywords
axis
acceleration
mass
axis direction
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010029787A
Other languages
Japanese (ja)
Inventor
Michihiko Hayashi
道彦 林
Takami Ishida
貴巳 石田
Satoshi Ouchi
智 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010029787A priority Critical patent/JP2010164569A/en
Publication of JP2010164569A publication Critical patent/JP2010164569A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiaxial acceleration sensor capable of preventing accuracy degradations in acceleration detection in the directions of X and Y axes even if an acceleration in the direction of a Z axis is added by making sensitivity ratios uniform to displacements of a mass part. <P>SOLUTION: The multiaxial acceleration sensor is equipped with both a movable substrate 11 for supporting the mass part 12, which is arranged along an XY plane in an XYZ-coordinate system and displaced according to acceleration, at a surrounding supporting part 13 via a plurality of beam parts 14 and a fixed substrate 15 jointed to the supporting part 13 in the movable substrate 11 and provided on its upper surface with fixed electrodes 16 having prescribed intervals to the mass part 12 in the movable substrate 11. A plurality of the beam parts 14 are constituted of both first beam parts 17 extended from the supporting part 13 in directions in parallel with the X axis or the Y axis and second beam parts 18 connected to the mass part 12 and diagonally extended in directions at 45° with respect to the X and Y axes. The secondary moment of area vertical to the longitudinal direction of the second beam parts 18 is made smaller than the secondary moment of area vertical to the longitudinal direction of the first beam parts 17. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、特に車両、ロボット等の移動体の姿勢制御や精密機器の振動計測等に用いられ、多軸方向の加速度を検出する多軸加速度センサに関するものである。   The present invention relates to a multi-axis acceleration sensor that detects acceleration in a multi-axis direction, and is particularly used for posture control of a moving body such as a vehicle and a robot, and vibration measurement of a precision device.

従来のこの種の多軸加速度センサは、図10に示すような構成を有していた。   This type of conventional multi-axis acceleration sensor has a configuration as shown in FIG.

図10は従来の多軸加速度センサの分解斜視図を示したもので、この図10において、1はシリコンなどの半導体基板からなる可動基板で、この可動基板1は、中央に所定厚みを有する円柱形状の質量部2とこの質量部2の底面側の周囲からXY方向に4つに分割された羽根状肉薄の可動電極部3を有し、かつ加速度に応じて変位する質量体4と、この質量体4の周囲に位置する支持部5と、この支持部5と前記質量体4とを連結する4本の梁部6を有している。7はシリコンなどの半導体基板あるいはガラス基板などの絶縁性基板からなる固定基板で、この固定基板7は、前記可動電極部3と対向する位置に設けられる固定電極8と、この固定電極8の外周に位置する枠部9と、前記固定電極8の出力を外部出力する配線部10を有している。また前記可動基板1の支持部5と固定基板7の枠部9は、可動電極部3と固定電極8との間に所定間隔を設けて接合されている。   FIG. 10 shows an exploded perspective view of a conventional multi-axis acceleration sensor. In FIG. 10, 1 is a movable substrate made of a semiconductor substrate such as silicon, and this movable substrate 1 is a cylinder having a predetermined thickness in the center. A mass body 4 having a shape and a movable electrode portion 3 having a thin blade-like shape that is divided into four in the X and Y directions from the periphery of the bottom surface side of the mass portion 2; It has the support part 5 located in the circumference | surroundings of the mass body 4, and the four beam parts 6 which connect this support part 5 and the said mass body 4. As shown in FIG. Reference numeral 7 denotes a fixed substrate made of a semiconductor substrate such as silicon or an insulating substrate such as a glass substrate. The fixed substrate 7 includes a fixed electrode 8 provided at a position facing the movable electrode portion 3 and an outer periphery of the fixed electrode 8. And a wiring portion 10 for outputting the output of the fixed electrode 8 to the outside. The support portion 5 of the movable substrate 1 and the frame portion 9 of the fixed substrate 7 are joined with a predetermined gap between the movable electrode portion 3 and the fixed electrode 8.

以上のように構成されている従来の多軸加速度センサについて、次にその動作を説明する。   Next, the operation of the conventional multi-axis acceleration sensor configured as described above will be described.

XY軸平面に多軸加速度センサを実装すると、Z軸方向の重力により質量体4は一定量沈む方向に変位し、可動電極部3と固定電極8とのZ軸方向の間隔が狭まった状態で静止している。この状態で、質量体4にX軸方向の加速度が加わると、この質量体4には加速度と質量との積からなる慣性力が働き、そしてこの質量体4は梁部6に4点支持された状態で可動電極部3とともにX軸方向の前後に所定角度で傾く。この傾きによりX軸方向に2分割配置した可動電極部3と固定電極8とのZ軸方向の間隔が変化し、各々の静電容量が変化することになる。ここで、静電容量をC、誘電率をε、電極面積をS、電極間の間隔をdとした場合、静電容量はC=ε×S/dにより一般的に算出することができるもので、この場合、誘電率と電極面積は変化せず、Z軸方向の電極間の間隔の変化に応じた各々の静電容量を処理回路(図示せず)で差動処理することにより加速度を検出していた。また、Y軸方向の加速度についても、上記と同様の動作原理で加速度を検出していた。   When the multi-axis acceleration sensor is mounted on the XY-axis plane, the mass body 4 is displaced by a certain amount of gravity due to gravity in the Z-axis direction, and the distance in the Z-axis direction between the movable electrode portion 3 and the fixed electrode 8 is reduced. It is stationary. When acceleration in the X-axis direction is applied to the mass body 4 in this state, an inertial force consisting of the product of acceleration and mass acts on the mass body 4, and the mass body 4 is supported by the beam portion 6 at four points. In this state, it tilts at a predetermined angle forward and backward in the X axis direction together with the movable electrode portion 3. Due to this inclination, the distance in the Z-axis direction between the movable electrode portion 3 and the fixed electrode 8 that are divided into two in the X-axis direction changes, and the respective capacitances change. Here, when the capacitance is C, the dielectric constant is ε, the electrode area is S, and the distance between the electrodes is d, the capacitance can be generally calculated by C = ε × S / d. In this case, the dielectric constant and the electrode area do not change, and the acceleration is obtained by differentially processing each capacitance according to the change in the distance between the electrodes in the Z-axis direction by a processing circuit (not shown). It was detected. For acceleration in the Y-axis direction, acceleration was detected based on the same operating principle as described above.

なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information relating to the invention of this application, for example, Patent Document 1 is known.

特開2003−152162号公報JP 2003-152162 A

しかしながら、上記従来の構成においては、Z軸方向に一定の肉薄な厚みを有し、かつXY軸面に一定の幅を有する梁部6により質量体4を支持しており、さらにこの質量体4は、Z軸方向に肉薄な可動電極部3を設けた支持部5内の有効空間における質量体4の質量比率が小さくて重心も低くなるため、Z軸方向の加速度に対する変位感度は、XY軸方向の加速度に対する変位感度より大きくなっている。さらに、XYZ軸の加速度成分はZ軸方向の可動電極部3と固定電極8部との間隔の変化に伴う静電容量変化で検出するため、Z軸方向の加速度による質量体4の変位が大きくなりすぎると、電極間の間隔が大きく変動し、電極間の間隔に反比例する静電容量において、XY軸平面内の加速度のみが加わった状態での加速度検出値より、XY軸方向の加速度検出精度が非直線性となって悪くなってしまうという課題を有していた。   However, in the above-described conventional configuration, the mass body 4 is supported by the beam portion 6 having a certain thin thickness in the Z-axis direction and a certain width on the XY-axis surface. Since the mass ratio of the mass body 4 in the effective space in the support portion 5 provided with the thin movable electrode portion 3 in the Z-axis direction is small and the center of gravity is low, the displacement sensitivity to the acceleration in the Z-axis direction is XY-axis. It is larger than the displacement sensitivity to the acceleration in the direction. Further, since the acceleration component of the XYZ axes is detected by a change in capacitance accompanying a change in the distance between the movable electrode part 3 and the fixed electrode 8 part in the Z axis direction, the displacement of the mass body 4 due to the acceleration in the Z axis direction is large. If it becomes too large, the distance between the electrodes will fluctuate greatly, and the acceleration detection accuracy in the XY axis direction will be based on the acceleration detection value in the state where only the acceleration in the XY axis plane is applied in the capacitance that is inversely proportional to the distance between the electrodes Has the problem of becoming non-linear and worsening.

本発明は上記従来の課題を解決するもので、XY軸方向とZ軸方向の加速度に対して、質量部の変位感度比率を均一化することにより、Z軸方向の加速度が加わってもXY軸方向の加速度検出精度が悪くなってしまうことのない多軸加速度センサを提供することを目的とするものである。   The present invention solves the above-mentioned conventional problems, and even if the acceleration in the Z-axis direction is applied by making the displacement sensitivity ratio of the mass part uniform with respect to the acceleration in the XY-axis direction and the Z-axis direction, An object of the present invention is to provide a multi-axis acceleration sensor in which the direction acceleration detection accuracy does not deteriorate.

上記目的を達成するために、本発明は以下の構成を有するものである。   In order to achieve the above object, the present invention has the following configuration.

本発明の請求項1に記載の発明は、XYZ座標系におけるXY平面に沿って配置され加速度に応じて変位する質量部を複数の梁部を介して周囲の支持部に支持する可動基板と、この可動基板における支持部と接合され、かつ可動基板における質量部と所定間隔を有する固定電極を上面に設けた固定基板とを備え、前記複数の梁部を、前記支持部からX軸あるいはY軸と平行方向に延びた第1の梁部と、前記質量部に連結され、かつXY軸と45°方向に斜めに延びた第2の梁部とにより構成し、前記第2の梁部の長手方向と垂直な断面2次モーメントを前記第1の梁部の長手方向と垂直な断面2次モーメントより小さくしたもので、この構成によれば、XYZ座標系におけるXY平面に沿って配置され加速度に応じて変位する質量部を周囲の支持部に支持する複数の梁部を、前記支持部からX軸あるいはY軸と平行方向に延びた第1の梁部と、前記質量部に連結され、かつXY軸と45°方向に斜めに延びた第2の梁部とにより構成し、前記第2の梁部の長手方向と垂直な断面2次モーメントを前記第1の梁部の長手方向と垂直な断面2次モーメントより小さくしているため、XY軸方向の加速度に対する質量部の変位感度に寄与する第2の梁部の弾性が高まることになり、これにより、XYZ軸方向における質量部の変位感度比率を均一化することができるため、Z軸方向の加速度が加わってもXY軸方向の加速度検出精度が悪くなってしまうことはないとともに、質量部における第2の梁部と連結される部分の近傍に上面から下面にわたって気体を逃がす縦溝を設けたため、第2の梁部の長さを質量部の中心まで長くすることができることとなり、XY軸方向の加速度に対する質量部の変位感度に寄与する第2の梁部の弾性が高まるから、XYZ軸方向における質量部の変位感度比率を均一化することができることとなり、これにより、Z軸方向の加速度が加わってもXY軸方向の加速度検出精度が悪くなってしまうことはなく、さらに、電極間の間隔が狭い空間の中で質量部が変位する場合に発生するスクイーズフィルムダンピングを抑制することができるため、印加された加速度に対する周波数応答性が向上するという作用効果を有するものである。   According to a first aspect of the present invention, there is provided a movable substrate that supports a mass part that is arranged along an XY plane in an XYZ coordinate system and that is displaced according to acceleration, to a surrounding support part via a plurality of beam parts, A fixed substrate which is bonded to a support portion of the movable substrate and which has a fixed electrode on the upper surface thereof and which has a predetermined distance from the mass portion of the movable substrate, and the plurality of beam portions are arranged on the X axis or the Y axis from the support portion. A first beam portion extending in a direction parallel to the mass portion, and a second beam portion coupled to the mass portion and extending obliquely in an XY axis and a 45 ° direction, and the length of the second beam portion The second moment of section perpendicular to the direction is smaller than the second moment of section perpendicular to the longitudinal direction of the first beam portion. According to this configuration, the moment of acceleration is arranged along the XY plane in the XYZ coordinate system. The mass part that moves according to A plurality of beam portions supported by the holding portion are connected to the first beam portion extending in a direction parallel to the X-axis or the Y-axis from the support portion, and to the mass portion, and obliquely in a 45 ° direction with respect to the XY axis. And a second moment of section perpendicular to the longitudinal direction of the second beam portion is made smaller than a second moment of section perpendicular to the longitudinal direction of the first beam portion. Therefore, the elasticity of the second beam part that contributes to the displacement sensitivity of the mass part with respect to the acceleration in the XY axis direction is increased, so that the displacement sensitivity ratio of the mass part in the XYZ axis direction can be made uniform. Even if acceleration in the Z-axis direction is applied, the acceleration detection accuracy in the XY-axis direction is not deteriorated, and gas is allowed to escape from the upper surface to the lower surface in the vicinity of the portion connected to the second beam portion in the mass portion. Because the vertical groove was provided, the second Since the length of the beam part can be increased to the center of the mass part, and the elasticity of the second beam part contributing to the displacement sensitivity of the mass part with respect to the acceleration in the XY axis direction is increased, the mass part in the XYZ axis direction is increased. The displacement sensitivity ratio can be made uniform, so that even if acceleration in the Z-axis direction is applied, the accuracy of acceleration detection in the XY-axis direction does not deteriorate, and furthermore, the space between the electrodes is narrow. Since the squeeze film damping generated when the mass part is displaced can be suppressed, the frequency response to the applied acceleration is improved.

以上のように本発明の多軸加速度センサは、XYZ座標系におけるXY平面に沿って配置され加速度に応じて変位する質量部を複数の梁部を介して周囲の支持部に支持する可動基板と、この可動基板における支持部と接合され、かつ可動基板における質量部と所定間隔を有する固定電極を上面に設けた固定基板とを備え、前記複数の梁部を、前記支持部からX軸あるいはY軸と平行方向に延びた第1の梁部と、前記質量部に連結され、かつXY軸と45°方向に斜めに延びた第2の梁部とにより構成し、前記第2の梁部の長手方向と垂直な断面2次モーメントを前記第1の梁部の長手方向と垂直な断面2次モーメントより小さくしたもので、この構成によれば、XYZ座標系におけるXY平面に沿って配置され加速度に応じて変位する質量部を周囲の支持部に支持する複数の梁部を、前記支持部からX軸あるいはY軸と平行方向に延びた第1の梁部と、前記質量部に連結され、かつXY軸と45°方向に斜めに延びた第2の梁部とにより構成し、前記第2の梁部の長手方向と垂直な断面2次モーメントを前記第1の梁部の長手方向と垂直な断面2次モーメントより小さくしているため、XY軸方向の加速度に対する質量部の変位感度に寄与する第2の梁部の弾性が高まることになり、これにより、XYZ軸方向における質量部の変位感度比率を均一化することができるため、Z軸方向の加速度が加わってもXY軸方向の加速度検出精度が悪くなってしまうことはないとともに、質量部における第2の梁部と連結される部分の近傍に上面から下面にわたって気体を逃がす縦溝を設けたため、第2の梁部の長さを質量部の中心まで長くすることができることとなり、XY軸方向の加速度に対する質量部の変位感度に寄与する第2の梁部の弾性が高まるから、XYZ軸方向における質量部の変位感度比率を均一化することができることとなり、これにより、Z軸方向の加速度が加わってもXY軸方向の加速度検出精度が悪くなってしまうことはなく、さらに、電極間の間隔が狭い空間の中で質量部が変位する場合に発生するスクイーズフィルムダンピングを抑制することができるため、印加された加速度に対する周波数応答性が向上するという優れた効果を奏するものである。   As described above, the multi-axis acceleration sensor of the present invention includes a movable substrate that is arranged along the XY plane in the XYZ coordinate system and supports a mass portion that is displaced according to acceleration to a surrounding support portion via a plurality of beam portions. A fixed substrate which is bonded to a support portion of the movable substrate and has a fixed electrode on a top surface thereof having a predetermined distance from a mass portion of the movable substrate, and the plurality of beam portions are arranged on the X axis or the Y axis from the support portion. A first beam portion extending in a direction parallel to the axis, and a second beam portion coupled to the mass portion and extending obliquely in the 45 ° direction with respect to the XY axis. The second moment in section perpendicular to the longitudinal direction is smaller than the second moment in section perpendicular to the longitudinal direction of the first beam portion. According to this configuration, the acceleration is arranged along the XY plane in the XYZ coordinate system. Mass part that is displaced according to A plurality of beam portions supported by surrounding support portions are connected to the first beam portion extending in a direction parallel to the X axis or the Y axis from the support portion, and to the mass portion, and in a direction of 45 ° with the XY axis. And a second moment of section perpendicular to the longitudinal direction of the second beam portion is made smaller than a second moment of section perpendicular to the longitudinal direction of the first beam portion. Therefore, the elasticity of the second beam part that contributes to the displacement sensitivity of the mass part with respect to the acceleration in the XY axis direction is increased, thereby making it possible to equalize the displacement sensitivity ratio of the mass part in the XYZ axis direction. Therefore, even if the acceleration in the Z-axis direction is applied, the accuracy of detecting the acceleration in the XY-axis direction is not deteriorated, and the gas from the upper surface to the lower surface is near the portion connected to the second beam portion in the mass portion. A vertical groove was provided to escape The length of the second beam part can be increased to the center of the mass part, and the elasticity of the second beam part contributing to the displacement sensitivity of the mass part with respect to the acceleration in the XY axis direction is increased. Therefore, even if the acceleration in the Z-axis direction is applied, the accuracy of detecting the acceleration in the XY-axis direction is not deteriorated, and the distance between the electrodes is further reduced. Since the squeeze film damping that occurs when the mass part is displaced in a narrow space can be suppressed, an excellent effect of improving the frequency response to the applied acceleration is achieved.

本発明の実施の形態1における多軸加速度センサの斜視図The perspective view of the multi-axis acceleration sensor in Embodiment 1 of this invention 同多軸加速度センサの上面図Top view of the multi-axis acceleration sensor 同多軸加速度センサにおける固定基板の上面図Top view of fixed substrate in the multi-axis acceleration sensor (a)(b)図2のA−A線断面図(A) (b) AA line sectional view of FIG. (a)(b)図2のB−B線断面図(A) (b) BB sectional drawing of FIG. 方位の状態図Orientation state diagram シリコンの方位とヤング率との関係図Relationship between silicon orientation and Young's modulus 本発明の実施の形態2における多軸加速度センサの質量部の形状を示す上面図The top view which shows the shape of the mass part of the multi-axis acceleration sensor in Embodiment 2 of this invention 本発明の実施の形態3における多軸加速度センサの駆動電極位置を示す断面図Sectional drawing which shows the drive electrode position of the multi-axis acceleration sensor in Embodiment 3 of this invention 従来の多軸加速度センサの分解斜視図Exploded perspective view of a conventional multi-axis acceleration sensor

(実施の形態1)
以下、本発明の実施の形態1における加速度センサについて、図面を参照しながら説明する。
(Embodiment 1)
Hereinafter, the acceleration sensor according to the first embodiment of the present invention will be described with reference to the drawings.

図1は本発明の実施の形態1における多軸加速度センサの斜視図、図2は同多軸加速度センサの上面図、図3は同多軸加速度センサにおける固定基板の上面図、図4(a)(b)は図2のA−A線断面図、図5(a)(b)は図2のB−B線断面図、図6は方位の状態図、図7はシリコンの方位とヤング率の関係図である。   1 is a perspective view of a multi-axis acceleration sensor according to Embodiment 1 of the present invention, FIG. 2 is a top view of the multi-axis acceleration sensor, FIG. 3 is a top view of a fixed substrate in the multi-axis acceleration sensor, and FIG. (B) is a cross-sectional view taken along line AA in FIG. 2, FIGS. 5 (a) and 5 (b) are cross-sectional views taken along line BB in FIG. 2, FIG. 6 is a state diagram of orientation, and FIG. FIG.

図1〜図5において、11はシリコン酸化膜などのエッチングストップ層を中間層に設けて両側にシリコン基板を接合したSOI基板からなり、XY平面に沿って配置された可動基板で、この可動基板11は中央に加速度に応じて変位する質量部12と、この質量部12の外周囲に設けた支持部13と、この支持部13と前記質量部12とを連結し、かつ前記質量部12を変位可能とする4本の肉薄のシリコンからなる梁部14とにより構成されている。15はガラスなどの絶縁性材料からなる固定基板で、この固定基板15は、上面にXY軸方向に各々2つに分割されたAuなどの導電性材料からなる固定電極16を設け、さらに前記質量部12と梁部14との間に所定間隔を設けて前記支持部13と接合されているものである。   In FIG. 1 to FIG. 5, reference numeral 11 denotes a movable substrate which is formed of an SOI substrate in which an etching stop layer such as a silicon oxide film is provided on an intermediate layer and a silicon substrate is bonded to both sides, and is disposed along the XY plane. 11 is a mass part 12 that is displaced in the center in accordance with acceleration, a support part 13 provided on the outer periphery of the mass part 12, the support part 13 and the mass part 12, and the mass part 12 It is comprised by the beam part 14 which consists of four thin silicon which can be displaced. Reference numeral 15 denotes a fixed substrate made of an insulating material such as glass. The fixed substrate 15 is provided with a fixed electrode 16 made of a conductive material such as Au, which is divided into two in the XY axis direction on the upper surface, and the mass A predetermined interval is provided between the portion 12 and the beam portion 14 and is joined to the support portion 13.

そして、前記梁部14は支持部13からX軸あるいはY軸と平行方向に延びた第1の梁部17と、前記質量部12に連結され、かつXY軸と45°方向に斜めに延びた第2の梁部18とにより構成し、前記第2の梁部18の長手方向と垂直な断面2次モーメントを前記第1の梁部17の長手方向と垂直な断面2次モーメントより小さくしている。このような構成とすることにより、XY軸方向の加速度に対する前記質量部12の変位感度に寄与する第2の梁部18の弾性が高まることになり、これにより、XYZ軸方向における前記質量部12の変位感度比率を均一化することができるため、Z軸方向の加速度が加わってもXY軸方向の加速度検出精度が悪くなってしまうことはないという効果を得ることができるものである。ここで、断面2次モーメントをI、梁部の長手方向の幅をb、梁部のZ軸方向の厚みをhとした場合、断面2次モーメントはI=b×h3/12の式から一般的に算出できるもので、図5(a)に示すように第2の梁部18の長手方向の幅を小さくするか、あるいは厚みを薄くすることにより、第2の梁部18の長手方向の断面2次モーメントを小さくすることができる。また、梁のたわみをZ、印加された加速度での慣性力をF、梁の長さをL、ヤング率をEとした場合、梁のたわみはZ∝F×L3/E/Iの式か
ら一般的に算出できるもので、一定量の加速度による慣性力において、断面2次モーメントを小さくすることにより、梁のたわみ、すなわち質量部12の変位を大きくすることができる。
The beam portion 14 is connected to the first beam portion 17 extending in a direction parallel to the X axis or the Y axis from the support portion 13 and the mass portion 12 and extends obliquely in the 45 ° direction with respect to the XY axis. And a second moment of section perpendicular to the longitudinal direction of the second beam portion 18 is made smaller than a second moment of section perpendicular to the longitudinal direction of the first beam portion 17. Yes. With this configuration, the elasticity of the second beam portion 18 that contributes to the displacement sensitivity of the mass portion 12 with respect to the acceleration in the XY axis direction is increased, and thus the mass portion 12 in the XYZ axis direction is increased. Since the displacement sensitivity ratio can be made uniform, even if acceleration in the Z-axis direction is applied, the effect that the accuracy of acceleration detection in the XY-axis direction does not deteriorate can be obtained. Here, the second moment I, the longitudinal width of the beam portion b, if the Z-axis direction thickness of the beam portion and is h, the second moment is the equation I = b × h 3/12 As shown in FIG. 5A, the longitudinal direction of the second beam 18 can be calculated by reducing the width in the longitudinal direction of the second beam 18 or reducing the thickness thereof. It is possible to reduce the moment of inertia of the cross section. Also, assuming that the beam deflection is Z, the inertial force at the applied acceleration is F, the beam length is L, and the Young's modulus is E, the beam deflection is an equation of Z × F × L 3 / E / I. Therefore, the deflection of the beam, that is, the displacement of the mass portion 12 can be increased by reducing the secondary moment of inertia in the inertial force due to a certain amount of acceleration.

また、前記梁部14は面方位(100)のシリコンからなり、前記第1の梁部17を前記支持部13からX軸あるいはY軸と平行方向に延びた方位<110>に配置し、かつ前記第2の梁部18を前記質量部12に連結するとともに、XY軸と45°方向に斜めに延びた方位<100>に配置しているもので、このような配置構成とすることにより、図6と図7に示すように、前記第2の梁部18のヤング率は、前記第1の梁部17のヤング率より小さくなるため、XY軸方向の加速度に対する前記質量部12の変位感度に寄与する第2の梁部18の弾性が高まることになり、これにより、XYZ軸方向における質量部12の変位感度比率を均一化することができるため、Z軸方向の加速度が加わってもXY軸方向の加速度検出精度が悪くなってしまうことはなく、さらに、シリコンの方位角度ずれによるヤング率の変化も小さいため、加速検出精度も安定するという効果を有するものである。なお、面方位(100)のシリコンのヤング率は90°毎の方位周期となっており、方位<100>、<010>、<−100>、<001>は表記上の違いはあるがヤング率は同一である。また、方位<110>、<−110>、<1−10>、<011>も表記上の違いはあるがヤング率は同一である。   The beam portion 14 is made of silicon having a plane orientation (100), the first beam portion 17 is disposed in an orientation <110> extending from the support portion 13 in a direction parallel to the X axis or the Y axis, and The second beam portion 18 is connected to the mass portion 12 and arranged in the azimuth <100> obliquely extending in the 45 ° direction with respect to the XY axis. By adopting such an arrangement configuration, As shown in FIGS. 6 and 7, since the Young's modulus of the second beam portion 18 is smaller than the Young's modulus of the first beam portion 17, the displacement sensitivity of the mass portion 12 with respect to acceleration in the XY axis direction. This increases the elasticity of the second beam portion 18 that contributes to the above, and this makes it possible to equalize the displacement sensitivity ratio of the mass portion 12 in the XYZ-axis direction, so that even if acceleration in the Z-axis direction is applied, XY Axial acceleration detection accuracy is poor It never becomes further smaller even change in Young's modulus by the azimuth angle displacement of silicon, and has the effect that also stabilize the acceleration detection accuracy. Note that the Young's modulus of silicon with a plane orientation (100) is an orientation cycle every 90 °, and the orientations <100>, <010>, <-100>, and <001> have a difference in notation, but are Young. The rate is the same. In addition, the orientations <110>, <-110>, <1-10>, and <011> also have the same Young's modulus, although there are differences in notation.

そしてまた、前記質量部12には、上面から下面にわたって貫通孔19を設けているもので、この貫通孔19を設けることにより、電極間の間隔が狭い空間の中で質量部12が変位する場合に気体の粘性抵抗、圧力勾配などから発生するスクイーズフィルムダンピングに対しても、前記貫通孔19を介して気体を逃がし前記質量部12の周囲の圧力を均一化させることができるため、そのダンピングを抑制することができ、これにより、印加された加速度に対する周波数応答性も向上するという効果が得られるものである。   The mass portion 12 is provided with a through hole 19 from the upper surface to the lower surface. By providing the through hole 19, the mass portion 12 is displaced in a space where the distance between the electrodes is narrow. Even for squeeze film damping generated due to gas viscous resistance, pressure gradient, etc., the gas can escape through the through-hole 19 and the pressure around the mass portion 12 can be made uniform. Thus, the effect of improving the frequency responsiveness to the applied acceleration can be obtained.

以上のように構成された本発明の実施の形態1における多軸加速度センサについて、次にその製造方法を説明する。   Next, the manufacturing method of the multi-axis acceleration sensor according to the first embodiment of the present invention configured as described above will be described.

まず、可動基板11としてSOI基板(図示せず)を準備し、少なくともSOI基板の一面にフォトリソグラフィとウェットエッチングを施して所定深さの溝(図示せず)を形成し、その後、エッチングストップ層を利用して両側からフォトリソグラフィとウェットエッチングあるいはドライエッチングを施してSOI基板を所定形状に加工した後、エッチングストップ層を除去することにより質量部(図示せず)と、支持部(図示せず)および梁部(図示せず)を形成する。   First, an SOI substrate (not shown) is prepared as the movable substrate 11, and at least one surface of the SOI substrate is subjected to photolithography and wet etching to form a groove (not shown) having a predetermined depth, and then an etching stop layer. The SOI substrate is processed into a predetermined shape by performing photolithography and wet etching or dry etching from both sides by using the substrate, and then removing the etching stop layer to provide a mass part (not shown) and a support part (not shown). ) And a beam portion (not shown).

次に、固定基板15としてガラス基板(図示せず)を準備し、このガラス基板の上面に真空蒸着法あるいはスパッタ法によりTiなどの密着層を介してAuなどの導電性材料を用いて薄膜の導電膜(図示せず)を形成し、その後、フォトリソグラフィとウェットエッチングにより導電膜を所定形状に加工して固定電極(図示せず)と共通電極(図示せず)を形成する。   Next, a glass substrate (not shown) is prepared as the fixed substrate 15, and a thin film is formed on the upper surface of the glass substrate using a conductive material such as Au through an adhesion layer such as Ti by vacuum deposition or sputtering. A conductive film (not shown) is formed, and then the conductive film is processed into a predetermined shape by photolithography and wet etching to form a fixed electrode (not shown) and a common electrode (not shown).

次に、前記可動基板11における支持部と前記固定基板15を陽極接合あるいは接着剤を介して接合するとともに、前記支持部と共通電極とを電気的に接続したセンサ基板(図示せず)を形成する。   Next, a support substrate in the movable substrate 11 and the fixed substrate 15 are bonded together through anodic bonding or an adhesive, and a sensor substrate (not shown) in which the support portion and the common electrode are electrically connected is formed. To do.

最後に、センサ基板をダイシングあるいはレーザ加工によって分割することにより、複数個の多軸加速度センサ(図示せず)を生産するようにしている。   Finally, a plurality of multi-axis acceleration sensors (not shown) are produced by dividing the sensor substrate by dicing or laser processing.

以上のようにして製造された本発明の実施の形態1における多軸加速度センサについて、次にその動作を説明する。   Next, the operation of the multi-axis acceleration sensor according to the first embodiment of the present invention manufactured as described above will be described.

XY軸平面に多軸加速度センサを実装すると、Z軸方向の重力により前記質量部12が一定量沈む方向に変位し、この質量部12と前記固定電極16とのZ軸方向の間隔が狭まった状態で静止している。この状態で前記質量部12にX軸方向の加速度が加わると、この質量部12には加速度と質量との積である慣性力が作用し、そしてこの質量部12は前記支持部13に連結する梁部14に支持された状態で図4(b)に示すようにX軸方向の前後に所定角度で傾く。この傾きによりX軸方向に2分割配置した前記固定電極16と質量部12とのZ軸方向の間隔が変化し、各々の静電容量が変化することになる。ここで、静電容量をC、誘電率をε、電極面積をS、電極間の間隔をdとした場合、静電容量はC=ε×S/dの式から一般的に算出できるもので、誘電率と電極面積は変化せず、Z軸方向の電極間の間隔の変化に応じた各々の静電容量を処理回路(図示せず)で差動処理することにより加速度を検出することができる。また、Y軸方向の加速度についても、上記と同様の動作原理で加速度を検出することができる。   When a multi-axis acceleration sensor is mounted on the XY-axis plane, the mass portion 12 is displaced by a certain amount of gravity due to gravity in the Z-axis direction, and the distance between the mass portion 12 and the fixed electrode 16 in the Z-axis direction is reduced. Still in a state. When acceleration in the X-axis direction is applied to the mass portion 12 in this state, an inertial force that is a product of acceleration and mass acts on the mass portion 12, and the mass portion 12 is connected to the support portion 13. In a state where it is supported by the beam portion 14, it tilts at a predetermined angle in the front and rear directions in the X-axis direction as shown in FIG. Due to this inclination, the interval in the Z-axis direction between the fixed electrode 16 and the mass portion 12 that are arranged in two in the X-axis direction changes, and the respective capacitances change. Here, when the capacitance is C, the dielectric constant is ε, the electrode area is S, and the distance between the electrodes is d, the capacitance can be generally calculated from the equation C = ε × S / d. In addition, the dielectric constant and the electrode area do not change, and acceleration can be detected by differentially processing each capacitance according to the change in the distance between the electrodes in the Z-axis direction with a processing circuit (not shown). it can. Further, with respect to the acceleration in the Y-axis direction, the acceleration can be detected based on the same operation principle as described above.

なお、XY軸方向の加速度に対して質量部12の傾き変位が少ない質量部12の中央と対向する固定基板15の上面中央に検出電極(図示せず)を独立して追加配置したり、あるいはXY軸方向に各々2つに分割された固定電極16と質量部12との間の各々の静電容量の変化を処理すれば、Z軸方向の加速度を検出することができるものである。   In addition, a detection electrode (not shown) is additionally arranged independently at the center of the upper surface of the fixed substrate 15 facing the center of the mass part 12 where the mass part 12 is less inclined and displaced with respect to the acceleration in the XY axis direction, or The acceleration in the Z-axis direction can be detected by processing each change in capacitance between the fixed electrode 16 and the mass unit 12 divided into two in the XY-axis direction.

(実施の形態2)
以下、本発明の実施の形態2における加速度センサについて、図面を参照しながら説明する。
(Embodiment 2)
Hereinafter, an acceleration sensor according to Embodiment 2 of the present invention will be described with reference to the drawings.

図8は本発明の実施の形態2における多軸加速度センサの質量部の形状を示したもので、この実施の形態2においては、上記した本発明の実施の形態1における多軸加速度センサと同一の構成部品については同一番号を付し、本発明の実施の形態1と異なる点のみを説明する。   FIG. 8 shows the shape of the mass part of the multi-axis acceleration sensor according to the second embodiment of the present invention. This second embodiment is the same as the multi-axis acceleration sensor according to the first embodiment of the present invention. The same reference numerals are assigned to the components, and only the points different from the first embodiment of the present invention will be described.

すなわち、本発明の実施の形態2は、図8に示すように、可動基板21を、その中央に設けられた加速度に応じて変位する質量部22と、この質量部22の外周囲に設けた支持部23と、この支持部23と前記質量部22とを連結し、かつ前記質量部22を変位可能とする4本の肉薄のシリコンからなる梁部24とにより構成するとともに、前記梁部24は支持部23からX軸あるいはY軸と平行方向に延びた第1の梁部25と、前記質量部22に連結され、かつXY軸と45°方向に斜めに延びた第2の梁部26とにより構成し、さらに前記質量部22における第2の梁部26と連結される部分の近傍に上面から下面にわたって縦溝27を設けたものである。   That is, in the second embodiment of the present invention, as shown in FIG. 8, the movable substrate 21 is provided on the outer periphery of the mass portion 22 that is displaced in accordance with the acceleration provided at the center thereof. The beam portion 24 includes a support portion 23, and four beam portions 24 made of thin silicon that connect the support portion 23 and the mass portion 22 and can displace the mass portion 22. Includes a first beam portion 25 extending in a direction parallel to the X axis or the Y axis from the support portion 23, and a second beam portion 26 connected to the mass portion 22 and extending obliquely in the direction of 45 ° with respect to the XY axis. Further, a vertical groove 27 is provided from the upper surface to the lower surface in the vicinity of the portion connected to the second beam portion 26 in the mass portion 22.

上記した本発明の実施の形態2においては、質量部22における第2の梁部26と連結される部分の近傍に上面から下面にわたって縦溝27を設けているため、特に第2の梁部26の長さを質量部22の中心まで長くすることができ、これにより、XY軸方向の加速度に対する質量部22の変位感度に寄与する第2の梁部26の弾性が高まることになるため、XYZ軸方向における質量部22の変位感度比率を均一化することができ、これにより、Z軸方向の加速度が加わってもXY軸方向の加速度検出精度が悪くなってしまうことはなく、さらに、電極間の間隔が狭い空間の中で質量部22が変位する場合に気体の粘性抵抗、圧力勾配などから発生するスクイーズフィルムダンピングに対しても、前記縦溝27を介して気体を逃がし前記質量部22の周囲の圧力を均一化させることができるため、そのダンピングを抑制することができ、これにより、印加された加速度に対する周波数応答性も向上するという効果が得られるものである。   In the above-described second embodiment of the present invention, since the vertical groove 27 is provided from the upper surface to the lower surface in the vicinity of the portion of the mass portion 22 connected to the second beam portion 26, the second beam portion 26 is particularly provided. Can be increased to the center of the mass portion 22, thereby increasing the elasticity of the second beam portion 26 that contributes to the displacement sensitivity of the mass portion 22 with respect to acceleration in the XY-axis direction. The displacement sensitivity ratio of the mass portion 22 in the axial direction can be made uniform, so that even if acceleration in the Z-axis direction is applied, the accuracy of acceleration detection in the XY-axis direction is not deteriorated, and further, between the electrodes Even when squeeze film damping occurs due to the viscous resistance, pressure gradient, etc. of the gas when the mass part 22 is displaced in a space with a narrow gap, the gas is released through the longitudinal groove 27 and the quality is reduced. Since it is possible to equalize the pressure of the surrounding parts 22, it is possible to suppress the damping, thereby, the frequency response to applied acceleration is also what effect that improves.

(実施の形態3)
以下、本発明の実施の形態3における多軸加速度センサについて、図面を参照しながら説明する。
(Embodiment 3)
Hereinafter, a multi-axis acceleration sensor according to Embodiment 3 of the present invention will be described with reference to the drawings.

図9は本発明の実施の形態3における多軸加速度センサの駆動電極の位置を示したもので、この実施の形態3においては、上記した本発明の実施の形態1における多軸加速度センサと同一の構成部品については同一番号を付し、本発明の実施の形態1と異なる点のみを説明する。   FIG. 9 shows the positions of the drive electrodes of the multi-axis acceleration sensor according to the third embodiment of the present invention. This third embodiment is the same as the multi-axis acceleration sensor according to the first embodiment of the present invention. The same reference numerals are assigned to the components, and only the points different from the first embodiment of the present invention will be described.

すなわち、本発明の実施の形態3は、図2、図3、図9に示すように、固定基板15の上面における第1の梁部17の特に第2の梁部18の近傍と対向する側に駆動電極31を質量部12の中心対角に2つ設けたものである。   That is, in the third embodiment of the present invention, as shown in FIGS. 2, 3, and 9, the first beam portion 17 on the upper surface of the fixed substrate 15, in particular, the side facing the vicinity of the second beam portion 18. Two drive electrodes 31 are provided at the central diagonal of the mass portion 12.

ここで、静電引力をF、誘電率をε、電極面積をS、電極間の間隔をd、印加電圧をVとした場合、静電引力はF=ε×S×V2/D2/2の式から一般的に算出できるもので、共通電極32と駆動電極31との間に所定電圧を印加すると、静電引力が発生するため、この静電引力により第1の梁部17をZ軸方向に引き寄せて質量部12を変位させることができる。 Here, when the electrostatic attractive force is F, the dielectric constant is ε, the electrode area is S, the distance between the electrodes is d, and the applied voltage is V, the electrostatic attractive force is F = ε × S × V 2 / D 2 / 2 can be generally calculated from the equation (2). When a predetermined voltage is applied between the common electrode 32 and the drive electrode 31, an electrostatic attractive force is generated. The mass portion 12 can be displaced by pulling in the axial direction.

そして、共通電極32と2つの駆動電極31における一方の駆動電極31との間に所定電圧を印加、あるいは2つの駆動電極31に異なった電圧を印加すると、図9に示すように質量部12をXYZ座標系に所定角度で傾斜させることができるもので、このときの質量部12の傾斜による変位と、あらかじめ外部から印加された加速度に対する質量部12の変位とにおける相互の静電容量を比較することにより、自己的に一度で多軸方向の故障診断ができるという効果が得られるものである。また、2つの駆動電極31に同一の所定電圧を印加した場合は、質量部12をZ軸方向のみに変位させることができるため、これにより、Z軸方向単独の故障診断もできるという効果が得られるものである。   When a predetermined voltage is applied between the common electrode 32 and one of the two drive electrodes 31 or a different voltage is applied to the two drive electrodes 31, the mass portion 12 is moved as shown in FIG. It can be tilted at a predetermined angle in the XYZ coordinate system, and the mutual capacitance between the displacement due to the inclination of the mass portion 12 at this time and the displacement of the mass portion 12 with respect to the acceleration applied from the outside in advance is compared. As a result, it is possible to obtain the effect that self-diagnosis of the multi-axis direction can be performed at once. In addition, when the same predetermined voltage is applied to the two drive electrodes 31, the mass part 12 can be displaced only in the Z-axis direction, so that it is possible to perform fault diagnosis in the Z-axis direction alone. It is what

なお、質量部12の中心点対称の位置に4つの駆動電極(図示せず)を設けて、それぞれの駆動電極と共通電極32との間に印加する電圧を調整することにより、質量部12を変位させた場合でも、上記した本発明の実施の形態3と同様の効果を有するものである。   It should be noted that four drive electrodes (not shown) are provided at positions symmetrical to the center of the mass part 12 and the mass part 12 is adjusted by adjusting the voltage applied between each drive electrode and the common electrode 32. Even when it is displaced, it has the same effect as the above-described third embodiment of the present invention.

本発明にかかる多軸加速度センサは、加速度検出精度が良い多軸加速度センサを提供できるという効果を有し、車両、ロボット等の移動体の姿勢制御や精密機器の振動計測等に用いられる多軸方向の加速度を検出する多軸加速度センサとして有用である。   The multi-axis acceleration sensor according to the present invention has the effect of providing a multi-axis acceleration sensor with high acceleration detection accuracy, and is used for attitude control of a moving body such as a vehicle or a robot, vibration measurement of a precision instrument, or the like. This is useful as a multi-axis acceleration sensor that detects acceleration in a direction.

11 可動基板
12 質量部
13 支持部
14 梁部
15 固定基板
16 固定電極
17 第1の梁部
18 第2の梁部
19 貫通孔
21 可動基板
22 質量部
23 支持部
24 梁部
25 第1の梁部
26 第2の梁部
27 縦溝
31 駆動電極
32 共通電極
DESCRIPTION OF SYMBOLS 11 Movable board 12 Mass part 13 Support part 14 Beam part 15 Fixed board 16 Fixed electrode 17 1st beam part 18 2nd beam part 19 Through-hole 21 Movable board 22 Mass part 23 Support part 24 Beam part 25 1st beam Part 26 Second beam part 27 Vertical groove 31 Drive electrode 32 Common electrode

Claims (1)

XYZ座標系におけるXY平面に沿って配置され加速度に応じて変位する質量部を複数の梁部を介して周囲の支持部に支持する可動基板と、この可動基板における支持部と接合され、かつ可動基板における質量部と所定間隔を有する固定電極を上面に設けた固定基板とを備え、前記複数の梁部を、前記支持部からX軸あるいはY軸と平行方向に延びた第1の梁部と、前記質量部に連結され、かつXY軸と45°方向に斜めに延びた第2の梁部とにより構成し、前記第2の梁部の長手方向と垂直な断面2次モーメントを前記第1の梁部の長手方向と垂直な断面2次モーメントより小さくするとともに、質量部における第2の梁部と連結される部分の近傍に上面から下面にわたって気体を逃がす縦溝を設けた多軸加速度センサ。 A movable substrate that is arranged along the XY plane in the XYZ coordinate system and that displaces according to acceleration is supported by a surrounding support portion via a plurality of beam portions, and is joined to and supported by the support portion of the movable substrate. A first substrate having a plurality of beam portions extending in a direction parallel to the X-axis or the Y-axis from the support portion; And a second beam portion connected to the mass portion and extending obliquely in the 45 ° direction with respect to the XY axis, and the second moment of the section perpendicular to the longitudinal direction of the second beam portion. Multiaxial acceleration sensor provided with a vertical groove that allows gas to escape from the upper surface to the lower surface in the vicinity of the portion connected to the second beam portion in the mass portion, while making it smaller than the sectional moment of inertia perpendicular to the longitudinal direction of the beam portion .
JP2010029787A 2010-02-15 2010-02-15 Multiaxial acceleration sensor Pending JP2010164569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010029787A JP2010164569A (en) 2010-02-15 2010-02-15 Multiaxial acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010029787A JP2010164569A (en) 2010-02-15 2010-02-15 Multiaxial acceleration sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005129284A Division JP4525452B2 (en) 2005-04-27 2005-04-27 Multi-axis acceleration sensor

Publications (1)

Publication Number Publication Date
JP2010164569A true JP2010164569A (en) 2010-07-29

Family

ID=42580828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029787A Pending JP2010164569A (en) 2010-02-15 2010-02-15 Multiaxial acceleration sensor

Country Status (1)

Country Link
JP (1) JP2010164569A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675346A (en) * 2012-09-21 2014-03-26 中国科学院地质与地球物理研究所 Accelerometer and manufacturing process thereof
CN106918720A (en) * 2017-04-10 2017-07-04 浙江大学 A kind of filament restricted type acceleration transducer
JP6241982B1 (en) * 2016-08-31 2017-12-06 株式会社トライフォース・マネジメント Force sensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676867U (en) * 1993-04-06 1994-10-28 株式会社豊田中央研究所 Capacitive acceleration sensor
JPH0815308A (en) * 1994-07-04 1996-01-19 Murata Mfg Co Ltd Acceleration sensor
JPH09196682A (en) * 1996-01-19 1997-07-31 Matsushita Electric Ind Co Ltd Angular velocity sensor and acceleration sensor
JPH11248739A (en) * 1998-03-04 1999-09-17 Omron Corp Semiconductor multiaxial accelerometer
JP2003152162A (en) * 2001-11-15 2003-05-23 Tateyama Kagaku Kogyo Kk Substrate for electronic element and manufacturing method thereof as well as electronic element and manufacturing method thereof
JP2004012326A (en) * 2002-06-07 2004-01-15 Hiroaki Niitsuma Physical quantity detector and its manufacturing method
JP2004506176A (en) * 2000-04-04 2004-02-26 ローズマウント エアロスペイス インコーポレイテッド 3-axis accelerometer
JP2004177233A (en) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd Semiconductor acceleration sensor
JP2005049320A (en) * 2003-07-30 2005-02-24 Microstone Corp Acceleration sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676867U (en) * 1993-04-06 1994-10-28 株式会社豊田中央研究所 Capacitive acceleration sensor
JPH0815308A (en) * 1994-07-04 1996-01-19 Murata Mfg Co Ltd Acceleration sensor
JPH09196682A (en) * 1996-01-19 1997-07-31 Matsushita Electric Ind Co Ltd Angular velocity sensor and acceleration sensor
JPH11248739A (en) * 1998-03-04 1999-09-17 Omron Corp Semiconductor multiaxial accelerometer
JP2004506176A (en) * 2000-04-04 2004-02-26 ローズマウント エアロスペイス インコーポレイテッド 3-axis accelerometer
JP2003152162A (en) * 2001-11-15 2003-05-23 Tateyama Kagaku Kogyo Kk Substrate for electronic element and manufacturing method thereof as well as electronic element and manufacturing method thereof
JP2004012326A (en) * 2002-06-07 2004-01-15 Hiroaki Niitsuma Physical quantity detector and its manufacturing method
JP2004177233A (en) * 2002-11-26 2004-06-24 Matsushita Electric Works Ltd Semiconductor acceleration sensor
JP2005049320A (en) * 2003-07-30 2005-02-24 Microstone Corp Acceleration sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675346A (en) * 2012-09-21 2014-03-26 中国科学院地质与地球物理研究所 Accelerometer and manufacturing process thereof
JP6241982B1 (en) * 2016-08-31 2017-12-06 株式会社トライフォース・マネジメント Force sensor
WO2018042571A1 (en) * 2016-08-31 2018-03-08 株式会社 トライフォース・マネジメント Force sensor
CN106918720A (en) * 2017-04-10 2017-07-04 浙江大学 A kind of filament restricted type acceleration transducer
CN106918720B (en) * 2017-04-10 2019-05-14 浙江大学 A kind of filament restricted type acceleration transducer

Similar Documents

Publication Publication Date Title
US9134189B2 (en) Dynamic quantity sensor and dynamic quantity sensor system
US7302847B2 (en) Physical quantity sensor having movable portion
US8250916B2 (en) Inertial sensor
JP5137404B2 (en) A flush proof mass that can be used to detect acceleration along three axes
JP4525452B2 (en) Multi-axis acceleration sensor
WO2010061777A1 (en) Acceleration sensor
US9052334B2 (en) Acceleration sensor
US9035400B2 (en) Micro electro mechanical systems device
JP2010164569A (en) Multiaxial acceleration sensor
US9879998B2 (en) Angular velocity sensor
JP4965546B2 (en) Acceleration sensor
JP2009222475A (en) Compound sensor
JP4965547B2 (en) Acceleration sensor
JP4983107B2 (en) Inertial sensor and method of manufacturing inertial sensor
WO2020203011A1 (en) Angular velocity sensor
JP2006153514A (en) Gyro sensor and angular velocity detection method
JP5125138B2 (en) Compound sensor
JP4858215B2 (en) Compound sensor
JP2020115098A5 (en) Angular velocity sensors, inertial measurement units, electronics and mobiles
US9964561B2 (en) Acceleration sensor
JP2006064538A (en) Gyroscope sensor
JPH11248741A (en) Capacitive multiaxial accelerometer
JP2010216837A (en) Sensor for detecting dynamic quantity
JP2008232704A (en) Inertia force sensor
JP2010216843A (en) Sensor for detecting dynamic quantity

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022