JP2006064538A - Gyroscope sensor - Google Patents

Gyroscope sensor Download PDF

Info

Publication number
JP2006064538A
JP2006064538A JP2004247427A JP2004247427A JP2006064538A JP 2006064538 A JP2006064538 A JP 2006064538A JP 2004247427 A JP2004247427 A JP 2004247427A JP 2004247427 A JP2004247427 A JP 2004247427A JP 2006064538 A JP2006064538 A JP 2006064538A
Authority
JP
Japan
Prior art keywords
mass body
detection
drive
support substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004247427A
Other languages
Japanese (ja)
Other versions
JP4466283B2 (en
Inventor
Masao Kirihara
昌男 桐原
Kazuo Eda
和夫 江田
Koji Tsuji
幸司 辻
Yoichi Nishijima
洋一 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004247427A priority Critical patent/JP4466283B2/en
Publication of JP2006064538A publication Critical patent/JP2006064538A/en
Application granted granted Critical
Publication of JP4466283B2 publication Critical patent/JP4466283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a temperature dependency of detection values in a gyroscope sensor wherein an actuation mass body is vibrated in a direction transverse to a support substrate, and an angular speed value about a prescribed axis line in a plane being perpendicular to a line along the above direction, is detected from a displacement value of a detection mass body in the above plane, which is coupled to the actuation mass body through an actuation spring. <P>SOLUTION: The gyroscope sensor is composed such that the support substrate made of a glass substrate is stacked on one face of a main substrate 1 made up by carving a silicon material, and a cap made of a glass substrate is stacked on the other face, and they are sealed. In the main substrate 1, a pair of actuation mass bodies 11A, 11B are arranged symmetrically on both sides of the detection mass body 12 being centered, and vibrated in phase with each other, thereby suppressing vibrations occurring in the detection mass body 12 in the direction transverse to the support substrate. Furthermore, a pair of detection springs 15 whose base edges are connected to the support substrate, are connected to the center section of the detection mass body 12 at their free edges in order to support them in a cantilevered structure, thereby preventing thermal stresses from existing, even in the case there is a difference of linear expansion coefficient between the main substrate 1 and the support substrate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、MEMS(Micro Electro Mechanical System)技術を用いたジャイロセンサに関する。   The present invention relates to a gyro sensor using MEMS (Micro Electro Mechanical System) technology.

近年、自動車におけるサスぺンションやエアバッグの制御装置、航空機における慣性航法システム、カメラの手ぶれ補正装置などにおいて、ジャイロセンサを設けたものが提供されている。この種のジャイロセンサは、規定の振動を与えている質量体に外力による角速度が作用したときのコリオリ力を計測することによって角速度を計測するものである。すなわち、コリオリ力は、外力による角速度と質量体の速度との外積に比例するので、コリオリ力の計測値と既知である質量体の速度とから角速度に相当する値を求めることができる。   In recent years, suspensions and airbag control devices for automobiles, inertial navigation systems for aircraft, camera shake correction devices for cameras, and the like, which are provided with a gyro sensor, have been provided. This type of gyro sensor measures an angular velocity by measuring a Coriolis force when an angular velocity due to an external force acts on a mass body that is applying a prescribed vibration. That is, since the Coriolis force is proportional to the outer product of the angular velocity due to the external force and the velocity of the mass body, a value corresponding to the angular velocity can be obtained from the measured value of the Coriolis force and the known velocity of the mass body.

この種のジャイロセンサとしては、前記MEMS技術を用いて、半導体製造プロセスによって作成されるものが知られている(たとえば、特許文献1参照)。その特許文献1に記載のジャイロセンサ(ジャイロスコープ)は、紙面に垂直な方向であるZ方向に振動するように駆動される質量体を備え、紙面に沿う一方向(左右方向)であるX方向の参照符号Rで示す軸回りに作用する角速度を計測するものであって、図6に示すように、矩形枠状の駆動質量体(第1質量体)41と、駆動質量体41の内側に配置される検出質量体(第2質量体)42とを備え、駆動質量体41の各辺の中央部にそれぞれ設けた第1ばね43を図示しない支持基板にそれぞれ固定し、X方向に延長された4本の第2ばね44を介して駆動質量体41の左右両辺の各端部と検出質量体42の上下両辺とをそれぞれ結合した構造を有している。   As this type of gyro sensor, one produced by a semiconductor manufacturing process using the MEMS technology is known (for example, see Patent Document 1). The gyro sensor (gyroscope) described in Patent Document 1 includes a mass body that is driven to vibrate in a Z direction that is a direction perpendicular to the paper surface, and is an X direction that is one direction (left-right direction) along the paper surface. The angular velocity acting about the axis indicated by the reference symbol R is measured, and as shown in FIG. 6, a rectangular frame-shaped drive mass body (first mass body) 41 and a drive mass body 41 inside A detection mass body (second mass body) 42 to be arranged, and a first spring 43 provided at the center of each side of the drive mass body 41 is fixed to a support substrate (not shown) and extended in the X direction. In addition, each of the left and right sides of the drive mass body 41 and the upper and lower sides of the detection mass body 42 are coupled to each other via four second springs 44.

駆動質量体41の上下両辺には、該駆動質量体41およびそれに支持される検出質量体42をZ方向に振動させるように、駆動電圧が印加される駆動電極45が設けられ、検出質量体42内には、該検出質量体42のY方向の変位を静電容量の変化によって検出する水平検知電極46が設けられている。   Drive electrodes 45 to which a drive voltage is applied are provided on both upper and lower sides of the drive mass body 41 so as to vibrate the drive mass body 41 and the detection mass body 42 supported by the drive mass body 41 in the Z direction. Inside, a horizontal detection electrode 46 for detecting the displacement of the detection mass body 42 in the Y direction by a change in electrostatic capacitance is provided.

したがって、駆動電極45に駆動電圧を印加して駆動質量体41および検出質量体42をZ方向に振動させている状態において、X軸回りRの角速度が作用すると、駆動質量体41が該X軸回りRに変位する。検出質量体42は、X方向に延長された第2ばね44を介して駆動質量体41と結合されているので、駆動質量体41がX軸回りに変位すると、検出質量体42もX軸回りRに変位する。また、検出質量体42にはコリオリ力が生じるので、第2ばね44が撓んで、検出質量体42がY方向に変位する。検出質量体42のY方向の変位は水平検知電極46の出力によって計測できるので、駆動質量体41に与えたZ方向の振動と水平検知電極46の出カとを用いて、コリオリ力を算出することができ、コリオリ力が算出されると角速度に相当する値を求めることができる。   Accordingly, in the state where the drive mass 45 is applied to the drive electrode 45 to vibrate the drive mass body 41 and the detection mass body 42 in the Z direction, if an angular velocity around the X axis R is applied, the drive mass body 41 is moved to the X axis. Displacement around turn R. Since the detection mass body 42 is coupled to the drive mass body 41 via the second spring 44 extended in the X direction, when the drive mass body 41 is displaced about the X axis, the detection mass body 42 is also rotated about the X axis. Displacement to R. Further, since the Coriolis force is generated in the detection mass body 42, the second spring 44 is bent and the detection mass body 42 is displaced in the Y direction. Since the displacement of the detection mass body 42 in the Y direction can be measured by the output of the horizontal detection electrode 46, the Coriolis force is calculated using the vibration in the Z direction applied to the drive mass body 41 and the output of the horizontal detection electrode 46. When the Coriolis force is calculated, a value corresponding to the angular velocity can be obtained.

また、前記特許文献1には他の構成例も記載されており、第1ばね43を駆動質量体41の各隅角位置に設けた構成、第1ばね43に代えて第2ばね44の―端を支持基板に固定するとともに駆動質量体41と検出質量体42とを第1ばね43を介して連結した構成も開示されている。第2ばね44の一端を支持基板に固定する構成例としては、第2ばね44の他端を検出質量体42に連結した構成のほか、第2ばね44の他端を駆動質量体41に連結した構成も開示されている。
特開2003−194545号公報(第0014〜0020段落および図2)
In addition, another configuration example is described in Patent Document 1, in which the first spring 43 is provided at each corner position of the drive mass body 41, and the second spring 44 is replaced with the first spring 43. A configuration in which the end is fixed to the support substrate and the driving mass body 41 and the detection mass body 42 are connected via the first spring 43 is also disclosed. As an example of the configuration in which one end of the second spring 44 is fixed to the support substrate, the other end of the second spring 44 is connected to the detection mass body 42 and the other end of the second spring 44 is connected to the drive mass body 41. Such a configuration is also disclosed.
JP 2003-194545 A (paragraphs 0014 to 0020 and FIG. 2)

上述のような従来技術では、駆動質量体41および検出質量体42が、第1ばね43および第2ばね44によって、それぞれ四方から拘束されており、また駆動質量体41および検出質量体42は半導体基板から形成されるのに対して、第1ばね43および第2ばね44が接合される支持基板には一般にガラス基板が用いられる。このため、半導体基板とガラス基板との線膨張率の差によって、第1ばね43および第2ばね44に熱応力が生じて、ジャイロセンサの共振周波数が変化する。たとえば、前記支持基板への貼り付けは、400℃で行われ、常温でも残留応力が生じている。共振周波数が変化すると検出値が変化するので、上記従来技術によるジャイロセンサは、検出値の温度依存性が大きいという問題がある。   In the prior art as described above, the drive mass body 41 and the detection mass body 42 are restrained from the four sides by the first spring 43 and the second spring 44, respectively, and the drive mass body 41 and the detection mass body 42 are semiconductors. A glass substrate is generally used as a support substrate to which the first spring 43 and the second spring 44 are joined, whereas the substrate is formed from a substrate. For this reason, thermal stress is generated in the first spring 43 and the second spring 44 due to the difference in linear expansion coefficient between the semiconductor substrate and the glass substrate, and the resonance frequency of the gyro sensor changes. For example, the attachment to the support substrate is performed at 400 ° C., and residual stress is generated even at room temperature. Since the detected value changes when the resonance frequency changes, the gyro sensor according to the conventional technique has a problem that the temperature dependency of the detected value is large.

本発明の目的は、検出値の温度依存性を低減することができるジャイロセンサを提供することである。   The objective of this invention is providing the gyro sensor which can reduce the temperature dependence of a detected value.

本発明のジャイロセンサは、支持基板と、半導体基板から成る主基板とを備えて成るジャイロセンサにおいて、前記主基板は、基端部が前記支持基板に固定され、前記支持基板に沿った面内で一方向に延び、前記一方向とは直交方向に撓み変形可能な一対の検出ばねと、前記一対の検出ばねの遊端部に接続されることで、前記検出ばねを介して支持基板に変位可能に支持される検出質量体と、前記検出質量体の前記一方向の両側に相互に対称に配置され、相互に同位相で前記支持基板に交差する方向に振動するように駆動される一対の第1駆動質量体および第2駆動質量体と、前記第1駆動質量体および第2駆動質量体を前記検出質量体にそれぞれ連結する第1駆動ばねおよび第2駆動ばねと、前記支持基板に沿った面内での前記検出質量体の変位量を検出する検出手段とを含むことを特徴とする。   The gyro sensor of the present invention is a gyro sensor comprising a support substrate and a main substrate made of a semiconductor substrate, wherein the main substrate has a base end portion fixed to the support substrate, and an in-plane along the support substrate. Is connected to a pair of detection springs that can be bent and deformed in a direction orthogonal to the one direction, and the free ends of the pair of detection springs, thereby being displaced to the support substrate via the detection spring. A detection mass body that is supported and a pair of the detection mass bodies that are symmetrically arranged on both sides in the one direction and are driven to vibrate in a direction intersecting the support substrate in the same phase. A first drive mass and a second drive mass, a first drive spring and a second drive spring that connect the first drive mass and the second drive mass to the detection mass, respectively, and along the support substrate The detection mass body in the open plane Characterized in that it comprises a detecting means for detecting the amount of displacement.

上記の構成によれば、検出質量体、第1および第2駆動質量体を支持基板に支持している一対の検出ばねは、検出質量体から一方向に延長され、片持ちで検出質量体を支持しており、主基板と支持基板との線膨張率に差があっても、主基板に熱応力が殆ど発生しないので、共振周波数の変化が殆どなく、検出値の温度依存性を低減することができる。また、第1駆動質量体と第2駆動質量体とを検出質量体の両側に相互に対称に配置し、かつ相互に同―位相で駆動させることで、検出質量体に発生する支持基板に交差する方向の振動を抑制することが可能で、角速度の検出精度を向上することができる。   According to the above configuration, the detection mass body and the pair of detection springs supporting the first and second drive mass bodies on the support substrate are extended in one direction from the detection mass body, and the detection mass body is cantilevered. Even if there is a difference in the coefficient of linear expansion between the main substrate and the support substrate, almost no thermal stress is generated in the main substrate, so there is almost no change in the resonance frequency, and the temperature dependence of the detected value is reduced. be able to. In addition, the first driving mass body and the second driving mass body are arranged symmetrically on both sides of the detection mass body and are driven in the same phase to cross the support substrate generated in the detection mass body. Vibration in the direction to be performed can be suppressed, and the angular velocity detection accuracy can be improved.

また、本発明のジャイロセンサは、前記一対の検出ばねの基端部間を相互に連結し、剛性を有する連結片をさらに有し、該連結片の中間部が前記支持基板に固定されることを特徴とする。   Moreover, the gyro sensor of the present invention further includes a rigid connecting piece that connects the base ends of the pair of detection springs to each other, and an intermediate portion of the connecting piece is fixed to the support substrate. It is characterized by.

上記の構成によれば、一対の検出ばねの基端部をそれぞれ直接前記支持基板に固定するのではなく、剛性を有する連結片によって相互に連結し、その連結片の中間部を支持基板に固定することで、支持基板に対して主基板を1箇所で固定することができ、主基板と支持基板との接合作業が容易になる。また、主基板と支持基板との線膨張率に差があっても、検出ばねには連結片の延長方向の熱応力が殆ど作用せず、検出値の温度依存性を一層低減することができる。   According to the above configuration, the base ends of the pair of detection springs are not directly fixed to the support substrate, but are connected to each other by a rigid connection piece, and an intermediate portion of the connection piece is fixed to the support substrate. By doing so, the main substrate can be fixed to the support substrate at one place, and the joining operation of the main substrate and the support substrate becomes easy. Further, even if there is a difference in linear expansion coefficient between the main substrate and the support substrate, thermal stress in the extending direction of the connecting piece hardly acts on the detection spring, and the temperature dependence of the detection value can be further reduced. .

さらにまた、本発明のジャイロセンサでは、前記検出ばねは、前記検出質量体において、前記対称となる線上に接続されることを特徴とする。   Furthermore, in the gyro sensor of the present invention, the detection spring is connected to the symmetrical line in the detection mass body.

上記の構成によれば、前記検出ばねは、前記検出質量体において、前記第1および第2駆動質量体を相互に対称位置とする線上、すなわち該検出質量体の中央部に接続されるので、該検出質量体に発生する支持基板に交差する方向の振動を一層抑制することが可能で、角速度の検出精度を更に向上することができる。   According to the above configuration, the detection spring is connected to the detection mass body on a line having the first and second drive mass bodies symmetrically with respect to each other, that is, to the center portion of the detection mass body. It is possible to further suppress the vibration in the direction intersecting the support substrate generated in the detection mass body, and further improve the detection accuracy of the angular velocity.

また、本発明のジャイロセンサでは、前記第1駆動ばねおよび第2駆動ばねは、ねじれ変形が可能なトーションばねであることを特徴とする。   In the gyro sensor of the present invention, the first drive spring and the second drive spring are torsion springs capable of torsional deformation.

上記の構成によれば、撓み変形を利用するばねに比べて、第1および第2駆動質量体と検出質量体との間隔を短くし、それらを近接して配置できるので、省スペース化を図ることができる。   According to said structure, compared with the spring using a bending deformation, since the space | interval of a 1st and 2nd drive mass body and a detection mass body can be shortened and they can be arrange | positioned in close proximity, space saving is achieved. be able to.

さらにまた、本発明のジャイロセンサでは、前記検出手段は、前記検出質量体に形成された切抜孔の内周面に突設した複数本の可動櫛歯片と、前記切抜孔の内側に配置され、前記支持基板に固定された固定子の外周面に各可動櫛歯片とそれぞれ対向するように突設した複数本の固定櫛歯片とから成ることを特徴とする。   Furthermore, in the gyro sensor of the present invention, the detection means is disposed inside the cutout hole and a plurality of movable comb teeth protruding from the inner peripheral surface of the cutout hole formed in the detection mass body. And a plurality of fixed comb teeth protruding from the outer peripheral surface of the stator fixed to the support substrate so as to face each movable comb teeth.

上記の構成によれば、可動櫛歯片と固定櫛歯片とが複数本ずつ設けられているから、検出質量体の変位に対して可動櫛歯片と固定櫛歯片との間の静電容量が比較的大きく変化することになり、検出質量体の変位を検出する精度(分解能)を高めることができる。   According to the above configuration, since there are a plurality of movable comb teeth pieces and fixed comb tooth pieces, electrostatic capacitance between the movable comb teeth pieces and the fixed comb teeth pieces with respect to the displacement of the detection mass body. The capacity changes relatively greatly, and the accuracy (resolution) for detecting the displacement of the detection mass body can be increased.

また、本発明のジャイロセンサは、前記支持基板において、前記第1および第2駆動質量体との対向面にはそれぞれ対応する第1および第2固定駆動電極が配置され、前記検出ばねにおける支持基板への固定部と、前記第1および第2固定駆動電極との間に振動電圧を印加することによって、前記第1および第2駆動質量体と第1および第2固定電極との間に作用する静電力で前記第1および第2駆動質量体を振動させることを特徴とする。   Further, in the gyro sensor of the present invention, in the support substrate, corresponding first and second fixed drive electrodes are respectively disposed on surfaces facing the first and second drive mass bodies, and the support substrate in the detection spring is provided. By applying an oscillating voltage between the fixed portion to the first and second fixed drive electrodes, the first and second drive mass bodies act between the first and second fixed electrodes. The first and second driving mass bodies are vibrated by an electrostatic force.

上記の構成によれば、主基板に設けた検出ばねと、検出質量体と、第1および第2駆動質量体とを電路に用いることになり、支持基板に第1および第2固定駆動電極を形成するだけで、第1および第2駆動質量体を振動させるための振動電圧を印加することができ、構造を簡略化し、小型化を図ることができる。   According to said structure, the detection spring provided in the main board | substrate, the detection mass body, and the 1st and 2nd drive mass body will be used for an electrical circuit, and a 1st and 2nd fixed drive electrode is used for a support substrate. By simply forming, an oscillating voltage for oscillating the first and second driving mass bodies can be applied, and the structure can be simplified and the size can be reduced.

さらにまた、本発明のジャイロセンサでは、前記支持基板は厚み方向に貫通する複数個の透孔を有し、前記透孔の内周面には導電性の金属薄膜から成り、主基板を外部回路に接続する電極配線が形成されていることを特徴とする。   Furthermore, in the gyro sensor of the present invention, the support substrate has a plurality of through holes penetrating in the thickness direction, and an inner peripheral surface of the through holes is formed of a conductive metal thin film, and the main substrate is connected to an external circuit. The electrode wiring connected to is formed.

上記の構成によれば、支持基板に設けた透孔の内周面に形成した電極配線によって主基板の各部を外部回路に接続可能とするので、主基板の各部位を外部回路に接続するための配線を引き回す必要がなく、結果的に支持基板の占有面積を小さくすることができ、小型化を図ることができる。   According to the above configuration, each part of the main substrate can be connected to the external circuit by the electrode wiring formed on the inner peripheral surface of the through hole provided in the support substrate, so that each part of the main substrate can be connected to the external circuit. Therefore, the area occupied by the support substrate can be reduced and the size can be reduced.

また、本発明のジャイロセンサでは、前記第1および第2駆動質量体の厚み寸法は、前記検出質量体の厚み寸法よりも大きいことを特徴とする。   In the gyro sensor of the present invention, the thickness dimension of the first and second drive mass bodies is larger than the thickness dimension of the detection mass body.

上記の構成によれば、第1および第2駆動質量体と検出質量体との質量差を大きくすることができ、第1および第2駆動質量体の質量を検出質量体の質量よりも大きくすることによって、感度を高めることができる。   According to said structure, the mass difference of a 1st and 2nd drive mass body and a detection mass body can be enlarged, and the mass of a 1st and 2nd drive mass body is made larger than the mass of a detection mass body. Therefore, the sensitivity can be increased.

さらにまた、本発明のジャイロセンサは、駆動質量体を支持基板に交差する方向に振動させ、前記駆動質量体に駆動ばねを介して連結された検出質量体における前記駆動質量体の振動方向とは垂直な面内での変位量を検出することで、前記面内の予め定める軸線回りの角速度を検出するようにしたジャイロセンサにおいて、前記検出質量体を中心として、その両側に前記駆動質量体を一対で対称に配置し、かつ相互に同位相で振動させ、前記駆動質量体および検出質量体の配列方向と平行に延び、基端部が前記支持基板に接続され、遊端部が前記検出質量体に接続されることで、前記駆動質量体および検出質量体の前記振動方向の変位およびそれに垂直な方向の変位を可能に支持する一対の検出ばねと、前記検出質量体の前記面方向の変位量を検出する検出手段とを含むことを特徴とする。   Furthermore, the gyro sensor of the present invention vibrates the driving mass body in a direction intersecting the support substrate, and what is the vibration direction of the driving mass body in the detection mass body connected to the driving mass body via a driving spring? In the gyro sensor configured to detect an angular velocity around a predetermined axis in the plane by detecting a displacement amount in a vertical plane, the drive mass bodies are arranged on both sides of the detection mass body as a center. A pair of symmetrically arranged and oscillating in the same phase with each other, extending in parallel with the arrangement direction of the driving mass body and the detection mass body, the base end portion is connected to the support substrate, and the free end portion is the detection mass A pair of detection springs that support displacement of the drive mass body and the detection mass body in the vibration direction and displacement in a direction perpendicular thereto by being connected to a body, and displacement in the surface direction of the detection mass body amount Characterized in that it comprises a detection means for detecting for.

上記の構成によれば、検出質量体およびそれに連結される2つの駆動質量体を支持基板に支持している一対の検出ばねは、検出質量体から一方向に延長され、片持ちで検出質量体を支持しており、前記駆動質量体、駆動ばね、検出質量体および検出ばねが形成される主基板と、前記支持基板との線膨張率に差があっても、主基板に熱応力が殆ど発生しないので、共振周波数の変化が殆どなく、検出値の温度依存性を低減することができる。また、2つの駆動質量体を検出質量体の両側に相互に対称に配置し、かつ相互に同―位相で駆動させることで、検出質量体に発生する支持基板に交差する方向の振動を抑制することが可能で、角速度の検出精度を向上することができる。   According to the above configuration, the pair of detection springs that support the detection mass body and the two driving mass bodies connected thereto on the support substrate are extended in one direction from the detection mass body, and cantilevered in the detection mass body Even if there is a difference in coefficient of linear expansion between the main substrate on which the drive mass body, the drive spring, the detection mass body and the detection spring are formed, and the support substrate, there is almost no thermal stress on the main substrate. Since it does not occur, there is almost no change in the resonance frequency, and the temperature dependence of the detected value can be reduced. In addition, by arranging two driving mass bodies symmetrically on both sides of the detection mass body and driving them in the same phase, vibration in the direction intersecting the support substrate generated in the detection mass body is suppressed. It is possible to improve the angular velocity detection accuracy.

本発明のジャイロセンサは、以上のように、支持基板と、半導体基板から成る主基板とを備えて成るジャイロセンサにおいて、前記主基板を、基端部が前記支持基板に固定され、前記支持基板に沿った面内で一方向に延び、前記一方向とは直交方向に撓み変形可能な一対の検出ばねと、前記一対の検出ばねの遊端部に接続されることで、前記検出ばねを介して支持基板に変位可能に支持される検出質量体と、前記検出質量体の前記一方向の両側に相互に対称に配置され、相互に同位相で前記支持基板に交差する方向に振動するように駆動される一対の第1駆動質量体および第2駆動質量体と、前記第1駆動質量体および第2駆動質量体を前記検出質量体にそれぞれ連結する第1駆動ばねおよび第2駆動ばねと、前記支持基板に沿った面内での前記検出質量体の変位量を検出する検出手段とを含んで構成する。   As described above, the gyro sensor of the present invention is a gyro sensor comprising a support substrate and a main substrate made of a semiconductor substrate. The gyro sensor includes a base end portion fixed to the support substrate, and the support substrate. Are connected to a pair of detection springs that extend in one direction within the plane along the direction and can be bent and deformed in a direction orthogonal to the one direction, and free ends of the pair of detection springs. The detection mass body that is displaceably supported by the support substrate and the detection mass body are arranged symmetrically with respect to both sides of the detection mass body so as to vibrate in a direction intersecting the support substrate in the same phase. A pair of first and second drive masses to be driven, a first drive spring and a second drive spring coupling the first and second drive masses to the detection mass, respectively; In-plane along the support substrate Configuring and a detection means for detecting a displacement amount of the serial detection mass body.

それゆえ、検出質量体、第1および第2駆動質量体を支持基板に支持している一対の検出ばねは、検出質量体から一方向に延長され、片持ちで検出質量体を支持しており、主基板と支持基板との線膨張率に差があっても、主基板に熱応力が殆ど発生しないので、共振周波数の変化が殆どなく、検出値の温度依存性を低減することができる。また、第1駆動質量体と第2駆動質量体とを検出質量体の両側に相互に対称に配置し、かつ相互に同―位相で駆動させることで、検出質量体に発生する支持基板に交差する方向の振動を抑制することが可能で、角速度の検出精度を向上することができる。   Therefore, the pair of detection springs supporting the detection mass body and the first and second drive mass bodies on the support substrate are extended in one direction from the detection mass body and support the detection mass body in a cantilever manner. Even if there is a difference in the linear expansion coefficient between the main substrate and the support substrate, almost no thermal stress is generated in the main substrate, so that there is almost no change in the resonance frequency, and the temperature dependence of the detected value can be reduced. In addition, the first driving mass body and the second driving mass body are arranged symmetrically on both sides of the detection mass body and are driven in the same phase to cross the support substrate generated in the detection mass body. Vibration in the direction to be performed can be suppressed, and the angular velocity detection accuracy can be improved.

図1は、本発明の実施の一形態に係るジャイロセンサの構造を示す縦断面図である。このジャイロセンサは、大略的に、シリコン基板から成る主基板1が、エッチングなどによって後述するような形状に彫り出され、その一方の面にガラス基板から成る支持基板2が積層され、他方の面にガラス基板から成るキャップ3が積層された3層構造であって、支持基板2およびキャップ3は、主基板1に対して、たとえば陽極接合によって接合される。なお、主基板1には、シリコン以外の半導体を用いることも可能である。   FIG. 1 is a longitudinal sectional view showing a structure of a gyro sensor according to an embodiment of the present invention. In this gyro sensor, a main substrate 1 made of a silicon substrate is roughly carved into a shape as will be described later by etching or the like, and a support substrate 2 made of a glass substrate is laminated on one surface, and the other surface is made. The support substrate 2 and the cap 3 are bonded to the main substrate 1 by, for example, anodic bonding. Note that a semiconductor other than silicon can be used for the main substrate 1.

図2は、前記主基板1の平面図である。この図2において、図1の切断面をI−Iで示す。主基板1は、平面視において矩形状である第1駆動質量体11Aおよび第2駆動質量体11Bと、検出質量体12とが、該主基板1の板面に沿って並設されるとともに、これらの第1駆動質量体11A、第2駆動質量体11Bおよび検出質量体12の周囲を囲む矩形枠状のフレーム10を備えて構成される。したがって、主基板1に支持基板2およびキャップ3を接合した状態では、支持基板2とキャップ3とフレーム10とに囲まれる空間内に、第1駆動質量体11A、第2駆動質量体11Bおよび検出質量体12が密封される。以下では、第1駆動質量体11A、検出質量体12および第2駆動質量体11Bが並ぶ方向をY方向、主基板1の板面に沿う面内でY方向に直交する方向をX方向、X方向とY方向とに直交する方向すなわち主基板Iの板面に直交する方向(紙面に垂直方向)をZ方向とする。   FIG. 2 is a plan view of the main substrate 1. In FIG. 2, the cut surface of FIG. 1 is indicated by II. The main substrate 1 includes a first driving mass body 11A and a second driving mass body 11B that are rectangular in a plan view, and a detection mass body 12 arranged in parallel along the plate surface of the main substrate 1, The first driving mass body 11 </ b> A, the second driving mass body 11 </ b> B, and the detection mass body 12 are configured to include a rectangular frame 10 surrounding the periphery. Therefore, in a state where the support substrate 2 and the cap 3 are joined to the main substrate 1, the first drive mass body 11A, the second drive mass body 11B, and the detection are in the space surrounded by the support substrate 2, the cap 3 and the frame 10. The mass body 12 is sealed. In the following, the direction in which the first driving mass body 11A, the detection mass body 12 and the second driving mass body 11B are arranged is the Y direction, and the direction orthogonal to the Y direction in the plane along the plate surface of the main substrate 1 is the X direction. A direction perpendicular to the direction and the Y direction, that is, a direction perpendicular to the plate surface of the main substrate I (a direction perpendicular to the paper surface) is defined as a Z direction.

前記検出質量体12には、第1駆動質量体11Aと第2駆動質量体11Bとの互いの位置、形状が線対称となるように、X方向に延長された―対の第1駆動ばね13Aおよび第2駆動ばね13Bをそれぞれ介して、前記第1駆動質量体11Aおよび第2駆動質量体11Bが連続―体に連結される。具体的には、検出質量体12には、X方向において、その両側縁部を残して、全長よりもやや短くスリット溝14Aが形成され、第1駆動質量体11Aおよび第2駆動質量体11Bには、X方向の各側縁からそれぞれ切り込まれ、かつ相互に一直線上に並ぶ2本のスリット溝14Bが形成され、スリット溝14Aと各スリット溝14Bとの間に、それぞれ第1駆動ばね13Aおよび第2駆動ばね13Bが形成される。各駆動ばね13A,13Bの―端部は、スリット溝14Aの各端部と検出質量体12の側縁との間に連続し、各駆動ばね13A,13Bの他端部は、2本のスリット溝14Bの間の部位において第1駆動質量体11Aおよび第2駆動質量体11Bにそれぞれ連続する。   The detection mass body 12 includes a pair of first drive springs 13A extended in the X direction so that the positions and shapes of the first drive mass body 11A and the second drive mass body 11B are axisymmetric. The first driving mass body 11A and the second driving mass body 11B are connected to the continuous body via the second driving spring 13B and the second driving spring 13B, respectively. Specifically, the detection mass body 12 is formed with a slit groove 14A slightly shorter than the entire length in the X direction, leaving both side edges, and the first driving mass body 11A and the second driving mass body 11B have Are formed by two slit grooves 14B cut from the respective side edges in the X direction and aligned with each other, and the first drive springs 13A are respectively provided between the slit grooves 14A and the respective slit grooves 14B. And the 2nd drive spring 13B is formed. The negative ends of the drive springs 13A and 13B are continuous between the end portions of the slit groove 14A and the side edges of the detection mass body 12, and the other ends of the drive springs 13A and 13B are two slits. The first driving mass body 11A and the second driving mass body 11B are respectively connected to the portions between the grooves 14B.

第1駆動ばね13Aおよび第2駆動ばね13Bは、ねじれ変形が可能なトーションばねであって、第1駆動質量体11Aおよび第2駆動質量体11Bは検出質量体12に対して第1駆動ばね13Aおよび第2駆動ばね13Bの回りで変位可能になっている。つまり、第1駆動質量体11Aおよび第2駆動質量体11Bは、検出質量体12に対してZ方向の並進とX方向の軸回りの回転とが可能であると言える。また、第1駆動ばね13Aおよび第2駆動ばね13Bにトーションばねを用いているので、所望の小さいばね係数を得るにあたって、第1駆動ばね13Aおよび第2駆動ばね13Bの厚みをむやみに小さくする必要がなく、第1駆動ばね13Aおよび第2駆動ばね13Bを形成する際の加工が容易である。   The first drive spring 13 </ b> A and the second drive spring 13 </ b> B are torsion springs that can be torsionally deformed, and the first drive mass 11 </ b> A and the second drive mass 11 </ b> B are the first drive spring 13 </ b> A with respect to the detection mass 12. The second drive spring 13B can be displaced. That is, it can be said that the first driving mass body 11A and the second driving mass body 11B can translate in the Z direction and rotate around the axis in the X direction with respect to the detection mass body 12. Further, since the torsion springs are used for the first drive spring 13A and the second drive spring 13B, it is necessary to reduce the thickness of the first drive spring 13A and the second drive spring 13B unnecessarily in order to obtain a desired small spring coefficient. There is no, and the process at the time of forming the 1st drive spring 13A and the 2nd drive spring 13B is easy.

なお、第1駆動質量体11Aおよび第2駆動質量体11Bにスリット溝14Aが形成され、検出質量体12に2本のスリット溝14Bが形成されてもよい。   In addition, the slit groove 14A may be formed in the first driving mass body 11A and the second driving mass body 11B, and the two slit grooves 14B may be formed in the detection mass body 12.

前記検出質量体12におけるX方向の各側縁には、Y方向に延長された検出ばね15の遊端部が、それぞれ線対称に位置する第1駆動質量体11Aと第2駆動質量体11Bとの対称線上において連結されており、その両検出ばね15の基端部同士は、X方向に延長された連結片16を介して連続一体に連結される。すなわち、―対の検出ばね15と連結片16とによって、平面視でコ字状の部材が形成されている。ただし、連結片16は、第1駆動ばね13A、第2駆動ばね13Bおよび検出ばね15に比較して、充分に剛性が高くなるように設計されている。連結片16の長手方向の中間部には、固定片17が突設され、固定片17は前記支持基板2に接合され、定位置に固定される。第1駆動質量体11Aおよび検出質量体12と、検出ばね15および連結片16との間は、コ字状のスリット溝14Cによって分離されており、第1駆動質量体11Aに形成されるスリット溝14Bの一端はスリット溝14Cに連続する。検出ばね15は、X方向に撓み変形が可能であって、第1駆動質量体11A、第2駆動質量体11Bおよび検出質量体12は、固定片17に対してX方向に変位可能になっている。   At each side edge of the detection mass body 12 in the X direction, the free end portions of the detection springs 15 extending in the Y direction are respectively positioned in line symmetry with the first drive mass body 11A and the second drive mass body 11B. The base ends of the two detection springs 15 are continuously connected to each other via a connecting piece 16 extending in the X direction. That is, the pair of detection springs 15 and the connecting piece 16 form a U-shaped member in plan view. However, the connecting piece 16 is designed to have sufficiently high rigidity as compared with the first drive spring 13A, the second drive spring 13B, and the detection spring 15. A fixing piece 17 projects from an intermediate portion in the longitudinal direction of the connecting piece 16, and the fixing piece 17 is joined to the support substrate 2 and fixed at a fixed position. The first drive mass body 11A and the detection mass body 12, and the detection spring 15 and the connecting piece 16 are separated by a U-shaped slit groove 14C, and a slit groove formed in the first drive mass body 11A. One end of 14B continues to the slit groove 14C. The detection spring 15 can be bent and deformed in the X direction, and the first drive mass body 11A, the second drive mass body 11B, and the detection mass body 12 can be displaced in the X direction with respect to the fixed piece 17. Yes.

前記検出質量体12はまた、厚み方向に貫通する4個の切抜孔18を有し、各切抜孔18の内側には、それぞれ固定子20が配置されている。前記固定子20は、検出質量体12のX方向の両端付近に配置される電極片21を有し、その電極片21からは櫛骨片22がX方向に延長される。前記電極片21と櫛骨片22とは前記支持基板2に接合され、固定子20は定位置に固定される。前記切抜孔18の内周面は固定子20の外周面の形状に沿った形状であって、固定子20との間には間隙が形成されている。検出質量体12のX方向の両端部には、2個ずつの電極片21が配置されているが、1個ずつや3個ずつなどでもよい。櫛骨片22の幅方向の両端面には、図3に示すように、それぞれ多数本の固定櫛歯片23がX方向に列設される。―方、切抜孔18の内側面であって櫛骨片22との対向面には、多数本の固定櫛歯片23にそれぞれ対向する可動櫛歯片24がX方向に列設される。各固定櫛歯片23と各可動櫛歯片24とは相互に離間して配置されており、検出質量体12がY軸回りRに変位する際の固定櫛歯片23と可動櫛歯片24とのX方向の距離変化に伴う静電容量の変化を検出できるようになっている。すなわち、固定櫛歯片23と可動櫛歯片24とによって、検出質量体12の変位を検出する検山手段が構成される。   The detection mass body 12 also has four cutout holes 18 penetrating in the thickness direction, and a stator 20 is disposed inside each cutout hole 18. The stator 20 has electrode pieces 21 arranged in the vicinity of both ends in the X direction of the detection mass body 12, and a comb piece 22 extends in the X direction from the electrode pieces 21. The electrode piece 21 and the comb piece 22 are joined to the support substrate 2, and the stator 20 is fixed in place. The inner peripheral surface of the cutout hole 18 has a shape that follows the shape of the outer peripheral surface of the stator 20, and a gap is formed between the cutout hole 18 and the stator 20. Two electrode pieces 21 are arranged at both ends of the detection mass body 12 in the X direction, but may be one piece or three pieces. As shown in FIG. 3, a large number of fixed comb teeth 23 are arranged in the X direction on both end faces in the width direction of the comb bone piece 22. On the other hand, on the inner surface of the cut-out hole 18 and the surface facing the comb bone piece 22, a plurality of movable comb teeth 24 respectively facing the fixed comb teeth 23 are arranged in the X direction. Each fixed comb tooth piece 23 and each movable comb tooth piece 24 are arranged so as to be separated from each other, and the fixed comb tooth piece 23 and the movable comb tooth piece 24 when the detection mass body 12 is displaced around the Y axis R. It is possible to detect a change in electrostatic capacitance accompanying a change in the distance in the X direction. That is, the fixed comb tooth piece 23 and the movable comb tooth piece 24 constitute a mountain detecting means for detecting the displacement of the detection mass body 12.

前記支持基板2およびキャップ3は、主基板1の外周部分に残したフレーム10に接合され、固定片17および固定子20は支持基板2に接合されている。ただし、第1駆動質量体11A、第2駆動質量体11Bおよび検出質量体12は、支持基板2およびキャップ3の間に形成される間隙においてZ方向に変位可能でなければならないので、図4に示すように、第1駆動質量体11A、第2駆動質量体11Bおよび検出質量体12における支持基板2との対向面を支持基板2から後退させることで、支持基板2と、第1駆動質量体11A、第2駆動質量体11Bおよび検出質量体12との間隙g1を確保し、またキャップ3における主基板1との対向面に凹所29を形成することによって、キャップ3と、前記第1駆動質量体11A、第2駆動質量体11Bおよび検出質量体12との間隙g2を確保している。   The support substrate 2 and the cap 3 are joined to the frame 10 left on the outer peripheral portion of the main substrate 1, and the fixing piece 17 and the stator 20 are joined to the support substrate 2. However, since the first drive mass body 11A, the second drive mass body 11B, and the detection mass body 12 must be displaceable in the Z direction in the gap formed between the support substrate 2 and the cap 3, FIG. As shown, the support substrate 2 and the first drive mass body are moved back by moving the opposing surfaces of the first drive mass body 11A, the second drive mass body 11B and the detection mass body 12 to the support substrate 2 from the support substrate 2. 11A, a gap g1 between the second drive mass body 11B and the detection mass body 12 is secured, and a recess 29 is formed on the surface of the cap 3 that faces the main substrate 1, whereby the cap 3 and the first drive A gap g2 is secured between the mass body 11A, the second drive mass body 11B, and the detection mass body 12.

両間隙g1,g2は、数μm〜十数μmであって、たとえば10μmに設定される。この場合、固定片17の厚み寸法t1を300μm、第1駆動質量体11Aおよび第2駆動質量体11Bの厚み寸法t2を290μmなどと設定する。なお、主基板1の厚み寸法を変化させる代わりに、支持基板2において第1駆動質量体11A、第2駆動質量体11Bおよび検出質量体12と対向する部位に、凹所を形成してもよい。要するに、第1駆動質量体11Aおよび第2駆動質量体11Bと支持基板2との対向面において、間隙g1を確保できるように第1駆動質量体11Aおよび第2駆動質量体11Bと、支持基板2との少なくとも一方を他方から後退させた形状とすればよい。   Both gaps g1 and g2 are several μm to several tens of μm, and are set to 10 μm, for example. In this case, the thickness dimension t1 of the fixed piece 17 is set to 300 μm, and the thickness dimension t2 of the first driving mass body 11A and the second driving mass body 11B is set to 290 μm. Instead of changing the thickness dimension of the main substrate 1, a recess may be formed in a portion of the support substrate 2 that faces the first driving mass body 11 </ b> A, the second driving mass body 11 </ b> B, and the detection mass body 12. . In short, the first drive mass body 11A, the second drive mass body 11B, and the support substrate 2 are provided so that the gap g1 can be secured on the opposing surfaces of the first drive mass body 11A and the second drive mass body 11B and the support substrate 2. And at least one of them may be made to recede from the other.

前記支持基板2において、第1駆動質量体11Aおよび第2駆動質量体11Bとの対向面には、アルミニウム等の導電性の金属薄膜から成る第1固定駆動電極25Aおよび第2固定駆動電極25Bが形成されている。また、前記支持基板2の外側の面からは、固定片17に対応する部位と、固定子20の各電極片21に対応する部位と、第1固定駆動電極25Aおよび第2固定駆動電極25Bに対応する部位とに、それぞれ図4で示すような透孔26が形成されている。さらに、図示例ではフレーム10において取付片17の近傍部位に、取付片17を挟む形で、一対の接地片19が形成されており、各接地片19に対応する部位においても前記透孔26が形成される。   In the support substrate 2, the first fixed drive electrode 25 </ b> A and the second fixed drive electrode 25 </ b> B made of a conductive metal thin film such as aluminum are provided on the surface facing the first drive mass body 11 </ b> A and the second drive mass body 11 </ b> B. Is formed. Further, from the outer surface of the support substrate 2, a portion corresponding to the fixed piece 17, a portion corresponding to each electrode piece 21 of the stator 20, and the first fixed drive electrode 25 </ b> A and the second fixed drive electrode 25 </ b> B. Through holes 26 as shown in FIG. 4 are formed in corresponding portions. Further, in the illustrated example, a pair of grounding pieces 19 are formed in the frame 10 in the vicinity of the mounting pieces 17 so as to sandwich the mounting pieces 17, and the through-holes 26 are also formed at portions corresponding to the respective grounding pieces 19. It is formed.

前記透孔26には、図4に示すように、アルミニウム等の導電性の金属薄膜から成る電極配線27が形成される。透孔26は主基板1に近付く程内径が小さくなるテーパ状であって、電極配線27は透孔26の内周面だけでなく、主基板1の一部の表面も覆うように形成されている。つまり、透孔26の一端面は電極配線27によって閉塞され、その電極配線27は主基板1の前記の各部位に電気的に接続される。また、電極配線27の一部は、支持基板2の表面(厚み方向における主基板1との反対面)に延長きれ、支持基板2の表面に延長された部位は電極パッド28として機能する。このように支持基板2に形成した透孔26の内周面にスルーホールメッキと同様の金属薄膜の電極配線27を形成することによって、主基板1に形成した各部材と電極パッド28とを支持基板2の厚み方向において接続しているので、主基板1の上で配線を引き回すことなく外部回路と接続することが可能になり、基板面積の小型化を実現することができる。   As shown in FIG. 4, an electrode wiring 27 made of a conductive metal thin film such as aluminum is formed in the through hole 26. The through hole 26 is tapered so that the inner diameter decreases as it approaches the main substrate 1, and the electrode wiring 27 is formed so as to cover not only the inner peripheral surface of the through hole 26 but also a part of the surface of the main substrate 1. Yes. That is, one end surface of the through hole 26 is blocked by the electrode wiring 27, and the electrode wiring 27 is electrically connected to each of the above-described portions of the main substrate 1. A part of the electrode wiring 27 can be extended to the surface of the support substrate 2 (the surface opposite to the main substrate 1 in the thickness direction), and the portion extended to the surface of the support substrate 2 functions as an electrode pad 28. Thus, by forming the electrode wiring 27 of the metal thin film similar to the through-hole plating on the inner peripheral surface of the through hole 26 formed in the support substrate 2, each member formed on the main substrate 1 and the electrode pad 28 are supported. Since the connection is made in the thickness direction of the substrate 2, it is possible to connect to an external circuit without routing the wiring on the main substrate 1, and a reduction in the substrate area can be realized.

このように構成されるジャイロセンサを製造する際には、透孔26を形成した支持基板2に主基板1を接合する。この状態では、主基板1の各部位(フレーム10、第1駆動質量体11A、第2駆動質量体11B、検出質量体12および固定子20)は分離きれておらず、主基板1を支持基板2に接合した後に、フレーム10を分離する溝、スリット構14A〜14C、固定子20を分離する溝を、主基板1におけるキャップ3との対向面から形成して各部位に分離する。この段階において、固定片17は支持基板2に接合されているから、固定片17に連続する連結片16、検出ばね15、検出質量体12ならびに第1駆動質量体11Aおよび第2駆動質量体11Bは支持基板2に保持されており、また固定子20も支持基板2に接合されている。その後、主基板1にキャップ3を接合すれば、第1駆動質量体11A、第2駆動質量体11Bおよび検出質量体12は、支持基板2とキャップ3とフレーム10とに囲まれた空間内に密封される。さらに、支持基板2の透孔26に電極配線27を形成するとともに、電極パッド28を形成することによって、上述したジャイロセンサが形成される。   When the gyro sensor configured as described above is manufactured, the main substrate 1 is bonded to the support substrate 2 in which the through holes 26 are formed. In this state, each part (the frame 10, the first driving mass body 11A, the second driving mass body 11B, the detection mass body 12 and the stator 20) of the main board 1 is not separated, and the main board 1 is supported by the supporting board. After joining to 2, grooves for separating the frame 10, slit structures 14 </ b> A to 14 </ b> C, and grooves for separating the stator 20 are formed from the surface facing the cap 3 in the main substrate 1 and separated into each part. At this stage, since the fixed piece 17 is joined to the support substrate 2, the connecting piece 16, the detection spring 15, the detection mass body 12, the first driving mass body 11A, and the second driving mass body 11B that are continuous to the fixing piece 17 are used. Is held on the support substrate 2, and the stator 20 is also bonded to the support substrate 2. Thereafter, if the cap 3 is joined to the main substrate 1, the first driving mass body 11 </ b> A, the second driving mass body 11 </ b> B, and the detection mass body 12 are in a space surrounded by the support substrate 2, the cap 3, and the frame 10. Sealed. Furthermore, by forming the electrode wiring 27 in the through hole 26 of the support substrate 2 and forming the electrode pad 28, the above-described gyro sensor is formed.

以下に、本実施形態の動作を説明する。本実施形態のジャイロセンサは、第1駆動質量体11Aおよび第2駆動質量体11Bに規定の同位相の振動を与えておき、外力による前記Y方向の軸回りRの角速度が作用したときの検出質量体12の変位を検出するものである。第1駆動質量体11Aおよび第2駆動質量体11Bを同位相で振動させるには、第1固定駆動電極25Aおよび第2固定駆動電極25Bと、第1駆動質量体11Aおよび第2駆動質量体11Bとの間に、同位相の正弦波形ないし矩形波形の振動電圧を印加すればよい。振動電圧は、交流波形が望ましいが、極性を反転させることは必須ではない。   The operation of this embodiment will be described below. The gyro sensor of the present embodiment detects when the angular velocity around the axis in the Y direction by an external force is applied to the first driving mass body 11A and the second driving mass body 11B by applying predetermined in-phase vibrations. The displacement of the mass body 12 is detected. In order to vibrate the first drive mass body 11A and the second drive mass body 11B in the same phase, the first fixed drive electrode 25A and the second fixed drive electrode 25B, and the first drive mass body 11A and the second drive mass body 11B Between them, an oscillating voltage having a sine waveform or rectangular waveform having the same phase may be applied. The oscillating voltage is preferably an AC waveform, but it is not essential to reverse the polarity.

第1駆動質量体11Aおよび第2駆動質量体11Bは、ばね13A,13B−検出質量体12−検出ばね15−連結片16を介して、固定片17に電気的に接続され、支持基板2において固定片17に対応する部位には透孔26が形成されており、また第1固定駆動電極25Aおよび第2固定駆動電極25Bに対応する部位にも透孔26が形成されている。したがって、両透孔26に対応する電極配線27に振動電圧を印加すれば、第1駆動質量体11Aおよび第2駆動質量体11Bと、第1固定駆動電極25Aおよび第2固定駆動電極25Bとの間に、それぞれ静電力を作用させて、第1駆動質量体11Aおよび第2駆動質量体11Bを、支持基板2およびキャップ3に対してZ方向に振動させることができる。振動電圧の周波数は、第1駆動質量体11A、第2駆動質量体11Bおよび検出質量体12の質量や、第1駆動ばね13A、第2駆動ばね13Bおよび検出ばね15のばね定数などによって決定される共振周波数に一致させれば、比較的小さい駆動力で大きな振幅を得ることができる。   The first driving mass body 11A and the second driving mass body 11B are electrically connected to the fixed piece 17 via the springs 13A, 13B—the detection mass body 12—the detection spring 15—the connecting piece 16, and in the support substrate 2. A through hole 26 is formed in a portion corresponding to the fixed piece 17, and a through hole 26 is also formed in a portion corresponding to the first fixed drive electrode 25A and the second fixed drive electrode 25B. Therefore, if an oscillating voltage is applied to the electrode wiring 27 corresponding to both the through holes 26, the first driving mass body 11A and the second driving mass body 11B and the first fixed driving electrode 25A and the second fixed driving electrode 25B In the meantime, the first driving mass 11 </ b> A and the second driving mass 11 </ b> B can be vibrated in the Z direction with respect to the support substrate 2 and the cap 3 by applying an electrostatic force. The frequency of the oscillating voltage is determined by the masses of the first drive mass body 11A, the second drive mass body 11B, and the detection mass body 12, the spring constants of the first drive spring 13A, the second drive spring 13B, and the detection spring 15, and the like. A large amplitude can be obtained with a relatively small driving force.

こうして第1駆動質量体11Aおよび第2駆動質量体11Bを同位相で振動させている状態において、主基板1に前記Y方向の軸回りRの角速度が作用したときに、X方向にコリオリ力が発生し、第1駆動質量体11A、第2駆動質量体11Bおよび検出質量体12は、固定子20に対してX方向に変位する。これによって、可動櫛歯片24が固定櫛歯片23に対して変位すれば、それらの間の距離が変化し、結果的に可動櫛歯片24と固定櫛歯片23との間の静電容量が変化する。この静電容量の変化は、4個の固定子20に接続される電極配線27から取り出すことができる。   Thus, when the first driving mass body 11A and the second driving mass body 11B are vibrated in the same phase, when an angular velocity around the axis in the Y direction acts on the main substrate 1, a Coriolis force is generated in the X direction. The first driving mass body 11 </ b> A, the second driving mass body 11 </ b> B, and the detection mass body 12 are displaced in the X direction with respect to the stator 20. Thus, if the movable comb tooth piece 24 is displaced with respect to the fixed comb tooth piece 23, the distance between them changes, and as a result, the electrostatic comb between the movable comb tooth piece 24 and the fixed comb tooth piece 23 changes. The capacity changes. This change in capacitance can be taken out from the electrode wiring 27 connected to the four stators 20.

すなわち、X方向において並ぶ各―対の電極片21の間の静電容量は、固定櫛歯片23と可動櫛歯片24との距離変化を反映するので、両電極片21は可変容量コンデンサの電極と等価であって、図示する構成では2個の可変容量コンデンサが形成されるから、各可変容量コンデンサの静電容量をそれぞれ検出したり、両可変容量コンデンザを並列に接続した合成容量を検出したりすることによって、検出質量体12の変位を検出することができる。第1駆動質量体11Aおよび第2駆動質量体11Bの振動は既知であるから、検出質量体12の変位を検出することによって、コリオリ力を求めることができる。   That is, the capacitance between each pair of electrode pieces 21 arranged in the X direction reflects the change in the distance between the fixed comb-tooth piece 23 and the movable comb-tooth piece 24, so that both electrode pieces 21 are variable capacitance capacitors. It is equivalent to an electrode, and in the configuration shown in the figure, two variable capacitors are formed, so the capacitance of each variable capacitor is detected individually, or the combined capacitance in which both variable capacitors are connected in parallel is detected. By doing so, the displacement of the detection mass body 12 can be detected. Since the vibrations of the first driving mass body 11A and the second driving mass body 11B are known, the Coriolis force can be obtained by detecting the displacement of the detection mass body 12.

ここで、可動櫛歯片24の変位は、(第1駆動質量体11Aの質量+第2駆動質量体11Bの質量)/(第1駆動質量体11Aの質量+第2駆動質量体11Bの質量+検出質量体12の質量)に比例するから、第1駆動質量体11Aの質量+第2駆動質量体11Bの質量が検出質量体12の質量に比較して大きい程、可動櫛歯片24の変位が大きくなり、結果的に感度が向上することになる。そこで、本実施形態では、第1駆動質量体11Aおよび第2駆動質量体11Bの厚み寸法を検出質量体12の厚み寸法の略2倍に設定してある。たとえば、前述のように第1駆動質量体11Aおよび第2駆動質量体11Bの厚み寸法t2(図4参照)を290μmに設定しているときには、検出質量体12の厚み寸法を150μm程度に設定するのが望ましい。このように構成した場合、1〜100°/secの角速度の検知範囲で、0.1°/secの分解能で検知することができる。   Here, the displacement of the movable comb tooth piece 24 is (mass of the first driving mass body 11A + mass of the second driving mass body 11B) / (mass of the first driving mass body 11A + mass of the second driving mass body 11B). + The mass of the detection mass body 12), the larger the mass of the first drive mass body 11A + the mass of the second drive mass body 11B compared to the mass of the detection mass body 12, the more the movable comb tooth piece 24 has. The displacement increases, and as a result, the sensitivity is improved. Therefore, in the present embodiment, the thickness dimension of the first drive mass body 11A and the second drive mass body 11B is set to be approximately twice the thickness dimension of the detection mass body 12. For example, when the thickness t2 (see FIG. 4) of the first drive mass 11A and the second drive mass 11B is set to 290 μm as described above, the thickness of the detection mass 12 is set to about 150 μm. Is desirable. When comprised in this way, it can detect with the resolution of 0.1 degrees / sec in the detection range of the angular velocity of 1-100 degrees / sec.

上述した寸法関係から明らかなように、第1駆動質量体11A、第2駆動質量体11Bおよび検出質量体12のZ方向の変位を可能とするには、支持基板2の厚み寸法が―定である場合には、主基板1の厚み寸法を、フレーム10、固定片17および固定子20と、他の部位とで異なる2段階とすればよく、さらに検出質量体12の厚み寸法を第1駆動質量体11Aおよび第2駆動質量体11Bの厚み寸法よりも小さくする場合には、主基板1の厚み寸法を、フレーム10、固定片17および固定子20と、検出質量体12と、他の部位とで異なる3段階とすればよい。また、支持基板2の厚み寸法を固定片17および固定子20との接合部と、他の部位とで異なる2段階とする場合には、主基板1の厚み寸法を、フレーム10、第1駆動質量体11A、第2駆動質量体11B、連結片16、固定片17および固定子20と、他の部位とで異なる2段階とすればよい。この構成によって、第1駆動質量体11Aおよび第2駆動質量体11Bと検出質量体12との厚み寸法を異ならせることができる。   As is clear from the dimensional relationship described above, the thickness dimension of the support substrate 2 is constant in order to allow the first driving mass body 11A, the second driving mass body 11B, and the detection mass body 12 to be displaced in the Z direction. In some cases, the thickness dimension of the main substrate 1 may be set in two stages different between the frame 10, the fixed piece 17 and the stator 20, and other parts, and the thickness dimension of the detection mass body 12 is set to the first drive. When the thickness is smaller than the thickness of the mass body 11A and the second drive mass body 11B, the thickness of the main substrate 1 is set to the frame 10, the fixed piece 17, the stator 20, the detection mass body 12, and other parts. What is necessary is just to make three steps which are different. In the case where the thickness dimension of the support substrate 2 is set to two stages that are different between the joint portion between the fixed piece 17 and the stator 20 and other portions, the thickness dimension of the main substrate 1 is set to the frame 10 and the first drive. The mass body 11A, the second drive mass body 11B, the connecting piece 16, the fixed piece 17, and the stator 20 may be two stages different from each other. With this configuration, the first driving mass body 11A, the second driving mass body 11B, and the detection mass body 12 can have different thickness dimensions.

上述した構成では、連結片16の長手方向の中間部の1箇所に固定片17を設けているが、本発明では第1駆動質量体11Aおよび第2駆動質量体11Bと検出質量体12とがトーションばねである第1駆動ばね13Aおよび第2駆動ばね13Bを介して連結されることで、第1駆動質量体11Aおよび第2駆動質量体11Bが検出質量体12に対して相対的に変位可能であり、かつ検出質量体12を支持基板2に対して変位可能に支持する検出ばね15が片持ちであれば目的を達成することができる。したがって、図5に示すように、連結片16を設けずに、各検出ばね15の一端に、それぞれ連続一体に固定片17を設けてもよい。この構成では、主基板1と支持基板2との線膨張率の差によって熱応力が生じたとしても、該検出ばね15の撓み方向のX方向の熱応力のみであって、該検出ばね15の圧縮・伸張方向であるY方向には熱応力は生じないから、共振周波数の変化は殆ど生じない。つまり、温度変化に伴う検出精度の変化を低減することができる。なお、X方向の熱応力の影饗を低減するために、検出ばね15はX方向におけるばね定数を小さくするように形成するのが望ましい。   In the configuration described above, the fixed piece 17 is provided at one place in the middle portion of the connecting piece 16 in the longitudinal direction. However, in the present invention, the first drive mass body 11A, the second drive mass body 11B, and the detection mass body 12 are provided. The first drive mass body 11A and the second drive mass body 11B can be displaced relative to the detection mass body 12 by being connected via the first drive spring 13A and the second drive spring 13B which are torsion springs. If the detection spring 15 that supports the detection mass body 12 so as to be displaceable with respect to the support substrate 2 is cantilevered, the object can be achieved. Therefore, as shown in FIG. 5, the fixed piece 17 may be provided continuously at one end of each detection spring 15 without providing the connecting piece 16. In this configuration, even if a thermal stress is generated due to a difference in linear expansion coefficient between the main substrate 1 and the support substrate 2, only the thermal stress in the X direction in the bending direction of the detection spring 15 is obtained. Since no thermal stress is generated in the Y direction, which is the compression / extension direction, the resonance frequency hardly changes. That is, it is possible to reduce a change in detection accuracy due to a temperature change. In order to reduce the influence of thermal stress in the X direction, it is desirable to form the detection spring 15 so as to reduce the spring constant in the X direction.

上述した構成例は、第1駆動質量体11Aおよび第2駆動質量体11BをZ方向に振動させている間に、Y方向の軸回りRの角速度が作用することによるX方向のコリオリ力を計測するものであり、第1駆動質量体11Aおよび第2駆動質量体11BがZ方向に並進移動し、検出質量体12がY方向の軸回りRに回転移動するとともにX方向に並進移動するものであるが、第1駆動質量体11Aおよび第2駆動質量体11Bが回転移動あるいは回転移動と並進移動とを行う構成を採用したり、検出質量体12が回転移動と並進移動とのいずれかのみを行う構成を採用したりすることも可能であり、また第1駆動質量体11A、第2駆動質量体11Bおよび検出質量体12の移動方向についても特に制限されるものではない。   In the configuration example described above, the Coriolis force in the X direction due to the action of the angular velocity R around the axis in the Y direction is measured while the first driving mass body 11A and the second driving mass body 11B are vibrated in the Z direction. The first driving mass body 11A and the second driving mass body 11B are translated in the Z direction, and the detection mass body 12 is rotationally moved around the axis in the Y direction and translated in the X direction. However, the first drive mass body 11A and the second drive mass body 11B adopt a configuration in which the rotation movement or the rotation movement and the translation movement are performed, or the detection mass body 12 performs only one of the rotation movement and the translation movement. It is also possible to adopt a configuration to be performed, and the moving directions of the first driving mass body 11A, the second driving mass body 11B, and the detection mass body 12 are not particularly limited.

以上のように、本発明のジャイロセンサは、検出質量体12、第1駆動質量体11Aおよび第2駆動質量体11Bを支持基板2に支持している一対の検出ばね15は、検出質量体12から一方向に延長され、片持ちで該検出質量体12を支持しており、主基板1と支持基板2との線膨張率に差があっても、主基板1に熱応力が殆ど発生しないので、共振周波数の変化が殆どなく、検出値の温度依存性を低減することができる。また、第1駆動質量体11Aと第2駆動質量体11Bとを検出質量体12の両側に相互に対称に配置し、かつ相互に同―位相で駆動させることで、検出質量体12に発生する支持基板2に交差する方向の振動を抑制することが可能で、角速度の検出精度を向上することができる。   As described above, in the gyro sensor of the present invention, the pair of detection springs 15 that support the detection mass body 12, the first drive mass body 11 </ b> A, and the second drive mass body 11 </ b> B on the support substrate 2 are the detection mass body 12. Is extended in one direction and supports the detection mass body 12 in a cantilever manner, and even if there is a difference in the linear expansion coefficient between the main substrate 1 and the support substrate 2, almost no thermal stress is generated in the main substrate 1. Therefore, there is almost no change in the resonance frequency, and the temperature dependence of the detected value can be reduced. Further, the first driving mass body 11A and the second driving mass body 11B are arranged symmetrically on both sides of the detection mass body 12 and driven in the same phase to generate the detection mass body 12. It is possible to suppress the vibration in the direction intersecting the support substrate 2 and improve the detection accuracy of the angular velocity.

また、本発明のジャイロセンサは、前記一対の検出ばね15の基端部をそれぞれ直接前記支持基板2に固定するのではなく、剛性を有する連結片16によって相互に連結し、その連結片の中間部に設けた固定片17を支持基板2に固定するので、支持基板2に対して主基板1を1箇所で固定することができ、主基板1と支持基板2との接合作業が容易になる。また、主基板1と支持基板2との線膨張率に差があっても、検出ばね15には連結片16の延長方向の熱応力が殆ど作用せず、検出値の温度依存性を一層低減することができる。   In the gyro sensor of the present invention, the base end portions of the pair of detection springs 15 are not directly fixed to the support substrate 2, but are connected to each other by a connecting piece 16 having rigidity, and an intermediate portion of the connecting pieces. Since the fixing piece 17 provided in the portion is fixed to the support substrate 2, the main substrate 1 can be fixed to the support substrate 2 at one place, and the joining operation of the main substrate 1 and the support substrate 2 becomes easy. . Further, even if there is a difference in the linear expansion coefficient between the main substrate 1 and the support substrate 2, thermal stress in the extending direction of the connecting piece 16 hardly acts on the detection spring 15, and the temperature dependence of the detection value is further reduced. can do.

さらにまた、本発明のジャイロセンサでは、前記検出ばね15は、前記検出質量体12において、前記第1駆動質量体と第2駆動質量体とを相互に対称位置とする線上、すなわち該検出質量体12の中央部に接続されるので、該検出質量体12に発生する支持基板2に交差する方向の振動を一層抑制することが可能で、角速度の検出精度を更に向上することができる。   Furthermore, in the gyro sensor of the present invention, the detection spring 15 is arranged on a line where the first drive mass body and the second drive mass body are symmetrical with each other in the detection mass body 12, that is, the detection mass body. Therefore, the vibration in the direction intersecting the support substrate 2 generated in the detection mass body 12 can be further suppressed, and the angular velocity detection accuracy can be further improved.

また、本発明のジャイロセンサでは、前記第1駆動ばね13Aおよび第2駆動ばね13Bは、ねじれ変形が可能なトーションばねであるので、撓み変形を利用するばねに比べて、第1駆動質量体11Aおよび第2駆動質量体11Bと検出質量体12との間隔を短くし、それらを近接して配置できるので、省スペース化を図ることができる。また、線形性も良好である。   In the gyro sensor of the present invention, since the first drive spring 13A and the second drive spring 13B are torsion springs that can be torsionally deformed, the first drive mass body 11A is compared with a spring that utilizes flexural deformation. And since the space | interval of the 2nd drive mass body 11B and the detection mass body 12 can be shortened and they can be arrange | positioned closely, space saving can be achieved. Moreover, linearity is also favorable.

さらにまた、本発明のジャイロセンサでは、検出手段を、前記検出質量体12に形成された切抜孔18の内周面に突設した多数本の可動櫛歯片24と、前記切抜孔18の内側に配置され、前記支持基板2に固定された固定子20の外周面に前記各可動櫛歯片24とそれぞれ対向するように突設した多数本の固定櫛歯片23とで構成するので、検出質量体12の変位に対して可動櫛歯片24と固定櫛歯片23との間の静電容量が比較的大きく変化することになり、検出質量体12の変位を検出する精度(分解能)を高めることができる。   Furthermore, in the gyro sensor of the present invention, the detection means includes a large number of movable comb teeth 24 projecting from the inner peripheral surface of the cutout hole 18 formed in the detection mass body 12, and the inside of the cutout hole 18. And a plurality of fixed comb teeth 23 projecting on the outer peripheral surface of the stator 20 fixed to the support substrate 2 so as to face the movable comb teeth 24, respectively. The capacitance between the movable comb tooth piece 24 and the fixed comb tooth piece 23 changes relatively greatly with respect to the displacement of the mass body 12, and the accuracy (resolution) for detecting the displacement of the detection mass body 12 is improved. Can be increased.

また、本発明のジャイロセンサは、前記支持基板2において、前記第1駆動質量体11Aおよび第2駆動質量体11Bとの対向面にはそれぞれ対応する第1固定駆動電極25Aおよび第2固定駆動電極25Bを配置し、前記検出ばね15における支持基板2への固定部と、前記第1および第2固定駆動電極との間に振動電圧を印加することによって、前記第1駆動質量体11Aおよび第2駆動質量体11Bと第1固定電極25Aおよび第2固定電極25Bとの間に作用する静電力で前記第1駆動質量体11Aおよび第2駆動質量体11Bを振動させるので、主基板1に設けた検出ばね15と、検出質量体12と、第1および第2駆動質量体11A,11Bとを電路に用いることになり、支持基板2に第1および第2固定駆動電極25A,25Bを形成するだけで、第1および第2駆動質量体11A,11Bを振動させるための振動電圧を印加することができ、構造を簡略化し、小型化を図ることができる。   In the gyro sensor of the present invention, the first fixed drive electrode 25A and the second fixed drive electrode corresponding to the surfaces of the support substrate 2 facing the first drive mass body 11A and the second drive mass body 11B, respectively. 25B is arranged, and an oscillating voltage is applied between the detection spring 15 fixed to the support substrate 2 and the first and second fixed drive electrodes, whereby the first drive mass 11A and second Since the first driving mass body 11A and the second driving mass body 11B are vibrated by an electrostatic force acting between the driving mass body 11B and the first fixed electrode 25A and the second fixed electrode 25B, the main board 1 is provided. The detection spring 15, the detection mass body 12, and the first and second drive mass bodies 11 </ b> A and 11 </ b> B are used for the electric circuit, and the first and second fixed drive electrodes 25 </ b> A and 25 are provided on the support substrate 2. Only form the first and second driving masses 11A, it is possible to apply an oscillating voltage for vibrating the 11B, to simplify the structure, it can be reduced in size.

さらにまた、本発明のジャイロセンサでは、前記支持基板2は厚み方向に貫通する複数個の透孔26を有し、前記透孔26の内周面には導電性の金属薄膜から成り、主基板1を外部回路に接続する電極配線27が形成されているので、主基板1の各部位を外部回路に接続するための配線を引き回す必要がなく、結果的に支持基板2の占有面積を小さくすることができ、小型化を図ることができる。   Furthermore, in the gyro sensor of the present invention, the support substrate 2 has a plurality of through holes 26 penetrating in the thickness direction, and the inner peripheral surface of the through hole 26 is made of a conductive metal thin film, Since the electrode wiring 27 for connecting 1 to the external circuit is formed, it is not necessary to route the wiring for connecting each part of the main substrate 1 to the external circuit, and as a result, the occupied area of the support substrate 2 is reduced. And miniaturization can be achieved.

本発明の実施の一形態に係るジャイロセンサの構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the gyro sensor which concerns on one Embodiment of this invention. 図1で示すジャイロセンサにおける主基板の平面図である。It is a top view of the main board | substrate in the gyro sensor shown in FIG. 本発明の実施形態に用いる主基板を示す要部平面図である。It is a principal part top view which shows the main board | substrate used for embodiment of this invention. 本発明の実施形態を示す要部側面断面図である。It is principal part side surface sectional drawing which shows embodiment of this invention. 本発明の他の実施形態に用いる主基板を示す平面図である。It is a top view which shows the main board | substrate used for other embodiment of this invention. 従来例を示す平面図である。It is a top view which shows a prior art example.

符号の説明Explanation of symbols

1 主基板
2 支持基板
3 キャップ
10 フレーム
11A 第1駆動質量体
11B 第2駆動質量体
12 検出質量体
13A 第1駆動ばね
13B 第2駆動ばね
14A,14B スリット溝
15 検出ばね
16 連結片
17 固定片
18 切抜孔
20 固定子
21 電極片
23 固定櫛歯片
24 可動櫛歯片
25A 第1固定駆動電極
25B 第2固定駆動電極
26 透孔
27 電極配線
DESCRIPTION OF SYMBOLS 1 Main board 2 Support board 3 Cap 10 Frame 11A 1st drive mass body 11B 2nd drive mass body 12 Detection mass body 13A 1st drive spring 13B 2nd drive spring 14A, 14B Slit groove 15 Detection spring 16 Connection piece 17 Fixing piece 18 Cutout hole 20 Stator 21 Electrode piece 23 Fixed comb tooth piece 24 Movable comb tooth piece 25A First fixed drive electrode 25B Second fixed drive electrode 26 Through hole 27 Electrode wiring

Claims (9)

支持基板と、半導体基板から成る主基板とを備えて成るジャイロセンサにおいて、前記主基板は、
基端部が前記支持基板に固定され、前記支持基板に沿った面内で一方向に延び、前記一方向とは直交方向に撓み変形可能な一対の検出ばねと、
前記一対の検出ばねの遊端部に接続されることで、前記検出ばねを介して支持基板に変位可能に支持される検出質量体と、
前記検出質量体の前記一方向の両側に相互に対称に配置され、相互に同位相で前記支持基板に交差する方向に振動するように駆動される一対の第1駆動質量体および第2駆動質量体と、
前記第1駆動質量体および第2駆動質量体を前記検出質量体にそれぞれ連結する第1駆動ばねおよび第2駆動ばねと、
前記支持基板に沿った面内での前記検出質量体の変位量を検出する検出手段とを含むことを特徴とするジャイロセンサ。
In a gyro sensor comprising a support substrate and a main substrate made of a semiconductor substrate, the main substrate is
A pair of detection springs having a base end portion fixed to the support substrate, extending in one direction within a plane along the support substrate, and capable of bending and deforming in a direction orthogonal to the one direction;
A detection mass body that is connected to a free end portion of the pair of detection springs and is displaceably supported by a support substrate via the detection springs,
A pair of first and second driving masses that are symmetrically arranged on both sides of the one direction of the detection mass body and are driven to vibrate in a direction intersecting the support substrate in the same phase. Body,
A first drive spring and a second drive spring coupling the first drive mass and the second drive mass to the detection mass, respectively;
A gyro sensor comprising: detecting means for detecting a displacement amount of the detection mass body in a plane along the support substrate.
前記一対の検出ばねの基端部間を相互に連結し、剛性を有する連結片をさらに有し、該連結片の中間部が前記支持基板に固定されることを特徴とする請求項1記載のジャイロセンサ。   The base end portions of the pair of detection springs are connected to each other and further have a rigid connecting piece, and an intermediate portion of the connecting piece is fixed to the support substrate. Gyro sensor. 前記検出ばねは、前記検出質量体において、前記対称となる線上に接続されることを特徴とする請求項1または2記載のジャイロセンサ。   The gyro sensor according to claim 1, wherein the detection spring is connected to the symmetric line in the detection mass body. 前記第1駆動ばねおよび第2駆動ばねは、ねじれ変形が可能なトーションばねであることを特徴とする請求項1〜3のいずれか1項に記載のジャイロセンサ。   The gyro sensor according to any one of claims 1 to 3, wherein the first drive spring and the second drive spring are torsion springs capable of torsional deformation. 前記検出手段は、前記検出質量体に形成された切抜孔の内周面に突設した複数本の可動櫛歯片と、前記切抜孔の内側に配置され、前記支持基板に固定された固定子の外周面に各可動櫛歯片とそれぞれ対向するように突設した複数本の固定櫛歯片とから成ることを特徴とする請求項1〜4のいずれか1項に記載のジャイロセンサ。   The detection means includes a plurality of movable comb teeth protruding from the inner peripheral surface of the cutout hole formed in the detection mass body, and a stator disposed on the inner side of the cutout hole and fixed to the support substrate. 5. The gyro sensor according to claim 1, comprising a plurality of fixed comb teeth protruding from the outer circumferential surface of the movable comb teeth so as to face each movable comb teeth. 前記支持基板において、前記第1および第2駆動質量体との対向面にはそれぞれ対応する第1および第2固定駆動電極が配置され、前記検出ばねにおける支持基板への固定部と、前記第1および第2固定駆動電極との間に振動電圧を印加することによって、前記第1および第2駆動質量体と第1および第2固定電極との間に作用する静電力で前記第1および第2駆動質量体を振動させることを特徴とする請求項1〜5のいずれか1項に記載のジャイロセンサ。   In the support substrate, corresponding first and second fixed drive electrodes are respectively disposed on opposing surfaces of the first and second drive mass bodies, and a fixing portion to the support substrate in the detection spring, and the first By applying an oscillating voltage between the first and second fixed drive electrodes, the first and second electrostatic forces acting between the first and second drive mass bodies and the first and second fixed electrodes are applied. The gyro sensor according to claim 1, wherein the drive mass body is vibrated. 前記支持基板は厚み方向に貫通する複数個の透孔を有し、前記透孔の内周面には導電性の金属薄膜から成り、主基板を外部回路に接続する電極配線が形成されていることを特徴とする請求項1〜6のいずれか1項に記載のジャイロセンサ。   The support substrate has a plurality of through holes penetrating in the thickness direction, and an inner peripheral surface of the through hole is formed of a conductive metal thin film, and electrode wiring for connecting the main substrate to an external circuit is formed. The gyro sensor according to claim 1, wherein: 前記第1および第2駆動質量体の厚み寸法は、前記検出質量体の厚み寸法よりも大きいことを特徴とする請求項1〜7のいずれか1項に記載のジャイロセンサ。   The gyro sensor according to any one of claims 1 to 7, wherein a thickness dimension of the first and second drive mass bodies is larger than a thickness dimension of the detection mass body. 駆動質量体を支持基板に交差する方向に振動させ、前記駆動質量体に駆動ばねを介して連結された検出質量体における前記駆動質量体の振動方向とは垂直な面内での変位量を検出することで、前記面内の予め定める軸線回りの角速度を検出するようにしたジャイロセンサにおいて、
前記検出質量体を中心として、その両側に前記駆動質量体を一対で対称に配置し、かつ相互に同位相で振動させ、
前記駆動質量体および検出質量体の配列方向と平行に延び、基端部が前記支持基板に接続され、遊端部が前記検出質量体に接続されることで、前記駆動質量体および検出質量体の前記振動方向の変位およびそれに垂直な方向の変位を可能に支持する一対の検出ばねと、
前記検出質量体の前記面方向の変位量を検出する検出手段とを含むことを特徴とするジャイロセンサ。
The drive mass body is vibrated in a direction intersecting the support substrate, and a displacement amount in a plane perpendicular to the vibration direction of the drive mass body is detected in the detection mass body connected to the drive mass body via a drive spring. In the gyro sensor that detects the angular velocity around the predetermined axis in the plane,
Centering on the detection mass body, the drive mass bodies are arranged symmetrically in pairs on both sides thereof, and vibrate in phase with each other,
The drive mass body and the detection mass body extend in parallel with the arrangement direction of the drive mass body and the detection mass body, the base end portion is connected to the support substrate, and the free end portion is connected to the detection mass body. A pair of detection springs that support the displacement in the vibration direction and the displacement in the direction perpendicular thereto,
A gyro sensor comprising: detecting means for detecting a displacement amount of the detection mass body in the surface direction.
JP2004247427A 2004-08-26 2004-08-26 Gyro sensor Active JP4466283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004247427A JP4466283B2 (en) 2004-08-26 2004-08-26 Gyro sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004247427A JP4466283B2 (en) 2004-08-26 2004-08-26 Gyro sensor

Publications (2)

Publication Number Publication Date
JP2006064538A true JP2006064538A (en) 2006-03-09
JP4466283B2 JP4466283B2 (en) 2010-05-26

Family

ID=36111150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004247427A Active JP4466283B2 (en) 2004-08-26 2004-08-26 Gyro sensor

Country Status (1)

Country Link
JP (1) JP4466283B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292117A (en) * 2004-03-12 2005-10-20 Matsushita Electric Works Ltd Gyro sensor, and sensor unit using same
JP2006153514A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Gyro sensor and angular velocity detection method
JP2008076153A (en) * 2006-09-20 2008-04-03 Denso Corp Mechanical quantity sensor
JP2008145338A (en) * 2006-12-12 2008-06-26 Hitachi Ltd Angular velocity sensor
KR20170054559A (en) * 2009-02-27 2017-05-17 맥심 인티그레이티드 게엠베하 Mems gyroscope for detecting rotational motions about an x-, y-, and/or z-axis

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005292117A (en) * 2004-03-12 2005-10-20 Matsushita Electric Works Ltd Gyro sensor, and sensor unit using same
JP4654668B2 (en) * 2004-03-12 2011-03-23 パナソニック電工株式会社 Gyro sensor and sensor device using the same
JP2006153514A (en) * 2004-11-25 2006-06-15 Matsushita Electric Works Ltd Gyro sensor and angular velocity detection method
JP4654667B2 (en) * 2004-11-25 2011-03-23 パナソニック電工株式会社 Gyro sensor and angular velocity detection method
JP2008076153A (en) * 2006-09-20 2008-04-03 Denso Corp Mechanical quantity sensor
JP2008145338A (en) * 2006-12-12 2008-06-26 Hitachi Ltd Angular velocity sensor
KR20170054559A (en) * 2009-02-27 2017-05-17 맥심 인티그레이티드 게엠베하 Mems gyroscope for detecting rotational motions about an x-, y-, and/or z-axis
KR101885909B1 (en) 2009-02-27 2018-08-06 핸킹 일렉트로닉스, 엘티디. Mems gyroscope for detecting rotational motions about an x-, y-, and/or z-axis

Also Published As

Publication number Publication date
JP4466283B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP4654668B2 (en) Gyro sensor and sensor device using the same
US9885576B2 (en) Angular velocity sensor
JP5105968B2 (en) Angular velocity detector
WO2013179647A2 (en) Physical amount sensor
JP2008545128A (en) Micromachined gyrometer sensor for differential measurement of vibration mass motion
JP4556454B2 (en) Manufacturing method of semiconductor device
JP2016530541A (en) Gyroscope structure and gyroscope with improved quadrature correction
US20190265033A1 (en) Angular velocity sensor, sensor element, and multi-axis angular velocity sensor
JP2001194153A (en) Angular velocity sensor, acceleration sensor and method of manufacture
JP5074693B2 (en) Micro electromechanical device
JP4466283B2 (en) Gyro sensor
JP2012149961A (en) Vibration gyro
JP2001349732A (en) Micro-machine device, angular acceleration sensor, and acceleration sensor
JP4654667B2 (en) Gyro sensor and angular velocity detection method
JP2010107521A (en) Micro electromechanical device
JP4736420B2 (en) Micro electromechanical device
JP5816707B2 (en) Angular velocity detector
JP2012242240A (en) Gyro sensor, electronic apparatus
JP2001349731A (en) Micro-machine device, angular acceleration sensor, and acceleration sensor
WO2015075899A1 (en) Angular-velocity sensor element and angular-velocity sensor
JP2009063369A (en) Acceleration sensor element and acceleration sensor
JP4362739B2 (en) Vibration type angular velocity sensor
JP6620886B2 (en) Electrodes for microelectromechanical devices
JP2002071708A (en) Semiconductor dynamic quantity sensor
JP5481545B2 (en) Angular velocity detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3