JP2010216840A - Method of manufacturing dynamic quantity detection sensor - Google Patents

Method of manufacturing dynamic quantity detection sensor Download PDF

Info

Publication number
JP2010216840A
JP2010216840A JP2009060900A JP2009060900A JP2010216840A JP 2010216840 A JP2010216840 A JP 2010216840A JP 2009060900 A JP2009060900 A JP 2009060900A JP 2009060900 A JP2009060900 A JP 2009060900A JP 2010216840 A JP2010216840 A JP 2010216840A
Authority
JP
Japan
Prior art keywords
detection sensor
quantity detection
mechanical quantity
beam portion
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009060900A
Other languages
Japanese (ja)
Inventor
Hidenori Gocho
英紀 牛膓
Toshinori Watanabe
利徳 渡辺
Satoshi Waga
聡 和賀
Eiichi Komai
栄一 駒井
Toshihiro Kobayashi
俊宏 小林
Kenichi Tanaka
健一 田中
Kazusato Igarashi
一聡 五十嵐
Masahiko Ishizone
昌彦 石曽根
Eiji Umetsu
英治 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2009060900A priority Critical patent/JP2010216840A/en
Publication of JP2010216840A publication Critical patent/JP2010216840A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a dynamic quantity detection sensor capable of exhibiting high sensitivity. <P>SOLUTION: The method of manufacturing the dynamic quantity detection sensor includes: a step of forming a frame, a weight positioned inside the frame, and a beam for swingably supporting the weight to the frame by working a base layer of an SOI (silicon on insulator) substrate constituted of an active layer, the base layer, and an insulation layer sandwiched between the active layer and the base layer; a step of reducing the thickness of the beam; and a step of forming a detecting element for output of signals according to the dynamic quantity based on the amount of deflection of the beam on the active layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、互いに直交するX軸、Y軸及びZ軸の3軸方向の加速度を検出可能な力学量検出センサの製造方法に関する。   The present invention relates to a method of manufacturing a mechanical quantity detection sensor capable of detecting accelerations in three axial directions of an X axis, a Y axis, and a Z axis that are orthogonal to each other.

自動車産業や機械産業では、加速度を正確に検出できる小型の力学量検出センサの需要が高まっている。このような力学量検出センサとして、互いに直交する3軸方向の加速度を同時に検出できる加速度センサが知られている(例えば、特許文献1参照)。この加速度センサは、シリコン製の第1の半導体基板(活性層)、酸化シリコン製の絶縁層(犠牲層)、シリコン製の第2の半導体基板(ベース層)で構成された3層構造のSOI基板をエッチングして形成される。   In the automobile industry and the machine industry, there is an increasing demand for small mechanical quantity detection sensors that can accurately detect acceleration. As such a mechanical quantity detection sensor, an acceleration sensor that can simultaneously detect accelerations in three axial directions orthogonal to each other is known (see, for example, Patent Document 1). This acceleration sensor has a three-layer structure SOI composed of a first semiconductor substrate (active layer) made of silicon, an insulating layer (sacrificial layer) made of silicon oxide, and a second semiconductor substrate (base layer) made of silicon. It is formed by etching the substrate.

第1の半導体基板にはエッチングにより枠体と、枠体の中央に位置する変位部と、枠体の四辺から変位部に連なる梁部とが形成され、第2の半導体基板にはエッチングにより枠体に接合された支持部と、変位部に接合された錘部とが形成される。また、各梁部の上面には検出素子が配置されており、錘部に慣性力が作用して各梁部が撓み変形することで、3軸方向の加速度が検出される。   The first semiconductor substrate is formed with a frame body by etching, a displacement portion located at the center of the frame body, and a beam portion continuous from the four sides of the frame body to the displacement portion, and the second semiconductor substrate by frame etching. A support part joined to the body and a weight part joined to the displacement part are formed. In addition, a detection element is disposed on the upper surface of each beam portion, and an inertial force acts on the weight portion to cause each beam portion to bend and deform, thereby detecting acceleration in three axes.

特開2007−322300号公報JP 2007-322300 A

このような力学量検出センサにおいては、梁部はSOI基板の犠牲層と活性層の2層で構成される。この力学量検出センサにおいて、より感度を向上させるためには、梁部における犠牲層と活性層の厚さなどを最適にすることが必要になる。   In such a mechanical quantity detection sensor, the beam portion is composed of two layers of a sacrificial layer and an active layer of an SOI substrate. In order to further improve the sensitivity of this mechanical quantity detection sensor, it is necessary to optimize the thicknesses of the sacrificial layer and the active layer in the beam portion.

本発明はかかる点に鑑みてなされたものであり、高い感度を示すことができる力学量検出センサの製造方法を提供することを目的とする。   This invention is made | formed in view of this point, and it aims at providing the manufacturing method of the mechanical quantity detection sensor which can show high sensitivity.

本発明の力学量検出センサの製造方法は、活性層、ベース層及び前記活性層と前記ベース層との間に挟持された絶縁層で構成されたSOI基板の前記ベース層を加工して、枠体と、前記枠体の内側に位置する錘と、前記枠体に対し前記錘を揺動可能に支持する梁部と、を形成する工程と、前記梁部の厚さを薄くする工程と、前記活性層上に、前記梁部の撓み量に基づいて力学量に応じた信号を出力する検出素子を形成する工程と、を具備することを特徴とする。   The method of manufacturing a mechanical quantity detection sensor according to the present invention includes processing a base layer of an SOI substrate including an active layer, a base layer, and an insulating layer sandwiched between the active layer and the base layer. Forming a body, a weight located inside the frame, and a beam portion that supports the weight so as to be swingable with respect to the frame, and a step of reducing the thickness of the beam portion; Forming a detection element that outputs a signal corresponding to a mechanical quantity on the active layer based on a deflection amount of the beam portion.

この方法によれば、感度や強度を考慮して最適な状態の梁部を形成することができるので、高い感度を示すことができる力学量検出センサを製造することができる。   According to this method, it is possible to form a beam portion in an optimum state in consideration of sensitivity and strength, and thus it is possible to manufacture a mechanical quantity detection sensor that can exhibit high sensitivity.

本発明の力学量検出センサの製造方法においては、前記梁部の前記活性層側から加工して前記梁部の厚さを薄くすることが好ましい。この方法によれば、活性層の強度を保った状態で梁部のばね定数を小さくして感度の高い力学量検出センサを得ることができる。   In the manufacturing method of the mechanical quantity detection sensor of the present invention, it is preferable that the beam portion is thinned by processing from the active layer side of the beam portion. According to this method, it is possible to obtain a highly sensitive mechanical quantity detection sensor by reducing the spring constant of the beam portion while maintaining the strength of the active layer.

本発明の力学量検出センサの製造方法においては、前記梁部の前記絶縁層側から加工して前記梁部の厚さを薄くすることが好ましい。この方法によれば、絶縁層の厚さを薄くして絶縁層と活性層のヤング率を合わせることができるので、所望の性能の高い力学量検出センサを得ることができる。   In the manufacturing method of the mechanical quantity detection sensor of the present invention, it is preferable to process the beam portion from the insulating layer side to reduce the thickness of the beam portion. According to this method, since the Young's modulus of the insulating layer and the active layer can be matched by reducing the thickness of the insulating layer, a mechanical quantity detection sensor with high desired performance can be obtained.

本発明の力学量検出センサの製造方法においては、前記絶縁層を除去して、さらに前記活性層を薄くすることが好ましい。この方法によれば、活性層の強度を保った状態でより高感度の力学量検出センサを得ることができる。   In the method for manufacturing a mechanical quantity detection sensor of the present invention, it is preferable to remove the insulating layer and further thin the active layer. According to this method, a highly sensitive mechanical quantity detection sensor can be obtained while maintaining the strength of the active layer.

本発明の力学量検出センサの製造方法は、活性層、ベース層及び前記活性層と前記ベース層との間に挟持された絶縁層で構成されたSOI基板の前記ベース層を加工して、枠体と、前記枠体の内側に位置する錘と、前記枠体に対し前記錘を揺動可能に支持する梁部と、を形成し、前記梁部の厚さを薄くし、前記活性層上に、前記梁部の撓み量に基づいて力学量に応じた信号を出力する検出素子を形成する。この場合、感度や強度を考慮して最適な状態の梁部を形成することができるので、高い感度を示すことができる力学量検出センサを製造することができる。   The method of manufacturing a mechanical quantity detection sensor according to the present invention includes processing a base layer of an SOI substrate including an active layer, a base layer, and an insulating layer sandwiched between the active layer and the base layer. Forming a body, a weight positioned inside the frame, and a beam portion that supports the weight so as to be able to swing with respect to the frame, and reducing the thickness of the beam portion on the active layer In addition, a detection element that outputs a signal corresponding to a mechanical quantity based on the deflection amount of the beam portion is formed. In this case, since the beam portion in an optimum state can be formed in consideration of sensitivity and strength, a mechanical quantity detection sensor that can exhibit high sensitivity can be manufactured.

本発明の実施の形態に係る力学量検出センサを示す斜視図である。It is a perspective view which shows the mechanical quantity detection sensor which concerns on embodiment of this invention. 図1に示す力学量検出センサの分解斜視図である。It is a disassembled perspective view of the mechanical quantity detection sensor shown in FIG. (a)〜(c)は、梁部を薄くする方法を説明するための図である。(A)-(c) is a figure for demonstrating the method to make a beam part thin. (a)〜(d)は、本発明の実施の形態に係る力学量検出センサの製造方法を説明するための図である。(A)-(d) is a figure for demonstrating the manufacturing method of the mechanical quantity detection sensor which concerns on embodiment of this invention. (a)〜(c)は、本発明の実施の形態に係る力学量検出センサの製造方法を説明するための図である。(A)-(c) is a figure for demonstrating the manufacturing method of the mechanical quantity detection sensor which concerns on embodiment of this invention. 力学量検出センサの検出動作説明図であり、(a)は錘部がX軸回りに回動する際の検出動作説明図であり、(b)は錘部がZ軸方向に直動する際の検出動作説明図である。It is a detection operation explanatory view of a mechanical quantity detection sensor, (a) is a detection operation explanatory view when the weight portion rotates around the X axis, (b) when the weight portion linearly moves in the Z axis direction FIG.

以下、本発明の実施の形態について添付図面を参照して詳細に説明する。図1は、本発明の実施の形態に係る力学量検出センサの斜視図である。図2は、本発明の実施の形態に係る力学量検出センサの分解斜視図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a perspective view of a mechanical quantity detection sensor according to an embodiment of the present invention. FIG. 2 is an exploded perspective view of the mechanical quantity detection sensor according to the embodiment of the present invention.

図1及び図2に示すように、力学量検出センサ1は、第1の半導体基板2と第2の半導体基板3とを絶縁層4を介して接合して構成されている。力学量検出センサ1は、例えば、第1の半導体基板2をシリコン層(活性層)、絶縁層4を酸化シリコン層(犠牲層)、第2の半導体基板3をシリコン層(ベース層)とした3層構造をなすSOI(Silicon On Insulator)基板を用いて製造可能である。   As shown in FIGS. 1 and 2, the mechanical quantity detection sensor 1 is configured by joining a first semiconductor substrate 2 and a second semiconductor substrate 3 via an insulating layer 4. In the mechanical quantity detection sensor 1, for example, the first semiconductor substrate 2 is a silicon layer (active layer), the insulating layer 4 is a silicon oxide layer (sacrificial layer), and the second semiconductor substrate 3 is a silicon layer (base layer). It can be manufactured using an SOI (Silicon On Insulator) substrate having a three-layer structure.

第1の半導体基板2には、第2の半導体基板3と比較して相対的に薄板状のシリコン層で構成され、収納空間が形成された矩形枠状の枠体11と、枠体11の内側に配置された変位部12と、枠体11の四辺と変位部12とを接続する4つの梁部13とが形成されている。枠体11、変位部12、梁部13は、第1の半導体基板2をエッチングにより変位部12の周囲に上面視L字状の4つの開口を設けることで形成される。   The first semiconductor substrate 2 includes a rectangular frame 11 having a relatively thin plate-like silicon layer as compared with the second semiconductor substrate 3 and having a storage space. The displacement part 12 arrange | positioned inside and the four beam parts 13 which connect the four sides of the frame 11 and the displacement part 12 are formed. The frame body 11, the displacement portion 12, and the beam portion 13 are formed by providing four openings that are L-shaped in top view around the displacement portion 12 by etching the first semiconductor substrate 2.

枠体11は、L字状の4つの開口により変位部12を囲うように形成されている。変位部12は、略正方形状に形成され、枠体11の枠内中央に配置されている。4つの梁部13は、それぞれ枠体11の一辺から対向辺に向かって延在する長尺部15と、長尺部15に連なり、変位部12の四隅に接続される短尺部16とから構成される。このように、4つの梁部13は、長尺部15を有しているため、撓み易い構成となっている。   The frame 11 is formed so as to surround the displacement portion 12 by four L-shaped openings. The displacement part 12 is formed in a substantially square shape, and is disposed in the center of the frame 11. Each of the four beam portions 13 includes a long portion 15 extending from one side of the frame 11 toward the opposite side, and a short portion 16 connected to the four corners of the displacement portion 12 connected to the long portion 15. Is done. Thus, since the four beam parts 13 have the elongate part 15, they become the structure which is easy to bend.

各梁部13の長尺部15の上面には、それぞれ検出素子17が設けられており、この検出素子17により各梁部13の撓み量が検出される。検出素子17は、いわゆる圧電素子であり、図示しない下地膜の上面に、下部電極25、圧電薄膜26、上部電極27の順に蒸着などにより成膜することで形成される。検出素子17は、梁部13に生じた撓みにより変形し、この変形による圧力を電圧に変換して出力する。   A detection element 17 is provided on the upper surface of the long portion 15 of each beam portion 13, and the deflection amount of each beam portion 13 is detected by the detection element 17. The detection element 17 is a so-called piezoelectric element, and is formed by depositing the lower electrode 25, the piezoelectric thin film 26, and the upper electrode 27 in this order on the upper surface of a base film (not shown) by vapor deposition or the like. The detection element 17 is deformed by the bending generated in the beam portion 13, and the pressure generated by the deformation is converted into a voltage and output.

第2の半導体基板3には、第1の半導体基板2と比較して相対的に厚板状のシリコン層で構成され、矩形状の開口部23を有する支持部21と、開口部23の内側に配置された錘部22とが形成されている。支持部21および錘部22は、第1の半導体基板2をエッチングにより錘部22の周囲に矩形枠状の開口を設けることで形成される。   The second semiconductor substrate 3 is composed of a relatively thick silicon layer compared to the first semiconductor substrate 2, and has a support portion 21 having a rectangular opening 23 and an inner side of the opening 23. The weight part 22 arrange | positioned in this is formed. The support portion 21 and the weight portion 22 are formed by providing a rectangular frame-shaped opening around the weight portion 22 by etching the first semiconductor substrate 2.

支持部21は、上面視において枠体11に対応した形状を有しており、枠体11の下面に絶縁層4を介して接合されている。錘部22は、略直方体形状に形成されており、変位部12の下面に絶縁層4を介して接合されている(錘部22と変位部12で錘を構成する)。したがって、このように、錘部22は、枠体11の収納空間及び支持部21の開口部23の内側において、変位部12と共に錘をなし、4つの梁部13により揺動自在に支持される。よって、錘部22の重心位置に慣性力が作用すると、X軸回りの回動、Y軸回りの回動、Z軸方向の直動が可能となっている。   The support portion 21 has a shape corresponding to the frame body 11 in a top view, and is joined to the lower surface of the frame body 11 via the insulating layer 4. The weight portion 22 is formed in a substantially rectangular parallelepiped shape, and is joined to the lower surface of the displacement portion 12 via the insulating layer 4 (the weight portion 22 and the displacement portion 12 constitute a weight). Therefore, in this way, the weight part 22 forms a weight together with the displacement part 12 in the housing space of the frame 11 and the opening part 23 of the support part 21 and is supported by the four beam parts 13 so as to be swingable. . Therefore, when an inertial force acts on the position of the center of gravity of the weight portion 22, rotation about the X axis, rotation about the Y axis, and linear movement in the Z axis direction are possible.

梁部13は、活性層である第1半導体基板2と犠牲層である絶縁層4とで構成されている。この梁部13は、SOI基板のベース層を加工することにより、枠体11及び錘と共に形成される。次いで、力学量検出センサに所望の性能を発揮させるために、梁部13の厚さを薄くする(梁部13を修正する)。この場合において、図3(a)に示すように、梁部13を絶縁層4側から加工して絶縁層4に凹部4aを形成して梁部13の厚さを薄くする。この方法によれば、絶縁層の厚さを薄くして絶縁層4と第1半導体基板2(活性層)のヤング率を合わせることができるので、所望の性能の高い力学量検出センサを得ることができる。   The beam portion 13 includes a first semiconductor substrate 2 that is an active layer and an insulating layer 4 that is a sacrificial layer. The beam portion 13 is formed together with the frame body 11 and the weight by processing the base layer of the SOI substrate. Next, in order to cause the mechanical quantity detection sensor to exhibit desired performance, the thickness of the beam portion 13 is reduced (the beam portion 13 is corrected). In this case, as shown in FIG. 3A, the beam portion 13 is processed from the insulating layer 4 side to form a recess 4a in the insulating layer 4 to reduce the thickness of the beam portion 13. According to this method, since the Young's modulus of the insulating layer 4 and the first semiconductor substrate 2 (active layer) can be matched by reducing the thickness of the insulating layer, a mechanical quantity detection sensor with high desired performance can be obtained. Can do.

あるいは、図3(b)に示すように、梁部13の第1半導体基板2(活性層)側から加工して第1半導体基板2に凹部2aを形成して梁部13の厚さを薄くする。この方法によれば、第1半導体基板2の強度を保った状態で梁部13のばね定数を小さくして感度の高い力学量検出センサを得ることができる。   Alternatively, as shown in FIG. 3B, the beam portion 13 is thinned by processing the beam portion 13 from the first semiconductor substrate 2 (active layer) side to form a recess 2a in the first semiconductor substrate 2. To do. According to this method, a highly sensitive mechanical quantity detection sensor can be obtained by reducing the spring constant of the beam portion 13 while maintaining the strength of the first semiconductor substrate 2.

あるいは、図3(c)に示すように、梁部13を絶縁層4側から加工して、絶縁層4を除去して、さらに第1半導体基板2に凹部2bを形成して第1半導体基板2を薄くする。この方法によれば、第1半導体基板2の強度を保った状態でより高感度の力学量検出センサを得ることができる。   Alternatively, as shown in FIG. 3C, the beam portion 13 is processed from the insulating layer 4 side, the insulating layer 4 is removed, and a recess 2b is formed in the first semiconductor substrate 2 to form the first semiconductor substrate. Thin 2 According to this method, a more sensitive mechanical quantity detection sensor can be obtained while maintaining the strength of the first semiconductor substrate 2.

図3(a)〜図3(c)の方法は択一的ではなく、力学量検出センサに発揮させる所望の特性を考慮して、適宜組み合わせて用いることができる。その場合の加工の順序については特に制限はない。   The methods shown in FIGS. 3A to 3C are not alternative, and can be used in appropriate combination in consideration of desired characteristics to be exhibited by the mechanical quantity detection sensor. There is no restriction | limiting in particular about the order of a process in that case.

なお、凹部2a,2b,4aの深さ、すなわち第1半導体基板2や絶縁層4への加工量は、予め加工量と感度との間の関係を求めておき、所望の特性に適合するように前記関係から適宜求める。また、第1半導体基板2や絶縁層4に対する加工としては、エッチングやイオンミリングなどを用いることができる。また、加工にエッチングを用いる場合には、オーバーエッチングも考慮して加工量を設定することが好ましい。   The depths of the recesses 2a, 2b, 4a, that is, the amount of processing to the first semiconductor substrate 2 and the insulating layer 4 are determined in advance so that the relationship between the processing amount and the sensitivity is obtained in advance to meet the desired characteristics. From the above relationship, it is determined appropriately. Further, as processing for the first semiconductor substrate 2 and the insulating layer 4, etching, ion milling, or the like can be used. When etching is used for processing, it is preferable to set the processing amount in consideration of over-etching.

次に、図4及び図5を参照して、力学量検出センサの加工プロセスの一例について説明する。図4(a)〜(d)及び図5(a)〜(c)は、本発明の実施の形態に係る力学量検出センサの製造方法を説明するための図である。   Next, an example of the machining process of the mechanical quantity detection sensor will be described with reference to FIGS. 4 (a) to 4 (d) and FIGS. 5 (a) to 5 (c) are diagrams for explaining a method of manufacturing the mechanical quantity detection sensor according to the embodiment of the present invention.

図4(a)に示すように、第1の半導体基板2、絶縁層4、第2の半導体基板3を積層したSOI基板を準備し、第1の半導体基板2の上面にサポート基板30が配置される。次に、図4(b)に示すように、第2の半導体基板3の下面が研磨され薄化されると共に、第2の半導体基板3がフォトリソグラフィ及びエッチング(deep RIE)により加工されて支持部21及び錘部22が形成される。   As shown in FIG. 4A, an SOI substrate in which the first semiconductor substrate 2, the insulating layer 4, and the second semiconductor substrate 3 are stacked is prepared, and the support substrate 30 is disposed on the upper surface of the first semiconductor substrate 2. Is done. Next, as shown in FIG. 4B, the lower surface of the second semiconductor substrate 3 is polished and thinned, and the second semiconductor substrate 3 is processed and supported by photolithography and etching (deep RIE). A portion 21 and a weight portion 22 are formed.

次に、図4(c)に示すように、第3の基板31がフォトリソグラフィ及びエッチングにより加工されて凹部31aが形成され、第2の半導体基板3の下面に接合される。次に、図4(d)に示すように、第1の半導体基板2の上面からサポート基板30が剥離され、第1の半導体基板2の上面が研磨されて所望の厚みに薄化される。   Next, as shown in FIG. 4C, the third substrate 31 is processed by photolithography and etching to form a recess 31 a and bonded to the lower surface of the second semiconductor substrate 3. Next, as shown in FIG. 4D, the support substrate 30 is peeled from the upper surface of the first semiconductor substrate 2, and the upper surface of the first semiconductor substrate 2 is polished and thinned to a desired thickness.

次に、梁部13の厚さを薄くする。この場合、図3(a)に示すように、梁部13を絶縁層4側から加工して絶縁層4に凹部4aを形成して梁部13の厚さを薄くするか、図3(b)に示すように、梁部13の第1半導体基板2(活性層)側から加工して第1半導体基板2に凹部2aを形成して梁部13の厚さを薄くするか、図3(c)に示すように、梁部13を絶縁層4側から加工して、絶縁層4を除去して、さらに第1半導体基板2に凹部2bを形成して第1半導体基板2を薄くする。なお、図3(a)に示す場合には、上記図4(c)に示す構造になる前に加工する必要があり、図3(b)に示す場合には、上記図4(d)に示す構造の後に加工する必要がある。   Next, the thickness of the beam portion 13 is reduced. In this case, as shown in FIG. 3A, the beam portion 13 is processed from the insulating layer 4 side to form a recess 4a in the insulating layer 4 to reduce the thickness of the beam portion 13, or FIG. 3), the beam portion 13 is processed from the first semiconductor substrate 2 (active layer) side to form a recess 2a in the first semiconductor substrate 2 to reduce the thickness of the beam portion 13, or FIG. As shown in c), the beam portion 13 is processed from the insulating layer 4 side, the insulating layer 4 is removed, and the concave portion 2b is formed in the first semiconductor substrate 2 to make the first semiconductor substrate 2 thinner. In the case shown in FIG. 3 (a), it is necessary to process the structure shown in FIG. 4 (c), and in the case shown in FIG. 3 (b), the process shown in FIG. It needs to be processed after the structure shown.

次に、図5(a)に示すように、第1の半導体基板2の上面にスパッタリングにより絶縁材料が被着される。次に、図5(b)に示すように、絶縁層18の梁部13領域を含む領域上に、検出素子17が形成される。検出素子17は、梁13及び変位部12上に形成された下部電極25と、下部電極25上に形成された圧電薄膜26と、圧電薄膜26上に部分的に形成された上部電極27とから構成されている。まず、梁13及び変位部12上にスパッタリングにより金属材料を被着し、フォトリソグラフィ及びエッチングにより金属材料をパターンニングして下部電極25を形成する。次いで、スパッタリングにより圧電材料を被着し、フォトリソグラフィ及びエッチングにより圧電材料をパターンニングして圧電薄膜26を形成する。次いで、スパッタリングにより金属材料を被着し、フォトリソグラフィ及びエッチングにより金属材料をパターンニングして圧電薄膜26上に部分的に上部電極27を形成する。   Next, as shown in FIG. 5A, an insulating material is deposited on the upper surface of the first semiconductor substrate 2 by sputtering. Next, as shown in FIG. 5B, the detection element 17 is formed on the region including the beam portion 13 region of the insulating layer 18. The detection element 17 includes a lower electrode 25 formed on the beam 13 and the displacement portion 12, a piezoelectric thin film 26 formed on the lower electrode 25, and an upper electrode 27 partially formed on the piezoelectric thin film 26. It is configured. First, a metal material is deposited on the beam 13 and the displacement portion 12 by sputtering, and the lower electrode 25 is formed by patterning the metal material by photolithography and etching. Next, a piezoelectric material is deposited by sputtering, and the piezoelectric material is patterned by photolithography and etching to form the piezoelectric thin film 26. Next, a metal material is deposited by sputtering, and the metal material is patterned by photolithography and etching, so that the upper electrode 27 is partially formed on the piezoelectric thin film 26.

次に、図5(c)に示すように、第1の半導体基板2を絶縁層4,18と共に部分的に除去することにより、梁部13及び変位部12を設ける。このようにして、力学量検出センサを得ることができる。   Next, as shown in FIG. 5C, the beam portion 13 and the displacement portion 12 are provided by partially removing the first semiconductor substrate 2 together with the insulating layers 4 and 18. In this way, a mechanical quantity detection sensor can be obtained.

次に、図6を参照して、力学量検出センサの動作について簡単に説明する。図6は、力学量検出センサの検出動作説明図であり、(a)は錘部がX軸回りに回動する際の検出動作説明図であり、(b)は錘部がZ軸方向に直動する際の検出動作説明図である。   Next, the operation of the mechanical quantity detection sensor will be briefly described with reference to FIG. 6A and 6B are explanatory diagrams of detection operation of the mechanical quantity detection sensor. FIG. 6A is an explanatory diagram of detection operation when the weight portion rotates around the X axis. FIG. 6B is an explanatory diagram of the weight portion in the Z-axis direction. It is detection operation explanatory drawing at the time of linear motion.

図6(a)に示すように、力学量検出センサに対して加速度が働いて、錘部22に対してY軸方向に慣性力が作用すると、錘部22はX軸回りに回動する。このとき、梁部13a,13bの変位部12側がZ軸方向下方に移動して、梁部13a,13bの枠体11側にZ方向上方に力が作用する。また、梁部13c,13dの変位部12側がZ軸方向上方に移動して、梁部13c,13dの枠体11側にZ軸方向下方に力が作用する。そして、梁部13a,13bの枠体11側はZ軸方向上方に膨らむように撓み、梁部13c,13dの枠体11側はZ軸方向下方に凹むように撓む。   As shown in FIG. 6A, when acceleration acts on the mechanical quantity detection sensor and an inertial force acts on the weight part 22 in the Y-axis direction, the weight part 22 rotates about the X-axis. At this time, the displacement portion 12 side of the beam portions 13a and 13b moves downward in the Z-axis direction, and a force acts upward in the Z direction on the frame body 11 side of the beam portions 13a and 13b. Further, the displacement portion 12 side of the beam portions 13c and 13d moves upward in the Z-axis direction, and a force acts downward in the Z-axis direction on the frame body 11 side of the beam portions 13c and 13d. The frame 11 side of the beam portions 13a and 13b is bent so as to swell upward in the Z-axis direction, and the frame 11 side of the beam portions 13c and 13d is bent so as to be recessed downward in the Z-axis direction.

検出素子17a,17bは、それぞれ梁部13a,13bの枠体11側の撓みに合わせてZ軸方向上方に膨らむように変形し、変形に応じた電圧を出力する。また、検出素子17c,17dは、それぞれ梁部13c,13dの枠体11側の撓みに合わせてZ軸方向下方に凹むように変形し、変形に応じた電圧を出力する。各検出素子17a,17b,17c,17dから出力された電圧は、図示しない演算回路において演算され、加速度が算出される。   The detection elements 17a and 17b are deformed so as to swell upward in the Z-axis direction in accordance with the bending of the beam portions 13a and 13b on the frame body 11 side, and output a voltage corresponding to the deformation. The detection elements 17c and 17d are deformed so as to be recessed downward in the Z-axis direction in accordance with the bending of the beam portions 13c and 13d on the frame body 11 side, and output a voltage corresponding to the deformation. The voltages output from the detection elements 17a, 17b, 17c, and 17d are calculated by an arithmetic circuit (not shown) to calculate acceleration.

なお、錘部22がY軸回りに回動する場合には、逆に、梁部13a,13bの枠体11側にZ軸方向下方に力が作用し、梁部13c,13dの枠体11側にZ軸方向上方に力が作用する。したがって、検出素子17a,17bは、それぞれ梁部13a,13bの枠体11側の撓みに合わせてZ軸方向下方に凹むように変形し、検出素子17c,17dは、それぞれ梁部13c,13dの枠体11側の撓みに合わせてZ軸方向上方に膨らむように変形する。   When the weight portion 22 rotates about the Y axis, conversely, a force acts downward in the Z axis direction on the frame body 11 side of the beam portions 13a and 13b, and the frame body 11 of the beam portions 13c and 13d. A force acts upward in the Z-axis direction. Accordingly, the detection elements 17a and 17b are deformed so as to be recessed downward in the Z-axis direction in accordance with the bending of the beam portions 13a and 13b on the frame body 11 side, and the detection elements 17c and 17d are respectively formed on the beam portions 13c and 13d. It deforms so as to swell upward in the Z-axis direction in accordance with the bending on the frame body 11 side.

図6(b)に示すように、力学量検出センサに対して加速度が働いて、錘部22に対してZ軸方向下方に慣性力が作用すると、錘部22はZ軸方向下方に直動する。このとき、梁部13a,13b,13c,13dの変位部12側がZ軸方向下方に移動して、梁部13a,13b,13c,13dの枠体11側にZ軸方向上方に力が作用する。そして、梁部13a,13b,13c,13dの枠体11側はZ軸方向上方に膨らむように撓み、検出素子17a,17b,17c,17dもZ軸方向上方に膨らむように変形する。そして、各検出素子17a,17b,17c,17dから出力された電圧は、図示しない演算回路において演算され、加速度が算出される。   As shown in FIG. 6B, when acceleration acts on the mechanical quantity detection sensor and an inertial force acts on the weight portion 22 downward in the Z-axis direction, the weight portion 22 moves linearly downward in the Z-axis direction. To do. At this time, the displacement portion 12 side of the beam portions 13a, 13b, 13c, and 13d moves downward in the Z-axis direction, and a force acts upward in the Z-axis direction on the frame body 11 side of the beam portions 13a, 13b, 13c, and 13d. . The frame 11 side of the beam portions 13a, 13b, 13c, and 13d is bent so as to swell upward in the Z-axis direction, and the detection elements 17a, 17b, 17c, and 17d are also deformed so as to swell upward in the Z-axis direction. And the voltage output from each detection element 17a, 17b, 17c, 17d is calculated in the arithmetic circuit which is not shown in figure, and an acceleration is calculated.

なお、力学量検出センサにおいて、錘部22及び変位部12の質量などを適宜変更することによってセンサ感度を任意に調整することも可能である。   In the mechanical quantity detection sensor, the sensor sensitivity can be arbitrarily adjusted by appropriately changing the masses of the weight portion 22 and the displacement portion 12.

このように、本実施の形態においては、SOI基板の第2半導体基板4を加工して、枠体11と、前記枠体11の内側に位置する錘(変位部12、錘部22)と、前記枠体11に対し前記錘を揺動可能に支持する梁部13と、を形成し、前記梁部13の厚さを薄くし、前記活性層上に、前13記梁部の撓み量に基づいて力学量に応じた信号を出力する検出素子17を形成する。この場合、感度や強度を考慮して最適な状態の梁部13を形成することができるので、高い感度を示すことができる力学量検出センサを製造することができる。   Thus, in the present embodiment, the second semiconductor substrate 4 of the SOI substrate is processed, and the frame body 11 and the weights (displacement portion 12 and weight portion 22) located inside the frame body 11, A beam portion 13 that supports the weight so as to be able to swing with respect to the frame body 11, the thickness of the beam portion 13 is reduced, and the bending amount of the beam portion 13 is formed on the active layer. Based on this, the detection element 17 that outputs a signal corresponding to the mechanical quantity is formed. In this case, since the beam portion 13 in an optimal state can be formed in consideration of sensitivity and strength, a mechanical quantity detection sensor that can exhibit high sensitivity can be manufactured.

また、上記した実施の形態においては、検出素子として圧電素子を例示して説明したが、この構成に限定されるものではない。梁部の撓みに基づいて力学量に応じた信号を出力する構成であればよく、例えば、圧電素子の代わりにピエゾ素子を用いてもよい。   In the above-described embodiment, the piezoelectric element is exemplified as the detection element. However, the present invention is not limited to this configuration. Any structure that outputs a signal corresponding to the mechanical quantity based on the deflection of the beam portion may be used. For example, a piezoelectric element may be used instead of the piezoelectric element.

また、今回開示された実施の形態は、全ての点で例示であってこの実施の形態に制限されるものではない。本発明の範囲は、上記した実施の形態のみの説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。   The embodiment disclosed this time is illustrative in all respects and is not limited to this embodiment. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims for patent.

本発明は、互いに直交するX軸、Y軸及びZ軸の3軸方向の加速度を検出する力学量検出センサに有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for a mechanical quantity detection sensor that detects acceleration in three axial directions of the X axis, the Y axis, and the Z axis orthogonal to each other.

1 力学量検出センサ
2 第1の半導体基板(第1の基板)
2a,2b,4a 凹部
3 第2の半導体基板(第2の基板)
4,18 絶縁層
11 枠体
12 変位部
13 梁部
17 検出素子
21 支持部
22 錘部
23 開口部
25 下部電極
26 圧電薄膜
27 上部電極
31 第3の基板
DESCRIPTION OF SYMBOLS 1 Mechanical quantity detection sensor 2 1st semiconductor substrate (1st board | substrate)
2a, 2b, 4a Recess 3 Second semiconductor substrate (second substrate)
4,18 Insulating layer 11 Frame 12 Displacement part 13 Beam part 17 Detection element 21 Support part 22 Weight part 23 Opening part 25 Lower electrode 26 Piezoelectric thin film 27 Upper electrode 31 Third substrate

Claims (4)

活性層、ベース層及び前記活性層と前記ベース層との間に挟持された絶縁層で構成されたSOI基板の前記ベース層を加工して、枠体と、前記枠体の内側に位置する錘と、前記枠体に対し前記錘を揺動可能に支持する梁部と、を形成する工程と、前記梁部の厚さを薄くする工程と、前記活性層上に、前記梁部の撓み量に基づいて力学量に応じた信号を出力する検出素子を形成する工程と、を具備することを特徴とする力学量検出センサの製造方法。   Processing the base layer of the SOI substrate including an active layer, a base layer, and an insulating layer sandwiched between the active layer and the base layer, and a frame body and a weight located inside the frame body And a beam portion for swingably supporting the weight with respect to the frame body; a step of reducing the thickness of the beam portion; and a deflection amount of the beam portion on the active layer. And a step of forming a detection element that outputs a signal corresponding to the mechanical quantity based on the method. 前記梁部の前記活性層側から加工して前記梁部の厚さを薄くすることを特徴とする請求項1記載の力学量検出センサの製造方法。   The method of manufacturing a mechanical quantity detection sensor according to claim 1, wherein the beam portion is thinned by processing from the active layer side of the beam portion. 前記梁部の前記絶縁層側から加工して前記梁部の厚さを薄くすることを特徴とする請求項1又は請求項2記載の力学量検出センサの製造方法。   The method for manufacturing a mechanical quantity detection sensor according to claim 1, wherein the beam portion is thinned by processing from the insulating layer side of the beam portion. 前記絶縁層を除去して、さらに前記活性層を薄くすることを特徴とする請求項3記載の力学量検出センサの製造方法。   4. The method of manufacturing a mechanical quantity detection sensor according to claim 3, wherein the insulating layer is removed and the active layer is further thinned.
JP2009060900A 2009-03-13 2009-03-13 Method of manufacturing dynamic quantity detection sensor Withdrawn JP2010216840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060900A JP2010216840A (en) 2009-03-13 2009-03-13 Method of manufacturing dynamic quantity detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009060900A JP2010216840A (en) 2009-03-13 2009-03-13 Method of manufacturing dynamic quantity detection sensor

Publications (1)

Publication Number Publication Date
JP2010216840A true JP2010216840A (en) 2010-09-30

Family

ID=42975861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060900A Withdrawn JP2010216840A (en) 2009-03-13 2009-03-13 Method of manufacturing dynamic quantity detection sensor

Country Status (1)

Country Link
JP (1) JP2010216840A (en)

Similar Documents

Publication Publication Date Title
JP6020392B2 (en) Acceleration sensor
JP2010540949A (en) Vibration type micro mechanical angular velocity sensor
JP6020341B2 (en) Capacitive physical quantity sensor and manufacturing method thereof
JP2004245760A (en) Sensor for detecting both pressure and acceleration, and its manufacturing method
JP2007309654A (en) Acceleration sensor and manufacturing method therefor
JP3938205B1 (en) Sensor element
JP2010216842A (en) Dynamic quantity detection sensor
JP4715503B2 (en) Manufacturing method of sensor module
JP5494804B2 (en) Dynamic sensor
JP2010216840A (en) Method of manufacturing dynamic quantity detection sensor
JP2008064647A (en) Triaxial acceleration sensor
JP4665733B2 (en) Sensor element
JP4983107B2 (en) Inertial sensor and method of manufacturing inertial sensor
JP2006208272A (en) Semiconductor multiaxial acceleration sensor
JP2010216837A (en) Sensor for detecting dynamic quantity
JP2009031048A (en) Piezoelectric acceleration sensor
JP2010216834A (en) Sensor for detecting dynamic quantity
JP5069410B2 (en) Sensor element
JP2010216841A (en) Dynamic quantity detection sensor
JP2010175500A (en) Impact sensor
JP2010216843A (en) Sensor for detecting dynamic quantity
JP2010216836A (en) Dynamic quantity detection sensor
JPH07225243A (en) Acceleration sensor and its production, method for detecting acceleration by the acceleration sensor and acceleration sensor array
JP2008244174A (en) Method of manufacturing sensor element
JP2010216835A (en) Dynamic quantity detection sensor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605