WO2019069683A1 - Torque detector - Google Patents

Torque detector Download PDF

Info

Publication number
WO2019069683A1
WO2019069683A1 PCT/JP2018/034570 JP2018034570W WO2019069683A1 WO 2019069683 A1 WO2019069683 A1 WO 2019069683A1 JP 2018034570 W JP2018034570 W JP 2018034570W WO 2019069683 A1 WO2019069683 A1 WO 2019069683A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
rotating shaft
torque
resistance
torque detector
Prior art date
Application number
PCT/JP2018/034570
Other languages
French (fr)
Japanese (ja)
Inventor
里奈 小笠原
石倉 義之
祐希 瀬戸
Original Assignee
アズビル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アズビル株式会社 filed Critical アズビル株式会社
Publication of WO2019069683A1 publication Critical patent/WO2019069683A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating

Definitions

  • the present invention relates to a torque detector that detects torque applied to a rotating shaft.
  • a metal strain gauge is attached to the peripheral surface of the rotating shaft as one of the methods to detect the torque applied to the rotating shaft, and the magnitude of shear stress generated on the peripheral surface of the rotating shaft by torque There is a method of detecting by value change.
  • this method even when another shaft load (a thrust load or a radial load) other than torque is applied to the rotating shaft, sensitivity is obtained to some extent, and only torque can not be detected accurately.
  • Patent Document 1 it is necessary to arrange eight or more metal strain gauges. Therefore, it is necessary to exactly match the relative positions and angles of the metal strain gauges, which causes a problem of difficulty.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a torque detector which can detect torque accurately even when another axis load is applied and which can be easily manufactured. There is.
  • a torque detector measures the sum of outputs of a plurality of strain sensors having a circuit formed of a plurality of active gauges and mounted on a rotating shaft at equal intervals around an axis and a plurality of strain sensors. And a measuring unit, wherein the active gauge is obliquely directed to the axial direction of the rotating shaft.
  • FIGS. 2A to 2C are diagrams showing a configuration example of the strain sensor according to the first embodiment of the present invention
  • FIG. 2A is a top view
  • FIG. 2B is a side view
  • FIG. 3A is a top view showing an arrangement example of the resistance gauges according to the first embodiment of the present invention
  • FIG. 3B is a view showing a construction example of a full bridge circuit composed of the resistance gauges shown in FIG. 3A.
  • FIGS. 6A and 6B are diagrams for explaining the basic operation principle of the torque detector, and FIG. 5A is a side view showing the torque applied to the rotating shaft, and FIG. 5B is a strain sensor based on the torque shown in FIG. It is a figure which shows an example of the stress distribution which generate
  • produced in. 6A to 6C are diagrams showing a case where a radial load is applied in the sensor mounting direction in the torque detector according to Embodiment 1 of the present invention, and FIGS. 6A and 6B show the mounting position of the strain sensor.
  • FIG. 6C is a front view and a side view, and FIG. 6C is a side view showing a state in which a radial load is applied in the sensor mounting direction.
  • FIGS. 7A to 7D are diagrams showing a case where a radial load is applied in the sensor non-mounting direction in the torque detector according to Embodiment 1 of the present invention
  • FIGS. 7A and 7B show mounting positions of strain sensors.
  • 7C is a side view showing a state in which a radial load is applied in the sensor mounting direction
  • FIG. 7D is a view showing a state of two strain sensors in FIG. 7C.
  • 8A to 8C are top views showing another example of arrangement of the resistance gauges according to the first embodiment of the present invention.
  • FIG. 9A is a top view showing another arrangement example of the resistance gauges according to the first embodiment of the present invention
  • FIG. 9B is a view showing a construction example of a half bridge circuit constituted by the resistance gauges shown in FIG. 9A.
  • 10A to 10C are diagrams showing another configuration example of the silicon layer in the first embodiment of the present invention.
  • FIG. 1 is a front view showing a configuration example of a torque detector according to Embodiment 1 of the present invention.
  • FIG. 1 shows a state in which the strain sensor 1 is attached to the rotating shaft 5.
  • the torque detector detects the torque applied to the rotating shaft 5.
  • a drive system 6 such as a motor is connected to one end in the axial direction, and a load system such as a robot hand is connected to the other end.
  • the torque detector includes a plurality of strain sensors 1 and a measurement unit 2.
  • FIG. 1 shows the case where two strain sensors 1 are used. Below, the case where a semiconductor strain gauge is used as the strain sensor 1 is shown.
  • the strain sensor 1 is a semiconductor strain gauge attached to the rotary shaft 5 and outputting a signal according to external shear stress (tensile stress and compressive stress).
  • the strain sensor 1 is realized by MEMS (Micro Electro Mechanical Systems).
  • the strain sensor 1 has a silicon layer (substrate layer) 11 and an insulating layer 12 as shown in FIGS.
  • the silicon layer 11 is a single crystal silicon which is strained in response to an external force, and is a sensor layer having a circuit composed of a plurality of resistance gauges (diffusion resistance) 13 which are active gauges.
  • FIG. 3 shows the case where the circuit is a full bridge circuit of a Wheatstone bridge circuit.
  • a groove 111 is formed in the center of the back surface (one surface) of the silicon layer 11.
  • the thin portion 112 is formed in the silicon layer 11 by the groove portion 111.
  • the resistance gauge 13 is formed on the thin portion 112.
  • the thickness of the thin portion 112 is appropriately designed in accordance with the rigidity and the like of the silicon layer 11. For example, when the rigidity of the silicon layer 11 is low, the thin portion 112 is thick, and when the rigidity of the silicon layer 11 is high, the thin portion 112 is thin.
  • the resistance gauge 13 is formed in the ⁇ 110> direction of the silicon layer 11.
  • four resistance gauges 13 constituting a full bridge circuit (Wheatstone bridge circuit) are formed in a diagonal direction (45 degrees direction) with respect to the side direction of the silicon layer 11. Shows the case of detecting shear stress in two directions.
  • the above-mentioned oblique direction is not limited to 45 degrees direction, but the characteristic of distortion sensor 1 46 degrees direction etc) is acceptable.
  • the insulating layer 12 is a pedestal whose upper surface is joined to the back surface of the silicon layer 11 and whose back surface is joined to the rotary shaft 5.
  • glass or sapphire can be used as the insulating layer 12.
  • step ST1 a plurality of resistance gauges 13 are formed on the silicon layer 11 by ion implantation (step ST1). Then, a plurality of resistance gauges 13 form a Wheatstone bridge circuit. Next, the groove portion 111 is formed on the back surface of the silicon layer 11 by etching (step ST2). Thereby, the portion of the silicon layer 11 where the resistance gauge 13 is formed is made to be the thin portion 112. Next, the back surface of the silicon layer 11 and the top surface of the insulating layer 12 are bonded by, for example, anodic bonding (step ST3).
  • the strain sensor 1 manufactured as described above is attached to the rotating shaft 5
  • the back surface of the insulating layer 12 and the rotating shaft 5 are joined by, for example, solder bonding.
  • the rear surface of the insulating layer 12 and the bonding portion of the rotary shaft 5 are metallized and then solder bonding is performed.
  • the plurality of strain sensors 1 are arranged at equal intervals so that the resistance gauges 13 are directed obliquely (with 45 degrees) with respect to the axial direction of the rotating shaft 5. That is, the resistance gauge 13 is disposed so as to face the generation direction of the shear stress generated when the torque is applied to the rotating shaft 5.
  • the above-mentioned oblique direction is not limited to 45 degrees direction, but the characteristic of distortion sensor 1 46 degrees direction etc) is acceptable.
  • the plurality of strain sensors 1 have the same sensitivity. In FIG. 1, two strain sensors 1 are disposed opposite to each other on the rotating shaft 5.
  • the measuring unit 2 measures the sum of the signals output by the plurality of strain sensors 1 as a torque. In FIG. 1, the measuring unit 2 measures the sum of the signals output by the two strain sensors 1 as a torque.
  • FIG. 5A the drive system 6 is connected to one end of the rotary shaft 5 to which the strain sensor 1 is attached, and a state where torque is applied to the rotary shaft 5 by the drive system 6 is shown.
  • FIG. 5 shows a case where one strain sensor 1 is used.
  • FIG. 5A by applying torque to the rotating shaft 5, the strain sensor 1 attached to the rotating shaft 5 is strained, and shear stress as shown in FIG. 5B is generated on the surface of the strain sensor 1. .
  • FIG. 5 shows that the deeper the color, the stronger the tensile stress, and the lighter the color, the stronger the compressive stress.
  • And resistance gauge 13 which turned to a diagonal direction (45 degrees direction) to the axial direction of axis of rotation 5 changes resistance value according to this shear stress, and strain sensor 1 changes according to change of resistance value. Output a signal.
  • the torque detector detects the torque applied to the rotating shaft 5 from the signal output from the strain sensor 1.
  • the plurality of strain sensors 1 are arranged on the rotating shaft 5 at equal intervals around the axis. Further, the four resistors constituting the full bridge circuit of the strain sensor 1 are arranged to face 45 degrees with respect to the axial direction of the rotary shaft 5.
  • FIGS. 6 and 7 show a case where two strain sensors 1a and 1b are disposed opposite to each other on the rotating shaft 5.
  • the stresses produced when torque is applied to the rotating shaft 5 are equal on the circumferential surface of the same radius. Therefore, the sum of the signals output by the two strain sensors 1 a and 1 b is twice as large as the signal output by the single strain sensor 1.
  • the thin portion 112 is formed by forming the groove portion 111 in the center of the back surface of the silicon layer 11, and the resistance gauge 13 is formed in the thin portion 112. Thereby, the stress can be concentrated on the thin portion 112 in which the resistance gauge 13 is formed, and the detection sensitivity to the torque applied to the rotating shaft 5 is improved.
  • the arrangement of the four resistance gauges 13 is not limited to the arrangement shown in FIG. 3, but may be an arrangement as shown in FIG. 8, for example.
  • a communication groove portion 113 may be formed, which communicates the groove portion 111 with the side surface of the silicon layer 11.
  • a temperature of about 400 ° C. is applied by anodic bonding. Therefore, when the communication groove portion 113 is not present, the air present in the groove portion 111 between the silicon layer 11 and the insulating layer 12 is sealed in a high temperature state at the time of anodic bonding, and when the temperature drops to normal temperature As a result, the thin-walled portion 112 may be deformed and the zero point of the strain sensor 1 may be displaced.
  • the communication groove portion 113 air present in the groove portion 111 can be released to the outside at the time of anodic bonding, and deformation of the thin portion 112 can be avoided.
  • the silicon layer 11 needs to be configured so as to be partially thinned by the groove portion 111 and the communication groove portion 113 so as not to be entirely thinned.
  • the silicon layer 11 was used as a board
  • substrate layer was shown in the above, it does not restrict to this, and should just be a member which distortion produces according to external force.
  • an insulator such as glass
  • the resistance gauge 13 is formed by depositing a film on the insulator by sputtering or the like.
  • the resistance gauge 13 is formed by sputtering the metal via an insulating film.
  • the silicon layer 11 may be used as a substrate layer, and the resistance gauge 13 may be formed on the silicon layer 11 by sputtering or the like.
  • the gauge factor is higher than that of a general metal strain gauge. Further, when the resistance gauge 13 is formed by film formation, the gauge ratio does not change depending on the crystal orientation as opposed to the case where the resistance gauge 13 is formed in the silicon layer 11 by ion implantation, that is, the direction needs to be limited. There is no On the other hand, the gauge factor is 4 to 10 times higher in the case where the resistance gauge 13 is formed by ion implantation in the silicon layer 11 than when the resistance gauge 13 is formed by film formation.
  • the strain sensor 1 In the above, the case of using a semiconductor strain gauge having a shape as shown in FIG. 2 as the strain sensor 1 is shown. However, the present invention is not limited to this, and semiconductor strain cages of other shapes may be used. In addition, as the strain sensor 1, another strain gauge (for example, a metal strain gauge) may be used.
  • the plurality of strain sensors 1 having the circuit including the plurality of resistance gauges 13 and attached to the rotating shaft 5 at equal intervals around the axis, and the plurality of strains Since the resistance gauge 13 is directed obliquely with respect to the axial direction of the rotating shaft 5, the torque is accurately measured even when another shaft load is applied. It can be detected and easily manufactured.
  • the torque detector according to the present invention can accurately detect a torque even when a load is applied to another shaft, can be easily manufactured, and is suitable for use as a torque detector that detects a torque applied to a rotating shaft. .

Abstract

The present invention comprises: a plurality of strain sensors (1) that have a circuit comprising a plurality of active gauges (13), and are attached to a rotary shaft body (5) at equal intervals around the axis thereof; and a measurement unit (2) that measures the sum of the outputs of the plurality of strain sensors (1). The active gauges (13) are slanted relative to the axial direction of the rotary shaft body (5).

Description

トルク検出器Torque detector
 この発明は、回転軸体に加わるトルクを検出するトルク検出器に関する。 The present invention relates to a torque detector that detects torque applied to a rotating shaft.
 回転軸体に加わるトルクを検出する方式の一つとして、回転軸体の周面に金属歪ゲージを取付け、トルクにより回転軸体の周面に生じるせん断応力の大きさを、金属歪ゲージにおける抵抗値変化により検出する方式がある。
 しかしながら、この方式では、回転軸体にトルク以外の他軸荷重(スラスト荷重又はラジアル荷重)が加わった場合にも少なからず感度を持ってしまい、トルクのみを精度よく検出できない。
A metal strain gauge is attached to the peripheral surface of the rotating shaft as one of the methods to detect the torque applied to the rotating shaft, and the magnitude of shear stress generated on the peripheral surface of the rotating shaft by torque There is a method of detecting by value change.
However, in this method, even when another shaft load (a thrust load or a radial load) other than torque is applied to the rotating shaft, sensitivity is obtained to some extent, and only torque can not be detected accurately.
 そこで、例えば特許文献1に開示された方式では、複数の金属歪ゲージを、回転軸体の周面に、他軸荷重が加わった場合に対となる金属歪ゲージの抵抗値変化が反転するように配置している。これにより、他軸荷重による影響をキャンセルできる。 Therefore, for example, in the method disclosed in Patent Document 1, when a plurality of metal strain gauges are applied to the circumferential surface of the rotating shaft, the change in resistance value of the paired metal strain gauges is reversed when another axial load is applied. It has been arranged. This makes it possible to cancel the influence of the other axis load.
特開平09-021709号公報JP 09-021709 A
 しかしながら、特許文献1に開示された方式では、金属歪ゲージを8つ以上配置する必要がある。よって、各金属歪ゲージの相対位置及び角度を厳密に合わせる必要があり、困難であるという課題がある。 However, in the method disclosed in Patent Document 1, it is necessary to arrange eight or more metal strain gauges. Therefore, it is necessary to exactly match the relative positions and angles of the metal strain gauges, which causes a problem of difficulty.
 この発明は、上記のような課題を解決するためになされたもので、他軸荷重が加わった場合でも精度よくトルクを検出でき、簡易に製作可能であるトルク検出器を提供することを目的としている。 The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a torque detector which can detect torque accurately even when another axis load is applied and which can be easily manufactured. There is.
 この発明に係るトルク検出器は、複数のアクティブゲージから成る回路を有し、回転軸体に軸周りに等間隔で取付けられた複数の歪センサと、複数の歪センサの出力の和を計測する計測部とを備え、アクティブゲージは、回転軸体の軸方向に対して斜め方向を向いたことを特徴とする。 A torque detector according to the present invention measures the sum of outputs of a plurality of strain sensors having a circuit formed of a plurality of active gauges and mounted on a rotating shaft at equal intervals around an axis and a plurality of strain sensors. And a measuring unit, wherein the active gauge is obliquely directed to the axial direction of the rotating shaft.
 この発明によれば、上記のように構成したので、他軸荷重が加わった場合でも精度よくトルクを検出でき、簡易に製作可能である。 According to this invention, since it was comprised as mentioned above, even when the other-axis load is added, a torque can be detected accurately, and it can manufacture simply.
この発明の実施の形態1に係るトルク検出器の構成例を示す正面図(歪センサが回転軸体に取付けられた状態を示す図)である。It is a front view (figure which shows the state in which the distortion sensor was attached to the rotating shaft) which shows the structural example of the torque detector which concerns on Embodiment 1 of this invention. 図2A~図2Cは、この発明の実施の形態1における歪センサの構成例を示す図であり、図2Aは上面図であり、図2Bは側面図であり、図2CはA-A’線断面図である。FIGS. 2A to 2C are diagrams showing a configuration example of the strain sensor according to the first embodiment of the present invention, FIG. 2A is a top view, FIG. 2B is a side view, and FIG. FIG. 図3Aはこの発明の実施の形態1における抵抗ゲージの配置例を示す上面図であり、図3Bは図3Aに示す抵抗ゲージにより構成されるフルブリッジ回路の構成例を示す図である。FIG. 3A is a top view showing an arrangement example of the resistance gauges according to the first embodiment of the present invention, and FIG. 3B is a view showing a construction example of a full bridge circuit composed of the resistance gauges shown in FIG. 3A. この発明の実施の形態1における歪センサの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the distortion sensor in Embodiment 1 of this invention. 図5A、図5Bは、トルク検出器の基本動作原理を説明する図であり、図5Aは回転軸体に加えられたトルクを示す側面図であり、図5Bは図5Aに示すトルクにより歪センサに発生した応力分布の一例を示す図である。5A and 5B are diagrams for explaining the basic operation principle of the torque detector, and FIG. 5A is a side view showing the torque applied to the rotating shaft, and FIG. 5B is a strain sensor based on the torque shown in FIG. It is a figure which shows an example of the stress distribution which generate | occur | produced in. 図6A~図6Cは、この発明の実施の形態1に係るトルク検出器において、センサ搭載方向にラジアル荷重が加わった場合を示す図であり、図6A及び図6Bは歪センサの搭載位置を示す正面図及び側面図であり、図6Cはセンサ搭載方向にラジアル荷重が加わった状態を示す側面図である。6A to 6C are diagrams showing a case where a radial load is applied in the sensor mounting direction in the torque detector according to Embodiment 1 of the present invention, and FIGS. 6A and 6B show the mounting position of the strain sensor. FIG. 6C is a front view and a side view, and FIG. 6C is a side view showing a state in which a radial load is applied in the sensor mounting direction. 図7A~図7Dは、この発明の実施の形態1に係るトルク検出器において、センサ非搭載方向にラジアル荷重が加わった場合を示す図であり、図7A及び図7Bは歪センサの搭載位置を示す正面図及び側面図であり、図7Cはセンサ搭載方向にラジアル荷重が加わった状態を示す側面図であり、図7Dは図7Cでの2つの歪センサの状態を示す図である。FIGS. 7A to 7D are diagrams showing a case where a radial load is applied in the sensor non-mounting direction in the torque detector according to Embodiment 1 of the present invention, and FIGS. 7A and 7B show mounting positions of strain sensors. 7C is a side view showing a state in which a radial load is applied in the sensor mounting direction, and FIG. 7D is a view showing a state of two strain sensors in FIG. 7C. 図8A~図8Cは、この発明の実施の形態1における抵抗ゲージの別の配置例を示す上面図である。8A to 8C are top views showing another example of arrangement of the resistance gauges according to the first embodiment of the present invention. 図9Aはこの発明の実施の形態1における抵抗ゲージの別の配置例を示す上面図であり、図9Bは図9Aに示す抵抗ゲージにより構成されるハーフブリッジ回路の構成例を示す図である。FIG. 9A is a top view showing another arrangement example of the resistance gauges according to the first embodiment of the present invention, and FIG. 9B is a view showing a construction example of a half bridge circuit constituted by the resistance gauges shown in FIG. 9A. 図10A~図10Cは、この発明の実施の形態1におけるシリコン層の別の構成例を示す図である。10A to 10C are diagrams showing another configuration example of the silicon layer in the first embodiment of the present invention.
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係るトルク検出器の構成例を示す正面図である。図1では、歪センサ1が回転軸体5に取付けられた状態を示している。
 トルク検出器は、回転軸体5に加わるトルクを検出する。回転軸体5は、軸方向における一端にモータ等の駆動系6が接続され、他端にロボットハンド等の負荷系が接続される。トルク検出器は、図1に示すように、複数の歪センサ1、及び計測部2を備えている。図1では2つの歪センサ1を用いた場合を示している。以下では、歪センサ1として半導体歪ゲージを用いた場合を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1
FIG. 1 is a front view showing a configuration example of a torque detector according to Embodiment 1 of the present invention. FIG. 1 shows a state in which the strain sensor 1 is attached to the rotating shaft 5.
The torque detector detects the torque applied to the rotating shaft 5. In the rotating shaft 5, a drive system 6 such as a motor is connected to one end in the axial direction, and a load system such as a robot hand is connected to the other end. As shown in FIG. 1, the torque detector includes a plurality of strain sensors 1 and a measurement unit 2. FIG. 1 shows the case where two strain sensors 1 are used. Below, the case where a semiconductor strain gauge is used as the strain sensor 1 is shown.
 歪センサ1は、回転軸体5に取付けられ、外部からのせん断応力(引張応力及び圧縮応力)に応じた信号を出力する半導体歪ゲージである。歪センサ1は、MEMS(Micro Electro Mechanical Systems)により実現される。歪センサ1は、図2,3に示すように、シリコン層(基板層)11及び絶縁層12を有する。 The strain sensor 1 is a semiconductor strain gauge attached to the rotary shaft 5 and outputting a signal according to external shear stress (tensile stress and compressive stress). The strain sensor 1 is realized by MEMS (Micro Electro Mechanical Systems). The strain sensor 1 has a silicon layer (substrate layer) 11 and an insulating layer 12 as shown in FIGS.
 シリコン層11は、外力に応じて歪みが生じる単結晶シリコンであり、複数のアクティブゲージである抵抗ゲージ(拡散抵抗)13から成る回路を有するセンサ層である。図3では、上記回路が、ホイートストンブリッジ回路のフルブリッジ回路である場合を示している。シリコン層11には、裏面(一面)の中央に、溝部111が形成されている。溝部111により、シリコン層11には薄肉部112が構成される。抵抗ゲージ13は、この薄肉部112に形成される。 The silicon layer 11 is a single crystal silicon which is strained in response to an external force, and is a sensor layer having a circuit composed of a plurality of resistance gauges (diffusion resistance) 13 which are active gauges. FIG. 3 shows the case where the circuit is a full bridge circuit of a Wheatstone bridge circuit. A groove 111 is formed in the center of the back surface (one surface) of the silicon layer 11. The thin portion 112 is formed in the silicon layer 11 by the groove portion 111. The resistance gauge 13 is formed on the thin portion 112.
 なお、薄肉部112の厚さは、シリコン層11の剛性等に応じて適宜設計される。例えば、シリコン層11の剛性が低い場合には薄肉部112は厚くされ、シリコン層11の剛性が高い場合には薄肉部112は薄くされる。 The thickness of the thin portion 112 is appropriately designed in accordance with the rigidity and the like of the silicon layer 11. For example, when the rigidity of the silicon layer 11 is low, the thin portion 112 is thick, and when the rigidity of the silicon layer 11 is high, the thin portion 112 is thin.
 また、単結晶シリコンは、結晶異方性を有し、p型シリコン(100)面において、<110>方向のときに最もピエゾ抵抗係数が大きくなる。そのため、抵抗ゲージ13は、シリコン層11の<110>方向に形成される。
 図3では、フルブリッジ回路(ホイートストンブリッジ回路)を構成する4つの抵抗ゲージ13(R1~R4)が、シリコン層11の辺方向に対して斜め方向(45度方向)に形成され、歪センサ1が2方向のせん断応力を検知する場合を示している。なおここでは、上記斜め方向の具体例として45度方向とした場合を示したが、上記斜め方向は45度方向に限定されず、歪センサ1の特性上、ある程度のずれ(例えば44度方向又は46度方向等)は許容される。
In addition, single crystal silicon has crystal anisotropy, and in the p-type silicon (100) plane, the piezoresistance coefficient is largest in the <110> direction. Therefore, the resistance gauge 13 is formed in the <110> direction of the silicon layer 11.
In FIG. 3, four resistance gauges 13 (R1 to R4) constituting a full bridge circuit (Wheatstone bridge circuit) are formed in a diagonal direction (45 degrees direction) with respect to the side direction of the silicon layer 11. Shows the case of detecting shear stress in two directions. Here, although the case where it is 45 degrees direction was shown as a specific example of the above-mentioned oblique direction, the above-mentioned oblique direction is not limited to 45 degrees direction, but the characteristic of distortion sensor 1 46 degrees direction etc) is acceptable.
 絶縁層12は、上面がシリコン層11の裏面に接合され、裏面が回転軸体5に接合される台座である。この絶縁層12としては、例えばガラス又はサファイア等を用いることができる。 The insulating layer 12 is a pedestal whose upper surface is joined to the back surface of the silicon layer 11 and whose back surface is joined to the rotary shaft 5. For example, glass or sapphire can be used as the insulating layer 12.
 次に、歪センサ1の製造方法の一例について、図4を参照しながら説明する。
 歪センサ1の製造方法では、図4に示すように、まず、シリコン層11に、イオン注入により複数の抵抗ゲージ13を形成する(ステップST1)。そして、複数の抵抗ゲージ13によりホイートストンブリッジ回路を形成する。
 次いで、シリコン層11の裏面に、エッチングにより溝部111を形成する(ステップST2)。これにより、シリコン層11の抵抗ゲージ13が形成された箇所を薄肉部112とさせる。
 次いで、シリコン層11の裏面と絶縁層12の上面とを、例えば陽極接合により接合する(ステップST3)。
Next, an example of a method of manufacturing the strain sensor 1 will be described with reference to FIG.
In the method of manufacturing the strain sensor 1, as shown in FIG. 4, first, a plurality of resistance gauges 13 are formed on the silicon layer 11 by ion implantation (step ST1). Then, a plurality of resistance gauges 13 form a Wheatstone bridge circuit.
Next, the groove portion 111 is formed on the back surface of the silicon layer 11 by etching (step ST2). Thereby, the portion of the silicon layer 11 where the resistance gauge 13 is formed is made to be the thin portion 112.
Next, the back surface of the silicon layer 11 and the top surface of the insulating layer 12 are bonded by, for example, anodic bonding (step ST3).
 また上記のようにして製造された歪センサ1を回転軸体5に取付ける場合には、絶縁層12の裏面と回転軸体5とを例えばはんだ接合により接合する。この際、絶縁層12の裏面及び回転軸体5の接合部位をメタライズした上で、はんだ接合を行う。 When the strain sensor 1 manufactured as described above is attached to the rotating shaft 5, the back surface of the insulating layer 12 and the rotating shaft 5 are joined by, for example, solder bonding. At this time, the rear surface of the insulating layer 12 and the bonding portion of the rotary shaft 5 are metallized and then solder bonding is performed.
 また、複数の歪センサ1は、等間隔、且つ、抵抗ゲージ13が回転軸体5の軸方向に対して斜め方向(45度方向)を向くように配置されている。すなわち、抵抗ゲージ13は、回転軸体5にトルクが加わった際に発生するせん断応力の発生方向を向くように配置される。なおここでは、上記斜め方向の具体例として45度方向とした場合を示したが、上記斜め方向は45度方向に限定されず、歪センサ1の特性上、ある程度のずれ(例えば44度方向又は46度方向等)は許容される。また、複数の歪センサ1は、それぞれ同一の感度を有するものとする。図1では、2つの歪センサ1が、回転軸体5に互いに対向配置されている。 Further, the plurality of strain sensors 1 are arranged at equal intervals so that the resistance gauges 13 are directed obliquely (with 45 degrees) with respect to the axial direction of the rotating shaft 5. That is, the resistance gauge 13 is disposed so as to face the generation direction of the shear stress generated when the torque is applied to the rotating shaft 5. Here, although the case where it is 45 degrees direction was shown as a specific example of the above-mentioned oblique direction, the above-mentioned oblique direction is not limited to 45 degrees direction, but the characteristic of distortion sensor 1 46 degrees direction etc) is acceptable. The plurality of strain sensors 1 have the same sensitivity. In FIG. 1, two strain sensors 1 are disposed opposite to each other on the rotating shaft 5.
 ここで、特許文献1に開示されたトルク検出器では、8つ以上の金属歪ゲージを、相対位置及び角度を厳密に合わせて取付ける必要がある。それに対し、実施の形態1に係るトルク検出器では、1つの歪センサ1にブリッジ回路が形成されているため、少なくとも2つの歪センサ1を搭載すればよく、トルク検出器をより簡易に製作可能となる。なお、1つの歪センサ1に複数の抵抗ゲージ13を形成する場合、フォトリソグラフィによりパターニングするため、各抵抗ゲージ13を精巧に位置決め可能である。 Here, in the torque detector disclosed in Patent Document 1, it is necessary to mount eight or more metal strain gauges in precise relative position and angle. On the other hand, in the torque detector according to the first embodiment, since a bridge circuit is formed in one strain sensor 1, at least two strain sensors 1 may be mounted, and the torque detector can be manufactured more easily. It becomes. In the case where a plurality of resistance gauges 13 are formed in one strain sensor 1, each resistance gauge 13 can be precisely positioned because it is patterned by photolithography.
 計測部2は、複数の歪センサ1により出力された信号の和をトルクとして計測する。図1では、計測部2は、2つの歪センサ1により出力された信号の和をトルクとして計測する。 The measuring unit 2 measures the sum of the signals output by the plurality of strain sensors 1 as a torque. In FIG. 1, the measuring unit 2 measures the sum of the signals output by the two strain sensors 1 as a torque.
 次に、トルク検出器の基本動作原理について、図5を参照しながら説明する。図5Aでは、歪センサ1が取付けられた回転軸体5の一端に駆動系6が接続され、この駆動系6により回転軸体5にトルクが加えられた状態を示している。また図5では、1つの歪センサ1を用いた場合を示している。
 図5Aに示すように、回転軸体5にトルクが加えられることで、回転軸体5に取付けられた歪センサ1が歪み、歪センサ1の表面に図5Bに示すようなせん断応力が発生する。図5では、色が濃い点ほど引張応力が強い状態であり、色が薄い点ほど圧縮応力が強い状態であることを示している。そして、回転軸体5の軸方向に対して斜め方向(45度方向)を向いた抵抗ゲージ13は、このせん断応力に応じて抵抗値が変化し、歪センサ1は、抵抗値の変化に応じた信号を出力する。そして、トルク検出器は、この歪センサ1により出力された信号から回転軸体5に加えられたトルクを検出する。
Next, the basic operation principle of the torque detector will be described with reference to FIG. In FIG. 5A, the drive system 6 is connected to one end of the rotary shaft 5 to which the strain sensor 1 is attached, and a state where torque is applied to the rotary shaft 5 by the drive system 6 is shown. Further, FIG. 5 shows a case where one strain sensor 1 is used.
As shown in FIG. 5A, by applying torque to the rotating shaft 5, the strain sensor 1 attached to the rotating shaft 5 is strained, and shear stress as shown in FIG. 5B is generated on the surface of the strain sensor 1. . FIG. 5 shows that the deeper the color, the stronger the tensile stress, and the lighter the color, the stronger the compressive stress. And resistance gauge 13 which turned to a diagonal direction (45 degrees direction) to the axial direction of axis of rotation 5 changes resistance value according to this shear stress, and strain sensor 1 changes according to change of resistance value. Output a signal. The torque detector detects the torque applied to the rotating shaft 5 from the signal output from the strain sensor 1.
 実施の形態1に係るトルク検出器では、複数の歪センサ1が、回転軸体5に軸周りに等間隔で配置されている。また、歪センサ1が有するフルブリッジ回路を構成する4つの抵抗は、回転軸体5の軸方向に対して45度方向を向くように配置されている。
 以下、実施の形態1に係るトルク検出器の効果について、図6,7を参照しながら説明する。なお図6,7では、2つの歪センサ1a,1bが、回転軸体5に互いに対向配置された場合を示している。
In the torque detector according to the first embodiment, the plurality of strain sensors 1 are arranged on the rotating shaft 5 at equal intervals around the axis. Further, the four resistors constituting the full bridge circuit of the strain sensor 1 are arranged to face 45 degrees with respect to the axial direction of the rotary shaft 5.
The effects of the torque detector according to the first embodiment will be described below with reference to FIGS. FIGS. 6 and 7 show a case where two strain sensors 1a and 1b are disposed opposite to each other on the rotating shaft 5.
 ここで、回転軸体5にトルクが加わった場合に生じる応力は、同一半径の周面上で等しい。よって、2つの歪センサ1a,1bにより出力された信号の和は、単一の歪センサ1により出力された信号の2倍となる。 Here, the stresses produced when torque is applied to the rotating shaft 5 are equal on the circumferential surface of the same radius. Therefore, the sum of the signals output by the two strain sensors 1 a and 1 b is twice as large as the signal output by the single strain sensor 1.
 一方、回転軸体5にスラスト荷重又は図6Bに矢印で示すセンサ搭載方向へのラジアル荷重が加わった場合には、歪センサ1a,1b内の2対の抵抗値変化が反転し相殺される。そのため、歪センサ1a,1bによる出力はない。
 また、回転軸体5に図7Bに矢印で示すセンサ非搭載側へのラジアル荷重が加わった場合には、図7Dに示すように歪センサ1a,1bが互いに反対方向に歪み、歪センサ1a,1bによる出力が反転する。よって、計測部2でその和を取ることで相殺される。
 よって、他軸荷重による影響を抑制できる。また、2つの歪センサ1a,1bを用いた場合には、回転軸体5に互いに対向配置させて取付ければよいため、組立が容易である。
On the other hand, when a thrust load or a radial load in the sensor mounting direction shown by the arrow in FIG. 6B is applied to the rotating shaft 5, the change in resistance value of the two pairs in the strain sensors 1a and 1b is reversed and offset. Therefore, there is no output from the strain sensors 1a and 1b.
When a radial load to the sensor non-mounting side shown by the arrow in FIG. 7B is applied to the rotating shaft 5, as shown in FIG. 7D, the strain sensors 1a and 1b are strained in opposite directions to each other. The output by 1b is inverted. Therefore, the measurement unit 2 cancels the sum by taking the sum.
Therefore, the influence by other axis load can be controlled. Further, in the case where two strain sensors 1a and 1b are used, the assembly may be easy since they may be disposed so as to be opposed to each other on the rotary shaft 5.
 なお上記のトルク検出器では、シリコン層11の裏面中央に溝部111が形成されることで薄肉部112が構成され、抵抗ゲージ13がこの薄肉部112に形成されている。これにより、抵抗ゲージ13が形成された薄肉部112に応力を集中させることができ、回転軸体5に加わるトルクに対する検出感度が向上する。 In the torque detector described above, the thin portion 112 is formed by forming the groove portion 111 in the center of the back surface of the silicon layer 11, and the resistance gauge 13 is formed in the thin portion 112. Thereby, the stress can be concentrated on the thin portion 112 in which the resistance gauge 13 is formed, and the detection sensitivity to the torque applied to the rotating shaft 5 is improved.
 また、4つの抵抗ゲージ13の配置は図3に示す配置に限らず、例えば図8に示すような配置としてもよい。 Further, the arrangement of the four resistance gauges 13 is not limited to the arrangement shown in FIG. 3, but may be an arrangement as shown in FIG. 8, for example.
 また上記では、ホイートストンブリッジ回路として、4つの抵抗ゲージ13(R1~R4)から成るフルブリッジ回路を用いた場合を示した。しかしながら、これに限らず、図9に示すように、ホイートストンブリッジ回路として、2つの抵抗ゲージ13(R1,R2)から成るハーフブリッジ回路を用いてもよい。なお、図9BにおけるRは、固定抵抗である。 Also, in the above description, the case where a full bridge circuit composed of four resistance gauges 13 (R1 to R4) is used as the Wheatstone bridge circuit is shown. However, the present invention is not limited to this, and as shown in FIG. 9, a half bridge circuit composed of two resistance gauges 13 (R1 and R2) may be used as a Wheatstone bridge circuit. Note that R in FIG. 9B is a fixed resistance.
 また図10に示すように、シリコン層11の裏面に、溝部111をシリコン層11の側面に連通する連通溝部113が形成されてもよい。ここで、シリコン層11と絶縁層12との接合では、陽極接合により400度程度の温度が加えられる。そのため、連通溝部113が無い場合には、陽極接合の際に、シリコン層11と絶縁層12との間の溝部111に存在する空気が高温状態で封止されてしまい、常温に下がるとその空気が収縮するため、薄肉部112が変形し、歪センサ1のゼロ点がずれてしまう恐れがある。一方、連通溝部113が設けられることで、陽極接合の際に、溝部111に存在する空気を外部に逃がすことができ、薄肉部112の変形を回避できる。
 なお、シリコン層11は、溝部111及び連通溝部113により、全体が薄くならないように、一部のみが薄くなるように構成される必要がある。
Further, as shown in FIG. 10, on the back surface of the silicon layer 11, a communication groove portion 113 may be formed, which communicates the groove portion 111 with the side surface of the silicon layer 11. Here, in the bonding of the silicon layer 11 and the insulating layer 12, a temperature of about 400 ° C. is applied by anodic bonding. Therefore, when the communication groove portion 113 is not present, the air present in the groove portion 111 between the silicon layer 11 and the insulating layer 12 is sealed in a high temperature state at the time of anodic bonding, and when the temperature drops to normal temperature As a result, the thin-walled portion 112 may be deformed and the zero point of the strain sensor 1 may be displaced. On the other hand, by providing the communication groove portion 113, air present in the groove portion 111 can be released to the outside at the time of anodic bonding, and deformation of the thin portion 112 can be avoided.
The silicon layer 11 needs to be configured so as to be partially thinned by the groove portion 111 and the communication groove portion 113 so as not to be entirely thinned.
 なお上記では、基板層として、シリコン層11を用いた場合を示したが、これに限らず、外力に応じて歪みが生じる部材であればよい。例えば、基板層として、絶縁体(ガラス等)又は金属を用いることができる。ここで、基板層が絶縁体である場合には、抵抗ゲージ13は、当該絶縁体にスパッタリング等により成膜されることで形成される。また、基板層が金属である場合には、抵抗ゲージ13は、当該金属に絶縁膜を介してスパッタリング等により成膜されることで形成される。また、基板層としてシリコン層11を用い、抵抗ゲージ13が、当該シリコン層11にスパッタリング等により成膜されることで形成されてもよい。
 基板層として上記絶縁体又は金属を用いた場合でも、一般的な金属歪ゲージよりもゲージ率は高くなる。また、成膜によって抵抗ゲージ13を形成した場合には、シリコン層11にイオン注入により抵抗ゲージ13を形成した場合に対し、結晶方位によってゲージ率が変わることはなく、すなわち、方向を限定する必要がなくなる。
 一方、ゲージ率は、成膜によって抵抗ゲージ13を形成した場合に対し、シリコン層11にイオン注入により抵抗ゲージ13を形成した場合の方が、4~10倍以上高くなる。
In addition, although the case where the silicon layer 11 was used as a board | substrate layer was shown in the above, it does not restrict to this, and should just be a member which distortion produces according to external force. For example, as the substrate layer, an insulator (such as glass) or a metal can be used. Here, when the substrate layer is an insulator, the resistance gauge 13 is formed by depositing a film on the insulator by sputtering or the like. When the substrate layer is metal, the resistance gauge 13 is formed by sputtering the metal via an insulating film. Alternatively, the silicon layer 11 may be used as a substrate layer, and the resistance gauge 13 may be formed on the silicon layer 11 by sputtering or the like.
Even when the above-described insulator or metal is used as the substrate layer, the gauge factor is higher than that of a general metal strain gauge. Further, when the resistance gauge 13 is formed by film formation, the gauge ratio does not change depending on the crystal orientation as opposed to the case where the resistance gauge 13 is formed in the silicon layer 11 by ion implantation, that is, the direction needs to be limited. There is no
On the other hand, the gauge factor is 4 to 10 times higher in the case where the resistance gauge 13 is formed by ion implantation in the silicon layer 11 than when the resistance gauge 13 is formed by film formation.
 また上記では、歪センサ1として、図2に示すような形状の半導体歪ゲージを用いた場合を示した。しかしながら、これに限らず、その他の形状の半導体歪ケージを用いてもよい。また、歪センサ1として、その他の歪ゲージ(例えば金属歪ゲージ)を用いてもよい。 In the above, the case of using a semiconductor strain gauge having a shape as shown in FIG. 2 as the strain sensor 1 is shown. However, the present invention is not limited to this, and semiconductor strain cages of other shapes may be used. In addition, as the strain sensor 1, another strain gauge (for example, a metal strain gauge) may be used.
 以上のように、この実施の形態1によれば、複数の抵抗ゲージ13から成る回路を有し、回転軸体5に軸周りに等間隔で取付けられた複数の歪センサ1と、複数の歪センサ1の出力の和を計測する計測部2とを備え、抵抗ゲージ13は、回転軸体5の軸方向に対して斜め方向を向いたので、他軸荷重が加わった場合でも精度よくトルクを検出でき、簡易に製作可能である。 As described above, according to the first embodiment, the plurality of strain sensors 1 having the circuit including the plurality of resistance gauges 13 and attached to the rotating shaft 5 at equal intervals around the axis, and the plurality of strains Since the resistance gauge 13 is directed obliquely with respect to the axial direction of the rotating shaft 5, the torque is accurately measured even when another shaft load is applied. It can be detected and easily manufactured.
 なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, modifications of optional components of the embodiment or omission of optional components of the embodiment is possible.
 この発明に係るトルク検出器は、他軸荷重が加わった場合でも精度よくトルクを検出でき、簡易に製作可能であり、回転軸体に加わるトルクを検出するトルク検出器に用いるのに適している。 The torque detector according to the present invention can accurately detect a torque even when a load is applied to another shaft, can be easily manufactured, and is suitable for use as a torque detector that detects a torque applied to a rotating shaft. .
1 歪センサ
2 計測部
5 回転軸体
6 駆動系
11 シリコン層(基板層)
12 絶縁層
13 抵抗ゲージ(拡散抵抗)
111 溝部
112 薄肉部
113 連通溝部
Reference Signs List 1 strain sensor 2 measurement unit 5 rotary shaft 6 drive system 11 silicon layer (substrate layer)
12 insulation layer 13 resistance gauge (diffusion resistance)
111 Groove 112 Thin portion 113 Communication groove

Claims (4)

  1.  複数のアクティブゲージから成る回路を有し、回転軸体に軸周りに等間隔で取付けられた複数の歪センサと、
     前記複数の歪センサの出力の和を計測する計測部とを備え、
     前記アクティブゲージは、前記回転軸体の軸方向に対して斜め方向を向いた
     ことを特徴とするトルク検出器。
    A plurality of strain sensors, each having a circuit composed of a plurality of active gauges, and mounted on the rotating shaft at equal intervals around an axis;
    And a measuring unit that measures the sum of the outputs of the plurality of strain sensors,
    The said active gauge turned in the diagonal direction with respect to the axial direction of the said rotating shaft. The torque detector characterized by the above-mentioned.
  2.  前記回路は、ホイートストンブリッジ回路のフルブリッジ回路である
     ことを特徴とする請求項1記載のトルク検出器。
    The torque detector according to claim 1, wherein the circuit is a full bridge circuit of a Wheatstone bridge circuit.
  3.  前記回路は、ホイートストンブリッジ回路のハーフブリッジ回路である
     ことを特徴とする請求項1記載のトルク検出器。
    The torque detector according to claim 1, wherein the circuit is a half bridge circuit of a Wheatstone bridge circuit.
  4.  前記歪センサは、半導体歪ゲージである
     ことを特徴とする請求項1から請求項3のうちの何れか1項記載のトルク検出器。
    The torque sensor according to any one of claims 1 to 3, wherein the strain sensor is a semiconductor strain gauge.
PCT/JP2018/034570 2017-10-03 2018-09-19 Torque detector WO2019069683A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-193435 2017-10-03
JP2017193435A JP2019066374A (en) 2017-10-03 2017-10-03 Torque detector

Publications (1)

Publication Number Publication Date
WO2019069683A1 true WO2019069683A1 (en) 2019-04-11

Family

ID=65995388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034570 WO2019069683A1 (en) 2017-10-03 2018-09-19 Torque detector

Country Status (2)

Country Link
JP (1) JP2019066374A (en)
WO (1) WO2019069683A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7380981B2 (en) * 2019-06-27 2023-11-15 ニデックドライブテクノロジー株式会社 Torque detection sensor and power transmission device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020056324A1 (en) * 2000-09-19 2002-05-16 Zlatko Penzar Mechanical/electrical transducer insensitive to bending and transverse forces
JP2002525599A (en) * 1998-09-23 2002-08-13 マンネスマン ファウ デー オー アクチエンゲゼルシャフト Electromechanical transducer
EP1637856A2 (en) * 2004-09-17 2006-03-22 Gtm Gassmann Theiss Messtechnik Gmbh Device for measuring rotational moment
JP2006220574A (en) * 2005-02-14 2006-08-24 Hitachi Ltd Rotating-body dynamic quantity measuring instrument and rotating-body dynamic quantity measurement system
US20140216173A1 (en) * 2011-08-10 2014-08-07 Isis Innovation Limited Determining torque in a shaft
WO2015190330A1 (en) * 2014-06-09 2015-12-17 日立オートモティブシステムズ株式会社 Torque detection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525599A (en) * 1998-09-23 2002-08-13 マンネスマン ファウ デー オー アクチエンゲゼルシャフト Electromechanical transducer
US20020056324A1 (en) * 2000-09-19 2002-05-16 Zlatko Penzar Mechanical/electrical transducer insensitive to bending and transverse forces
EP1637856A2 (en) * 2004-09-17 2006-03-22 Gtm Gassmann Theiss Messtechnik Gmbh Device for measuring rotational moment
JP2006220574A (en) * 2005-02-14 2006-08-24 Hitachi Ltd Rotating-body dynamic quantity measuring instrument and rotating-body dynamic quantity measurement system
US20140216173A1 (en) * 2011-08-10 2014-08-07 Isis Innovation Limited Determining torque in a shaft
WO2015190330A1 (en) * 2014-06-09 2015-12-17 日立オートモティブシステムズ株式会社 Torque detection device

Also Published As

Publication number Publication date
JP2019066374A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
US8776616B2 (en) Multiaxial force-torque sensors
JP4192084B2 (en) Multi-axis sensor
US8033009B2 (en) Method for producing a force sensor
US20020092352A1 (en) Whiffletree accelerometer
WO2015115365A1 (en) Sensor and production method for same
WO2019069683A1 (en) Torque detector
WO2019069620A1 (en) Torque detection device
JP6698595B2 (en) Torque detector
JP2020067295A (en) Actuating unit
JP6820101B2 (en) Torque detector
JP6820817B2 (en) Torque detector
WO2019035291A1 (en) Torque detector, and method for producing torque detector
JPH0821721B2 (en) Force detection device
JP6843019B2 (en) Torque detector and manufacturing method of torque detector
JP2514974Y2 (en) Strain element structure of semiconductor 3-axis force sensor
JP2018205217A (en) Load sensor
JP2023118091A (en) System for sensing torque
JP2015114233A (en) Semiconductor pressure sensor
JP2019045207A (en) Pressure sensor
JP2015114232A (en) Semiconductor pressure sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18864925

Country of ref document: EP

Kind code of ref document: A1