WO2019035190A1 - Battery member for secondary batteries, and secondary battery - Google Patents

Battery member for secondary batteries, and secondary battery Download PDF

Info

Publication number
WO2019035190A1
WO2019035190A1 PCT/JP2017/029464 JP2017029464W WO2019035190A1 WO 2019035190 A1 WO2019035190 A1 WO 2019035190A1 JP 2017029464 W JP2017029464 W JP 2017029464W WO 2019035190 A1 WO2019035190 A1 WO 2019035190A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
positive electrode
mass
content
parts
Prior art date
Application number
PCT/JP2017/029464
Other languages
French (fr)
Japanese (ja)
Inventor
謙次 高岡
紘揮 三國
西村 拓也
弘行 濱上
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2017/029464 priority Critical patent/WO2019035190A1/en
Priority to JP2019536385A priority patent/JPWO2019035190A1/en
Publication of WO2019035190A1 publication Critical patent/WO2019035190A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery member for a secondary battery and a secondary battery.
  • a rolled-up electrode body is housed inside a cylindrical battery can.
  • the wound-up electrode body is formed by sandwiching a microporous separator between a positive electrode and a negative electrode, and winding them in a spiral. Since the separator in the rolled-up electrode body is impregnated with a flammable electrolyte, for example, when the temperature of the battery suddenly rises in an abnormal situation, the electrolyte evaporates and the internal pressure rises, thereby causing the lithium secondary battery to There is a possibility of rupture and ignition of the electrolyte. It is important in lithium secondary battery design to prevent lithium secondary battery from bursting and firing. That is, in the lithium secondary battery, in order to further increase the energy density and increase the size, it is required to further improve the safety.
  • an all-solid-state battery is in progress as a radical solution for improving the safety of lithium secondary batteries.
  • a layer of a solid electrolyte such as a polymer electrolyte or an inorganic solid electrolyte is provided on the electrode mixture layer instead of the electrolytic solution (for example, Patent Document 1).
  • Patent Document 1 a layer of a solid electrolyte such as a polymer electrolyte or an inorganic solid electrolyte is provided on the electrode mixture layer instead of the electrolytic solution.
  • this invention aims at providing the battery member for secondary batteries which can improve the discharge characteristic of a secondary battery, and the secondary battery excellent in the discharge characteristic.
  • the present invention includes a current collector and a positive electrode mixture layer provided on the current collector, and the positive electrode mixture layer includes a positive electrode active material, an ionic liquid, a lithium salt, A conductive material comprising: at least one electrolyte salt selected from the group consisting of a sodium salt, a calcium salt, and a magnesium salt; and a conductive material containing carbon, the conductive material comprising a first conductive material, and a first conductive material And a second conductive material different from the second conductive material.
  • Both the first conductive material and the second conductive material may be in the form of particles.
  • the specific surface area of the first conductive material is preferably smaller than the specific surface area of the second conductive material.
  • the average particle size of the second conductive material is preferably smaller than the average particle size of the first conductive material.
  • the content of the second conductive material is preferably 20 parts by mass or less with respect to 100 parts by mass in total of the content of the first conductive material and the content of the second conductive material.
  • the first conductive material may be particulate, and the second conductive material may be fibrous.
  • the content of the second conductive material is preferably 50 parts by mass or less with respect to 100 parts by mass in total of the content of the first conductive material and the content of the second conductive material.
  • the total of the content of the first conductive material and the content of the second conductive material is the total of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. Preferably it is 0.5 to 10 mass parts with respect to a mass part.
  • the ionic liquid preferably contains at least one member selected from the group consisting of a linear quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation as a cation component, and an anion component
  • a linear quaternary onium cation preferably contains at least one member selected from the group consisting of a linear quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation as a cation component
  • an anion component As at least one of the anion component represented by the following general formula (1) is contained.
  • N SO 2 C m F 2m + 1)
  • M and n each independently represent an integer of 0 to 5] ]
  • a secondary battery comprising a positive electrode, a negative electrode, and an electrolyte layer provided between the positive electrode and the negative electrode, the positive electrode comprising a current collector, a current collector, and A positive electrode mixture layer provided thereon, the positive electrode mixture layer comprising at least one selected from the group consisting of a positive electrode active material, an ionic liquid, a lithium salt, a sodium salt, a calcium salt, and a magnesium salt And a conductive material containing carbon, wherein the conductive material includes a first conductive material and a second conductive material different from the first conductive material, and the electrolyte layer is of one type.
  • a secondary battery containing two or more polymers, an oxide particle, at least one electrolyte salt selected from the group consisting of lithium salt, sodium salt, calcium salt, and magnesium salt, and an ionic liquid I will provide a.
  • the one or more polymers preferably have a first structural unit selected from the group consisting of tetrafluoroethylene and vinylidene fluoride.
  • structural units constituting one or more polymers preferably, it is selected from the group consisting of a first structural unit, hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate And a second structural unit.
  • the average particle size of the oxide particles is preferably 0.005 ⁇ m or more and 5 ⁇ m or less.
  • the ionic liquid contained in the electrolyte layer preferably contains, as a cationic component, at least one selected from the group consisting of linear quaternary onium cation, piperidinium cation, pyrrolidinium cation, pyridinium cation, and imidazolium cation. It contains and contains at least 1 sort (s) of the anion component represented by following General formula (1) as an anion component.
  • N SO 2 C m F 2m + 1)
  • M and n each independently represent an integer of 0 to 5] ]
  • the battery member for secondary batteries which can improve the discharge characteristic of a secondary battery, and the secondary battery excellent in the discharge characteristic can be provided.
  • FIG. 1 It is a perspective view showing the rechargeable battery concerning a 1st embodiment. It is a disassembled perspective view which shows one Embodiment of the electrode group in the secondary battery shown in FIG.
  • FIG. (A) is a schematic cross section which shows the battery member for secondary batteries which concerns on one Embodiment
  • (b) is a schematic cross section which shows the battery member for secondary batteries which concerns on other embodiment.
  • A) is a schematic cross section which shows the battery member for secondary batteries which concerns on one Embodiment in the secondary battery shown in FIG. 4,
  • (b) is two which concerns on other embodiment in the secondary battery shown in FIG.
  • a numerical range indicated using “to” indicates a range including numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit described in the other stepwise descriptions.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
  • FIG. 1 is a perspective view showing a secondary battery according to the first embodiment.
  • the secondary battery 1 includes an electrode group 2 configured of a positive electrode, a negative electrode, and an electrolyte layer, and a bag-like battery exterior body 3 accommodating the electrode group 2.
  • the positive electrode current collection tab 4 and the negative electrode current collection tab 5 are provided on the positive electrode and the negative electrode, respectively.
  • the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 protrude from the inside of the battery outer package 3 to the outside so that the positive electrode and the negative electrode can be electrically connected to the outside of the secondary battery 1.
  • the battery outer package 3 may be formed of, for example, a laminate film.
  • the laminate film may be, for example, a laminate film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
  • PET polyethylene terephthalate
  • metal foil such as aluminum, copper and stainless steel
  • sealant layer such as polypropylene
  • FIG. 2 is an exploded perspective view showing an embodiment of the electrode group 2 in the secondary battery 1 shown in FIG.
  • the electrode group 2A according to the present embodiment includes the positive electrode 6, the electrolyte layer 7, and the negative electrode 8 in this order.
  • the positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9.
  • the positive electrode current collector 9 is provided with a positive electrode current collector tab 4.
  • the negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11.
  • the negative electrode current collector 11 is provided with a negative electrode current collection tab 5.
  • the electrode group 2A includes the battery member (positive electrode member) 13 for the secondary battery including the positive electrode current collector 9 and the positive electrode mixture layer 10 provided on the positive electrode current collector 9.
  • Fig.3 (a) is a schematic cross section which shows the battery member (positive electrode member) for secondary batteries which concerns on one Embodiment.
  • the battery member 13 for secondary batteries is a positive electrode member provided with the positive electrode collector 9 and the positive mix layer 10 provided on the positive electrode collector 9.
  • the positive electrode 6 is configured by the battery member 13 for a secondary battery according to an embodiment.
  • the “battery member for secondary battery” may be simply referred to as “battery member”.
  • the positive electrode current collector 9 may be formed of aluminum, stainless steel, titanium or the like. Specifically, the positive electrode current collector 9 may be, for example, a perforated aluminum foil having a hole with a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate or the like. In addition to the above, the positive electrode current collector 9 may be formed of any material as long as it does not cause a change such as dissolution or oxidation during use of the battery, and its shape, manufacturing method, etc. It is not restricted.
  • the thickness of the positive electrode current collector 9 may be 10 ⁇ m or more and 100 ⁇ m or less, preferably 10 ⁇ m or more and 50 ⁇ m or less from the viewpoint of reducing the volume of the entire positive electrode. From the viewpoint of winding, it is more preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • the positive electrode mixture layer 10 includes a positive electrode active material, an ionic liquid, at least one electrolyte salt selected from the group consisting of lithium salt, sodium salt, calcium salt, and magnesium salt, and carbon. And a conductive material.
  • the positive electrode active material may be a lithium transition metal compound such as lithium transition metal oxide or lithium transition metal phosphate.
  • the lithium transition metal oxide may be, for example, lithium manganate, lithium nickelate, lithium cobaltate and the like.
  • the lithium transition metal oxide is a transition metal such as Mn, Ni, or Co contained in lithium manganate, lithium nickelate, lithium cobaltate, etc., as a part of one or more other transition metals, or It may be a lithium transition metal oxide substituted by a metal element (typical element) such as Mg or Al. That is, the lithium transition metal oxide may be a compound represented by LiM 1 O 2 or LiM 1 O 4 (M 1 contains at least one transition metal).
  • the lithium transition metal oxide is Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 , LiNi 1/2 Mn 1/2 O 2 , LiNi 1/2 Mn 3/2 O It may be 4 mag.
  • the lithium transition metal oxide is preferably a compound represented by the following formula (2) from the viewpoint of further improving the energy density.
  • the lithium transition metal phosphate is LiFePO 4 , LiMnPO 4 , LiMn x M 3 1-x PO 4 (0.3 ⁇ x ⁇ 1, M 3 is Fe, Ni, Co, Ti, Cu, Zn, Mg and Zr. And at least one element selected from the group consisting of
  • the positive electrode active material may be ungranulated primary particles or may be granulated secondary particles.
  • the particle diameter of the positive electrode active material is adjusted to be equal to or less than the thickness of the positive electrode mixture layer 10. If the positive electrode active material contains coarse particles having a particle diameter equal to or larger than the thickness of the positive electrode mixture layer 10, the coarse particles are previously removed by sieve classification, air flow classification or the like, and the particles having a thickness smaller than the thickness of the positive electrode mixture layer 10 The positive electrode active material having a diameter is sorted out.
  • the average particle diameter of the positive electrode active material is 0.1 ⁇ m or more, more preferably 1 ⁇ m or more.
  • the average particle size of the positive electrode active material is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less.
  • the average particle diameter of the positive electrode active material is the particle diameter (D 50 ) when the ratio (volume fraction) to the volume of the entire positive electrode active material is 50%.
  • the average particle diameter (D 50 ) of the positive electrode active material is measured by using a laser scattering particle size measuring device (for example, Microtrack) to measure a suspension of the positive electrode active material suspended in water by a laser scattering method. It is obtained by a laser scattering particle size measuring device (for example, Microtrack) to measure a suspension of the positive electrode active material suspended in water by a laser scattering method. It is obtained by
  • the content of the positive electrode active material may be 70% by mass or more, 80% by mass or more, or 90% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the positive electrode active material may be 99% by mass or less based on the total amount of the positive electrode mixture layer.
  • the ionic liquid contained in the positive electrode mixture layer 10 contains the following anion component and cation component.
  • the ionic liquid in the present embodiment is a liquid substance at ⁇ 20 ° C. or higher.
  • the anion component of the ionic liquid is not particularly limited, but anions of halogen such as Cl ⁇ , Br ⁇ , I ⁇ , etc., inorganic anions such as BF 4 ⁇ , N (SO 2 F) 2 ⁇ , etc., B (C 6 H 5 ) 4 -, CH 3 SO 2 O -, CF 3 SO 2 O -, N (SO 2 C 4 F 9) 2 -, N (SO 2 CF 3) 2 -, N (SO 2 C 2 F 5) 2 - And the like.
  • the anion component of the ionic liquid preferably contains at least one anion component represented by the following general formula (1).
  • m and n each independently represent an integer of 0 to 5; m and n may be the same as or different from each other, and preferably are the same as each other.
  • Anion component represented by formula (1) may, for example, N (SO 2 C 4 F 9) 2 -, N (SO 2 F) 2 -, N (SO 2 CF 3) 2 - and N (SO 2 C 2 F 5) 2 - a.
  • Anion component of the ionic liquid together with further improve the ionic conductivity at a relatively low viscosity, from the viewpoint of even further improve charge-discharge characteristics, more preferably, N (SO 2 C 4 F 9) 2 -, CF 3 SO It contains at least one selected from the group consisting of 2 O ⁇ , N (SO 2 F) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , and N (SO 2 C 2 F 5 ) 2 ⁇ , more preferably is N (SO 2 F) 2 - containing.
  • [FSI] ⁇ N (SO 2 F) 2 ⁇ , bis (fluorosulfonyl) imide anion
  • [TFSI] ⁇ N (SO 2 CF 3 ) 2 ⁇
  • BOB bis oxalate borate anion
  • [f3C] - C (SO 2 F) 3 -, tris (fluorosulfonyl) carbanions
  • the cationic component of the ionic liquid contained in the positive electrode mixture layer 10 is preferably at least one member selected from the group consisting of linear quaternary onium cation, piperidinium cation, pyrrolidinium cation, pyridinium cation, and imidazolium cation. It is.
  • the linear quaternary onium cation is, for example, a compound represented by the following general formula (3).
  • R 1 to R 4 each independently represent a linear alkyl group having 1 to 20 carbon atoms, or a linear alkoxyalkyl group represented by R—O— (CH 2 ) n — (R represents a methyl group or an ethyl group, n represents an integer of 1 to 4), and X represents a nitrogen atom or a phosphorus atom.
  • the carbon number of the alkyl group represented by R 1 to R 4 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the piperidinium cation is, for example, a nitrogen-containing six-membered ring cyclic compound represented by the following general formula (4).
  • R 5 and R 6 each independently represent an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl Represents a group or an ethyl group, n represents an integer of 1 to 4).
  • the carbon number of the alkyl group represented by R 5 and R 6 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
  • the pyrrolidinium cation is, for example, a five-membered cyclic compound represented by the following general formula (5).
  • R 7 and R 8 each independently represent an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl Represents a group or an ethyl group, n represents an integer of 1 to 4).
  • the carbon number of the alkyl group represented by R 7 and R 8 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
  • the pyridinium cation is, for example, a compound represented by the following general formula (6).
  • R 9 to R 13 each independently represent an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is a methyl group Or represents an ethyl group, n represents an integer of 1 to 4) or a hydrogen atom.
  • the carbon number of the alkyl group represented by R 9 to R 13 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the imidazolium cation is, for example, a compound represented by the general formula (7).
  • R 14 to R 18 each independently represent an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R represents a methyl group Or represents an ethyl group, n represents an integer of 1 to 4) or a hydrogen atom.
  • the carbon number of the alkyl group represented by R 14 to R 18 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • Ionic liquid contained in the positive electrode mixture layer 10 it is enough include any anionic component and a cationic component as described above, preferably, as an anionic component, N (SO 2 F) 2 - wherein the cationic component As pyrrolidinium cation.
  • Such an ionic liquid is, for example, N-methyl-N-propylpyrrolidinium bis (fluorosulfonyl) imide (Py13-FSI).
  • the content of the ionic liquid contained in the positive electrode mixture layer 10 is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the ionic liquid contained in the positive electrode mixture layer 10 is preferably 30% by mass or less, more preferably 25% by mass or less, still more preferably 20% by mass or less, based on the total amount of the positive electrode mixture layer.
  • the electrolyte salt contained in the positive electrode mixture layer 10 may be at least one selected from the group consisting of lithium salt, sodium salt, calcium salt, and magnesium salt.
  • Anionic component of the electrolyte salt preferably, N (SO 2 F) 2 -, N (SO 2 CF 3) 2 - above anion component represented by formula (1), such as, PF 6 -, BF 4 - , B (O 2 C 2 O 2) 2 -, or ClO 4 - is.
  • the lithium salt is LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f 3 C], Li [BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , CF 3 SO 2 OLi, CF 3 COOLi, and RCOOLi (wherein R represents an alkyl group having 1 to 4 carbon atoms , A phenyl group, or a naphthyl group), and at least one selected from the group consisting of
  • the sodium salt is NaPF 6 , NaBF 4 , Na [FSI], Na [TFSI], Na [f3C], Na [BOB], NaClO 4 , NaBF 3 (CF 3 ), NaBF 3 (C 2 F 5 ), NaBF 3 (C 3 F 7), NaBF 3 (C 4 F 9), NaC (SO 2 CF 3) 3, CF 3 SO 2 ONa, CF 3 COONa, and RCOONa (R is an alkyl group having 1 to 4 carbon atoms , A phenyl group, or a naphthyl group), and at least one selected from the group consisting of
  • the calcium salt is Ca (PF 6 ) 2 , Ca (BF 4 ) 2 , Ca [FSI] 2 , Ca [TFSI] 2 , Ca [f 3 C] 2 , Ca [BOB] 2 , Ca (ClO 4 ) 2 , Ca [BF 3 (CF 3 )] 2 , Ca [BF 3 (C 2 F 5 )] 2 , Ca [BF 3 (C 3 F 7 )] 2 , Ca [BF 3 (C 4 F 9 )] 2 , Ca [C (SO 2 CF 3 ) 3 ] 2 , (CF 3 SO 2 O) 2 Ca, (CF 3 COO) 2 Ca, and (RCOO) 2 Ca (R is an alkyl group having 1 to 4 carbon atoms, phenyl Or a naphthyl group) may be at least one selected from the group consisting of
  • the magnesium salt is Mg (PF 6 ) 2 , Mg (BF 4 ) 2 , Mg [FSI] 2 , Mg [TFSI] 2 , Mg [f 3 C] 2 , Mg [BOB] 2 , Na (ClO 4 ) 2 , Mg [BF 3 (CF 3 )] 2 , Mg [BF 3 (C 2 F 5 )] 2 , Mg [BF 3 (C 3 F 7 )] 2 , Mg [BF 3 (C 4 F 9 )] 2 , Mg [C (SO 2 CF 3 ) 3 ] 2 , (CF 3 SO 3 ) 2 Mg, (CF 3 COO) 2 Mg, and (RCOO) 2 Mg (R is an alkyl group having 1 to 4 carbon atoms, a phenyl group Or a naphthyl group) may be at least one selected from the group consisting of
  • the electrolyte salt is preferably LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f 3 C], Li [BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , CF 3 SO 2 OLi, At least one selected from the group consisting of CF 3 COOLi and RCOOLi (wherein R is an alkyl group having 1 to 4 carbon atoms, a phenyl group or a naphthyl group), more preferably Li [TFSI], Li [FSI], LiPF 6, LiBF 4, Li [BOB], and at least one selected from the group consisting of LiClO 4, more preferably Li [TF I], and is one selected from the group consisting of Li [FSI].
  • R is an alkyl group having 1 to 4 carbon atoms, a phenyl group
  • the electrolyte salt contained in the positive electrode mixture layer 10 may be dissolved and contained in the ionic liquid.
  • the total content of the electrolyte salt and the ionic liquid contained in the positive electrode mixture layer 10 is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 10% based on the total amount of the positive electrode mixture layer.
  • the content is preferably not less than 30% by mass, more preferably not more than 25% by mass, still more preferably not more than 20% by mass.
  • the concentration of the electrolyte salt per unit volume of the ionic liquid contained in the positive electrode mixture layer 10 is preferably 0.5 mol / L or more, more preferably 0.7 mol / L or more, from the viewpoint of further improving the discharge characteristics.
  • it is 0.8 mol / L or more, preferably 2.0 mol / L or less, more preferably 1.8 mol / L or less, and still more preferably 1.5 mol / L or less.
  • the conductive material containing carbon includes a first conductive material and a second conductive material different from the first conductive material.
  • the type of conductive material may be graphite, acetylene black, carbon black, carbon fiber or the like.
  • the shape of the conductive material may be particulate, fibrous or the like.
  • the first conductive material and the second conductive material may be different from each other in at least one of the type and the shape (including the size and the like) of the conductive material.
  • the particulate conductive material means a conductive material having an aspect ratio of 2 or less
  • the fibrous conductive material means a conductive material having an aspect ratio of more than 20.
  • the aspect ratio is the ratio of the particle length in the long axis direction (maximum particle length) to the particle length in the short axis direction (minimum particle length) calculated from the scanning electron micrograph of the conductive material (maximum particle length) Defined as maximum length / minimum length).
  • the length of the particles can be obtained by statistically calculating the photograph using commercially available image processing software (for example, image analysis software manufactured by Asahi Kasei Engineering Corporation, A-image-kun (registered trademark)).
  • the first conductive material and the second conductive material may both be in the form of particles. That is, the conductive material containing carbon may include the first particulate conductive material and the second particulate conductive material. Specifically, the particulate conductive material may be particulate graphite, acetylene black, carbon black or the like.
  • the first particulate conductive material and the second particulate conductive material may be different from each other by having different specific surface areas.
  • the specific surface area of the first particulate conductive material is the second Smaller than the specific surface area of the particulate conductive material.
  • the types of the first particulate conductive material and the second particulate conductive material may be the same as or different from each other.
  • the specific surface area can be measured by the BET method by nitrogen adsorption desorption measurement.
  • the specific surface area of the first particulate conductive material is preferably 10 m 2 / g or more, more preferably 20 m 2 / g or more, and still more preferably 30 m 2 / g or more.
  • the specific surface area of the first particulate conductive material is preferably 100 m 2 / g or less, more preferably 70 m 2 / g or less, and still more preferably 50 m 2 / g or less.
  • the specific surface area of the second particulate conductive material is preferably 100 m 2 / g or more, more preferably 120 m 2 / g or more, and still more preferably 130 m 2 / g or more.
  • the specific surface area of the second particulate conductive material is preferably 200 m 2 / g or less, more preferably 170 m 2 / g or less, and still more preferably 150 m 2 / g or less.
  • the first particulate conductive material and the second particulate conductive material may be different from each other by having different average particle sizes (D 50 ), for example, the average of the second particulate conductive material
  • the particle size is smaller than the average particle size of the first particulate conductive material.
  • the types of the first particulate conductive material and the second particulate conductive material may be the same as or different from each other.
  • the mean particle size is measured by the same method as the mean particle size (D 50 ) of the positive electrode active material described above.
  • the average particle diameter of the first conductive material is preferably 30 nm or more, more preferably 35 nm or more, and still more preferably 40 nm or more.
  • the average particle diameter of the first conductive material is preferably 100 nm or less, more preferably 80 nm or less, and still more preferably 60 nm or less.
  • the average particle diameter of the second conductive material is preferably 10 nm or more, more preferably 15 nm or more, and still more preferably 20 nm or more.
  • the average particle diameter of the first conductive material is preferably 30 nm or less, more preferably 28 nm or less, and still more preferably 25 nm or less.
  • the content of the second particulate conductive material is from the viewpoint of enhancing the dispersibility of the conductive material in the positive electrode mixture layer, the content of the first particulate conductive material and the content of the second particulate conductive material
  • the content is preferably 1 part by mass or more, more preferably 5 parts by mass or more, still more preferably 10 parts by mass or more, and preferably 40 parts by mass or less, based on 100 parts by mass of the total content. More preferably, it is 30 mass parts or less, More preferably, it is 20 mass parts or less.
  • the content of the second particulate conductive material is from the viewpoint of enhancing the dispersibility of the conductive material in the positive electrode mixture layer, the content of the first particulate conductive material and the content of the second particulate conductive material
  • the first conductive material may be particulate and the second conductive material may be fibrous. That is, the conductive material containing carbon may contain a particulate conductive material and a fibrous conductive material.
  • the particulate conductive material may be the same as the first or second particulate conductive material described above.
  • the fibrous conductive material may be carbon fiber such as vapor grown carbon fiber (VGCF (registered trademark)) or carbon nanotube.
  • the average fiber diameter of the fibrous conductive material is preferably 50 nm or more, more preferably 80 nm or more, and still more preferably 120 nm or more.
  • the average fiber diameter of the second conductive material is preferably 250 nm or less, more preferably 200 nm or less, and still more preferably 170 nm or less.
  • the average fiber diameter can be measured by a transmission electron microscope (TEM).
  • the average length of the fibrous conductive material is preferably 1 ⁇ m or more, more preferably 2.5 ⁇ m or more, and still more preferably 5 ⁇ m or more.
  • the length of the fibrous conductive material is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and still more preferably 15 ⁇ m or less.
  • the average length refers to the average value of the dimensions in the longitudinal direction of the fibrous conductive material and can be measured by a transmission electron microscope (TEM).
  • the content of the fibrous conductive material is preferably 1 part by mass with respect to a total of 100 parts by mass of the content of the particulate conductive material and the content of the fibrous conductive material from the viewpoint of further enhancing the discharge characteristics. Or more, more preferably 5 parts by mass or more, further preferably 10 parts by mass or more, preferably 70 parts by mass or less, more preferably 60 parts by mass or less, still more preferably 50 parts by mass Part or less.
  • the content of the fibrous conductive material is preferably 1 mass to a total of 100 parts by mass of the content of the particulate conductive material and the content of the fibrous conductive material, from the viewpoint of further enhancing the discharge characteristics.
  • Parts to 70 parts by mass 1 to 60 parts by mass, 1 to 50 parts by mass, 5 to 70 parts by mass, 5 to 60 parts by mass, 5 to 50 parts by mass
  • 10 parts by mass or more and 70 parts by mass or less 10 parts by mass or more and 60 parts by mass or less, or 10 parts by mass or more and 50 parts by mass or less.
  • the total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material.
  • it is 0.5 mass part or more, More preferably, it is 1 mass part or more, More preferably, it is 3 mass parts or more, Preferably, it is 20 mass parts or less, More preferably, it is It is 15 parts by mass or less, more preferably 10 parts by mass or less.
  • the total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material.
  • 0.5 parts by mass or more and 20 parts by mass or less 0.5 parts by mass or more and 15 parts by mass or less, 0.5 parts by mass or more and 10 parts by mass or less, and 1 parts by mass or more and 20 parts by mass or less 1 to 15 parts by mass, 1 to 10 parts by mass, 3 to 20 parts by mass, 3 to 15 parts by mass, or 3 to 10 parts by mass.
  • the positive electrode mixture layer 10 may further contain a binder.
  • the binder is not particularly limited, and contains at least one member selected from the group consisting of ethylene tetrafluoride, vinylidene fluoride, hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate as a monomer unit. It may be rubber, such as polymer, styrene-butadiene rubber, isoprene rubber, acrylic rubber and the like.
  • the binder is preferably a copolymer containing tetrafluoroethylene and vinylidene fluoride as structural units, or a copolymer containing vinylidene fluoride and hexafluoropropylene as structural units.
  • the content of the binder may be 0.5% by mass or more, 1% by mass or more, or 3% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the binder may be 20% by mass or less, 15% by mass or less, or 10% by mass or less based on the total amount of the positive electrode mixture layer.
  • the thickness of the positive electrode mixture layer 10 may be 10 ⁇ m or more, 15 ⁇ m or more, or 20 ⁇ m or more from the viewpoint of further improving the conductivity.
  • the thickness of the positive electrode mixture layer 10 may be 100 ⁇ m or less, 80 ⁇ m or less, or 70 ⁇ m or less.
  • the electrolyte layer 7 includes, in one embodiment, one or more polymers, an oxide particle, and at least one electrolyte salt selected from the group consisting of lithium salt, sodium salt, calcium salt and magnesium salt, And an ionic liquid.
  • the one or more polymers preferably have a first structural unit selected from the group consisting of tetrafluoroethylene and vinylidene fluoride.
  • the one or more polymers preferably have the first structural unit and a second structural unit selected from the group consisting of hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate. It may be included. That is, the first structural unit and the second structural unit may be included in one type of polymer to constitute a copolymer, and each may be included in another polymer and have the first structural unit. And at least two polymers of a second polymer having a second structural unit.
  • the polymer may be polytetrafluoroethylene, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, and the like.
  • the content of the one or more polymers is preferably 3% by mass or more based on the total amount of the electrolyte layer.
  • the content of the polymer is preferably 70% by mass or less, more preferably 60% by mass or less, based on the total amount of the electrolyte layer.
  • the polymer according to the present embodiment is excellent in the affinity to the ionic liquid contained in the electrolyte composition, and thus retains the electrolyte salt in the ionic liquid. This suppresses the leakage of the ionic liquid when a load is applied to the electrolyte composition.
  • the oxide particles are, for example, particles of inorganic oxide.
  • the inorganic oxide is, for example, an inorganic oxide containing Li, Mg, Al, Si, Ca, Ti, Zr, La, Na, K, Ba, Sr, V, Nb, B, Ge and the like as constituent elements. Good.
  • the oxide particles are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTiO 3 . It is a particle. Since the oxide particles have polarity, the dissociation of the electrolyte in the electrolyte layer 7 can be promoted, and the battery characteristics can be enhanced.
  • the oxide particles may be oxides of rare earth metals.
  • the oxide particles include scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, oxide It may be thulium, ytterbium oxide, lutetium oxide or the like.
  • the specific surface area of the oxide particles is 2 to 380 m 2 / g, and may be 5 to 100 m 2 / g, 10 to 80 m 2 / g, or 15 to 60 m 2 / g. If the specific surface area is 2 to 380 m 2 / g, a secondary battery using an electrolyte composition containing such oxide particles tends to be excellent in discharge characteristics. From the same viewpoint, the specific surface area of the oxide particles may be 5 m 2 / g or more, 10 m 2 / g or more, or 15 m 2 / g or more, 100 m 2 / g or less, 80 m 2 / g or less, or It may be 60 m 2 / g or less.
  • the specific surface area of the oxide particles means the specific surface area of the whole oxide particles including the primary particles and the secondary particles, and is measured by the BET method.
  • the average primary particle size of the oxide particles is preferably 0.005 ⁇ m (5 nm) or more, more preferably 0.01 ⁇ m (10 nm) or more from the viewpoint of further improving the conductivity. And more preferably 0.015 ⁇ m (15 nm) or more.
  • the average primary particle size of the oxide particles is preferably 1 ⁇ m or less, more preferably 0.1 ⁇ m or less, and still more preferably 0.05 ⁇ m or less, from the viewpoint of thinning the electrolyte layer 7.
  • the average primary particle size of the oxide particles can be measured by observing the oxide particles with a transmission electron microscope or the like.
  • the average particle size of the oxide particles is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, and still more preferably 0.03 ⁇ m or more.
  • the average particle size of the oxide particles is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and still more preferably 1 ⁇ m or less.
  • the average particle diameter of the oxide particles is preferably 0.005 to 5 ⁇ m, 0.005 to 3 ⁇ m, 0.005 to 1 ⁇ m, 0.01 to 5 ⁇ m, 0.01 to 3 ⁇ m, 0.01 to 0.2 ⁇ m. It is 1 ⁇ m or less, 0.03 ⁇ m to 5 ⁇ m, 0.03 ⁇ m to 3 ⁇ m, or 0.03 ⁇ m to 1 ⁇ m.
  • the content of the oxide particles may be 5% by mass or more, 10% by mass or more, or 15% by mass or more based on the total amount of the electrolyte layer.
  • the content of the oxide particles may be 60% by mass or less, 50% by mass or less, and 40% by mass or less based on the total amount of the electrolyte layer.
  • the ionic liquid contained in the electrolyte layer 7 may be the same as the ionic liquid that can be used for the positive electrode mixture layer 10 described above.
  • the ionic liquid contained in the electrolyte layer 7 is preferably an ionic liquid containing N (SO 2 CF 3 ) 2 ⁇ as an anion component and containing a chain quaternary onium cation as a cation component.
  • Such an ionic liquid is, for example, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI).
  • the content of the ionic liquid contained in the electrolyte layer 7 may be 10% by mass or more and 80% by mass or less based on the total amount of the electrolyte layer from the viewpoint of suitably producing the electrolyte layer 7.
  • the electrolyte salt contained in the electrolyte layer 7 may be dissolved and contained in the ionic liquid.
  • the electrolyte salt may be at least one selected from the group consisting of lithium salt, sodium salt, calcium salt, and magnesium salt.
  • the electrolyte salt contained in the electrolyte layer 7 may be the same as the electrolyte salt that can be used for the positive electrode mixture layer 10 described above.
  • the electrolyte salt contained in the electrolyte layer 7 is preferably one selected from the group consisting of an imide lithium salt, an imide sodium salt, an imide calcium salt, and an imide magnesium salt.
  • the imide lithium salt may be Li [TFSI], Li [FSI] or the like.
  • the imide sodium salt may be Na [TFSI], Na [FSI] or the like.
  • the imide calcium salt may be Ca [TFSI] 2 , Ca [FSI] 2 or the like.
  • the imide magnesium salt may be Mg [TFSI] 2 , Mg [FSI] 2 or the like.
  • the total content of the electrolyte salt and the ionic liquid contained in the electrolyte layer 7 is preferably 10% by mass based on the total amount of the electrolyte layer, from the viewpoint of further improving the conductivity and suppressing the capacity decrease of the secondary battery. It is the above, More preferably, it is 25 mass% or more, More preferably, it is 40 mass% or more.
  • the total content of the electrolyte salt and the ionic liquid is preferably 80% by mass or less based on the total amount of the electrolyte layer from the viewpoint of suppressing the strength reduction of the electrolyte layer.
  • the concentration of the electrolyte salt per unit volume of the ionic liquid contained in the electrolyte layer 7 is preferably 0.5 mol / L or more, more preferably 0.7 mol / L or more, and further preferably from the viewpoint of further improving the charge / discharge characteristics. Is 0.8 mol / L or more, preferably 2.0 mol / L or less, more preferably 1.8 mol / L or less.
  • the thickness of the electrolyte layer 7 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of enhancing the strength and improving the safety.
  • the thickness of the electrolyte layer 7 is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, and further preferably 100 ⁇ m or less from the viewpoint of further reducing the internal resistance of the secondary battery and the viewpoint of further improving the large current characteristics.
  • the negative electrode current collector 11 may be a metal such as aluminum, copper, nickel, stainless steel, an alloy thereof, or the like.
  • the negative electrode current collector 11 is preferably aluminum and an alloy thereof because of its light weight and high weight energy density.
  • the negative electrode current collector 11 is preferably copper from the viewpoint of ease of processing into a thin film and cost.
  • the thickness of the negative electrode current collector 11 may be 10 ⁇ m or more and 100 ⁇ m or less, preferably 10 ⁇ m or more and 50 ⁇ m or less from the viewpoint of reducing the volume of the entire negative electrode. From the viewpoint of winding, it is more preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode mixture layer 12 contains a negative electrode active material.
  • the negative electrode active material those commonly used in the field of energy devices can be used.
  • the negative electrode active material include metal lithium, lithium titanate (Li 4 Ti 5 O 12 ), lithium alloy or other metal compounds, carbon materials, metal complexes, and organic polymer compounds.
  • the negative electrode active material may be one of these alone, or a mixture of two or more.
  • carbon materials include natural graphite (scaly graphite etc.), graphite (graphite) such as artificial graphite, amorphous carbon, carbon fiber, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black And carbon black.
  • the negative electrode active material is silicon, tin or a compound containing these elements (oxide, nitride, alloy with other metals) from the viewpoint of obtaining a larger theoretical capacity (for example, 500 to 1500 Ah / kg) Good.
  • the average particle size (D 50 ) of the negative electrode active material is preferably 1 ⁇ m or more from the viewpoint of obtaining a well-balanced negative electrode in which the retention capacity of electrolyte salt is enhanced while suppressing the increase in irreversible capacity accompanying the particle size reduction. More preferably, it is 5 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and still more preferably 30 ⁇ m or less.
  • the average particle size (D 50 ) of the negative electrode active material is measured by the same method as the average particle size (D 50 ) of the positive electrode active material described above.
  • the content of the negative electrode active material may be 60% by mass or more, 65% by mass or more, or 70% by mass or more based on the total amount of the negative electrode mixture layer.
  • the content of the negative electrode active material may be 99% by mass or less, 95% by mass or less, or 90% by mass or less based on the total amount of the negative electrode mixture layer.
  • the negative electrode mixture layer 12 may further contain an ionic liquid, an electrolyte salt, a conductive material, and a binder.
  • the type and content of the ionic liquid and the electrolyte salt contained in the negative electrode mixture layer 12 may be the same as the type and the content of the ionic liquid and the electrolyte salt in the positive electrode mixture layer 10 described above.
  • the conductive material is not particularly limited, but may be a carbon material such as graphite, acetylene black, carbon black, carbon fiber and the like.
  • the conductive material may be a mixture of two or more of the above-described carbon materials.
  • the content of the conductive material contained in the negative electrode mixture layer 12 may be 0.1 mass% or more, 1 mass% or more, or 3 mass% or more, 15 mass% or less, based on the total amount of the negative electrode mixture layer. , 10% by mass or less, or 8% by mass or less.
  • the negative electrode mixture layer 12 may further contain a binder similar to the binder that can be used for the positive electrode mixture layer 10 described above.
  • the content of the binder contained in the negative electrode mixture layer 12 may be the same as the content of the binder in the positive electrode mixture layer 10 described above.
  • the thickness of the negative electrode mixture layer 12 may be 10 ⁇ m or more, 15 ⁇ m or more, or 20 ⁇ m or more.
  • the thickness of the negative electrode mixture layer 12 may be 60 ⁇ m or less, 55 ⁇ m or less, or 50 ⁇ m or less.
  • the electrode group 2A can be considered to include a battery member provided with the positive electrode current collector 9, the positive electrode mixture layer 10, and the electrolyte layer 7 in this order.
  • FIG.3 (b) is a schematic cross section which shows the battery member for secondary batteries which concerns on other embodiment.
  • the battery member 14 includes a positive electrode current collector 9, a positive electrode mixture layer 10 provided on the positive electrode current collector 9, and an electrolyte provided on the positive electrode mixture layer 10. It is a battery member provided with the layer 7 in this order.
  • the electrolyte layer 7, the positive electrode current collector 9, and the positive electrode mixture layer 10 are the same as the electrolyte layer 7, the positive electrode current collector 9, and the positive electrode mixture layer 10 in the above-described battery member 13, respectively.
  • the manufacturing method of the secondary battery 1 mentioned above is demonstrated.
  • the positive electrode 6 is coated with the positive electrode mixture on the positive electrode current collector 9. It is then obtained by volatilizing the dispersion medium.
  • the dispersion medium is preferably an organic solvent such as N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • the electrolyte salt contained in the positive electrode mixture layer 10 can be dissolved in the ionic liquid and then dispersed in the dispersion medium together with other materials.
  • the first step is the step of obtaining the above-described battery member 13.
  • the negative electrode 8 is obtained by the same method as the above-described positive electrode 6. That is, after a material used for the negative electrode mixture layer 12 is dispersed in a dispersion medium to obtain a slurry-like negative electrode mixture, the negative electrode mixture is applied to the negative electrode current collector 11 and then the dispersion medium is volatilized. can get.
  • the mixing ratio of the negative electrode active material, the conductive agent, the binder, and the ionic liquid in which the electrolyte salt is dissolved in the negative electrode mixture layer 12 is, for example, negative electrode active material: conductive agent: binder: ionic liquid in which electrolyte salt is dissolved. It may be 70 to 80: 0.1 to 10: 5 to 10: 10 to 17 (mass ratio). However, it is not necessarily limited to this range.
  • the electrolyte layer 7 is coated on a substrate and then dried. It is obtained as a sheet-like electrolyte layer by volatilizing the dispersion medium.
  • the dispersion medium is preferably water, NMP, toluene or the like.
  • the positive electrode 6, the electrolyte layer 7, and the negative electrode 8 are laminated by, for example, lamination, to obtain the secondary battery 1.
  • the electrolyte layer 7 is positioned on the positive electrode mixture layer 10 side of the positive electrode 6 and on the negative electrode mixture layer 12 side of the negative electrode 8, that is, the positive electrode current collector 9, the positive electrode mixture layer 10, and the electrolyte layer 7.
  • the negative electrode mixture layer 12 and the negative electrode current collector 11 are stacked in this order.
  • the electrolyte layer 7 is formed by coating on at least one of the positive electrode mixture layer 10 side of the positive electrode 6 and the negative electrode mixture layer 12 side of the negative electrode 8, preferably a positive electrode. Both the positive electrode mixture layer 10 side of 6 and the negative electrode mixture layer 12 side of the negative electrode 8 are formed by application.
  • This step is, in other words, the step of obtaining the battery member 14 described above.
  • the secondary battery 1 is formed by laminating the positive electrode 6 (battery member 14) provided with the electrolyte layer 7 and the negative electrode 8 provided with the electrolyte layer 7 such that the electrolyte layers 7 are in contact with each other. Is obtained.
  • this electrolyte composition is used as a positive electrode mixture
  • the dispersion medium is preferably an organic solvent such as NMP.
  • the electrolyte salt contained in the electrolyte layer 7 can be dissolved in the ionic liquid and then dispersed in the dispersion medium together with other materials.
  • the mixing ratio is not necessarily limited.
  • the method of forming the electrolyte layer 7 in the negative electrode mixture layer 12 may be the same method as the method of forming the electrolyte layer 7 in the positive electrode mixture layer 10.
  • FIG. 4 is an exploded perspective view showing an electrode group of a secondary battery according to a second embodiment.
  • the secondary battery in the second embodiment is different from the secondary battery in the first embodiment in that the electrode group 2 ⁇ / b> B includes a bipolar electrode 15. That is, the electrode group 2B includes the positive electrode 6, the first electrolyte layer 7, the bipolar electrode 15, the second electrolyte layer 7, and the negative electrode 8 in this order.
  • the bipolar electrode 15 includes a bipolar electrode current collector 16, a positive electrode mixture layer 10 provided on the surface (positive electrode surface) of the bipolar electrode current collector 16 on the negative electrode 8 side, and a positive electrode 6 side of the bipolar electrode current collector 16. And the negative electrode mixture layer 12 provided on the negative electrode surface. That is, since the bipolar electrode 15 has both the function of the positive electrode and the function of the negative electrode, in addition to the positive electrode 6 and the negative electrode 8 in the electrode group 2B in the second embodiment, the bipolar electrode current collector 16 and the bipolar electrode Another positive electrode including the positive electrode mixture layer 10 provided on the current collector 16 and another negative electrode mixture layer 12 provided on the bipolar electrode current collector 16 and the bipolar electrode current collector 16 It can be seen that the negative electrode is included.
  • the bipolar electrode 15 can be viewed as a battery member for a secondary battery including the bipolar electrode current collector 16 and the positive electrode mixture layer 10 provided on the bipolar electrode current collector 16.
  • Fig.5 (a) is a schematic cross section which shows the battery member for secondary batteries which concerns on one Embodiment.
  • the battery member 17 includes a bipolar electrode current collector 16, a positive electrode mixture layer 10 provided on one surface of the bipolar electrode current collector 16, and a positive electrode mixture layer 10 is a battery member provided with the bipolar electrode current collector 16 and the negative electrode mixture layer 12 provided on the opposite side.
  • the positive electrode surface may be preferably made of a material excellent in oxidation resistance, and may be made of aluminum, stainless steel, titanium or the like.
  • the negative electrode surface of the bipolar electrode current collector 16 using graphite or an alloy as the negative electrode active material may be formed of a material that does not form an alloy with lithium, and specifically, stainless steel, nickel, iron, titanium, etc. It may be formed.
  • the bipolar electrode current collector 16 may be a clad material in which different metal foils are laminated.
  • the bipolar electrode current collector 16 may be a single metal foil.
  • the bipolar electrode current collector 16 as a single metal foil may be a perforated aluminum foil, an expanded metal, a foam metal plate or the like having holes with a hole diameter of 0.1 to 10 mm.
  • the bipolar electrode current collector 16 may be made of any material as long as it does not cause a change such as dissolution or oxidation during use of the battery, and its shape, manufacturing method, etc. Nor is it limited.
  • the thickness of the bipolar electrode current collector 16 may be 10 ⁇ m or more and 100 ⁇ m or less, preferably 10 ⁇ m or more and 50 ⁇ m or less from the viewpoint of reducing the volume of the entire positive electrode, and the bipolar electrode with a small curvature when forming a battery. In view of winding, it is more preferably 10 ⁇ m or more and 20 ⁇ m or less.
  • the positive electrode mixture layer 10 in the battery member 17 may be made of the same material as the positive electrode mixture layer 10 in the battery member 13 of the first embodiment described above.
  • the positive electrode mixture layer 10 on the bipolar electrode current collector 16 in the battery member 17 includes the second conductive material different from the first conductive material and the first conductive material described above.
  • the combination of the first conductive material and the second conductive material included in 10 may be the same combination as each other or a different combination, but is preferably the same combination as each other.
  • the electrode group 2B includes a battery member including the first electrolyte layer 7, the bipolar electrode 15, and the second electrolyte layer 7 in this order.
  • FIG.5 (b) is a schematic cross section which shows the battery member for secondary batteries which concerns on other embodiment.
  • the battery member 18 includes a bipolar electrode current collector 16, a positive electrode mixture layer 10 provided on one surface of the bipolar electrode current collector 16, and a positive electrode mixture layer 10, a second electrolyte layer 7 provided on the opposite side to the bipolar electrode current collector 16, a negative electrode mixture layer 12 provided on the other surface of the bipolar electrode current collector 16, and a negative electrode mixture layer And a first electrolyte layer 7 provided on the opposite side to the bipolar electrode current collector 16.
  • the bipolar electrode current collector 16, the positive electrode mixture layer 10 and the negative electrode mixture layer 12 in the battery member 18 are the bipolar electrode current collector 16, the positive electrode mixture layer 10 and the negative electrode mixture layer 12 in the battery member 17 described above. And may be made of the same material.
  • the first electrolyte layer 7 and the second electrolyte layer 7 in the battery member 18 may be made of the same material as the electrolyte layer 7 in the battery member 14 of the first embodiment described above.
  • the first electrolyte layer 7 and the second electrolyte layer 7 may be the same as or different from each other, and are preferably the same as each other.
  • Example 1 Preparation of electrolyte layer> 40 parts by mass of SiO 2 particles (average particle diameter 0.04 ⁇ m, specific surface area 50 m 2 / g), 60 parts by mass of a copolymer of vinylidene fluoride and hexafluoropropylene are mixed, and then a dispersion medium N-methyl-2- Pyrrolidone (NMP) was added and kneaded to obtain a mixture of SiO 2 particles and a copolymer.
  • NMP N-methyl-2- Pyrrolidone
  • lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) dried under a dry argon atmosphere is used as an electrolyte salt, and an ionic liquid N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis is used.
  • LiTFSI was dissolved in (trifluoromethanesulfonyl) imide (DEME-TFSI) at a concentration of 1.5 mol / L (hereinafter referred to as the concentration of electrolyte salt in the ionic liquid in which the electrolyte salt is dissolved, the type of electrolyte salt, and the ionic liquid The type is also described as "electrolyte salt concentration (mol / L) / type of electrolyte salt / type of ionic liquid”.
  • a mixture of SiO 2 particles and a copolymer was mixed with an ionic liquid in which an electrolyte salt was dissolved to prepare a slurry containing an electrolyte composition.
  • the obtained slurry was applied to a substrate made of polyethylene terephthalate and heated to volatilize the dispersion medium to obtain an electrolyte sheet.
  • the thickness of the electrolyte layer in the obtained electrolyte sheet was 25 ⁇ 2 ⁇ m.
  • This positive electrode mixture is coated on a positive electrode current collector (aluminum foil with a thickness of 20 ⁇ m) at a coating amount of 160 g / m 2 , heated at 80 ° C. to volatilize the dispersion medium, and pressed with a mixture density of 2. It was consolidated to 60 g / cm 3 to form a positive electrode mixture layer. This was punched into a square of 13.5 cm 2 and used as a positive electrode.
  • the content of the second conductive material is 10 parts by mass with respect to a total of 100 parts by mass of the content of the first conductive material and the content of the second conductive material.
  • the total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. It is 9.1 mass parts with respect to parts.
  • An electrode group was manufactured by overlapping the positive electrode manufactured above, the electrolyte layer, and the negative electrode in this order. This electrode group was placed in an aluminum laminate container (product name: aluminum laminate film, manufactured by Dainippon Printing Co., Ltd.), and the laminate container was thermally welded to prepare a secondary battery for evaluation.
  • Example 2 A secondary battery was produced in the same manner as in Example 1, except that in the positive electrode mixture layer, 5.6 parts by mass of the conductive material A and 1.4 parts by mass of the conductive material B were used.
  • the content of the second conductive material is 20 parts by mass with respect to a total of 100 parts by mass of the content of the first conductive material and the content of the second conductive material.
  • the total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. It is 9.1 mass parts with respect to parts.
  • Example 3 In the positive electrode mixture layer, 6.3 parts by mass of the conductive material A is used as the first conductive material, and VGCF (conductive material C, average fiber diameter 150 nm, average length 10 ⁇ m, product name: VGCF as the second conductive material A secondary battery was produced in the same manner as in Example 1 except that 0.7 parts by mass of -H (manufactured by Showa Denko KK) was used.
  • the content of the second conductive material is 10 parts by mass with respect to a total of 100 parts by mass of the content of the first conductive material and the content of the second conductive material.
  • the total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. It is 9.1 mass parts with respect to parts.
  • Example 4 A secondary battery was produced in the same manner as in Example 3 except that 5.6 parts by mass of the conductive material A and 1.4 parts by mass of the conductive material C were used in the positive electrode mixture layer.
  • the content of the second conductive material is 20 parts by mass with respect to a total of 100 parts by mass of the content of the first conductive material and the content of the second conductive material.
  • the total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. It is 9.1 mass parts with respect to parts.
  • Example 5 A secondary battery was produced in the same manner as in Example 3, except that 4.2 parts by mass of the conductive material A and 2.8 parts by mass of the conductive material C were used in the positive electrode mixture layer.
  • the content of the second conductive material is 40 parts by mass with respect to a total of 100 parts by mass of the content of the first conductive material and the content of the second conductive material.
  • the total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. It is 9.1 mass parts with respect to parts.
  • Example 6 A laminate type battery was produced in the same manner as in Example 3 except that 3.5 parts by mass of the conductive material A and 3.5 parts by mass of the conductive material C were used in the positive electrode mixture layer.
  • the content of the second conductive material is 50 parts by mass with respect to a total of 100 parts by mass of the content of the first conductive material and the content of the second conductive material.
  • the total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. It is 9.1 mass parts with respect to parts.
  • Comparative Example 1 In the positive electrode mixture layer, 7.0 parts by mass of the conductive material A was used, and a secondary battery was produced in the same manner as in Example 1 except that the conductive material B was not used.
  • Comparative Example 2 An ionic liquid in which 81.4 parts by mass of a positive electrode active material, 8.1 parts by mass of a conductive material A, and 10.5 parts by mass of a binder are used to dissolve a conductive material B and a lithium salt in a positive electrode mixture layer A secondary battery was produced in the same manner as in Example 1 except that the above was not used.
  • SYMBOLS 1 ... secondary battery, 6 ... positive electrode, 7 ... electrolyte layer, 8 ... negative electrode, 9 ... positive electrode current collector, 10 ... positive electrode mixture layer, 11 ... negative electrode current collector, 12 ... negative electrode mixture layer, 13, 14 17, 18, ... Battery members for secondary batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention provides a battery member for secondary batteries which is provided with: a collector; and a positive electrode mixture layer which is provided on the collector. The positive electrode mixture layer includes: a positive electrode active material; an ionic liquid; at least one kind of electrolytic salt selected from the group consisting of lithium salts, sodium salts, calcium salts, and magnesium salts; and a conductive material including carbon. The conductive material includes a first conductive material, and a second conductive material different to the first conductive material.

Description

二次電池用電池部材及び二次電池Battery member for secondary battery and secondary battery
 本発明は、二次電池用電池部材及び二次電池に関する。 The present invention relates to a battery member for a secondary battery and a secondary battery.
 近年、携帯型電子機器、電気自動車等の普及により、高性能な二次電池が必要とされている。中でもリチウム二次電池は、高いエネルギー密度を有するため、携帯型電子機器、電気自動車等の電源として利用されている。 2. Description of the Related Art In recent years, with the spread of portable electronic devices, electric vehicles and the like, high-performance secondary batteries are required. Among them, since lithium secondary batteries have high energy density, they are used as power sources for portable electronic devices, electric vehicles and the like.
 例えば、18650型のリチウム二次電池においては、円筒状の電池缶の内部に巻き取り電極体が収容されている。巻き取り電極体とは、正極と負極との間に微多孔性のセパレータを挟み込み、これらを渦巻き状に巻き取って構成されたものである。巻き取り電極体におけるセパレータには可燃性の電解液が含浸されているため、例えば異常事態の際に電池の温度が急上昇すると、電解液が気化して内圧が上昇することでリチウム二次電池が破裂する可能性、及び、電解液が発火する可能性がある。リチウム二次電池の破裂及び発火を防止することは、リチウム二次電池の設計において重要である。すなわち、リチウム二次電池においては、今後更に高エネルギー密度化及び大型化を図っていく上で、安全性をより一層向上させることが要求されている。 For example, in the 18650-type lithium secondary battery, a rolled-up electrode body is housed inside a cylindrical battery can. The wound-up electrode body is formed by sandwiching a microporous separator between a positive electrode and a negative electrode, and winding them in a spiral. Since the separator in the rolled-up electrode body is impregnated with a flammable electrolyte, for example, when the temperature of the battery suddenly rises in an abnormal situation, the electrolyte evaporates and the internal pressure rises, thereby causing the lithium secondary battery to There is a possibility of rupture and ignition of the electrolyte. It is important in lithium secondary battery design to prevent lithium secondary battery from bursting and firing. That is, in the lithium secondary battery, in order to further increase the energy density and increase the size, it is required to further improve the safety.
 リチウム二次電池の安全性を向上させるための抜本的な解決手段として、全固体電池の開発が進められている。全固体電池においては、ポリマ電解質又は無機固体電解質といった固体電解質の層が、電解液の代わりに、電極合剤層上に設けられている(例えば特許文献1)。近年では、放電特性等の様々な電池特性を向上させた全固体電池の開発が進められている。 Development of an all-solid-state battery is in progress as a radical solution for improving the safety of lithium secondary batteries. In the all-solid-state battery, a layer of a solid electrolyte such as a polymer electrolyte or an inorganic solid electrolyte is provided on the electrode mixture layer instead of the electrolytic solution (for example, Patent Document 1). In recent years, development of an all-solid-state battery in which various battery characteristics such as discharge characteristics are improved has been promoted.
特開2006-294326号公報JP, 2006-294326, A
 そこで、本発明は、二次電池の放電特性を向上させることができる二次電池用電池部材、及び、放電特性に優れた二次電池を提供することを目的とする。 Then, this invention aims at providing the battery member for secondary batteries which can improve the discharge characteristic of a secondary battery, and the secondary battery excellent in the discharge characteristic.
 本発明は、第1の態様として、集電体と、集電体上に設けられた正極合剤層と、を備え、正極合剤層は、正極活物質と、イオン液体と、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、炭素を含む導電材と、を含有し、導電材は、第1の導電材と、第1の導電材とは異なる第2の導電材とを含む、二次電池用電池部材を提供する。 According to a first aspect, the present invention includes a current collector and a positive electrode mixture layer provided on the current collector, and the positive electrode mixture layer includes a positive electrode active material, an ionic liquid, a lithium salt, A conductive material comprising: at least one electrolyte salt selected from the group consisting of a sodium salt, a calcium salt, and a magnesium salt; and a conductive material containing carbon, the conductive material comprising a first conductive material, and a first conductive material And a second conductive material different from the second conductive material.
 第1の導電材及び第2の導電材は、いずれも粒子状であってよい。この場合、第1の導電材の比表面積は、好ましくは前記第2の導電材の比表面積よりも小さい。第2の導電材の平均粒径は、好ましくは第1の導電材の平均粒径よりも小さい。第2の導電材の含有量は、第1の導電材の含有量と第2の導電材との含有量との合計100質量部に対して、好ましくは20質量部以下である。 Both the first conductive material and the second conductive material may be in the form of particles. In this case, the specific surface area of the first conductive material is preferably smaller than the specific surface area of the second conductive material. The average particle size of the second conductive material is preferably smaller than the average particle size of the first conductive material. The content of the second conductive material is preferably 20 parts by mass or less with respect to 100 parts by mass in total of the content of the first conductive material and the content of the second conductive material.
 第1の導電材が粒子状であり、第2の導電材が繊維状であってもよい。この場合、第2の導電材の含有量は、第1の導電材の含有量と第2の導電材の含有量との合計100質量部に対して、好ましくは50質量部以下である。 The first conductive material may be particulate, and the second conductive material may be fibrous. In this case, the content of the second conductive material is preferably 50 parts by mass or less with respect to 100 parts by mass in total of the content of the first conductive material and the content of the second conductive material.
 第1の導電材の含有量と第2の導電材の含有量との合計は、正極活物質の含有量と第1の導電材の含有量と第2の導電材の含有量との合計100質量部に対して、好ましくは0.5質量部以上10質量部以下である。 The total of the content of the first conductive material and the content of the second conductive material is the total of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. Preferably it is 0.5 to 10 mass parts with respect to a mass part.
 イオン液体は、好ましくは、カチオン成分として、鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種を含有し、アニオン成分として、下記一般式(1)で表されるアニオン成分の少なくとも1種を含有する。
N(SO2m+1)(SO2n+1    (1)
[m及びnは、それぞれ独立に0~5の整数を表す。]
The ionic liquid preferably contains at least one member selected from the group consisting of a linear quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation as a cation component, and an anion component As at least one of the anion component represented by the following general formula (1) is contained.
N (SO 2 C m F 2m + 1) (SO 2 C n F 2n + 1) - (1)
[M and n each independently represent an integer of 0 to 5] ]
 本発明は、第2の態様として、正極と、負極と、正極と負極との間に設けられた電解質層と、を備える二次電池であって、正極は、集電体と、集電体上に設けられた正極合剤層と、を備え、正極合剤層は、正極活物質と、イオン液体と、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、炭素を含む導電材と、を含有し、導電材は、第1の導電材と、第1の導電材とは異なる第2の導電材とを含み、電解質層は、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、イオン液体と、を含有する、二次電池を提供する。 According to a second aspect of the present invention, there is provided a secondary battery comprising a positive electrode, a negative electrode, and an electrolyte layer provided between the positive electrode and the negative electrode, the positive electrode comprising a current collector, a current collector, and A positive electrode mixture layer provided thereon, the positive electrode mixture layer comprising at least one selected from the group consisting of a positive electrode active material, an ionic liquid, a lithium salt, a sodium salt, a calcium salt, and a magnesium salt And a conductive material containing carbon, wherein the conductive material includes a first conductive material and a second conductive material different from the first conductive material, and the electrolyte layer is of one type. Or a secondary battery containing two or more polymers, an oxide particle, at least one electrolyte salt selected from the group consisting of lithium salt, sodium salt, calcium salt, and magnesium salt, and an ionic liquid I will provide a.
 1種又は2種以上のポリマは、好ましくは、4フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位を有する。 The one or more polymers preferably have a first structural unit selected from the group consisting of tetrafluoroethylene and vinylidene fluoride.
 1種又は2種以上のポリマを構成する構造単位の中には、好ましくは、第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれる。 Among structural units constituting one or more polymers, preferably, it is selected from the group consisting of a first structural unit, hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate And a second structural unit.
 酸化物粒子の平均粒径は、好ましくは、0.005μm以上5μm以下である。 The average particle size of the oxide particles is preferably 0.005 μm or more and 5 μm or less.
 電解質層に含まれるイオン液体は、好ましくは、カチオン成分として、鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種を含有し、アニオン成分として、下記一般式(1)で表されるアニオン成分の少なくとも1種を含有する。
N(SO2m+1)(SO2n+1    (1)
[m及びnは、それぞれ独立に0~5の整数を表す。]
The ionic liquid contained in the electrolyte layer preferably contains, as a cationic component, at least one selected from the group consisting of linear quaternary onium cation, piperidinium cation, pyrrolidinium cation, pyridinium cation, and imidazolium cation. It contains and contains at least 1 sort (s) of the anion component represented by following General formula (1) as an anion component.
N (SO 2 C m F 2m + 1) (SO 2 C n F 2n + 1) - (1)
[M and n each independently represent an integer of 0 to 5] ]
 本発明によれば、二次電池の放電特性を向上させることができる二次電池用電池部材、及び、放電特性に優れた二次電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the battery member for secondary batteries which can improve the discharge characteristic of a secondary battery, and the secondary battery excellent in the discharge characteristic can be provided.
第1実施形態に係る二次電池を示す斜視図である。It is a perspective view showing the rechargeable battery concerning a 1st embodiment. 図1に示した二次電池における電極群の一実施形態を示す分解斜視図である。It is a disassembled perspective view which shows one Embodiment of the electrode group in the secondary battery shown in FIG. (a)は一実施形態に係る二次電池用電池部材を示す模式断面図、(b)は他の実施形態に係る二次電池用電池部材を示す模式断面図である。(A) is a schematic cross section which shows the battery member for secondary batteries which concerns on one Embodiment, (b) is a schematic cross section which shows the battery member for secondary batteries which concerns on other embodiment. 第2実施形態に係る二次電池の電極群を示す分解斜視図である。It is an exploded perspective view showing the electrode group of the rechargeable battery concerning a 2nd embodiment. (a)は図4に示した二次電池における一実施形態に係る二次電池用電池部材を示す模式断面図、(b)は図4に示した二次電池における他の実施形態に係る二次電池用電池部材を示す模式断面図である。(A) is a schematic cross section which shows the battery member for secondary batteries which concerns on one Embodiment in the secondary battery shown in FIG. 4, (b) is two which concerns on other embodiment in the secondary battery shown in FIG. It is a schematic cross section which shows the battery member for secondary batteries.
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including steps) are not essential unless otherwise specified. The sizes of components in the respective drawings are conceptual, and the relative relationship between the sizes of the components is not limited to those shown in the respective drawings.
 本明細書における数値及びその範囲は、本発明を制限するものではない。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書において段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の上限値又は下限値に置き換えてもよい。また、本明細書中に記載される数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 The numerical values and the ranges in the present specification do not limit the present invention. In the present specification, a numerical range indicated using “to” indicates a range including numerical values described before and after “to” as the minimum value and the maximum value, respectively. In the numerical ranges that are described stepwise in the present specification, the upper limit or the lower limit described in one numerical range may be replaced with the upper limit or the lower limit described in the other stepwise descriptions. In addition, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the example.
[第1実施形態]
 図1は、第1実施形態に係る二次電池を示す斜視図である。図1に示すように、二次電池1は、正極、負極及び電解質層から構成される電極群2と、電極群2を収容する袋状の電池外装体3とを備えている。正極及び負極には、それぞれ正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極及び負極が二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。
First Embodiment
FIG. 1 is a perspective view showing a secondary battery according to the first embodiment. As shown in FIG. 1, the secondary battery 1 includes an electrode group 2 configured of a positive electrode, a negative electrode, and an electrolyte layer, and a bag-like battery exterior body 3 accommodating the electrode group 2. The positive electrode current collection tab 4 and the negative electrode current collection tab 5 are provided on the positive electrode and the negative electrode, respectively. The positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 protrude from the inside of the battery outer package 3 to the outside so that the positive electrode and the negative electrode can be electrically connected to the outside of the secondary battery 1.
 電池外装体3は、例えばラミネートフィルムで形成されていてよい。ラミネートフィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。 The battery outer package 3 may be formed of, for example, a laminate film. The laminate film may be, for example, a laminate film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
 図2は、図1に示した二次電池1における電極群2の一実施形態を示す分解斜視図である。図2に示すように、本実施形態に係る電極群2Aは、正極6と、電解質層7と、負極8とをこの順に備えている。正極6は、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備えている。正極集電体9には、正極集電タブ4が設けられている。負極8は、負極集電体11と、負極集電体11上に設けられた負極合剤層12とを備えている。負極集電体11には、負極集電タブ5が設けられている。 FIG. 2 is an exploded perspective view showing an embodiment of the electrode group 2 in the secondary battery 1 shown in FIG. As shown in FIG. 2, the electrode group 2A according to the present embodiment includes the positive electrode 6, the electrolyte layer 7, and the negative electrode 8 in this order. The positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9. The positive electrode current collector 9 is provided with a positive electrode current collector tab 4. The negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11. The negative electrode current collector 11 is provided with a negative electrode current collection tab 5.
 一実施形態において、電極群2Aには、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備える二次電池用電池部材(正極部材)13が含まれていると見ることができる。図3(a)は、一実施形態に係る二次電池用電池部材(正極部材)を示す模式断面図である。図3(a)に示すように、二次電池用電池部材13は、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備える正極部材である。正極6は、一実施形態に係る二次電池用電池部材13により構成されている。以下、「二次電池用電池部材」を、単に「電池部材」と呼ぶことがある。 In one embodiment, the electrode group 2A includes the battery member (positive electrode member) 13 for the secondary battery including the positive electrode current collector 9 and the positive electrode mixture layer 10 provided on the positive electrode current collector 9. Can be seen. Fig.3 (a) is a schematic cross section which shows the battery member (positive electrode member) for secondary batteries which concerns on one Embodiment. As shown to Fig.3 (a), the battery member 13 for secondary batteries is a positive electrode member provided with the positive electrode collector 9 and the positive mix layer 10 provided on the positive electrode collector 9. As shown in FIG. The positive electrode 6 is configured by the battery member 13 for a secondary battery according to an embodiment. Hereinafter, the “battery member for secondary battery” may be simply referred to as “battery member”.
 正極集電体9は、アルミニウム、ステンレス鋼、チタン等で形成されていてよい。正極集電体9は、具体的には、例えば孔径0.1~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板等であってよい。正極集電体9は、上記以外にも、電池の使用中に溶解、酸化等の変化を生じないものであれば、任意の材料で形成されていてよく、また、その形状、製造方法等も制限されない。 The positive electrode current collector 9 may be formed of aluminum, stainless steel, titanium or the like. Specifically, the positive electrode current collector 9 may be, for example, a perforated aluminum foil having a hole with a hole diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate or the like. In addition to the above, the positive electrode current collector 9 may be formed of any material as long as it does not cause a change such as dissolution or oxidation during use of the battery, and its shape, manufacturing method, etc. It is not restricted.
 正極集電体9の厚さは、10μm以上100μm以下であってよく、正極全体の体積を小さくする観点から、好ましくは10μm以上50μm以下であり、電池を形成する際に小さな曲率で正極を捲回する観点から、より好ましくは10μm以上20μm以下である。 The thickness of the positive electrode current collector 9 may be 10 μm or more and 100 μm or less, preferably 10 μm or more and 50 μm or less from the viewpoint of reducing the volume of the entire positive electrode. From the viewpoint of winding, it is more preferably 10 μm or more and 20 μm or less.
 正極合剤層10は、一実施形態において、正極活物質と、イオン液体と、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、炭素を含む導電材と、を含有する。 In one embodiment, the positive electrode mixture layer 10 includes a positive electrode active material, an ionic liquid, at least one electrolyte salt selected from the group consisting of lithium salt, sodium salt, calcium salt, and magnesium salt, and carbon. And a conductive material.
 正極活物質は、リチウム遷移金属酸化物、リチウム遷移金属リン酸塩等のリチウム遷移金属化合物であってよい。リチウム遷移金属酸化物は、例えば、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等であってよい。リチウム遷移金属酸化物は、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等に含有されるMn、Ni、Co等の遷移金属の一部を、1種若しくは2種以上の他の遷移金属、又はMg、Al等の金属元素(典型元素)で置換したリチウム遷移金属酸化物であってもよい。すなわち、リチウム遷移金属酸化物は、LiM又はLiM(Mは少なくとも1種の遷移金属を含む)で表される化合物であってよい。リチウム遷移金属酸化物は、具体的には、Li(Co1/3Ni1/3Mn1/3)O、LiNi1/2Mn1/2、LiNi1/2Mn3/2等であってよい。 The positive electrode active material may be a lithium transition metal compound such as lithium transition metal oxide or lithium transition metal phosphate. The lithium transition metal oxide may be, for example, lithium manganate, lithium nickelate, lithium cobaltate and the like. The lithium transition metal oxide is a transition metal such as Mn, Ni, or Co contained in lithium manganate, lithium nickelate, lithium cobaltate, etc., as a part of one or more other transition metals, or It may be a lithium transition metal oxide substituted by a metal element (typical element) such as Mg or Al. That is, the lithium transition metal oxide may be a compound represented by LiM 1 O 2 or LiM 1 O 4 (M 1 contains at least one transition metal). Specifically, the lithium transition metal oxide is Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 , LiNi 1/2 Mn 1/2 O 2 , LiNi 1/2 Mn 3/2 O It may be 4 mag.
 リチウム遷移金属酸化物は、エネルギー密度を更に向上させる観点から、好ましくは下記式(2)で表される化合物である。
LiNiCo 2+e   (2)
[式(2)中、Mは、Al、Mn、Mg及びCaからなる群より選ばれる少なくとも1種であり、a、b、c、d及びeは、それぞれ0.2≦a≦1.2、0.5≦b≦0.9、0.1≦c≦0.4、0≦d≦0.2、-0.2≦e≦0.2、かつb+c+d=1を満たす数である。]
The lithium transition metal oxide is preferably a compound represented by the following formula (2) from the viewpoint of further improving the energy density.
Li a Ni b Co c M 2 d O 2+ e (2)
[In Formula (2), M 2 is at least one selected from the group consisting of Al, Mn, Mg, and Ca, and a, b, c, d, and e each satisfy 0.2 ≦ a ≦ 1. 2, 0.5 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.4, 0 ≦ d ≦ 0.2, −0.2 ≦ e ≦ 0.2, and a number satisfying b + c + d = 1 . ]
 リチウム遷移金属リン酸塩は、LiFePO、LiMnPO、LiMn 1-xPO(0.3≦x≦1、MはFe、Ni、Co、Ti、Cu、Zn、Mg及びZrからなる群より選ばれる少なくとも1種の元素である)等であってよい。 The lithium transition metal phosphate is LiFePO 4 , LiMnPO 4 , LiMn x M 3 1-x PO 4 (0.3 ≦ x ≦ 1, M 3 is Fe, Ni, Co, Ti, Cu, Zn, Mg and Zr. And at least one element selected from the group consisting of
 正極活物質は、造粒されていない一次粒子であってもよく、造粒された二次粒子であってもよい。 The positive electrode active material may be ungranulated primary particles or may be granulated secondary particles.
 正極活物質の粒径は、正極合剤層10の厚さ以下になるように調整される。正極活物質中に正極合剤層10の厚さ以上の粒径を有する粗粒子がある場合、ふるい分級、風流分級等により粗粒子を予め除去し、正極合剤層10の厚さ以下の粒径を有する正極活物質を選別する。 The particle diameter of the positive electrode active material is adjusted to be equal to or less than the thickness of the positive electrode mixture layer 10. If the positive electrode active material contains coarse particles having a particle diameter equal to or larger than the thickness of the positive electrode mixture layer 10, the coarse particles are previously removed by sieve classification, air flow classification or the like, and the particles having a thickness smaller than the thickness of the positive electrode mixture layer 10 The positive electrode active material having a diameter is sorted out.
 正極活物質の平均粒径は、0.1μm以上、より好ましくは1μm以上である。正極活物質の平均粒径は、好ましくは30μm以下であり、より好ましくは25μm以下である。正極活物質の平均粒径は、正極活物質全体の体積に対する比率(体積分率)が50%のときの粒径(D50)である。正極活物質の平均粒径(D50)は、レーザー散乱型粒径測定装置(例えば、マイクロトラック)を用いて、レーザー散乱法により水中に正極活物質を懸濁させた懸濁液を測定することで得られる。 The average particle diameter of the positive electrode active material is 0.1 μm or more, more preferably 1 μm or more. The average particle size of the positive electrode active material is preferably 30 μm or less, more preferably 25 μm or less. The average particle diameter of the positive electrode active material is the particle diameter (D 50 ) when the ratio (volume fraction) to the volume of the entire positive electrode active material is 50%. The average particle diameter (D 50 ) of the positive electrode active material is measured by using a laser scattering particle size measuring device (for example, Microtrack) to measure a suspension of the positive electrode active material suspended in water by a laser scattering method. It is obtained by
 正極活物質の含有量は、正極合剤層全量を基準として、70質量%以上、80質量%以上、又は90質量%以上であってよい。正極活物質の含有量は、正極合剤層全量を基準として、99質量%以下であってよい。 The content of the positive electrode active material may be 70% by mass or more, 80% by mass or more, or 90% by mass or more based on the total amount of the positive electrode mixture layer. The content of the positive electrode active material may be 99% by mass or less based on the total amount of the positive electrode mixture layer.
 正極合剤層10に含まれるイオン液体は、以下のアニオン成分及びカチオン成分を含有する。なお、本実施形態におけるイオン液体は、-20℃以上で液状の物質である。 The ionic liquid contained in the positive electrode mixture layer 10 contains the following anion component and cation component. The ionic liquid in the present embodiment is a liquid substance at −20 ° C. or higher.
 イオン液体のアニオン成分は、特に限定されないが、Cl、Br、I等のハロゲンのアニオン、BF 、N(SOF) 等の無機アニオン、B(C 、CHSO、CFSO、N(SO 、N(SOCF 、N(SO 等の有機アニオンなどであってよい。イオン液体のアニオン成分は、好ましくは、下記一般式(1)で表されるアニオン成分の少なくとも1種を含有する。
 N(SO2m+1)(SO2n+1    (1)
 m及びnは、それぞれ独立に0~5の整数を表す。m及びnは、互いに同一でも異なっていてもよく、好ましくは互いに同一である。
The anion component of the ionic liquid is not particularly limited, but anions of halogen such as Cl , Br , I , etc., inorganic anions such as BF 4 , N (SO 2 F) 2 −, etc., B (C 6 H 5 ) 4 -, CH 3 SO 2 O -, CF 3 SO 2 O -, N (SO 2 C 4 F 9) 2 -, N (SO 2 CF 3) 2 -, N (SO 2 C 2 F 5) 2 - And the like. The anion component of the ionic liquid preferably contains at least one anion component represented by the following general formula (1).
N (SO 2 C m F 2m + 1) (SO 2 C n F 2n + 1) - (1)
m and n each independently represent an integer of 0 to 5; m and n may be the same as or different from each other, and preferably are the same as each other.
 式(1)で表されるアニオン成分は、例えば、N(SO 、N(SOF) 、N(SOCF 及びN(SO である。イオン液体のアニオン成分は、比較的低粘度でイオン伝導度を更に向上させるとともに、充放電特性も更に向上させる観点から、より好ましくは、N(SO 、CFSO、N(SOF) 、N(SOCF 、及びN(SO からなる群より選ばれる少なくとも1種を含有し、更に好ましくはN(SOF) を含有する。 Anion component represented by formula (1) may, for example, N (SO 2 C 4 F 9) 2 -, N (SO 2 F) 2 -, N (SO 2 CF 3) 2 - and N (SO 2 C 2 F 5) 2 - a. Anion component of the ionic liquid, together with further improve the ionic conductivity at a relatively low viscosity, from the viewpoint of even further improve charge-discharge characteristics, more preferably, N (SO 2 C 4 F 9) 2 -, CF 3 SO It contains at least one selected from the group consisting of 2 O , N (SO 2 F) 2 , N (SO 2 CF 3 ) 2 , and N (SO 2 C 2 F 5 ) 2 −, more preferably is N (SO 2 F) 2 - containing.
 なお、以下では下記の略称を用いる場合がある。
[FSI]:N(SOF) 、ビス(フルオロスルホニル)イミドアニオン
[TFSI]:N(SOCF 、ビス(トリフルオロメタンスルホニル)イミドアニオン
[BOB]:B(O 、ビスオキサレートボラートアニオン
[f3C]:C(SOF) 、トリス(フルオロスルホニル)カルボアニオン
The following abbreviations may be used below.
[FSI] : N (SO 2 F) 2 , bis (fluorosulfonyl) imide anion [TFSI] : N (SO 2 CF 3 ) 2 , bis (trifluoromethanesulfonyl) imide anion [BOB] : B (O 2 C 2 O 2) 2 -, bis oxalate borate anion [f3C] -: C (SO 2 F) 3 -, tris (fluorosulfonyl) carbanions
 正極合剤層10に含まれるイオン液体のカチオン成分は、好ましくは鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種である。 The cationic component of the ionic liquid contained in the positive electrode mixture layer 10 is preferably at least one member selected from the group consisting of linear quaternary onium cation, piperidinium cation, pyrrolidinium cation, pyridinium cation, and imidazolium cation. It is.
 鎖状四級オニウムカチオンは、例えば、下記一般式(3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000001
[式(3)中、R~Rは、それぞれ独立に、炭素数が1~20の鎖状アルキル基、又はR-O-(CH-で表される鎖状アルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表し、Xは、窒素原子又はリン原子を表す。R~Rで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The linear quaternary onium cation is, for example, a compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000001
[In Formula (3), R 1 to R 4 each independently represent a linear alkyl group having 1 to 20 carbon atoms, or a linear alkoxyalkyl group represented by R—O— (CH 2 ) n — (R represents a methyl group or an ethyl group, n represents an integer of 1 to 4), and X represents a nitrogen atom or a phosphorus atom. The carbon number of the alkyl group represented by R 1 to R 4 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 ピペリジニウムカチオンは、例えば、下記一般式(4)で表される、窒素を含有する六員環環状化合物である。
Figure JPOXMLDOC01-appb-C000002
[式(4)中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The piperidinium cation is, for example, a nitrogen-containing six-membered ring cyclic compound represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000002
[In Formula (4), R 5 and R 6 each independently represent an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl Represents a group or an ethyl group, n represents an integer of 1 to 4). The carbon number of the alkyl group represented by R 5 and R 6 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 ピロリジニウムカチオンは、例えば、下記一般式(5)で表される五員環環状化合物である。
Figure JPOXMLDOC01-appb-C000003
[式(5)中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The pyrrolidinium cation is, for example, a five-membered cyclic compound represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000003
[In Formula (5), R 7 and R 8 each independently represent an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl Represents a group or an ethyl group, n represents an integer of 1 to 4). The carbon number of the alkyl group represented by R 7 and R 8 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 ピリジニウムカチオンは、例えば、下記一般式(6)で示される化合物である。
Figure JPOXMLDOC01-appb-C000004
[式(6)中、R~R13は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R~R13で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The pyridinium cation is, for example, a compound represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000004
[In Formula (6), R 9 to R 13 each independently represent an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is a methyl group Or represents an ethyl group, n represents an integer of 1 to 4) or a hydrogen atom. The carbon number of the alkyl group represented by R 9 to R 13 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 イミダゾリウムカチオンは、例えば、一般式(7)で示される化合物である。
Figure JPOXMLDOC01-appb-C000005
[式(7)中、R14~R18は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R14~R18で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The imidazolium cation is, for example, a compound represented by the general formula (7).
Figure JPOXMLDOC01-appb-C000005
[In Formula (7), R 14 to R 18 each independently represent an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R represents a methyl group Or represents an ethyl group, n represents an integer of 1 to 4) or a hydrogen atom. The carbon number of the alkyl group represented by R 14 to R 18 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 正極合剤層10に含まれるイオン液体は、上述したアニオン成分及びカチオン成分のいずれかを含んでいればよいが、好ましくは、アニオン成分として、N(SOF) を含み、カチオン成分として、ピロリジニウムカチオンを含む。このようなイオン液体は、例えば、N-メチル-N-プロピルピロリジニウムビス(フルオロスルホニル)イミド(Py13-FSI)である。 Ionic liquid contained in the positive electrode mixture layer 10, it is enough include any anionic component and a cationic component as described above, preferably, as an anionic component, N (SO 2 F) 2 - wherein the cationic component As pyrrolidinium cation. Such an ionic liquid is, for example, N-methyl-N-propylpyrrolidinium bis (fluorosulfonyl) imide (Py13-FSI).
 正極合剤層10に含まれるイオン液体の含有量は、正極合剤層全量を基準として、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上である。正極合剤層10に含まれるイオン液体の含有量は、正極合剤層全量を基準として、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下である。 The content of the ionic liquid contained in the positive electrode mixture layer 10 is preferably 3% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass or more based on the total amount of the positive electrode mixture layer. The content of the ionic liquid contained in the positive electrode mixture layer 10 is preferably 30% by mass or less, more preferably 25% by mass or less, still more preferably 20% by mass or less, based on the total amount of the positive electrode mixture layer.
 正極合剤層10に含まれる電解質塩は、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種であってよい。 The electrolyte salt contained in the positive electrode mixture layer 10 may be at least one selected from the group consisting of lithium salt, sodium salt, calcium salt, and magnesium salt.
 正極合剤層10に含まれる電解質塩のアニオン成分は、ハロゲン化物イオン(I、Cl、Br等)、SCN、BF 、BF(CF、BF(C、PF 、ClO 、SbF 、N(SOF) 、N(SOCF 、N(SO 、B(C 、B(O 、C(SOF) 、C(SOCF 、CFCOO、CFSO、CSO、B(O 等であってよい。電解質塩のアニオン成分は、好ましくは、N(SOF) 、N(SOCF 等の上述した式(1)で表されるアニオン成分、PF 、BF 、B(O 、又はClO である。 Anionic component of the electrolyte salt contained in the positive electrode mixture layer 10, a halide ion (I -, Cl -, Br - , etc.), SCN -, BF 4 - , BF 3 (CF 3) -, BF 3 (C 2 F 5 ) , PF 6 , ClO 4 , SbF 6 , N (SO 2 F) 2 , N (SO 2 CF 3 ) 2 , N (SO 2 C 2 F 5 ) 2 , B ( C 6 H 5 ) 4 , B (O 2 C 2 H 4 ) 2 , C (SO 2 F) 3 , C (SO 2 CF 3 ) 3 , CF 3 COO , CF 3 SO 2 O , C 6 F 5 SO 2 O , B (O 2 C 2 O 2 ) 2 − and the like. Anionic component of the electrolyte salt, preferably, N (SO 2 F) 2 -, N (SO 2 CF 3) 2 - above anion component represented by formula (1), such as, PF 6 -, BF 4 - , B (O 2 C 2 O 2) 2 -, or ClO 4 - is.
 リチウム塩は、LiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO、LiBF(CF)、LiBF(C)、LiBF(C)、LiBF(C)、LiC(SOCF、CFSOOLi、CFCOOLi、及びRCOOLi(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 The lithium salt is LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f 3 C], Li [BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , CF 3 SO 2 OLi, CF 3 COOLi, and RCOOLi (wherein R represents an alkyl group having 1 to 4 carbon atoms , A phenyl group, or a naphthyl group), and at least one selected from the group consisting of
 ナトリウム塩は、NaPF、NaBF、Na[FSI]、Na[TFSI]、Na[f3C]、Na[BOB]、NaClO、NaBF(CF)、NaBF(C)、NaBF(C)、NaBF(C)、NaC(SOCF、CFSOONa、CFCOONa、及びRCOONa(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 The sodium salt is NaPF 6 , NaBF 4 , Na [FSI], Na [TFSI], Na [f3C], Na [BOB], NaClO 4 , NaBF 3 (CF 3 ), NaBF 3 (C 2 F 5 ), NaBF 3 (C 3 F 7), NaBF 3 (C 4 F 9), NaC (SO 2 CF 3) 3, CF 3 SO 2 ONa, CF 3 COONa, and RCOONa (R is an alkyl group having 1 to 4 carbon atoms , A phenyl group, or a naphthyl group), and at least one selected from the group consisting of
 カルシウム塩は、Ca(PF、Ca(BF、Ca[FSI]、Ca[TFSI]、Ca[f3C]、Ca[BOB]、Ca(ClO、Ca[BF(CF)]、Ca[BF(C)]、Ca[BF(C)]、Ca[BF(C)]、Ca[C(SOCF、(CFSOO)Ca、(CFCOO)Ca、及び(RCOO)Ca(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 The calcium salt is Ca (PF 6 ) 2 , Ca (BF 4 ) 2 , Ca [FSI] 2 , Ca [TFSI] 2 , Ca [f 3 C] 2 , Ca [BOB] 2 , Ca (ClO 4 ) 2 , Ca [BF 3 (CF 3 )] 2 , Ca [BF 3 (C 2 F 5 )] 2 , Ca [BF 3 (C 3 F 7 )] 2 , Ca [BF 3 (C 4 F 9 )] 2 , Ca [C (SO 2 CF 3 ) 3 ] 2 , (CF 3 SO 2 O) 2 Ca, (CF 3 COO) 2 Ca, and (RCOO) 2 Ca (R is an alkyl group having 1 to 4 carbon atoms, phenyl Or a naphthyl group) may be at least one selected from the group consisting of
 マグネシウム塩は、Mg(PF、Mg(BF、Mg[FSI]、Mg[TFSI]、Mg[f3C]、Mg[BOB]、Na(ClO、Mg[BF(CF)]、Mg[BF(C)]、Mg[BF(C)]、Mg[BF(C)]、Mg[C(SOCF、(CFSOMg、(CFCOO)Mg、及び(RCOO)Mg(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 The magnesium salt is Mg (PF 6 ) 2 , Mg (BF 4 ) 2 , Mg [FSI] 2 , Mg [TFSI] 2 , Mg [f 3 C] 2 , Mg [BOB] 2 , Na (ClO 4 ) 2 , Mg [BF 3 (CF 3 )] 2 , Mg [BF 3 (C 2 F 5 )] 2 , Mg [BF 3 (C 3 F 7 )] 2 , Mg [BF 3 (C 4 F 9 )] 2 , Mg [C (SO 2 CF 3 ) 3 ] 2 , (CF 3 SO 3 ) 2 Mg, (CF 3 COO) 2 Mg, and (RCOO) 2 Mg (R is an alkyl group having 1 to 4 carbon atoms, a phenyl group Or a naphthyl group) may be at least one selected from the group consisting of
 これらのうち、解離性及び電気化学的安定性の観点から、電解質塩は、好ましくはLiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO4、LiBF(CF)、LiBF(C)、LiBF(C)、LiBF(C)、LiC(SOCF、CFSOOLi、CFCOOLi、及びRCOOLi(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であり、より好ましくはLi[TFSI]、Li[FSI]、LiPF、LiBF、Li[BOB]、及びLiClO4からなる群より選ばれる少なくとも1種であり、更に好ましくはLi[TFSI]、及びLi[FSI]からなる群より選ばれる1種である。 Among them, from the viewpoint of dissociativeness and electrochemical stability, the electrolyte salt is preferably LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f 3 C], Li [BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , CF 3 SO 2 OLi, At least one selected from the group consisting of CF 3 COOLi and RCOOLi (wherein R is an alkyl group having 1 to 4 carbon atoms, a phenyl group or a naphthyl group), more preferably Li [TFSI], Li [FSI], LiPF 6, LiBF 4, Li [BOB], and at least one selected from the group consisting of LiClO 4, more preferably Li [TF I], and is one selected from the group consisting of Li [FSI].
 正極合剤層10に含まれる電解質塩は、イオン液体に溶解されて含有されていてよい。正極合剤層10に含まれる、電解質塩とイオン液体との合計の含有量は、正極合剤層全量を基準として、好ましくは3質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上であり、また、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下である。 The electrolyte salt contained in the positive electrode mixture layer 10 may be dissolved and contained in the ionic liquid. The total content of the electrolyte salt and the ionic liquid contained in the positive electrode mixture layer 10 is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 10% based on the total amount of the positive electrode mixture layer. The content is preferably not less than 30% by mass, more preferably not more than 25% by mass, still more preferably not more than 20% by mass.
 正極合剤層10に含まれるイオン液体の単位体積あたりの電解質塩の濃度は、放電特性を更に向上させる観点から、好ましくは0.5mol/L以上、より好ましくは0.7mol/L以上、更に好ましくは0.8mol/L以上であり、また、好ましくは2.0mol/L以下、より好ましくは1.8mol/L以下、更に好ましくは1.5mol/L以下である。 The concentration of the electrolyte salt per unit volume of the ionic liquid contained in the positive electrode mixture layer 10 is preferably 0.5 mol / L or more, more preferably 0.7 mol / L or more, from the viewpoint of further improving the discharge characteristics. Preferably, it is 0.8 mol / L or more, preferably 2.0 mol / L or less, more preferably 1.8 mol / L or less, and still more preferably 1.5 mol / L or less.
 炭素を含む導電材は、第1の導電材と、第1の導電材とは異なる第2の導電材とを含む。導電材の種類は、黒鉛、アセチレンブラック、カーボンブラック、炭素繊維等であってよい。導電材の形状は、粒子状、繊維状等であってよい。第1の導電材と第2の導電材とは、例えば、導電材の種類及び形状(大きさ等も含む)の少なくとも一方において互いに異なっていればよい。本明細書において、粒子状の導電材とは、アスペクト比が2以下の導電材を意味し、繊維状の導電材とは、アスペクト比が20を超える導電材を意味する。アスペクト比は、導電材の走査型電子顕微鏡写真から算出した、粒子の短軸方向の長さ(粒子の最小長さ)に対する粒子の長軸方向の長さ(粒子の最大長さ)の比(最大長さ/最小長さ)として定義される。粒子の長さは、前記写真を、市販の画像処理ソフト(例えば、旭化成エンジニアリング株式会社製の画像解析ソフト、A像くん(登録商標))を用いて、統計的に計算して求められる。 The conductive material containing carbon includes a first conductive material and a second conductive material different from the first conductive material. The type of conductive material may be graphite, acetylene black, carbon black, carbon fiber or the like. The shape of the conductive material may be particulate, fibrous or the like. For example, the first conductive material and the second conductive material may be different from each other in at least one of the type and the shape (including the size and the like) of the conductive material. In the present specification, the particulate conductive material means a conductive material having an aspect ratio of 2 or less, and the fibrous conductive material means a conductive material having an aspect ratio of more than 20. The aspect ratio is the ratio of the particle length in the long axis direction (maximum particle length) to the particle length in the short axis direction (minimum particle length) calculated from the scanning electron micrograph of the conductive material (maximum particle length) Defined as maximum length / minimum length). The length of the particles can be obtained by statistically calculating the photograph using commercially available image processing software (for example, image analysis software manufactured by Asahi Kasei Engineering Corporation, A-image-kun (registered trademark)).
 一実施形態において、第1の導電材及び第2の導電材は、いずれも粒子状であってよい。すなわち、炭素を含む導電材は、第1の粒子状の導電材と、第2の粒子状の導電材とを含んでいてよい。粒子状の導電材は、具体的には、粒子状の黒鉛、アセチレンブラック、カーボンブラック等であってよい。 In one embodiment, the first conductive material and the second conductive material may both be in the form of particles. That is, the conductive material containing carbon may include the first particulate conductive material and the second particulate conductive material. Specifically, the particulate conductive material may be particulate graphite, acetylene black, carbon black or the like.
 第1の粒子状の導電材と第2の粒子状の導電材は、異なる比表面積を有することにより互いに異なっていてもよく、例えば、第1の粒子状の導電材の比表面積が、第2の粒子状の導電材の比表面積よりも小さい。この場合、第1の粒子状の導電材と第2の粒子状の導電材の種類は、互いに同種であっても異種であってもよい。比表面積は、窒素吸着脱離測定によるBET法により測定することができる。 The first particulate conductive material and the second particulate conductive material may be different from each other by having different specific surface areas. For example, the specific surface area of the first particulate conductive material is the second Smaller than the specific surface area of the particulate conductive material. In this case, the types of the first particulate conductive material and the second particulate conductive material may be the same as or different from each other. The specific surface area can be measured by the BET method by nitrogen adsorption desorption measurement.
 第1の粒子状の導電材の比表面積は、好ましくは10m/g以上であり、より好ましくは20m/g以上であり、更に好ましくは30m/g以上である。第1の粒子状の導電材の比表面積は、好ましくは100m/g以下であり、より好ましくは70m/g以下であり、更に好ましくは50m/g以下である。 The specific surface area of the first particulate conductive material is preferably 10 m 2 / g or more, more preferably 20 m 2 / g or more, and still more preferably 30 m 2 / g or more. The specific surface area of the first particulate conductive material is preferably 100 m 2 / g or less, more preferably 70 m 2 / g or less, and still more preferably 50 m 2 / g or less.
 第2の粒子状の導電材の比表面積は、好ましくは100m/g以上であり、より好ましくは120m/g以上であり、更に好ましくは130m/g以上である。第2の粒子状の導電材の比表面積は、好ましくは200m/g以下であり、より好ましくは170m/g以下であり、更に好ましくは150m/g以下である。 The specific surface area of the second particulate conductive material is preferably 100 m 2 / g or more, more preferably 120 m 2 / g or more, and still more preferably 130 m 2 / g or more. The specific surface area of the second particulate conductive material is preferably 200 m 2 / g or less, more preferably 170 m 2 / g or less, and still more preferably 150 m 2 / g or less.
 第1の粒子状の導電材と第2の粒子状の導電材は、異なる平均粒径(D50)を有することにより互いに異なっていてもよく、例えば、第2の粒子状の導電材の平均粒径が、第1の粒子状の導電材の平均粒径よりも小さい。この場合、第1の粒子状の導電材と第2の粒子状の導電材の種類は、互いに同種であっても異種であってもよい。平均粒径は、上述した正極活物質の平均粒径(D50)と同様の方法により測定される。 The first particulate conductive material and the second particulate conductive material may be different from each other by having different average particle sizes (D 50 ), for example, the average of the second particulate conductive material The particle size is smaller than the average particle size of the first particulate conductive material. In this case, the types of the first particulate conductive material and the second particulate conductive material may be the same as or different from each other. The mean particle size is measured by the same method as the mean particle size (D 50 ) of the positive electrode active material described above.
 第1の導電材の平均粒径は、好ましくは30nm以上であり、より好ましくは35nm以上であり、更に好ましくは40nm以上である。第1の導電材の平均粒径は、好ましくは100nm以下であり、より好ましくは80nm以下であり、更に好ましくは60nm以下である。 The average particle diameter of the first conductive material is preferably 30 nm or more, more preferably 35 nm or more, and still more preferably 40 nm or more. The average particle diameter of the first conductive material is preferably 100 nm or less, more preferably 80 nm or less, and still more preferably 60 nm or less.
 第2の導電材の平均粒径は、好ましくは10nm以上であり、より好ましくは15nm以上であり、更に好ましくは20nm以上である。第1の導電材の平均粒径は、好ましくは30nm以下であり、より好ましくは28nm以下であり、更に好ましくは25nm以下である。 The average particle diameter of the second conductive material is preferably 10 nm or more, more preferably 15 nm or more, and still more preferably 20 nm or more. The average particle diameter of the first conductive material is preferably 30 nm or less, more preferably 28 nm or less, and still more preferably 25 nm or less.
 第2の粒子状の導電材の含有量は、正極合剤層への導電材の分散性を高める観点から、第1の粒子状の導電材の含有量と第2の粒子状の導電材の含有量の合計100質量部に対して、好ましくは1質量部以上であり、より好ましくは5質量部以上であり、更に好ましくは10質量部以上であり、また、好ましくは40質量部以下であり、より好ましくは30質量部以下であり、更に好ましくは20質量部以下である。第2の粒子状の導電材の含有量は、正極合剤層への導電材の分散性を高める観点から、第1の粒子状の導電材の含有量と第2の粒子状の導電材の含有量の合計100質量部に対して、好ましくは、1質量部以上40質量部以下、1質量部以上30質量部以下、1質量部以上20質量部以下、5質量部以上40質量部以下、5質量部以上30質量部以下、5質量部以上20質量部以下、10質量部以上40質量部以下、10質量部以上30質量部以下、又は10質量部以上20質量部以下である。 The content of the second particulate conductive material is from the viewpoint of enhancing the dispersibility of the conductive material in the positive electrode mixture layer, the content of the first particulate conductive material and the content of the second particulate conductive material The content is preferably 1 part by mass or more, more preferably 5 parts by mass or more, still more preferably 10 parts by mass or more, and preferably 40 parts by mass or less, based on 100 parts by mass of the total content. More preferably, it is 30 mass parts or less, More preferably, it is 20 mass parts or less. The content of the second particulate conductive material is from the viewpoint of enhancing the dispersibility of the conductive material in the positive electrode mixture layer, the content of the first particulate conductive material and the content of the second particulate conductive material Preferably, 1 to 40 parts by weight, 1 to 30 parts by weight, 1 to 20 parts by weight, 5 to 40 parts by weight, per 100 parts by weight of the total content. It is 5 parts by mass to 30 parts by mass, 5 parts by mass to 20 parts by mass, 10 parts by mass to 40 parts by mass, 10 parts by mass to 30 parts by mass, or 10 parts by mass to 20 parts by mass.
 他の実施形態において、第1の導電材は粒子状であり、第2の導電材は繊維状であってもよい。すなわち、炭素を含む導電材は、粒子状の導電材と、繊維状の導電材とを含んでいてよい。粒子状の導電材は、上述した第1又は第2の粒子状の導電材と同様のものであってよい。繊維状の導電材は、具体的には、気相成長炭素繊維(VGCF(登録商標))等の炭素繊維、カーボンナノチューブなどであってよい。 In another embodiment, the first conductive material may be particulate and the second conductive material may be fibrous. That is, the conductive material containing carbon may contain a particulate conductive material and a fibrous conductive material. The particulate conductive material may be the same as the first or second particulate conductive material described above. Specifically, the fibrous conductive material may be carbon fiber such as vapor grown carbon fiber (VGCF (registered trademark)) or carbon nanotube.
 繊維状の導電材の平均繊維径は、好ましくは50nm以上、より好ましくは80nm以上、更に好ましくは120nm以上である。第2の導電材の平均繊維径は、好ましくは250nm以下であり、より好ましくは200nm以下であり、更に好ましくは170nm以下である。平均繊維径は、透過型電子顕微鏡(TEM)により測定することができる。 The average fiber diameter of the fibrous conductive material is preferably 50 nm or more, more preferably 80 nm or more, and still more preferably 120 nm or more. The average fiber diameter of the second conductive material is preferably 250 nm or less, more preferably 200 nm or less, and still more preferably 170 nm or less. The average fiber diameter can be measured by a transmission electron microscope (TEM).
 繊維状の導電材の平均長さは、好ましくは1μm以上、より好ましくは2.5μm以上、更に好ましくは5μm以上である。繊維状の導電材の長さは、好ましくは30μm以下、より好ましくは20μm以下、更に好ましくは15μm以下である。平均長さとは、繊維状の導電材において長手方向の寸法の平均値をいい、透過型電子顕微鏡(TEM)により測定することができる。 The average length of the fibrous conductive material is preferably 1 μm or more, more preferably 2.5 μm or more, and still more preferably 5 μm or more. The length of the fibrous conductive material is preferably 30 μm or less, more preferably 20 μm or less, and still more preferably 15 μm or less. The average length refers to the average value of the dimensions in the longitudinal direction of the fibrous conductive material and can be measured by a transmission electron microscope (TEM).
 繊維状の導電材の含有量は、放電特性を更に高める観点から、粒子状の導電材の含有量と繊維状の導電材の含有量との合計100質量部に対して、好ましくは1質量部以上であり、より好ましくは5質量部以上であり、更に好ましくは10質量部以上であり、また、好ましくは70質量部以下であり、より好ましくは60質量部以下であり、更に好ましくは50質量部以下である。繊維状の導電材の含有量は、放電特性を更に高める観点から、粒子状の導電材の含有量と繊維状の導電材の含有量との合計100質量部に対して、好ましくは、1質量部以上70質量部以下、1質量部以上60質量部以下、1質量部以上50質量部以下、5質量部以上70質量部以下、5質量部以上60質量部以下、5質量部以上50質量部以下、10質量部以上70質量部以下、10質量部以上60質量部以下、又は10質量部以上50質量部以下である。 The content of the fibrous conductive material is preferably 1 part by mass with respect to a total of 100 parts by mass of the content of the particulate conductive material and the content of the fibrous conductive material from the viewpoint of further enhancing the discharge characteristics. Or more, more preferably 5 parts by mass or more, further preferably 10 parts by mass or more, preferably 70 parts by mass or less, more preferably 60 parts by mass or less, still more preferably 50 parts by mass Part or less. The content of the fibrous conductive material is preferably 1 mass to a total of 100 parts by mass of the content of the particulate conductive material and the content of the fibrous conductive material, from the viewpoint of further enhancing the discharge characteristics. Parts to 70 parts by mass, 1 to 60 parts by mass, 1 to 50 parts by mass, 5 to 70 parts by mass, 5 to 60 parts by mass, 5 to 50 parts by mass Hereinafter, 10 parts by mass or more and 70 parts by mass or less, 10 parts by mass or more and 60 parts by mass or less, or 10 parts by mass or more and 50 parts by mass or less.
 第1の導電材の含有量と第2の導電材との含有量の合計は、正極活物質の含有量と第1の導電材の含有量と第2の導電材の含有量の合計100質量部に対して、好ましくは0.5質量部以上であり、より好ましくは1質量部以上であり、更に好ましくは3質量部以上であり、また、好ましくは20質量部以下であり、より好ましくは15質量部以下であり、更に好ましくは10質量部以下である。第1の導電材の含有量と第2の導電材との含有量の合計は、正極活物質の含有量と第1の導電材の含有量と第2の導電材の含有量の合計100質量部に対して、好ましくは、0.5質量部以上20質量部以下、0.5質量部以上15質量部以下、0.5質量部以上10質量部以下、1質量部以上20質量部以下、1質量部以上15質量部以下、1質量部以上10質量部以下、3質量部以上20質量部以下、3質量部以上15質量部以下、又は3質量部以上10質量部以下である。 The total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. Preferably it is 0.5 mass part or more, More preferably, it is 1 mass part or more, More preferably, it is 3 mass parts or more, Preferably, it is 20 mass parts or less, More preferably, it is It is 15 parts by mass or less, more preferably 10 parts by mass or less. The total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. 0.5 parts by mass or more and 20 parts by mass or less, 0.5 parts by mass or more and 15 parts by mass or less, 0.5 parts by mass or more and 10 parts by mass or less, and 1 parts by mass or more and 20 parts by mass or less 1 to 15 parts by mass, 1 to 10 parts by mass, 3 to 20 parts by mass, 3 to 15 parts by mass, or 3 to 10 parts by mass.
 正極合剤層10は、結着剤を更に含有してもよい。 The positive electrode mixture layer 10 may further contain a binder.
 結着剤は、特に限定されないが、4フッ化エチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる少なくとも1種をモノマ単位として含有するポリマ、スチレン-ブタジエンゴム、イソプレンゴム、アクリルゴム等のゴムなどであってよい。結着剤は、好ましくは4フッ化エチレンとフッ化ビニリデンとを構造単位として含有するコポリマ、フッ化ビニリデンとヘキサフルオロプロピレンとを構造単位として含有するコポリマである。 The binder is not particularly limited, and contains at least one member selected from the group consisting of ethylene tetrafluoride, vinylidene fluoride, hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate as a monomer unit. It may be rubber, such as polymer, styrene-butadiene rubber, isoprene rubber, acrylic rubber and the like. The binder is preferably a copolymer containing tetrafluoroethylene and vinylidene fluoride as structural units, or a copolymer containing vinylidene fluoride and hexafluoropropylene as structural units.
 結着剤の含有量は、正極合剤層全量を基準として、0.5質量%以上、1質量%以上、又は3質量%以上であってよい。結着剤の含有量は、正極合剤層全量を基準として、20質量%以下、15質量%以下、又は10質量%以下であってよい。 The content of the binder may be 0.5% by mass or more, 1% by mass or more, or 3% by mass or more based on the total amount of the positive electrode mixture layer. The content of the binder may be 20% by mass or less, 15% by mass or less, or 10% by mass or less based on the total amount of the positive electrode mixture layer.
 正極合剤層10の厚さは、導電率を更に向上させる観点から、10μm以上、15μm以上、又は20μm以上であってよい。正極合剤層10の厚さは、100μm以下、80μm以下、又は70μm以下であってよい。正極合剤層の厚さを100μm以下とすることにより、正極合剤層10の表面近傍及び正極集電体9の表面近傍の正極活物質の充電レベルのばらつきに起因する充放電の偏りを抑制できる。 The thickness of the positive electrode mixture layer 10 may be 10 μm or more, 15 μm or more, or 20 μm or more from the viewpoint of further improving the conductivity. The thickness of the positive electrode mixture layer 10 may be 100 μm or less, 80 μm or less, or 70 μm or less. By setting the thickness of the positive electrode mixture layer to 100 μm or less, uneven charge / discharge due to the variation in charge level of the positive electrode active material in the vicinity of the surface of the positive electrode mixture layer 10 and in the vicinity of the surface of the positive electrode current collector 9 is suppressed. it can.
 電解質層7は、一実施形態において、1種又は2種以上のポリマと、酸化物粒子と、リチウム塩、ナトリウム塩、カルシウム塩及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、イオン液体と、を含有する。 In one embodiment, the electrolyte layer 7 includes, in one embodiment, one or more polymers, an oxide particle, and at least one electrolyte salt selected from the group consisting of lithium salt, sodium salt, calcium salt and magnesium salt, And an ionic liquid.
 1種又は2種以上のポリマは、好ましくは、4フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位を有する。 The one or more polymers preferably have a first structural unit selected from the group consisting of tetrafluoroethylene and vinylidene fluoride.
 1種又は2種以上のポリマは、好ましくは、前記第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれていてもよい。すなわち、第1の構造単位及び第2の構造単位は、1種のポリマに含まれてコポリマを構成していてもよく、それぞれ別のポリマに含まれて、第1の構造単位を有する第1のポリマと、第2の構造単位を有する第2のポリマとの少なくとも2種のポリマを構成していてもよい。 The one or more polymers preferably have the first structural unit and a second structural unit selected from the group consisting of hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate. It may be included. That is, the first structural unit and the second structural unit may be included in one type of polymer to constitute a copolymer, and each may be included in another polymer and have the first structural unit. And at least two polymers of a second polymer having a second structural unit.
 ポリマは、具体的には、ポリ4フッ化エチレン、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ等であってよい。 Specifically, the polymer may be polytetrafluoroethylene, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, and the like.
 1種又は2種以上のポリマの含有量は、電解質層全量を基準として、好ましくは3質量%以上である。ポリマの含有量は、電解質層全量を基準として、好ましくは70質量%以下であり、より好ましくは60質量%以下である。 The content of the one or more polymers is preferably 3% by mass or more based on the total amount of the electrolyte layer. The content of the polymer is preferably 70% by mass or less, more preferably 60% by mass or less, based on the total amount of the electrolyte layer.
 本実施形態に係るポリマは、電解質組成物に含まれるイオン液体との親和性に優れるため、イオン液体中の電解質塩を保持する。これにより、電解質組成物に荷重が加えられた際のイオン液体の液漏れが抑制される。 The polymer according to the present embodiment is excellent in the affinity to the ionic liquid contained in the electrolyte composition, and thus retains the electrolyte salt in the ionic liquid. This suppresses the leakage of the ionic liquid when a load is applied to the electrolyte composition.
 酸化物粒子は、例えば無機酸化物の粒子である。無機酸化物は、例えば、Li、Mg、Al、Si、Ca、Ti、Zr、La、Na、K、Ba、Sr、V、Nb、B、Ge等を構成元素として含む無機酸化物であってよい。酸化物粒子は、好ましくは、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子である。酸化物粒子は極性を有するため、電解質層7中の電解質の解離を促進し、電池特性を高めることができる。 The oxide particles are, for example, particles of inorganic oxide. The inorganic oxide is, for example, an inorganic oxide containing Li, Mg, Al, Si, Ca, Ti, Zr, La, Na, K, Ba, Sr, V, Nb, B, Ge and the like as constituent elements. Good. The oxide particles are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTiO 3 . It is a particle. Since the oxide particles have polarity, the dissociation of the electrolyte in the electrolyte layer 7 can be promoted, and the battery characteristics can be enhanced.
 酸化物粒子は、希土類金属の酸化物であってもよい。酸化物粒子は、具体的には、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロビウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム等であってよい。 The oxide particles may be oxides of rare earth metals. Specifically, the oxide particles include scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, oxide It may be thulium, ytterbium oxide, lutetium oxide or the like.
 酸化物粒子の比表面積は、2~380m/gであり、5~100m/g、10~80m/g、又は15~60m/gであってもよい。比表面積が2~380m/gであると、このような酸化物粒子を含有する電解質組成物を用いた二次電池は、放電特性に優れる傾向にある。同様の観点から、酸化物粒子の比表面積は、5m/g以上、10m/g以上、又は15m/g以上であってもよく、100m/g以下、80m/g以下、又は60m/g以下であってもよい。酸化物粒子の比表面積は、一次粒子及び二次粒子を含む酸化物粒子全体の比表面積を意味し、BET法によって測定される。 The specific surface area of the oxide particles is 2 to 380 m 2 / g, and may be 5 to 100 m 2 / g, 10 to 80 m 2 / g, or 15 to 60 m 2 / g. If the specific surface area is 2 to 380 m 2 / g, a secondary battery using an electrolyte composition containing such oxide particles tends to be excellent in discharge characteristics. From the same viewpoint, the specific surface area of the oxide particles may be 5 m 2 / g or more, 10 m 2 / g or more, or 15 m 2 / g or more, 100 m 2 / g or less, 80 m 2 / g or less, or It may be 60 m 2 / g or less. The specific surface area of the oxide particles means the specific surface area of the whole oxide particles including the primary particles and the secondary particles, and is measured by the BET method.
 酸化物粒子の平均一次粒径(一次粒子の平均粒径)は、導電率を更に向上させる観点から、好ましくは0.005μm(5nm)以上であり、より好ましくは0.01μm(10nm)以上であり、更に好ましくは0.015μm(15nm)以上である。酸化物粒子の平均一次粒径は、電解質層7を薄くする観点から、好ましくは1μm以下であり、より好ましくは0.1μm以下であり、更に好ましくは0.05μm以下である。酸化物粒子の平均一次粒径は、酸化物粒子を透過型電子顕微鏡等によって観察することによって測定できる。 The average primary particle size of the oxide particles (average particle size of the primary particles) is preferably 0.005 μm (5 nm) or more, more preferably 0.01 μm (10 nm) or more from the viewpoint of further improving the conductivity. And more preferably 0.015 μm (15 nm) or more. The average primary particle size of the oxide particles is preferably 1 μm or less, more preferably 0.1 μm or less, and still more preferably 0.05 μm or less, from the viewpoint of thinning the electrolyte layer 7. The average primary particle size of the oxide particles can be measured by observing the oxide particles with a transmission electron microscope or the like.
 酸化物粒子の平均粒径は、好ましくは0.005μm以上であり、より好ましくは0.01μm以上であり、更に好ましくは0.03μm以上である。酸化物粒子の平均粒径は、好ましくは5μm以下であり、より好ましくは3μm以下であり、更に好ましくは1μm以下である。酸化物粒子の平均粒径は、好ましくは0.005μm以上5μm以下、0.005μm以上3μm以下、0.005μm以上1μm以下、0.01μm以上5μm以下、0.01μm以上3μm以下、0.01μm以上1μm以下、0.03μm以上5μm以下、0.03μm以上3μm以下、又は0.03μm以上1μm以下である。 The average particle size of the oxide particles is preferably 0.005 μm or more, more preferably 0.01 μm or more, and still more preferably 0.03 μm or more. The average particle size of the oxide particles is preferably 5 μm or less, more preferably 3 μm or less, and still more preferably 1 μm or less. The average particle diameter of the oxide particles is preferably 0.005 to 5 μm, 0.005 to 3 μm, 0.005 to 1 μm, 0.01 to 5 μm, 0.01 to 3 μm, 0.01 to 0.2 μm. It is 1 μm or less, 0.03 μm to 5 μm, 0.03 μm to 3 μm, or 0.03 μm to 1 μm.
 酸化物粒子の含有量は、電解質層全量を基準として、5質量%以上、10質量%以上、又は15質量%以上であってよい。酸化物粒子の含有量は、電解質層全量を基準として、60質量%以下、50質量%以下、40質量%以下であってよい。 The content of the oxide particles may be 5% by mass or more, 10% by mass or more, or 15% by mass or more based on the total amount of the electrolyte layer. The content of the oxide particles may be 60% by mass or less, 50% by mass or less, and 40% by mass or less based on the total amount of the electrolyte layer.
 電解質層7に含まれるイオン液体は、上述した正極合剤層10に使用できるイオン液体と同様であってよい。電解質層7に含まれるイオン液体は、好ましくは、アニオン成分としてN(SOCF 、を含み、カチオン成分として、鎖状四級オニウムカチオンを含むイオン液体である。このようなイオン液体は、例えば、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミド(DEME-TFSI)である。 The ionic liquid contained in the electrolyte layer 7 may be the same as the ionic liquid that can be used for the positive electrode mixture layer 10 described above. The ionic liquid contained in the electrolyte layer 7 is preferably an ionic liquid containing N (SO 2 CF 3 ) 2 as an anion component and containing a chain quaternary onium cation as a cation component. Such an ionic liquid is, for example, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI).
 電解質層7に含まれるイオン液体の含有量は、電解質層7を好適に作製する観点から、電解質層全量を基準として、10質量%以上であってよく、80質量%以下であってよい。 The content of the ionic liquid contained in the electrolyte layer 7 may be 10% by mass or more and 80% by mass or less based on the total amount of the electrolyte layer from the viewpoint of suitably producing the electrolyte layer 7.
 電解質層7に含まれる電解質塩は、イオン液体に溶解されて含有されていてよい。電解質塩は、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種であってよい。電解質層7に含まれる電解質塩は、上述した正極合剤層10に使用できる電解質塩と同様であってよい。 The electrolyte salt contained in the electrolyte layer 7 may be dissolved and contained in the ionic liquid. The electrolyte salt may be at least one selected from the group consisting of lithium salt, sodium salt, calcium salt, and magnesium salt. The electrolyte salt contained in the electrolyte layer 7 may be the same as the electrolyte salt that can be used for the positive electrode mixture layer 10 described above.
 電解質層7に含まれる電解質塩は、好ましくは、イミド系リチウム塩、イミド系ナトリウム塩、イミド系カルシウム塩、及びイミド系マグネシウム塩からなる群より選ばれる1種である。 The electrolyte salt contained in the electrolyte layer 7 is preferably one selected from the group consisting of an imide lithium salt, an imide sodium salt, an imide calcium salt, and an imide magnesium salt.
 イミド系リチウム塩は、Li[TFSI]、Li[FSI]等であってよい。イミド系ナトリウム塩は、Na[TFSI]、Na[FSI]等であってよい。イミド系カルシウム塩は、Ca[TFSI]、Ca[FSI]等であってよい。イミド系マグネシウム塩は、Mg[TFSI]、Mg[FSI]等であってよい。 The imide lithium salt may be Li [TFSI], Li [FSI] or the like. The imide sodium salt may be Na [TFSI], Na [FSI] or the like. The imide calcium salt may be Ca [TFSI] 2 , Ca [FSI] 2 or the like. The imide magnesium salt may be Mg [TFSI] 2 , Mg [FSI] 2 or the like.
 電解質層7に含まれる電解質塩とイオン液体との合計の含有量は、導電率を更に向上させ、二次電池の容量低下を抑制する観点から、電解質層全量を基準として、好ましくは10質量%以上であり、より好ましくは25質量%以上であり、更に好ましくは40質量%以上である。電解質塩とイオン液体との合計の含有量は、電解質層の強度低下を抑制する観点から、電解質層全量を基準として、好ましくは80質量%以下である。 The total content of the electrolyte salt and the ionic liquid contained in the electrolyte layer 7 is preferably 10% by mass based on the total amount of the electrolyte layer, from the viewpoint of further improving the conductivity and suppressing the capacity decrease of the secondary battery. It is the above, More preferably, it is 25 mass% or more, More preferably, it is 40 mass% or more. The total content of the electrolyte salt and the ionic liquid is preferably 80% by mass or less based on the total amount of the electrolyte layer from the viewpoint of suppressing the strength reduction of the electrolyte layer.
 電解質層7に含まれるイオン液体の単位体積あたりの電解質塩の濃度は、充放電特性を更に向上させる観点から、好ましくは0.5mol/L以上、より好ましくは0.7mol/L以上、更に好ましくは0.8mol/L以上であり、また、好ましくは2.0mol/L以下、より好ましくは1.8mol/L以下である。 The concentration of the electrolyte salt per unit volume of the ionic liquid contained in the electrolyte layer 7 is preferably 0.5 mol / L or more, more preferably 0.7 mol / L or more, and further preferably from the viewpoint of further improving the charge / discharge characteristics. Is 0.8 mol / L or more, preferably 2.0 mol / L or less, more preferably 1.8 mol / L or less.
 電解質層7の厚さは、強度を高め安全性を向上させる観点から、好ましくは5μm以上であり、より好ましくは10μm以上である。電解質層7の厚さは、二次電池の内部抵抗を更に低減させる観点及び大電流特性を更に向上させる観点から、好ましくは200μm以下、より好ましくは150μm以下、更に好ましくは100μm以下である。 The thickness of the electrolyte layer 7 is preferably 5 μm or more, more preferably 10 μm or more, from the viewpoint of enhancing the strength and improving the safety. The thickness of the electrolyte layer 7 is preferably 200 μm or less, more preferably 150 μm or less, and further preferably 100 μm or less from the viewpoint of further reducing the internal resistance of the secondary battery and the viewpoint of further improving the large current characteristics.
 負極集電体11は、アルミニウム、銅、ニッケル、ステンレス等の金属、それらの合金などであってよい。負極集電体11は、軽量で高い重量エネルギー密度を有するため、好ましくはアルミニウム及びその合金である。負極集電体11は、薄膜への加工のしやすさ及びコストの観点から、好ましくは銅である。 The negative electrode current collector 11 may be a metal such as aluminum, copper, nickel, stainless steel, an alloy thereof, or the like. The negative electrode current collector 11 is preferably aluminum and an alloy thereof because of its light weight and high weight energy density. The negative electrode current collector 11 is preferably copper from the viewpoint of ease of processing into a thin film and cost.
 負極集電体11の厚さは、10μm以上100μm以下であってよく、負極全体の体積を小さくする観点から、好ましくは10μm以上50μm以下であり、電池を形成する際に小さな曲率で負極を捲回する観点から、より好ましくは10μm以上20μm以下である。 The thickness of the negative electrode current collector 11 may be 10 μm or more and 100 μm or less, preferably 10 μm or more and 50 μm or less from the viewpoint of reducing the volume of the entire negative electrode. From the viewpoint of winding, it is more preferably 10 μm or more and 20 μm or less.
 負極合剤層12は、一実施形態において、負極活物質を含有する。 In one embodiment, the negative electrode mixture layer 12 contains a negative electrode active material.
 負極活物質は、エネルギデバイスの分野で常用されるものを使用できる。負極活物質としては、具体的には、例えば、金属リチウム、チタン酸リチウム(LiTi12)、リチウム合金又はその他の金属化合物、炭素材料、金属錯体、及び有機高分子化合物が挙げられる。負極活物質は、これらの1種単独、又は2種以上の混合物であってよい。炭素材料としては、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等の黒鉛(グラファイト)、非晶質炭素、炭素繊維、及びアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラックなどが挙げられる。負極活物質は、より大きな理論容量(例えば500~1500Ah/kg)を得る観点から、シリコン、スズ又はこれらの元素を含む化合物(酸化物、窒化物、他の金属との合金)であってもよい。 As the negative electrode active material, those commonly used in the field of energy devices can be used. Specific examples of the negative electrode active material include metal lithium, lithium titanate (Li 4 Ti 5 O 12 ), lithium alloy or other metal compounds, carbon materials, metal complexes, and organic polymer compounds. . The negative electrode active material may be one of these alone, or a mixture of two or more. Examples of carbon materials include natural graphite (scaly graphite etc.), graphite (graphite) such as artificial graphite, amorphous carbon, carbon fiber, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black And carbon black. The negative electrode active material is silicon, tin or a compound containing these elements (oxide, nitride, alloy with other metals) from the viewpoint of obtaining a larger theoretical capacity (for example, 500 to 1500 Ah / kg) Good.
 負極活物質の平均粒径(D50)は、粒径減少に伴う不可逆容量の増加を抑制しつつ、かつ、電解質塩の保持能力を高めたバランスの良い負極を得る観点から、好ましくは1μm以上であり、より好ましくは5μm以上であり、更に好ましくは10μm以上であり、また、好ましくは50μm以下であり、より好ましくは40μm以下であり、更に好ましくは30μm以下である。負極活物質の平均粒径(D50)は、上述した正極活物質の平均粒径(D50)と同様の方法により測定される。 The average particle size (D 50 ) of the negative electrode active material is preferably 1 μm or more from the viewpoint of obtaining a well-balanced negative electrode in which the retention capacity of electrolyte salt is enhanced while suppressing the increase in irreversible capacity accompanying the particle size reduction. More preferably, it is 5 μm or more, more preferably 10 μm or more, and preferably 50 μm or less, more preferably 40 μm or less, and still more preferably 30 μm or less. The average particle size (D 50 ) of the negative electrode active material is measured by the same method as the average particle size (D 50 ) of the positive electrode active material described above.
 負極活物質の含有量は、負極合剤層全量を基準として、60質量%以上、65質量%以上、又は70質量%以上であってよい。負極活物質の含有量は、負極合剤層全量を基準として、99質量%以下、95質量%以下、又は90質量%以下であってよい。 The content of the negative electrode active material may be 60% by mass or more, 65% by mass or more, or 70% by mass or more based on the total amount of the negative electrode mixture layer. The content of the negative electrode active material may be 99% by mass or less, 95% by mass or less, or 90% by mass or less based on the total amount of the negative electrode mixture layer.
 負極合剤層12は、イオン液体と、電解質塩と、導電材と、結着剤と、を更に含有してもよい。 The negative electrode mixture layer 12 may further contain an ionic liquid, an electrolyte salt, a conductive material, and a binder.
 負極合剤層12に含まれるイオン液体、電解質塩の種類及びその含有量は、上述した正極合剤層10におけるイオン液体、電解質塩の種類及びその含有量と同様であってよい。 The type and content of the ionic liquid and the electrolyte salt contained in the negative electrode mixture layer 12 may be the same as the type and the content of the ionic liquid and the electrolyte salt in the positive electrode mixture layer 10 described above.
 導電材は、特に限定されないが、黒鉛、アセチレンブラック、カーボンブラック、炭素繊維等の炭素材料などであってよい。導電材は、上述した炭素材料の2種以上の混合物であってもよい。 The conductive material is not particularly limited, but may be a carbon material such as graphite, acetylene black, carbon black, carbon fiber and the like. The conductive material may be a mixture of two or more of the above-described carbon materials.
 負極合剤層12に含まれる導電材の含有量は、負極合剤層全量を基準として、0.1質量%以上、1質量%以上、又は3質量%以上であってよく、15質量%以下、10質量%以下、又は8質量%以下であってよい。 The content of the conductive material contained in the negative electrode mixture layer 12 may be 0.1 mass% or more, 1 mass% or more, or 3 mass% or more, 15 mass% or less, based on the total amount of the negative electrode mixture layer. , 10% by mass or less, or 8% by mass or less.
 負極合剤層12は、上述した正極合剤層10に使用できる結着剤と同様の結着剤を更に含有してもよい。負極合剤層12に含まれる結着剤の含有量は、上述した正極合剤層10における結着剤の含有量と同様であってよい。 The negative electrode mixture layer 12 may further contain a binder similar to the binder that can be used for the positive electrode mixture layer 10 described above. The content of the binder contained in the negative electrode mixture layer 12 may be the same as the content of the binder in the positive electrode mixture layer 10 described above.
 負極合剤層12の厚さは、10μm以上、15μm以上、又は20μm以上であってよい。負極合剤層12の厚さは、60μm以下、55μm以下、又は50μm以下であってよい。 The thickness of the negative electrode mixture layer 12 may be 10 μm or more, 15 μm or more, or 20 μm or more. The thickness of the negative electrode mixture layer 12 may be 60 μm or less, 55 μm or less, or 50 μm or less.
 他の実施形態において、電極群2Aには、正極集電体9と、正極合剤層10と、電解質層7とをこの順に備える電池部材が含まれていると見ることもできる。図3(b)は、他の実施形態に係る二次電池用電池部材を示す模式断面図である。図3(b)に示すように、電池部材14は、正極集電体9と、正極集電体9上に設けられた正極合剤層10と、正極合剤層10上に設けられた電解質層7とをこの順に備える電池部材である。電解質層7、正極集電体9及び正極合剤層10は、上述した電池部材13における電解質層7、正極集電体9及び正極合剤層10とそれぞれ同様である。 In another embodiment, the electrode group 2A can be considered to include a battery member provided with the positive electrode current collector 9, the positive electrode mixture layer 10, and the electrolyte layer 7 in this order. FIG.3 (b) is a schematic cross section which shows the battery member for secondary batteries which concerns on other embodiment. As shown in FIG. 3 (b), the battery member 14 includes a positive electrode current collector 9, a positive electrode mixture layer 10 provided on the positive electrode current collector 9, and an electrolyte provided on the positive electrode mixture layer 10. It is a battery member provided with the layer 7 in this order. The electrolyte layer 7, the positive electrode current collector 9, and the positive electrode mixture layer 10 are the same as the electrolyte layer 7, the positive electrode current collector 9, and the positive electrode mixture layer 10 in the above-described battery member 13, respectively.
 続いて、上述した二次電池1の製造方法について説明する。二次電池1の製造方法は、正極集電体9上に正極合剤層10を形成して正極6を得る第1の工程と、負極集電体11上に負極合剤層12を形成して負極8を得る第2の工程と、正極6と負極8との間に電解質層7を設ける第3の工程と、を有する。 Then, the manufacturing method of the secondary battery 1 mentioned above is demonstrated. In the method of manufacturing the secondary battery 1, a first step of forming the positive electrode mixture layer 10 on the positive electrode current collector 9 to obtain the positive electrode 6 and forming the negative electrode mixture layer 12 on the negative electrode current collector 11 And a third step of providing the electrolyte layer 7 between the positive electrode 6 and the negative electrode 8.
 第1の工程では、正極6は、例えば、正極合剤層に用いる材料を分散媒に分散させてスラリ状の正極合剤を得たのち、この正極合剤を正極集電体9に塗布してから分散媒を揮発させることにより得られる。分散媒は、好ましくはN-メチル-2-ピロリドン(NMP)等の有機溶剤である。正極合剤層10に含まれる電解質塩は、イオン液体に溶解させてから、他の材料とともに分散媒に分散させることができる。第1の工程は、すなわち、上述した電池部材13を得る工程である。 In the first step, for example, after the material used for the positive electrode mixture layer is dispersed in a dispersion medium to obtain a slurry-like positive electrode mixture, the positive electrode 6 is coated with the positive electrode mixture on the positive electrode current collector 9. It is then obtained by volatilizing the dispersion medium. The dispersion medium is preferably an organic solvent such as N-methyl-2-pyrrolidone (NMP). The electrolyte salt contained in the positive electrode mixture layer 10 can be dissolved in the ionic liquid and then dispersed in the dispersion medium together with other materials. The first step is the step of obtaining the above-described battery member 13.
 正極合剤層10における正極活物質、導電剤、結着剤、及び電解質塩を溶解したイオン液体の混合比は、例えば、正極活物質:導電材:結着剤:電解質塩を溶解したイオン液体=69~82:0.1~10:5~12:10~17(質量比)であってよい。ただし、必ずしもこの範囲に限定されない。 The mixing ratio of the positive electrode active material, the conductive agent, the binder, and the ionic liquid in which the electrolyte salt is dissolved in the positive electrode mixture layer 10 is, for example, a positive electrode active material: conductive material: binder: ionic liquid in which electrolyte salt is dissolved. = 69 to 82: 0.1 to 10: 5 to 12: 10 to 17 (mass ratio). However, it is not necessarily limited to this range.
 第2の工程では、負極8は、上述した正極6と同様の方法で得られる。すなわち、負極合剤層12に用いる材料を分散媒に分散させてスラリ状の負極合剤を得たのち、この負極合剤を負極集電体11に塗布してから分散媒を揮発させることにより得られる。 In the second step, the negative electrode 8 is obtained by the same method as the above-described positive electrode 6. That is, after a material used for the negative electrode mixture layer 12 is dispersed in a dispersion medium to obtain a slurry-like negative electrode mixture, the negative electrode mixture is applied to the negative electrode current collector 11 and then the dispersion medium is volatilized. can get.
 負極合剤層12における負極活物質、導電剤、結着剤、及び電解質塩を溶解したイオン液体の混合比は、例えば、負極活物質:導電剤:結着剤:電解質塩を溶解したイオン液体=70~80:0.1~10:5~10:10~17(質量比)であってよい。ただし、必ずしもこの範囲に限定されない。 The mixing ratio of the negative electrode active material, the conductive agent, the binder, and the ionic liquid in which the electrolyte salt is dissolved in the negative electrode mixture layer 12 is, for example, negative electrode active material: conductive agent: binder: ionic liquid in which electrolyte salt is dissolved. It may be 70 to 80: 0.1 to 10: 5 to 10: 10 to 17 (mass ratio). However, it is not necessarily limited to this range.
 第3の工程では、一実施形態において、電解質層7は、電解質層7に用いる材料を分散媒に分散させてスラリ状の電解質組成物を得た後、これを基材上に塗布してから分散媒を揮発させることによってシート状の電解質層として得られる。分散媒は、好ましくは水、NMP、トルエン等である。この場合、第3の工程では、正極6、電解質層7及び負極8を、例えばラミネートにより積層することで二次電池1が得られる。このとき、電解質層7が、正極6の正極合剤層10側かつ負極8の負極合剤層12側に位置するように、すなわち、正極集電体9、正極合剤層10、電解質層7、負極合剤層12及び負極集電体11がこの順で配置されるように積層する。 In the third step, in one embodiment, after the material used for the electrolyte layer 7 is dispersed in a dispersion medium to obtain a slurry-like electrolyte composition, the electrolyte layer 7 is coated on a substrate and then dried. It is obtained as a sheet-like electrolyte layer by volatilizing the dispersion medium. The dispersion medium is preferably water, NMP, toluene or the like. In this case, in the third step, the positive electrode 6, the electrolyte layer 7, and the negative electrode 8 are laminated by, for example, lamination, to obtain the secondary battery 1. At this time, the electrolyte layer 7 is positioned on the positive electrode mixture layer 10 side of the positive electrode 6 and on the negative electrode mixture layer 12 side of the negative electrode 8, that is, the positive electrode current collector 9, the positive electrode mixture layer 10, and the electrolyte layer 7. The negative electrode mixture layer 12 and the negative electrode current collector 11 are stacked in this order.
 第3の工程では、他の実施形態において、電解質層7は、正極6の正極合剤層10側及び負極8の負極合剤層12側の少なくともいずれか一方に塗布により形成され、好ましくは正極6の正極合剤層10側及び負極8の負極合剤層12側の両方に塗布により形成される。この工程は、すなわち、上述した電池部材14を得る工程である。この場合、例えば、電解質層7が設けられた正極6(電池部材14)と、電解質層7が設けられた負極8とを、電解質層7同士が接するように積層することで、二次電池1が得られる。 In the third step, in another embodiment, the electrolyte layer 7 is formed by coating on at least one of the positive electrode mixture layer 10 side of the positive electrode 6 and the negative electrode mixture layer 12 side of the negative electrode 8, preferably a positive electrode. Both the positive electrode mixture layer 10 side of 6 and the negative electrode mixture layer 12 side of the negative electrode 8 are formed by application. This step is, in other words, the step of obtaining the battery member 14 described above. In this case, for example, the secondary battery 1 is formed by laminating the positive electrode 6 (battery member 14) provided with the electrolyte layer 7 and the negative electrode 8 provided with the electrolyte layer 7 such that the electrolyte layers 7 are in contact with each other. Is obtained.
 正極合剤層10上に電解質層7を形成する方法は、例えば、電解質層7に用いる材料を分散媒に分散させてスラリ状の電解質組成物を得たのち、この電解質組成物を正極合剤層10上にアプリケータを用いて塗布する方法である。分散媒は、好ましくはNMP等の有機溶剤である。電解質層7に含まれる電解質塩は、イオン液体に溶解させてから、他の材料とともに分散媒に分散させることができる。 In the method of forming the electrolyte layer 7 on the positive electrode mixture layer 10, for example, after a material used for the electrolyte layer 7 is dispersed in a dispersion medium to obtain a slurry-like electrolyte composition, this electrolyte composition is used as a positive electrode mixture It is a method of applying on the layer 10 using an applicator. The dispersion medium is preferably an organic solvent such as NMP. The electrolyte salt contained in the electrolyte layer 7 can be dissolved in the ionic liquid and then dispersed in the dispersion medium together with other materials.
 電解質層7を形成するためのスラリにおける酸化物粒子、電解質塩を溶解したイオン液体、ポリマの混合比は、例えば、酸化物粒子:電解質塩を溶解したイオン液体:ポリマ=5~60:10~80:5~50(質量比)であってよい。ただし、必ずしもこの混合比に限定されない。 The mixing ratio of the oxide particles, the ionic liquid in which the electrolyte salt is dissolved, and the polymer in the slurry for forming the electrolyte layer 7 is, for example, oxide particles: ionic liquid in which the electrolyte salt is dissolved: polymer = 5 to 60: 10 to It may be 80: 5 to 50 (mass ratio). However, the mixing ratio is not necessarily limited.
 負極合剤層12に電解質層7を形成する方法は、正極合剤層10に電解質層7を形成する方法と同様の方法であってよい。 The method of forming the electrolyte layer 7 in the negative electrode mixture layer 12 may be the same method as the method of forming the electrolyte layer 7 in the positive electrode mixture layer 10.
[第2実施形態]
 次に、第2実施形態に係る二次電池について説明する。図4は、第2実施形態に係る二次電池の電極群を示す分解斜視図である。図4に示すように、第2実施形態における二次電池が第1実施形態における二次電池と異なる点は、電極群2Bが、バイポーラ電極15を備えている点である。すなわち、電極群2Bは、正極6と、第1の電解質層7と、バイポーラ電極15と、第2の電解質層7と、負極8とをこの順に備えている。
Second Embodiment
Next, a secondary battery according to a second embodiment will be described. FIG. 4 is an exploded perspective view showing an electrode group of a secondary battery according to a second embodiment. As shown in FIG. 4, the secondary battery in the second embodiment is different from the secondary battery in the first embodiment in that the electrode group 2 </ b> B includes a bipolar electrode 15. That is, the electrode group 2B includes the positive electrode 6, the first electrolyte layer 7, the bipolar electrode 15, the second electrolyte layer 7, and the negative electrode 8 in this order.
 バイポーラ電極15は、バイポーラ電極集電体16と、バイポーラ電極集電体16の負極8側の面(正極面)に設けられた正極合剤層10と、バイポーラ電極集電体16の正極6側の面(負極面)に設けられた負極合剤層12とを備えている。すなわち、バイポーラ電極15は正極の機能と負極の機能とを併せ持っていることから、第2実施形態における電極群2Bには、正極6及び負極8に加えて、バイポーラ電極集電体16及びバイポーラ電極集電体16上に設けられた正極合剤層10を備えるもう一つの正極と、バイポーラ電極集電体16及びバイポーラ電極集電体16上に設けられた負極合剤層12を備えるもう一つ負極とが含まれていると見ることができる。 The bipolar electrode 15 includes a bipolar electrode current collector 16, a positive electrode mixture layer 10 provided on the surface (positive electrode surface) of the bipolar electrode current collector 16 on the negative electrode 8 side, and a positive electrode 6 side of the bipolar electrode current collector 16. And the negative electrode mixture layer 12 provided on the negative electrode surface. That is, since the bipolar electrode 15 has both the function of the positive electrode and the function of the negative electrode, in addition to the positive electrode 6 and the negative electrode 8 in the electrode group 2B in the second embodiment, the bipolar electrode current collector 16 and the bipolar electrode Another positive electrode including the positive electrode mixture layer 10 provided on the current collector 16 and another negative electrode mixture layer 12 provided on the bipolar electrode current collector 16 and the bipolar electrode current collector 16 It can be seen that the negative electrode is included.
 一実施形態において、バイポーラ電極15は、バイポーラ電極集電体16と、バイポーラ電極集電体16上に設けられた正極合剤層10とを含む二次電池用電池部材と見ることができる。図5(a)は、一実施形態に係る二次電池用電池部材を示す模式断面図である。図5(a)に示すように、この電池部材17は、バイポーラ電極集電体16と、バイポーラ電極集電体16の一方の面上に設けられた正極合剤層10と、正極合剤層10上におけるバイポーラ電極集電体16と反対側に設けられた負極合剤層12と、を備える電池部材である。 In one embodiment, the bipolar electrode 15 can be viewed as a battery member for a secondary battery including the bipolar electrode current collector 16 and the positive electrode mixture layer 10 provided on the bipolar electrode current collector 16. Fig.5 (a) is a schematic cross section which shows the battery member for secondary batteries which concerns on one Embodiment. As shown in FIG. 5A, the battery member 17 includes a bipolar electrode current collector 16, a positive electrode mixture layer 10 provided on one surface of the bipolar electrode current collector 16, and a positive electrode mixture layer 10 is a battery member provided with the bipolar electrode current collector 16 and the negative electrode mixture layer 12 provided on the opposite side.
 バイポーラ電極集電体16において、正極面は、好ましくは耐酸化性に優れた材料で形成されていてよく、アルミニウム、ステンレス鋼、チタン等で形成されていてよい。負極活物質として黒鉛又は合金を用いたバイポーラ電極集電体16における負極面は、リチウムと合金を形成しない材料で形成されていてよく、具体的には、ステンレス鋼、ニッケル、鉄、チタン等で形成されていてよい。正極面と負極面に異種の金属を用いる場合、バイポーラ電極集電体16は、異種金属箔を積層させたクラッド材であってよい。ただし、チタン酸リチウムのように、リチウムと合金を形成しない電位で動作する負極8を用いる場合、上述の制限はなくなり、負極面は、正極集電体9と同様の材料であってよい。その場合、バイポーラ電極集電体16は、単一の金属箔であってよい。単一の金属箔としてのバイポーラ電極集電体16は、孔径0.1~10mmの孔を有するアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板等であってよい。バイポーラ電極集電体16は、上記以外にも、電池の使用中に溶解、酸化等の変化を生じないものであれば、任意の材料で形成されていてよく、また、その形状、製造方法等も制限されない。 In the bipolar electrode current collector 16, the positive electrode surface may be preferably made of a material excellent in oxidation resistance, and may be made of aluminum, stainless steel, titanium or the like. The negative electrode surface of the bipolar electrode current collector 16 using graphite or an alloy as the negative electrode active material may be formed of a material that does not form an alloy with lithium, and specifically, stainless steel, nickel, iron, titanium, etc. It may be formed. When different metals are used for the positive electrode surface and the negative electrode surface, the bipolar electrode current collector 16 may be a clad material in which different metal foils are laminated. However, in the case of using the negative electrode 8 operating at a potential not forming an alloy with lithium as lithium titanate, the above limitation is eliminated, and the negative electrode surface may be the same material as the positive electrode current collector 9. In that case, the bipolar electrode current collector 16 may be a single metal foil. The bipolar electrode current collector 16 as a single metal foil may be a perforated aluminum foil, an expanded metal, a foam metal plate or the like having holes with a hole diameter of 0.1 to 10 mm. In addition to the above, the bipolar electrode current collector 16 may be made of any material as long as it does not cause a change such as dissolution or oxidation during use of the battery, and its shape, manufacturing method, etc. Nor is it limited.
 バイポーラ電極集電体16の厚さは、10μm以上100μm以下であってよく、正極全体の体積を小さくする観点から、好ましくは10μm以上50μm以下であり、電池を形成する際に小さな曲率でバイポーラ電極を捲回する観点から、より好ましくは10μm以上20μm以下である。 The thickness of the bipolar electrode current collector 16 may be 10 μm or more and 100 μm or less, preferably 10 μm or more and 50 μm or less from the viewpoint of reducing the volume of the entire positive electrode, and the bipolar electrode with a small curvature when forming a battery. In view of winding, it is more preferably 10 μm or more and 20 μm or less.
 電池部材17における正極合剤層10は、上述した第1実施形態の電池部材13における正極合剤層10と同様の材料で構成されていてよい。電極群2Bにおいて、電池部材17におけるバイポーラ電極集電体16上の正極合剤層10は、上述した第1の導電材及び第1の導電材とは異なる第2の導電材を含んでいる。正極6における正極集電体9上の正極合剤層10に含まれる第1の導電材と第2の導電材との組み合わせと、電池部材17におけるバイポーラ電極集電体16上の正極合剤層10に含まれる第1の導電材と第2の導電材との組み合わせは、互いに同一の組み合わせであっても異なる組み合わせであってもよいが、好ましくは互いに同一の組み合わせである。 The positive electrode mixture layer 10 in the battery member 17 may be made of the same material as the positive electrode mixture layer 10 in the battery member 13 of the first embodiment described above. In the electrode group 2B, the positive electrode mixture layer 10 on the bipolar electrode current collector 16 in the battery member 17 includes the second conductive material different from the first conductive material and the first conductive material described above. A combination of a first conductive material and a second conductive material contained in the positive electrode mixture layer 10 on the positive electrode current collector 9 of the positive electrode 6 and a positive electrode mixture layer on the bipolar electrode current collector 16 in the battery member 17 The combination of the first conductive material and the second conductive material included in 10 may be the same combination as each other or a different combination, but is preferably the same combination as each other.
 他の実施形態において、電極群2Bには、第1の電解質層7と、バイポーラ電極15と、第2の電解質層7とをこの順に備える電池部材が含まれていると見ることもできる。図5(b)は、他の実施形態に係る二次電池用電池部材を示す模式断面図である。図5(b)に示すように、この電池部材18は、バイポーラ電極集電体16と、バイポーラ電極集電体16の一方の面上に設けられた正極合剤層10と、正極合剤層10上におけるバイポーラ電極集電体16と反対側に設けられた第2の電解質層7と、バイポーラ電極集電体16の他方の面上に設けられた負極合剤層12と、負極合剤層12上におけるバイポーラ電極集電体16と反対側に設けられた第1の電解質層7と、を備えている。 In another embodiment, it can be considered that the electrode group 2B includes a battery member including the first electrolyte layer 7, the bipolar electrode 15, and the second electrolyte layer 7 in this order. FIG.5 (b) is a schematic cross section which shows the battery member for secondary batteries which concerns on other embodiment. As shown in FIG. 5B, the battery member 18 includes a bipolar electrode current collector 16, a positive electrode mixture layer 10 provided on one surface of the bipolar electrode current collector 16, and a positive electrode mixture layer 10, a second electrolyte layer 7 provided on the opposite side to the bipolar electrode current collector 16, a negative electrode mixture layer 12 provided on the other surface of the bipolar electrode current collector 16, and a negative electrode mixture layer And a first electrolyte layer 7 provided on the opposite side to the bipolar electrode current collector 16.
 電池部材18におけるバイポーラ電極集電体16、正極合剤層10、及び負極合剤層12は、上述した電池部材17におけるバイポーラ電極集電体16、正極合剤層10、及び負極合剤層12と同様の材料で構成されていてよい。 The bipolar electrode current collector 16, the positive electrode mixture layer 10 and the negative electrode mixture layer 12 in the battery member 18 are the bipolar electrode current collector 16, the positive electrode mixture layer 10 and the negative electrode mixture layer 12 in the battery member 17 described above. And may be made of the same material.
 電池部材18における第1の電解質層7及び第2の電解質層7は、上述した第1実施形態の電池部材14における電解質層7と同様の材料で構成されていてよい。第1の電解質層7と第2の電解質層7とは、互いに同種であっても異種であってもよく、好ましくは互いに同種である。 The first electrolyte layer 7 and the second electrolyte layer 7 in the battery member 18 may be made of the same material as the electrolyte layer 7 in the battery member 14 of the first embodiment described above. The first electrolyte layer 7 and the second electrolyte layer 7 may be the same as or different from each other, and are preferably the same as each other.
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to these examples.
[実施例1]
<電解質層の作製>
 SiO粒子(平均粒径0.04μm、比表面積50m/g)40質量部、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ60質量部を混合し、その後分散媒であるN-メチル-2-ピロリドン(NMP)を添加し、混練することによりSiO粒子とコポリマの混合物を得た。また、乾燥アルゴン雰囲気下で乾燥したリチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)を電解質塩として用い、イオン液体であるN,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムビス(トリフルオロメタンスルホニル)イミド(DEME-TFSI)に、LiTFSIを1.5mol/Lの濃度で溶解させた(以下、電解質塩を溶解させたイオン液体における電解質塩濃度、電解質塩の種類及びイオン液体の種類を、「電解質塩濃度(mol/L)/電解質塩の種類/イオン液体の種類」とも表記する。)。次に、SiO粒子とコポリマの混合物と、電解質塩を溶解させたイオン液体とを混合し電解質組成物を含むスラリを調製した。このとき、SiO粒子と、電解質塩を溶解させたイオン液体との体積比は、SiO粒子:電解質塩を溶解させたイオン液体=25:75であった。得られたスラリを、ポリエチレンテレフタレート製の基材に塗布し、加熱して分散媒を揮発させることにより電解質シートを得た。得られた電解質シートにおける電解質層の厚さは、25±2μmであった。
Example 1
<Preparation of electrolyte layer>
40 parts by mass of SiO 2 particles (average particle diameter 0.04 μm, specific surface area 50 m 2 / g), 60 parts by mass of a copolymer of vinylidene fluoride and hexafluoropropylene are mixed, and then a dispersion medium N-methyl-2- Pyrrolidone (NMP) was added and kneaded to obtain a mixture of SiO 2 particles and a copolymer. In addition, lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) dried under a dry argon atmosphere is used as an electrolyte salt, and an ionic liquid N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bis is used. LiTFSI was dissolved in (trifluoromethanesulfonyl) imide (DEME-TFSI) at a concentration of 1.5 mol / L (hereinafter referred to as the concentration of electrolyte salt in the ionic liquid in which the electrolyte salt is dissolved, the type of electrolyte salt, and the ionic liquid The type is also described as "electrolyte salt concentration (mol / L) / type of electrolyte salt / type of ionic liquid". Next, a mixture of SiO 2 particles and a copolymer was mixed with an ionic liquid in which an electrolyte salt was dissolved to prepare a slurry containing an electrolyte composition. At this time, the SiO 2 particles, the volume ratio of ionic liquid obtained by dissolving an electrolyte salt, SiO 2 particles: the ionic liquid by dissolving an electrolyte salt = 25: was 75. The obtained slurry was applied to a substrate made of polyethylene terephthalate and heated to volatilize the dispersion medium to obtain an electrolyte sheet. The thickness of the electrolyte layer in the obtained electrolyte sheet was 25 ± 2 μm.
<正極(正極部材)の作製>
 層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(正極活物質)70質量部、第1の導電材としての粒子状のアセチレンブラック(導電材A、平均粒径48nm、比表面積39m/g、製品名:HS-100、デンカ株式会社製)6.3質量部、第2の導電材としての粒子状のアセチレンブラック(導電材B、平均粒径23nm、比表面積133m/g、製品名:デンカ株式会社製)0.7質量部、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ(結着剤)9質量部、電解質塩としてリチウム塩を溶解させたイオン液体(1mol/L/リチウムビス(フルオロメタンスルホニル)イミド(LiFSI)/N-メチル-N-プロピルピロリジニウムビス(フルオロスルホニル)イミド(Py13-FSI))14質量部を混合した。次に、分散媒であるNMPを添加し、混練することによりスラリ状の正極合剤を調製した。この正極合剤を正極集電体(厚さ20μmのアルミニウム箔)上に塗工量160g/mで塗工し、80℃で加熱して分散媒を揮発させ、プレスにより合剤密度2.60g/cmまで圧密化し、正極合剤層を形成した。これを13.5cmの角型に打ち抜き、正極とした。この正極において、第2の導電材の含有量は、第1の導電材の含有量と第2の導電材の含有量との合計100質量部に対して、10質量部である。第1の導電材の含有量と第2の導電材の含有量の合計は、正極活物質の含有量と第1の導電材の含有量と第2の導電材の含有量との合計100質量部に対して、9.1質量部である。
<Production of positive electrode (positive electrode member)>
70 parts by mass of layered lithium-nickel-manganese-cobalt composite oxide (positive electrode active material), particulate acetylene black as a first conductive material (conductive material A, average particle diameter 48 nm, specific surface area 39 m 2 / g, Product name: 6.3 parts by mass of HS-100, manufactured by Denka Co., Ltd., particulate acetylene black as a second conductive material (conductive material B, average particle diameter 23 nm, specific surface area 133 m 2 / g, product name: 0.7 part by mass of Denka Co., Ltd. 9 parts by mass of copolymer (binder) of vinylidene fluoride and hexafluoropropylene, ionic liquid in which lithium salt is dissolved as electrolyte salt (1 mol / L / lithium bis (fluorocarbon) Methanesulfonyl) imide (LiFSI) / N-methyl-N-propylpyrrolidinium bis (fluorosulfonyl) imide (Py13-FSI)) 1 4 parts by mass were mixed. Next, NMP, which is a dispersion medium, was added and kneaded to prepare a slurry-like positive electrode mixture. This positive electrode mixture is coated on a positive electrode current collector (aluminum foil with a thickness of 20 μm) at a coating amount of 160 g / m 2 , heated at 80 ° C. to volatilize the dispersion medium, and pressed with a mixture density of 2. It was consolidated to 60 g / cm 3 to form a positive electrode mixture layer. This was punched into a square of 13.5 cm 2 and used as a positive electrode. In the positive electrode, the content of the second conductive material is 10 parts by mass with respect to a total of 100 parts by mass of the content of the first conductive material and the content of the second conductive material. The total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. It is 9.1 mass parts with respect to parts.
<負極の作製>
 黒鉛(負極活物質、日立化成株式会社製)76.9質量部、鱗片状黒鉛(導電材、平均粒径7μm、製品名:日本黒鉛工業株式会社製)2.06質量部、VGCF(導電材、平均繊維径150nm、製品名:VGCF-H、昭和電工株式会社製)0.52質量部、フッ化ビニリデンとヘキサフルオロプロピレンのコポリマ(結着剤)6.52質量部、電解質塩としてリチウム塩を溶解させたイオン液体(1mol/L/LiFSI/Py13-FSI)14質量部を混合した。次に、分散媒であるNMPを添加し、混練することによりスラリ状の負極合剤を調製した。この負極合剤を負極集電体(厚さ10μmの銅箔)上に塗工量70g/mで塗工し、80℃で加熱して分散媒を揮発させ、プレスにより合剤密度1.70g/cmまで圧密化し、負極合剤層を形成した。これを13.9cmの角型に打ち抜き、負極とした。
<Fabrication of negative electrode>
Graphite (negative electrode active material, manufactured by Hitachi Chemical Co., Ltd.) 76.9 parts by mass, scale-like graphite (conductive material, average particle diameter 7 μm, product name: manufactured by Nippon Graphite Industry Co., Ltd.) 2.06 parts by mass, VGCF (conductive material , Average fiber diameter 150 nm, product name: VGCF-H, 0.52 parts by mass, Showa Denko Co., Ltd. 0.52 parts by mass, copolymer of vinylidene fluoride and hexafluoropropylene (binder) 6.52 parts by mass, lithium salt as electrolyte salt Were mixed with 14 parts by mass of an ionic liquid (1 mol / L / LiFSI / Py13-FSI) in which Next, NMP, which is a dispersion medium, was added and kneaded to prepare a slurry-like negative electrode mixture. This negative electrode mixture is coated on a negative electrode current collector (copper foil with a thickness of 10 μm) at a coating amount of 70 g / m 2 , heated at 80 ° C. to volatilize the dispersion medium, and pressed with the mixture density 1. It was consolidated to 70 g / cm 3 to form a negative electrode mixture layer. This was punched into a square of 13.9 cm 2 and used as a negative electrode.
<二次電池の作製>
 上記で作製した正極と、電解質層と、負極とをこの順に重ね合わせた電極群を作製した。この電極群をアルミニウム製のラミネート容器(製品名:アルミラミネートフィルム、大日本印刷株式会社製)に入れ、ラミネート容器を熱溶着させて、評価用の二次電池を作製した。
<Fabrication of secondary battery>
An electrode group was manufactured by overlapping the positive electrode manufactured above, the electrolyte layer, and the negative electrode in this order. This electrode group was placed in an aluminum laminate container (product name: aluminum laminate film, manufactured by Dainippon Printing Co., Ltd.), and the laminate container was thermally welded to prepare a secondary battery for evaluation.
[実施例2]
 正極合剤層において、導電材Aを5.6質量部、導電材Bを1.4質量部使用した以外は、実施例1と同様の方法により二次電池を作製した。この正極において、第2の導電材の含有量は、第1の導電材の含有量と第2の導電材の含有量との合計100質量部に対して、20質量部である。第1の導電材の含有量と第2の導電材の含有量の合計は、正極活物質の含有量と第1の導電材の含有量と第2の導電材の含有量との合計100質量部に対して、9.1質量部である。
Example 2
A secondary battery was produced in the same manner as in Example 1, except that in the positive electrode mixture layer, 5.6 parts by mass of the conductive material A and 1.4 parts by mass of the conductive material B were used. In the positive electrode, the content of the second conductive material is 20 parts by mass with respect to a total of 100 parts by mass of the content of the first conductive material and the content of the second conductive material. The total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. It is 9.1 mass parts with respect to parts.
[実施例3]
 正極合剤層において、第1の導電材として導電材Aを6.3質量部使用し、第2の導電材としてVGCF(導電材C、平均繊維径150nm、平均長さ10μm、製品名:VGCF-H、昭和電工株式会社製)を0.7質量部使用した以外は、実施例1と同様の方法により二次電池を作製した。この正極において、第2の導電材の含有量は、第1の導電材の含有量と第2の導電材の含有量との合計100質量部に対して、10質量部である。第1の導電材の含有量と第2の導電材の含有量の合計は、正極活物質の含有量と第1の導電材の含有量と第2の導電材の含有量との合計100質量部に対して、9.1質量部である。
[Example 3]
In the positive electrode mixture layer, 6.3 parts by mass of the conductive material A is used as the first conductive material, and VGCF (conductive material C, average fiber diameter 150 nm, average length 10 μm, product name: VGCF as the second conductive material A secondary battery was produced in the same manner as in Example 1 except that 0.7 parts by mass of -H (manufactured by Showa Denko KK) was used. In the positive electrode, the content of the second conductive material is 10 parts by mass with respect to a total of 100 parts by mass of the content of the first conductive material and the content of the second conductive material. The total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. It is 9.1 mass parts with respect to parts.
[実施例4]
 正極合剤層において、導電材Aを5.6質量部、導電材Cを1.4質量部使用した以外は、実施例3と同様の方法により二次電池を作製した。この正極において、第2の導電材の含有量は、第1の導電材の含有量と第2の導電材の含有量との合計100質量部に対して、20質量部である。第1の導電材の含有量と第2の導電材の含有量の合計は、正極活物質の含有量と第1の導電材の含有量と第2の導電材の含有量との合計100質量部に対して、9.1質量部である。
Example 4
A secondary battery was produced in the same manner as in Example 3 except that 5.6 parts by mass of the conductive material A and 1.4 parts by mass of the conductive material C were used in the positive electrode mixture layer. In the positive electrode, the content of the second conductive material is 20 parts by mass with respect to a total of 100 parts by mass of the content of the first conductive material and the content of the second conductive material. The total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. It is 9.1 mass parts with respect to parts.
[実施例5]
 正極合剤層において、導電材Aを4.2質量部、導電材Cを2.8質量部使用した以外は、実施例3と同様の方法により二次電池を作製した。この正極において、第2の導電材の含有量は、第1の導電材の含有量と第2の導電材の含有量との合計100質量部に対して、40質量部である。第1の導電材の含有量と第2の導電材の含有量の合計は、正極活物質の含有量と第1の導電材の含有量と第2の導電材の含有量との合計100質量部に対して、9.1質量部である。
[Example 5]
A secondary battery was produced in the same manner as in Example 3, except that 4.2 parts by mass of the conductive material A and 2.8 parts by mass of the conductive material C were used in the positive electrode mixture layer. In the positive electrode, the content of the second conductive material is 40 parts by mass with respect to a total of 100 parts by mass of the content of the first conductive material and the content of the second conductive material. The total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. It is 9.1 mass parts with respect to parts.
[実施例6]
 正極合剤層において、導電材Aを3.5質量部、導電材Cを3.5質量部使用した以外は、実施例3と同様の方法によりラミネート型電池を作製した。この正極において、第2の導電材の含有量は、第1の導電材の含有量と第2の導電材の含有量との合計100質量部に対して、50質量部である。第1の導電材の含有量と第2の導電材の含有量の合計は、正極活物質の含有量と第1の導電材の含有量と第2の導電材の含有量との合計100質量部に対して、9.1質量部である。
[Example 6]
A laminate type battery was produced in the same manner as in Example 3 except that 3.5 parts by mass of the conductive material A and 3.5 parts by mass of the conductive material C were used in the positive electrode mixture layer. In the positive electrode, the content of the second conductive material is 50 parts by mass with respect to a total of 100 parts by mass of the content of the first conductive material and the content of the second conductive material. The total of the content of the first conductive material and the content of the second conductive material is a total of 100 mass of the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. It is 9.1 mass parts with respect to parts.
[比較例1]
 正極合剤層において、導電材Aを7.0質量部使用し、導電材Bを使用しなかった以外は、実施例1と同様の方法により二次電池を作製した。
Comparative Example 1
In the positive electrode mixture layer, 7.0 parts by mass of the conductive material A was used, and a secondary battery was produced in the same manner as in Example 1 except that the conductive material B was not used.
[比較例2]
 正極合剤層において、正極活物質を81.4質量部、導電材Aを8.1質量部、結着剤を10.5質量部使用し、導電材B及びリチウム塩を溶解させたイオン液体を使用しなかった以外は、実施例1と同様の方法により二次電池を作製した。
Comparative Example 2
An ionic liquid in which 81.4 parts by mass of a positive electrode active material, 8.1 parts by mass of a conductive material A, and 10.5 parts by mass of a binder are used to dissolve a conductive material B and a lithium salt in a positive electrode mixture layer A secondary battery was produced in the same manner as in Example 1 except that the above was not used.
<放電特性の評価>
 得られた実施例1~6及び比較例1~2の二次電池について、25℃での放電容量を、充放電装置(東洋システム株式会社製)を用いて以下の充放電条件の下で測定した。
(1)終止電圧4.2V、0.1Cで定電流定電圧(CCCV)充電を行った後、0.1Cで終止電圧2.7Vまで定電流(CC)放電するサイクルを1サイクル行い、放電容量を求めた。なお、Cとは「電流値(A)/電池容量(Ah)」を意味する。
(2)次いで、終止電圧4.2V、0.1Cで定電流定電圧(CCCV)充電を行った後、0.5Cで終止電圧2.7Vまで定電流(CC)放電するサイクルを1サイクル行い、放電容量を求めた。
 得られた放電容量から、下記式を用いて放電特性を算出した。
放電特性=(2)で得られた放電容量/(1)で得られた放電容量
放電特性は、0.9以上1.0以下を「A」、0.8以上0.9未満を「B」、0.7未満を「C」として三段階で評価し、Aを最も良好な評価結果とした。得られた結果を表1に示す。
<Evaluation of discharge characteristics>
The discharge capacity at 25 ° C. of the obtained secondary batteries of Examples 1 to 6 and Comparative Examples 1 to 2 was measured using the charge / discharge device (made by Toyo System Co., Ltd.) under the following charge / discharge conditions: did.
(1) After performing constant current constant voltage (CCCV) charging at final voltage 4.2 V, 0.1 C, perform one cycle of discharging constant current (CC) to final voltage 2.7 V at 0.1 C, discharging I asked for the capacity. C means "current value (A) / battery capacity (Ah)".
(2) Next, one cycle of constant current constant voltage (CCCV) charging with a final voltage of 4.2 V, 0.1 C and then constant current (CC) discharging with a 0.5 C to a final voltage of 2.7 V The discharge capacity was determined.
From the obtained discharge capacity, the discharge characteristic was calculated using the following equation.
The discharge capacity discharge characteristic obtained by the discharge capacity = (2) / (1) is 0.9 or more and 1.0 or less as “A”, and 0.8 or more and less than 0.9 as “B "Less than 0.7" was evaluated in three steps as "C", and A was made the best evaluation result. The obtained results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 1…二次電池、6…正極、7…電解質層、8…負極、9…正極集電体、10…正極合剤層、11…負極集電体、12…負極合剤層、13、14、17、18…二次電池用電池部材。 DESCRIPTION OF SYMBOLS 1 ... secondary battery, 6 ... positive electrode, 7 ... electrolyte layer, 8 ... negative electrode, 9 ... positive electrode current collector, 10 ... positive electrode mixture layer, 11 ... negative electrode current collector, 12 ... negative electrode mixture layer, 13, 14 17, 18, ... Battery members for secondary batteries.

Claims (13)

  1.  集電体と、前記集電体上に設けられた正極合剤層と、を備え、
     前記正極合剤層は、
     正極活物質と、
     イオン液体と、
     リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、
     炭素を含む導電材と、を含有し、
     前記導電材は、第1の導電材と、前記第1の導電材とは異なる第2の導電材とを含む、二次電池用電池部材。
    A current collector, and a positive electrode mixture layer provided on the current collector;
    The positive electrode mixture layer is
    A positive electrode active material,
    Ionic liquid,
    At least one electrolyte salt selected from the group consisting of lithium salts, sodium salts, calcium salts, and magnesium salts;
    Containing a conductive material containing carbon;
    A battery member for a secondary battery, wherein the conductive material includes a first conductive material and a second conductive material different from the first conductive material.
  2.  前記第1の導電材及び前記第2の導電材はいずれも粒子状であり、
     前記第1の導電材の比表面積は、前記第2の導電材の比表面積よりも小さい、請求項1に記載の電池部材。
    The first conductive material and the second conductive material are both in the form of particles,
    The battery member according to claim 1, wherein a specific surface area of the first conductive material is smaller than a specific surface area of the second conductive material.
  3.  前記第1の導電材及び前記第2の導電材はいずれも粒子状であり、
     前記第2の導電材の平均粒径は、前記第1の導電材の平均粒径よりも小さい、請求項1又は2に記載の電池部材。
    The first conductive material and the second conductive material are both in the form of particles,
    The battery member according to claim 1, wherein an average particle size of the second conductive material is smaller than an average particle size of the first conductive material.
  4.  前記第2の導電材の含有量は、前記第1の導電材の含有量と前記第2の導電材との含有量との合計100質量部に対して、20質量部以下である、請求項2又は3に記載の電池部材。 The content of the second conductive material is 20 parts by mass or less with respect to a total of 100 parts by mass of the content of the first conductive material and the content of the second conductive material. The battery member as described in 2 or 3.
  5.  前記第1の導電材は粒子状であり、前記第2の導電材は繊維状である、請求項1に記載の電池部材。 The battery member according to claim 1, wherein the first conductive material is particulate, and the second conductive material is fibrous.
  6.  前記第2の導電材の含有量は、前記第1の導電材の含有量と前記第2の導電材の含有量との合計100質量部に対して、50質量部以下である、請求項5に記載の電池部材。 The content of the second conductive material is 50 parts by mass or less with respect to a total of 100 parts by mass of the content of the first conductive material and the content of the second conductive material. The battery member as described in.
  7.  前記第1の導電材の含有量と前記第2の導電材の含有量との合計は、前記正極活物質の含有量と前記第1の導電材の含有量と前記第2の導電材の含有量との合計100質量部に対して、0.5質量部以上10質量部以下である、請求項1~6のいずれか一項に記載の電池部材。 The total of the content of the first conductive material and the content of the second conductive material is the content of the positive electrode active material, the content of the first conductive material, and the content of the second conductive material. The battery member according to any one of claims 1 to 6, which is 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass in total.
  8.  前記イオン液体は、カチオン成分として、鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種を含有し、アニオン成分として、下記一般式(1)で表されるアニオン成分の少なくとも1種を含有する、請求項1~7のいずれか一項に記載の電池部材。
    N(SO2m+1)(SO2n+1    (1)
    [m及びnは、それぞれ独立に0~5の整数を表す。]
    The ionic liquid contains, as a cation component, at least one selected from the group consisting of a linear quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation, and as the anion component, The battery member according to any one of claims 1 to 7, which contains at least one anion component represented by the following general formula (1).
    N (SO 2 C m F 2m + 1) (SO 2 C n F 2n + 1) - (1)
    [M and n each independently represent an integer of 0 to 5] ]
  9.  正極と、負極と、前記正極と前記負極との間に設けられた電解質層と、を備える二次電池であって、
     前記正極は、集電体と、前記集電体上に設けられた正極合剤層と、を備え、
     前記正極合剤層は、
     正極活物質と、
     イオン液体と、
     リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、
     炭素を含む導電材と、を含有し、
     前記導電材は、第1の導電材と、前記第1の導電材とは異なる第2の導電材とを含み、
     前記電解質層は、
     1種又は2種以上のポリマと、
     酸化物粒子と、
     リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種の電解質塩と、
     イオン液体と、を含有する、二次電池。
    A secondary battery comprising a positive electrode, a negative electrode, and an electrolyte layer provided between the positive electrode and the negative electrode,
    The positive electrode includes a current collector and a positive electrode mixture layer provided on the current collector,
    The positive electrode mixture layer is
    A positive electrode active material,
    Ionic liquid,
    At least one electrolyte salt selected from the group consisting of lithium salts, sodium salts, calcium salts, and magnesium salts;
    Containing a conductive material containing carbon;
    The conductive material includes a first conductive material and a second conductive material different from the first conductive material,
    The electrolyte layer is
    One or more polymers,
    Oxide particles,
    At least one electrolyte salt selected from the group consisting of lithium salts, sodium salts, calcium salts, and magnesium salts;
    A secondary battery containing an ionic liquid.
  10.  前記1種又は2種以上のポリマは、4フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位を有する、請求項9に記載の二次電池。 The secondary battery according to claim 9, wherein the one or more polymers have a first structural unit selected from the group consisting of tetrafluoroethylene and vinylidene fluoride.
  11.  前記1種又は2種以上のポリマを構成する構造単位の中に、前記第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれる、請求項10に記載の二次電池。 The second structural unit selected from the group consisting of the first structural unit, hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate among structural units constituting the one or more polymers The secondary battery according to claim 10, comprising the structural unit of
  12.  前記酸化物粒子の平均粒径は0.005μm以上5μm以下である、請求項9~11のいずれか一項に記載の二次電池。 The secondary battery according to any one of claims 9 to 11, wherein an average particle diameter of the oxide particles is 0.005 μm or more and 5 μm or less.
  13.  前記電解質層に含まれる前記イオン液体は、カチオン成分として、鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種を含有し、
     アニオン成分として、下記一般式(1)で表されるアニオン成分の少なくとも1種を含有する、請求項9~12のいずれか一項に記載の二次電池。
    N(SO2m+1)(SO2n+1    (1)
    [m及びnは、それぞれ独立に0~5の整数を表す。]
    The ionic liquid contained in the electrolyte layer contains, as a cationic component, at least one selected from the group consisting of a linear quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation. And
    The secondary battery according to any one of claims 9 to 12, which contains at least one of anion components represented by the following general formula (1) as the anion component.
    N (SO 2 C m F 2m + 1) (SO 2 C n F 2n + 1) - (1)
    [M and n each independently represent an integer of 0 to 5] ]
PCT/JP2017/029464 2017-08-16 2017-08-16 Battery member for secondary batteries, and secondary battery WO2019035190A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/029464 WO2019035190A1 (en) 2017-08-16 2017-08-16 Battery member for secondary batteries, and secondary battery
JP2019536385A JPWO2019035190A1 (en) 2017-08-16 2017-08-16 Battery components for secondary batteries and secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029464 WO2019035190A1 (en) 2017-08-16 2017-08-16 Battery member for secondary batteries, and secondary battery

Publications (1)

Publication Number Publication Date
WO2019035190A1 true WO2019035190A1 (en) 2019-02-21

Family

ID=65361878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029464 WO2019035190A1 (en) 2017-08-16 2017-08-16 Battery member for secondary batteries, and secondary battery

Country Status (2)

Country Link
JP (1) JPWO2019035190A1 (en)
WO (1) WO2019035190A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198723A1 (en) * 2018-04-11 2019-10-17 日立化成株式会社 Method for producing battery member for secondary batteries
WO2019198715A1 (en) * 2018-04-11 2019-10-17 日立化成株式会社 Method for producing battery member for secondary batteries
CN113574699A (en) * 2019-03-14 2021-10-29 赢创运营有限公司 Method for manufacturing shaped organic charge storage unit
WO2022138085A1 (en) * 2020-12-25 2022-06-30 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery negative electrode, slurry composition for non-aqueous secondary battery negative electrode, non-aqueous secondary battery negative electrode and method for producing same, and non-aqueous secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218385A (en) * 2006-09-19 2008-09-18 Sony Corp Electrode, method for manufacturing the electrode, and battery
WO2015012375A1 (en) * 2013-07-24 2015-01-29 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using same
WO2017104178A1 (en) * 2015-12-15 2017-06-22 デンカ株式会社 Binder composition for positive electrodes, slurry for positive electrodes, positive electrode and lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218385A (en) * 2006-09-19 2008-09-18 Sony Corp Electrode, method for manufacturing the electrode, and battery
WO2015012375A1 (en) * 2013-07-24 2015-01-29 日産自動車株式会社 Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using same
WO2017104178A1 (en) * 2015-12-15 2017-06-22 デンカ株式会社 Binder composition for positive electrodes, slurry for positive electrodes, positive electrode and lithium ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198723A1 (en) * 2018-04-11 2019-10-17 日立化成株式会社 Method for producing battery member for secondary batteries
WO2019198715A1 (en) * 2018-04-11 2019-10-17 日立化成株式会社 Method for producing battery member for secondary batteries
CN113574699A (en) * 2019-03-14 2021-10-29 赢创运营有限公司 Method for manufacturing shaped organic charge storage unit
WO2022138085A1 (en) * 2020-12-25 2022-06-30 日本ゼオン株式会社 Binder composition for non-aqueous secondary battery negative electrode, slurry composition for non-aqueous secondary battery negative electrode, non-aqueous secondary battery negative electrode and method for producing same, and non-aqueous secondary battery

Also Published As

Publication number Publication date
JPWO2019035190A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP4519685B2 (en) Non-aqueous electrolyte battery
JP6562184B2 (en) Electrolyte composition, secondary battery, and method for producing electrolyte sheet
JPWO2018194159A1 (en) Electrode for electrochemical device and method for producing the same, electrochemical device, and polymer electrolyte composition
JP5737595B2 (en) Secondary battery
WO2018193628A1 (en) Polymer electrolyte composition, and polymer secondary battery
WO2019035190A1 (en) Battery member for secondary batteries, and secondary battery
WO2018193630A1 (en) Electrochemical device electrode and electrochemical device
JPWO2018221669A1 (en) Electrolyte composition and secondary battery
JPWO2018193627A1 (en) Polymer electrolyte composition and polymer secondary battery
JP2018206561A (en) Secondary battery
WO2016133144A1 (en) Lithium-ion secondary battery
WO2020004343A1 (en) Secondary battery and manufacturing method therefor
WO2018220800A1 (en) Electrolyte composition, secondary battery, and method for producing electrolyte sheet
WO2023127357A1 (en) Negative electrode for solid electrolyte battery, and solid electrolyte battery
WO2019208110A1 (en) Electrolyte slurry composition, electrolyte sheet production method, and secondary battery production method
JP6147797B2 (en) Nonaqueous electrolyte battery and battery pack
WO2018198969A1 (en) Battery member for secondary battery, secondary battery, and production methods therefor
WO2018221668A1 (en) Electrolyte composition and rechargeable battery
JP7446657B2 (en) Electrodes for secondary batteries, electrolyte layers for secondary batteries, and secondary batteries
JP6667111B2 (en) Non-aqueous electrolyte secondary battery
JP2019153545A (en) Secondary battery negative electrode and secondary battery
JP2019169444A (en) Secondary battery electrode, secondary battery, and manufacturing method thereof
JP6642781B1 (en) Electrolyte sheet and secondary battery
JP2019021538A (en) Polymer electrolyte composition and polymer secondary battery
WO2021001970A1 (en) Electrolyte sheet and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921838

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536385

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921838

Country of ref document: EP

Kind code of ref document: A1