WO2019198715A1 - Method for producing battery member for secondary batteries - Google Patents

Method for producing battery member for secondary batteries Download PDF

Info

Publication number
WO2019198715A1
WO2019198715A1 PCT/JP2019/015484 JP2019015484W WO2019198715A1 WO 2019198715 A1 WO2019198715 A1 WO 2019198715A1 JP 2019015484 W JP2019015484 W JP 2019015484W WO 2019198715 A1 WO2019198715 A1 WO 2019198715A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
electrode mixture
slurry
ionic liquid
layer
Prior art date
Application number
PCT/JP2019/015484
Other languages
French (fr)
Japanese (ja)
Inventor
由磨 五行
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2020513410A priority Critical patent/JP7438605B2/en
Publication of WO2019198715A1 publication Critical patent/WO2019198715A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a battery member for a secondary battery.
  • lithium secondary batteries have been attracting attention as power sources for electric vehicle batteries, power storage batteries, and the like because of their high energy density.
  • lithium secondary batteries as batteries for electric vehicles include zero-emission electric vehicles that are not equipped with engines, hybrid electric vehicles that are equipped with both engines and secondary batteries, and plug-in hybrids that are charged directly from the power system. It is used in electric vehicles such as electric vehicles.
  • lithium secondary batteries as power storage batteries are used in stationary power storage systems that supply power stored in advance in an emergency when the power system is shut off.
  • lithium secondary battery having a higher energy density is demanded and developed.
  • lithium secondary batteries for electric vehicles require high safety in addition to high input / output characteristics and high energy density, more advanced technology for ensuring safety is required.
  • Patent Document 1 As a method for improving the safety of a lithium secondary battery, a method of changing an electrolytic solution to a solid electrolyte is known (for example, Patent Document 1).
  • the present invention provides a method for producing a battery member for a secondary battery in which the electrode active material / electrolyte interface in the electrode mixture layer is well formed and the inter-electrode adhesion in the electrode mixture layer / electrolyte layer is excellent.
  • the purpose is to do.
  • the present invention includes a step of forming an electrode mixture intermediate layer containing an electrode active material on one surface of a current collector, and an oxide on a surface of the electrode mixture intermediate layer opposite to the current collector.
  • Providing a slurry containing particles and a polymer, and at least one of the electrode mixture intermediate layer and the slurry contains an ionic liquid and an electrolyte salt.
  • one of the electrode mixture intermediate layer and the slurry may contain an ionic liquid and an electrolyte salt.
  • the slurry may contain an ionic liquid and an electrolyte salt.
  • both the electrode mixture intermediate layer and the slurry may contain an ionic liquid and an electrolyte salt.
  • the oxide particles may have a hydrophobic surface.
  • the oxide particles having a hydrophobic surface are preferably surface-treated with a silicon-containing compound.
  • the silicon-containing compound is preferably at least one selected from the group consisting of halogen-containing alkylsilanes, alkoxysilanes, epoxy group-containing silanes, amino group-containing silanes, silazanes, and siloxanes.
  • the polymer preferably has a first structural unit selected from the group consisting of ethylene tetrafluoride and vinylidene fluoride.
  • first structural unit preferably, there are a first structural unit and a second structural unit selected from the group consisting of hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate. included.
  • the concentration of the electrolyte salt per unit volume of the ionic liquid is preferably 1.0 to 2.5 mol / L.
  • the production method of the present invention further includes a step of infiltrating a solution containing a polymer having a structural unit represented by the following formula (1) into the electrode mixture intermediate layer before the step of applying the electrolyte slurry. May be.
  • X ⁇ represents a counter anion.
  • a method for producing a battery member for a secondary battery in which an electrode active material / electrolyte interface in an electrode mixture layer is satisfactorily formed and the adhesion between layers in the electrode mixture layer / electrolyte layer is excellent. Can be provided.
  • FIG. 10 is a SEM image obtained by observing a cross section of a battery member for a secondary battery according to Example 8.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value described in another stepwise description.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
  • FIG. 1 is a perspective view showing a secondary battery according to an embodiment.
  • the secondary battery 1 includes an electrode group 2 composed of a positive electrode, a negative electrode, and an electrolyte layer, and a bag-shaped battery outer package 3 that houses the electrode group 2.
  • a positive electrode current collecting tab 4 and a negative electrode current collecting tab 5 are provided on the positive electrode and the negative electrode, respectively.
  • the positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 protrude from the inside of the battery outer package 3 to the outside so that the positive electrode and the negative electrode can be electrically connected to the outside of the secondary battery 1, respectively.
  • the battery outer package 3 may be formed of, for example, a laminate film.
  • the laminate film may be a laminate film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
  • PET polyethylene terephthalate
  • metal foil such as aluminum, copper, and stainless steel
  • sealant layer such as polypropylene
  • FIG. 2 is an exploded perspective view showing an embodiment of the electrode group 2 of the secondary battery 1 shown in FIG.
  • the electrode group 2A includes a positive electrode 6, an electrolyte layer 7, and a negative electrode 8 in this order.
  • the positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9.
  • a positive electrode current collector tab 4 is provided on the positive electrode current collector 9 of the positive electrode 6.
  • the negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11.
  • a negative electrode current collector tab 5 is provided on the negative electrode current collector 11 of the negative electrode 8.
  • the electrode group 2A includes a first secondary battery battery member (positive electrode member) including the positive electrode current collector 9, the positive electrode mixture layer 10, and the electrolyte layer 7 in this order. You can see that.
  • the electrode group 2A includes a second secondary battery battery member (negative electrode member) including the negative electrode current collector 11, the negative electrode mixture layer 12, and the electrolyte layer 7 in this order. You can also see it.
  • the method for producing a battery member for a secondary battery (hereinafter sometimes simply referred to as “battery member”) according to each embodiment of the present invention is a method for producing the positive electrode member or the negative electrode member.
  • FIG. 3 is a schematic cross-sectional view showing a method for manufacturing a battery member for a secondary battery according to the first embodiment.
  • an electrode active material is contained on one surface (main surface) 13a of the current collector 13 (positive electrode current collector 9 or negative electrode current collector 11).
  • Electrode mixture intermediate layer 14A (positive electrode mixture intermediate layer or negative electrode mixture intermediate layer) is formed (electrode mixture intermediate layer forming step).
  • the method of forming the electrode mixture intermediate layer 14A on the one surface 13a of the current collector 13 is as follows.
  • the electrode mixture slurry is applied on the one surface 13a of the current collector 13. It is a method to do.
  • the electrode mixture slurry is a slurry (positive electrode mixture slurry or negative electrode mixture slurry) in which the material contained in the positive electrode mixture layer 10 or the negative electrode mixture layer 12 is dispersed in a dispersion medium.
  • the electrode mixture slurry of this embodiment contains at least an electrode active material (positive electrode active material or negative electrode active material) and a dispersion medium.
  • the current collector 13 is the positive electrode current collector 9.
  • the positive electrode current collector 9 may be a metal such as aluminum, titanium, or tantalum, or an alloy thereof. Since the positive electrode current collector 9 is light and has a high weight energy density, it is preferably aluminum or an alloy thereof.
  • the thickness of the positive electrode current collector 9 may be 10 ⁇ m or more and may be 100 ⁇ m or less.
  • the current collector 13 is the negative electrode current collector 11.
  • the negative electrode current collector 11 may be a metal such as aluminum, copper, nickel, stainless steel, or an alloy thereof.
  • the negative electrode current collector 11 is preferably aluminum or an alloy thereof because it is lightweight and has a high weight energy density.
  • the negative electrode current collector 11 is preferably copper from the viewpoint of ease of processing into a thin film and cost.
  • the thickness of the negative electrode current collector 11 may be 10 ⁇ m or more, and may be 100 ⁇ m or less.
  • the electrode active material is a positive electrode active material.
  • the positive electrode active material may be a lithium transition metal compound such as a lithium transition metal oxide or a lithium transition metal phosphate.
  • the lithium transition metal oxide may be, for example, lithium manganate, lithium nickelate, lithium cobaltate, or the like.
  • Lithium transition metal oxide is a part of transition metals such as Mn, Ni, Co, etc. contained in lithium manganate, lithium nickelate, lithium cobaltate, etc., one or more other transition metals, or A lithium transition metal oxide substituted with a metal element (typical element) such as Mg or Al may also be used. That is, the lithium transition metal oxide may be a compound represented by LiM 1 O 2 or LiM 1 O 4 (M 1 includes at least one transition metal).
  • lithium transition metal oxides are Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 , LiNi 1/2 Mn 1/2 O 2 , LiNi 1/2 Mn 3/2 O. It may be 4 mag.
  • the lithium transition metal oxide is preferably a compound represented by the following formula (2).
  • M 2 is at least one Al
  • Mn selected from the group consisting of Mg and Ca
  • Lithium transition metal phosphates are LiFePO 4 , LiMnPO 4 , LiMn x M 3 1-x PO 4 (0.3 ⁇ x ⁇ 1, M 3 is Fe, Ni, Co, Ti, Cu, Zn, Mg and Zr) Or at least one element selected from the group consisting of:
  • the positive electrode active material may be primary particles that are not granulated, or may be secondary particles that are granulated.
  • the particle diameter of the positive electrode active material is adjusted to be equal to or less than the thickness of the positive electrode mixture layer 10.
  • the coarse particles are removed in advance by sieving classification, wind classification, etc.
  • a positive electrode active material having a diameter is selected.
  • the average particle diameter of the positive electrode active material is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more.
  • the average particle diameter of the positive electrode active material is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less.
  • the average particle diameter of the positive electrode active material is the particle diameter (D 50 ) when the ratio (volume fraction) to the volume of the entire positive electrode active material is 50%.
  • the average particle diameter (D 50 ) of the positive electrode active material is measured by suspending the positive electrode active material in water by a laser scattering method using a laser scattering particle size measuring device (for example, Microtrack). Can be obtained.
  • the content of the positive electrode active material is 70% by mass or more, 80% by mass or more, or 90% by mass or more based on the total amount of nonvolatile components in the positive electrode mixture slurry (a component obtained by removing the dispersion medium from the positive electrode mixture slurry) It may be 99% by mass or less. Thereby, content of the positive electrode active material in the positive electrode mixture layer obtained becomes content similar to content mentioned above.
  • the electrode active material is a negative electrode active material.
  • the negative electrode active material those commonly used in the field of energy devices can be used.
  • Specific examples of the negative electrode active material include metal lithium, lithium titanate (Li 4 Ti 5 O 12 ), a lithium alloy or other metal compound, a carbon material, a metal complex, and an organic polymer compound. .
  • the negative electrode active material may be one of these alone or a mixture of two or more.
  • Carbon materials include natural graphite (flaky graphite, etc.), graphite such as artificial graphite, amorphous carbon, carbon fiber, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal Examples thereof include carbon black such as black.
  • the negative electrode active material may be silicon, tin, or a compound containing these elements (oxide, nitride, alloy with other metals). Good.
  • the average particle diameter (D 50 ) of the negative electrode active material is preferably 1 ⁇ m or more from the viewpoint of obtaining a well-balanced negative electrode that suppresses an increase in irreversible capacity due to a decrease in particle diameter and has improved electrolyte salt retention ability. More preferably, it is 5 ⁇ m or more, more preferably 10 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, and further preferably 30 ⁇ m or less.
  • the average particle diameter (D 50 ) of the negative electrode active material is measured by the same method as the average particle diameter (D 50 ) of the positive electrode active material described above.
  • the content of the negative electrode active material is 60% by mass or more, 65% by mass or more, or 70% by mass or more based on the total amount of nonvolatile components in the negative electrode mixture slurry (a component obtained by removing the dispersion medium from the negative electrode mixture slurry). It may be 99 mass% or less, 95 mass% or less, or 90 mass% or less. Thereby, content of the negative electrode active material in the obtained negative mix layer becomes content similar to content mentioned above.
  • the dispersion medium may be water or an organic solvent.
  • the organic solvent may be N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide, methyl ethyl ketone, toluene, 2-butanol, cyclohexanone, ethyl acetate, 2-propanol, and preferably NMP.
  • NMP N-methyl-2-pyrrolidone
  • the content of the dispersion medium in the electrode mixture slurry is, for example, 20 parts by mass or more with respect to 100 parts by mass of the nonvolatile content in the electrode mixture slurry (component obtained by removing the dispersion medium from the electrode mixture slurry). It may be 1000 parts by mass or less.
  • the electrode mixture slurry may further contain an ionic liquid, an electrolyte salt, a conductive agent, a binder and the like as other components.
  • an electrode mixture intermediate layer 14A further containing these materials is formed.
  • the electrode mixture slurry contains an ionic liquid and an electrolyte salt.
  • the electrode mixture slurry may contain an ionic liquid and an electrolyte salt as an “ionic liquid electrolytic solution” in which the electrolyte salt is dissolved in the ionic liquid.
  • the electrode mixture slurry may not contain an ionic liquid and an electrolyte salt.
  • a slurry (electrolyte slurry) described later contains an ionic liquid and an electrolyte salt. That is, at least one of the electrode mixture slurry and the electrolyte slurry contains an ionic liquid and an electrolyte salt.
  • the electrode mixture slurry preferably does not contain an ionic liquid and an electrolyte salt.
  • the ionic liquid contains the following anion component and cation component. Note that the ionic liquid in this specification is a liquid substance at ⁇ 20 ° C. or higher.
  • the anion component of the ionic liquid is not particularly limited, but is an anion of a halogen such as Cl ⁇ , Br ⁇ and I ⁇ , an inorganic anion such as BF 4 ⁇ and N (SO 2 F) 2 — , B (C 6 H 5 ) 4 ⁇ , CH 3 SO 2 O ⁇ , CF 3 SO 2 O ⁇ , N (SO 2 C 4 F 9 ) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , N (SO 2 C 2 F 5 ) 2 ⁇ Or an organic anion.
  • the anionic component of the ionic liquid preferably contains at least one anionic component represented by the following formula (3).
  • Examples of the anion component represented by the formula (3) include N (SO 2 C 4 F 9 ) 2 ⁇ , N (SO 2 F) 2 ⁇ , N (SO 2 CF 3 ) 2 —, and N (SO 2 C 2 F 5 ) 2 — .
  • the anionic component of the ionic liquid is more preferably N (SO 2 C 4 F 9 ) 2 ⁇ , CF 3 SO from the viewpoint of further improving the ionic conductivity with a relatively low viscosity and further improving the charge / discharge characteristics.
  • the cation component of the ionic liquid is preferably at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation.
  • the chain quaternary onium cation is, for example, a compound represented by the following formula (4).
  • R 1 to R 4 each independently represents a chain alkyl group having 1 to 20 carbon atoms, or a chain alkoxyalkyl group represented by R—O— (CH 2 ) n — (R represents a methyl group or an ethyl group, and n represents an integer of 1 to 4), and X represents a nitrogen atom or a phosphorus atom.
  • the number of carbon atoms of the alkyl group represented by R 1 to R 4 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
  • the piperidinium cation is, for example, a nitrogen-containing six-membered cyclic compound represented by the following formula (5).
  • R 5 and R 6 are each independently an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl And n represents an integer of 1 to 4.
  • the number of carbon atoms of the alkyl group represented by R 5 and R 6 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the pyrrolidinium cation is, for example, a five-membered cyclic compound represented by the following formula (6).
  • R 7 and R 8 are each independently an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl And n represents an integer of 1 to 4.
  • the carbon number of the alkyl group represented by R 7 and R 8 is preferably 1-20, more preferably 1-10, and still more preferably 1-5.
  • the pyridinium cation is, for example, a compound represented by the following formula (7).
  • R 9 to R 13 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R represents a methyl group) Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom.
  • the number of carbon atoms of the alkyl group represented by R 9 to R 13 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the imidazolium cation is, for example, a compound represented by the following formula (8).
  • R 14 to R 18 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is a methyl group) Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom.
  • the number of carbon atoms of the alkyl group represented by R 14 to R 18 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • the electrolyte salt may be at least one selected from the group consisting of a lithium salt, a sodium salt, a calcium salt, and a magnesium salt.
  • the anion component of the electrolyte salt includes halide ions (I ⁇ , Cl ⁇ , Br ⁇ etc.), SCN ⁇ , BF 4 ⁇ , BF 3 (CF 3 ) ⁇ , BF 3 (C 2 F 5 ) ⁇ , PF 6 ⁇ .
  • the anion component of the electrolyte salt is preferably an anion component represented by the above formula (3) such as N (SO 2 F) 2 ⁇ , N (SO 2 CF 3 ) 2 — , PF 6 ⁇ , BF 4 ⁇ . , B (O 2 C 2 O 2 ) 2 ⁇ , or ClO 4 — .
  • Lithium salts include LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f 3 C], Li [BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiCF 3 SO 2 O, LiCF 3 COO, and LiRCOO (R is an alkyl group having 1 to 4 carbon atoms) , A phenyl group, or a naphthyl group).
  • Sodium salts include NaPF 6 , NaBF 4 , Na [FSI], Na [TFSI], Na [f 3 C], Na [BOB], NaClO 4 , NaBF 3 (CF 3 ), NaBF 3 (C 2 F 5 ), NaBF 3 (C 3 F 7 ), NaBF 3 (C 4 F 9 ), NaC (SO 2 CF 3 ) 3 , NaCF 3 SO 2 O, NaCF 3 COO, and NaRCOO (R is an alkyl group having 1 to 4 carbon atoms) , A phenyl group, or a naphthyl group).
  • the calcium salts are Ca (PF 6 ) 2 , Ca (BF 4 ) 2 , Ca [FSI] 2 , Ca [TFSI] 2 , Ca [f3C] 2 , Ca [BOB] 2 , Ca (ClO 4 ) 2 , Ca [BF 3 (CF 3 )] 2 , Ca [BF 3 (C 2 F 5 )] 2 , Ca [BF 3 (C 3 F 7 )] 2 , Ca [BF 3 (C 4 F 9 )] 2 , Ca [C (SO 2 CF 3 ) 3 ] 2 , Ca (CF 3 SO 2 O) 2 , Ca (CF 3 COO) 2 , and Ca (RCOO) 2 (R is an alkyl group having 1 to 4 carbon atoms, phenyl Or at least one selected from the group consisting of a naphthyl group).
  • Magnesium salts are Mg (PF 6 ) 2 , Mg (BF 4 ) 2 , Mg [FSI] 2 , Mg [TFSI] 2 , Mg [f 3 C] 2 , Mg [BOB] 2 , Mg (ClO 4 ) 2 , Mg [BF 3 (CF 3 )] 2 , Mg [BF 3 (C 2 F 5 )] 2 , Mg [BF 3 (C 3 F 7 )] 2 , Mg [BF 3 (C 4 F 9 )] 2 , Mg [C (SO 2 CF 3 ) 3 ] 2 , Mg (CF 3 SO 3 ) 2 , Mg (CF 3 COO) 2 , and Mg (RCOO) 2 (R is an alkyl group having 1 to 4 carbon atoms, a phenyl group Or a naphthyl group) may be at least one selected from the group consisting of:
  • the electrolyte salt is preferably LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f 3 C], Li [BOB], LiClO 4.
  • LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiCF 3 SO 2 O It is at least one selected from the group consisting of LiCF 3 COO and LiRCOO (where R is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group), more preferably Li [TFSI], Li [FSI], LiPF 6, LiBF 4, Li [BOB], and at least one selected from the group consisting of LiClO 4, more preferably Li [TF I], and is one selected from the group consisting of Li [FSI].
  • the salt concentration of the electrolyte salt per unit volume of the ionic liquid in the ionic liquid electrolyte is 0.3 mol / L or more, 0. It may be 5 mol / L or more, or 1.0 mol / L or more, and may be 3.0 mol / L or less, 2.7 mol / L or less, or 2.5 mol / L or less.
  • the content of the ionic liquid electrolyte (the total of the contents of the ionic liquid and the electrolyte salt) is determined from the viewpoint of improving the ionic conductivity of the electrode mixture layer. It is preferably 3% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more, based on the total amount of nonvolatile content in the mixture slurry, and the strength of the electrode mixture layer From the viewpoint of increasing, it is preferably 30% by mass or less, more preferably 25% by mass or less, and still more preferably 20% by mass or less.
  • the conductive agent is not particularly limited, and may be a carbon material such as graphite, acetylene black, carbon black, or carbon fiber.
  • the conductive agent may be a mixture of two or more carbon materials described above.
  • the content of the conductive agent may be 1 to 70% by mass based on the total nonvolatile content in the electrode mixture slurry. Thereby, content of the electrically conductive agent in the electrode mixture layer obtained becomes content similar to content mentioned above.
  • the binder is not particularly limited, but contains as a monomer unit at least one selected from the group consisting of ethylene tetrafluoride, vinylidene fluoride, hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate. It may be a polymer, rubber such as styrene-butadiene rubber, isoprene rubber or acrylic rubber.
  • the binder is preferably a copolymer containing hexafluoropropylene and vinylidene fluoride as structural units.
  • the content of the binder may be 1 to 70% by mass based on the total nonvolatile content in the electrode mixture slurry. Thereby, content of the binder in the obtained electrode mixture layer becomes content similar to content mentioned above.
  • examples of the method of applying the electrode mixture slurry include a method of applying using an applicator and a method of applying by spraying. By these methods, an electrode mixture slurry is applied onto one surface 13a of the current collector 13. As a result, as shown in FIG. 3A, an electrode mixture intermediate layer 14 ⁇ / b> A is formed on one surface 13 a of the current collector 13.
  • the dispersion medium in the slurry may be volatilized. That is, the “electrode mixture intermediate layer” in this specification includes a layer formed of an electrode mixture slurry and a layer formed by volatilization of a part or all of the dispersion medium from the electrode mixture slurry. It is.
  • the method of volatilizing the dispersion medium may be, for example, a method of drying by heating, a method of reducing pressure, a method of combining reduced pressure and heating, or the like. In the method of reducing the pressure, the pressure may be reduced to a vacuum state.
  • the drying temperature may be 50 to 150 ° C., and the heating time may be changed depending on the temperature as long as the dispersion medium is sufficiently volatilized, but is, for example, 1 minute to 48 hours.
  • a slurry 15A containing a dispersion medium is applied.
  • this slurry is also referred to as “electrolyte slurry”
  • the step of applying the electrolyte slurry 15A is also referred to as “electrolyte slurry application step”.
  • the oxide particles 16 are, for example, inorganic oxide particles.
  • the inorganic oxide is an inorganic oxide containing, for example, Li, Mg, Al, Si, Ca, Ti, Zr, La, Na, K, Ba, Sr, V, Nb, B, Ge and the like as constituent elements. Good.
  • the oxide particles 16 are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTiO 3. Particles. Since the oxide particles 16 have polarity, it is possible to promote dissociation of the electrolyte in the electrolyte layer and improve battery characteristics.
  • the oxide particles 16 may be rare earth metal oxides. Specifically, the oxide particles 16 are scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, eurobium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, It may be thulium oxide, ytterbium oxide, lutetium oxide or the like.
  • the oxide particles 16 may have a hydrophobic surface.
  • the oxide particles usually have a hydroxyl group on the surface and tend to be hydrophilic.
  • the oxide particles having a hydrophobic surface have fewer hydroxyl groups on the surface than the oxide particles having no hydrophobic surface. Therefore, when oxide particles having a hydrophobic surface are used, the electrolyte slurry contains an ionic liquid (for example, the anion component has N (SO 2 F) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , etc. Since the ionic liquid) and the ionic liquid are hydrophobic, it is expected that the affinity between the oxide particles and the ionic liquid is improved.
  • an ionic liquid for example, the anion component has N (SO 2 F) 2 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , etc. Since the ionic liquid) and the ionic liquid are hydrophobic, it is expected that the affinity between the oxide particles and the ionic liquid is improved.
  • the ionic liquid retention in the electrolyte layer 7 is further improved, and as a result, the ionic conductivity of the electrolyte layer 7 is improved.
  • discharge characteristics can be particularly improved.
  • the oxide particles having a hydrophobic surface can be obtained, for example, by treating hydrophilic oxide particles with a surface treatment agent capable of imparting a hydrophobic surface. That is, the oxide particles having a hydrophobic surface mean oxide particles that have been surface-treated with a surface treatment agent.
  • the surface treatment agent is preferably a silicon-containing compound.
  • the oxide particles 16 may be surface-treated with a silicon-containing compound. That is, the oxide particle 16 may be one in which the surface of the oxide particle and the silicon atom of the silicon-containing compound are bonded via an oxygen atom.
  • the silicon-containing compound is preferably at least one selected from the group consisting of halogen-containing alkylsilanes, alkoxysilanes, epoxy group-containing silanes, amino group-containing silanes, silazanes, and siloxanes.
  • the halogen element in the halogen-containing alkylsilane may be chlorine, fluorine or the like.
  • the halogen-containing alkylsilane (alkylchlorosilane) containing chlorine may be methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, n-octyldimethylchlorosilane, or the like.
  • the halogen-containing alkylsilane (fluoroalkylsilane) containing fluorine may be trifluoropropyltrimethoxysilane, tridecafluorooctyltrimethoxysilane, or the like.
  • Alkoxysilanes are methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldi It may be ethoxysilane, n-propyltriethoxysilane, or the like.
  • Epoxy group-containing silanes are 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxy. Silane, 3-glycidoxypropyltriethoxysilane and the like may be used.
  • Amino group-containing silanes are N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- Phenyl-3-aminopropyltrimethoxysilane or the like may be used.
  • Silazane may be hexamethyldisilazane or the like.
  • Siloxane may be dimethyl silicone oil or the like.
  • One or both of these terminals may have a reactive functional group (for example, a carboxyl group).
  • oxide particles having a hydrophobic surface those produced by a known method may be used, or commercially available products may be used as they are.
  • the oxide particles 16 generally include primary particles that integrally form a single particle (particles that do not constitute a secondary particle) and a plurality of primary particles, as determined from an apparent geometric form. Secondary particles formed by the aggregation of the particles may be included.
  • the specific surface area of the oxide particles 16 may be 2 to 500 m 2 / g, 2 to 400 m 2 / g, 5 to 100 m 2 / g, 10 to 80 m 2 / g, or 15 to 60 m 2 / g. May be.
  • the specific surface area is 2 to 500 m 2 / g, the secondary battery including the electrolyte layer containing such oxide particles tends to have excellent discharge characteristics.
  • the specific surface area of the oxide particles 16 may be 2 m 2 / g or more, 5 m 2 / g or more, 10 m 2 / g or more, 15 m 2 / g or more, or 50 m 2 / g or more, 500 m 2 / g or less, 400 m 2 / g or less, 350 m 2 / g or less, 300 m 2 / g or less, 200 m 2 / g or less, 100 m 2 / g or less, 90 m 2 / g or less, 80 m 2 / g or less, or 60 m 2 / g or less may be sufficient.
  • the specific surface area of the oxide particles 16 means the specific surface area of the whole oxide particles including primary particles and secondary particles, and is measured by the BET method.
  • the average primary particle size of the oxide particles 16 (average particle size of the primary particles) is preferably 0.005 ⁇ m (5 nm) or more, more preferably 0.01 ⁇ m, from the viewpoint of improving the conductivity of the secondary battery 1. (10 nm) or more, more preferably 0.015 ⁇ m (15 nm) or more. From the viewpoint of making the electrolyte layer 7 thin, the average primary particle size of the oxide particles 16 is preferably 1 ⁇ m or less, more preferably 0.1 ⁇ m or less, and even more preferably 0.05 ⁇ m or less. The average primary particle size of the oxide particles 16 can be measured by observing the oxide particles 16 with a transmission electron microscope or the like.
  • the average particle diameter of the oxide particles 16 is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, and further preferably 0.03 ⁇ m or more.
  • the average particle size of the oxide particles 16 is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and even more preferably 1 ⁇ m or less.
  • the average particle diameter of the oxide particles 16 is measured by a laser diffraction method, and corresponds to the particle diameter at which the volume accumulation is 50% when the volume accumulation particle size distribution curve is drawn from the small particle diameter side.
  • the content of the oxide particles 16 is preferably 5% by mass or more, more preferably 10% by mass or more, based on the total amount of nonvolatile components (components obtained by removing the dispersion medium from the electrolyte slurry) in the electrolyte slurry 15A. More preferably, it is 15% by mass or more, particularly preferably 20% by mass or more, preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less. is there. Thereby, content of the oxide particle 16 in the obtained electrolyte layer turns into content similar to content mentioned above.
  • Polymer 17 preferably has a first structural unit selected from the group consisting of ethylene tetrafluoride and vinylidene fluoride.
  • the polymer 17 is preferably one or more polymers, and among the structural units constituting the one or more polymers, the first structural unit, hexafluoropropylene, acrylic
  • a second structural unit selected from the group consisting of acid, maleic acid, ethyl methacrylate, and methyl methacrylate may be included. That is, the first structural unit and the second structural unit may be included in one kind of polymer to form a copolymer, and each of the first structural unit and the second structural unit may be included in another polymer and have the first structural unit. And at least two types of polymers, the second polymer having the second structural unit.
  • the polymer 17 may be polytetrafluoroethylene, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, or the like.
  • the polymer 17 is preferably a copolymer of vinylidene fluoride and hexafluoropropylene from the viewpoint of improving battery characteristics.
  • the content of the polymer 17 is preferably 3% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, based on the total nonvolatile content in the electrolyte slurry 15A. . Thereby, content of the polymer 17 in the obtained electrolyte layer turns into content similar to content mentioned above.
  • the dispersion medium in the electrolyte slurry 15A may be the same as the dispersion medium used for the electrode mixture slurry described above.
  • the content of the dispersion medium in the electrolyte slurry 15A may be, for example, 5 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the nonvolatile content in the electrolyte slurry 15A.
  • the electrolyte slurry 15A may further contain an ionic liquid and an electrolyte salt in addition to the oxide particles 16, the polymer 17, and the dispersion medium.
  • the electrolyte slurry 15A may contain an ionic liquid and an electrolyte salt as the ionic liquid electrolytic solution.
  • the electrolyte slurry 15A may not contain an ionic liquid and an electrolyte salt.
  • the electrode mixture slurry contains an ionic liquid and an electrolyte salt.
  • the ionic liquid and the electrolyte salt may be the same as the ionic liquid and the electrolyte salt contained in the electrode mixture slurry described above.
  • the ionic liquid and electrolyte salt that can be contained in the electrolyte slurry may be the same as or different from the ionic liquid and electrolyte salt contained in the electrode mixture slurry, respectively.
  • the salt concentration of the electrolyte salt per unit volume of the ionic liquid in the ionic liquid electrolyte is 0.3 mol / L or more, 0.5 mol / L L or more, 1.0 mol / L or more, 1.2 mol / L or more, or 1.5 mol / L or more, 3.0 mol / L or less, 2.7 mol / L or less, 2.5 mol / L or less, It may be 2.3 mol / L or less, or 2.0 mol / L or less.
  • the salt concentration of the electrolyte salt per unit volume of the ionic liquid is 0.3 to 3.0 mol / L, 0.3 to 2.7 mol / L, 0.3 to 2.5 mol / L, 0.3 to 2.3 mol / L, 0.3 to 2.0 mol / L, 0.5 to 3.0 mol / L, 0.5 to 2.7 mol / L, 0.5 to 2.5 mol / L, 0.5 to 2.3 mol / L, 0.5 to 2.0 mol / L, 1.0 to 3.0 mol / L, 1.0 to 2.7 mol / L, 1.0 to 2.5 mol / L, 1.0-2.3 mol / L, 1.0-2.0 mol / L, 1.2-3.0 mol / L, 1.2-2.7 mol / L, 1.2-2.5 mol / L, 1.2-2.3 mol / L, 1.2-2.0 mol / L, 1.5-3.0 mol / L, 1.5-2.7 mol / L, 1.5-2.7 mol
  • the content of the ionic liquid electrolytic solution (the total content of the ionic liquid and the electrolyte salt) is obtained from the viewpoint of obtaining a uniform dispersed state in the electrolyte slurry, and an electrode mixture From the viewpoint of satisfactorily forming the interface between the layer (the positive electrode mixture layer 10 or the negative electrode mixture layer 12) and the electrolyte layer 7, it is preferably 20% by mass or more based on the total amount of nonvolatile components in the electrolyte slurry 15A. Preferably it is 30 mass% or more, More preferably, it is 40 mass% or more.
  • the content of the ionic liquid electrolytic solution may be 90% by mass or less, 85% by mass or less, or 80% by mass or less based on the total nonvolatile content in the electrolyte slurry 15.
  • the method of applying the electrolyte slurry 15A on the one surface 14a of the electrode mixture intermediate layer 14A is the same as the method of applying the electrode mixture slurry described above on the one surface 13a of the current collector 13. Good.
  • the method of applying the electrolyte slurry 15A may be the same as or different from the method of applying the electrode mixture slurry.
  • the dispersion medium contained in the electrode mixture intermediate layer 14A and the electrolyte slurry 15A is volatilized.
  • the method for volatilizing the dispersion medium may be the same as the method for volatilizing the dispersion medium in the electrode mixture slurry described above.
  • the current collector 13, the electrode mixture layer 18A (the positive electrode mixture layer 10 or the negative electrode mixture layer) 12) and a battery member 19A (positive electrode member or negative electrode member) including the electrolyte layer 7A in this order can be obtained.
  • At least one of the electrode mixture intermediate layer 14A or the electrolyte slurry 15A contains an ionic liquid and an electrolyte salt (ionic liquid electrolytic solution). Then, when the electrolyte slurry 15A is applied onto the electrode mixture intermediate layer 14A, as shown by the arrow in FIG. 3B, the ionic liquid electrolytic solution is mixed with the dispersion medium from the electrode mixture intermediate layer 14A. It moves to 15A, moves from the electrolyte slurry 15A to the electrode mixture intermediate layer 14A, or moves between the electrode mixture intermediate layer 14A and the electrolyte slurry 15A. This movement is presumed to be based on the action of reducing the concentration difference of the ionic liquid electrolyte between the electrode mixture intermediate layer 14A and the electrolyte slurry 15A, the action of gravity, or the capillary phenomenon.
  • the electrolyte layer 7A is formed by applying the electrolyte slurry 15A on the electrode mixture intermediate layer 14A, there are fine irregularities on the surface of the electrode mixture intermediate layer 14A. Also, the electrolyte slurry 15A is arranged so as to fill and flatten the recess. As a result, in the obtained battery member 19A, a good interface is formed in which the electrode mixture layer 18A and the electrolyte layer 7A are closely adhered. In the battery member 19A, the ionic liquid electrolyte solution can move between the electrolyte slurry 15A and the electrode mixture intermediate layer 14A in the electrolyte slurry application step. The electrolyte tends to exist around the electrode active material. Therefore, in the battery member 19A, the electrode active material / electrolyte interface is well formed.
  • the electrode mixture layer 18A / electrolyte layer 7A interface is well formed and has excellent adhesion, and the electrode active material / electrolyte interface is also well formed. Therefore, the secondary battery using this battery member 19A is excellent in battery characteristics such as discharge characteristics.
  • FIG. 4 is a schematic cross-sectional view illustrating a method for manufacturing a battery member for a secondary battery according to the second embodiment.
  • an electrode mixture intermediate containing an electrode active material is provided on one surface 13a of the current collector 13 (positive electrode current collector 9 or negative electrode current collector 11).
  • the layer 14B is formed (electrode mixture intermediate layer forming step).
  • the electrode mixture intermediate layer forming step is performed by a method of applying an electrode mixture slurry onto the current collector 13 as in the first embodiment.
  • the electrode mixture slurry contains at least an electrode active material and a dispersion medium.
  • the types and contents of the electrode active material and the dispersion medium may be the same as the types and contents of the electrode active material and the dispersion medium in the first embodiment described above.
  • the electrode mixture slurry may further contain an ionic liquid, an electrolyte salt, a conductive agent, a binder and the like as other components.
  • the electrode mixture intermediate layer 14B further containing these materials is formed.
  • the electrode mixture slurry contains an ionic liquid and an electrolyte salt.
  • the electrode mixture slurry may contain an ionic liquid and an electrolyte salt as the ionic liquid electrolytic solution.
  • the electrode mixture slurry may not contain the ionic liquid and the electrolyte salt, but in that case, the slurry (electrolyte slurry) described later contains the ionic liquid. That is, at least one of the electrode mixture slurry and the electrolyte slurry contains an ionic liquid and an electrolyte salt.
  • the ionic liquid and the electrolyte salt may be the same as the ionic liquid and the electrolyte salt contained in the electrode mixture slurry in the first embodiment described above.
  • the salt concentration of the electrolyte salt per unit volume of the ionic liquid in the ionic liquid electrolyte and the content of the ionic liquid electrolyte are: It may be the same as the range in the first embodiment described above.
  • the type and content of the conductive agent and the binder may be the same as the type and content of the conductive agent and the binder in the first embodiment described above.
  • a polymer-containing solution (polymer solution) 20 is infiltrated into the electrode mixture intermediate layer 14B (polymer solution infiltration step).
  • the polymer solution 20 contains a polymer having a structural unit represented by the following formula (1), an ionic liquid, and an electrolyte salt.
  • X ⁇ represents a counter anion.
  • X ⁇ include BF 4 ⁇ (tetrafluoroborate anion), PF 6 ⁇ (hexafluorophosphate anion), [FSI] ⁇ , [TFSI] ⁇ , [f3C] ⁇ , [BOB] ⁇ , and BF.
  • X ⁇ is preferably at least one selected from the group consisting of BF 4 ⁇ , PF 6 ⁇ , [FSI] ⁇ , [TFSI] ⁇ , and [f3C] ⁇ , more preferably [TFSI] ⁇ . Or [FSI] ⁇ .
  • the viscosity average molecular weight Mv (g ⁇ mol ⁇ 1 ) of the polymer having the structural unit represented by the formula (1) is not particularly limited, but is preferably 1.0 ⁇ 10 5 or more, more preferably 3.0. ⁇ 10 5 or more.
  • the viscosity average molecular weight of the polymer is preferably 5.0 ⁇ 10 6 or less, and more preferably 1.0 ⁇ 10 6 .
  • the “viscosity average molecular weight” can be evaluated by a viscosity method which is a general measurement method. For example, from the intrinsic viscosity [ ⁇ ] measured based on JIS K 7367-3: 1999. Can be calculated.
  • the polymer having the structural unit represented by the formula (1) is preferably a polymer consisting only of the structural unit represented by the formula (1), that is, a homopolymer, from the viewpoint of ion conductivity.
  • the polymer having the structural unit represented by the formula (1) may be a polymer represented by the following formula (1A).
  • n 300 to 4000
  • Y ⁇ represents a counter anion.
  • Y ⁇ those similar to those exemplified for X ⁇ can be used.
  • N is 300 or more, preferably 400 or more, more preferably 500 or more, and may be 4000 or less, preferably 3500 or less, more preferably 3000 or less.
  • n is 300 to 4000, preferably 400 to 3500, more preferably 500 to 3000.
  • poly (diallyldimethylammonium) chloride [P (DADMA)] [Cl]
  • P (DADMA)] [Cl] poly (diallyldimethylammonium) chloride
  • a commercially available product can be used as it is.
  • Li [TFSI] is dissolved in deionized water to prepare an aqueous solution containing Li [TFSI].
  • the molar ratio of Li [TFSI] to [P (DADMA)] [Cl] (molar amount of Li [TFSI] / molar amount of [P (DADMA)] [Cl]) was 1.2 to 2.0.
  • the two aqueous solutions are mixed and stirred for 2 to 8 hours to precipitate a solid, and the obtained solid is collected by filtration.
  • the polymer having the structural unit represented by the formula (1) ([P (DADMA)] [TFSI]) can be obtained by washing the solid with deionized water and vacuum drying for 12 to 48 hours. .
  • the polymer having the structural unit represented by the formula (1) is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more, based on the total amount of the polymer solution. Moreover, it is preferably 80% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less.
  • the ionic liquid and electrolyte salt contained in the polymer solution 20 may be the same as the ionic liquid and electrolyte salt that can be used in the first embodiment described above.
  • the ionic liquid and electrolyte salt contained in the polymer solution 20 may be the same as or different from the ionic liquid and electrolyte salt contained in the electrode mixture slurry of the second embodiment.
  • the ionic liquid and the electrolyte salt may be added to the polymer solution 20 as an ionic liquid electrolytic solution.
  • the salt concentration of the electrolyte salt per unit volume of the ionic liquid may be 0.3 mol / L or more, 0.5 mol / L or more, or 1.0 mol / L or more. It may be 0.0 mol / L or less, 2.7 mol / L or less, or 2.5 mol / L or less.
  • the content of the ionic liquid electrolytic solution is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, and preferably 80% based on the total amount of the polymer solution. It is not more than mass%, more preferably not more than 75 mass%, still more preferably not more than 70 mass%.
  • the polymer solution 20 may further contain a dispersion medium.
  • the dispersion medium may be an organic solvent, such as acetone, ethyl methyl ketone, ⁇ -butyrolactone, and the like.
  • the method of infiltrating the polymer solution 20 into the electrode mixture intermediate layer 14B is a surface 14a on the opposite side of the current collector 13 of the electrode mixture intermediate layer 14B.
  • the polymer solution 20 is applied on top.
  • the application may be application by an applicator, application by spraying, or the like.
  • the polymer solution 20 applied on the electrode mixture intermediate layer 14B penetrates into the electrode mixture intermediate layer 14B as shown by the arrow in FIG. 4B, and the structural unit represented by the formula (1) is expressed.
  • An electrode mixture intermediate layer 14C containing the polymer is formed (FIG. 4C).
  • the method of allowing the polymer solution 20 to penetrate into the electrode mixture intermediate layer 14B may be a method of immersing the current collector 13 on which the electrode mixture intermediate layer 14B is formed in the polymer solution 20 as another method. Good.
  • the types and contents of the oxide particles 16, the polymer 17 and the dispersion medium contained in the electrolyte slurry 15B are the same as the types and contents of the oxide particles 16, the polymer 17 and the dispersion medium in the first embodiment described above. It may be.
  • the oxide particles 16 may have a hydrophobic surface and may be surface-treated with the above-described surface treatment agent.
  • the electrolyte slurry 15B may further contain an ionic liquid and an electrolyte salt.
  • the electrolyte slurry 15A may contain an ionic liquid and an electrolyte salt as the ionic liquid electrolytic solution.
  • the ionic liquid and the electrolyte salt may be the same as the ionic liquid and the electrolyte salt included in the electrolyte slurry in the first embodiment described above.
  • the ionic liquid and electrolyte salt contained in the electrolyte slurry 15B may be the same as or different from the ionic liquid and electrolyte salt contained in the electrode mixture slurry and polymer solution 20 of the second embodiment.
  • the electrolyte slurry 15B may not contain an ionic liquid and an electrolyte salt.
  • the salt concentration of the electrolyte salt per unit volume of the ionic liquid and the content of the ionic liquid electrolytic solution in the ionic liquid electrolytic solution are as described above. It may be the same as the range in the first embodiment.
  • the ratio of the content of the oxide particles 16 and the polymer 17, the ratio of the content of the oxide particles 16 and the ionic liquid electrolyte, and the content of the oxide particles 16, the polymer 17 and the ionic liquid electrolyte may be the same as the range of the composition ratio in the first embodiment described above.
  • the method of applying the electrolyte slurry 15B may be performed by the same method as the electrolyte slurry applying step in the first embodiment described above.
  • the method of applying the electrolyte slurry 15B may be the same as or different from the method of applying the electrode mixture slurry in the second embodiment.
  • the dispersion medium of the electrode mixture intermediate layer 14C and the electrolyte slurry 15B is volatilized.
  • the method for volatilizing the dispersion medium may be the same as the method in the first embodiment described above.
  • the current collector 13, the electrode mixture layer 18B (the positive electrode mixture layer 10 or the negative electrode mixture layer 12), and the electrolyte layer 7B are provided in this order.
  • a battery member 19B (positive electrode member or negative electrode member) for the secondary battery can be obtained.
  • At least one of the electrode mixture intermediate layer 14C or the electrolyte slurry 15B contains an ionic liquid and an electrolyte salt (ionic liquid electrolytic solution). Then, when the electrolyte slurry 15B is applied onto the electrode mixture intermediate layer 14C, the ionic liquid electrolyte moves from the electrode mixture intermediate layer 14C to the electrolyte slurry 15B together with the dispersion medium, or from the electrolyte slurry 15B to the electrode mixture 15B. It moves to the agent intermediate layer 14C or moves between the electrode mixture intermediate layer 14C and the electrolyte slurry 15B. This movement is presumed to be based on the action of reducing the concentration difference of the ionic liquid electrolyte between the electrode mixture intermediate layer 14C and the electrolyte slurry 15B, the action of gravity, or the capillary phenomenon.
  • ionic liquid electrolytic solution ionic liquid electrolytic solution
  • the electrolyte layer 7B is formed by applying the electrolyte slurry 15B on the electrode mixture intermediate layer 14C, even if fine irregularities exist on the surface of the electrode mixture intermediate layer 14C.
  • the electrolyte slurry 15B is disposed so as to fill and flatten the recess.
  • the ionic liquid electrolyte solution can move between the electrolyte slurry 15B and the electrode mixture intermediate layer 14C in the electrolyte slurry application step.
  • the electrolyte tends to exist around the electrode active material. Therefore, also in the battery member 19B, the electrode active material / electrolyte interface is satisfactorily formed.
  • the electrode mixture layer 18B / electrolyte layer 7B interface is well formed and has excellent adhesion, and the electrode active material / electrolyte interface is also well formed. Therefore, the secondary battery using the battery member 19B is excellent in battery characteristics such as discharge characteristics.
  • the polymer represented by the above formula (1) is included in the electrode mixture layer 18B.
  • the ion conductivity of the electrode mixture layer 18B can be increased, and the battery characteristics of the secondary battery using the battery member 19B can be further improved.
  • the secondary battery including the battery member manufactured according to each embodiment described above can take various modifications.
  • FIG. 5 is an exploded perspective view showing an embodiment of an electrode group of a secondary battery according to a modification.
  • the electrode group 2 ⁇ / b> B includes the bipolar electrode 21. That is, as shown in FIG. 5, the electrode group 2 ⁇ / b> B includes the positive electrode 6, the first electrolyte layer 7, the bipolar electrode 21, the second electrolyte layer 7, and the negative electrode 8 in this order.
  • the bipolar electrode 21 includes a bipolar current collector 22, a positive electrode mixture layer 10 provided on a surface (positive electrode surface) on the negative electrode 8 side of the bipolar current collector 22, and a surface on the positive electrode 6 side of the bipolar current collector 22 ( And a negative electrode mixture layer 12 provided on the negative electrode surface).
  • This bipolar secondary battery includes a first electrolyte layer 7, a positive electrode mixture layer 10, a bipolar current collector 22, a negative electrode mixture layer 12, and a second electrolyte layer 7 in this order. It can be seen that a battery battery member (bipolar electrode member) is included.
  • the battery member manufacturing method according to an embodiment of the present invention is a method of manufacturing this bipolar electrode member.
  • the method for manufacturing a bipolar electrode member includes a step of forming a positive electrode mixture intermediate layer on one surface of the bipolar current collector 22 (positive electrode mixture intermediate layer forming step), and a positive electrode mixture intermediate layer A step of applying a first electrolyte slurry on the surface opposite to the bipolar current collector 22 (first electrolyte slurry applying step), and a negative electrode mixture intermediate layer on the other surface of the bipolar current collector 22 A step of forming (a negative electrode mixture intermediate layer forming step) and a step of applying a second electrolyte slurry on the surface of the negative electrode mixture intermediate layer opposite to the bipolar current collector 22 (second electrolyte slurry applying step) And).
  • Each process may be implemented by the same material and method as each process (electrode mixture intermediate layer forming process, electrolyte slurry coating process) in each embodiment described above.
  • the compositions of the first electrolyte slurry and the second electrolyte slurry may be the same composition or different compositions, but are preferably the same composition.
  • a solution containing a polymer having the structural unit represented by the above formula (1) is infiltrated into the positive electrode mixture intermediate layer or the negative electrode mixture intermediate layer.
  • a step may be further provided.
  • the polymer solution infiltration step may be performed by the same material and method as the polymer solution infiltration step in the above-described embodiment.
  • the positive electrode mixture intermediate layer and the first electrolyte slurry dispersion medium are volatilized.
  • the dispersion medium of the negative electrode mixture intermediate layer and the second electrolyte slurry is volatilized.
  • the method for volatilizing the dispersion medium may be the same as the method in the above-described embodiment.
  • a battery member for a secondary battery comprising the first electrolyte layer 7, the positive electrode mixture layer 10, the bipolar current collector 22, the negative electrode mixture layer 12, and the second electrolyte layer 7 in this order. (Bipolar electrode member) can be obtained.
  • the interface of the positive electrode mixture layer / first electrolyte layer and the interface of the negative electrode mixture layer / second electrolyte layer are well formed and excellent in adhesion. Also, the electrode active material / electrolyte interface is well formed. Therefore, a secondary battery (bipolar secondary battery) using this battery member is excellent in battery characteristics such as discharge characteristics.
  • the battery member manufacturing method according to each of the above-described embodiments is such that, after the electrolyte layers 7A and 7B are formed, another electrolyte is formed on the electrolyte layers (first electrolyte layers) 7A and 7B. You may further provide the process of laminating
  • the first electrolyte layer plays a role in favorably forming the interface between the electrode mixture layer and the second electrolyte layer, the first electrolyte layer can also be called an interface forming layer.
  • a secondary battery using a battery member obtained by this manufacturing method includes a positive electrode current collector, a positive electrode mixture layer, a first interface forming layer, an electrolyte layer (second electrolyte layer), a second electrode group as an electrode group.
  • An interface forming layer, a negative electrode mixture layer, and a negative electrode current collector are provided in this order.
  • the electrode group includes a first battery member (positive electrode member) including a positive electrode current collector, a positive electrode mixture layer, a first interface forming layer, and an electrolyte layer in this order. You can see that.
  • the electrode group includes a second battery member (negative electrode member) including a negative electrode current collector, a negative electrode mixture layer, a second interface forming layer, and an electrolyte layer in this order. Can also be seen.
  • the manufacturing method according to the second modification is a manufacturing method of the positive electrode member and the negative electrode member.
  • the interface forming layer may have the same composition as the electrolyte layer in the battery member of each embodiment described above. That is, the manufacturing method according to this modification is a method in which the electrolyte layer is replaced with the interface forming layer in each of the above-described embodiments.
  • the battery member can be manufactured by disposing the electrolyte layer on the surface on the first interface forming layer side of the positive electrode member or on the surface of the negative electrode member on the second interface forming layer side.
  • the electrolyte layer at this time may be one in which the above-described electrolyte slurries 15A and 15B are formed in a sheet shape. That is, a base material such as a film made of a resin is prepared, and the electrolyte slurry 15A, 15B is applied on the base material, and then the dispersion medium is volatilized to prepare an electrolyte sheet. And an electrolyte layer can be obtained by peeling a base material from this electrolyte sheet.
  • the electrolyte layer in the second modification may have a composition different from that of the electrolyte layer produced from the electrolyte slurries 15A and 15B.
  • an organic polymer solid electrolyte, an inorganic solid A known electrolyte composition such as an electrolyte may be formed into a sheet shape in advance.
  • the organic polymer solid electrolyte may be polyethylene oxide or the like
  • the inorganic solid electrolyte may be Li 7 La 3 Zr 2 O 12 , Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 (LLZ— Nb), Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 , Li 1 + c + d Al c (Ti, Ge) 2-c Si d P 3-d O 12 (where 0 ⁇ c ⁇ 2 Yes, 0 ⁇ d ⁇ 3, where (Ti, Ge) means either Ti or Ge, or both Ti and Ge.), Li 10 GeP 2 S 12 , Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 or the like.
  • the positive electrode mixture layer / first interface forming layer interface and the negative electrode mixture layer / second interface forming layer interface are well formed and excellent in adhesion.
  • the electrode active material / electrolyte interface is well formed.
  • the ionic liquid electrolyte is included in the interface forming layer, ionic conduction between the interface forming layer and the electrolyte layer becomes easier.
  • the secondary battery using the battery member according to this modification can be said to have an excellent interface between the layers, the secondary battery has excellent battery characteristics.
  • This positive electrode mixture slurry was applied onto a positive electrode current collector (aluminum foil having a thickness of 20 ⁇ m) at a coating amount of 125 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed, whereby the mixture was obtained.
  • a positive electrode mixture intermediate layer having a density of 2.7 g / cm 3 was formed. This was cut into a width of 30 mm and a length of 45 mm, and then a positive electrode current collecting tab was attached.
  • An electrolyte slurry was prepared by dispersing in mass parts. The obtained electrolyte slurry was applied on the surface of the positive electrode mixture intermediate layer opposite to the positive electrode current collector, and heated at 80 ° C.
  • the positive electrode member provided with a positive electrode collector, a positive mix layer, and an electrolyte layer in this order was obtained.
  • the thickness of the electrolyte layer in the obtained positive electrode member was 15 ⁇ 2 ⁇ m.
  • This negative electrode mixture slurry was coated on a negative electrode current collector (copper foil having a thickness of 10 ⁇ m) at a coating amount of 60 g / m 2 , heated at 80 ° C. for 12 hours and dried to obtain a mixture density of 1.
  • a negative electrode mixture intermediate layer of 8 g / cm 3 was formed. This was cut into a width of 31 mm and a length of 46 mm, and then a negative electrode current collecting tab was attached.
  • the electrolyte layer was formed by applying an electrolyte slurry on the surface of the negative electrode mixture intermediate layer opposite to the negative electrode current collector and volatilizing the dispersion medium by the same method as the positive electrode member manufacturing method. Thereby, the negative electrode member provided with the negative electrode current collector, the negative electrode mixture layer, and the electrolyte layer in this order was obtained.
  • the thickness of the electrolyte layer in the obtained negative electrode member was 15 ⁇ 2 ⁇ m.
  • the produced positive electrode member and negative electrode member were laminated so that the respective electrolyte layers were in contact with each other, thereby producing an electrode group.
  • this electrode group was housed in a battery exterior body made of an aluminum laminate film.
  • the positive electrode current collection tab and the negative electrode current collection tab were taken out to seal the opening of the battery container, thereby producing a lithium ion secondary battery.
  • the aluminum laminate film is a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene, etc.).
  • PET polyethylene terephthalate
  • the designed capacity of the produced lithium ion secondary battery was 20 mAh.
  • Example 1-1 a lithium ion secondary was prepared in the same manner as in Example 1-1 except that the polymer content in the electrolyte slurry was changed to 50 parts by mass and the oxide particle content was changed to 50 parts by mass. A battery was produced.
  • Example 1-3 14 mass of ionic liquid electrolyte (1.5 M / Li [FSI] / Py13-FSI) obtained by dissolving Li [FSI] as an electrolyte salt in Py13-FSI which is an ionic liquid in the electrolyte slurry in Example 1-1
  • Li [FSI] as an electrolyte salt
  • Py13-FSI which is an ionic liquid in the electrolyte slurry in Example 1-1
  • a lithium ion secondary battery was produced in the same manner as in Example 1-1, except that further parts were added.
  • Example 1-3 was the same as Example 1-3 except that the content of the ionic liquid electrolyte (1.5 M / Li [FSI] / Py13-FSI) in the electrolyte slurry was changed to 9 parts by mass.
  • a lithium ion secondary battery was produced by the method.
  • the content of the polymer in the electrolyte slurry was 30 parts by mass
  • the content of the oxide particles was 20 parts by mass
  • the ionic liquid 1.5M / Li [FSI] / Py13-FSI
  • a lithium ion secondary battery was produced in the same manner as in Example 1-3, except that the content was changed to 50 parts by mass.
  • Example 1-6 [Production of positive electrode member] (Formation of positive electrode mixture interlayer) 92.5 parts by mass of layered lithium / nickel / manganese / cobalt composite oxide (positive electrode active material) and acetylene black (conductive agent, product name: HS-100, average particle size 48 nm, manufactured by Denka Corporation) 2.5 A positive electrode mixture slurry was prepared by dispersing 5 parts by mass of 5 parts by mass of a copolymer solution of vinylidene fluoride and hexafluoropropylene (solid content: 12% by mass) in 250 parts by mass of NMP as a dispersion medium.
  • This positive electrode mixture slurry was applied onto a positive electrode current collector (aluminum foil having a thickness of 20 ⁇ m) at a coating amount of 125 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed, whereby the mixture was obtained.
  • a positive electrode mixture intermediate layer having a density of 2.7 g / cm 3 was formed. This was cut into a width of 30 mm and a length of 45 mm, and then a positive electrode current collecting tab was attached.
  • a polymer having the structural unit represented by the formula (1) was synthesized by converting the counter anion [Cl] ⁇ of poly (diallyldimethylammonium) chloride into [TFSI] ⁇ .
  • 100 parts by mass of [P (DADMA)] [Cl] aqueous solution (20% by mass aqueous solution, manufactured by Aldrich) was diluted with 500 parts by mass of distilled water to obtain a diluted polymer solution.
  • 43 parts by mass of Li [TFSI] (manufactured by Kishida Chemical Co., Ltd.) was dissolved in 100 parts by mass of water to prepare a Li [TFSI] aqueous solution.
  • the prepared polymer solution was applied onto the positive electrode mixture intermediate layer with a gap of 150 ⁇ m by the doctor blade method. Thereafter, the polymer solution was vacuum-dried at 60 ° C. for 12 hours. Thereby, the polymer represented by Formula (1) was contained in the positive electrode mixture intermediate layer.
  • Example 1-1 An electrolyte slurry having the same composition as in Example 1-1 was prepared, and a positive electrode member including a positive electrode current collector, a positive electrode mixture layer, and an electrolyte layer in this order was prepared by the same method as in Example 1-1. Obtained.
  • This negative electrode mixture slurry was coated on a negative electrode current collector (copper foil having a thickness of 10 ⁇ m) at a coating amount of 60 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed to form a mixture.
  • a negative electrode mixture intermediate layer having a density of 1.8 g / cm 3 was formed. This was cut into a width of 31 mm and a length of 46 mm, and then a negative electrode current collecting tab was attached.
  • Example 1-7 A lithium ion secondary battery was produced in the same manner as in Example 1-6 except that in Example 1-6, the ionic liquid contained in the polymer solution was changed to EMI-FSI.
  • Example 1-8> [Production of positive electrode member] 92.5 parts by mass of layered lithium / nickel / manganese / cobalt composite oxide (positive electrode active material) and acetylene black (conductive agent, product name: HS-100, average particle size 48 nm, manufactured by Denka Corporation) 2.5 A positive electrode mixture slurry was prepared by dispersing 5 parts by mass of 5 parts by mass of a copolymer solution of vinylidene fluoride and hexafluoropropylene (solid content: 12% by mass) in 250 parts by mass of NMP as a dispersion medium.
  • This positive electrode mixture slurry was applied onto a positive electrode current collector (aluminum foil having a thickness of 20 ⁇ m) at a coating amount of 125 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed, whereby the mixture was obtained.
  • a positive electrode mixture intermediate layer having a density of 2.7 g / cm 3 was formed. This was cut into a width of 30 mm and a length of 45 mm, and then a positive electrode current collecting tab was attached.
  • An electrolyte slurry was prepared by dispersing 50 parts by mass in 300 parts by mass of NMP as a dispersion medium.
  • the obtained electrolyte slurry was applied on the surface of the positive electrode mixture intermediate layer opposite to the positive electrode current collector, and heated at 80 ° C. for 12 hours to volatilize the dispersion medium to form an electrolyte layer.
  • the positive electrode member provided with a positive electrode collector, a positive mix layer, and an electrolyte layer in this order was obtained.
  • the thickness of the electrolyte layer in the obtained positive electrode member was 15 ⁇ 2 ⁇ m.
  • This negative electrode mixture slurry was coated on a negative electrode current collector (copper foil having a thickness of 10 ⁇ m) at a coating amount of 60 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed to form a mixture.
  • a negative electrode mixture intermediate layer having a density of 1.8 g / cm 3 was formed. This was cut into a width of 31 mm and a length of 46 mm, and then a negative electrode current collecting tab was attached.
  • the electrolyte layer was formed by applying an electrolyte slurry on the surface of the negative electrode mixture intermediate layer opposite to the negative electrode current collector and volatilizing the dispersion medium by the same method as the positive electrode member manufacturing method. Thereby, the negative electrode member provided with the negative electrode current collector, the negative electrode mixture layer, and the electrolyte layer in this order was obtained.
  • the thickness of the electrolyte layer in the obtained negative electrode member was 15 ⁇ 2 ⁇ m.
  • Example 1-9 A lithium ion secondary battery was fabricated in the same manner as in Example 1-8, except that the electrolyte slurry ionic liquid electrolyte was changed to 1.5 M / Li [FSI] / EMI-FSI in Example 1-8. did.
  • FIG. 6 shows an SEM image obtained by observing a cross section of the battery member according to Example 1-8.
  • 6A shows a cross section of the positive electrode member
  • FIG. 6B shows a cross section of the negative electrode member.
  • Example 1-8 As a result, as shown in FIG. 6, in the lithium ion secondary battery of Example 1-8, there was no part where the electrode mixture layer and the electrolyte layer were separated, and the electrode mixture layer and the electrolyte layer It was judged that the adhesion between the two was good. Moreover, since no void was found around the electrode active material, it was determined that the interface between the electrode active material and the electrolyte was well formed. Also in Examples 1-1 to 1-7 and Example 1-9, the cross section is similarly observed, whereby the adhesion between the electrode mixture layer and the electrolyte layer is good, and the electrode It was confirmed that the interface between the active material and the electrolyte was well formed.
  • Example 2-1> [Production of positive electrode member] 92.5 parts by mass of layered lithium / nickel / manganese / cobalt composite oxide (positive electrode active material) and acetylene black (conductive agent, product name: HS-100, average particle size 48 nm, manufactured by Denka Corporation) 2.5 A positive electrode mixture prepared by dispersing 5 parts by mass of a copolymer part (solid content: 12% by mass) of vinylidene fluoride and hexafluoropropylene in an appropriate amount of N-methyl-2-pyrrolidone (NMP) as a dispersion medium. A slurry was prepared.
  • NMP N-methyl-2-pyrrolidone
  • This positive electrode mixture slurry was applied onto a positive electrode current collector (aluminum foil having a thickness of 20 ⁇ m) at a coating amount of 125 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed, whereby the mixture was obtained.
  • a positive electrode mixture intermediate layer having a density of 2.7 g / cm 3 was formed. This was cut into a width of 30 mm and a length of 45 mm, and then a positive electrode current collecting tab was attached.
  • the positive electrode member provided with a positive electrode collector, a positive mix layer, and an electrolyte layer in this order was obtained.
  • the thickness of the electrolyte layer in the obtained positive electrode member was 15 ⁇ 2 ⁇ m.
  • This negative electrode mixture slurry was coated on a current collector (copper foil having a thickness of 10 ⁇ m) at a coating amount of 60 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed to obtain a mixture density.
  • a negative electrode mixture intermediate layer of 1.8 g / cm 3 was formed. This was cut into a width of 31 mm and a length of 46 mm, and then a negative electrode current collecting tab was attached.
  • the dispersion medium is volatilized to form an electrolyte layer by the same method as the positive electrode member manufacturing method. It was. Thereby, the negative electrode member provided with the negative electrode current collector, the negative electrode mixture layer, and the electrolyte layer in this order was obtained.
  • the thickness of the electrolyte layer in the obtained negative electrode member was 15 ⁇ 2 ⁇ m.
  • the produced positive electrode member and negative electrode member were laminated so that the respective electrolyte layers were in contact with each other, thereby producing an electrode group.
  • this electrode group was housed in a battery exterior body made of an aluminum laminate film.
  • the positive electrode current collection tab and the negative electrode current collection tab were taken out to seal the opening of the battery container, thereby producing a lithium ion secondary battery.
  • the aluminum laminate film is a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene, etc.).
  • PET polyethylene terephthalate
  • the designed capacity of the produced lithium ion secondary battery was 20 mAh.
  • Example 2-2 to Example 2-3> A lithium ion secondary battery was produced in the same manner as in Example 2-1, except that the electrolyte salt concentration was changed to that shown in Table 1 in the preparation of the electrolyte slurry.
  • Example 2-4 In the preparation of the electrolyte slurry, lithium ion secondary was prepared in the same manner as in Example 2-1, except that PVDF-HFP was changed to 15 parts by mass, SiO 2 particles to 29 parts by mass, and ionic liquid electrolyte to 56 parts by mass. A battery was produced.
  • Example 2 except that the oxide particles were changed to non-surface-treated SiO 2 particles (specific surface area: 50 m 2 / g, average primary particle size: 40 nm, product name: AEROSIL OX50, manufactured by Nippon Aerosil Co., Ltd.) A lithium ion secondary battery was produced in the same manner as in -1.
  • the adhesion between the electrode mixture layer and the electrolyte layer was confirmed by the same method as in Test 1. In the lithium ion secondary battery, it was confirmed that the adhesion between the electrode mixture layer and the electrolyte layer was good and that the interface between the electrode active material and the electrolyte was well formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a method for producing a battery member for secondary batteries, which comprises: a step for forming an electrode mixture intermediate layer, which contains an electrode active material, on one surface of a collector; and a step for applying a slurry, which contains oxide particles and a polymer, to a surface of the electrode mixture intermediate layer, said surface being on the reverse side of the collector-side surface. At least one of the electrode mixture intermediate layer and the slurry contains an ionic liquid and an electrolyte salt.

Description

二次電池用電池部材の製造方法Manufacturing method of battery member for secondary battery
 本発明は、二次電池用電池部材の製造方法に関する。 The present invention relates to a method for producing a battery member for a secondary battery.
 近年、携帯型電子機器、電気自動車等の普及により、高性能な二次電池が必要とされている。中でもリチウム二次電池は、高いエネルギ密度を有するため、電気自動車用電池、電力貯蔵用電池等の電源として注目されている。具体的には、電気自動車用電池としてのリチウム二次電池は、エンジンを搭載しないゼロエミッション電気自動車、エンジン及び二次電池の両方を搭載したハイブリッド電気自動車、電力系統から直接充電させるプラグイン・ハイブリッド電気自動車等の電気自動車に採用されている。また、電力貯蔵用電池としてのリチウム二次電池は、電力系統が遮断された非常時に、予め貯蔵しておいた電力を供給する定置式電力貯蔵システム等に用いられている。 In recent years, with the spread of portable electronic devices, electric vehicles, etc., high-performance secondary batteries are required. Among them, lithium secondary batteries have been attracting attention as power sources for electric vehicle batteries, power storage batteries, and the like because of their high energy density. Specifically, lithium secondary batteries as batteries for electric vehicles include zero-emission electric vehicles that are not equipped with engines, hybrid electric vehicles that are equipped with both engines and secondary batteries, and plug-in hybrids that are charged directly from the power system. It is used in electric vehicles such as electric vehicles. In addition, lithium secondary batteries as power storage batteries are used in stationary power storage systems that supply power stored in advance in an emergency when the power system is shut off.
 このような広範な用途に使用するために、より高いエネルギ密度のリチウム二次電池が求められており、その開発がなされている。特に、電気自動車用のリチウム二次電池には、高い入出力特性及び高いエネルギ密度に加えて、高い安全性が要求されるため、安全性を確保するためのより高度な技術が求められる。 In order to use in such a wide range of applications, a lithium secondary battery having a higher energy density is demanded and developed. In particular, since lithium secondary batteries for electric vehicles require high safety in addition to high input / output characteristics and high energy density, more advanced technology for ensuring safety is required.
 リチウム二次電池の安全性を向上させる方法として、電解液を固体電解質へ変更する方法等が知られている(例えば特許文献1)。 As a method for improving the safety of a lithium secondary battery, a method of changing an electrolytic solution to a solid electrolyte is known (for example, Patent Document 1).
特開2004-107641号公報JP 2004-107641 A
 しかしながら、固体電解質を用いたリチウム二次電池を製造する場合には、電解液を用いた二次電池と異なり、電極合剤層と電解質層との接触面が固体/固体界面となると共に、電極合剤層内の電極活物質と電解質との接触面も固体/固体界面となるため、これらの界面を良好に密着させることが困難である。二次電池においてこれらの界面が良好に密着していないと、二次電池内部の抵抗が増加し、電池特性が低下するおそれがある。そのため、電極合剤層/電解質層の界面、及び、電極合剤層内の電極活物質/電解質の界面を良好且つ簡便に形成できる手法が求められている。 However, when manufacturing a lithium secondary battery using a solid electrolyte, unlike a secondary battery using an electrolyte, the contact surface between the electrode mixture layer and the electrolyte layer becomes a solid / solid interface, and the electrode Since the contact surface between the electrode active material and the electrolyte in the mixture layer is also a solid / solid interface, it is difficult to make these interfaces adhere well. If these interfaces do not adhere well in the secondary battery, the internal resistance of the secondary battery increases, and the battery characteristics may deteriorate. Therefore, there is a demand for a technique that can easily and easily form the electrode mixture layer / electrolyte interface and the electrode active material / electrolyte interface in the electrode mixture layer.
 本発明は、電極合剤層内の電極活物質/電解質の界面が良好に形成され、更に、電極合剤層/電解質層における層間の密着性に優れる二次電池用電池部材の製造方法を提供することを目的とする。 The present invention provides a method for producing a battery member for a secondary battery in which the electrode active material / electrolyte interface in the electrode mixture layer is well formed and the inter-electrode adhesion in the electrode mixture layer / electrolyte layer is excellent. The purpose is to do.
 本発明は、集電体の一面上に、電極活物質を含有する電極合剤中間層を形成する工程と、電極合剤中間層の前記集電体とは反対側の面上に、酸化物粒子及びポリマを含有するスラリを塗布する工程と、を備え、電極合剤中間層及びスラリの少なくとも一方は、イオン液体及び電解質塩を含有する、二次電池用電池部材の製造方法を提供する。 The present invention includes a step of forming an electrode mixture intermediate layer containing an electrode active material on one surface of a current collector, and an oxide on a surface of the electrode mixture intermediate layer opposite to the current collector. Providing a slurry containing particles and a polymer, and at least one of the electrode mixture intermediate layer and the slurry contains an ionic liquid and an electrolyte salt.
 本発明において、電極合剤中間層及びスラリの一方が、イオン液体及び電解質塩を含有してよい。この場合、スラリがイオン液体及び電解質塩を含有してよい。 In the present invention, one of the electrode mixture intermediate layer and the slurry may contain an ionic liquid and an electrolyte salt. In this case, the slurry may contain an ionic liquid and an electrolyte salt.
 本発明において、電極合剤中間層及びスラリの両方が、イオン液体及び電解質塩を含有してもよい。 In the present invention, both the electrode mixture intermediate layer and the slurry may contain an ionic liquid and an electrolyte salt.
 酸化物粒子が、疎水性表面を有していてよい。疎水性表面を有する酸化物粒子は、好ましくは、ケイ素含有化合物で表面処理されている。 The oxide particles may have a hydrophobic surface. The oxide particles having a hydrophobic surface are preferably surface-treated with a silicon-containing compound.
 ケイ素含有化合物は、好ましくは、ハロゲン含有アルキルシラン、アルコキシシラン、エポキシ基含有シラン、アミノ基含有シラン、シラザン、及びシロキサンからなる群より選ばれる少なくとも1種である。 The silicon-containing compound is preferably at least one selected from the group consisting of halogen-containing alkylsilanes, alkoxysilanes, epoxy group-containing silanes, amino group-containing silanes, silazanes, and siloxanes.
 ポリマは、好ましくは、四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位を有する。 The polymer preferably has a first structural unit selected from the group consisting of ethylene tetrafluoride and vinylidene fluoride.
 ポリマを構成する構造単位の中には、好ましくは、第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれる。 Among the structural units constituting the polymer, preferably, there are a first structural unit and a second structural unit selected from the group consisting of hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate. included.
 イオン液体の単位体積あたりの電解質塩の濃度は、好ましくは、1.0~2.5mol/Lである。 The concentration of the electrolyte salt per unit volume of the ionic liquid is preferably 1.0 to 2.5 mol / L.
 本発明の製造方法は、電解質スラリを塗布する工程の前に、電極合剤中間層中に、下記式(1)で表される構造単位を有するポリマを含有する溶液を浸透させる工程を更に備えてもよい。
Figure JPOXMLDOC01-appb-C000002
[式(1)中、Xは対アニオンを示す。]
The production method of the present invention further includes a step of infiltrating a solution containing a polymer having a structural unit represented by the following formula (1) into the electrode mixture intermediate layer before the step of applying the electrolyte slurry. May be.
Figure JPOXMLDOC01-appb-C000002
[In formula (1), X represents a counter anion. ]
 本発明によれば、電極合剤層内の電極活物質/電解質の界面が良好に形成され、更に、電極合剤層/電解質層における層間の密着性に優れる二次電池用電池部材の製造方法を提供することができる。 According to the present invention, a method for producing a battery member for a secondary battery in which an electrode active material / electrolyte interface in an electrode mixture layer is satisfactorily formed and the adhesion between layers in the electrode mixture layer / electrolyte layer is excellent. Can be provided.
一実施形態に係る二次電池を示す斜視図である。It is a perspective view which shows the secondary battery which concerns on one Embodiment. 図1に示した二次電池の電極群の一実施形態を示す分解斜視図である。It is a disassembled perspective view which shows one Embodiment of the electrode group of the secondary battery shown in FIG. 第1実施形態に係る二次電池用電池部材の製造方法を示す模式断面図である。It is a schematic cross section which shows the manufacturing method of the battery member for secondary batteries which concerns on 1st Embodiment. 第2実施形態に係る二次電池用電池部材の製造方法を示す模式断面図である。It is a schematic cross section which shows the manufacturing method of the battery member for secondary batteries which concerns on 2nd Embodiment. 変形例に係る二次電池の電極群の一実施形態を示す分解斜視図である。It is a disassembled perspective view which shows one Embodiment of the electrode group of the secondary battery which concerns on a modification. 実施例8に係る二次電池用電池部材の断面を観察したSEM画像である。10 is a SEM image obtained by observing a cross section of a battery member for a secondary battery according to Example 8.
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(ステップ等も含む)は、特に明示した場合を除き、必須ではない。各図における構成要素の大きさは概念的なものであり、構成要素間の大きさの相対的な関係は各図に示されたものに限定されない。 Hereinafter, embodiments of the present invention will be described with appropriate reference to the drawings. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including steps and the like) are not essential unless otherwise specified. The size of the component in each figure is conceptual, and the relative relationship of the size between the components is not limited to that shown in each figure.
 本明細書における数値及びその範囲は、本発明を制限するものではない。本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書において段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の上限値又は下限値に置き換えてもよい。また、本明細書中に記載される数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 The numerical values and ranges thereof in this specification do not limit the present invention. In the present specification, a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. In the numerical ranges described stepwise in this specification, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value described in another stepwise description. Further, in the numerical ranges described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the values shown in the examples.
 なお、本明細書では下記の略称を用いる場合がある。
 [Py13]:N-メチル-N-プロピルピロリジニウムカチオン
 [EMI]:1-エチル-3-メチルイミダゾリウムカチオン
 [DEME]:N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウムカチオン
 [FSI]:N(SOF) 、ビス(フルオロスルホニル)イミドアニオン
 [TFSI]:N(SOCF 、ビス(トリフルオロメタンスルホニル)イミドアニオン
 [f3C]:C(SOF) 、トリス(フルオロスルホニル)カルボアニオン
 [BOB]:B(O 、ビスオキサレートボラートアニオン
 [P(DADMA)][Cl]:ポリ(ジアリルジメチルアンモニウム)クロライド
 [P(DADMA)][TFSI]:ポリ(ジアリルジメチルアンモニウム)ビス(トリフルオロメタンスルホニル)イミド
In the present specification, the following abbreviations may be used.
[Py13] + : N-methyl-N-propylpyrrolidinium cation [EMI] + : 1-ethyl-3-methylimidazolium cation [DEME] + : N, N-diethyl-N-methyl-N- (2 - methoxyethyl) ammonium cation [FSI] -: N (SO 2 F) 2 -, bis (fluorosulfonyl) imide anion [TFSI] -: N (SO 2 CF 3) 2 -, bis (trifluoromethanesulfonyl) imide anion [F3C] : C (SO 2 F) 3 , tris (fluorosulfonyl) carbanion [BOB] : B (O 2 C 2 O 2 ) 2 , bisoxalate borate anion [P (DADMA)] [Cl]: Poly (diallyldimethylammonium) chloride [P (DADMA)] [TFSI]: Poly (Diallyl dimethyl ammonium) bis (trifluoromethanesulfonyl) imide
 図1は、一実施形態に係る二次電池を示す斜視図である。図1に示すように、二次電池1は、正極、負極及び電解質層から構成される電極群2と、電極群2を収容する袋状の電池外装体3とを備えている。正極及び負極には、それぞれ正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極及び負極が二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。 FIG. 1 is a perspective view showing a secondary battery according to an embodiment. As shown in FIG. 1, the secondary battery 1 includes an electrode group 2 composed of a positive electrode, a negative electrode, and an electrolyte layer, and a bag-shaped battery outer package 3 that houses the electrode group 2. A positive electrode current collecting tab 4 and a negative electrode current collecting tab 5 are provided on the positive electrode and the negative electrode, respectively. The positive electrode current collecting tab 4 and the negative electrode current collecting tab 5 protrude from the inside of the battery outer package 3 to the outside so that the positive electrode and the negative electrode can be electrically connected to the outside of the secondary battery 1, respectively.
 電池外装体3は、例えばラミネートフィルムで形成されていてよい。ラミネートフィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。 The battery outer package 3 may be formed of, for example, a laminate film. The laminate film may be a laminate film in which a resin film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, and stainless steel, and a sealant layer such as polypropylene are laminated in this order.
 図2は、図1に示した二次電池1の電極群2の一実施形態を示す分解斜視図である。図2に示すように、電極群2Aは、正極6、電解質層7及び負極8をこの順に備える。正極6は、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備えている。正極6の正極集電体9には、正極集電タブ4が設けられている。負極8は、負極集電体11と、負極集電体11上に設けられた負極合剤層12とを備えている。負極8の負極集電体11には、負極集電タブ5が設けられている。 FIG. 2 is an exploded perspective view showing an embodiment of the electrode group 2 of the secondary battery 1 shown in FIG. As shown in FIG. 2, the electrode group 2A includes a positive electrode 6, an electrolyte layer 7, and a negative electrode 8 in this order. The positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9. A positive electrode current collector tab 4 is provided on the positive electrode current collector 9 of the positive electrode 6. The negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11. A negative electrode current collector tab 5 is provided on the negative electrode current collector 11 of the negative electrode 8.
 一実施形態において、電極群2Aには、正極集電体9と、正極合剤層10と、電解質層7とをこの順に備える第1の二次電池用電池部材(正極部材)が含まれていると見ることができる。同様に、電極群2Aには、負極集電体11と、負極合剤層12と、電解質層7とをこの順に備える第2の二次電池用電池部材(負極部材)が含まれていると見ることもできる。本発明の各実施形態に係る二次電池用電池部材(以下、単に「電池部材」ということもある。)の製造方法は、この正極部材又は負極部材の製造方法である。 In one embodiment, the electrode group 2A includes a first secondary battery battery member (positive electrode member) including the positive electrode current collector 9, the positive electrode mixture layer 10, and the electrolyte layer 7 in this order. You can see that. Similarly, the electrode group 2A includes a second secondary battery battery member (negative electrode member) including the negative electrode current collector 11, the negative electrode mixture layer 12, and the electrolyte layer 7 in this order. You can also see it. The method for producing a battery member for a secondary battery (hereinafter sometimes simply referred to as “battery member”) according to each embodiment of the present invention is a method for producing the positive electrode member or the negative electrode member.
[第1実施形態]
 図3は、第1実施形態に係る二次電池用電池部材の製造方法を示す模式断面図である。この製造方法では、まず、図3(a)に示すように、集電体13(正極集電体9又は負極集電体11)の一面(主面)13a上に、電極活物質を含有する電極合剤中間層14A(正極合剤中間層又は負極合剤中間層)を形成する(電極合剤中間層形成工程)。
[First Embodiment]
FIG. 3 is a schematic cross-sectional view showing a method for manufacturing a battery member for a secondary battery according to the first embodiment. In this manufacturing method, first, as shown in FIG. 3A, an electrode active material is contained on one surface (main surface) 13a of the current collector 13 (positive electrode current collector 9 or negative electrode current collector 11). Electrode mixture intermediate layer 14A (positive electrode mixture intermediate layer or negative electrode mixture intermediate layer) is formed (electrode mixture intermediate layer forming step).
 電極合剤中間層形成工程において、集電体13の一面13a上に電極合剤中間層14Aを形成する方法は、一実施形態において、電極合剤スラリを集電体13の一面13a上に塗布する方法である。電極合剤スラリは、正極合剤層10又は負極合剤層12に含まれる材料を分散媒に分散させたスラリ(正極合剤スラリ又は負極合剤スラリ)である。本実施形態の電極合剤スラリは、少なくとも電極活物質(正極活物質又は負極活物質)及び分散媒を含有する。 In the electrode mixture intermediate layer forming step, the method of forming the electrode mixture intermediate layer 14A on the one surface 13a of the current collector 13 is as follows. In one embodiment, the electrode mixture slurry is applied on the one surface 13a of the current collector 13. It is a method to do. The electrode mixture slurry is a slurry (positive electrode mixture slurry or negative electrode mixture slurry) in which the material contained in the positive electrode mixture layer 10 or the negative electrode mixture layer 12 is dispersed in a dispersion medium. The electrode mixture slurry of this embodiment contains at least an electrode active material (positive electrode active material or negative electrode active material) and a dispersion medium.
 電池部材が正極部材である場合、集電体13は正極集電体9である。正極集電体9は、アルミニウム、チタン、タンタル等の金属、又はそれらの合金であってよい。正極集電体9は、軽量で高い重量エネルギ密度を有するため、好ましくはアルミニウム又はその合金である。正極集電体9の厚さは、10μm以上であってよく、100μm以下であってよい。 When the battery member is a positive electrode member, the current collector 13 is the positive electrode current collector 9. The positive electrode current collector 9 may be a metal such as aluminum, titanium, or tantalum, or an alloy thereof. Since the positive electrode current collector 9 is light and has a high weight energy density, it is preferably aluminum or an alloy thereof. The thickness of the positive electrode current collector 9 may be 10 μm or more and may be 100 μm or less.
 電池部材が負極部材である場合、集電体13は負極集電体11である。負極集電体11は、アルミニウム、銅、ニッケル、ステンレス等の金属、それらの合金などであってよい。負極集電体11は、軽量で高い重量エネルギ密度を有するため、好ましくはアルミニウム又はその合金である。負極集電体11は、薄膜への加工のしやすさ及びコストの観点から、好ましくは銅である。負極集電体11の厚さは、10μm以上であってよく、100μm以下であってよい。 When the battery member is a negative electrode member, the current collector 13 is the negative electrode current collector 11. The negative electrode current collector 11 may be a metal such as aluminum, copper, nickel, stainless steel, or an alloy thereof. The negative electrode current collector 11 is preferably aluminum or an alloy thereof because it is lightweight and has a high weight energy density. The negative electrode current collector 11 is preferably copper from the viewpoint of ease of processing into a thin film and cost. The thickness of the negative electrode current collector 11 may be 10 μm or more, and may be 100 μm or less.
 電池部材が正極部材である場合、電極活物質は正極活物質である。正極活物質は、リチウム遷移金属酸化物、リチウム遷移金属リン酸塩等のリチウム遷移金属化合物であってよい。 When the battery member is a positive electrode member, the electrode active material is a positive electrode active material. The positive electrode active material may be a lithium transition metal compound such as a lithium transition metal oxide or a lithium transition metal phosphate.
 リチウム遷移金属酸化物は、例えば、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等であってよい。リチウム遷移金属酸化物は、マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウム等に含有されるMn、Ni、Co等の遷移金属の一部を、1種若しくは2種以上の他の遷移金属、又はMg、Al等の金属元素(典型元素)で置換したリチウム遷移金属酸化物であってもよい。すなわち、リチウム遷移金属酸化物は、LiM又はLiM(Mは少なくとも1種の遷移金属を含む)で表される化合物であってよい。リチウム遷移金属酸化物は、具体的には、Li(Co1/3Ni1/3Mn1/3)O、LiNi1/2Mn1/2、LiNi1/2Mn3/2等であってよい。 The lithium transition metal oxide may be, for example, lithium manganate, lithium nickelate, lithium cobaltate, or the like. Lithium transition metal oxide is a part of transition metals such as Mn, Ni, Co, etc. contained in lithium manganate, lithium nickelate, lithium cobaltate, etc., one or more other transition metals, or A lithium transition metal oxide substituted with a metal element (typical element) such as Mg or Al may also be used. That is, the lithium transition metal oxide may be a compound represented by LiM 1 O 2 or LiM 1 O 4 (M 1 includes at least one transition metal). Specifically, lithium transition metal oxides are Li (Co 1/3 Ni 1/3 Mn 1/3 ) O 2 , LiNi 1/2 Mn 1/2 O 2 , LiNi 1/2 Mn 3/2 O. It may be 4 mag.
 リチウム遷移金属酸化物は、エネルギ密度を更に向上させる観点から、好ましくは下記式(2)で表される化合物である。
LiNiCo 2+e   (2)
[式(2)中、Mは、Al、Mn、Mg及びCaからなる群より選ばれる少なくとも1種であり、a、b、c、d及びeは、それぞれ0.2≦a≦1.2、0.5≦b≦0.9、0.1≦c≦0.4、0≦d≦0.2、-0.2≦e≦0.2、且つb+c+d=1を満たす数である。]
From the viewpoint of further improving the energy density, the lithium transition metal oxide is preferably a compound represented by the following formula (2).
Li a Ni b Co c M 2 d O 2 + e (2)
Wherein (2), M 2 is at least one Al, Mn, selected from the group consisting of Mg and Ca, a, b, c, d and e are each 0.2 ≦ a ≦ 1. 2, 0.5 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.4, 0 ≦ d ≦ 0.2, −0.2 ≦ e ≦ 0.2, and b + c + d = 1. . ]
 リチウム遷移金属リン酸塩は、LiFePO、LiMnPO、LiMn 1-xPO(0.3≦x≦1、MはFe、Ni、Co、Ti、Cu、Zn、Mg及びZrからなる群より選ばれる少なくとも1種の元素である)等であってよい。 Lithium transition metal phosphates are LiFePO 4 , LiMnPO 4 , LiMn x M 3 1-x PO 4 (0.3 ≦ x ≦ 1, M 3 is Fe, Ni, Co, Ti, Cu, Zn, Mg and Zr) Or at least one element selected from the group consisting of:
 正極活物質は、造粒されていない一次粒子であってもよく、造粒された二次粒子であってもよい。 The positive electrode active material may be primary particles that are not granulated, or may be secondary particles that are granulated.
 正極活物質の粒径は、正極合剤層10の厚さ以下になるように調整される。正極活物質中に正極合剤層10の厚さ以上の粒径を有する粗粒子がある場合、ふるい分級、風流分級等により粗粒子を予め除去し、正極合剤層10の厚さ以下の粒径を有する正極活物質を選別する。 The particle diameter of the positive electrode active material is adjusted to be equal to or less than the thickness of the positive electrode mixture layer 10. When there are coarse particles having a particle size equal to or larger than the thickness of the positive electrode mixture layer 10 in the positive electrode active material, the coarse particles are removed in advance by sieving classification, wind classification, etc. A positive electrode active material having a diameter is selected.
 正極活物質の平均粒径は、好ましくは0.1μm以上であり、より好ましくは1μm以上である。正極活物質の平均粒径は、好ましくは30μm以下であり、より好ましくは25μm以下である。正極活物質の平均粒径は、正極活物質全体の体積に対する比率(体積分率)が50%のときの粒径(D50)である。正極活物質の平均粒径(D50)は、レーザー散乱型粒径測定装置(例えば、マイクロトラック)を用いて、レーザー散乱法により水中に正極活物質を懸濁させた懸濁液を測定することで得られる。 The average particle diameter of the positive electrode active material is preferably 0.1 μm or more, more preferably 1 μm or more. The average particle diameter of the positive electrode active material is preferably 30 μm or less, more preferably 25 μm or less. The average particle diameter of the positive electrode active material is the particle diameter (D 50 ) when the ratio (volume fraction) to the volume of the entire positive electrode active material is 50%. The average particle diameter (D 50 ) of the positive electrode active material is measured by suspending the positive electrode active material in water by a laser scattering method using a laser scattering particle size measuring device (for example, Microtrack). Can be obtained.
 正極活物質の含有量は、正極合剤スラリ中の不揮発分(正極合剤スラリから分散媒を除いた成分)全量を基準として、70質量%以上、80質量%以上、又は90質量%以上であってよく、また、99質量%以下であってよい。これにより、得られる正極合剤層中の正極活物質の含有量は、上述した含有量と同様の含有量となる。 The content of the positive electrode active material is 70% by mass or more, 80% by mass or more, or 90% by mass or more based on the total amount of nonvolatile components in the positive electrode mixture slurry (a component obtained by removing the dispersion medium from the positive electrode mixture slurry) It may be 99% by mass or less. Thereby, content of the positive electrode active material in the positive electrode mixture layer obtained becomes content similar to content mentioned above.
 電池部材が負極部材である場合、電極活物質は負極活物質である。負極活物質は、エネルギデバイスの分野で常用されるものを使用できる。負極活物質としては、具体的には、例えば、金属リチウム、チタン酸リチウム(LiTi12)、リチウム合金又はその他の金属化合物、炭素材料、金属錯体、及び有機高分子化合物が挙げられる。負極活物質は、これらの1種単独、又は2種以上の混合物であってよい。炭素材料としては、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等の黒鉛(グラファイト)、非晶質炭素、炭素繊維、及び、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラックなどが挙げられる。負極活物質は、より大きな理論容量(例えば500~1500Ah/kg)を得る観点から、シリコン、スズ又はこれらの元素を含む化合物(酸化物、窒化物、他の金属との合金)であってもよい。 When the battery member is a negative electrode member, the electrode active material is a negative electrode active material. As the negative electrode active material, those commonly used in the field of energy devices can be used. Specific examples of the negative electrode active material include metal lithium, lithium titanate (Li 4 Ti 5 O 12 ), a lithium alloy or other metal compound, a carbon material, a metal complex, and an organic polymer compound. . The negative electrode active material may be one of these alone or a mixture of two or more. Carbon materials include natural graphite (flaky graphite, etc.), graphite such as artificial graphite, amorphous carbon, carbon fiber, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal Examples thereof include carbon black such as black. From the viewpoint of obtaining a larger theoretical capacity (for example, 500 to 1500 Ah / kg), the negative electrode active material may be silicon, tin, or a compound containing these elements (oxide, nitride, alloy with other metals). Good.
 負極活物質の平均粒径(D50)は、粒径減少に伴う不可逆容量の増加を抑制しつつ、且つ、電解質塩の保持能力を高めたバランスの良い負極を得る観点から、好ましくは1μm以上であり、より好ましくは5μm以上であり、更に好ましくは10μm以上であり、また、好ましくは50μm以下であり、より好ましくは40μm以下であり、更に好ましくは30μm以下である。負極活物質の平均粒径(D50)は、上述した正極活物質の平均粒径(D50)と同様の方法により測定される。 The average particle diameter (D 50 ) of the negative electrode active material is preferably 1 μm or more from the viewpoint of obtaining a well-balanced negative electrode that suppresses an increase in irreversible capacity due to a decrease in particle diameter and has improved electrolyte salt retention ability. More preferably, it is 5 μm or more, more preferably 10 μm or more, preferably 50 μm or less, more preferably 40 μm or less, and further preferably 30 μm or less. The average particle diameter (D 50 ) of the negative electrode active material is measured by the same method as the average particle diameter (D 50 ) of the positive electrode active material described above.
 負極活物質の含有量は、負極合剤スラリ中の不揮発分(負極合剤スラリから分散媒を除いた成分)全量を基準として、60質量%以上、65質量%以上、又は70質量%以上であってよく、また、99質量%以下、95質量%以下、又は90質量%以下であってよい。これにより、得られる負極合剤層中の負極活物質の含有量は、上述した含有量と同様の含有量となる。 The content of the negative electrode active material is 60% by mass or more, 65% by mass or more, or 70% by mass or more based on the total amount of nonvolatile components in the negative electrode mixture slurry (a component obtained by removing the dispersion medium from the negative electrode mixture slurry). It may be 99 mass% or less, 95 mass% or less, or 90 mass% or less. Thereby, content of the negative electrode active material in the obtained negative mix layer becomes content similar to content mentioned above.
 分散媒は、水又は有機溶剤であってよい。有機溶剤は、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド、メチルエチルケトン、トルエン、2-ブタノール、シクロヘキサノン、酢酸エチル、2-プロパノール等であってよく、好ましくはNMPである。電極合剤スラリ中の分散媒の含有量は、電極合剤スラリ中の不揮発分(電極合剤スラリから分散媒を除いた成分)100質量部に対して、例えば、20質量部以上であってよく、1000質量部以下であってよい。 The dispersion medium may be water or an organic solvent. The organic solvent may be N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide, methyl ethyl ketone, toluene, 2-butanol, cyclohexanone, ethyl acetate, 2-propanol, and preferably NMP. The content of the dispersion medium in the electrode mixture slurry is, for example, 20 parts by mass or more with respect to 100 parts by mass of the nonvolatile content in the electrode mixture slurry (component obtained by removing the dispersion medium from the electrode mixture slurry). It may be 1000 parts by mass or less.
 電極合剤スラリは、他の成分として、イオン液体、電解質塩、導電剤、結着剤等を更に含んでいてもよい。この場合、これらの材料を更に含有する電極合剤中間層14Aが形成される。 The electrode mixture slurry may further contain an ionic liquid, an electrolyte salt, a conductive agent, a binder and the like as other components. In this case, an electrode mixture intermediate layer 14A further containing these materials is formed.
 電極合剤スラリは、一実施形態において、イオン液体及び電解質塩を含有する。この場合、電極合剤スラリは、電解質塩がイオン液体に溶解された「イオン液体電解液」として、イオン液体及び電解質塩を含有してよい。電極合剤スラリは、イオン液体及び電解質塩を含有しなくてもよいが、その場合、後述するスラリ(電解質スラリ)がイオン液体及び電解質塩を含有する。すなわち、電極合剤スラリ及び電解質スラリの少なくとも一方は、イオン液体及び電解質塩を含有する。 In one embodiment, the electrode mixture slurry contains an ionic liquid and an electrolyte salt. In this case, the electrode mixture slurry may contain an ionic liquid and an electrolyte salt as an “ionic liquid electrolytic solution” in which the electrolyte salt is dissolved in the ionic liquid. The electrode mixture slurry may not contain an ionic liquid and an electrolyte salt. In that case, a slurry (electrolyte slurry) described later contains an ionic liquid and an electrolyte salt. That is, at least one of the electrode mixture slurry and the electrolyte slurry contains an ionic liquid and an electrolyte salt.
 電極合剤スラリは、後述するスラリ(電解質スラリ)が疎水性表面を有する酸化物粒子を含有する場合、好ましくは、イオン液体及び電解質塩を含まない。 When the slurry (electrolyte slurry) described later contains oxide particles having a hydrophobic surface, the electrode mixture slurry preferably does not contain an ionic liquid and an electrolyte salt.
 イオン液体は、以下のアニオン成分及びカチオン成分を含有する。なお、本明細書におけるイオン液体は、-20℃以上で液状の物質である。 The ionic liquid contains the following anion component and cation component. Note that the ionic liquid in this specification is a liquid substance at −20 ° C. or higher.
 イオン液体のアニオン成分は、特に限定されないが、Cl、Br、I等のハロゲンのアニオン、BF 、N(SOF) 等の無機アニオン、B(C 、CHSO、CFSO、N(SO 、N(SOCF 、N(SO 等の有機アニオンなどであってよい。イオン液体のアニオン成分は、好ましくは、下記式(3)で表されるアニオン成分の少なくとも1種を含有する。
N(SO2m+1)(SO2n+1    (3)
[式(3)中、m及びnは、それぞれ独立に0~5の整数を表す。m及びnは、互いに同一でも異なっていてもよく、好ましくは互いに同一である。]
The anion component of the ionic liquid is not particularly limited, but is an anion of a halogen such as Cl , Br and I , an inorganic anion such as BF 4 and N (SO 2 F) 2 , B (C 6 H 5 ) 4 , CH 3 SO 2 O , CF 3 SO 2 O , N (SO 2 C 4 F 9 ) 2 , N (SO 2 CF 3 ) 2 , N (SO 2 C 2 F 5 ) 2 Or an organic anion. The anionic component of the ionic liquid preferably contains at least one anionic component represented by the following formula (3).
N (SO 2 C m F 2m + 1 ) (SO 2 C n F 2n + 1 ) (3)
[In Formula (3), m and n each independently represents an integer of 0 to 5. m and n may be the same as or different from each other, and are preferably the same as each other. ]
 式(3)で表されるアニオン成分は、例えば、N(SO 、N(SOF) 、N(SOCF 及びN(SO である。イオン液体のアニオン成分は、比較的低粘度でイオン伝導度を更に向上させるとともに、充放電特性も更に向上させる観点から、より好ましくは、N(SO 、CFSO、N(SOF) 、N(SOCF 、及びN(SO からなる群より選ばれる少なくとも1種を含有し、更に好ましくはN(SOF) を含有する。 Examples of the anion component represented by the formula (3) include N (SO 2 C 4 F 9 ) 2 , N (SO 2 F) 2 , N (SO 2 CF 3 ) 2 —, and N (SO 2 C 2 F 5 ) 2 . The anionic component of the ionic liquid is more preferably N (SO 2 C 4 F 9 ) 2 , CF 3 SO from the viewpoint of further improving the ionic conductivity with a relatively low viscosity and further improving the charge / discharge characteristics. Contains at least one selected from the group consisting of 2 O , N (SO 2 F) 2 , N (SO 2 CF 3 ) 2 , and N (SO 2 C 2 F 5 ) 2 —, and more preferably Contains N (SO 2 F) 2 .
 イオン液体のカチオン成分は、好ましくは鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種である。 The cation component of the ionic liquid is preferably at least one selected from the group consisting of a chain quaternary onium cation, a piperidinium cation, a pyrrolidinium cation, a pyridinium cation, and an imidazolium cation.
 鎖状四級オニウムカチオンは、例えば、下記式(4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000003
[式(4)中、R~Rは、それぞれ独立に、炭素数が1~20の鎖状アルキル基、又はR-O-(CH-で表される鎖状アルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表し、Xは、窒素原子又はリン原子を表す。R~Rで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The chain quaternary onium cation is, for example, a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000003
[In Formula (4), R 1 to R 4 each independently represents a chain alkyl group having 1 to 20 carbon atoms, or a chain alkoxyalkyl group represented by R—O— (CH 2 ) n — (R represents a methyl group or an ethyl group, and n represents an integer of 1 to 4), and X represents a nitrogen atom or a phosphorus atom. The number of carbon atoms of the alkyl group represented by R 1 to R 4 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 ピペリジニウムカチオンは、例えば、下記式(5)で表される、窒素を含有する六員環環状化合物である。
Figure JPOXMLDOC01-appb-C000004
[式(5)中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The piperidinium cation is, for example, a nitrogen-containing six-membered cyclic compound represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000004
[In Formula (5), R 5 and R 6 are each independently an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl And n represents an integer of 1 to 4. The number of carbon atoms of the alkyl group represented by R 5 and R 6 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 ピロリジニウムカチオンは、例えば、下記式(6)で表される五員環環状化合物である。
Figure JPOXMLDOC01-appb-C000005
[式(6)中、R及びRは、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R及びRで表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The pyrrolidinium cation is, for example, a five-membered cyclic compound represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000005
[In Formula (6), R 7 and R 8 are each independently an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is methyl And n represents an integer of 1 to 4. The carbon number of the alkyl group represented by R 7 and R 8 is preferably 1-20, more preferably 1-10, and still more preferably 1-5. ]
 ピリジニウムカチオンは、例えば、下記式(7)で示される化合物である。
Figure JPOXMLDOC01-appb-C000006
[式(7)中、R~R13は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R~R13で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The pyridinium cation is, for example, a compound represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000006
[In the formula (7), R 9 to R 13 each independently represents an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R represents a methyl group) Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom. The number of carbon atoms of the alkyl group represented by R 9 to R 13 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 イミダゾリウムカチオンは、例えば、下記式(8)で示される化合物である。
Figure JPOXMLDOC01-appb-C000007
[式(8)中、R14~R18は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R14~R18で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
The imidazolium cation is, for example, a compound represented by the following formula (8).
Figure JPOXMLDOC01-appb-C000007
[In the formula (8), R 14 to R 18 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by R—O— (CH 2 ) n — (R is a methyl group) Or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom. The number of carbon atoms of the alkyl group represented by R 14 to R 18 is preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5. ]
 電解質塩は、リチウム塩、ナトリウム塩、カルシウム塩、及びマグネシウム塩からなる群より選ばれる少なくとも1種であってよい。 The electrolyte salt may be at least one selected from the group consisting of a lithium salt, a sodium salt, a calcium salt, and a magnesium salt.
 電解質塩のアニオン成分は、ハロゲン化物イオン(I、Cl、Br等)、SCN、BF 、BF(CF、BF(C、PF 、ClO 、SbF 、N(SOF) 、N(SOCF 、N(SO 、B(C 、B(O 、C(SOF) 、C(SOCF 、CFCOO、CFSO、CSO、B(O 等であってよい。電解質塩のアニオン成分は、好ましくは、N(SOF) 、N(SOCF 等の上述した式(3)で表されるアニオン成分、PF 、BF 、B(O 、又はClO である。 The anion component of the electrolyte salt includes halide ions (I , Cl , Br etc.), SCN , BF 4 , BF 3 (CF 3 ) , BF 3 (C 2 F 5 ) , PF 6 −. , ClO 4 , SbF 6 , N (SO 2 F) 2 , N (SO 2 CF 3 ) 2 , N (SO 2 C 2 F 5 ) 2 , B (C 6 H 5 ) 4 , B (O 2 C 2 H 4 ) 2 , C (SO 2 F) 3 , C (SO 2 CF 3 ) 3 , CF 3 COO , CF 3 SO 2 O , C 6 F 5 SO 2 O - , B (O 2 C 2 O 2 ) 2- and the like. The anion component of the electrolyte salt is preferably an anion component represented by the above formula (3) such as N (SO 2 F) 2 , N (SO 2 CF 3 ) 2 , PF 6 , BF 4 −. , B (O 2 C 2 O 2 ) 2 , or ClO 4 .
 リチウム塩は、LiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO、LiBF(CF)、LiBF(C)、LiBF(C)、LiBF(C)、LiC(SOCF、LiCFSOO、LiCFCOO、及びLiRCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 Lithium salts include LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f 3 C], Li [BOB], LiClO 4 , LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiCF 3 SO 2 O, LiCF 3 COO, and LiRCOO (R is an alkyl group having 1 to 4 carbon atoms) , A phenyl group, or a naphthyl group).
 ナトリウム塩は、NaPF、NaBF、Na[FSI]、Na[TFSI]、Na[f3C]、Na[BOB]、NaClO、NaBF(CF)、NaBF(C)、NaBF(C)、NaBF(C)、NaC(SOCF、NaCFSOO、NaCFCOO、及びNaRCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 Sodium salts include NaPF 6 , NaBF 4 , Na [FSI], Na [TFSI], Na [f 3 C], Na [BOB], NaClO 4 , NaBF 3 (CF 3 ), NaBF 3 (C 2 F 5 ), NaBF 3 (C 3 F 7 ), NaBF 3 (C 4 F 9 ), NaC (SO 2 CF 3 ) 3 , NaCF 3 SO 2 O, NaCF 3 COO, and NaRCOO (R is an alkyl group having 1 to 4 carbon atoms) , A phenyl group, or a naphthyl group).
 カルシウム塩は、Ca(PF、Ca(BF、Ca[FSI]、Ca[TFSI]、Ca[f3C]、Ca[BOB]、Ca(ClO、Ca[BF(CF)]、Ca[BF(C)]、Ca[BF(C)]、Ca[BF(C)]、Ca[C(SOCF、Ca(CFSOO)、Ca(CFCOO)、及びCa(RCOO)(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 The calcium salts are Ca (PF 6 ) 2 , Ca (BF 4 ) 2 , Ca [FSI] 2 , Ca [TFSI] 2 , Ca [f3C] 2 , Ca [BOB] 2 , Ca (ClO 4 ) 2 , Ca [BF 3 (CF 3 )] 2 , Ca [BF 3 (C 2 F 5 )] 2 , Ca [BF 3 (C 3 F 7 )] 2 , Ca [BF 3 (C 4 F 9 )] 2 , Ca [C (SO 2 CF 3 ) 3 ] 2 , Ca (CF 3 SO 2 O) 2 , Ca (CF 3 COO) 2 , and Ca (RCOO) 2 (R is an alkyl group having 1 to 4 carbon atoms, phenyl Or at least one selected from the group consisting of a naphthyl group).
 マグネシウム塩は、Mg(PF、Mg(BF、Mg[FSI]、Mg[TFSI]、Mg[f3C]、Mg[BOB]、Mg(ClO、Mg[BF(CF)]、Mg[BF(C)]、Mg[BF(C)]、Mg[BF(C)]、Mg[C(SOCF、Mg(CFSO、Mg(CFCOO)、及びMg(RCOO)(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であってよい。 Magnesium salts are Mg (PF 6 ) 2 , Mg (BF 4 ) 2 , Mg [FSI] 2 , Mg [TFSI] 2 , Mg [f 3 C] 2 , Mg [BOB] 2 , Mg (ClO 4 ) 2 , Mg [BF 3 (CF 3 )] 2 , Mg [BF 3 (C 2 F 5 )] 2 , Mg [BF 3 (C 3 F 7 )] 2 , Mg [BF 3 (C 4 F 9 )] 2 , Mg [C (SO 2 CF 3 ) 3 ] 2 , Mg (CF 3 SO 3 ) 2 , Mg (CF 3 COO) 2 , and Mg (RCOO) 2 (R is an alkyl group having 1 to 4 carbon atoms, a phenyl group Or a naphthyl group) may be at least one selected from the group consisting of:
 これらのうち、解離性及び電気化学的安定性の観点から、電解質塩は、好ましくはLiPF、LiBF、Li[FSI]、Li[TFSI]、Li[f3C]、Li[BOB]、LiClO4、LiBF(CF)、LiBF(C)、LiBF(C)、LiBF(C)、LiC(SOCF、LiCFSOO、LiCFCOO、及びLiRCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)からなる群より選ばれる少なくとも1種であり、より好ましくはLi[TFSI]、Li[FSI]、LiPF、LiBF、Li[BOB]、及びLiClO4からなる群より選ばれる少なくとも1種であり、更に好ましくはLi[TFSI]、及びLi[FSI]からなる群より選ばれる1種である。 Among these, from the viewpoint of dissociation property and electrochemical stability, the electrolyte salt is preferably LiPF 6 , LiBF 4 , Li [FSI], Li [TFSI], Li [f 3 C], Li [BOB], LiClO 4. LiBF 3 (CF 3 ), LiBF 3 (C 2 F 5 ), LiBF 3 (C 3 F 7 ), LiBF 3 (C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiCF 3 SO 2 O, It is at least one selected from the group consisting of LiCF 3 COO and LiRCOO (where R is an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group), more preferably Li [TFSI], Li [FSI], LiPF 6, LiBF 4, Li [BOB], and at least one selected from the group consisting of LiClO 4, more preferably Li [TF I], and is one selected from the group consisting of Li [FSI].
 電極合剤スラリが、イオン液体電解液としてイオン液体及び電解質塩を含有する場合、イオン液体電解液において、イオン液体の単位体積あたりの電解質塩の塩濃度は、0.3mol/L以上、0.5mol/L以上、又は1.0mol/L以上であってよく、3.0mol/L以下、2.7mol/L以下、又は2.5mol/L以下であってよい。 When the electrode mixture slurry contains an ionic liquid and an electrolyte salt as the ionic liquid electrolyte, the salt concentration of the electrolyte salt per unit volume of the ionic liquid in the ionic liquid electrolyte is 0.3 mol / L or more, 0. It may be 5 mol / L or more, or 1.0 mol / L or more, and may be 3.0 mol / L or less, 2.7 mol / L or less, or 2.5 mol / L or less.
 電極合剤スラリがイオン液体電解液を含有する場合、イオン液体電解液の含有量(イオン液体及び電解質塩の含有量の合計)は、電極合剤層のイオン伝導率を向上させる観点から、電極合剤スラリ中の不揮発分全量を基準として、好ましくは3質量%以上であり、より好ましくは5質量%以上であり、更に好ましくは10質量%以上であり、また、電極合剤層の強度を高める観点から、好ましくは30質量%以下であり、より好ましくは25質量%以下であり、更に好ましくは20質量%以下である。 When the electrode mixture slurry contains an ionic liquid electrolyte, the content of the ionic liquid electrolyte (the total of the contents of the ionic liquid and the electrolyte salt) is determined from the viewpoint of improving the ionic conductivity of the electrode mixture layer. It is preferably 3% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more, based on the total amount of nonvolatile content in the mixture slurry, and the strength of the electrode mixture layer From the viewpoint of increasing, it is preferably 30% by mass or less, more preferably 25% by mass or less, and still more preferably 20% by mass or less.
 導電剤は、特に限定されないが、黒鉛、アセチレンブラック、カーボンブラック、炭素繊維等の炭素材料などであってよい。導電剤は、上述した炭素材料の2種以上の混合物であってもよい。導電剤の含有量は、電極合剤スラリ中の不揮発分全量を基準として、1~70質量%であってよい。これにより、得られる電極合剤層中の導電剤の含有量は、上述した含有量と同様の含有量となる。 The conductive agent is not particularly limited, and may be a carbon material such as graphite, acetylene black, carbon black, or carbon fiber. The conductive agent may be a mixture of two or more carbon materials described above. The content of the conductive agent may be 1 to 70% by mass based on the total nonvolatile content in the electrode mixture slurry. Thereby, content of the electrically conductive agent in the electrode mixture layer obtained becomes content similar to content mentioned above.
 結着剤は、特に限定されないが、四フッ化エチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる少なくとも1種をモノマ単位として含有するポリマ、スチレン-ブタジエンゴム、イソプレンゴム、アクリルゴム等のゴムなどであってよい。結着剤は、好ましくはヘキサフルオロプロピレンとフッ化ビニリデンとを構造単位として含有するコポリマである。結着剤の含有量は、電極合剤スラリ中の不揮発分全量を基準として、1~70質量%であってよい。これにより、得られる電極合剤層中の結着剤の含有量は、上述した含有量と同様の含有量となる。 The binder is not particularly limited, but contains as a monomer unit at least one selected from the group consisting of ethylene tetrafluoride, vinylidene fluoride, hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate. It may be a polymer, rubber such as styrene-butadiene rubber, isoprene rubber or acrylic rubber. The binder is preferably a copolymer containing hexafluoropropylene and vinylidene fluoride as structural units. The content of the binder may be 1 to 70% by mass based on the total nonvolatile content in the electrode mixture slurry. Thereby, content of the binder in the obtained electrode mixture layer becomes content similar to content mentioned above.
 電極合剤中間層形成工程において、電極合剤スラリを塗布する方法としては、例えばアプリケータを用いて塗布する方法、スプレーにより塗布する方法等が挙げられる。これらの方法によって、集電体13の一面13a上に電極合剤スラリを塗布する。その結果、図3(a)に示すように、集電体13の一面13a上に電極合剤中間層14Aが形成される。 In the electrode mixture intermediate layer forming step, examples of the method of applying the electrode mixture slurry include a method of applying using an applicator and a method of applying by spraying. By these methods, an electrode mixture slurry is applied onto one surface 13a of the current collector 13. As a result, as shown in FIG. 3A, an electrode mixture intermediate layer 14 </ b> A is formed on one surface 13 a of the current collector 13.
 電極合剤中間層形成工程においては、電極合剤スラリを塗布した後、スラリ中の分散媒を揮発させてもよい。つまり、本明細書における「電極合剤中間層」には、電極合剤スラリで形成された層、及び、電極合剤スラリから一部又は全部の分散媒が揮発して形成された層が含まれる。分散媒を揮発させる方法は、例えば、加熱により乾燥させる方法、減圧する方法、減圧と加熱を組み合わせる方法等であってよい。減圧する方法においては、真空の状態まで減圧してもよい。乾燥させる際の温度は、50~150℃であってよく、加熱時間は、分散媒が十分に揮発する時間であれば温度によって変化させてよいが、例えば、1分間~48時間である。 In the electrode mixture intermediate layer forming step, after applying the electrode mixture slurry, the dispersion medium in the slurry may be volatilized. That is, the “electrode mixture intermediate layer” in this specification includes a layer formed of an electrode mixture slurry and a layer formed by volatilization of a part or all of the dispersion medium from the electrode mixture slurry. It is. The method of volatilizing the dispersion medium may be, for example, a method of drying by heating, a method of reducing pressure, a method of combining reduced pressure and heating, or the like. In the method of reducing the pressure, the pressure may be reduced to a vacuum state. The drying temperature may be 50 to 150 ° C., and the heating time may be changed depending on the temperature as long as the dispersion medium is sufficiently volatilized, but is, for example, 1 minute to 48 hours.
 電極合剤中間層形成工程に続いて、図3(b)に示すように、電極合剤中間層14Aの集電体13とは反対側の面14a上に、酸化物粒子16、ポリマ17及び分散媒を含有するスラリ15Aを塗布する。以下、このスラリを、「電解質スラリ」とも呼び、電解質スラリ15Aを塗布する工程を、「電解質スラリ塗布工程」とも呼ぶ。 Subsequent to the electrode mixture intermediate layer forming step, as shown in FIG. 3B, the oxide particles 16, the polymer 17, and the electrode mixture intermediate layer 14 </ b> A on the surface 14 a opposite to the current collector 13. A slurry 15A containing a dispersion medium is applied. Hereinafter, this slurry is also referred to as “electrolyte slurry”, and the step of applying the electrolyte slurry 15A is also referred to as “electrolyte slurry application step”.
 酸化物粒子16は、例えば無機酸化物の粒子である。無機酸化物は、例えば、Li、Mg、Al、Si、Ca、Ti、Zr、La、Na、K、Ba、Sr、V、Nb、B、Ge等を構成元素として含む無機酸化物であってよい。酸化物粒子16は、好ましくは、SiO、Al、AlOOH、MgO、CaO、ZrO、TiO、LiLaZr12、及びBaTiOからなる群より選ばれる少なくとも1種の粒子である。酸化物粒子16は極性を有するため、電解質層中の電解質の解離を促進し、電池特性を高めることができる。 The oxide particles 16 are, for example, inorganic oxide particles. The inorganic oxide is an inorganic oxide containing, for example, Li, Mg, Al, Si, Ca, Ti, Zr, La, Na, K, Ba, Sr, V, Nb, B, Ge and the like as constituent elements. Good. The oxide particles 16 are preferably at least one selected from the group consisting of SiO 2 , Al 2 O 3 , AlOOH, MgO, CaO, ZrO 2 , TiO 2 , Li 7 La 3 Zr 2 O 12 , and BaTiO 3. Particles. Since the oxide particles 16 have polarity, it is possible to promote dissociation of the electrolyte in the electrolyte layer and improve battery characteristics.
 酸化物粒子16は、希土類金属の酸化物であってもよい。酸化物粒子16は、具体的には、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロビウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム等であってよい。 The oxide particles 16 may be rare earth metal oxides. Specifically, the oxide particles 16 are scandium oxide, yttrium oxide, lanthanum oxide, cerium oxide, praseodymium oxide, neodymium oxide, samarium oxide, eurobium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, It may be thulium oxide, ytterbium oxide, lutetium oxide or the like.
 酸化物粒子16は、疎水性表面を有していてもよい。酸化物粒子は、通常、その表面に水酸基を有し、親水性を示す傾向にある。疎水性表面を有する酸化物粒子は、疎水性表面を有しない酸化物粒子に比べて、表面の水酸基が減少している。そのため、疎水性表面を有する酸化物粒子を用いると、電解質スラリにイオン液体が含まれる場合(例えば、アニオン成分がN(SOF) 、N(SOCF 等を有するイオン液体)、イオン液体が疎水性であることから、酸化物粒子とイオン液体との親和性が向上することが予想される。そのため、電解質層7においてイオン液体の保液性がより一層向上し、その結果として、電解質層7のイオン伝導率が向上すると考えられる。また、疎水性表面を有する酸化物粒子が含まれる電解質層7を備える二次電池においては、特に放電特性を向上させることができる。 The oxide particles 16 may have a hydrophobic surface. The oxide particles usually have a hydroxyl group on the surface and tend to be hydrophilic. The oxide particles having a hydrophobic surface have fewer hydroxyl groups on the surface than the oxide particles having no hydrophobic surface. Therefore, when oxide particles having a hydrophobic surface are used, the electrolyte slurry contains an ionic liquid (for example, the anion component has N (SO 2 F) 2 , N (SO 2 CF 3 ) 2 −, etc. Since the ionic liquid) and the ionic liquid are hydrophobic, it is expected that the affinity between the oxide particles and the ionic liquid is improved. Therefore, it is considered that the ionic liquid retention in the electrolyte layer 7 is further improved, and as a result, the ionic conductivity of the electrolyte layer 7 is improved. In addition, in the secondary battery including the electrolyte layer 7 including oxide particles having a hydrophobic surface, discharge characteristics can be particularly improved.
 疎水性表面を有する酸化物粒子は、例えば、親水性を示す酸化物粒子を、疎水性表面を付与することが可能な表面処理剤で処理することによって得ることができる。すなわち、疎水性表面を有する酸化物粒子は、表面処理剤で表面処理された酸化物粒子を意味する。表面処理剤は、好ましくは、ケイ素含有化合物である。 The oxide particles having a hydrophobic surface can be obtained, for example, by treating hydrophilic oxide particles with a surface treatment agent capable of imparting a hydrophobic surface. That is, the oxide particles having a hydrophobic surface mean oxide particles that have been surface-treated with a surface treatment agent. The surface treatment agent is preferably a silicon-containing compound.
 酸化物粒子16は、ケイ素含有化合物で表面処理されていてもよい。すなわち、酸化物粒子16は、酸化物粒子の表面とケイ素含有化合物のケイ素原子とが酸素原子を介して結合していているものであってもよい。ケイ素含有化合物は、好ましくは、ハロゲン含有アルキルシラン、アルコキシシラン、エポキシ基含有シラン、アミノ基含有シラン、シラザン、及びシロキサンからなる群より選ばれる少なくとも1種である。 The oxide particles 16 may be surface-treated with a silicon-containing compound. That is, the oxide particle 16 may be one in which the surface of the oxide particle and the silicon atom of the silicon-containing compound are bonded via an oxygen atom. The silicon-containing compound is preferably at least one selected from the group consisting of halogen-containing alkylsilanes, alkoxysilanes, epoxy group-containing silanes, amino group-containing silanes, silazanes, and siloxanes.
 ハロゲン含有アルキルシランにおけるハロゲン元素は、塩素、フッ素等であってよい。塩素を含有するハロゲン含有アルキルシラン(アルキルクロロシラン)は、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、n-オクチルジメチルクロロシラン等であってもよい。フッ素を含有するハロゲン含有アルキルシラン(フルオロアルキルシラン)は、トリフルオロプロピルトリメトキシシラン、トリデカフルオロオクチルトリメトキシシラン等であってもよい。 The halogen element in the halogen-containing alkylsilane may be chlorine, fluorine or the like. The halogen-containing alkylsilane (alkylchlorosilane) containing chlorine may be methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, n-octyldimethylchlorosilane, or the like. The halogen-containing alkylsilane (fluoroalkylsilane) containing fluorine may be trifluoropropyltrimethoxysilane, tridecafluorooctyltrimethoxysilane, or the like.
 アルコキシシランは、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトキシジフェニルシラン、n-プロピルトリメトキシシラン、ヘキシルトリメトキシシラン、テトラエトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、n-プロピルトリエトキシシラン等であってもよい。 Alkoxysilanes are methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, dimethoxydiphenylsilane, n-propyltrimethoxysilane, hexyltrimethoxysilane, tetraethoxysilane, methyltriethoxysilane, dimethyldi It may be ethoxysilane, n-propyltriethoxysilane, or the like.
 エポキシ基含有シランは、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等であってもよい。 Epoxy group-containing silanes are 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxy. Silane, 3-glycidoxypropyltriethoxysilane and the like may be used.
 アミノ基含有シランは、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等であってもよい。 Amino group-containing silanes are N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- Phenyl-3-aminopropyltrimethoxysilane or the like may be used.
 シラザンは、ヘキサメチルジシラザン等であってもよい。シロキサンは、ジメチルシリコーンオイル等であってもよい。これらの片末端又は両末端に、反応性官能基(例えば、カルボキシル基等)を有するものであってもよい。 Silazane may be hexamethyldisilazane or the like. Siloxane may be dimethyl silicone oil or the like. One or both of these terminals may have a reactive functional group (for example, a carboxyl group).
 疎水性表面を有する酸化物粒子(表面処理された酸化物粒子)は、公知の方法によって製造したものを用いてもよく、市販品をそのまま用いてもよい。 As the oxide particles having a hydrophobic surface (surface-treated oxide particles), those produced by a known method may be used, or commercially available products may be used as they are.
 酸化物粒子16は、一般に、見かけ上の幾何学的形態から判断して、一体的に単一の粒子を形成している一次粒子(二次粒子を構成していない粒子)と、複数の一次粒子が集合することで形成される二次粒子とを含んでいてもよい。 The oxide particles 16 generally include primary particles that integrally form a single particle (particles that do not constitute a secondary particle) and a plurality of primary particles, as determined from an apparent geometric form. Secondary particles formed by the aggregation of the particles may be included.
 酸化物粒子16の比表面積は、2~500m/gであってよく、2~400m/g、5~100m/g、10~80m/g、又は15~60m/gであってもよい。比表面積が2~500m/gであると、このような酸化物粒子を含有する電解質層を備える二次電池は、放電特性に優れる傾向にある。同様の観点から、酸化物粒子16の比表面積は、2m/g以上、5m/g以上、10m/g以上、15m/g以上、又は50m/g以上であってもよく、500m/g以下、400m/g以下、350m/g以下、300m/g以下、200m/g以下、100m/g以下、90m/g以下、80m/g以下、又は60m/g以下であってもよい。酸化物粒子16の比表面積は、一次粒子及び二次粒子を含む酸化物粒子全体の比表面積を意味し、BET法によって測定される。 The specific surface area of the oxide particles 16 may be 2 to 500 m 2 / g, 2 to 400 m 2 / g, 5 to 100 m 2 / g, 10 to 80 m 2 / g, or 15 to 60 m 2 / g. May be. When the specific surface area is 2 to 500 m 2 / g, the secondary battery including the electrolyte layer containing such oxide particles tends to have excellent discharge characteristics. From the same viewpoint, the specific surface area of the oxide particles 16 may be 2 m 2 / g or more, 5 m 2 / g or more, 10 m 2 / g or more, 15 m 2 / g or more, or 50 m 2 / g or more, 500 m 2 / g or less, 400 m 2 / g or less, 350 m 2 / g or less, 300 m 2 / g or less, 200 m 2 / g or less, 100 m 2 / g or less, 90 m 2 / g or less, 80 m 2 / g or less, or 60 m 2 / g or less may be sufficient. The specific surface area of the oxide particles 16 means the specific surface area of the whole oxide particles including primary particles and secondary particles, and is measured by the BET method.
 酸化物粒子16の平均一次粒径(一次粒子の平均粒径)は、二次電池1の導電率を向上させる観点から、好ましくは0.005μm(5nm)以上であり、より好ましくは0.01μm(10nm)以上であり、更に好ましくは0.015μm(15nm)以上である。酸化物粒子16の平均一次粒径は、電解質層7を薄くする観点から、好ましくは1μm以下であり、より好ましくは0.1μm以下であり、更に好ましくは0.05μm以下である。酸化物粒子16の平均一次粒径は、酸化物粒子16を透過型電子顕微鏡等によって観察することによって測定できる。 The average primary particle size of the oxide particles 16 (average particle size of the primary particles) is preferably 0.005 μm (5 nm) or more, more preferably 0.01 μm, from the viewpoint of improving the conductivity of the secondary battery 1. (10 nm) or more, more preferably 0.015 μm (15 nm) or more. From the viewpoint of making the electrolyte layer 7 thin, the average primary particle size of the oxide particles 16 is preferably 1 μm or less, more preferably 0.1 μm or less, and even more preferably 0.05 μm or less. The average primary particle size of the oxide particles 16 can be measured by observing the oxide particles 16 with a transmission electron microscope or the like.
 酸化物粒子16の平均粒径は、好ましくは0.005μm以上であり、より好ましくは0.01μm以上であり、更に好ましくは0.03μm以上である。酸化物粒子16の平均粒径は、好ましくは5μm以下であり、より好ましくは3μm以下であり、更に好ましくは1μm以下である。酸化物粒子16の平均粒径は、レーザー回折法により測定され、体積累積粒度分布曲線を小粒径側から描いた場合に、体積累積が50%となる粒子径に対応する。 The average particle diameter of the oxide particles 16 is preferably 0.005 μm or more, more preferably 0.01 μm or more, and further preferably 0.03 μm or more. The average particle size of the oxide particles 16 is preferably 5 μm or less, more preferably 3 μm or less, and even more preferably 1 μm or less. The average particle diameter of the oxide particles 16 is measured by a laser diffraction method, and corresponds to the particle diameter at which the volume accumulation is 50% when the volume accumulation particle size distribution curve is drawn from the small particle diameter side.
 酸化物粒子16の含有量は、電解質スラリ15A中の不揮発分(電解質スラリから分散媒を除いた成分)全量を基準として、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、更に好ましくは15質量%以上であり、特に好ましくは20質量%以上であり、また、好ましくは60質量%以下であり、より好ましくは50質量%以下であり、更に好ましくは40質量%以下である。これにより、得られる電解質層中の酸化物粒子16の含有量は、上述した含有量と同様の含有量となる。 The content of the oxide particles 16 is preferably 5% by mass or more, more preferably 10% by mass or more, based on the total amount of nonvolatile components (components obtained by removing the dispersion medium from the electrolyte slurry) in the electrolyte slurry 15A. More preferably, it is 15% by mass or more, particularly preferably 20% by mass or more, preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less. is there. Thereby, content of the oxide particle 16 in the obtained electrolyte layer turns into content similar to content mentioned above.
 ポリマ17は、好ましくは、四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位を有する。 Polymer 17 preferably has a first structural unit selected from the group consisting of ethylene tetrafluoride and vinylidene fluoride.
 ポリマ17は、好ましくは、1種又は2種以上のポリマであり、前記1種又は2種以上のポリマを構成する構造単位の中には、前記第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれていてもよい。すなわち、第1の構造単位及び第2の構造単位は、1種のポリマに含まれてコポリマを構成していてもよく、それぞれ別のポリマに含まれて、第1の構造単位を有する第1のポリマと、第2の構造単位を有する第2のポリマとの少なくとも2種のポリマを構成していてもよい。 The polymer 17 is preferably one or more polymers, and among the structural units constituting the one or more polymers, the first structural unit, hexafluoropropylene, acrylic A second structural unit selected from the group consisting of acid, maleic acid, ethyl methacrylate, and methyl methacrylate may be included. That is, the first structural unit and the second structural unit may be included in one kind of polymer to form a copolymer, and each of the first structural unit and the second structural unit may be included in another polymer and have the first structural unit. And at least two types of polymers, the second polymer having the second structural unit.
 ポリマ17は、より具体的には、ポリ四フッ化エチレン、ポリフッ化ビニリデン、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ等であってよい。ポリマ17は、電池特性を向上させる観点から、好ましくは、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマである。 More specifically, the polymer 17 may be polytetrafluoroethylene, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, or the like. The polymer 17 is preferably a copolymer of vinylidene fluoride and hexafluoropropylene from the viewpoint of improving battery characteristics.
 ポリマ17の含有量は、電解質スラリ15A中の不揮発分全量を基準として、好ましくは3質量%以上であってよく、また、好ましくは50質量%以下であり、より好ましくは40質量%以下である。これにより、得られる電解質層中のポリマ17の含有量は、上述した含有量と同様の含有量となる。 The content of the polymer 17 is preferably 3% by mass or more, preferably 50% by mass or less, more preferably 40% by mass or less, based on the total nonvolatile content in the electrolyte slurry 15A. . Thereby, content of the polymer 17 in the obtained electrolyte layer turns into content similar to content mentioned above.
 電解質スラリ15A中の分散媒は、上述した電極合剤スラリに用いられる分散媒と同様のものであってよい。電解質スラリ15A中の分散媒の含有量は、電解質スラリ15A中の不揮発分100質量部に対して、例えば、5質量部以上であってよく、1000質量部以下であってよい。 The dispersion medium in the electrolyte slurry 15A may be the same as the dispersion medium used for the electrode mixture slurry described above. The content of the dispersion medium in the electrolyte slurry 15A may be, for example, 5 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the nonvolatile content in the electrolyte slurry 15A.
 電解質スラリ15Aは、酸化物粒子16、ポリマ17及び分散媒に加えて、イオン液体及び電解質塩を更に含有してもよい。この場合、電解質スラリ15Aは、イオン液体電解液として、イオン液体及び電解質塩を含有してよい。電解質スラリ15Aは、イオン液体及び電解質塩を含有しなくてもよいが、その場合、電極合剤スラリが、イオン液体及び電解質塩を含有する。 The electrolyte slurry 15A may further contain an ionic liquid and an electrolyte salt in addition to the oxide particles 16, the polymer 17, and the dispersion medium. In this case, the electrolyte slurry 15A may contain an ionic liquid and an electrolyte salt as the ionic liquid electrolytic solution. The electrolyte slurry 15A may not contain an ionic liquid and an electrolyte salt. In this case, the electrode mixture slurry contains an ionic liquid and an electrolyte salt.
 電解質スラリ15Aがイオン液体及び電解質塩を含有する場合、イオン液体及び電解質塩は、上述した電極合剤スラリに含まれるイオン液体及び電解質塩と同様のものであってよい。電解質スラリに含まれ得るイオン液体及び電解質塩は、電極合剤スラリに含まれるイオン液体及び電解質塩とそれぞれ同一であっても異なっていてもよい。 When the electrolyte slurry 15A contains an ionic liquid and an electrolyte salt, the ionic liquid and the electrolyte salt may be the same as the ionic liquid and the electrolyte salt contained in the electrode mixture slurry described above. The ionic liquid and electrolyte salt that can be contained in the electrolyte slurry may be the same as or different from the ionic liquid and electrolyte salt contained in the electrode mixture slurry, respectively.
 電解質スラリ15Aがイオン液体電解液としてイオン液体及び電解質塩を含有する場合、イオン液体電解液において、イオン液体の単位体積あたりの電解質塩の塩濃度は、0.3mol/L以上、0.5mol/L以上、1.0mol/L以上、1.2mol/L以上、又は1.5mol/L以上であってよく、3.0mol/L以下、2.7mol/L以下、2.5mol/L以下、2.3mol/L以下、又は2.0mol/L以下であってよい。イオン液体電解液において、イオン液体の単位体積あたりの電解質塩の塩濃度は、0.3~3.0mol/L、0.3~2.7mol/L、0.3~2.5mol/L、0.3~2.3mol/L、0.3~2.0mol/L、0.5~3.0mol/L、0.5~2.7mol/L、0.5~2.5mol/L、0.5~2.3mol/L、0.5~2.0mol/L、1.0~3.0mol/L、1.0~2.7mol/L、1.0~2.5mol/L、1.0~2.3mol/L、1.0~2.0mol/L、1.2~3.0mol/L、1.2~2.7mol/L、1.2~2.5mol/L、1.2~2.3mol/L、1.2~2.0mol/L、1.5~3.0mol/L、1.5~2.7mol/L、1.5~2.5mol/L、1.5~2.3mol/L、又は1.5~2.0mol/Lであってもよい。 When the electrolyte slurry 15A contains an ionic liquid and an electrolyte salt as the ionic liquid electrolyte, the salt concentration of the electrolyte salt per unit volume of the ionic liquid in the ionic liquid electrolyte is 0.3 mol / L or more, 0.5 mol / L L or more, 1.0 mol / L or more, 1.2 mol / L or more, or 1.5 mol / L or more, 3.0 mol / L or less, 2.7 mol / L or less, 2.5 mol / L or less, It may be 2.3 mol / L or less, or 2.0 mol / L or less. In the ionic liquid electrolyte, the salt concentration of the electrolyte salt per unit volume of the ionic liquid is 0.3 to 3.0 mol / L, 0.3 to 2.7 mol / L, 0.3 to 2.5 mol / L, 0.3 to 2.3 mol / L, 0.3 to 2.0 mol / L, 0.5 to 3.0 mol / L, 0.5 to 2.7 mol / L, 0.5 to 2.5 mol / L, 0.5 to 2.3 mol / L, 0.5 to 2.0 mol / L, 1.0 to 3.0 mol / L, 1.0 to 2.7 mol / L, 1.0 to 2.5 mol / L, 1.0-2.3 mol / L, 1.0-2.0 mol / L, 1.2-3.0 mol / L, 1.2-2.7 mol / L, 1.2-2.5 mol / L, 1.2-2.3 mol / L, 1.2-2.0 mol / L, 1.5-3.0 mol / L, 1.5-2.7 mol / L, 1.5-2.5 mol L, it may be 1.5 ~ 2.3mol / L, or 1.5 ~ 2.0mol / L.
 電解質スラリ15Aがイオン液体電解液を含有する場合、イオン液体電解液の含有量(イオン液体及び電解質塩の含有量の合計)は、電解質スラリにおいて均一な分散状態を得る観点、及び、電極合剤層(正極合剤層10又は負極合剤層12)と電解質層7の界面を良好に形成する観点から、電解質スラリ15A中の不揮発分全量を基準として、好ましくは20質量%以上であり、より好ましくは30質量%以上であり、更に好ましくは40質量%以上である。これにより、電解質層7のイオン伝導度を高め、二次電池の電池特性を更に向上させることができる。イオン液体電解液の含有量は、電解質スラリ15中の不揮発分全量を基準として、90質量%以下、85質量%以下、又は80質量%以下であってよい。 When the electrolyte slurry 15A contains an ionic liquid electrolytic solution, the content of the ionic liquid electrolytic solution (the total content of the ionic liquid and the electrolyte salt) is obtained from the viewpoint of obtaining a uniform dispersed state in the electrolyte slurry, and an electrode mixture From the viewpoint of satisfactorily forming the interface between the layer (the positive electrode mixture layer 10 or the negative electrode mixture layer 12) and the electrolyte layer 7, it is preferably 20% by mass or more based on the total amount of nonvolatile components in the electrolyte slurry 15A. Preferably it is 30 mass% or more, More preferably, it is 40 mass% or more. Thereby, the ionic conductivity of the electrolyte layer 7 can be raised and the battery characteristic of a secondary battery can be improved further. The content of the ionic liquid electrolytic solution may be 90% by mass or less, 85% by mass or less, or 80% by mass or less based on the total nonvolatile content in the electrolyte slurry 15.
 電解質スラリ15Aにおいて、酸化物粒子16及びポリマ17の含有量の比は、二次電池の負荷特性を向上させる観点から、質量比で、酸化物粒子:ポリマ=1:0.5~1:5であってよい。同様の観点から、酸化物粒子16及びイオン液体電解液の含有量の比は、体積比で、酸化物粒子:イオン液体電解液=1:0~1:15であってよい。 In the electrolyte slurry 15A, the content ratio of the oxide particles 16 and the polymers 17 is a mass ratio from the viewpoint of improving the load characteristics of the secondary battery, and the oxide particles: polymer = 1: 0.5 to 1: 5. It may be. From the same viewpoint, the ratio of the content of the oxide particles 16 and the ionic liquid electrolyte may be a volume ratio of oxide particles: ionic liquid electrolyte = 1: 0 to 1:15.
 電解質スラリ15において、酸化物粒子16、ポリマ17及びイオン液体電解液の含有量の比は、質量比で、酸化物粒子:ポリマ:イオン液体電解液=6~67:5~83:0~86であってよい。酸化物粒子16、ポリマ17及びイオン液体電解液の含有量の比は、質量比で、酸化物粒子:ポリマ:イオン液体電解液=9~28:9~65:14~83であってもよい。 In the electrolyte slurry 15, the content ratio of the oxide particles 16, the polymer 17, and the ionic liquid electrolyte is mass ratio, and the oxide particles: polymer: ionic liquid electrolyte = 6 to 67: 5 to 83: 0 to 86 It may be. The content ratio of the oxide particles 16, the polymer 17 and the ionic liquid electrolyte may be a mass ratio of oxide particles: polymer: ionic liquid electrolyte = 9 to 28: 9 to 65:14 to 83. .
 電解質スラリ塗布工程において、電解質スラリ15Aを電極合剤中間層14Aの一面14a上に塗布する方法は、上述した電極合剤スラリを集電体13の一面13a上に塗布する方法と同様であってよい。電解質スラリ15Aを塗布する方法は、電極合剤スラリを塗布する方法と同一でも異なっていてもよい。 In the electrolyte slurry application step, the method of applying the electrolyte slurry 15A on the one surface 14a of the electrode mixture intermediate layer 14A is the same as the method of applying the electrode mixture slurry described above on the one surface 13a of the current collector 13. Good. The method of applying the electrolyte slurry 15A may be the same as or different from the method of applying the electrode mixture slurry.
 電解質スラリ塗布工程の後、電極合剤中間層14A及び電解質スラリ15Aに含まれる分散媒を揮発させる。分散媒を揮発させる方法は、上述した電極合剤スラリ中の分散媒を揮発させる方法と同様であってよい。電極合剤中間層14A及び電解質スラリ15Aの分散媒を揮発させた結果、図3(c)に示すように、集電体13、電極合剤層18A(正極合剤層10又は負極合剤層12)及び電解質層7Aをこの順に備える二次電池用電池部材19A(正極部材又は負極部材)を得ることができる。 After the electrolyte slurry application step, the dispersion medium contained in the electrode mixture intermediate layer 14A and the electrolyte slurry 15A is volatilized. The method for volatilizing the dispersion medium may be the same as the method for volatilizing the dispersion medium in the electrode mixture slurry described above. As a result of volatilizing the dispersion medium of the electrode mixture intermediate layer 14A and the electrolyte slurry 15A, as shown in FIG. 3C, the current collector 13, the electrode mixture layer 18A (the positive electrode mixture layer 10 or the negative electrode mixture layer) 12) and a battery member 19A (positive electrode member or negative electrode member) including the electrolyte layer 7A in this order can be obtained.
 本実施形態の製造方法では、電極合剤中間層14A又は電解質スラリ15Aの少なくとも一方がイオン液体及び電解質塩(イオン液体電解液)を含有している。そして、電極合剤中間層14A上に電解質スラリ15Aを塗布したときに、図3(b)に矢印で示すように、イオン液体電解液が、分散媒と共に、電極合剤中間層14Aから電解質スラリ15Aへ移動するか、電解質スラリ15Aから電極合剤中間層14Aへ移動するか、又は、電極合剤中間層14Aと電解質スラリ15Aとの間を相互に移動する。この移動は、電極合剤中間層14Aと電解質スラリ15Aとの間のイオン液体電解液の濃度差を小さくしようとする作用、重力による作用、又は毛細管現象に基づくと推察される。 In the manufacturing method of this embodiment, at least one of the electrode mixture intermediate layer 14A or the electrolyte slurry 15A contains an ionic liquid and an electrolyte salt (ionic liquid electrolytic solution). Then, when the electrolyte slurry 15A is applied onto the electrode mixture intermediate layer 14A, as shown by the arrow in FIG. 3B, the ionic liquid electrolytic solution is mixed with the dispersion medium from the electrode mixture intermediate layer 14A. It moves to 15A, moves from the electrolyte slurry 15A to the electrode mixture intermediate layer 14A, or moves between the electrode mixture intermediate layer 14A and the electrolyte slurry 15A. This movement is presumed to be based on the action of reducing the concentration difference of the ionic liquid electrolyte between the electrode mixture intermediate layer 14A and the electrolyte slurry 15A, the action of gravity, or the capillary phenomenon.
 本実施形態の製造方法によれば、電極合剤中間層14A上に電解質スラリ15Aを塗布することによって電解質層7Aを形成するため、電極合剤中間層14Aの表面に微細な凹凸が存在しても、電解質スラリ15Aがその凹部を埋めて平坦化するように配置される。その結果、得られた電池部材19Aでは、電極合剤層18Aと電解質層7Aとが緻密に密着した良好な界面が形成されている。また、電池部材19Aでは、電解質スラリ塗布工程において、電解質スラリ15Aと電極合剤中間層14Aとの間でイオン液体電解液が相互に移動し得るため、電極合剤層18A中においては、イオン液体電解液が電極活物質の周りに存在しやすくなる。よって、電池部材19Aにおいては、電極活物質/電解質の界面が良好に形成されることになる。 According to the manufacturing method of this embodiment, since the electrolyte layer 7A is formed by applying the electrolyte slurry 15A on the electrode mixture intermediate layer 14A, there are fine irregularities on the surface of the electrode mixture intermediate layer 14A. Also, the electrolyte slurry 15A is arranged so as to fill and flatten the recess. As a result, in the obtained battery member 19A, a good interface is formed in which the electrode mixture layer 18A and the electrolyte layer 7A are closely adhered. In the battery member 19A, the ionic liquid electrolyte solution can move between the electrolyte slurry 15A and the electrode mixture intermediate layer 14A in the electrolyte slurry application step. The electrolyte tends to exist around the electrode active material. Therefore, in the battery member 19A, the electrode active material / electrolyte interface is well formed.
 このように、電池部材19Aでは、電極合剤層18A/電解質層7Aの界面が良好に形成されて密着性に優れると共に、電極活物質/電解質の界面も良好に形成される。したがって、この電池部材19Aを使用した二次電池は、放電特性等の電池特性が優れる。 Thus, in the battery member 19A, the electrode mixture layer 18A / electrolyte layer 7A interface is well formed and has excellent adhesion, and the electrode active material / electrolyte interface is also well formed. Therefore, the secondary battery using this battery member 19A is excellent in battery characteristics such as discharge characteristics.
[第2実施形態]
 次に、第2実施形態に係る二次電池用電池部材の製造方法を説明する。図4は、第2実施形態に係る二次電池用電池部材の製造方法を示す模式断面図である。この製造方法では、まず、図4(a)に示すように、集電体13(正極集電体9又は負極集電体11)の一面13a上に、電極活物質を含有する電極合剤中間層14Bを形成する(電極合剤中間層形成工程)。
[Second Embodiment]
Next, the manufacturing method of the battery member for secondary batteries which concerns on 2nd Embodiment is demonstrated. FIG. 4 is a schematic cross-sectional view illustrating a method for manufacturing a battery member for a secondary battery according to the second embodiment. In this manufacturing method, first, as shown in FIG. 4A, an electrode mixture intermediate containing an electrode active material is provided on one surface 13a of the current collector 13 (positive electrode current collector 9 or negative electrode current collector 11). The layer 14B is formed (electrode mixture intermediate layer forming step).
 電極合剤中間層形成工程は、上述した第1実施形態と同様に、電極合剤スラリを集電体13上に塗布する方法により実施される。電極合剤スラリは、少なくとも電極活物質及び分散媒を含有する。電極活物質及び分散媒の種類及び含有量は、上述した第1実施形態における電極活物質及び分散媒の種類及び含有量とそれぞれ同様であってよい。 The electrode mixture intermediate layer forming step is performed by a method of applying an electrode mixture slurry onto the current collector 13 as in the first embodiment. The electrode mixture slurry contains at least an electrode active material and a dispersion medium. The types and contents of the electrode active material and the dispersion medium may be the same as the types and contents of the electrode active material and the dispersion medium in the first embodiment described above.
 電極合剤スラリは、他の成分として、イオン液体、電解質塩、導電剤、結着剤等を更に含んでいてもよい。この場合、これらの材料を更に含有する電極合剤中間層14Bが形成される。 The electrode mixture slurry may further contain an ionic liquid, an electrolyte salt, a conductive agent, a binder and the like as other components. In this case, the electrode mixture intermediate layer 14B further containing these materials is formed.
 電極合剤スラリは、一実施形態において、イオン液体及び電解質塩を含有する。この場合、電極合剤スラリは、イオン液体電解液として、イオン液体及び電解質塩を含有してよい。電極合剤スラリは、イオン液体及び電解質塩を含有しなくてもよいが、その場合、後述するスラリ(電解質スラリ)がイオン液体を含有する。すなわち、電極合剤スラリ及び電解質スラリの少なくとも一方は、イオン液体及び電解質塩を含有する。 In one embodiment, the electrode mixture slurry contains an ionic liquid and an electrolyte salt. In this case, the electrode mixture slurry may contain an ionic liquid and an electrolyte salt as the ionic liquid electrolytic solution. The electrode mixture slurry may not contain the ionic liquid and the electrolyte salt, but in that case, the slurry (electrolyte slurry) described later contains the ionic liquid. That is, at least one of the electrode mixture slurry and the electrolyte slurry contains an ionic liquid and an electrolyte salt.
 電極合剤スラリがイオン液体及び電解質塩を含有する場合、イオン液体及び電解質塩は、上述した第1実施形態において電極合剤スラリに含まれるイオン液体及び電解質塩と同様のものであってよい。 When the electrode mixture slurry contains an ionic liquid and an electrolyte salt, the ionic liquid and the electrolyte salt may be the same as the ionic liquid and the electrolyte salt contained in the electrode mixture slurry in the first embodiment described above.
 電極合剤スラリが、イオン液体電解液としてイオン液体及び電解質塩を含有する場合、イオン液体電解液におけるイオン液体の単位体積あたりの電解質塩の塩濃度、及び、イオン液体電解液の含有量は、上述した第1実施形態における範囲と同様であってよい。 When the electrode mixture slurry contains an ionic liquid and an electrolyte salt as the ionic liquid electrolyte, the salt concentration of the electrolyte salt per unit volume of the ionic liquid in the ionic liquid electrolyte and the content of the ionic liquid electrolyte are: It may be the same as the range in the first embodiment described above.
 導電剤及び結着剤の種類及び含有量は、上述した第1実施形態における導電剤及び結着剤の種類及び含有量とそれぞれ同様であってよい。 The type and content of the conductive agent and the binder may be the same as the type and content of the conductive agent and the binder in the first embodiment described above.
 次に、図4(b)に示すように、電極合剤中間層14B中に、ポリマを含有する溶液(ポリマ溶液)20を浸透させる(ポリマ溶液浸透工程)。 Next, as shown in FIG. 4B, a polymer-containing solution (polymer solution) 20 is infiltrated into the electrode mixture intermediate layer 14B (polymer solution infiltration step).
 ポリマ溶液20は、一実施形態において、下記式(1)で表される構造単位を有するポリマと、イオン液体と、電解質塩とを含有する。
Figure JPOXMLDOC01-appb-C000008
In one embodiment, the polymer solution 20 contains a polymer having a structural unit represented by the following formula (1), an ionic liquid, and an electrolyte salt.
Figure JPOXMLDOC01-appb-C000008
 式(1)中、Xは対アニオンを示す。Xとしては、例えば、BF (テトラフルオロボラートアニオン)、PF (ヘキサフルオロホスファートアニオン)、[FSI]、[TFSI]、[f3C]、[BOB]、BF(CF、BF(C、BF(C、BF(C、C(SOCF 、CFSO、CFCOO、RCOO(Rは、炭素数1~4のアルキル基、フェニル基、又はナフチル基である。)等が挙げられる。これらの中でも、Xは、好ましくはBF 、PF 、[FSI]、[TFSI]、及び[f3C]からなる群より選ばれる少なくとも1種、より好ましくは[TFSI]又は[FSI]である。 In the formula (1), X represents a counter anion. Examples of X include BF 4 (tetrafluoroborate anion), PF 6 (hexafluorophosphate anion), [FSI] , [TFSI] , [f3C] , [BOB] , and BF. 3 (CF 3 ) , BF 3 (C 2 F 5 ) , BF 3 (C 3 F 7 ) , BF 3 (C 4 F 9 ) , C (SO 2 CF 3 ) 3 , CF 3 SO 2 O , CF 3 COO , RCOO (R represents an alkyl group having 1 to 4 carbon atoms, a phenyl group, or a naphthyl group). Among these, X is preferably at least one selected from the group consisting of BF 4 , PF 6 , [FSI] , [TFSI] , and [f3C] , more preferably [TFSI] −. Or [FSI] .
 式(1)で表される構造単位を有するポリマの粘度平均分子量Mv(g・mol-1)は、特に制限されないが、好ましくは1.0×10以上であり、より好ましくは3.0×10以上である。また、ポリマの粘度平均分子量は、好ましくは5.0×10以下であり、より好ましくは1.0×10である。また、粘度平均分子量が5.0×10以下であると、ポリマ溶液20を浸透させる際のハンドリング性がより高まる傾向にある。 The viscosity average molecular weight Mv (g · mol −1 ) of the polymer having the structural unit represented by the formula (1) is not particularly limited, but is preferably 1.0 × 10 5 or more, more preferably 3.0. × 10 5 or more. The viscosity average molecular weight of the polymer is preferably 5.0 × 10 6 or less, and more preferably 1.0 × 10 6 . Moreover, it exists in the tendency for the handleability at the time of making the polymer solution 20 penetrate | invade more that a viscosity average molecular weight is 5.0 * 10 < 6 > or less.
 本明細書において、「粘度平均分子量」とは、一般的な測定方法である粘度法によって評価することができ、例えば、JIS K 7367-3:1999に基づいて測定した極限粘度数[η]から算出することができる。 In this specification, the “viscosity average molecular weight” can be evaluated by a viscosity method which is a general measurement method. For example, from the intrinsic viscosity [η] measured based on JIS K 7367-3: 1999. Can be calculated.
 式(1)で表される構造単位を有するポリマは、イオン伝導性の観点から、式(1)で表される構造単位のみからなるポリマ、すなわちホモポリマであることが好ましい。 The polymer having the structural unit represented by the formula (1) is preferably a polymer consisting only of the structural unit represented by the formula (1), that is, a homopolymer, from the viewpoint of ion conductivity.
 式(1)で表される構造単位を有するポリマは、下記式(1A)で表されるポリマであってもよい。
Figure JPOXMLDOC01-appb-C000009
The polymer having the structural unit represented by the formula (1) may be a polymer represented by the following formula (1A).
Figure JPOXMLDOC01-appb-C000009
 式(1A)中、nは300~4000であり、Yは対アニオンを示す。Yは、Xで例示したものと同様のものを用いることができる。 In the formula (1A), n is 300 to 4000, and Y represents a counter anion. As Y , those similar to those exemplified for X can be used.
 nは、300以上、好ましくは400以上であり、より好ましくは500以上であり、また、4000以下であってよく、好ましくは3500以下であり、より好ましくは3000以下である。nは、300~4000、好ましくは400~3500、より好ましくは500~3000である。 N is 300 or more, preferably 400 or more, more preferably 500 or more, and may be 4000 or less, preferably 3500 or less, more preferably 3000 or less. n is 300 to 4000, preferably 400 to 3500, more preferably 500 to 3000.
 式(1)で表される構造単位を有するポリマの製造方法は、特に制限されないが、例えば、Journal of Power Sources 2009,188,558-563に記載の製造方法を用いることができる。 Although the manufacturing method of the polymer which has a structural unit represented by Formula (1) is not restrict | limited in particular, For example, the manufacturing method of Journal of Power Sources 2009,188,558-563 can be used.
 式(1)で表される構造単位を有するポリマ(X=[TFSI])は、例えば、以下の製造方法によって、得ることができる。 The polymer (X = [TFSI] ) having the structural unit represented by the formula (1) can be obtained, for example, by the following production method.
 まず、ポリ(ジアリルジメチルアンモニウム)クロライド([P(DADMA)][Cl])を脱イオン水に溶解し、撹拌して[P(DADMA)][Cl]水溶液を作製する。[P(DADMA)][Cl]は、例えば、市販品をそのまま用いることができる。次いで、別途、Li[TFSI]を脱イオン水に溶解し、Li[TFSI]を含む水溶液を作製する。 First, poly (diallyldimethylammonium) chloride ([P (DADMA)] [Cl]) is dissolved in deionized water and stirred to produce an aqueous solution [P (DADMA)] [Cl]. For [P (DADMA)] [Cl], for example, a commercially available product can be used as it is. Then, separately, Li [TFSI] is dissolved in deionized water to prepare an aqueous solution containing Li [TFSI].
 その後、[P(DADMA)][Cl]に対するLi[TFSI]のモル比(Li[TFSI]のモル量/[P(DADMA)][Cl]のモル量)が1.2~2.0になるように、2つの水溶液を混合して2~8時間撹拌し、固体を析出させ、得られた固体をろ過回収する。脱イオン水を用いて固体を洗浄し、12~48時間真空乾燥することによって、式(1)で表される構造単位を有するポリマ([P(DADMA)][TFSI])を得ることができる。 Thereafter, the molar ratio of Li [TFSI] to [P (DADMA)] [Cl] (molar amount of Li [TFSI] / molar amount of [P (DADMA)] [Cl]) was 1.2 to 2.0. The two aqueous solutions are mixed and stirred for 2 to 8 hours to precipitate a solid, and the obtained solid is collected by filtration. The polymer having the structural unit represented by the formula (1) ([P (DADMA)] [TFSI]) can be obtained by washing the solid with deionized water and vacuum drying for 12 to 48 hours. .
 式(1)で表される構造単位を有するポリマは、ポリマ溶液全量を基準として、好ましくは10質量%以上であり、より好ましくは20質量%以上であり、更に好ましくは30質量%以上であり、また、好ましくは80質量%以下であり、より好ましくは75質量%以下であり、更に好ましくは70質量%以下である。 The polymer having the structural unit represented by the formula (1) is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more, based on the total amount of the polymer solution. Moreover, it is preferably 80% by mass or less, more preferably 75% by mass or less, and further preferably 70% by mass or less.
 ポリマ溶液20に含まれるイオン液体及び電解質塩は、上述した第1実施形態において使用できるイオン液体及び電解質塩と同様のものであってよい。ポリマ溶液20に含まれるイオン液体及び電解質塩は、第2実施形態の電極合剤スラリに含まれるイオン液体及び電解質塩と互いに同一でも異なっていてもよい。 The ionic liquid and electrolyte salt contained in the polymer solution 20 may be the same as the ionic liquid and electrolyte salt that can be used in the first embodiment described above. The ionic liquid and electrolyte salt contained in the polymer solution 20 may be the same as or different from the ionic liquid and electrolyte salt contained in the electrode mixture slurry of the second embodiment.
 イオン液体及び電解質塩は、イオン液体電解液としてポリマ溶液20に添加されてもよい。この場合、イオン液体電解液において、イオン液体の単位体積あたりの電解質塩の塩濃度は、0.3mol/L以上、0.5mol/L以上、又は1.0mol/L以上であってよく、3.0mol/L以下、2.7mol/L以下、又は2.5mol/L以下であってよい。 The ionic liquid and the electrolyte salt may be added to the polymer solution 20 as an ionic liquid electrolytic solution. In this case, in the ionic liquid electrolyte, the salt concentration of the electrolyte salt per unit volume of the ionic liquid may be 0.3 mol / L or more, 0.5 mol / L or more, or 1.0 mol / L or more. It may be 0.0 mol / L or less, 2.7 mol / L or less, or 2.5 mol / L or less.
 イオン液体電解液の含有量は、ポリマ溶液全量を基準として、好ましくは3質量%以上であり、より好ましくは5質量%以上であり、更に好ましくは10質量%以上であり、また、好ましくは80質量%以下であり、より好ましくは75質量%以下であり、更に好ましくは70質量%以下である。 The content of the ionic liquid electrolytic solution is preferably 3% by mass or more, more preferably 5% by mass or more, still more preferably 10% by mass or more, and preferably 80% based on the total amount of the polymer solution. It is not more than mass%, more preferably not more than 75 mass%, still more preferably not more than 70 mass%.
 ポリマ溶液20は、分散媒を更に含有してもよい。分散媒は有機溶剤であってよく、例えば、アセトン、エチルメチルケトン、γ-ブチロラクトン等であってよい。 The polymer solution 20 may further contain a dispersion medium. The dispersion medium may be an organic solvent, such as acetone, ethyl methyl ketone, γ-butyrolactone, and the like.
 ポリマ溶液浸透工程において、ポリマ溶液20を電極合剤中間層14Bに浸透させる方法は、図4(b)に示すように、電極合剤中間層14Bの集電体13とは反対側の面14a上にポリマ溶液20を塗布する方法である。塗布は、アプリケータによる塗布、スプレーによる塗布等であってよい。電極合剤中間層14B上に塗布されたポリマ溶液20は、図4(b)に矢印で示すように、電極合剤中間層14B中に浸透し、式(1)で表される構造単位を有するポリマを含有する電極合剤中間層14Cが形成される(図4(c))。 In the polymer solution infiltration step, as shown in FIG. 4B, the method of infiltrating the polymer solution 20 into the electrode mixture intermediate layer 14B is a surface 14a on the opposite side of the current collector 13 of the electrode mixture intermediate layer 14B. In this method, the polymer solution 20 is applied on top. The application may be application by an applicator, application by spraying, or the like. The polymer solution 20 applied on the electrode mixture intermediate layer 14B penetrates into the electrode mixture intermediate layer 14B as shown by the arrow in FIG. 4B, and the structural unit represented by the formula (1) is expressed. An electrode mixture intermediate layer 14C containing the polymer is formed (FIG. 4C).
 ポリマ溶液20を電極合剤中間層14B中に浸透させる方法は、他の方法として、電極合剤中間層14Bが形成された集電体13を、ポリマ溶液20に浸漬させる方法等であってもよい。 The method of allowing the polymer solution 20 to penetrate into the electrode mixture intermediate layer 14B may be a method of immersing the current collector 13 on which the electrode mixture intermediate layer 14B is formed in the polymer solution 20 as another method. Good.
 その後、図4(d)に示すように、電極合剤中間層14C(ポリマ溶液が浸透した電極合剤中間層)の集電体13とは反対側の面14a上に、酸化物粒子16、ポリマ17及び分散媒を含有するスラリ15B(電解質スラリ15B)を塗布する。(電解質スラリ塗布工程)。 Thereafter, as shown in FIG. 4 (d), on the surface 14a opposite to the current collector 13 of the electrode mixture intermediate layer 14C (electrode mixture intermediate layer infiltrated with the polymer solution), the oxide particles 16, A slurry 15B (electrolyte slurry 15B) containing polymer 17 and a dispersion medium is applied. (Electrolyte slurry coating process).
 電解質スラリ15Bに含まれる酸化物粒子16、ポリマ17及び分散媒の種類及びその含有量は、上述した第1実施形態における酸化物粒子16、ポリマ17及び分散媒の種類及び含有量とそれぞれ同様であってよい。酸化物粒子16は、疎水性表面を有していてよく、上述した表面処理剤での表面処理がされていてもよい。 The types and contents of the oxide particles 16, the polymer 17 and the dispersion medium contained in the electrolyte slurry 15B are the same as the types and contents of the oxide particles 16, the polymer 17 and the dispersion medium in the first embodiment described above. It may be. The oxide particles 16 may have a hydrophobic surface and may be surface-treated with the above-described surface treatment agent.
 電解質スラリ15Bは、イオン液体及び電解質塩を更に含有してもよい。この場合、電解質スラリ15Aは、イオン液体電解液として、イオン液体及び電解質塩を含有してよい。イオン液体及び電解質塩は、上述した第1実施形態において電解質スラリに含まれるイオン液体及び電解質塩と同様のものであってよい。電解質スラリ15Bに含まれるイオン液体及び電解質塩は、第2実施形態の電極合剤スラリ及びポリマ溶液20に含まれるイオン液体及び電解質塩と互いに同一でも異なっていてもよい。電解質スラリ15Bは、イオン液体及び電解質塩を含有しなくてもよい。 The electrolyte slurry 15B may further contain an ionic liquid and an electrolyte salt. In this case, the electrolyte slurry 15A may contain an ionic liquid and an electrolyte salt as the ionic liquid electrolytic solution. The ionic liquid and the electrolyte salt may be the same as the ionic liquid and the electrolyte salt included in the electrolyte slurry in the first embodiment described above. The ionic liquid and electrolyte salt contained in the electrolyte slurry 15B may be the same as or different from the ionic liquid and electrolyte salt contained in the electrode mixture slurry and polymer solution 20 of the second embodiment. The electrolyte slurry 15B may not contain an ionic liquid and an electrolyte salt.
 電解質スラリ15Bが、イオン液体電解液としてイオン液体及び電解質塩を含有する場合、イオン液体電解液におけるイオン液体の単位体積あたりの電解質塩の塩濃度、及び、イオン液体電解液の含有量は、上述した第1実施形態における範囲と同様であってよい。 When the electrolyte slurry 15B contains an ionic liquid and an electrolyte salt as the ionic liquid electrolytic solution, the salt concentration of the electrolyte salt per unit volume of the ionic liquid and the content of the ionic liquid electrolytic solution in the ionic liquid electrolytic solution are as described above. It may be the same as the range in the first embodiment.
 電解質スラリ15Bにおいて、酸化物粒子16及びポリマ17の含有量の比、酸化物粒子16及びイオン液体電解液の含有量の比、並びに、酸化物粒子16、ポリマ17及びイオン液体電解液の含有量の比は、上述した第1実施形態における組成比の範囲と同様であってよい。 In the electrolyte slurry 15B, the ratio of the content of the oxide particles 16 and the polymer 17, the ratio of the content of the oxide particles 16 and the ionic liquid electrolyte, and the content of the oxide particles 16, the polymer 17 and the ionic liquid electrolyte The ratio may be the same as the range of the composition ratio in the first embodiment described above.
 電解質スラリ15Bを塗布する方法は、上述した第1実施形態における電解質スラリ塗布工程と同様の方法によって実施されてよい。電解質スラリ15Bを塗布する方法は、第2実施形態における電極合剤スラリを塗布する方法と同一でも異なっていてもよい。 The method of applying the electrolyte slurry 15B may be performed by the same method as the electrolyte slurry applying step in the first embodiment described above. The method of applying the electrolyte slurry 15B may be the same as or different from the method of applying the electrode mixture slurry in the second embodiment.
 電解質スラリ塗布工程の後、電極合剤中間層14C及び電解質スラリ15Bの分散媒を揮発させる。分散媒を揮発させる方法は、上述した第1実施形態における方法と同様の方法であってよい。分散媒を揮発させた結果、図4(e)に示すように、集電体13、電極合剤層18B(正極合剤層10又は負極合剤層12)及び電解質層7Bをこの順に備える二次電池用電池部材19B(正極部材又は負極部材)を得ることができる。 After the electrolyte slurry coating step, the dispersion medium of the electrode mixture intermediate layer 14C and the electrolyte slurry 15B is volatilized. The method for volatilizing the dispersion medium may be the same as the method in the first embodiment described above. As a result of volatilizing the dispersion medium, as shown in FIG. 4E, the current collector 13, the electrode mixture layer 18B (the positive electrode mixture layer 10 or the negative electrode mixture layer 12), and the electrolyte layer 7B are provided in this order. A battery member 19B (positive electrode member or negative electrode member) for the secondary battery can be obtained.
 本実施形態の製造方法でも、電極合剤中間層14C又は電解質スラリ15Bの少なくとも一方がイオン液体及び電解質塩(イオン液体電解液)を含有している。そして、電極合剤中間層14C上に電解質スラリ15Bを塗布したときに、イオン液体電解液が、分散媒と共に、電極合剤中間層14Cから電解質スラリ15Bへ移動するか、電解質スラリ15Bから電極合剤中間層14Cへ移動するか、又は、電極合剤中間層14Cと電解質スラリ15Bとの間を相互に移動する。この移動は、電極合剤中間層14Cと電解質スラリ15Bとの間のイオン液体電解液の濃度差を小さくしようとする作用、重力による作用、又は毛細管現象に基づくと推察される。 Also in the manufacturing method of the present embodiment, at least one of the electrode mixture intermediate layer 14C or the electrolyte slurry 15B contains an ionic liquid and an electrolyte salt (ionic liquid electrolytic solution). Then, when the electrolyte slurry 15B is applied onto the electrode mixture intermediate layer 14C, the ionic liquid electrolyte moves from the electrode mixture intermediate layer 14C to the electrolyte slurry 15B together with the dispersion medium, or from the electrolyte slurry 15B to the electrode mixture 15B. It moves to the agent intermediate layer 14C or moves between the electrode mixture intermediate layer 14C and the electrolyte slurry 15B. This movement is presumed to be based on the action of reducing the concentration difference of the ionic liquid electrolyte between the electrode mixture intermediate layer 14C and the electrolyte slurry 15B, the action of gravity, or the capillary phenomenon.
 本実施形態の製造方法によっても、電極合剤中間層14C上に電解質スラリ15Bを塗布することによって電解質層7Bを形成するため、電極合剤中間層14Cの表面に微細な凹凸が存在しても、電解質スラリ15Bがその凹部を埋めて平坦化するように配置される。その結果、得られた電池部材19Bでは、電極合剤層18Bと電解質層7Bとが緻密に密着した良好な界面が形成されている。また、電池部材19Bでは、電解質スラリ塗布工程において、電解質スラリ15Bと電極合剤中間層14Cとの間でイオン液体電解液が相互に移動し得るため、電極合剤層18B中においては、イオン液体電解液が電極活物質の周りに存在しやすくなる。よって、電池部材19Bにおいても、電極活物質/電解質の界面が良好に形成されることになる。 Even in the manufacturing method of the present embodiment, since the electrolyte layer 7B is formed by applying the electrolyte slurry 15B on the electrode mixture intermediate layer 14C, even if fine irregularities exist on the surface of the electrode mixture intermediate layer 14C. The electrolyte slurry 15B is disposed so as to fill and flatten the recess. As a result, in the obtained battery member 19B, a good interface in which the electrode mixture layer 18B and the electrolyte layer 7B are closely adhered is formed. In the battery member 19B, the ionic liquid electrolyte solution can move between the electrolyte slurry 15B and the electrode mixture intermediate layer 14C in the electrolyte slurry application step. The electrolyte tends to exist around the electrode active material. Therefore, also in the battery member 19B, the electrode active material / electrolyte interface is satisfactorily formed.
 このように、電池部材19Bでは、電極合剤層18B/電解質層7Bの界面が良好に形成されて密着性に優れると共に、電極活物質/電解質の界面も良好に形成される。したがって、この電池部材19Bを使用した二次電池では、放電特性等の電池特性が優れる。 Thus, in the battery member 19B, the electrode mixture layer 18B / electrolyte layer 7B interface is well formed and has excellent adhesion, and the electrode active material / electrolyte interface is also well formed. Therefore, the secondary battery using the battery member 19B is excellent in battery characteristics such as discharge characteristics.
 さらに、この電池部材19Bでは上述した式(1)で表されるポリマが電極合剤層18Bに含まれる。これにより、電極合剤層18Bのイオン伝導度を高めることができ、この電池部材19Bを用いた二次電池の電池特性を更に高めることができる。 Furthermore, in the battery member 19B, the polymer represented by the above formula (1) is included in the electrode mixture layer 18B. Thereby, the ion conductivity of the electrode mixture layer 18B can be increased, and the battery characteristics of the secondary battery using the battery member 19B can be further improved.
 上述した各実施形態によって製造された電池部材を備える二次電池は、種々の変形例を取りうる。 The secondary battery including the battery member manufactured according to each embodiment described above can take various modifications.
 第1の変形例として、上述した各実施形態に係る電池部材の製造方法は、いわゆるバイポーラ型二次電池に用いられる電池部材の製造方法として用いることもできる。図5は、変形例に係る二次電池の電極群の一実施形態を示す分解斜視図である。本変形例における二次電池が上述した実施形態における二次電池と異なる点は、電極群2Bが、バイポーラ電極21を備えている点である。すなわち、電極群2Bは、図5に示すように、正極6と、第1の電解質層7と、バイポーラ電極21と、第2の電解質層7と、負極8とをこの順に備えている。バイポーラ電極21は、バイポーラ集電体22と、バイポーラ集電体22の負極8側の面(正極面)に設けられた正極合剤層10と、バイポーラ集電体22の正極6側の面(負極面)に設けられた負極合剤層12とを備えている。 As a first modification, the battery member manufacturing method according to each of the above-described embodiments can also be used as a battery member manufacturing method used for a so-called bipolar secondary battery. FIG. 5 is an exploded perspective view showing an embodiment of an electrode group of a secondary battery according to a modification. The difference between the secondary battery in the present modification and the secondary battery in the above-described embodiment is that the electrode group 2 </ b> B includes the bipolar electrode 21. That is, as shown in FIG. 5, the electrode group 2 </ b> B includes the positive electrode 6, the first electrolyte layer 7, the bipolar electrode 21, the second electrolyte layer 7, and the negative electrode 8 in this order. The bipolar electrode 21 includes a bipolar current collector 22, a positive electrode mixture layer 10 provided on a surface (positive electrode surface) on the negative electrode 8 side of the bipolar current collector 22, and a surface on the positive electrode 6 side of the bipolar current collector 22 ( And a negative electrode mixture layer 12 provided on the negative electrode surface).
 このバイポーラ型二次電池は、第1の電解質層7と、正極合剤層10と、バイポーラ集電体22と、負極合剤層12と、第2の電解質層7とをこの順に備える二次電池用電池部材(バイポーラ電極部材)が含まれていると見ることができる。本発明の一実施形態に係る電池部材の製造方法は、このバイポーラ電極部材の製造方法である。 This bipolar secondary battery includes a first electrolyte layer 7, a positive electrode mixture layer 10, a bipolar current collector 22, a negative electrode mixture layer 12, and a second electrolyte layer 7 in this order. It can be seen that a battery battery member (bipolar electrode member) is included. The battery member manufacturing method according to an embodiment of the present invention is a method of manufacturing this bipolar electrode member.
 一実施形態に係るバイポーラ電極部材の製造方法は、バイポーラ集電体22の一方の面上に正極合剤中間層を形成する工程(正極合剤中間層形成工程)と、正極合剤中間層のバイポーラ集電体22とは反対側の面上に第1の電解質スラリを塗布する工程(第1の電解質スラリ塗布工程)と、バイポーラ集電体22の他の面上に負極合剤中間層を形成する工程(負極合剤中間層形成工程)と、負極合剤中間層のバイポーラ集電体22とは反対側の面上に第2の電解質スラリを塗布する工程(第2の電解質スラリ塗布工程)と、を備える。それぞれの工程は、上述した各実施形態における各工程(電極合剤中間層形成工程、電解質スラリ塗布工程)と同様の材料及び方法によって実施されてよい。なお、第1の電解質スラリと第2の電解質スラリの組成は、互いに同一の組成であってよく、異なる組成であってもよいが、好ましくは同一の組成である。 The method for manufacturing a bipolar electrode member according to one embodiment includes a step of forming a positive electrode mixture intermediate layer on one surface of the bipolar current collector 22 (positive electrode mixture intermediate layer forming step), and a positive electrode mixture intermediate layer A step of applying a first electrolyte slurry on the surface opposite to the bipolar current collector 22 (first electrolyte slurry applying step), and a negative electrode mixture intermediate layer on the other surface of the bipolar current collector 22 A step of forming (a negative electrode mixture intermediate layer forming step) and a step of applying a second electrolyte slurry on the surface of the negative electrode mixture intermediate layer opposite to the bipolar current collector 22 (second electrolyte slurry applying step) And). Each process may be implemented by the same material and method as each process (electrode mixture intermediate layer forming process, electrolyte slurry coating process) in each embodiment described above. The compositions of the first electrolyte slurry and the second electrolyte slurry may be the same composition or different compositions, but are preferably the same composition.
 本実施形態においても、電解質スラリ塗布工程の前に、正極合剤中間層又は負極合剤中間層中に、上記の式(1)で表される構造単位を有するポリマを含有する溶液を浸透させる工程(ポリマ溶液浸透工程)を更に備えてもよい。ポリマ溶液浸透工程は、上述した実施形態におけるポリマ溶液浸透工程と同様の材料及び方法によって実施されてよい。 Also in this embodiment, before the electrolyte slurry coating step, a solution containing a polymer having the structural unit represented by the above formula (1) is infiltrated into the positive electrode mixture intermediate layer or the negative electrode mixture intermediate layer. A step (polymer solution infiltration step) may be further provided. The polymer solution infiltration step may be performed by the same material and method as the polymer solution infiltration step in the above-described embodiment.
 電解質スラリ塗布工程の後、正極合剤中間層及び第1の電解質スラリの分散媒を揮発させる。同様に、負極合剤中間層及び第2の電解質スラリの分散媒を揮発させる。分散媒を揮発させる方法は、上述した実施形態における方法と同様の方法であってよい。分散媒を揮発させた結果、第1の電解質層7、正極合剤層10、バイポーラ集電体22、負極合剤層12、及び第2の電解質層7をこの順に備える二次電池用電池部材(バイポーラ電極部材)を得ることができる。 After the electrolyte slurry application step, the positive electrode mixture intermediate layer and the first electrolyte slurry dispersion medium are volatilized. Similarly, the dispersion medium of the negative electrode mixture intermediate layer and the second electrolyte slurry is volatilized. The method for volatilizing the dispersion medium may be the same as the method in the above-described embodiment. As a result of volatilizing the dispersion medium, a battery member for a secondary battery comprising the first electrolyte layer 7, the positive electrode mixture layer 10, the bipolar current collector 22, the negative electrode mixture layer 12, and the second electrolyte layer 7 in this order. (Bipolar electrode member) can be obtained.
 このようにして得られたバイポーラ電極部材でも、正極合剤層/第1の電解質層の界面、及び、負極合剤層/第2の電解質層の界面が良好に形成されて密着性に優れると共に、電極活物質/電解質の界面も良好に形成される。したがって、この電池部材を使用した二次電池(バイポーラ型二次電池)では、放電特性等の電池特性が優れる。 Even in the bipolar electrode member thus obtained, the interface of the positive electrode mixture layer / first electrolyte layer and the interface of the negative electrode mixture layer / second electrolyte layer are well formed and excellent in adhesion. Also, the electrode active material / electrolyte interface is well formed. Therefore, a secondary battery (bipolar secondary battery) using this battery member is excellent in battery characteristics such as discharge characteristics.
 第2の変形例として、上述した各実施形態に係る電池部材の製造方法は、電解質層7A,7Bを形成した後に、当該電解質層(第1の電解質層)7A,7B上に、別の電解質層(第2の電解質層)を積層する工程を更に備えていてもよい。この場合、第1の電解質層が、電極合剤層と第2の電解質層との界面を良好に形成する役割を果たすため、第1の電解質層を界面形成層と呼ぶこともできる。この製造方法により得られる電池部材を用いた二次電池は、電極群として、正極集電体、正極合剤層、第1の界面形成層、電解質層(第2の電解質層)、第2の界面形成層、負極合剤層及び負極集電体をこの順に備える。 As a second modification, the battery member manufacturing method according to each of the above-described embodiments is such that, after the electrolyte layers 7A and 7B are formed, another electrolyte is formed on the electrolyte layers (first electrolyte layers) 7A and 7B. You may further provide the process of laminating | stacking a layer (2nd electrolyte layer). In this case, since the first electrolyte layer plays a role in favorably forming the interface between the electrode mixture layer and the second electrolyte layer, the first electrolyte layer can also be called an interface forming layer. A secondary battery using a battery member obtained by this manufacturing method includes a positive electrode current collector, a positive electrode mixture layer, a first interface forming layer, an electrolyte layer (second electrolyte layer), a second electrode group as an electrode group. An interface forming layer, a negative electrode mixture layer, and a negative electrode current collector are provided in this order.
 この電極群には、一実施形態において、正極集電体と、正極合剤層と、第1の界面形成層と、電解質層とをこの順に備える第1の電池部材(正極部材)が含まれていると見ることができる。同様に、この電極群には、負極集電体と、負極合剤層と、第2の界面形成層と、電解質層とをこの順に備える第2の電池部材(負極部材)が含まれていると見ることもできる。第2の変形例に係る製造方法は、この正極部材及び負極部材の製造方法である。 In one embodiment, the electrode group includes a first battery member (positive electrode member) including a positive electrode current collector, a positive electrode mixture layer, a first interface forming layer, and an electrolyte layer in this order. You can see that. Similarly, the electrode group includes a second battery member (negative electrode member) including a negative electrode current collector, a negative electrode mixture layer, a second interface forming layer, and an electrolyte layer in this order. Can also be seen. The manufacturing method according to the second modification is a manufacturing method of the positive electrode member and the negative electrode member.
 界面形成層は、上述した各実施形態の電池部材における電解質層と同様の組成であってよい。すなわち、本変形例に係る製造方法は、上述した各実施形態において、電解質層を界面形成層と読み替えた方法である。 The interface forming layer may have the same composition as the electrolyte layer in the battery member of each embodiment described above. That is, the manufacturing method according to this modification is a method in which the electrolyte layer is replaced with the interface forming layer in each of the above-described embodiments.
 この製造方法では、正極部材における第1の界面形成層側の面上、又は負極部材における第2の界面形成層側の面上に、電解質層を配置することによって電池部材を製造することができる。このときの電解質層は、一実施形態において、上述した電解質スラリ15A,15Bがシート状に形成されたものであってよい。すなわち、樹脂からなるフィルム等の基材を用意し、この基材上に電解質スラリ15A,15Bを塗布してから分散媒を揮発させることによって電解質シートを作製する。そして、この電解質シートから基材を剥離することにより、電解質層を得ることができる。 In this manufacturing method, the battery member can be manufactured by disposing the electrolyte layer on the surface on the first interface forming layer side of the positive electrode member or on the surface of the negative electrode member on the second interface forming layer side. . In this embodiment, the electrolyte layer at this time may be one in which the above-described electrolyte slurries 15A and 15B are formed in a sheet shape. That is, a base material such as a film made of a resin is prepared, and the electrolyte slurry 15A, 15B is applied on the base material, and then the dispersion medium is volatilized to prepare an electrolyte sheet. And an electrolyte layer can be obtained by peeling a base material from this electrolyte sheet.
 第2の変形例における電解質層は、他の実施形態において、電解質スラリ15A,15Bから作製される電解質層とは異なる組成を有するものであってもよく、例えば、有機高分子固体電解質、無機固体電解質等の公知の電解質組成物が予めシート状に成形されたものであってもよい。この場合、有機高分子固体電解質はポリエチレンオキシド等であってよく、無機固体電解質は、LiLaZr12、Li6.75LaZr1.75Nb0.2512(LLZ-Nb)、Li6.75LaZr1.75Ta0.2512、Li1+c+dAl(Ti,Ge)2-cSi3-d12(式中、0≦c<2であり、0≦d<3である。なお、(Ti,Ge)は、Ti若しくはGeのいずれか一方、又はTi及びGeの両方であることを意味する。)、Li10GeP12、Li9.54Si1.741.4411.7Cl0.3等であってよい。 In other embodiments, the electrolyte layer in the second modification may have a composition different from that of the electrolyte layer produced from the electrolyte slurries 15A and 15B. For example, an organic polymer solid electrolyte, an inorganic solid A known electrolyte composition such as an electrolyte may be formed into a sheet shape in advance. In this case, the organic polymer solid electrolyte may be polyethylene oxide or the like, and the inorganic solid electrolyte may be Li 7 La 3 Zr 2 O 12 , Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 (LLZ— Nb), Li 6.75 La 3 Zr 1.75 Ta 0.25 O 12 , Li 1 + c + d Al c (Ti, Ge) 2-c Si d P 3-d O 12 (where 0 ≦ c <2 Yes, 0 ≦ d <3, where (Ti, Ge) means either Ti or Ge, or both Ti and Ge.), Li 10 GeP 2 S 12 , Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 or the like.
 このようにして得られた電池部材でも、正極合剤層/第1の界面形成層の界面、及び、負極合剤層/第2の界面形成層の界面が良好に形成されて密着性に優れると共に、電極活物質/電解質の界面も良好に形成される。さらに、界面形成層にイオン液体電解液が含まれることにより、界面形成層と電解質層との間のイオン伝導がより容易になる。結果として、本変形例に係る電池部材を用いた二次電池は、各層間の界面が良好に形成されているといえるため、この二次電池では、電池特性が優れる。 Even in the battery member obtained in this way, the positive electrode mixture layer / first interface forming layer interface and the negative electrode mixture layer / second interface forming layer interface are well formed and excellent in adhesion. At the same time, the electrode active material / electrolyte interface is well formed. Furthermore, when the ionic liquid electrolyte is included in the interface forming layer, ionic conduction between the interface forming layer and the electrolyte layer becomes easier. As a result, since the secondary battery using the battery member according to this modification can be said to have an excellent interface between the layers, the secondary battery has excellent battery characteristics.
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下において、電解質塩を溶解させたイオン液体(イオン液体電解液)の組成を表す際に、「電解質塩の濃度(M=mol/L)/電解質塩の種類/イオン液体の種類」のように表記することがある。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In the following, when expressing the composition of the ionic liquid (ionic liquid electrolytic solution) in which the electrolyte salt is dissolved, “concentration of electrolyte salt (M = mol / L) / type of electrolyte salt / type of ionic liquid” It may be written as
<試験1>
<実施例1-1>
[正極部材の作製]
 層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(正極活物質)70質量部と、アセチレンブラック(導電剤、製品名:HS-100、平均粒径48nm、デンカ株式会社製)7質量部と、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ溶液(固形分12質量%)9質量部と、イオン液体であるN-メチル-N-プロピルピロリジニウムビス(フルオロスルホニル)イミド(Py13-FSI)に電解質塩としてのリチウムビス(フルオロスルホニル)イミド(Li[FSI])を溶解させたイオン液体電解液(1.5M/Li[FSI]/Py13-FSI)を14質量部と、を分散媒であるN-メチル-2-ピロリドン(NMP)250質量部に分散させて正極合剤スラリを調製した。この正極合剤スラリを正極集電体(厚さ20μmのアルミニウム箔)上に塗工量125g/mで塗工し、80℃で12時間加熱して乾燥させ、プレスすることにより、合剤密度2.7g/cmの正極合剤中間層を形成させた。これを幅30mm、長さ45mmに切断してから、正極集電タブを取り付けた。
<Test 1>
<Example 1-1>
[Production of positive electrode member]
70 parts by mass of layered lithium / nickel / manganese / cobalt composite oxide (positive electrode active material), 7 parts by mass of acetylene black (conductive agent, product name: HS-100, average particle size 48 nm, manufactured by Denka Corporation), 9 parts by mass of a copolymer solution of vinylidene fluoride and hexafluoropropylene (solid content: 12% by mass) and N-methyl-N-propylpyrrolidinium bis (fluorosulfonyl) imide (Py13-FSI) as an ionic liquid 14 parts by mass of an ionic liquid electrolyte (1.5 M / Li [FSI] / Py13-FSI) in which lithium bis (fluorosulfonyl) imide (Li [FSI]) as a salt is dissolved, and N as a dispersion medium A positive electrode mixture slurry was prepared by dispersing in 250 parts by mass of methyl-2-pyrrolidone (NMP). This positive electrode mixture slurry was applied onto a positive electrode current collector (aluminum foil having a thickness of 20 μm) at a coating amount of 125 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed, whereby the mixture was obtained. A positive electrode mixture intermediate layer having a density of 2.7 g / cm 3 was formed. This was cut into a width of 30 mm and a length of 45 mm, and then a positive electrode current collecting tab was attached.
 第1の構造単位であるフッ化ビニリデンと、第2の構造単位であるヘキサフルオロプロピレンとのコポリマ(第2の構造単位の含有量に対する第1の構造単位の含有量の質量比=95/5。以下、PVDF-HFPとも称する。)を40質量部と、表面処理がされていない酸化物粒子であるSiO粒子(平均粒径0.1μm)を60質量部とを、分散媒であるNMP300質量部に分散させて電解質スラリを調製した。得られた電解質スラリを、正極合剤中間層の正極集電体とは反対側の面上に塗布し、80℃で12時間加熱して分散媒を揮発させて、電解質層を形成させた。これにより、正極集電体、正極合剤層及び電解質層をこの順に備える正極部材を得た。得られた正極部材における電解質層の厚さは、15±2μmであった。 Copolymer of vinylidene fluoride as the first structural unit and hexafluoropropylene as the second structural unit (mass ratio of the content of the first structural unit to the content of the second structural unit = 95/5 (Hereinafter also referred to as PVDF-HFP)), 40 parts by mass of SiO 2 particles (average particle size of 0.1 μm) which are oxide particles not subjected to surface treatment, and NMP300 as a dispersion medium. An electrolyte slurry was prepared by dispersing in mass parts. The obtained electrolyte slurry was applied on the surface of the positive electrode mixture intermediate layer opposite to the positive electrode current collector, and heated at 80 ° C. for 12 hours to volatilize the dispersion medium to form an electrolyte layer. Thereby, the positive electrode member provided with a positive electrode collector, a positive mix layer, and an electrolyte layer in this order was obtained. The thickness of the electrolyte layer in the obtained positive electrode member was 15 ± 2 μm.
[負極部材の作製]
 黒鉛(負極活物質、日立化成株式会社製)57.4質量部と、アセチレンブラック(導電剤、製品名:HS-100、平均粒径48nm、デンカ株式会社製)1.6質量部と、フッ化ビニリデンとヘキサフルオロプロピレンのコポリマ溶液(固形分12質量%)7.8質量部と、電解質塩を溶解させたイオン液体電解液(1.5M/Li[FSI]/Py13-FSI)33.2質量部とを、分散媒であるNMP250質量部に分散させて負極合剤スラリを調製した。この負極合剤スラリを負極集電体(厚さ10μmの銅箔)上に塗工量60g/mで塗工し、80℃で12時間加熱して乾燥させることにより、合剤密度1.8g/cmの負極合剤中間層を形成させた。これを幅31mm、長さ46mmに切断してから、負極集電タブを取り付けた。
[Preparation of negative electrode member]
57.4 parts by mass of graphite (negative electrode active material, manufactured by Hitachi Chemical Co., Ltd.), 1.6 parts by mass of acetylene black (conductive agent, product name: HS-100, average particle size 48 nm, manufactured by Denka Co., Ltd.), 7.8 parts by mass of a copolymer solution of vinylidene fluoride and hexafluoropropylene (solid content 12% by mass), and an ionic liquid electrolyte solution (1.5M / Li [FSI] / Py13-FSI) 33.2 in which an electrolyte salt is dissolved The negative electrode mixture slurry was prepared by dispersing the mass part in 250 mass parts of NMP as a dispersion medium. This negative electrode mixture slurry was coated on a negative electrode current collector (copper foil having a thickness of 10 μm) at a coating amount of 60 g / m 2 , heated at 80 ° C. for 12 hours and dried to obtain a mixture density of 1. A negative electrode mixture intermediate layer of 8 g / cm 3 was formed. This was cut into a width of 31 mm and a length of 46 mm, and then a negative electrode current collecting tab was attached.
 正極部材の製造方法と同様の方法により、負極合剤中間層の負極集電体とは反対側の面上に電解質スラリを塗布してから分散媒を揮発させて、電解質層を形成させた。これにより、負極集電体、負極合剤層及び電解質層をこの順に備える負極部材を得た。得られた負極部材における電解質層の厚さは、15±2μmであった。 The electrolyte layer was formed by applying an electrolyte slurry on the surface of the negative electrode mixture intermediate layer opposite to the negative electrode current collector and volatilizing the dispersion medium by the same method as the positive electrode member manufacturing method. Thereby, the negative electrode member provided with the negative electrode current collector, the negative electrode mixture layer, and the electrolyte layer in this order was obtained. The thickness of the electrolyte layer in the obtained negative electrode member was 15 ± 2 μm.
[リチウムイオン二次電池の作製]
 作製した正極部材と負極部材とを、それぞれの電解質層同士が接するように積層させることにより、電極群を作製した。この電極群を、図1に示すように、アルミニウム製のラミネートフィルムで構成された電池外装体内に収容した。この電池外装体内に、上記の正極集電タブと負極集電タブとを外部に取り出すようにして電池容器の開口部を封口し、リチウムイオン二次電池を作製した。なお、アルミニウム製のラミネートフィルムは、ポリエチレンテレフタレート(PET)フィルム/アルミニウム箔/シーラント層(ポリプロピレン等)の積層体である。作製したリチウムイオン二次電池の設計容量は20mAhであった。
[Production of lithium ion secondary battery]
The produced positive electrode member and negative electrode member were laminated so that the respective electrolyte layers were in contact with each other, thereby producing an electrode group. As shown in FIG. 1, this electrode group was housed in a battery exterior body made of an aluminum laminate film. In the battery outer package, the positive electrode current collection tab and the negative electrode current collection tab were taken out to seal the opening of the battery container, thereby producing a lithium ion secondary battery. The aluminum laminate film is a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene, etc.). The designed capacity of the produced lithium ion secondary battery was 20 mAh.
<実施例1-2>
 実施例1-1において、電解質スラリにおけるポリマの含有量を50質量部、酸化物粒子の含有量を50質量部にそれぞれ変更した以外は、実施例1-1と同様の方法によりリチウムイオン二次電池を作製した。
<Example 1-2>
In Example 1-1, a lithium ion secondary was prepared in the same manner as in Example 1-1 except that the polymer content in the electrolyte slurry was changed to 50 parts by mass and the oxide particle content was changed to 50 parts by mass. A battery was produced.
<実施例1-3>
 実施例1-1における電解質スラリに、イオン液体であるPy13-FSIに電解質塩としてのLi[FSI]を溶解させたイオン液体電解液(1.5M/Li[FSI]/Py13-FSI)14質量部を更に添加した以外は、実施例1-1と同様の方法によりリチウムイオン二次電池を作製した。
<Example 1-3>
14 mass of ionic liquid electrolyte (1.5 M / Li [FSI] / Py13-FSI) obtained by dissolving Li [FSI] as an electrolyte salt in Py13-FSI which is an ionic liquid in the electrolyte slurry in Example 1-1 A lithium ion secondary battery was produced in the same manner as in Example 1-1, except that further parts were added.
<実施例1-4>
 実施例1-3において、電解質スラリ中のイオン液体電解液(1.5M/Li[FSI]/Py13-FSI)の含有量を9質量部に変更した以外は、実施例1-3と同様の方法によりリチウムイオン二次電池を作製した。
<Example 1-4>
Example 1-3 was the same as Example 1-3 except that the content of the ionic liquid electrolyte (1.5 M / Li [FSI] / Py13-FSI) in the electrolyte slurry was changed to 9 parts by mass. A lithium ion secondary battery was produced by the method.
<実施例1-5>
 実施例1-3において、電解質スラリ中のポリマの含有量を30質量部に、酸化物粒子の含有量を20質量部に、イオン液体(1.5M/Li[FSI]/Py13-FSI)の含有量を50質量部にそれぞれ変更した以外は、実施例1-3と同様の方法によりリチウムイオン二次電池を作製した。
<Example 1-5>
In Example 1-3, the content of the polymer in the electrolyte slurry was 30 parts by mass, the content of the oxide particles was 20 parts by mass, and the ionic liquid (1.5M / Li [FSI] / Py13-FSI) A lithium ion secondary battery was produced in the same manner as in Example 1-3, except that the content was changed to 50 parts by mass.
<実施例1-6>
[正極部材の作製]
(正極合剤中間層の形成)
 層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(正極活物質)92.5質量部と、アセチレンブラック(導電剤、製品名:HS-100、平均粒径48nm、デンカ株式会社製)2.5質量部と、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ溶液(固形分12質量%)5質量部と、を分散媒であるNMP250質量部に分散させて正極合剤スラリを調製した。この正極合剤スラリを正極集電体(厚さ20μmのアルミニウム箔)上に塗工量125g/mで塗工し、80℃で12時間加熱して乾燥させ、プレスすることにより、合剤密度2.7g/cmの正極合剤中間層を形成させた。これを幅30mm、長さ45mmに切断してから、正極集電タブを取り付けた。
<Example 1-6>
[Production of positive electrode member]
(Formation of positive electrode mixture interlayer)
92.5 parts by mass of layered lithium / nickel / manganese / cobalt composite oxide (positive electrode active material) and acetylene black (conductive agent, product name: HS-100, average particle size 48 nm, manufactured by Denka Corporation) 2.5 A positive electrode mixture slurry was prepared by dispersing 5 parts by mass of 5 parts by mass of a copolymer solution of vinylidene fluoride and hexafluoropropylene (solid content: 12% by mass) in 250 parts by mass of NMP as a dispersion medium. This positive electrode mixture slurry was applied onto a positive electrode current collector (aluminum foil having a thickness of 20 μm) at a coating amount of 125 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed, whereby the mixture was obtained. A positive electrode mixture intermediate layer having a density of 2.7 g / cm 3 was formed. This was cut into a width of 30 mm and a length of 45 mm, and then a positive electrode current collecting tab was attached.
(ポリマ溶液に用いるポリマの合成)
 式(1)で表される構造単位を有するポリマを、ポリ(ジアリルジメチルアンモニウム)クロライドの対アニオン[Cl]を[TFSI]に変換することによって合成した。まず、[P(DADMA)][Cl]水溶液(20質量%水溶液、Aldrich社製)100質量部を、蒸留水500質量部で希釈して、ポリマの希釈溶液を得た。次に、Li[TFSI](キシダ化学株式会社製)43質量部を水100質量部に溶解し、Li[TFSI]水溶液を作製した。このLi[TFSI]水溶液を希釈溶液に滴下してから、この混合物を2時間撹拌することによって白色析出物を得た。析出物をろ過によって分離し、400質量部の蒸留水で析出物を洗浄後、再度ろ過を行った。洗浄及びろ過は5回繰り返した。その後、105℃の真空乾燥によって析出物の水分を蒸発させ、式(1)で表される構造単位を有するポリマである[P(DADMA)][TFSI]を得た。[P(DADMA)][TFSI]の粘度平均分子量は、2.11×10g・mol-1であった。
(Synthesis of polymer used for polymer solution)
A polymer having the structural unit represented by the formula (1) was synthesized by converting the counter anion [Cl] of poly (diallyldimethylammonium) chloride into [TFSI] . First, 100 parts by mass of [P (DADMA)] [Cl] aqueous solution (20% by mass aqueous solution, manufactured by Aldrich) was diluted with 500 parts by mass of distilled water to obtain a diluted polymer solution. Next, 43 parts by mass of Li [TFSI] (manufactured by Kishida Chemical Co., Ltd.) was dissolved in 100 parts by mass of water to prepare a Li [TFSI] aqueous solution. The Li [TFSI] aqueous solution was added dropwise to the diluted solution, and the mixture was stirred for 2 hours to obtain a white precipitate. The precipitate was separated by filtration, washed with 400 parts by mass of distilled water, and then filtered again. Washing and filtration were repeated 5 times. Then, the water | moisture content of the deposit was evaporated by vacuum drying of 105 degreeC, and [P (DADMA)] [TFSI] which is a polymer which has a structural unit represented by Formula (1) was obtained. The viscosity average molecular weight of [P (DADMA)] [TFSI] was 2.11 × 10 6 g · mol −1 .
 粘度平均分子量Mvは、ポリメタクリル酸メチル(PMMA)を標準物質として用いて、ウベローデ粘度計を使用して25℃におけるポリマの粘度[η]を測定した後、[η]=KMv(ここで、Kは拡張因子を示し、その値は、温度、ポリマ、及び溶媒性質に依存する。)の式に基づき、算出した。 The viscosity average molecular weight Mv is determined by measuring the viscosity [η] of the polymer at 25 ° C. using an Ubbelohde viscometer using polymethyl methacrylate (PMMA) as a standard substance, and then [η] = KMv (where, K represents an expansion factor, the value of which depends on temperature, polymer, and solvent properties.
(ポリマ溶液の調製及び塗布)
 得られたポリマ([P(DADMA)][TFSI])24質量部に対して、電解質塩としてのLi[FSI]を18質量部、イオン液体としてのPy13-FSI(関東化学株式会社製)を58質量部、及び分散媒としてのアセトンを72質量部加えて撹拌し、ポリマ溶液を得た。
(Preparation and application of polymer solution)
For 24 parts by mass of the obtained polymer ([P (DADMA)] [TFSI]), 18 parts by mass of Li [FSI] as an electrolyte salt and Py13-FSI (manufactured by Kanto Chemical Co., Inc.) as an ionic liquid 58 parts by mass and 72 parts by mass of acetone as a dispersion medium were added and stirred to obtain a polymer solution.
 調製したポリマ溶液を、ドクターブレード法にて、ギャップ150μmで正極合剤中間層上に塗布した。その後、ポリマ溶液を60℃で12時間真空乾燥させた。これにより、式(1)で表されるポリマを正極合剤中間層に含有させた。 The prepared polymer solution was applied onto the positive electrode mixture intermediate layer with a gap of 150 μm by the doctor blade method. Thereafter, the polymer solution was vacuum-dried at 60 ° C. for 12 hours. Thereby, the polymer represented by Formula (1) was contained in the positive electrode mixture intermediate layer.
 次に、実施例1-1と同様の組成である電解質スラリを調製し、実施例1-1と同様の方法により、正極集電体、正極合剤層及び電解質層をこの順に備える正極部材を得た。 Next, an electrolyte slurry having the same composition as in Example 1-1 was prepared, and a positive electrode member including a positive electrode current collector, a positive electrode mixture layer, and an electrolyte layer in this order was prepared by the same method as in Example 1-1. Obtained.
[負極部材の作製]
 黒鉛(負極活物質、日立化成株式会社製)92質量部と、アセチレンブラック(導電剤、製品名:HS-100、平均粒径48nm、デンカ株式会社製)3質量部と、フッ化ビニリデンとヘキサフルオロプロピレンのコポリマ溶液(固形分12質量%)5質量部とを、分散媒であるNMP250質量部に分散させて負極合剤スラリを調製した。この負極合剤スラリを負極集電体(厚さ10μmの銅箔)上に塗工量60g/mで塗工し、80℃で12時間加熱して乾燥させ、プレスすることにより、合剤密度1.8g/cmの負極合剤中間層を形成させた。これを幅31mm、長さ46mmに切断してから、負極集電タブを取り付けた。
[Preparation of negative electrode member]
92 parts by mass of graphite (negative electrode active material, manufactured by Hitachi Chemical Co., Ltd.), 3 parts by mass of acetylene black (conductive agent, product name: HS-100, average particle size 48 nm, manufactured by Denka Co., Ltd.), vinylidene fluoride and hexa A negative electrode mixture slurry was prepared by dispersing 5 parts by mass of a copolymer of fluoropropylene (solid content: 12% by mass) in 250 parts by mass of NMP as a dispersion medium. This negative electrode mixture slurry was coated on a negative electrode current collector (copper foil having a thickness of 10 μm) at a coating amount of 60 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed to form a mixture. A negative electrode mixture intermediate layer having a density of 1.8 g / cm 3 was formed. This was cut into a width of 31 mm and a length of 46 mm, and then a negative electrode current collecting tab was attached.
 上述した正極部材と同様に、式(1)で表される構造単位を有するポリマである[P(DADMA)][TFSI]を含むポリマを負極合剤中間層に含有させた。さらに、実施例1-1と同様の方法により、負極集電体、正極合剤層及び電解質層をこの順に備える負極部材を得た。 Similarly to the positive electrode member described above, a polymer containing [P (DADMA)] [TFSI], which is a polymer having the structural unit represented by the formula (1), was included in the negative electrode mixture intermediate layer. Further, a negative electrode member including a negative electrode current collector, a positive electrode mixture layer, and an electrolyte layer in this order was obtained by the same method as in Example 1-1.
[リチウムイオン二次電池の作製]
 得られた正極部材及び負極部材を用いて、実施例1-1と同様の方法によりリチウムイオン二次電池を作製した。
[Production of lithium ion secondary battery]
Using the obtained positive electrode member and negative electrode member, a lithium ion secondary battery was produced in the same manner as in Example 1-1.
<実施例1-7>
 実施例1-6において、ポリマ溶液に含まれるイオン液体をEMI-FSIに変更した以外は、実施例1-6と同様にリチウムイオン二次電池を作製した。
<Example 1-7>
A lithium ion secondary battery was produced in the same manner as in Example 1-6 except that in Example 1-6, the ionic liquid contained in the polymer solution was changed to EMI-FSI.
<実施例1-8>
[正極部材の作製]
 層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(正極活物質)92.5質量部と、アセチレンブラック(導電剤、製品名:HS-100、平均粒径48nm、デンカ株式会社製)2.5質量部と、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ溶液(固形分12質量%)5質量部と、を分散媒であるNMP250質量部に分散させて正極合剤スラリを調製した。この正極合剤スラリを正極集電体(厚さ20μmのアルミニウム箔)上に塗工量125g/mで塗工し、80℃で12時間加熱して乾燥させ、プレスすることにより、合剤密度2.7g/cmの正極合剤中間層を形成させた。これを幅30mm、長さ45mmに切断してから、正極集電タブを取り付けた。
<Example 1-8>
[Production of positive electrode member]
92.5 parts by mass of layered lithium / nickel / manganese / cobalt composite oxide (positive electrode active material) and acetylene black (conductive agent, product name: HS-100, average particle size 48 nm, manufactured by Denka Corporation) 2.5 A positive electrode mixture slurry was prepared by dispersing 5 parts by mass of 5 parts by mass of a copolymer solution of vinylidene fluoride and hexafluoropropylene (solid content: 12% by mass) in 250 parts by mass of NMP as a dispersion medium. This positive electrode mixture slurry was applied onto a positive electrode current collector (aluminum foil having a thickness of 20 μm) at a coating amount of 125 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed, whereby the mixture was obtained. A positive electrode mixture intermediate layer having a density of 2.7 g / cm 3 was formed. This was cut into a width of 30 mm and a length of 45 mm, and then a positive electrode current collecting tab was attached.
 PVDF-HFPを30質量部と、表面処理がされていないSiO粒子(平均粒径0.1μm)を20質量部と、イオン液体電解液(1.5M/Li[FSI]/Py13-FSI)50質量部とを、分散媒であるNMP300質量部に分散させて電解質スラリを調製した。得られた電解質スラリを、正極合剤中間層の正極集電体とは反対側の面上に塗布し、80℃で12時間加熱して分散媒を揮発させて、電解質層を形成させた。これにより、正極集電体、正極合剤層及び電解質層をこの順に備える正極部材を得た。得られた正極部材における電解質層の厚さは、15±2μmであった。 30 parts by mass of PVDF-HFP, 20 parts by mass of untreated SiO 2 particles (average particle size 0.1 μm), and ionic liquid electrolyte (1.5 M / Li [FSI] / Py13-FSI) An electrolyte slurry was prepared by dispersing 50 parts by mass in 300 parts by mass of NMP as a dispersion medium. The obtained electrolyte slurry was applied on the surface of the positive electrode mixture intermediate layer opposite to the positive electrode current collector, and heated at 80 ° C. for 12 hours to volatilize the dispersion medium to form an electrolyte layer. Thereby, the positive electrode member provided with a positive electrode collector, a positive mix layer, and an electrolyte layer in this order was obtained. The thickness of the electrolyte layer in the obtained positive electrode member was 15 ± 2 μm.
[負極部材の作製]
 黒鉛(負極活物質、日立化成株式会社製)92質量部と、アセチレンブラック(導電剤、製品名:HS-100、平均粒径48nm、デンカ株式会社製)3質量部と、フッ化ビニリデンとヘキサフルオロプロピレンのコポリマ溶液(固形分12質量%)5質量部とを、分散媒であるNMP250質量部に分散させて負極合剤スラリを調製した。この負極合剤スラリを負極集電体(厚さ10μmの銅箔)上に塗工量60g/mで塗工し、80℃で12時間加熱して乾燥させ、プレスすることにより、合剤密度1.8g/cmの負極合剤中間層を形成させた。これを幅31mm、長さ46mmに切断してから、負極集電タブを取り付けた。
[Preparation of negative electrode member]
92 parts by mass of graphite (negative electrode active material, manufactured by Hitachi Chemical Co., Ltd.), 3 parts by mass of acetylene black (conductive agent, product name: HS-100, average particle size 48 nm, manufactured by Denka Co., Ltd.), vinylidene fluoride and hexa A negative electrode mixture slurry was prepared by dispersing 5 parts by mass of a copolymer of fluoropropylene (solid content: 12% by mass) in 250 parts by mass of NMP as a dispersion medium. This negative electrode mixture slurry was coated on a negative electrode current collector (copper foil having a thickness of 10 μm) at a coating amount of 60 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed to form a mixture. A negative electrode mixture intermediate layer having a density of 1.8 g / cm 3 was formed. This was cut into a width of 31 mm and a length of 46 mm, and then a negative electrode current collecting tab was attached.
 正極部材の製造方法と同様の方法により、負極合剤中間層の負極集電体とは反対側の面上に電解質スラリを塗布してから分散媒を揮発させて、電解質層を形成させた。これにより、負極集電体、負極合剤層及び電解質層をこの順に備える負極部材を得た。得られた負極部材における電解質層の厚さは、15±2μmであった。 The electrolyte layer was formed by applying an electrolyte slurry on the surface of the negative electrode mixture intermediate layer opposite to the negative electrode current collector and volatilizing the dispersion medium by the same method as the positive electrode member manufacturing method. Thereby, the negative electrode member provided with the negative electrode current collector, the negative electrode mixture layer, and the electrolyte layer in this order was obtained. The thickness of the electrolyte layer in the obtained negative electrode member was 15 ± 2 μm.
[リチウムイオン二次電池の作製]
 得られた正極部材及び負極部材を用いて、実施例1-1と同様の方法によりリチウムイオン二次電池を作製した。
[Production of lithium ion secondary battery]
Using the obtained positive electrode member and negative electrode member, a lithium ion secondary battery was produced in the same manner as in Example 1-1.
<実施例1-9>
 実施例1-8において、電解質スラリのイオン液体電解液を1.5M/Li[FSI]/EMI-FSIに変更した以外は、実施例1-8と同様の方法によりリチウムイオン二次電池を作製した。
<Example 1-9>
A lithium ion secondary battery was fabricated in the same manner as in Example 1-8, except that the electrolyte slurry ionic liquid electrolyte was changed to 1.5 M / Li [FSI] / EMI-FSI in Example 1-8. did.
<電極合剤層と電解質層の密着性の確認>
 実施例1-8に係る正極部材及び負極部材(電池部材)を、それぞれイオンミリング(E-3500、株式会社日立ハイテクノロジーズ製)で切削し、電池部材の断面を露出させた。走査型電子顕微鏡(SEM、JSM-6010LA、日本電子株式会社製)で断面を観察し、目視によって電極合剤層と電解質層との間に剥離している箇所がないかを確認した。また、電極活物質(正極活物質及び負極活物質)の周囲に空隙がないかも確認した。実施例1-8に係る電池部材の断面を観察したSEM画像を、図6に示す。なお、図6(a)は正極部材の断面、図6(b)は負極部材の断面を示している。
<Confirmation of adhesion between electrode mixture layer and electrolyte layer>
The positive electrode member and the negative electrode member (battery member) according to Example 1-8 were each cut by ion milling (E-3500, manufactured by Hitachi High-Technologies Corporation) to expose the cross section of the battery member. The cross-section was observed with a scanning electron microscope (SEM, JSM-6010LA, manufactured by JEOL Ltd.), and it was confirmed by visual observation that there was no peeled portion between the electrode mixture layer and the electrolyte layer. In addition, it was also confirmed whether there were no voids around the electrode active material (positive electrode active material and negative electrode active material). FIG. 6 shows an SEM image obtained by observing a cross section of the battery member according to Example 1-8. 6A shows a cross section of the positive electrode member, and FIG. 6B shows a cross section of the negative electrode member.
 その結果、図6に示すように、実施例1-8のリチウムイオン二次電池において、電極合剤層と電解質層との間に剥離している箇所がなく、電極合剤層と電解質層との間の密着性が良好であると判断した。また、電極活物質の周囲に空隙も見られなかったため、電極活物質と電解質との界面が良好に形成されていると判断した。実施例1-1~実施例1-7及び実施例1-9についても、同様に断面を観察することにより、電極合剤層と電解質層との間の密着性が良好であること、及び電極活物質と電解質との界面が良好に形成されていることを確認した。 As a result, as shown in FIG. 6, in the lithium ion secondary battery of Example 1-8, there was no part where the electrode mixture layer and the electrolyte layer were separated, and the electrode mixture layer and the electrolyte layer It was judged that the adhesion between the two was good. Moreover, since no void was found around the electrode active material, it was determined that the interface between the electrode active material and the electrolyte was well formed. Also in Examples 1-1 to 1-7 and Example 1-9, the cross section is similarly observed, whereby the adhesion between the electrode mixture layer and the electrolyte layer is good, and the electrode It was confirmed that the interface between the active material and the electrolyte was well formed.
<試験2(参考)>
<実施例2-1>
[正極部材の作製]
 層状型リチウム・ニッケル・マンガン・コバルト複合酸化物(正極活物質)92.5質量部と、アセチレンブラック(導電剤、製品名:HS-100、平均粒径48nm、デンカ株式会社製)2.5質量部と、フッ化ビニリデンとヘキサフルオロプロピレンとのコポリマ溶液(固形分12質量%)5質量部とを、分散媒であるN-メチル-2-ピロリドン(NMP)適量に分散させて正極合剤スラリを調製した。この正極合剤スラリを正極集電体(厚さ20μmのアルミニウム箔)上に塗工量125g/mで塗工し、80℃で12時間加熱して乾燥させ、プレスすることにより、合剤密度2.7g/cmの正極合剤中間層を形成させた。これを幅30mm、長さ45mmに切断してから、正極集電タブを取り付けた。
<Test 2 (reference)>
<Example 2-1>
[Production of positive electrode member]
92.5 parts by mass of layered lithium / nickel / manganese / cobalt composite oxide (positive electrode active material) and acetylene black (conductive agent, product name: HS-100, average particle size 48 nm, manufactured by Denka Corporation) 2.5 A positive electrode mixture prepared by dispersing 5 parts by mass of a copolymer part (solid content: 12% by mass) of vinylidene fluoride and hexafluoropropylene in an appropriate amount of N-methyl-2-pyrrolidone (NMP) as a dispersion medium. A slurry was prepared. This positive electrode mixture slurry was applied onto a positive electrode current collector (aluminum foil having a thickness of 20 μm) at a coating amount of 125 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed, whereby the mixture was obtained. A positive electrode mixture intermediate layer having a density of 2.7 g / cm 3 was formed. This was cut into a width of 30 mm and a length of 45 mm, and then a positive electrode current collecting tab was attached.
 PVDF-HFPを25質量部と、表面処理がされたSiO粒子(比表面積:50m/g、表面処理:ヘキサメチルジシラザン、平均一次粒径:40nm、製品名:AEROSIL RX50、日本アエロジル株式会社製)を12質量部と、イオン液体電解液(1.0M/Li[FSI]/EMI-FSI)63質量部とを、分散媒であるNMP適量に分散させて電解質スラリを調製した。得られた電解質スラリを、正極合剤中間層の正極集電体とは反対側の面上に塗布し、80℃で12時間加熱して分散媒を揮発させて、電解質層を形成させた。これにより、正極集電体、正極合剤層及び電解質層をこの順に備える正極部材を得た。得られた正極部材における電解質層の厚さは、15±2μmであった。 25 parts by mass of PVDF-HFP and surface-treated SiO 2 particles (specific surface area: 50 m 2 / g, surface treatment: hexamethyldisilazane, average primary particle size: 40 nm, product name: AEROSIL RX50, Nippon Aerosil Co., Ltd. An electrolyte slurry was prepared by dispersing 12 parts by mass of the company) and 63 parts by mass of an ionic liquid electrolyte (1.0 M / Li [FSI] / EMI-FSI) in an appropriate amount of NMP as a dispersion medium. The obtained electrolyte slurry was applied on the surface of the positive electrode mixture intermediate layer opposite to the positive electrode current collector, and heated at 80 ° C. for 12 hours to volatilize the dispersion medium to form an electrolyte layer. Thereby, the positive electrode member provided with a positive electrode collector, a positive mix layer, and an electrolyte layer in this order was obtained. The thickness of the electrolyte layer in the obtained positive electrode member was 15 ± 2 μm.
[負極部材の作製]
 黒鉛(負極活物質、日立化成株式会社製)92質量部と、アセチレンブラック(導電剤、製品名:HS-100、平均粒径48nm、デンカ株式会社製)3質量部と、フッ化ビニリデンとヘキサフルオロプロピレンのコポリマ溶液(固形分12質量%)5質量部とを、分散媒であるNMP適量に分散させて負極合剤スラリを調製した。この負極合剤スラリを集電体(厚さ10μmの銅箔)上に塗工量60g/mで塗工し、80℃で12時間加熱して乾燥させ、プレスすることにより、合剤密度1.8g/cmの負極合剤中間層を形成させた。これを幅31mm、長さ46mmに切断してから、負極集電タブを取り付けた。
[Preparation of negative electrode member]
92 parts by mass of graphite (negative electrode active material, manufactured by Hitachi Chemical Co., Ltd.), 3 parts by mass of acetylene black (conductive agent, product name: HS-100, average particle size 48 nm, manufactured by Denka Co., Ltd.), vinylidene fluoride and hexa A negative electrode mixture slurry was prepared by dispersing 5 parts by mass of a copolymer solution of fluoropropylene (solid content: 12% by mass) in an appropriate amount of NMP as a dispersion medium. This negative electrode mixture slurry was coated on a current collector (copper foil having a thickness of 10 μm) at a coating amount of 60 g / m 2 , heated at 80 ° C. for 12 hours, dried, and pressed to obtain a mixture density. A negative electrode mixture intermediate layer of 1.8 g / cm 3 was formed. This was cut into a width of 31 mm and a length of 46 mm, and then a negative electrode current collecting tab was attached.
 正極部材の製造方法と同様の方法により、負極合剤中間層の負極集電体とは反対側の面上に上述した電解質スラリを塗布してから分散媒を揮発させて、電解質層を形成させた。これにより、負極集電体、負極合剤層及び電解質層をこの順に備える負極部材を得た。得られた負極部材における電解質層の厚さは、15±2μmであった。 By applying the above-described electrolyte slurry on the surface of the negative electrode mixture intermediate layer opposite to the negative electrode current collector, the dispersion medium is volatilized to form an electrolyte layer by the same method as the positive electrode member manufacturing method. It was. Thereby, the negative electrode member provided with the negative electrode current collector, the negative electrode mixture layer, and the electrolyte layer in this order was obtained. The thickness of the electrolyte layer in the obtained negative electrode member was 15 ± 2 μm.
[リチウムイオン二次電池の作製]
 作製した正極部材と負極部材とを、それぞれの電解質層同士が接するように積層させることにより、電極群を作製した。この電極群を、図1に示すように、アルミニウム製のラミネートフィルムで構成された電池外装体内に収容した。この電池外装体内に、上記の正極集電タブと負極集電タブとを外部に取り出すようにして電池容器の開口部を封口し、リチウムイオン二次電池を作製した。なお、アルミニウム製のラミネートフィルムは、ポリエチレンテレフタレート(PET)フィルム/アルミニウム箔/シーラント層(ポリプロピレン等)の積層体である。作製したリチウムイオン二次電池の設計容量は20mAhであった。
[Production of lithium ion secondary battery]
The produced positive electrode member and negative electrode member were laminated so that the respective electrolyte layers were in contact with each other, thereby producing an electrode group. As shown in FIG. 1, this electrode group was housed in a battery exterior body made of an aluminum laminate film. In the battery outer package, the positive electrode current collection tab and the negative electrode current collection tab were taken out to seal the opening of the battery container, thereby producing a lithium ion secondary battery. The aluminum laminate film is a laminate of polyethylene terephthalate (PET) film / aluminum foil / sealant layer (polypropylene, etc.). The designed capacity of the produced lithium ion secondary battery was 20 mAh.
<実施例2-2~実施例2-3>
 電解質スラリの調製において、電解質塩の濃度を表1に示したものに変更した以外は、実施例2-1と同様の方法によりリチウムイオン二次電池を作製した。
<Example 2-2 to Example 2-3>
A lithium ion secondary battery was produced in the same manner as in Example 2-1, except that the electrolyte salt concentration was changed to that shown in Table 1 in the preparation of the electrolyte slurry.
<実施例2-4>
 電解質スラリの調製において、PVDF-HFPを15質量部、SiO粒子を29質量部、イオン液体電解液を56質量部に変更した以外は、実施例2-1と同様の方法によりリチウムイオン二次電池を作製した。
<Example 2-4>
In the preparation of the electrolyte slurry, lithium ion secondary was prepared in the same manner as in Example 2-1, except that PVDF-HFP was changed to 15 parts by mass, SiO 2 particles to 29 parts by mass, and ionic liquid electrolyte to 56 parts by mass. A battery was produced.
<参考例2-1>
 酸化物粒子を表面処理がされていないSiO粒子(比表面積:50m/g、平均一次粒径:40nm、製品名:AEROSIL OX50、日本アエロジル株式会社製)に変更した以外は、実施例2-1と同様の方法によりリチウムイオン二次電池を作製した。
<Reference Example 2-1>
Example 2 except that the oxide particles were changed to non-surface-treated SiO 2 particles (specific surface area: 50 m 2 / g, average primary particle size: 40 nm, product name: AEROSIL OX50, manufactured by Nippon Aerosil Co., Ltd.) A lithium ion secondary battery was produced in the same manner as in -1.
 実施例2-1~実施例2-4、及び参考例2-1のリチウムイオン二次電池について、試験1と同様の方法により電極合剤層と電解質層の密着性を確認したところ、全てのリチウムイオン二次電池において、電極合剤層と電解質層との間の密着性が良好であること、及び電極活物質と電解質との界面が良好に形成されていることを確認した。 Regarding the lithium ion secondary batteries of Example 2-1 to Example 2-4 and Reference Example 2-1, the adhesion between the electrode mixture layer and the electrolyte layer was confirmed by the same method as in Test 1. In the lithium ion secondary battery, it was confirmed that the adhesion between the electrode mixture layer and the electrolyte layer was good and that the interface between the electrode active material and the electrolyte was well formed.
<放電特性の評価>
 0.1Cの定電流充電を上限電圧4.2Vまで行った。その後、0.1Cの電流値で終止電圧2.7Vの定電流放電を行い、この放電時の容量を電流値0.1Cにおける放電容量とした。次に、0.1Cの定電流充電を上限電圧4.2Vまで行った後、0.5Cの電流値で終止電圧2.7Vの定電流放電を行い、この放電時の容量を電流値0.5Cにおける放電容量とした。以下の式により放電容量維持率(0.5C/0.1C)を算出した。結果を表1に示す。
 放電容量維持率(%)=(電流値0.5Cにおける放電容量/電流値0.1Cにおける放電容量)×100
<Evaluation of discharge characteristics>
0.1 C constant current charging was performed up to an upper limit voltage of 4.2 V. Thereafter, constant current discharge with a final voltage of 2.7 V was performed at a current value of 0.1 C, and the capacity at the time of discharge was defined as the discharge capacity at a current value of 0.1 C. Next, after performing constant current charging at 0.1 C up to an upper limit voltage of 4.2 V, constant current discharging at a final voltage of 2.7 V is performed at a current value of 0.5 C, and the capacity at the time of discharge is set to a current value of 0.2 V. The discharge capacity was 5C. The discharge capacity retention ratio (0.5 C / 0.1 C) was calculated by the following formula. The results are shown in Table 1.
Discharge capacity retention rate (%) = (discharge capacity at current value 0.5 C / discharge capacity at current value 0.1 C) × 100
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 1…二次電池、6…正極、7…電解質層、8…負極、9…正極集電体、10…正極合剤層、11…負極集電体、12…負極合剤層、13…集電体、14A,14B,14C…電極合剤中間層、15A,15B…スラリ(電解質スラリ)、16…酸化物粒子、17…ポリマ、18A,18B…電極合剤層、19A,19B…二次電池用電池部材、20…ポリマ溶液。 DESCRIPTION OF SYMBOLS 1 ... Secondary battery, 6 ... Positive electrode, 7 ... Electrolyte layer, 8 ... Negative electrode, 9 ... Positive electrode collector, 10 ... Positive electrode mixture layer, 11 ... Negative electrode collector, 12 ... Negative electrode mixture layer, 13 ... Collection 14A, 14B, 14C ... electrode mixture intermediate layer, 15A, 15B ... slurry (electrolyte slurry), 16 ... oxide particles, 17 ... polymer, 18A, 18B ... electrode mixture layer, 19A, 19B ... secondary Battery member for battery, 20 ... polymer solution.

Claims (11)

  1.  集電体の一面上に、電極活物質を含有する電極合剤中間層を形成する工程と、
     前記電極合剤中間層の前記集電体とは反対側の面上に、酸化物粒子及びポリマを含有するスラリを塗布する工程と、を備え、
     前記電極合剤中間層及び前記スラリの少なくとも一方は、イオン液体及び電解質塩を含有する、二次電池用電池部材の製造方法。
    Forming an electrode mixture intermediate layer containing an electrode active material on one surface of the current collector;
    Applying a slurry containing oxide particles and a polymer on the surface of the electrode mixture intermediate layer opposite to the current collector,
    At least one of the said electrode mixture intermediate | middle layer and the said slurry contains an ionic liquid and electrolyte salt, The manufacturing method of the battery member for secondary batteries.
  2.  前記電極合剤中間層及び前記スラリの一方が、前記イオン液体及び前記電解質塩を含有する、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein one of the electrode mixture intermediate layer and the slurry contains the ionic liquid and the electrolyte salt.
  3.  前記スラリが、前記イオン液体及び前記電解質塩を含有する、請求項2に記載の製造方法。 The manufacturing method according to claim 2, wherein the slurry contains the ionic liquid and the electrolyte salt.
  4.  前記電極合剤中間層及び前記スラリの両方が、前記イオン液体及び前記電解質塩を含有する、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein both the electrode mixture intermediate layer and the slurry contain the ionic liquid and the electrolyte salt.
  5.  前記酸化物粒子が疎水性表面を有する、請求項1~4のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the oxide particles have a hydrophobic surface.
  6.  前記酸化物粒子は、ケイ素含有化合物で表面処理されている、請求項5に記載の製造方法。 The manufacturing method according to claim 5, wherein the oxide particles are surface-treated with a silicon-containing compound.
  7.  前記ケイ素含有化合物は、ハロゲン含有アルキルシラン、アルコキシシラン、エポキシ基含有シラン、アミノ基含有シラン、シラザン、及びシロキサンからなる群より選ばれる少なくとも1種である、請求項6に記載の製造方法。 The production method according to claim 6, wherein the silicon-containing compound is at least one selected from the group consisting of halogen-containing alkylsilanes, alkoxysilanes, epoxy group-containing silanes, amino group-containing silanes, silazanes, and siloxanes.
  8.  前記ポリマは、四フッ化エチレン及びフッ化ビニリデンからなる群より選ばれる第1の構造単位を有する、請求項1~7のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the polymer has a first structural unit selected from the group consisting of ethylene tetrafluoride and vinylidene fluoride.
  9.  前記ポリマを構成する構造単位の中に、前記第1の構造単位と、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、及びメチルメタクリレートからなる群より選ばれる第2の構造単位とが含まれる、請求項8に記載の製造方法。 The structural unit constituting the polymer includes the first structural unit and a second structural unit selected from the group consisting of hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, and methyl methacrylate. The manufacturing method according to claim 8.
  10.  前記イオン液体の単位体積あたりの前記電解質塩の濃度は、0.3~3.0mol/Lである、請求項1~9のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 9, wherein the concentration of the electrolyte salt per unit volume of the ionic liquid is 0.3 to 3.0 mol / L.
  11.  前記スラリを塗布する工程の前に、前記電極合剤中間層中に、下記式(1)で表される構造単位を有するポリマを含有する溶液を浸透させる工程を更に備える、請求項1~10のいずれか一項に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Xは対アニオンを示す。]
    The method further comprises the step of infiltrating a solution containing a polymer having a structural unit represented by the following formula (1) into the electrode mixture intermediate layer before the step of applying the slurry. The manufacturing method as described in any one of these.
    Figure JPOXMLDOC01-appb-C000001
    [In formula (1), X represents a counter anion. ]
PCT/JP2019/015484 2018-04-11 2019-04-09 Method for producing battery member for secondary batteries WO2019198715A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020513410A JP7438605B2 (en) 2018-04-11 2019-04-09 Method for manufacturing battery components for secondary batteries

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-076287 2018-04-11
JP2018076287 2018-04-11
JP2018121177 2018-06-26
JP2018-121177 2018-06-26

Publications (1)

Publication Number Publication Date
WO2019198715A1 true WO2019198715A1 (en) 2019-10-17

Family

ID=68164248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015484 WO2019198715A1 (en) 2018-04-11 2019-04-09 Method for producing battery member for secondary batteries

Country Status (3)

Country Link
JP (1) JP7438605B2 (en)
TW (1) TWI794472B (en)
WO (1) WO2019198715A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109591A (en) * 2005-10-17 2007-04-26 Nippon Synthetic Chem Ind Co Ltd:The Lithium secondary battery
JP2007280948A (en) * 2006-03-17 2007-10-25 Nippon Synthetic Chem Ind Co Ltd:The Electrolyte and lithium secondary cell using it
WO2016136924A1 (en) * 2015-02-26 2016-09-01 国立大学法人東京工業大学 Molten salt composition, electrolyte, and electricity storage device, and method for thickening liquefied molten salt
WO2018194159A1 (en) * 2017-04-21 2018-10-25 日立化成株式会社 Electrochemical device electrode and producing method therefor, electrochemical device and polymer electrolyte composition
WO2019035190A1 (en) * 2017-08-16 2019-02-21 日立化成株式会社 Battery member for secondary batteries, and secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2892103B1 (en) * 2012-08-29 2018-02-14 Showa Denko K.K. Electricity storage device and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109591A (en) * 2005-10-17 2007-04-26 Nippon Synthetic Chem Ind Co Ltd:The Lithium secondary battery
JP2007280948A (en) * 2006-03-17 2007-10-25 Nippon Synthetic Chem Ind Co Ltd:The Electrolyte and lithium secondary cell using it
WO2016136924A1 (en) * 2015-02-26 2016-09-01 国立大学法人東京工業大学 Molten salt composition, electrolyte, and electricity storage device, and method for thickening liquefied molten salt
WO2018194159A1 (en) * 2017-04-21 2018-10-25 日立化成株式会社 Electrochemical device electrode and producing method therefor, electrochemical device and polymer electrolyte composition
WO2019035190A1 (en) * 2017-08-16 2019-02-21 日立化成株式会社 Battery member for secondary batteries, and secondary battery

Also Published As

Publication number Publication date
TW201944646A (en) 2019-11-16
JPWO2019198715A1 (en) 2021-04-15
JP7438605B2 (en) 2024-02-27
TWI794472B (en) 2023-03-01

Similar Documents

Publication Publication Date Title
JP7442911B2 (en) Electrolyte composition, secondary battery, and method for producing electrolyte sheet
TWI758486B (en) Electrolyte composition, secondary battery, and method for producing electrolyte sheet
WO2020145338A1 (en) Electrolytic solution, electrolyte slurry composition, and secondary cell
JP7438207B2 (en) Slurry composition for batteries, and methods for producing electrodes, electrolyte sheets, and battery members
JP7423120B2 (en) Electrolyte slurry composition, electrolyte sheet manufacturing method, and secondary battery manufacturing method
JP7416426B2 (en) Method for manufacturing battery components for secondary batteries
WO2018221668A1 (en) Electrolyte composition and rechargeable battery
CN108735972B (en) Method for manufacturing battery member for secondary battery
JP7438605B2 (en) Method for manufacturing battery components for secondary batteries
JP7446657B2 (en) Electrodes for secondary batteries, electrolyte layers for secondary batteries, and secondary batteries
WO2020017439A1 (en) Electrolyte sheet production method and secondary battery production method
JP2020113527A (en) Electrolyte slurry composition and manufacturing method thereof, and electrolyte sheet and manufacturing method thereof
WO2021001970A1 (en) Electrolyte sheet and secondary battery
WO2021205550A1 (en) Electrolyte sheet and manufacturing method of secondary battery
WO2021038862A1 (en) Electrolyte sheet, method for producing same and secondary battery
JP2020136223A (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19784789

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020513410

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19784789

Country of ref document: EP

Kind code of ref document: A1