WO2019033883A1 - 基于地面跟踪站产生长期卫星轨道和钟差的方法和装置 - Google Patents

基于地面跟踪站产生长期卫星轨道和钟差的方法和装置 Download PDF

Info

Publication number
WO2019033883A1
WO2019033883A1 PCT/CN2018/095794 CN2018095794W WO2019033883A1 WO 2019033883 A1 WO2019033883 A1 WO 2019033883A1 CN 2018095794 W CN2018095794 W CN 2018095794W WO 2019033883 A1 WO2019033883 A1 WO 2019033883A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
orbit
clock
long
term
Prior art date
Application number
PCT/CN2018/095794
Other languages
English (en)
French (fr)
Inventor
崔红正
Original Assignee
千寻位置网络有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千寻位置网络有限公司 filed Critical 千寻位置网络有限公司
Publication of WO2019033883A1 publication Critical patent/WO2019033883A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/27Acquisition or tracking or demodulation of signals transmitted by the system creating, predicting or correcting ephemeris or almanac data within the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/08Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing integrity information, e.g. health of satellites or quality of ephemeris data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of satellites, and more particularly to a method and apparatus for generating long-term satellite orbits and clock differences based on ground tracking stations.
  • TTFF Time to first fix
  • GNSS Global Navigation Satellite System
  • the initial positioning takes 30s to achieve. If the broadcast ephemeris can be provided in advance, the TTFF can be reduced to a few seconds.
  • A-GNSS Assisted Global Navigation Satellite System
  • A-GNSS Assisted Global Navigation Satellite System
  • auxiliary information in two modes: First, Online A-GNSS, which uses wireless communication to transmit auxiliary information such as broadcast ephemeris; Offline A-GNSS, download offline long-term forecast ephemeris (EE), can assist in positioning without a network.
  • EE long-term forecast ephemeris
  • the invention provides a multi-GNSS (GPS/GLONASS/BDS) long-lasting ephemeris generation method, and proposes an effective solution to the key problems in the long-term ephemeris service process.
  • Multi-system satellite orbits and clock differences long-term satellite orbit prediction through orbital dynamics, for the different characteristics of spaceborne atomic clocks, long-term prediction of satellite clock errors through different clock difference prediction strategies, and proposed long-term ephemeris integrity
  • the monitoring method avoids the influence of the anomaly in the long-term orbit and clock error prediction on the positioning accuracy.
  • an effective correction number generation method is proposed.
  • An adaptive terminal is proposed. The method can autonomously evade the anomalies in the long-lasting ephemeris, and can use the broadcast ephemeris to generate a backup long-lasting ephemeris without the long-term ephemeris updating in time.
  • the first embodiment of the present invention discloses a method for generating a long-term satellite orbit and a clock difference based on a ground station tracking station.
  • the data is subjected to fusion processing, and the data can be adaptively generated.
  • a growth ephemeris the method includes the following steps:
  • a second embodiment of the present invention also discloses a device for generating long-term satellite orbits and clock errors based on a ground tracking station, comprising:
  • a base selection unit for selecting a base station
  • a fusion data processing unit configured to acquire stable continuous observation data from a reference station selected by the base station selection unit, and then perform fusion data processing to obtain orbit data and clock data;
  • a orbit prediction unit for performing long-term orbit prediction based on orbit data obtained by the fused data unit
  • a clock difference prediction unit for performing a long-term clock difference prediction based on the clock difference data obtained by the fused data unit
  • a terminal adaptation unit for autonomously avoiding anomalies in long-term orbit and clock data, and adaptively utilizing a long-lived ephemeris based on broadcast ephemeris.
  • the priority information is sorted in each grid according to the related information of each candidate base station, and the base station is selected in combination with the availability of the processing data of each candidate base station, so that the reference can be further improved.
  • the accuracy of the station selection is a measure of the station selection.
  • the parameter information is solved and fixed, and then the GPS/GLONASS/BDS is processed by the fusion data, thereby further improving the accuracy of data fusion.
  • FIG. 1 is a flow chart showing a method for generating long-term satellite orbits and clock differences based on a ground tracking station in a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a strategy for selecting a base station in the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the broadcast content of the long-lasting ephemeris in the first embodiment of the present invention.
  • FIG. 4 is a schematic structural view of an apparatus for generating a long-term satellite orbit and a clock difference based on a ground tracking station in a second embodiment of the present invention.
  • a first embodiment of the invention relates to a method of generating long-term satellite orbits and clock differences based on a ground station tracking station.
  • Figure 1 is a schematic flow diagram of the method.
  • the method can adaptively generate a long-lasting ephemeris by appropriately selecting a reference station and performing fusion processing on the data.
  • the method includes the following steps:
  • step S101 the base station is selected.
  • the selection range of the base station is about 70 or so base stations evenly distributed around the world, which can support the high-precision Mulit-GNSS satellite orbit and clock difference determination. China does not currently have a globally controllable base station network, and can build its own overseas base station in the future. .
  • There are many ways to select the base station For example, you can use the following steps to select: First, collect the site information, reliability information, and data of the internationally disclosed GNSS tracking station, other modes of the franchise station, and the GNSS tracking station that runs the maintenance. Acquiring information, etc.; classifying these stations according to a global uniform grid, prioritizing each grid based on relevant information, and combining the availability of the data processed by the base station for the current processing. Base station list. Satellite orbit determination and clock difference determination processing can be supported by the base station selection strategy. Although the selected strategy is schematically illustrated in FIG. 2, the selection manner is not limited thereto, and may be selected using any selection method suitable for the present invention.
  • the process proceeds to step S102, and stable continuous observation data of the selected reference station is acquired, and then the fusion data processing is performed to obtain orbit data and clock data.
  • the auxiliary station calculation file is obtained by using the base station observation file used in the current processing given by the base station selection strategy, and the auxiliary calculation information includes but is not limited to: earth rotation parameter, precise station address coordinate, and satellite end code delay information (DCB).
  • DCB satellite end code delay information
  • phase center correction, tidal correction use the "two-step method" to perform Multi-GNSS joint data processing experiments, first use GPS precision data processing products, solve and fix parameters, including but not limited to: precise site coordinates, receiver The clock difference, ZTD, then the GPS/GLONASS/BDS is fused data processing to obtain the Multi-GNSS precision satellite orbit and clock difference under the unified reference frame.
  • the process proceeds to step S103, and long-term orbit prediction is performed based on the orbit data.
  • the forecasting model can be used to predict the precision satellite orbit in different days, such as 3 days, 5 days, or 7 days.
  • the prediction model includes but is not limited to the gravity field.
  • Model (20*20 order EGM model), central gravitational field model (earth, sun, moon, planet gravity), relativistic model, solid tide model, forecast period can be set according to actual needs, for example, can be 1 day, 7 Days, 14 days, or 28 days.
  • a long-term clock difference prediction is performed based on the orbit data.
  • Long-effect clock error prediction of Multi-GNSS satellite clock difference can be carried out in this step: different forecasting methods are adopted for different types of satellite clocks.
  • the forecasting model includes but is not limited to quadratic polynomial forecasting model, grey forecasting model,
  • the Kalman filter prediction model can be used for 3 days, 5 days or 7 days.
  • the forecast period can be set according to actual needs, for example, it can be 1 day, 7 days, 14 days, or 28 days.
  • step S105 a satellite clock correction number is generated based on the clock difference predicted by the clock difference prediction step and broadcasted.
  • a satellite clock correction number is generated based on the clock difference predicted by the clock difference prediction step and broadcasted. In the case of ensuring accuracy, communication consumption can be effectively reduced.
  • step S106 autonomously circumvent the abnormality in the long-term orbit and the clock data, and adaptively utilize the long-lived ephemeris based on the broadcast ephemeris.
  • satellite orbit prediction based on broadcast ephemeris first of all, to fit the satellite position, satellite speed, BERN solar light pressure five parameters, using no less than one day of broadcast ephemeris, satellite orbit prediction, considering the gravity field model (8 *8-order EGM model), central gravitational field model (Earth, Sun, Moon), relativistic model, forecast period is 3 days; satellite clock-based forecast based on broadcast ephemeris: quadratic polynomial due to different short-term clock difference prediction accuracy
  • the forecast model uses a broadcast ephemeris of not less than one day, and the forecast period is three days.
  • the mainstream long-term ephemeris forecasting method commonly used in the world mainly uses the forecast seed broadcasted by the server, and the forecast is carried out at the terminal. This method cannot be universally popularized. If the long-lived ephemeris is fitted with the broadcast ephemeris, the data amount Very large, communication costs are too high.
  • the invention proposes an effective correction number generation method, which can reduce the data consumption.
  • [X p Y P Z P ] T is the orbit prediction sequence
  • [X B Y B Z B ] T is the sequence of satellite positions calculated by the broadcast ephemeris
  • [x S y S z S ] T is the star The orbit correction value in the solid coordinate system
  • R is the rotation matrix of the star-solid system to the ground-solid system.
  • t P is the forecast clock difference
  • t B is the satellite clock difference calculated by the broadcast ephemeris
  • a 0 is the satellite clock difference
  • a 1 is the satellite clock speed
  • a 2 is the satellite clock speed.
  • t C is the satellite clock error correction
  • t C is calculated by equation (2).
  • a set of broadcast ephemeris is given at zero every day, and then forecasted according to the broadcast ephemeris for 24 hours, and then the correction numbers are fitted to x S , y S , z S , and t C using equation (4) to obtain a set of coefficients.
  • the information that needs to be broadcast for the long-term ephemeris is as shown in Fig. 2. In the case of ensuring accuracy, the communication consumption can be effectively reduced.
  • a x0 , a x1 , a x2 , C x , S x are fitting coefficients of x S
  • S y are fitting coefficients of y S
  • S z are the fitting coefficients of z S
  • a t0 , a t1 , a t2 , C t , S t are fitting coefficients of t C
  • ⁇ ( ⁇ t) is ⁇ t
  • the broadcast content of the long-lasting ephemeris is shown in FIG.
  • an adaptive terminal method is proposed, which can further autonomously avoid abnormalities in long-lasting ephemeris.
  • the user ranging error URAoc related to the satellite clock is solved by the formula (5), ⁇ R is the accuracy of the orbit in the radial direction, ⁇ T is the accuracy in the tracking direction, and ⁇ N is the method.
  • the accuracy in the direction, ⁇ CLK is the clock error, and A and B have different values for different systems or track types.
  • the method embodiments of the present invention can all be implemented in software, hardware, firmware, and the like. Regardless of whether the invention is implemented in software, hardware, or firmware, the instruction code can be stored in any type of computer-accessible memory (eg, permanent or modifiable, volatile or non-volatile, solid state Or non-solid, fixed or replaceable media, etc.). Similarly, the memory may be, for example, Programmable Array Logic ("PAL"), Random Access Memory (RAM), or Programmable Read Only Memory (PROM). "), Read-Only Memory (“ROM”), Electrically Erasable Programmable ROM (“EEPROM”), Disk, CD, Digital Versatile Disc , referred to as "DVD”) and so on.
  • PAL Programmable Array Logic
  • RAM Random Access Memory
  • PROM Programmable Read Only Memory
  • ROM Read-Only Memory
  • EEPROM Electrically Erasable Programmable ROM
  • Disk CD
  • DVD Digital Versatile Disc
  • a second embodiment of the invention relates to a device for generating long-term satellite orbits and clock differences based on a ground station tracking station.
  • Figure 3 is a schematic view showing the structure of the apparatus. The actual structure of the present invention can be adjusted as necessary according to actual needs, and is not limited to the structure in FIG.
  • the device can adaptively generate a long-lasting ephemeris by appropriately selecting the base station and performing fusion processing on the data.
  • the device 100 includes:
  • a base station selecting unit 101 configured to select a base station
  • the merging data unit 102 is configured to acquire auxiliary calculation information from the reference station selected by the base station selection unit, and then perform fused data processing to obtain trajectory data and clock data;
  • the orbit prediction unit 103 is configured to perform long-term orbit prediction according to the orbit data obtained by the fused data unit;
  • the clock difference forecasting unit 104 is configured to perform long-term clock difference prediction according to the clock data obtained by the fused data unit;
  • the terminal adaptation unit 106 is configured to autonomously circumvent the abnormality in the long-term orbit and the clock data, and adaptively utilize the broadcast ephemeris-based backup long-term ephemeris.
  • the first embodiment is a method embodiment corresponding to the present embodiment, and the present embodiment can be implemented in cooperation with the first embodiment.
  • the related technical details mentioned in the first embodiment are still effective in the present embodiment, and are not described herein again in order to reduce repetition. Accordingly, the related art details mentioned in the present embodiment can also be applied to the first embodiment.
  • each unit mentioned in the embodiments of the present invention is a logical unit.
  • a logical unit may be a physical unit, a part of a physical unit, or multiple physical entities.
  • the combined implementation of the elements, the physical implementation of these logical units themselves is not the most important, the combination of the functions implemented by these logical units is the key to solving the technical problems raised by the present invention.
  • the above-mentioned various device embodiments of the present invention do not introduce a unit that is not closely related to solving the technical problem proposed by the present invention, which does not indicate that the above device implementation does not have other unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Power Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radio Relay Systems (AREA)

Abstract

一种基于地面跟踪站产生长期卫星轨道和钟差的方法和装置。该方法包括以下步骤:基准站选择步骤;融合数据处理步骤;轨道预报步骤;钟差预报步骤;改正数播发步骤;以及终端自适应步骤,解决了各类型端的适用性与通信流量的问题,通过提出的终端自适应方法,可以自主规避长效轨道与钟差数据中的异常,并可以自适应利用基于广播星历的备份长效星历。

Description

基于地面跟踪站产生长期卫星轨道和钟差的方法和装置 技术领域
本发明涉及卫星领域,特别涉及一种基于地面跟踪站产生长期卫星轨道和钟差的方法和装置。
背景技术
TTFF(Time to first fix,首次定位时间)是GNSS(GNSS:Global navigation satellite system,全球卫星定位系统)定位的一个重要指标,一般初次定位需要30s才能实现。如果能预先提供广播星历,TTFF可以缩减至几秒钟。A-GNSS(Assisted Global Navigation Satellite System,辅助全球卫星定位系统)技术以两种模式提供辅助信息:一是在线模式(Online A-GNSS),利用无线通信来传广播星历等辅助信息;二是离线模式(Offline A-GNSS),下载离线长期预报星历(EE),在没有网络的情况下可以辅助定位。
然而,目前很少有提供EE服务的供应商,因为这需要付费,并需要在全球布设GNSS跟踪站,更不用说Multi-GNSS的长效星历。本发明给出了Multi-GNSS(GPS/GLONASS/BDS)长效星历生成方法,并针对长效星历服务过程中的关键性问题,提出了有效解决手段。首先,通过国际公开的GNSS跟踪站、其它方式的加盟站以及运行维护的GNSS跟踪站数据,通过本专利提出的基准站选择方式,解决了海外没有可控连续稳定基准站的问题,生成高精度多系统卫星轨道与钟差;通过轨道动力学平滑进行卫星轨道长期预报,针对星载原子钟的不同特性,通过不同的钟差预报策略进行卫星钟差长期预报,并提出了长效星历完好性监测方法,规避了长期轨道与钟差预报中的异常对定位精度的影响;为了权衡终端接收流量以及终端算法普适性,提出了一种有效的 改正数生成方法;提出了一种自适应终端方法,可以自主规避长效星历中的异常,在没有长效星历及时更新的情况下,可以自主利用广播星历生成备份长效星历。
发明内容
本发明的目的在于提供一种基于地面跟踪站产生长期卫星轨道和钟差的方法和装置,通过对基准站进行恰当选择,对数据进行融合处理,从而解决了没有可控连续稳定基准站的问题,有效规避了长期轨道与钟差预报中的异常,解决了各类型端的适用性与通信流量的问题。
为解决上述技术问题,本发明的第一实施方式公开了一种基于地面站跟踪站产生长期卫星轨道和钟差的方法,通过对基准站进行恰当选择,对数据进行融合处理,可以自适应生成长效星历,该方法包括以下步骤:
对基准站进行选择的基准站选择步骤;
获取来自基准站选择步骤所选择的基准站的稳定连续观测数据,再进行融合数据处理,得到轨道数据和钟差数据的融合数据处理步骤;
根据融合数据处理步骤得到的轨道数据进行长效轨道预报的轨道预报步骤;
根据融合数据处理步骤得到的钟差数据进行长效钟差预报的钟差预报步骤;
根据钟差预报步骤预报的钟差生成卫星钟差改正数并进行播发的改正数播发步骤;以及
自主规避长效轨道与钟差数据中的异常,并且自适应利用基于广播星历的备份长效星历的终端自适应步骤。
本发明的第二实施方式还公开了一种基于地面跟踪站产生长期卫星轨道和钟差的装置,包括:
基准站选择单元,用于对基准站进行选择;
融合数据处理单元,用于获取来自基准站选择单元所选择的基准站的稳定连续观测数据,再进行融合数据处理,得到轨道数据和钟差数据;
轨道预报单元,用于根据融合数据单元得到的轨道数据进行长效轨道预报;
钟差预报单元,用于根据融合数据单元得到的钟差数据进行长效钟差预报;
改正数播发单元,用于根据钟差预报步骤预报的钟差生成卫星钟差改正数并进行播发;以及
终端自适应单元,用于自主规避长效轨道与钟差数据中的异常,并且自适应利用基于广播星历的备份长效星历。
本发明实施方式与现有技术相比,主要区别及其效果在于:
通过对基准站进行恰当选择,对数据进行融合处理,从而解决了没有可控连续稳定基准站的问题,有效规避了长期轨道与钟差预报中的异常,解决了各类型端的适用性与通信流量的问题。
进一步地,根据每个候选的基准站的相关信息在每个格网中进行优先级排序,并结合每个候选的基准站的处理数据的可获得性,对基准站进行选择,可以进一步提高基准站选择的准确性。
进一步地,解算且固定参数信息,然后将GPS/GLONASS/BDS进行融合数据处理,进一步提高了数据融合的精确度。
附图说明
图1是本发明第一实施方式中一种基于地面跟踪站产生长期卫星轨道和钟差的方法的流程示意图。
图2是本发明第一实施方式中基准站选择的策略示意图。
图3是本发明第一实施方式中的长效星历的播发内容的示意图。
图4是本发明第二实施方式中一种基于地面跟踪站产生长期卫星轨道和钟差的装置的结构示意图。
具体实施方式
在以下的叙述中,为了使读者更好地理解本申请而提出了许多技术细节。但是,本领域的普通技术人员可以理解,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请各权利要求所要求保护的技术方案。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作进一步地详细描述。
本发明第一实施方式涉及一种基于地面站跟踪站产生长期卫星轨道和钟差的方法。图1是该方法的流程示意图。
具体地说,该方法通过对基准站进行恰当选择,对数据进行融合处理,可以自适应生成长效星历。如图1所示,该方法包括以下步骤:
在步骤S101中,对基准站进行选择。基准站的选择范围是大约全球均匀分布的70个左右的基准站,可以支持高精度Mulit-GNSS卫星轨道与钟差确定,中国目前没有全球可控的基准站网络,以后可以自建海外基准站。基准站的选择方式有很多,例如可以用以下步骤来进行选择:首先,收集国际公开的GNSS跟踪站、其它方式的加盟站以及运行维护的GNSS跟踪站的站址信息、可靠性信息、数据可获得性信息等;将这些站按照全球均匀格网划分,根据相关信息在每个格网中进行优先级排序,并结合基准站本次处理数据的可获得性,给出用于本次处理的基准站列表。通过该基准站选择策略,可以支持卫星轨道与钟差确定处理。虽然图2中示意性地示出了选择的策略,但是选择方式并不限于此,可以使用任意适用于本发明的选择方式进行选择。
此后进入步骤S102,获取选择的基准站的稳定连续观测数据,再进行融合数据处理,得到轨道数据和钟差数据。首先,利用基准站选择策略给出的 本次处理所用的基准站观测文件,获取辅助计算信息,辅助计算信息包括但不限于:地球自转参数、精密站址坐标、卫星端码延迟信息(DCB)、相位中心修正、潮汐改正;利用“二步法”执行Multi-GNSS联合数据处理实验,首先利用GPS精密数据处理产品,解算且固定参数,参数包括但不限于:精密站址坐标、接收机钟差、ZTD,然后将GPS/GLONASS/BDS进行融合数据处理,得到统一参考框架下的Multi-GNSS精密卫星轨道与钟差。
此后进入步骤S103,根据轨道数据进行长效轨道预报。首先,拟合卫星位置、卫星速度、BERN太阳光压五参数,可以以不同的天数,例如3天、5天或者7天,考虑预报模型进行精密卫星轨道预报,预报模型包括但不限于重力场模型(20*20阶EGM模型)、中心引力场模型(地球、太阳、月球、行星引力)、相对论模型、固体潮模型,预报周期可以根据实际需要来进行设定,例如可以为1天、7天、14天、或者28天。
此后进入步骤S104,根据轨道数据进行长效钟差预报。在该步骤中可以进行Multi-GNSS卫星钟差的长效钟差预报:对于不同种类的卫星钟考虑预报模型采用不同的预报方法,预报模型包括但不限于二次多项式预报模型、灰色预报模型、Kalman滤波预报模型,采用的钟差可以为3天、5天或者7天,预报周期可以根据实际需要来进行设定,例如可以为1天、7天、14天、或者28天。
此后进入步骤S105,根据钟差预报步骤预报的钟差生成卫星钟差改正数并进行播发。在保证精度的情况下,可有效降低通信消耗。
此后进入步骤S106,自主规避长效轨道与钟差数据中的异常,并且自适应利用基于广播星历的备份长效星历。
此后结束本流程。
由此可见,通过对基准站进行恰当选择,对数据进行融合处理,可以自适应生成长效星历。
例如,基于广播星历的卫星轨道预报,首先要拟合卫星位置、卫星速度、BERN太阳光压五参数,采用不少于1天的广播星历,进行卫星轨道预报,考虑重力场模型(8*8阶EGM模型)、中心引力场模型(地球、太阳、月球)、 相对论模型,预报周期为3天;基于广播星历的卫星钟差预报:由于短期钟差预报精度不同,采用二次多项式预报模型,采用不少于1天的广播星历,预报周期为3天。
目前国际上常见的主流的长效星历预报方法主要利用服务器端播发的预报种子,在终端进行预报,该方法无法普适性推广,如果播发长效星历拟合的广播星历,数据量很大,通信成本过高。本发明提出了一种有效的改正数生成方法,可以降低数据量消耗。公式(1)中,[X p Y P Z P] T是轨道预报序列,[X B Y B Z B] T是广播星历计算的卫星位置序列,[x S y S z S] T是星固坐标系下轨道改正值,R是星固系到地固系的旋转矩阵。公式(2)中,t P是预报钟差,t B是广播星历计算的卫星钟差,公式(3)中a 0是卫星钟差、a 1是卫星钟速、a 2是卫星钟速变化率,t C是卫星钟差改正数,t C由公式(2)计算得出。
Figure PCTCN2018095794-appb-000001
t P=t B+t C                        (2)
t B=a 0+a 1Δt+a 2Δt 2                     (3)
每天零点给出一组广播星历,然后根据广播星历预报24小时,然后利用公式(4)分别对x S、y S、z S、t C进行改正数拟合,得出一组系数。对于长效星历需要播发的信息如图2所示,在保证精度的情况下,可有效降低通信消耗。公式(4)中,a x0、a x1、a x2、C x、S x是x S的拟合系数,a y0、a y1、a y2、C y、S y是y S的拟合系数,a z0、a z1、a z2、C z、S z是z S的拟合系数,a t0、a t1、a t2、C t、S t是t C的拟合系数,θ(Δt)是Δt时刻卫星的真近地点角。在图3中示出了长效星历的播发内容。
Figure PCTCN2018095794-appb-000002
由于卫星机动、地球阴影、姿态控制模式转换、星钟跳变等原因会造成部分卫星的预报轨道与钟差异常,随着预报时间的增加,预报异常对定位的影响会迅速增大。对于高级终端用户,为了提高长效星历的可靠性,提出了一种自适应终端的方法,可以进一步自主规避长效星历中的异常,在没有长效星历及时更新的情况下,可以自主基于前期收到的广播星历,利用简化的轨道与钟差预报器进行短期星历预报。各类预报过程中,与卫星钟有关的用户测距误差URAoc的求解利用公式(5),σ R为轨道在径向方向上的精度、σ T为迹向方向上的精度、σ N为法向方向上的精度、σ CLK为钟差精度,A、B对于不同系统或轨道类型取值不同。
Figure PCTCN2018095794-appb-000003
本发明的各方法实施方式均可以以软件、硬件、固件等方式实现。不管本发明是以软件、硬件、还是固件方式实现,指令代码都可以存储在任何类型的计算机可访问的存储器中(例如永久的或者可修改的,易失性的或者非易失性的,固态的或者非固态的,固定的或者可更换的介质等等)。同样,存储器可以例如是可编程阵列逻辑(Programmable Array Logic,简称“PAL”)、随机存取存储器(Random Access Memory,简称“RAM”)、可编程只读存储器(Programmable Read Only Memory,简称“PROM”)、只读存储器(Read-Only Memory,简称“ROM”)、电可擦除可编程只读存储器(Electrically Erasable Programmable ROM,简称“EEPROM”)、磁盘、光盘、数字通用光盘(Digital Versatile Disc,简称“DVD”)等等。
本发明第二实施方式涉及一种基于地面站跟踪站产生长期卫星轨道和钟差的装置。图3是该装置的结构示意图。本发明的实际结构可以根据实际需要做出必要的调整,并不局限于图3中的结构。
具体地说,该装置通过对基准站进行恰当选择,对数据进行融合处理,可以自适应生成长效星历。如图3所示,该装置100包括:
基准站选择单元101,用于对基准站进行选择;
融合数据单元102,用于获取来自基准站选择单元所选择的基准站的辅助 计算信息,再进行融合数据处理,得到轨道数据和钟差数据;
轨道预报单元103,用于根据融合数据单元得到的轨道数据进行长效轨道预报;
钟差预报单元104,用于根据融合数据单元得到的钟差数据进行长效钟差预报;
改正数播发单元105,用于根据钟差预报步骤预报的钟差生成卫星钟差改正数并进行播发;以及
终端自适应单元106,用于自主规避长效轨道与钟差数据中的异常,并且自适应利用基于广播星历的备份长效星历。
第一实施方式是与本实施方式相对应的方法实施方式,本实施方式可与第一实施方式互相配合实施。第一实施方式中提到的相关技术细节在本实施方式中依然有效,为了减少重复,这里不再赘述。相应地,本实施方式中提到的相关技术细节也可应用在第一实施方式中。
需要说明的是,本发明各设备实施方式中提到的各单元都是逻辑单元,在物理上,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现,这些逻辑单元本身的物理实现方式并不是最重要的,这些逻辑单元所实现的功能的组合才是解决本发明所提出的技术问题的关键。此外,为了突出本发明的创新部分,本发明上述各设备实施方式并没有将与解决本发明所提出的技术问题关系不太密切的单元引入,这并不表明上述设备实施方式并不存在其它的单元。
需要说明的是,在本专利的权利要求和说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、 方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
虽然通过参照本发明的某些优选实施方式,已经对本发明进行了图示和描述,但本领域的普通技术人员应该明白,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (10)

  1. 一种基于地面跟踪站产生长期卫星轨道和钟差的方法,其特征在于,包括以下步骤:
    对基准站进行选择的基准站选择步骤;
    获取来自基准站选择步骤所选择的基准站的稳定连续观测数据,再进行融合数据处理,得到轨道数据和钟差数据的融合数据处理步骤;
    根据融合数据步骤得到的轨道数据进行长效轨道预报的轨道预报步骤;
    根据融合数据步骤得到的钟差数据进行长效钟差预报的钟差预报步骤;
    根据钟差预报步骤预报的钟差生成卫星钟差改正数并进行播发的改正数播发步骤;以及
    自主规避长效轨道与钟差数据中的异常,并且自适应利用基于广播星历的备份长效星历的终端自适应步骤。
  2. 如权利要求1所述的方法,其特征在于,
    基准站选择步骤包括以下子步骤:
    根据站址信息、可靠性信息、数据可获得性信息收集候选的基准站;
    将候选的基准站按照全球均匀格网划分;以及
    根据每个候选的基准站的相关信息在每个格网中进行优先级排序,并结合每个候选的基准站的处理数据的可获得性,对基准站进行选择。
  3. 如权利要求1所述的方法,其特征在于,
    在融合数据步骤中,解算且固定参数信息,然后将GPS/GLONASS/BDS进行融合数据处理。
  4. 如权利要求1所述的方法,其特征在于,
    轨道预报步骤和钟差预报步骤的预报周期是1天、7天、14天、或28天。
  5. 如权利要求1所述的方法,其特征在于,
    轨道预报步骤的预报模型是:重力场模型、中心引力场模型、相对论模型、或者固体潮模型。
  6. 如权利要求1所述的方法,其特征在于,
    钟差预报步骤的预报模型是:二次多项式预报模型、灰色预报模型、或者Kalman滤波预报模型。
  7. 如权利要求1所述的方法,其特征在于,
    在钟差预报步骤中,通过以下方式求出与卫星轨道与钟差有关的用户测距误差:
    Figure PCTCN2018095794-appb-100001
    σ R为轨道在径向方向上的精度、σ T为迹向方向上的精度、σ N为法向方向上的精度、σ CLK为钟差精度,A、B对于不同系统或轨道类型取不同的常数值。
  8. 如权利要求1所述的方法,其特征在于,
    在改正数播发步骤中,对卫星轨道与钟差相对于广播星历的改正数进行拟合。
  9. 如权利要求1所述的自适应终端方法,其特征在于,
    在终端自适应步骤中,自主规避长效星历中的异常,在没有长效星历及时更新的情况下,自主基于前期收到的广播星历,利用简化的轨道与钟差预报器进行短期星历预报。
  10. 一种基于地面站跟踪站产生长期卫星轨道和钟差的装置,其特征在于,包括:
    基准站选择单元,用于对基准站进行选择;
    融合数据处理单元,用于获取来自基准站选择单元所选择的基准站的稳定连续观测数据,再进行融合数据处理,得到轨道数据和钟差数据;
    轨道预报单元,用于根据融合数据单元得到的轨道数据进行长效轨道预报;以及
    钟差预报单元,用于根据融合数据单元得到的钟差数据进行长效钟差预报;
    改正数播发单元,用于根据钟差预报步骤预报的钟差生成卫星钟差改正数并进行播发;以及
    终端自适应单元,用于自主规避长效轨道与钟差数据中的异常,并且自适应利用基于广播星历的备份长效星历。
PCT/CN2018/095794 2017-08-14 2018-07-16 基于地面跟踪站产生长期卫星轨道和钟差的方法和装置 WO2019033883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710692816.9 2017-08-14
CN201710692816.9A CN109387859B (zh) 2017-08-14 2017-08-14 基于地面跟踪站产生长期卫星轨道和钟差的方法和装置

Publications (1)

Publication Number Publication Date
WO2019033883A1 true WO2019033883A1 (zh) 2019-02-21

Family

ID=65361819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095794 WO2019033883A1 (zh) 2017-08-14 2018-07-16 基于地面跟踪站产生长期卫星轨道和钟差的方法和装置

Country Status (2)

Country Link
CN (1) CN109387859B (zh)
WO (1) WO2019033883A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766615A (zh) * 2020-06-15 2020-10-13 中国人民解放军61081部队 基于igs rts数据的站间实时时间传递方法
CN112711044A (zh) * 2020-12-09 2021-04-27 北方信息控制研究院集团有限公司 结合超快速星历短时间内预报卫星钟差的方法
CN114035211A (zh) * 2021-09-08 2022-02-11 中国科学院上海天文台 区域导航卫星系统广播星历及钟差参数计算方法
CN114035211B (zh) * 2021-09-08 2024-05-10 中国科学院上海天文台 区域导航卫星系统广播星历及钟差参数计算方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110058287B (zh) * 2019-05-16 2022-03-15 北京合众思壮科技股份有限公司 一种低轨卫星定轨方法、装置及系统
CN111308515A (zh) * 2019-10-30 2020-06-19 中海北斗(深圳)导航技术有限公司 基于精密轨道和地面台站数据的北斗卫星机动及异常探测方法
CN112987043B (zh) * 2019-12-17 2022-06-24 千寻位置网络有限公司 卫星钟差基准平滑方法及其系统
CN113740891A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 利用导航卫星确定终端设备位置和速度的方法及电子装置
CN111669218B (zh) * 2020-06-29 2021-10-29 中国科学院国家授时中心 一种星间链路信号地面验证平台及方法
CN114791613A (zh) * 2021-01-25 2022-07-26 华为技术有限公司 星历预报方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002096026A1 (en) * 2001-05-22 2002-11-28 Proquent Systems Corporation Service platform on wireless network
CN103760572A (zh) * 2014-01-13 2014-04-30 东南大学 一种基于区域cors的单频ppp电离层加权方法
CN103901440A (zh) * 2014-03-14 2014-07-02 中国测绘科学研究院 Gnss数据信号质量的监测方法
CN106569239A (zh) * 2015-10-09 2017-04-19 唐颖哲 一种广播式网络rtk定位技术
CN106842249A (zh) * 2016-12-13 2017-06-13 航天恒星科技有限公司 导航卫星改正数处理方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1783509A1 (en) * 2005-11-08 2007-05-09 The European GNSS Supervisory Authority Method for providing assistance data to a mobile station of a satellite positioning system
JP2010060489A (ja) * 2008-09-05 2010-03-18 Seiko Epson Corp 衛星軌道モデル化適否判定方法、長期予測軌道データ提供方法及び衛星軌道モデル化適否判定装置
CN104215974B (zh) * 2014-09-15 2017-01-11 中国航天标准化研究所 一种卫星导航系统的完好性监测可用性确定方法
CN105158780B (zh) * 2015-07-24 2017-11-07 北京跟踪与通信技术研究所 一种基于多种导航卫星可互换的导航定位方法
CN105182374B (zh) * 2015-08-28 2018-02-13 山东鼎成卫星导航定位技术有限公司 一种基于北斗短报文精密轨道和钟差播发的方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002096026A1 (en) * 2001-05-22 2002-11-28 Proquent Systems Corporation Service platform on wireless network
CN103760572A (zh) * 2014-01-13 2014-04-30 东南大学 一种基于区域cors的单频ppp电离层加权方法
CN103901440A (zh) * 2014-03-14 2014-07-02 中国测绘科学研究院 Gnss数据信号质量的监测方法
CN106569239A (zh) * 2015-10-09 2017-04-19 唐颖哲 一种广播式网络rtk定位技术
CN106842249A (zh) * 2016-12-13 2017-06-13 航天恒星科技有限公司 导航卫星改正数处理方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766615A (zh) * 2020-06-15 2020-10-13 中国人民解放军61081部队 基于igs rts数据的站间实时时间传递方法
CN112711044A (zh) * 2020-12-09 2021-04-27 北方信息控制研究院集团有限公司 结合超快速星历短时间内预报卫星钟差的方法
CN114035211A (zh) * 2021-09-08 2022-02-11 中国科学院上海天文台 区域导航卫星系统广播星历及钟差参数计算方法
CN114035211B (zh) * 2021-09-08 2024-05-10 中国科学院上海天文台 区域导航卫星系统广播星历及钟差参数计算方法

Also Published As

Publication number Publication date
CN109387859B (zh) 2023-05-30
CN109387859A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2019033883A1 (zh) 基于地面跟踪站产生长期卫星轨道和钟差的方法和装置
CN110168404B (zh) 用于产生扩展的卫星历书数据的系统和方法
CN111596321B (zh) 利用非差改正数的多gnss多路径误差恒星日滤波方法及系统
US9007261B2 (en) Method and apparatus for fast TTFF
CN101351686A (zh) 产生和分发卫星跟踪信息的方法和装置
EP2426510B1 (en) Satellite navigation receivers with self-provided future ephemeris and clock predictions
Geng et al. Improving BDS integer ambiguity resolution using satellite-induced code bias correction for precise orbit determination
US20160131764A1 (en) Method and Apparatus for Providing a Compact Extended Ephemeris Package for GNSS Processing
CN110531387A (zh) 用于利用热启动提供卫星校正信号的方法和系统
Zhang et al. Real-time wide-area precise tropospheric corrections (WAPTCs) jointly using GNSS and NWP forecasts for China
CN112711044A (zh) 结合超快速星历短时间内预报卫星钟差的方法
Zhao et al. Orbit Accuracy Analysis for BeiDou Regional Tracking Network
Park et al. GEO Broadcast Ephemeris Parameter Fitting Compatible with GPS LNAV User Algorithm
US20230305165A1 (en) Timescale dissemination using global navigation satellite systems and applications thereof
Kobel et al. Including of Sentinel-6A multi-GNSS observations into global GNSS solutions
Sušnik Deliverable 3.1 Reference Frame Product Report
EP2541276B1 (en) Long term compact satellite models
JP6195264B2 (ja) 自己供給型未来エフェメリスおよびクロック予測を備えた衛星航法受信機
Bezděk TN-02: Swarm Data Pre-Processing, Kinematic Baselines And Accelerometer Data
Beutler et al. The Computer-Programs SATORB and LEOKIN
Galluzzo et al. GIOVE navigation message validation through Keys Performance Indicators
CN116359948A (zh) 空间基准评估方法及空间基准评估系统
CN114152960A (zh) 一种用于gnss掩星数据的实时反演方法
Teplyakov et al. Tower-type solar electric power stations: composite solutions
Rudenko et al. Reanalysis of GPS data at tide gauges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847060

Country of ref document: EP

Kind code of ref document: A1