WO2019033739A1 - 电机绕组结构、电机导磁部件、铁磁叠片及电机 - Google Patents

电机绕组结构、电机导磁部件、铁磁叠片及电机 Download PDF

Info

Publication number
WO2019033739A1
WO2019033739A1 PCT/CN2018/077124 CN2018077124W WO2019033739A1 WO 2019033739 A1 WO2019033739 A1 WO 2019033739A1 CN 2018077124 W CN2018077124 W CN 2018077124W WO 2019033739 A1 WO2019033739 A1 WO 2019033739A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
ferromagnetic
winding
motor
conductive member
Prior art date
Application number
PCT/CN2018/077124
Other languages
English (en)
French (fr)
Other versions
WO2019033739A9 (zh
Inventor
马盛骏
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to EP18781942.0A priority Critical patent/EP3471238B1/en
Priority to US16/090,662 priority patent/US11277043B2/en
Priority to AU2018250387A priority patent/AU2018250387B2/en
Publication of WO2019033739A1 publication Critical patent/WO2019033739A1/zh
Publication of WO2019033739A9 publication Critical patent/WO2019033739A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/26Rotor cores with slots for windings
    • H02K1/265Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • H02K3/345Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/44Protection against moisture or chemical attack; Windings specially adapted for operation in liquid or gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present disclosure relates to the field of motor technology, and more particularly to a ferromagnetic lamination for manufacturing a magnetically permeable part of a motor, a motor magnetically permeable part formed of the ferromagnetic lamination, a motor winding structure, a motor having the motor winding structure And electrical energy and magnetic field energy conversion equipment.
  • a wind turbine is a large-scale power generation device that converts wind energy into electrical energy.
  • the motor is a core component of the wind turbine, including a rotor and a stator, and the stator includes a stator core and windings wound around the stator core.
  • the stator includes a stator core and windings wound around the stator core.
  • it is necessary to open a winding slot on the magnetic conductive component of the motor, and arrange the coil winding in the slot, and fix the coil winding in the winding slot by installing various shapes of wedges in the slot.
  • a plurality of ferromagnetic laminations with cogging are typically placed one upon another to form a motor magnetically permeable member.
  • FIGS. 1 and 2 show a partial structural schematic view of the stator winding
  • FIG. 3 shows a partial structural perspective view of the stator winding
  • FIG. 4 shows the ferromagnetic laminated 30.
  • An axial schematic view of one of the slots 31, and FIG. 5 shows an axial section of a ferromagnetic lamination 30 packed with coil windings 200.
  • FIGS. 1-5 in the case of the inner stator, after the ferromagnetic laminations 30 are stacked to form the stator core 10, a winding groove 11 for mounting a coil winding is formed on the outer circumference of the stator core 10.
  • the inner edges of the slots 31 of the respective ferromagnetic laminations 30 are substantially rectilinear. After the plurality of ferromagnetic laminations 30 are stacked one on top of the other, the inner walls of the winding slots 11 formed by the slots 31 of the ferromagnetic laminations 30 are substantially Flat surface.
  • the coil winding 200 is fixed in the winding groove 11, and a slot 300 is mounted at the notch of the winding groove 11 for fixing the coil winding 200 in the winding groove 11.
  • the stator core 10 serves as a magnetic conductive member of the motor, and the inner periphery of the winding groove 11 is a ferromagnetic boundary.
  • the coil winding 200 is wound in the winding groove 11 to form the stator winding member, there is a certain gap between the edges of the ferromagnetic laminations 30 stacked one on another, and there is a certain relationship between the ferromagnetic boundary and the coil winding 11.
  • the gap also has a certain gap between the coil winding 11 and the wedge 300, and between the wedge 300 and the inner edge of the slot, and there is also a certain gap inside the coil winding 11 itself.
  • the stator windings are usually immersed, and the pores in the stator windings are filled with insulating varnish or insulating glue.
  • Dipping treatment is a common immersion treatment method for insulating the motor stator.
  • the currently used dip coating process is a secondary dipping process belonging to the thermal immersion process.
  • the dipping process generally includes: pre-baking, first dipping, dripping, first drying, second dipping, dripping The second drying.
  • the varnish treatment the insulating varnish can fill the inner layer gap of the stator winding and cover the surface of the coil winding. Even after the varnish treatment, there is inevitably a certain amount of voids in the stator winding. Therefore, the varnished stator winding is like a porous insulating material.
  • the insulating varnish penetrates into the gaps of the stator core better and more fully, minimizing the voids in the stator windings. In the process of dripping, it is desirable that the insulating varnish flows out of the stator core as little as possible.
  • the viscosity of the insulating varnish directly affects whether the insulating varnish can easily penetrate into the various gaps of the stator winding and whether it is easy to flow out of the stator winding.
  • the viscosity of the paint is related to its amount of solvent. The more solvent, the less the solids content, the lower the viscosity of the paint. If a low-viscosity lacquer is used, although the lacquer has strong penetrating ability and can penetrate well into the gaps of the stator windings, because the lacquer content is small, when the solvent is volatilized, more voids are left, and the lacquer is dripped. During the process, more paint will flow out, which will affect the moisture resistance, thermal conductivity, mechanical strength and dielectric strength of the stator windings. If the viscosity of the paint used is too high, it is difficult for the paint to penetrate into the inside of the winding, that is, the phenomenon of "permeability" occurs, and the moisture resistance, thermal conductivity, mechanical strength and electrical strength are also not required.
  • the traditional ferromagnetic laminate structure facilitates the entry of paint, but it does not prevent the loss of paint. Therefore, in the motor production process, despite the use of more advanced impregnation processes (for example, vacuum pressure impregnation (VPI), etc.), it is inevitable to generate in the motor windings, especially at the electromagnetic wire insulation junction (ferromagnetic boundary).
  • VPI vacuum pressure impregnation
  • these "bubbles” or “air gaps” create hidden dangers of water ingress and inhalation of moisture to damage the insulation.
  • these "bubbles” or “air gaps” become sites where partial discharge occurs.
  • Discharge destroys the structure of the polymer insulation material of the wire, causing cracking, local melting and chemical degradation, producing H and O, and corroding the insulating material to form "micropores".
  • the insulation layer Under the action of acid, alkali and water, the insulation layer "wet up” and “bubble up”, while causing the insulation layer to age, the water vaporizes and condenses during the thermal cycle, forming a larger "void", resulting in The insulating layers of the wires are separated and peeled off, thereby short-circuiting between the wires.
  • the ferromagnetic boundary (the inner edge of the laminated core) is substantially close to the flat surface, the ferromagnetic boundary structure has Conducive to the entry of insulating varnish during the dipping process, but it can not prevent the loss of insulating varnish when dripping paint.
  • the insulating varnish not only flows out from the notch (slot wedge) in the radial direction, but also flows out from the axial ends of the winding groove in the axial direction.
  • a small amount of paint is applied to the surface of the stator winding, in particular the ferromagnetic boundary, and the paint layer is thin. In the notch portion, it is also difficult to form a strict seal on the outer circumference of the wedge.
  • the slot coil 300 when used to fix the in-slot coil 200, since the ferromagnetic lamination is completely different from the conventional slot wedge, the elastic modulus is very different, and the conventional wedge-free end and the ferromagnetic lamination are The interface between the slotted teeth and the bonding layer formed by the insulating medium may be “debonded”, causing a gap between the wedge and the core slot silicon, and moisture and water will naturally enter the slot along the debonding gap to break the insulation. .
  • the wedge is made of a magnetically permeable material, the interface between the wedge and the slot of the core slot is not ensured to be firm, and moisture and water cannot be prevented from entering the winding slot and breaking the insulation along the fracture gap of the bonding layer.
  • the motor winding of the conventional structure can not effectively guarantee the insulation performance and the service life of the stator winding.
  • a motor winding structure including a motor magnetic conductive member and a coil winding, the motor magnetic conductive member having a plurality of winding slots, the coil winding being disposed at the winding In the groove, a plurality of cavities are formed on an inner wall of the winding groove toward an inner opening of the winding groove, and a filling medium is filled in the cavity and between the winding groove and the coil winding.
  • an electric machine that includes a motor winding structure as described above.
  • a motor magnetic conductive member including a winding groove on which an inner wall of the winding groove is formed with a plurality of holes communicating with the winding groove.
  • an electric machine that includes a motor magnetically permeable component as described above.
  • a ferromagnetic laminate a plurality of grooves are provided on a ferromagnetic boundary of the ferromagnetic lamination forming a slot, and the plurality of grooves are respectively associated with the The cogging is connected.
  • an electric machine having a motor magnetically permeable member made of a ferromagnetic lamination as described above.
  • an electric energy and magnetic field energy conversion device including a conductive member, an insulator, and a magnetic conductive member, the conductive member being disposed on the magnetic conductive member
  • the insulator is formed between the magnetic conductive member and the conductive member, and a plurality of holes are formed on a boundary of the magnetic conductive member with respect to the conductive member, and the insulator fills the plurality of holes a cavity, and filling a gap between the conductive member and the magnetic conductive member other than the plurality of holes.
  • the liquid insulating medium can be effectively retained and fixed by the hole structure during the insulation treatment of the magnetic conductive component of the motor, and the ferromagnetic medium is cured after the liquid insulating medium is solidified.
  • the boundary forms an intermediate elastic root of the rooting, which effectively prevents the insulating medium from peeling, cracking or detachment.
  • the insulating medium takes root in the cavity at the ferromagnetic boundary position, and the adjacent insulating mediums are joined to each other to form an intermediate elastic foundation (adhesive root).
  • An elastic sealing portion having a foundation is formed at the slot wedge and the magnetic component slot.
  • the appearance of the intermediate elastic sealing link increases and locks the filling amount of the insulating medium, increases the boundary to prevent the intrusion of moisture and other media, and makes the oxygen, moisture and water in the air not easily invade the inside of the groove insulation, which can delay the aging of the insulation system.
  • the process reduces the risk of the motor being exposed to moisture and water, and improves insulation reliability.
  • FIG. 1 and 2 are schematic views showing a partial structure of a winding and a magnetic conductive member thereof in a wind turbine system in the prior art
  • Figure 3 shows a partial perspective view of a prior art winding and magnetically permeable member
  • Figure 4 is a schematic axial view showing a partial structure of a prior art ferromagnetic laminate
  • Figure 5 shows an axial cross-sectional view of a prior art winding slot containing a coil winding
  • FIG. 6 is a schematic structural view of a single ferromagnetic lamination for manufacturing a magnetically permeable member of a motor according to an embodiment of the present disclosure
  • FIG. 7 is a schematic view of a plurality of ferromagnetic laminations for fabricating a magnetically permeable member of a motor according to a first embodiment of the present disclosure
  • FIG. 8 illustrates a partial structural perspective view of a magnetically permeable member of a motor according to an exemplary embodiment of the present disclosure
  • Figure 9 is a schematic view showing a process of spin-drying a magnetically conductive member of a motor after immersion
  • Figure 10 is a schematic view of the winding slot of Figure 9 at the 3 o'clock or 9 o'clock position;
  • Figure 11 shows a schematic view of the winding slot of Figure 9 at the 6 o'clock position
  • Figure 12 is a schematic view showing a three-dimensional joint force network formed by an insulating medium in a ferromagnetic boundary in a winding slot;
  • Figure 13 shows a partial view of the force analysis of the junction of the ferromagnetic boundary with the insulating medium within the cavity.
  • the liquid insulating medium is not easily left in the magnetic conductive component of the motor, and the insulation is caused when the magnetic conductive component of the motor is thermally expanded and contracted due to temperature change.
  • the present disclosure improves the ferromagnetic boundary of the conventional winding from the perspective of interdisciplinary seepage mechanics, forming a new boundary on the ferromagnetic boundary
  • the structure-hole structure is formed by the automatic formation of the vacuum space in the cavity and automatically prevents the liquid insulating medium from flowing, thereby retaining and fixing the liquid insulating medium.
  • a three-dimensional joint force network is formed between the ferromagnetic boundary of the insulating structure and the insulating medium to prevent the insulating medium layer from being separated from the ferromagnetic boundary or the insulating medium layer is torn, forming in the notch portion.
  • the elastic sealing part with roots prevents the phenomenon of “debonding” at the interface of the bonding layer. According to this structure, oxygen, moisture and water in the air are prevented from intruding into the interior of the insulating structure, the aging process of the insulating system is delayed, and the insulation reliability is improved.
  • FIG. 6 illustrates a structural schematic view of a ferromagnetic lamination for manufacturing a magnetically permeable member of a motor according to an exemplary embodiment of the present disclosure.
  • the ferromagnetic lamination 100 may have a plurality of teeth and a slot 101 between adjacent teeth that will form a winding slot 110 of the motor magnetically permeable component for mounting the coil winding ( As shown in Figure 8).
  • Figure 6 shows only an axial schematic of one of the slots 101.
  • the slot 101 may include a slot portion 112 and a notch portion 114 in the radial direction. A portion of the coil winding 200 other than the winding ends may be housed in the body portion 112, and the wedge 300 may be received in the notch portion 114.
  • a plurality of grooves 120 opening toward the inner space of the groove are formed on the inner edge of the tooth groove 101, in other words, the formation of the cogging in the ferromagnetic lamination 100
  • a plurality of grooves 120 communicating with the space defined by the slots 101 are formed on the ferromagnetic boundary of 101.
  • the groove 120 may be formed on the entire inner edge (ferromagnetic boundary) of the slot 101, including on the inner edge of the body portion 112 and on the inner edge of the notch portion 114.
  • the groove 120 may be formed only on a portion of the inner edge of the slot 101, for example, only on the inner edge of the slot portion 112, or only on the left and right sides of the slot portion 112. On the side.
  • the position at which the groove 120 is formed at the inner edge of the slot 101 is not limited by the above description.
  • the groove 120 may have a small belly shape, in other words, the groove 120 has a gradually contracting opening toward the inner direction of the slot 101, specifically, two of the groove 120
  • the side inner edge may gradually taper and contract toward its opening position, so that the size of the groove 120 gradually narrows toward the inside of the slot 101.
  • the opening of the recess 120 as a constricted opening, it is possible to effectively prevent the liquid insulating medium inside the recess 120 from flowing out.
  • the groove 120 may have a rough or curved inner edge to form a curved flow path to increase the flow resistance of the liquid insulating medium.
  • the inner edge of the groove 120 and the inner edge of the slot 101 may be formed as a sharp protrusion structure.
  • the size of the grooves 120 may be uniform, and for the same ferromagnetic laminate 100, the layout density of the grooves may be uniform.
  • the sizes of the grooves 120 at different positions of the slots 101 are different, and along the radial direction of the stator of the motor, the grooves 120 can be gradually enlarged and the openings gradually become smaller to obtain a greater resistance to the loss of the liquid insulating medium.
  • the notch portion 114 is for accommodating the wedge 300, and therefore, the maximum width of the accommodation space of the notch portion 114 is larger than the width of the accommodation space of the groove portion 112.
  • the effective area through which the magnetic lines of force pass is the area outside the widest point of the notch portion 114, that is, the effective area between the two adjacent slots. If a dotted line 140 is drawn from the widest position of the accommodation space of the notch portion 114 along the inner boundary parallel to the groove portion 112, the portion outside the broken line 140 is an effective area through which magnetic lines of force pass.
  • the groove 120 is formed at the inner edge of the broken line 140 and the slot 101 (the outer contour or boundary of the flat region or the linear region of the ferromagnetic boundary) 118 Between, that is, in the width direction of the slot 101, the groove 120 does not exceed the outermost edge of the receiving space of the notch portion 114, thereby maintaining the ferromagnetic boundary electromagnetic properties as much as possible, avoiding the formation of the concave
  • the groove 120 reduces the ferromagnetic efficiency of the magnetically permeable member.
  • a plurality of ferromagnetic laminations according to the present disclosure may be stacked one on another to form a motor magnetically permeable member.
  • FIG. 7 illustrates an example of a plurality of ferromagnetic laminations for fabricating a magnetically permeable member of a motor in accordance with an embodiment of the present disclosure.
  • FIG. 8 illustrates a partial structural perspective view of a magnetically permeable member of a motor according to an embodiment of the present disclosure.
  • Figure 7 shows only the uppermost ferromagnetic laminations, the second ferromagnetic laminations, the third ferromagnetic laminations, and the fourth ferromagnetic laminations forming the motor magnetically permeable components.
  • the four-layer ferromagnetic laminate includes two ferromagnetic laminations A and two ferromagnetic laminations B, and the ferromagnetic laminations A and the ferromagnetic laminations B are alternately arranged to overlap each other in the axial direction.
  • the ferromagnetic lamination A of the first layer and the ferromagnetic lamination A of the third layer may employ a ferromagnetic lamination of the prior art, and the inner edge of the tooth groove does not form the groove 120.
  • the ferromagnetic lamination B of the second layer and the ferromagnetic lamination B of the fourth layer employ a ferromagnetic lamination according to an exemplary embodiment of the present disclosure, and a plurality of inner edges of the slots of the ferromagnetic lamination B are formed Groove 120.
  • FIG. 7 shows only four layers of ferromagnetic laminations, it goes without saying that more ferromagnetic laminations A and ferromagnetic laminations B can be superposed on each other in the same manner to form a magnetically conductive part of the motor. .
  • Fig. 8 is a perspective view showing a partial structure of a ferromagnetic boundary on both sides of the winding groove 110 of the magnetic conductive member of the motor.
  • the direction of the arrow in Fig. 8 is the groove depth direction, and the direction of the groove depth is also the radial direction for the motor stator.
  • a ferromagnetic laminate A can be used in odd layers and a ferromagnetic laminate B can be used in even layers.
  • the upper and lower sides (i.e., both sides in the thickness direction) of the groove 120 on the ferromagnetic laminate B are adjacent to the ferromagnetic laminate A covers, the groove 120 can only open toward the inside of the groove, thereby forming the cavity 400.
  • a plurality of holes 400 are formed on the inner boundary (ferromagnetic boundary) of the winding groove 110. Accordingly, similar to the structure of the groove 120, the cavity 400 also has a structure with a large belly.
  • a large number of cavities 400 are formed, and the inner wall of the winding groove 110 is no longer a relatively flat planar structure, so that more liquid in the dip coating process
  • the insulating medium flows into the cavity 400 and is adsorbed on the ferromagnetic boundary.
  • more insulating medium remains in the gap between the winding, the magnetically permeable member and the wedge.
  • the ferromagnetic member B is disposed in an even number of layers, and it is obvious that the ferromagnetic member B may be disposed on the odd-numbered layers to form the holes 400 on the odd-numbered layers of the motor-conductive member.
  • ferromagnetic laminations A and B are shown in FIG. 7 and a motor magnetically permeable part manufactured by the two ferromagnetic laminations A and B are shown in FIG. 8, the present disclosure is not limited thereto.
  • the ferromagnetic laminations can be of a wide variety of types such that the form of the holes on the inner wall of the winding groove 110 of the formed motor magnetically permeable member is varied.
  • a groove 120 may be formed on the left side of the slot 101 of the ferromagnetic lamination A, and a groove 120 may be formed on the right side of the slot 101 of the ferromagnetic lamination B, so that the winding groove 110 side of the motor magnetic conductive member Holes 400 are formed on the odd-numbered layers, and holes 400 are formed on the even-numbered layers on the other side. Further, it is not necessary to manufacture the ferromagnetic laminate in such a manner that one side of the winding groove 110 is formed with the groove 120 and the other side is not formed with the groove 120 as long as the upper side and the lower side of the groove 120 on one ferromagnetic lamination are provided.
  • the side is covered by the adjacent ferromagnetic laminations, so that the holes 400 may be formed on the inner wall of the winding groove 110 of the magnetic conductive member.
  • the positions of the adjacent two layers of the ferromagnetic lamination may be alternately formed.
  • the groove 120 is such that a cavity 400 is formed on both the odd-numbered layer and the even-numbered layer of the motor magnetically permeable member.
  • a single cavity 400 can be formed on a layer of ferromagnetic laminations or on at least two layers of ferromagnetic laminations.
  • the magnetic conductive member of the embodiment of the present disclosure as long as a plurality of holes 400 are formed on the inner wall of the winding groove 110, regardless of whether a single hole is formed on the single-layer ferromagnetic lamination and whether the plurality of holes 400 are in an odd number Layer or even layer distribution, or a single hole cross-layer setting, can achieve the corresponding technical effects.
  • the motor magnetically permeable member is formed by stacking a plurality of ferromagnetic laminations, it will be easily understood by those skilled in the art that when the motor magnetically permeable member is not stacked by a plurality of In the case where the ferromagnetic laminate is manufactured, but is integrally cast, it is also possible to form the cavity 400 directly on the inner wall of the winding groove.
  • FIG. 9 shows a schematic diagram of rotational baking of a motor magnetically permeable member according to an embodiment of the present disclosure.
  • the magnetically permeable component is the stator of the motor of the inner stator outer rotor structure. Therefore, the winding groove 110 is provided on the outer circumference of the stator.
  • the motor magnetically permeable member is insulated.
  • Vacuum pressure impregnation can be used to paint and dry the magnetically permeable parts of the motor.
  • the stator winding structure is placed horizontally horizontally in a hot air circulating oven, and rotational baking is performed to gradually solidify the liquid insulating medium, and reference numeral 900 denotes a rotating shaft.
  • the slots of the winding slots 110 are radially outward.
  • the notch of the winding slot 110 faces upward, and the liquid insulating medium does not easily flow radially from the slot, but is easy to follow the winding from the axial direction. Both ends of the groove 110 flow out.
  • the liquid insulating medium easily flows out radially and axially under the action of force (for example, gravity, centrifugal force, etc.).
  • Figure 10 shows the winding slot 110 for the 3 o'clock (or 9 o'clock) position.
  • the winding groove 110 is in the horizontal direction, and the arrows in the figure indicate the direction of gravity to which the insulating medium is subjected.
  • the opening of the cavity 400 on the lower side of the winding groove 110 faces upward, and therefore, the liquid insulating medium 410 in the holes does not easily flow out, and the hole opening on the upper side of the winding groove 110 faces downward and enters the cavity 400.
  • the insulating medium 410 is subjected to gravity and tends to flow out of the holes 400.
  • a certain vacuum space 500 is automatically formed at the top of the cavity 400.
  • a pressure difference is formed between the vacuum space 500 and the outside atmospheric pressure, which prevents the liquid insulating medium from sinking, thereby preventing the liquid insulating medium 410 in the cavity 400 from being lost.
  • the cavity at the bottom portion of the groove and the cavity at the boundary of the groove portion since the cavity is preferably formed into a shape in which the opening is contracted, a vacuum space is formed in the cavity while a part of the liquid in the cavity flows outward. 500, the vacuum space 500 effectively prevents further outflow of the liquid insulating medium 410.
  • Figure 11 shows a schematic view of the winding slots at the 6 o'clock position, with the downward-directed arrows indicating the direction of gravity experienced by the liquid insulating medium. Similar to the cavitation mechanism described with reference to FIG. 10, when the liquid insulating medium 410 in the cavity flows out, a vacuum space 500 is simultaneously formed in the cavity, preventing further escape of the liquid insulating medium 410.
  • the cavity 400 is preferably a structure having a large belly size, and therefore, the opening of the cavity 400 is formed as a shrinkage port, so that the liquid insulating medium flowing into the cavity 400 does not easily flow out.
  • a curved flow path is formed at the opening of the cavity 400, and by making the flow path of the liquid insulating medium 410 a curved flow path, the flow resistance coefficient can be increased, the liquid flow can be slowed, and the liquid insulating medium 410 can be prevented from being Loss without curing.
  • the curved flow path can be formed by forming a sharp protrusion structure at the cavity opening to increase the flow resistance coefficient. Therefore, a large amount of voids effectively retain a large amount of liquid insulating medium on both the inner side wall of the groove portion and the inner side wall of the notch portion.
  • the mechanism of action of a single hole preventing the loss of the liquid insulating medium is described above with reference to FIGS. 9 to 11.
  • the insulating medium in the cavity is linked with the ferromagnetic boundary insulating medium to exert a greater function of preventing the loss of the liquid insulating medium, after curing molding,
  • the liquid insulating medium can form a rooted, three-dimensional joining force network 600 that overcomes the peeling force and prevents tearing and peeling of the cured insulating medium.
  • a three-dimensional engagement force network 600 will be described in detail with reference to FIG.
  • the adsorption of the holes 400 causes the liquid insulating medium to fill the pores between the ferromagnetic laminations 100, the windings 200, and the wedges 300, as shown in gray in FIG. The filled insulating medium.
  • the insulating medium in the cavity is bonded and bonded to the adjacent insulating medium to form a solid covering body, which is coated on the ferromagnetic boundary to form an elastic supporting structure, and an elastic sealing portion having a root is formed in the notch portion.
  • the insulating medium located in the cavity is like a suction cup or a gripper.
  • the insulating medium of the integral structure is tightly connected and grasped on the inner wall of the ferromagnetic boundary, and the motor magnetic component, coil winding and slot wedge are handed over.
  • a multi-layered protection system is constructed between the zones while maintaining the electromagnetic properties of the wedge-wound ferromagnetic boundary.
  • the insulating medium in the cavity and the insulating medium at the ferromagnetic boundary are integrally connected to each other, a bonding force is formed therebetween, as indicated by reference numeral 610 in the figure.
  • the coil winding 200 contracts, the insulating medium at the ferromagnetic boundary shrinks and tends to peel off.
  • the arrow 601 in the direction toward the right at the hole opening on the left side of the winding groove 110 shows the peeling force of the insulating medium in the cavity.
  • the insulating medium located in the cavity is deformed outwardly, and at the boundary of the cavity, resistance against peeling (as indicated by reference numeral 620) is also generated. Therefore, the insulating medium in the cavity acts like a rooted suction cup and is tightly adsorbed in the inner wall of the winding groove to prevent the insulating medium from peeling off from the ferromagnetic boundary.
  • the insulating medium at the ferromagnetic boundary is squeezed, thereby squeezing the insulating medium in the cavity, and the direction of the right side of the winding slot toward the right arrow 602 shows the pressing force of the insulating medium.
  • the magnetic conductive member of the motor according to the embodiment of the present disclosure is provided with a certain buffer space due to the cavity, and the thickness of the insulating medium as a whole is increased, so that it is pressed.
  • the insulating medium has a certain buffering space, thereby avoiding the risk of being torn due to limited expansion space.
  • FIG. 12 shows a force diagram of the insulating medium in and around a single cavity.
  • the arrows a1, a2, a3, and a4 indicate that the insulating medium between the ferromagnetic boundary and the cavity is linked to each other to form a bonding force in a plurality of directions, and the arrows b1, b2, b3, and b4 show the peeling generated in the cavity. Resistance.
  • Figure 13 is a partial enlarged view of a link structure of an insulating medium 410 and a ferromagnetic boundary insulating medium 420 in a single cavity.
  • a plurality of holes are linked to each other and a mesh-shaped three-dimensional joining force is formed in the entire space, it is also possible to support shrinkage and tensile deformation of the insulating medium.
  • the winding coil 200 is contracted, the insulating medium 420 at the ferromagnetic boundary pulls the insulating medium 410 in the cavity 400 outward, as indicated by an arrow a1 in FIG.
  • the insulating medium 410 Due to the presence of the cavity 400, the insulating medium 410 has a certain tensile buffer space, so that the tensile deformation and the dielectric medium 410 are different from the inner wall of the rigid winding groove in which the motor magnetic conductive member does not have holes in the prior art.
  • the constricted opening of the pocket can create resistance against the outward stretching 410 of the insulating medium 420, as indicated by arrows b1, b2, b3, b4 in FIG.
  • the cavity 400 can provide a certain compressed space. Therefore, the hole structure enables the insulating medium in the cavity 400 to be rooted and bonded to the adjacent insulating medium to form an intermediate elastic foundation (adhesive root), thereby supporting the stretching or shrinkage deformation of the entire insulating layer.
  • the hole structure easily absorbs the liquid insulating medium during the immersion process, so that the liquid insulating medium fills the entire gap.
  • the pressure difference that prevents the flow of the liquid insulating medium can be automatically formed by the vacuum space, effectively retaining and fixing the insulating medium, and having the dual function of preventing radial loss and axial loss of the insulating medium, and solving the magnetic permeability of the conventional structure.
  • the problem that the liquid insulating medium is lost along the radial and axial direction of the groove wedge during the painting process improves the fullness rate of the immersion paint after lacquering, reduces the risk of the motor being eroded by moisture, and improves the insulation reliability.
  • the insulating medium takes root in the cavity space, and the flow resistance is generated by the rough surface of the inner boundary of the cavity, and the mechanical bonding force between the impregnated insulating medium and the ferromagnetic boundary is enhanced, and the wetting of the ferromagnetic boundary surface by the insulating medium is also facilitated.
  • the insulating medium in the cavity is solidified and molded, it can be joined with the adjacent solid insulating medium to form a solid coating, and has better overall insulation performance, prevents water and steam from remaining, and prevents breathing (damage). occur.
  • the insulating medium at the boundary with the ferromagnetic lamination in the groove has In the case of better viscoelasticity, the stress can be released by relaxation. If the creep of the insulating medium molecules is not sufficient to completely eliminate the internal stress, there will be permanent residual internal stress. The internal stress and adhesion of the insulating medium and the strength of the insulating medium compete with each other. If the internal stress is too large, the insulating medium may be damaged or fall off from the ferromagnetic boundary.
  • the formation of the vacuum space in the cavity provides a foundation of the elastic material of stress release and thermal deformation, and therefore, it is possible to withstand the recombination of the "bonding interface" stress by the viscoelasticity and the base action of the cavity. Maintain bonding to support stretching or shrinkage deformation.
  • the integrated insulating structure formed by the cavity structure can better prevent undesired multi-phase flow impurities such as wind, frost, rain, snow, dust, floc, salt spray, etc. from entering the winding groove and destroying the groove. Insulation structure inside.
  • the heat generated by the conductive parts causes the polymer insulating medium/material to age, reduce the strength, eventually lead to the failure of the insulating material, and can generate excessive leakage current in the magnetic conductive parts.
  • the insulating medium is easily peeled off, and once peeled off, the heat conduction path between the magnetic conductive member and the conductive member is broken, causing thermal conduction discontinuity.
  • a hole structure is provided, the liquid insulating medium is rooted after solidification in the cavity by holes, and an integral structure is integrally formed with the insulating medium enveloping the winding, which is advantageous not only for preventing the insulating medium from being guided.
  • the magnetic component is peeled off at the boundary, and a heat conduction continuous medium can be formed between the magnetic conductive component and the winding, so that the heat flow/heat conduction is uninterrupted, the heat generated by the winding is transmitted to the magnetic conductive component such as the silicon steel sheet, and the heat is taken away by the magnetic conductive component. It plays the role of controlling, suppressing the temperature rise of the winding and absorbing the heat generated by the winding.
  • the integrated insulating structure can also prevent impurities from entering the coupling space (mating space) between the magnetic conductive member and the conductive member, and forming electrical insulation between the conductive member and the magnetic conductive member, and insulating the electric energy to prevent the conductive member from being guided.
  • the magnetic component transfers electrical energy.
  • the motor magnetic conductive member according to the present disclosure is not limited to the stator core, and may be a rotor that requires insulation treatment. Still further, the hole structure according to an embodiment of the present disclosure can be applied to other parts that require a varnish treatment.
  • a motor having the magnetic conductive member of the motor there is also provided a motor winding structure after performing an insulation process and a motor having the motor winding structure.
  • the above motor may be a wind power generator.
  • a wind turbine and a wind farm having at least one of the wind turbines are also provided.
  • the hole structure in addition to being applicable to components such as a stator, a rotor, and the like of the motor, the hole structure can be applied to other various electric energy and magnetic field energy conversion devices that require insulation treatment/filling treatment/perfusion treatment, for example, , transformers, reactors, etc.
  • These electrical energy and magnetic field energy change devices typically include a conductive component (e.g., a coil) and a magnetically permeable component, and an insulator is required between the conductive component and the magnetically permeable component. Therefore, a plurality of holes can be formed on the boundary of the magnetic conductive member with respect to the conductive member, thereby filling the gap between the plurality of holes and the magnetic conductive member and the conductive member.
  • an integrated insulating structure is formed after solidification molding between the plurality of holes and the gap.
  • the integrated insulating structure can constitute a continuous thermally conductive medium between the electrically conductive member and the magnetically permeable member.
  • the integrated insulating structure prevents impurities from entering the coupling space (mating space) between the magnetic conductive member and the conductive member.
  • the integrated insulating structure prevents the conductive member from transmitting electrical energy to the magnetically permeable member.
  • the hole structure can also be applied to the blade, for example, to the blade of the wind turbine.
  • the wind turbine blade skeleton is usually manufactured, the blade skeleton is placed in the blade manufacturing mold, the resin is poured, and the resin is solidified to form the blade.
  • a void structure may be formed on the surface of the blade skeleton according to the concept of the present disclosure.
  • the liquid resin is filled in the space between the cavity on the blade skeleton and the blade mold during the process of injecting the liquid resin.
  • a solid filling body formed after the liquid filling medium contained in the cavity is solidified and molded, and a liquid filling medium tightly coated on an outer surface of the blade frame is solidified to form a solid coating body, and the plurality of the empty body
  • the solid filler in the cavity forms an integrated structure with the solid coating, and is not easily separated from each other.
  • a plurality of cavities may be formed on the outer periphery of the root portion of the pre-embedded bolt, so that the pre-embedded bolt and the filling resin form an integrated joint structure.
  • the blade of the present disclosure even when the torque of the different directions is received, even if the degree of stretching or twisting of the filling medium and the blade skeleton is different, or the degree of thermal expansion and contraction is different due to temperature change, due to the elastic foundation in the cavity In the presence, the filling medium and the skeleton are not easily peeled off, thereby preventing damage to the blade structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

一种铁磁叠片、电机导磁部件、具有该电机导磁部件的电机、电机绕组结构以及具有该电机绕组结构的电机、电能与磁场能变换设备。电机导磁部件包括绕组槽(110),绕组槽的内壁上形成与绕组槽的容纳空间连通的多个空穴(400)。根据该电机导磁部件,能够借助空穴结构,在对电机导磁部件进行绝缘处理时,有效留存、固定液体绝缘介质,并在液体绝缘介质固化后在铁磁边界形成生根的中间弹性根基,有效防止绝缘介质剥离、破裂或脱离。

Description

电机绕组结构、电机导磁部件、铁磁叠片及电机 技术领域
本公开涉及电机技术领域,更具体地讲,涉及用于制造电机导磁部件的铁磁叠片、由该铁磁叠片形成的电机导磁部件、电机绕组结构、具有该电机绕组结构的电机以及电能与磁场能变换设备。
背景技术
风力发电机组是一种将风能转化为电能的大型发电装置。电机作为风力发电机组的核心部件,包括转子和定子,定子包括定子铁心以及缠绕在定子铁心上的绕组。在电机制造过程中,需要在电机导磁部件上开出绕组槽,并将线圈绕组布置在槽内,采用在槽口安装各种形状槽楔的方法将线圈绕组固定在绕组槽内。实践中,通常采用将带有齿槽的多个铁磁叠片相互叠置来形成电机导磁部件。
以电机导磁部件为定子铁心10为例,图1和图2示出了定子绕组的局部结构示意图,图3示出了定子绕组的局部结构立体图,图4示出了铁磁叠片30的一个齿槽31的轴向示意图,图5示出了填塞有线圈绕组200的一个铁磁叠片30的轴向截面图。如图1-5所示,以内定子为例,在将铁磁叠片30叠置而成为定子铁心10后,在定子铁心10的外圆周上形成了用于安装线圈绕组的绕组槽11。各个铁磁叠片30的齿槽31内边缘基本上为直线形,多个铁磁叠片30上下叠置后,由铁磁叠片30的齿槽31形成的绕组槽11的内壁基本上为平坦表面。线圈绕组200固定在绕组槽11内,在绕组槽11的槽口处安装有槽楔300,用于将线圈绕组200固定在绕组槽11内。如图3和图4所示,定子铁心10作为电机导磁部件,绕组槽11的内周边为铁磁边界。在将线圈绕组200缠绕在绕组槽11中形成定子绕组部件之后,相互叠置的铁磁叠片30的边缘之间会存在一定的细隙,在铁磁边界与线圈绕组11之间存在一定的间隙,在线圈绕组11与槽楔300之间、以及槽楔300与槽口内边缘之间也存在一定的间隙,线圈绕组11本身内部也存在一定的间隙。在定子绕组的内部的这些孔隙成为定子绕组产生进水、吸入潮气损坏绝缘的隐患。
为了提高定子绕组的防护性能,通常对定子绕组采用浸渍处理,用绝缘漆或绝缘胶填充定子绕组中的孔隙。浸漆处理是对电机定子进行绝缘处理的一种常用的浸渍处理方式。目前采用的浸漆处理工艺是属于热沉浸工艺的二次浸漆,浸漆过程大致包括:预烘、第一次浸漆、滴漆、第一次烘干、第二次浸漆、滴漆、第二次烘干。通过浸漆处理,可以使绝缘漆填充定子绕组的内层空隙并覆盖线圈绕组的表面。即使经过浸漆处理,也不可避免地在定子绕组中存在一定的孔隙,因此,浸漆处理后的定子绕组就像一个多孔绝缘材料。
在浸漆的过程,希望绝缘漆能够更好、更充分地渗透到定子铁心的各个缝隙中,尽量减少定子绕组中的孔隙。而在滴漆过程中,希望绝缘漆尽可能少地从定子铁心中流出。绝缘漆的粘度直接影响着绝缘漆能否容易渗透到定子绕组的各个缝隙中,以及是否容易从定子绕组中流出。
漆的粘度和它的溶剂量有关系,溶剂越多,固体含量越少,漆的粘度就越低。如果使用低粘度的漆,虽然漆的渗透能力强、能很好地渗透到定子绕组的各空隙中去,但因为漆的含量少,当溶剂挥发以后,留下的空隙较多,在滴漆过程中,也会有更多的漆流出来,使得定子绕组的防潮能力、导热能力、机械强度和绝缘强度都受到影响。如果使用的漆粘度过高,则漆难以渗入到绕组内部,即发生“渗不透”的现象,防潮能力、导热能力、机械强度和电气强度同样到不到要求。
总的来讲,传统的铁磁叠片结构利于漆的进入,但又阻拦不了漆的流失。因此,在电机生产过程中,尽管采用较先进的浸渍工艺(例如,真空压力浸渍(VPI)等),仍不可避免地在电机绕组中,尤其是电磁线绝缘交界(铁磁边界)处,产生“气泡”或“气隙”。一方面,这些“气泡”或“气隙”产生进水、吸入潮气损坏绝缘的隐患,另一方面,这些“气泡”或“气隙”成为局部放电发生的部位。放电破坏导线的高分子绝缘材料的结构,造成裂解、局部熔化和化学降解,产生H和O,腐蚀绝缘材料形成“微孔”。在酸、碱、水分的作用下,绝缘层“湿涨”、“泡涨”,在引起绝缘层老化的同时,水分在热循环过程中气化、冷凝,形成更大的“空隙”,造成导线的绝缘层分离、剥落,从而使得导线间短路。
此外,在电机强磁场作用下,进入电机气隙内的水被磁化时,水分子本身结合的状态也由长链变为短链,使得水容易渗入坚硬的铁磁叠片细缝中, 促进叠片间的毛细现象;使水更容易渗入经过真空压力浸漆后的多孔绝缘材料中,使铁磁叠片锈蚀。
总之,传统结构的定子绕组在浸漆工艺中表现出的内在矛盾比较突出,由于铁磁边界(叠片铁心的槽内边缘)基本上接近于平直表面,因此,这种铁磁边界结构有利于浸漆过程中绝缘漆的进入,但又阻拦不了滴漆时绝缘漆的流失。尤其是在滴漆工艺中,绝缘漆不仅会沿着径向方向从槽口(槽楔)处流出,还会沿着轴向方向,从绕组槽的轴向两端向外流出。因此,导致在定子绕组内,尤其铁磁边界的表面上挂漆量小、漆层薄。在槽口部分,也难以在槽楔外周形成严格的密封圈。
此外,现有技术在使用槽楔300固定槽内线圈200时,由于铁磁叠片与传统槽楔完全是不同的材质,弹性模量差距很大,传统槽楔自由端与铁磁叠片的槽口齿片之间借助绝缘介质形成的粘接层界面会出现“脱粘”现象,造成槽楔与铁心槽口硅片之间形成缝隙,潮气和水自然会沿着脱粘缝隙进入槽内破坏绝缘。即使使用导磁材料制作槽楔,也不能保证槽楔与铁心槽口齿片之间粘接层界面牢固,不能阻止潮气和水沿着粘接层断裂缝隙自然进入绕组槽内破坏绝缘。
因此,传统结构的电机绕组已经不能有效保证定子绕组的绝缘性能以及使用寿命。
发明内容
本公开的目的在于提供一种具有改进结构的铁磁叠片、采用该铁磁叠片制成的电机导磁部件、电机绕组结构以及具有该电机导磁部件或电机绕组结构的电机。
根据本发明的一方面,提供了一种电机绕组结构,所述电机绕组结构包括电机导磁部件和线圈绕组,所述电机导磁部件具有多个绕组槽,所述线圈绕组布置在所述绕组槽中,所述绕组槽的内壁上形成有朝着所述绕组槽的内部开口的多个空穴,在所述空穴中以及所述绕组槽与所述线圈绕组之间填充有填充介质。
根据本公开的一方面,提供了一种电机,所述电机包括如上所述的电机绕组结构。
根据本公开的另一方面,提供了一种电机导磁部件,所述电机导磁部件 包括绕组槽,在所述绕组槽的内壁上形成有与所述绕组槽连通的多个空穴。
根据本公开的另一方面,提供了一种电机,所述电机包括如上所述的电机导磁部件。
根据本公开的又一方面,提供了一种铁磁叠片,在所述铁磁叠片的形成齿槽的铁磁边界上设置有多个凹槽,多个所述凹槽分别与所述齿槽连通。
根据本公开的又一方面,提供了一种电机,所述电机具有由如上所述的铁磁叠片制成的电机导磁部件。
根据本公开的另一方面,还提供了一种电能与磁场能变换设备,所述电能与磁场能变换设备包括导电部件、绝缘体和导磁部件,所述导电部件设置在所述导磁部件上,所述绝缘体形成在所述导磁部件与所述导电部件之间,在所述导磁部件的相对于所述导电部件的边界上形成有多个空穴,所述绝缘体填充所述多个空穴,并且填充所述导电部件与所述导磁部件之间的除所述多个空穴以外的间隙。
根据本公开的电机导磁部件、电机绕组结构以及电机,能够借助空穴结构,在对电机导磁部件进行绝缘处理时,有效留存、固定液体绝缘介质,并在液体绝缘介质固化后在铁磁边界形成生根的中间弹性根基,有效防止绝缘介质剥离、破裂或脱离。
本构思突破对现有结构的认识,在电机绕组传统的绕组叠片铁心结构用于导磁功能的基础上,对传统绕组的铁磁边界做结构改进,产生在电机绕组的绝缘结构的铁磁边界与绝缘介质固化成型接合的新型边界结构,阻止水和潮气进入铁磁边界与绝缘介质接合处而破坏绝缘结构。在铁磁边界与电机绕组之间的液态绝缘介质在边界填充、固化后,在铁磁边界位置绝缘介质在空穴内生根,相邻的绝缘介质相互接合,形成中间弹性根基(粘接的根基)、在槽楔与导磁部件槽口处形成具有根基的弹性密封环节。这个特殊的边界结构在真空压力浸渍工艺的浸漆后滴漆过程、旋转烘焙过程中,能够防止绝缘介质沿铁磁边界的径向流失和沿铁磁边界的轴向流失,得以提高浸漆后绝缘介质填充浸渍的饱满率。中间弹性密封环节的出现增加并锁住了绝缘介质的填充量、增加了边界阻止潮气和其它介质侵入的能力,使空气中的氧、潮气和水等不易侵入槽绝缘内部,可延缓绝缘体系老化过程,降低电机受潮气和水侵入存留其中的风险,提高绝缘可靠性。
附图说明
通过下面结合示例性地示出一例的附图进行的描述,本公开的上述和其他目的和特点将会变得更加清楚,其中:
图1和图2示出了现有技术中风力发电机系统中绕组及其导磁部件的局部结构示意图;
图3示出了现有技术中绕组和导磁部件的局部立体图;
图4示出了现有技术中的铁磁叠片的局部结构的轴向示意图;
图5示出了现有技术中的含有线圈绕组的绕组槽的轴向截面图;
图6是根据本公开实施例的用于制造电机导磁部件的单个铁磁叠片的结构示意图;
图7是根据本公开第一实施例的用于制造电机导磁部件的多个铁磁叠片的示意图;
图8示出了根据本公开示例性实施例的电机导磁部件的局部结构立体图;
图9示出了对浸漆后的电机导磁部件进行旋转烘干的工艺过程的示意图;
图10示出了图9中的处于3点钟或9点钟位置的绕组槽的示意图;
图11示出了图9中的处于6点钟位置的绕组槽的示意图;
图12示出了绕组槽内铁磁边界内的绝缘介质形成的立体接合力网络示意图;
图13示出了铁磁边界与空穴内的绝缘介质接合处的受力分析的局部视图。
附图标号:
10:定子铁心;11:绕组槽;30:铁磁叠片;31:齿槽;100:铁磁叠片;110:绕组槽;101:齿槽;112:槽身部;114:槽口部;118:铁磁边界;120:凹槽;200:线圈绕组;300:槽楔;400:空穴;410、420:绝缘介质;500:真空空间;900:旋转轴。
具体实施方式
为了解决现有技术中的电机导磁部件在进行绝缘处理时,液体绝缘介质 不容易留存在电机导磁部件中的问题,以及在电机导磁部件由于温度变化而热胀冷缩变形时导致绝缘介质层受到挤压或拉伸而与导磁部件表面脱离或撕裂的问题,本公开从跨学科的渗流力学的角度对传统绕组的铁磁边界做结构改进,在铁磁边界上形成新型边界结构—空穴结构,借助空穴内真空空间的自动形成并自动阻止液体绝缘介质流动,从而留存、固定液体绝缘介质。并在液体绝缘介质固化成型后,在绝缘结构的铁磁边界与绝缘介质之间形成生根的立体接合力网络,防止绝缘介质层与铁磁边界脱离或绝缘介质层撕裂,在槽口部分形成具有根基的弹性密封环节,防止粘接层界面会出现“脱粘”现象。根据这种结构,防止空气中的氧、潮气和水侵入绝缘结构内部,延缓绝缘体系老化过程,提高绝缘可靠性。
下面,参照附图来详细说明本公开的实施例。在整个说明书中,同一部件将采用相同或相似标号。
图6示出根据本公开示例性实施例的用于制造电机导磁部件的铁磁叠片的结构示意图。
根据本公开实施例的铁磁叠片100可以具有多个齿以及位于相邻的齿之间的齿槽101,这些齿槽101将形成电机导磁部件的用于安装线圈绕组的绕组槽110(如图8所示)。图6仅示出了其中一个齿槽101的轴向示意图。齿槽101沿径向方向可包括槽身部112和槽口部114。线圈绕组200除绕组端部以外的部分可容置在槽身部112中,槽楔300可容纳在槽口部114中。
在根据本公开实施例的铁磁叠片100中,在齿槽101的内边缘上形成有向着槽内空间开口的多个凹槽120,换句话说,在铁磁叠片100的形成齿槽101的铁磁边界上形成有多个与齿槽101所限定的空间相连通的凹槽120。对于一个铁磁叠片而言,凹槽120可形成在齿槽101的整个内边缘(铁磁边界)上,包括形成在槽身部112的内边缘上以及槽口部114的内边缘上。可选地,凹槽120也可仅形成在齿槽101的内侧边缘的一部分上,例如,仅形成在槽身部112的内侧边缘上,或仅形成在槽身部112的左右两侧的一侧上。对于一片铁磁叠片而言,凹槽120形成在齿槽101的内侧边缘的位置不受上述描述的限制。
朝着齿槽101的槽内方向,凹槽120可具有肚大口小的形状,换句话说,凹槽120朝着齿槽101的内部方向具有逐渐收缩的开口,具体地,凹槽120的两侧内边缘可向着其开口位置逐渐倾斜收缩,使得凹槽120的尺寸朝着齿 槽101内部方向逐渐变窄。通过使凹槽120的开口形成为收缩口,能够有效阻止凹槽120内部的液体绝缘介质流出。优选地,凹槽120可具有粗糙或弯曲的内边缘,从而形成弯曲流道,以增大液体绝缘介质的流动阻力。例如,如图6和图7所示,可使凹槽120的内边缘与齿槽101的内边缘连接处形成为尖锐突起结构。
根据本公开的示例,凹槽120的大小可以均匀一致,对于同一铁磁叠片100而言,凹槽的布局密度可以均匀一致。作为示例,位于齿槽101不同位置的凹槽120的大小不同,沿着电机定子的径向方向,凹槽120可以逐渐变大并且开口逐渐变小,以获得更大的阻止液体绝缘介质流失的真空状态下的反作用力,尤其是槽口附近。
槽口部114中用于容纳槽楔300,因此,槽口部114的容纳空间的最大宽度大于槽身部112的容纳空间的宽度。对于槽齿而言,使磁力线通过的有效区域为位于槽口部114的最宽处外侧的区域,即,两个相邻齿槽之间的有效区域。如果从槽口部114的容纳空间的最宽位置沿着平行于槽身部分112的内侧边界划一条虚线140,那么虚线140外侧的部分为使磁力线通过的有效区域。
因此,在根据本公开实施例的铁磁叠片100中,优选地,凹槽120形成在虚线140与齿槽101内边缘(铁磁边界的平坦区域或直线区域的外轮廓线或界线)118之间,也就是说,在齿槽101的宽度方向上,凹槽120不超过槽口部114的容纳空间的最外侧边缘,从而尽可能保持槽楔铁磁边界电磁学性能,避免因为形成凹槽120而降低导磁部件的铁磁效率。
根据本公开的多个铁磁叠片可以相互叠置从而形成电机导磁部件。图7示出了用于制造根据本公开实施例的电机导磁部件的多个铁磁叠片的示例。图8示出了根据本公开实施例的电机导磁部件的局部结构立体图。
图7示出了仅示出了形成电机导磁部件的最上层铁磁叠片、第二层铁磁叠片、第三层铁磁叠片以及第四层铁磁叠片。这四层铁磁叠片包括两个铁磁叠片A和两个铁磁叠片B,铁磁叠片A和铁磁叠片B交替设置,沿轴向方向相互叠置。第一层的铁磁叠片A和第三层的铁磁叠片A可以采用现有技术中的铁磁叠片,其齿槽的内边缘没有形成凹槽120。第二层的铁磁叠片B和第四层的铁磁叠片B采用根据本公开示例性实施例的铁磁叠片,在该铁磁叠片B的齿槽的内边缘形成有多个凹槽120。虽然图7仅示出了四层铁磁叠片,但 是,不言而喻,更多的铁磁叠片A和铁磁叠片B可以按照同样的方式相互叠置,从而形成电机导磁部件。
如上所述的多个铁磁叠片相互叠置之后,可以形成图8所示的电机导磁部件。图8示出了电机导磁部件的绕组槽110两侧的铁磁边界的局部结构立体图,图8中的箭头方向为槽深方向,对于电机定子而言,槽深方向也是径向方向。
如图8所示,可以在奇数层采用铁磁叠片A,在偶数层采用铁磁叠片B。在铁磁叠片A和铁磁叠片B交替叠置的情况下,铁磁叠片B上的凹槽120的上下两侧(即,厚度方向的两侧)被相邻的铁磁叠片A覆盖,凹槽120只能朝着槽内方向开口,从而形成空穴400。这样,在绕组槽110的内侧边界(铁磁边界)上形成了多个空穴400。相应地,与凹槽120的结构类似,空穴400也具有肚大口小的结构。
在图8所示的电机导磁部件的绕组槽110的内壁上,形成了大量的空穴400,绕组槽110的内壁不再是相对平坦的平面结构,使得在浸漆工艺中更多的液体绝缘介质流入空穴400内以及被吸附在铁磁边界上,在滴漆过程中,更多的绝缘介质留存在绕组、导磁部件以及槽楔之间的空隙中。
在图8所示的示例中,铁磁部件B设置在偶数层,显然,也可以将铁磁部件B设置在奇数层上,从而在电机导磁部件的奇数层上形成空穴400。
虽然在图7示出了两种铁磁叠片A和B以及在图8中示出了由这两种铁磁叠片A和B制造的电机导磁部件,然而,本公开不限于此。铁磁叠片可以包括很多种类型,使得形成的电机导磁部件的绕组槽110的内壁上的空穴分布形式多种多样。例如,可以在铁磁叠片A的齿槽101的左侧形成凹槽120,在铁磁叠片B的齿槽101的右侧形成凹槽120,从而电机导磁部件的绕组槽110一侧的奇数层上形成有空穴400,而另一侧的偶数层上形成有空穴400。此外,也不必按照绕组槽110的一侧形成有凹槽120,而另一侧没有形成凹槽120的方式来制造铁磁叠片,只要一个铁磁叠片上的凹槽120的上侧和下侧被相邻的铁磁叠片覆盖,从而在导磁部件的绕组槽110的内壁上形成空穴400即可,例如,也可以是相邻两层的铁磁叠片的不同位置交替形成有凹槽120,从而在电机导磁部件的奇数层和偶数层上均形成有空穴400。
此外,当利用单层铁磁叠片上的凹槽120形成的空穴400的尺寸不能满足设计要求时,也可以将相同位置具有凹槽120的至少两个铁磁叠片相邻叠 置,来形成尺寸更大的空穴。因此,单个空穴400可以形成在一层铁磁叠片上,也可以形成在至少两层铁磁叠片上。
因此,根据本公开实施例的导磁部件,只要绕组槽110内壁上形成有多个空穴400即可,而不管单个空穴形成在单层铁磁叠片上并且多个空穴400是否按照奇数层或偶数层分布、或者单个空穴跨层设置,均可实现相应的技术效果。
虽然在本公开的示例中,通过叠置多个铁磁叠片的方式来形成电机导磁部件,但是,对本领域技术人员来说很容易理解是,当电机导磁部件不是通过叠置多个铁磁叠片来制造的,而是一体铸造的情况下,直接在绕组槽的内壁上开设空穴400也是可以的。
下面结合附图来详细描述根据本公开实施例的电机导磁部件的空穴结构能够防止液体绝缘介质流失的机理。
图9示出了对根据本公开实施例的电机导磁部件进行旋转烘焙的示意图。在该示例中,该导磁部件为内定子外转子结构的电机的定子。因此,绕组槽110设置在定子的外周。
在将线圈绕组缠绕到根据本公开实施例的电机导磁部件上后,对该电机导磁部件进行绝缘处理。可以采用真空压力浸渍工艺(VPI),在对电机导磁部件进行浸漆处理后,进行滴漆和烘干。在图9所示的示例中,将该定子绕组结构轴向水平放置在热风循环式烘房中,进行旋转烘焙,使液体绝缘介质逐渐固化,标号900表示旋转轴。
在如图9所示放置的定子绕组结构中,绕组槽110的槽口径向向外。对于传统结构的定子绕组结构,当绕组槽110位于12点钟位置时,绕组槽110的槽口朝上,液体绝缘介质不容易从槽口处沿径向流出来,但是容易沿轴向从绕组槽110的两端流出。当绕组槽110位于6点钟位置时,液体绝缘介质容易在力(例如,重力,离心力等)的作用下沿径向和轴向向外流出。
对于现有技术中的定子绕组结构,由于绕组槽110的内壁相对平坦,不能有效阻止液体绝缘介质外流。然而,根据本公开实施例的电机导磁部件,由于绕组槽110的铁磁边界上设置有大量的空穴400,能够有效阻止绝缘介质外流。下面,结合附图10-图12详细说明空穴阻止液体绝缘介质外流的机理。
图10示出了对于处于3点钟(或9点钟)位置的绕组槽110。此时,绕 组槽110处于水平方向,图中的箭头表示绝缘介质受到的重力方向。绕组槽110下侧边的空穴400的开口朝上,因此,这些空穴内的液体绝缘介质410不容易流出来,而绕组槽110的上侧边的空穴开口朝下,进入空穴400内的绝缘介质410受重力作用,倾向于从空穴400内流出。然而,当空穴400内的液体绝缘介质410受力下沉从而倾向于流出时,在空穴400的顶部会自动形成一定的真空空间500。此时,在该真空空间500与外界大气压之间形成了压力差,该压力差能够阻止液体绝缘介质下沉,从而阻止空穴400内的液体绝缘介质410流失。类似地,对于槽底部分的空穴以及位于槽口部分边界上的空穴,由于空穴优选形成为开口收缩的形状,当空穴内的一部分液体向外流出的同时,会在空穴内形成真空空间500,该真空空间500会有效阻止液体绝缘介质410进一步外流。
图11示出了位于6点钟位置的绕组槽的示意图,图中的方向向下的箭头表示液体绝缘介质受到的重力方向。与参照图10描述的空穴作用机理类似,当空穴内的液体绝缘介质410外流时,空穴内会同时形成真空空间500,阻止液体绝缘介质410进一步外流流失。
在根据本公开的实施例中,空穴400优选为肚大口小的结构,因此,在空穴400的开口形成为收缩口,使得流入空穴400的液体绝缘介质不容易流出。更优选地,在空穴400的开口处形成弯曲流道,通过使得液体绝缘介质410的流道为弯曲流道,能够增大流动阻力系数,使液体流动变慢,防止液体绝缘介质410在还没有固化的情况下流失。例如,可以通过在空穴口处形成有尖锐突起结构来形成弯曲流道,增大流动阻力系数。因此,不管是槽身部的内侧壁上,还是槽口部的内侧壁上,大量的空穴有效存留了大量的液体绝缘介质。
通过在绕组槽内侧壁上形成空穴结构,在浸漆过程中,能够有效吸附大量液体绝缘介质,并在滴漆过程中,有效防止液体绝缘介质的流失。
上面参照图9至图11描述了单个空穴防止液体绝缘介质流失的作用机理。然而,当在绕组槽110的内壁上形成大面积的空穴的情况下,空穴内的绝缘介质与铁磁边界绝缘介质链接,发挥更大的防止液体绝缘介质流失的作用,在固化成型后,液体绝缘介质能够构成生根的、克服剥离力的立体接合力网络600,并防止固化后的绝缘介质撕裂剥离。下面,结合附图12来详细描述这种立体接合力网络600。
如图12所示,在浸漆过程中,空穴400的吸附作用,使得液体绝缘介质将会充满铁磁叠片100、绕组200、槽楔300之间的孔隙,图12中以灰色示出了填充的绝缘介质。
在绝缘介质固化后,空穴内的绝缘介质与相邻绝缘介质粘接接合成结实的包覆体,包覆在铁磁边界上形成弹性支撑结构,并在槽口部形成具有根基的弹性密封环节。位于空穴内的绝缘介质就像吸盘或抓手一样,将一体结构的绝缘介质紧紧联络在一起并抓附在铁磁边界的内壁上,在电机导磁部件、线圈绕组、槽楔三者交接区域之间构筑多层防护体系,同时还能保持槽楔铁磁边界电磁学性能。
如图12所示,由于空穴内的绝缘介质与铁磁边界处的绝缘介质相互一体连接,因此,两者之间形成一种接合力,如图中的标号610所示。当线圈绕组200收缩时,铁磁边界处的绝缘介质会收缩而趋于剥离。在图12中,绕组槽110左侧的空穴开口处的方向朝右的箭头601示出了空穴内的绝缘介质受到的剥离力。但是,位于空穴内的绝缘介质在向外被拉伸变形的同时,在空穴的边界也会产生克服剥离的阻力(如标号620所示)。因此,空穴内的绝缘介质就像生根的吸盘一样,紧紧吸附在绕组槽的内壁中,防止绝缘介质从铁磁边界上剥离。
当线圈绕组200膨胀时,会挤压铁磁边界处的绝缘介质,进而挤压空穴内的绝缘介质,绕组槽右侧的方向朝右箭头602示出了绝缘介质受到的挤压力。
在这种情况下,相对于没有形成空穴的结构而言,根据本公开实施例的电机导磁部件,由于空穴提供了一定缓冲空间,并且绝缘介质整体上厚度增加,使得受到挤压的绝缘介质存在一定的缓冲余地,从而避免了由于延展空间有限而被撕破的风险。
为了更易于理解空穴内的绝缘介质与相邻绝缘介质之间的接合力,图12的右上角示出了单个空穴内及其附近的绝缘介质的受力示意图。箭头a1、a2、a3、a4表示铁磁边界与空穴之间的绝缘介质之间相互链接形成了多个方向的接合力,箭头b1、b2、b3、b4示出了空穴内产生的克服剥离的阻力。
图13是单个空穴内的绝缘介质410与铁磁边界绝缘介质420链接结构的局部放大图。当多个空穴相互链接,在整个空隙内形成了一张网状的立体接合力时,还能够支撑绝缘介质的收缩与拉伸变形。当绕组线圈200收缩时, 铁磁边界处的绝缘介质420会向外拉扯空穴400内的绝缘介质410,如图13中的箭头a1所示。由于空穴400的存在,使得绝缘介质410有一定的拉伸缓冲空间,从而与现有技术中的电机导磁部件不存在空穴的刚性绕组槽内壁不同,绝缘介质410的拉伸变形以及空穴的收缩口能够产生抵抗绝缘介质420向外拉伸410的抵抗力,如图13中的箭头b1、b2、b3、b4所示。同样地,当线圈绕组200膨胀对绝缘介质420进行挤压时(如图13中的箭头a2所示),空穴400又能提供一定的受挤压空间。因此,空穴结构能够使得空穴400内的绝缘介质生根、与相邻绝缘介质接合,形成中间弹性根基(粘接的根基),从而支撑整个绝缘层的拉伸或收缩变形。
因此,根据本公开实施例的电机导磁部件,在浸漆过程中,空穴结构极易吸收液体绝缘介质,使得液体绝缘介质充满整个空隙。在滴漆过程中,能够借助真空空间自动形成阻止液体绝缘介质流动的压力差,有效留存、固定绝缘介质,具有阻止绝缘介质的径向流失、轴向流失的双重功能,解决传统结构的导磁部件在滴漆过程中液体绝缘介质沿槽楔的径向和轴向流失的问题,提高浸漆滴漆后的饱满率,降低电机受潮气侵蚀的风险,提高绝缘可靠性。
绝缘介质在空穴空间内生根,借助空穴内边界粗糙面产生流动阻力,增强浸渍绝缘介质与铁磁边界的机械接合力,也利于绝缘介质对铁磁边界表面的润湿。在空穴中的绝缘介质固化成型后,可以与相邻固体绝缘介质接合成结实的包覆整体,且具有更好的整体绝缘性能,阻止水、蒸汽的留存,阻止呼吸现象(破坏作用)的发生。自然环境中暴露的风力发电机运行或停机期间,不管是导体与铁磁边界之间的固化的绝缘介质承受的是收缩应力或者是热应力,在槽内与铁磁叠片边界的绝缘介质具有较好的粘弹性时,可通过松弛将应力释放出来。如果绝缘介质分子的蠕动不足以使内应力完全消失,便会有永久性的残留内应力。绝缘介质的内应力与附着力以及绝缘介质强度之间是互相抗衡的,如果内应力过大,绝缘介质就可能损坏或从铁磁边界脱落。根据本公开的电机导磁部件,空穴内真空空间的形成提供应力释放、热变形的伸缩物质基础,因此,能够借助空穴的粘弹性和根基作用,承受“粘接界面”应力的重新组合而维持粘接,去支撑拉伸或收缩变形。
总之,利用空穴结构形成的一体化的绝缘结构能够更好地防止风、霜、雨、雪、尘、絮状物、盐雾等不期望的多相流杂质进入到绕组槽内而破坏槽 内的绝缘结构。
此外,在电机绕组结构中,导电部件(例如绕组)产生的热量会导致高分子绝缘介质/材料老化、强度降低,最终会导致绝缘材料失效,并且可在导磁部件中产生超标的泄露电流。在现有技术的电机导磁部件中,由于没有设置空穴结构,绝缘介质容易剥离,而一旦剥离会导致导磁部件与导电部件之间的导热路径断裂,造成导热间断。然而,根据本公开的技术方案,设置了空穴结构,通过空穴使液态绝缘介质在空穴内固化后生根,并且与包裹绕组的绝缘介质整体形成一体化结构,不仅有利于防止绝缘介质从导磁部件边界剥离,还可以在导磁部件与绕组之间形成导热连续介质,使热流/热量传导不间断,把绕组产生的热量传递给硅钢片等导磁部件,借助导磁部件将热量带走,起到控制、抑制绕组温升,吸收绕组产生的热量的作用。
此外,该一体化绝缘结构还可阻止杂质进入导磁部件与导电部件之间的耦合空间(配合空间),以及在导电部件与导磁部件之间形成电气绝缘,电能隔绝作用,阻止导电部件向导磁部件传递电能。
根据本公开的电机导磁部件不限于定子铁心,也可以是需要进行绝缘处理的转子。更进一步地,根据本公开的实施例空穴结构,可以应用于其他需要进行浸漆处理的部件中。
因此,根据本公开的实施例,还提供了一种具有该电机导磁部件的电机。根据本公开的另一实施例,还提供了一种进行绝缘处理后的电机绕组结构以及具有该电机绕组结构的电机。
根据本公开的实施例,上述电机可以是风力发电机。因此,根据本公开的一方面,还提供了一种风力发电机组以及具有至少一个所述风力发电机组的风电场。
根据本公开的技术方案,空穴结构除了能够应用于电机的定子、转子等部件之外,还可以应用其他各种需要进行绝缘处理/填充处理/灌注处理的电能与磁场能变换设备中,例如,变压器、电抗器等。这些电能与磁场能变化设备通常包括导电部件(例如线圈)和导磁部件,在导电部件和导磁部件之间需要填充绝缘体。因此,可以在导磁部件的相对于导电部件的边界上形成多个空穴,从而在所述多个空穴以及导磁部件与导电部件之间的间隙中填充绝缘介质。液体绝缘介质固化之后,在该多个空穴和该间隙之间固化成型后形成一体化绝缘结构。该一体化绝缘结构可构成在该导电部件与该导磁部件之 间的连续导热介质。该一体化绝缘结构可阻止杂质进入该导磁部件与导电部件之间的耦合空间(配合空间)。该一体化绝缘结构可阻止该导电部件向该导磁部件传递电能。
根据本公开的技术构思,空穴结构还可应用于叶片中,例如,应用于风力发电机组的叶片中。现有技术中在制造风力发电机叶片时,通常是制造好风力发电机叶片骨架,将叶片骨架放在叶片制造模具中,灌注树脂,树脂固化成型从而形成叶片。为了使叶片骨架与树脂紧密结合而不相互分离,根据本公开的构思可以在叶片骨架的表面上形成空穴结构。与上面参照电机导磁部件的空穴结构类似,在灌注液体树脂的过程中,液体树脂在填充在叶片骨架上的空穴以及叶片模具之间的空间中。在所述空穴内部容纳的液体填充介质固化成型后形成的固态填充体,在所述叶片骨架的外表面上紧密包覆的液体填充介质固化成型而形成固态包覆体,多个所述空穴中的固态填充体与所述固态包覆体形成一体化结构,而不容易相互分离。此外,如果在叶根部预埋螺栓的情况下,可以在预埋螺栓的根部外周形成多个空穴,使得预埋螺栓与填充树脂形成一体的结合结构。因此,根据本公开的叶片,在受到不同方向的扭矩时,即使填充介质和叶片骨架的拉伸或扭转程度不同,或者由于温度变化而热胀冷缩程度不同,由于空穴中的弹性根基的存在,填充介质与骨架不容易剥离,从而防止叶片结构损坏。
上面虽然已经结合附图详细描述了本公开的示例性实施例,但是本公开不限于此。本领域技术人员应该理解:在不脱离本公开的原理和精神的情况下,可对这些实施例进行改。

Claims (21)

  1. 一种电机绕组结构,所述电机绕组结构包括电机导磁部件和线圈绕组(200),所述电机导磁部件具有多个绕组槽(110),所述线圈绕组(200)包括布置在所述绕组槽(110)中的槽内部分和从所述绕组槽(110)中伸出的绕组端部,其特征在于,所述绕组槽(110)的内壁上形成有与所述绕组槽(110)的容纳空间连通的多个空穴(400),在多个所述空穴(400)中以及所述绕组槽(110)与所述线圈绕组(200)之间填充有填充介质。
  2. 如权利要求1所述的电机绕组结构,其特征在于,所述空穴(400)具有收缩的开口。
  3. 如权利要求2所述的电机绕组结构,其特征在于,在所述空穴(400)的内壁与所述填充介质之间形成有真空空间。
  4. 如权利要求2所述的电机绕组结构,其特征在于,所述电机绕组结构还包括设置在所述绕组槽(110)的槽口处的槽楔(300),所述填充介质填充在所述电机导磁部件、所述槽楔(300)以及所述线圈绕组(200)之间,所述填充介质形成为互相链接的一体结构。
  5. 如权利要求4所述的电机绕组结构,其特征在于,所述一体结构包括包覆在所述绕组槽(110)的内壁上的包覆体和形成在所述槽楔(300)外周的密封结构。
  6. 如权利要求4所述的电机绕组结构,其特征在于,在所述绕组槽(110)的宽度方向上,所述空穴(400)不超过所述槽口的最外侧边缘。
  7. 如权利要求1-6中任一项所述的电机绕组结构,其特征在于,所述电机导磁部件为定子铁心或转子铁心,所述填充介质为绝缘介质。
  8. 一种电机导磁部件,其特征在于,所述电机导磁部件包括绕组槽(110),在所述绕组槽(110)的内壁上形成有与所述绕组槽(110)连通的多个空穴(400)。
  9. 如权利要求8所述的电机导磁部件,其特征在于,所述空穴(400)具有如下结构特征中的至少一种:
    所述空穴(400)具有收缩的开口;
    所述空穴(400)的内侧边缘形成有粗糙结构或弯曲结构;
    所述空穴(400)的开口处形成有尖锐突起;
    沿着从所述绕组槽(110)的槽底向着所述绕组槽(110)的槽口方向,所述空穴(400)的尺寸逐渐变大,而所述空穴(400)的开口尺寸逐渐变小。
  10. 如权利要求8或9所述的电机导磁部件,其特征在于,所述电机导磁部件包括多个相互叠置的铁磁叠片(100),单个所述空穴(400)形成在单层铁磁叠片(100)上,多个所述空穴(400)形成在奇数层铁磁叠片(100)和/或偶数层铁磁叠片(100)上;
    或者,单个所述空穴(400)形成在至少两层相邻的铁磁叠片(100)上。
  11. 如权利要求10所述的电机导磁部件,其特征在于,所述铁磁叠片(100)的形成齿槽(101)的铁磁边界上设置有多个凹槽(120),所述凹槽(120)具有在所述铁磁叠片(100)的厚度方向上的开口以及与所述齿槽(101)连通的开口,所述厚度方向上的开口被相邻叠置的铁磁叠片的不具有所述凹槽(120)的部分阻挡,形成所述空穴(400)。
  12. 如权利要求11所述的电机导磁部件,其特征在于,多个所述凹槽(120)沿着整个铁磁边界布置或沿着所述铁磁边界的一部分布置,所述齿槽(101)包括槽身部(112)和槽口部(114),在所述齿槽(101)的宽度方向上,形成在所述槽身部(112)对应的铁磁边界上的所述凹槽(120)不超过所述槽口部(114)的容纳空间的最外侧边缘。
  13. 一种铁磁叠片,其特征在于,在所述铁磁叠片(100)的形成齿槽(101)的铁磁边界上设置有多个凹槽(120),多个所述凹槽(120)分别与所述齿槽(101)连通。
  14. 如权利要求13所述的铁磁叠片,其特征在于,多个所述凹槽(120)沿着整个所述铁磁边界布置或沿着所述铁磁边界的一部分布置。
  15. 如权利要求13所述的铁磁叠片,其特征在于,所述齿槽(101)包括槽身部(112)和槽口部(114),所述凹槽(120)形成在所述槽身部(112)对应的铁磁边界上和/或所述槽口部(114)对应的铁磁边界上。
  16. 如权利要求15所述的铁磁叠片,其特征在于,在所述齿槽(101)的宽度方向上,形成在所述槽身部(112)对应的铁磁边界上的所述凹槽(120)不超过所述槽口部(114)的最外侧边缘。
  17. 如权利要求13-16中任一项所述的铁磁叠片,其特征在于,所述凹槽(120)具有如下结构特征中的至少一种:
    所述凹槽(120)具有逐渐收缩的开口;
    所述凹槽(120)的内侧边缘形成为粗糙结构或弯曲结构;
    所述凹槽(120)的开口处形成有尖锐突起;
    沿着从所述齿槽(101)的槽底向着所述齿槽(101)的槽口方向,所述凹槽(120)的尺寸逐渐变大,而所述凹槽(120)的开口尺寸逐渐变小。
  18. 一种电机,其特征在于,所述电机包括如权利要求1-7中任一项所述的电机绕组结构,或如权利要求8-12中任一项所述的电机导磁部件,或如权利要求13-17中任一项所述的铁磁叠片。
  19. 一种电能与磁场能变换设备,所述电能与磁场能变换设备包括导电部件、绝缘体和导磁部件,所述导电部件设置在所述导磁部件上,所述绝缘体形成在所述导磁部件与所述导电部件之间,其特征在于,在所述导磁部件的相对于所述导电部件的边界上形成有多个空穴,所述绝缘体填充所述多个空穴,并且填充所述导电部件与所述导磁部件之间的除所述多个空穴以外的间隙。
  20. 如权利要求19所述的电能与磁场能变换设备,其特征在于,
    所述绝缘体在所述多个空穴和所述间隙中固化成型后形成一体化绝缘结构,所述一体化绝缘结构具有如下结构特征中的至少一种:
    所述一体化绝缘结构在所述导电部件与所述导磁部件之间构成连续导热介质;
    所述一体化绝缘结构阻止杂质进入所述导磁部件与导电部件之间的耦合空间;
    所述一体化绝缘结构阻止所述导电部件向所述导磁部件传递电能。
  21. 如权利要求20所述的电能与磁场能变换设备,其特征在于,所述电能与磁场能变换设备为电机、变压器或电抗器。
PCT/CN2018/077124 2017-08-16 2018-02-24 电机绕组结构、电机导磁部件、铁磁叠片及电机 WO2019033739A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18781942.0A EP3471238B1 (en) 2017-08-16 2018-02-24 Electric motor winding structure, electric motor magnetic conductive component, ferromagnetic lamination and electric motor
US16/090,662 US11277043B2 (en) 2017-08-16 2018-02-24 Winding structure of electrical machine, magnetic conductive member of electrical machine, ferromagnetic lamination and electrical machine
AU2018250387A AU2018250387B2 (en) 2017-08-16 2018-02-24 Winding structure of electrical machine, magnetic conductive member of electrical machine, ferromagnetic lamination and electrical machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710703559.4A CN107482800B (zh) 2017-08-16 2017-08-16 电机导磁部件、电机绕组结构、电机以及风力发电机组
CN201710703559.4 2017-08-16

Publications (2)

Publication Number Publication Date
WO2019033739A1 true WO2019033739A1 (zh) 2019-02-21
WO2019033739A9 WO2019033739A9 (zh) 2019-10-03

Family

ID=60600675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077124 WO2019033739A1 (zh) 2017-08-16 2018-02-24 电机绕组结构、电机导磁部件、铁磁叠片及电机

Country Status (5)

Country Link
US (1) US11277043B2 (zh)
EP (1) EP3471238B1 (zh)
CN (1) CN107482800B (zh)
AU (1) AU2018250387B2 (zh)
WO (1) WO2019033739A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017101094A1 (de) * 2017-01-20 2018-07-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung zur Abdichtung mehrerer Nuten eines Stators einer elektrischen Antriebsmaschine
CN107482800B (zh) 2017-08-16 2019-02-01 北京金风科创风电设备有限公司 电机导磁部件、电机绕组结构、电机以及风力发电机组
CN108092474B (zh) * 2017-12-29 2020-01-31 北京金风科创风电设备有限公司 电枢液体绝缘旋转烘焙固化用的蓄压装置
CN108023447B (zh) * 2017-12-29 2019-09-13 北京金风科创风电设备有限公司 电枢的液体绝缘旋转烘焙固化装置和方法
CN108110974B (zh) * 2017-12-29 2019-10-08 北京金风科创风电设备有限公司 电枢的液体绝缘旋转烘焙固化的视觉系统、监测控制方法
EP3989399A1 (en) * 2020-10-23 2022-04-27 Siemens Gamesa Renewable Energy A/S Stator or rotor segment comprising coils on teeth and adhesive anchor of outermost coil edge

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19743430A1 (de) * 1997-10-01 1998-12-17 Mannesmann Sachs Ag Elektromagnetisches Bauteil
CN202524177U (zh) * 2012-04-09 2012-11-07 宁波华泰汽车电器总厂 一种结构改进的电枢
CN103904794A (zh) * 2014-03-28 2014-07-02 湖北立锐机电有限公司 用于配合多边形漆包线的电机冲片及使用其的旋转电机
CN104184226A (zh) * 2013-05-24 2014-12-03 松下电器产业株式会社 电动机以及具备该电动机的压缩机
CN104011975B (zh) * 2011-12-23 2016-10-05 博泽沃尔兹堡汽车零部件有限公司 电动机的转子叠片组
CN107482800A (zh) * 2017-08-16 2017-12-15 北京金风科创风电设备有限公司 铁磁叠片、电机及其导磁部件和绕组结构、风力发电机组

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060218777A1 (en) * 2001-05-30 2006-10-05 Swift Gerald L Encapsulated armature assembly and method of encapsulating an armature assembly
GB2420231B (en) * 2003-09-12 2006-08-02 Bosch Gmbh Robert Armature core for an electric motor
JP2007209163A (ja) * 2006-02-03 2007-08-16 Nok Corp 永久磁石回転子の防振構造
EP2388131B1 (en) 2010-05-20 2016-08-31 Siemens Aktiengesellschaft Method of moulding a wind turbine blade using a release film, and said film
KR101900456B1 (ko) 2011-09-08 2018-09-21 삼성전자주식회사 모터와 이를 가지는 세탁기
JP6044488B2 (ja) * 2013-08-30 2016-12-14 トヨタ自動車株式会社 コイルインシュレータの固定方法および固定構造、ステータ、ならびに、回転電機
JP2015136241A (ja) * 2014-01-17 2015-07-27 トヨタ自動車株式会社 インシュレータの取付け構造
US10574117B2 (en) * 2014-06-24 2020-02-25 Kubota Corporation Stator of electric motor and cooling structure of electric rotating machine
DE102014213159A1 (de) * 2014-07-07 2016-01-07 Deere & Company Anordnung zur Statorkühlung eines elektrischen Motors
CN104319927B (zh) 2014-10-11 2016-04-27 新疆金风科技股份有限公司 具有密封结构的电机槽楔以及组合装置
JP6303978B2 (ja) * 2014-10-27 2018-04-04 トヨタ自動車株式会社 回転電機のステータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19743430A1 (de) * 1997-10-01 1998-12-17 Mannesmann Sachs Ag Elektromagnetisches Bauteil
CN104011975B (zh) * 2011-12-23 2016-10-05 博泽沃尔兹堡汽车零部件有限公司 电动机的转子叠片组
CN202524177U (zh) * 2012-04-09 2012-11-07 宁波华泰汽车电器总厂 一种结构改进的电枢
CN104184226A (zh) * 2013-05-24 2014-12-03 松下电器产业株式会社 电动机以及具备该电动机的压缩机
CN103904794A (zh) * 2014-03-28 2014-07-02 湖北立锐机电有限公司 用于配合多边形漆包线的电机冲片及使用其的旋转电机
CN107482800A (zh) * 2017-08-16 2017-12-15 北京金风科创风电设备有限公司 铁磁叠片、电机及其导磁部件和绕组结构、风力发电机组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3471238A4 *

Also Published As

Publication number Publication date
CN107482800B (zh) 2019-02-01
WO2019033739A9 (zh) 2019-10-03
EP3471238B1 (en) 2022-05-18
AU2018250387A1 (en) 2019-03-07
EP3471238A1 (en) 2019-04-17
AU2018250387B2 (en) 2020-02-27
EP3471238A4 (en) 2019-08-21
CN107482800A (zh) 2017-12-15
US11277043B2 (en) 2022-03-15
US20210218292A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
WO2019033739A9 (zh) 电机绕组结构、电机导磁部件、铁磁叠片及电机
US7851966B2 (en) Stator for electric machine with improved efficiency and thermal performance
AU2014408568B2 (en) Motor slot wedge with sealing structure and combination device
JP2013240215A (ja) 電動機及びその製造方法
US20110316380A1 (en) Squirrel-cage rotor
JP2013135611A (ja) 封入されたエンドターンを有する電気機械
JP6561308B2 (ja) 固定子構成体、電動機、装置
CA2675821A1 (en) Conductor bar for the stator of a generator and method for its production
AU2012234432B2 (en) Pole shoe of a generator, preferably a generator of a wind turbine generator system
CN102185432B (zh) 用于实现导电棒周围的绝缘体的方法
CN207896838U (zh) 液体正压填充装置
CN102468725B (zh) 一种电机内定子线圈封装工艺
EP2325852A1 (en) A method of manufacturing a transformer coil
JP6758791B2 (ja) 回転子コイルの製造方法
KR20140039241A (ko) 비동기기
KR20180079441A (ko) 전력 전송 캐리어, 그 제조 방법 및 봉입체
JP2012074643A (ja) アルミニウム電解コンデンサ
JP2009240131A (ja) 回転電機の固定子コイルおよびその製造方法
JP2015216718A (ja) コイル、コイルの製造方法、および、コイル製造装置
US10020715B2 (en) Manufacturing a permanent magnet module
JP5993696B2 (ja) 回転電機およびその製造方法
CN110098704A (zh) 填充液体驱替浸渍浸润电枢的工艺装备和方法
CN114709992B (zh) 一种泵用电机定子、转子灌封工艺
CN117277655A (zh) 电机、铁芯组件、用于铁芯的槽封闭件及其制造方法
CN105281469A (zh) 旋转的电动机的定子及其制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018781942

Country of ref document: EP

Effective date: 20181015

ENP Entry into the national phase

Ref document number: 2018250387

Country of ref document: AU

Date of ref document: 20180224

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE