WO2019031679A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2019031679A1
WO2019031679A1 PCT/KR2018/003954 KR2018003954W WO2019031679A1 WO 2019031679 A1 WO2019031679 A1 WO 2019031679A1 KR 2018003954 W KR2018003954 W KR 2018003954W WO 2019031679 A1 WO2019031679 A1 WO 2019031679A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
compound
group
light emitting
Prior art date
Application number
PCT/KR2018/003954
Other languages
English (en)
French (fr)
Inventor
조성미
정민우
전상영
최민우
전현수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201880002539.7A priority Critical patent/CN109661450B/zh
Priority to US16/319,203 priority patent/US10818848B2/en
Publication of WO2019031679A1 publication Critical patent/WO2019031679A1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • C09K2211/1062Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes

Definitions

  • the present application claims the benefit of priority based on Korean Patent Application No. 10-2017-0101813, filed on August 10, 2017, the entire contents of which are incorporated herein by reference.
  • the present invention relates to an organic light emitting device having improved driving voltage, efficiency and lifetime.
  • organic light emission phenomenon refers to a phenomenon in which an organic material is used to convert electric energy into light energy.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent characteristics of brightness, driving voltage, and response speed, and much research is proceeding.
  • the organic light emitting device generally has a structure including an anode and a cathode, and an organic layer between the anode and the cathode.
  • the organic material layer may have a multi-layer structure composed of different materials and may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, have.
  • Patent Literature Korean Patent Publication No. 10-2000-0051826 DISCLOSURE OF THE INVENTION
  • the present invention relates to an organic light emitting device having improved driving voltage, efficiency and lifetime.
  • the present invention provides the following organic light emitting device:
  • cathode anode; And at least one light-emitting layer between the cathode and the anode,
  • the light emitting layer comprises a first host compound represented by Formula 1-1 or Formula 2 below and a second host compound represented by Formula 2 below:
  • cathode anode; And at least one light-emitting layer between the cathode and the anode,
  • the light emitting layer comprises a first host compound represented by the following Formula 1 and a second host compound represented by the following Formula 2:
  • X is N, or CH, provided that at least one of X is N,
  • An and Ar 2 are each C independently represents a substituted or unsubstituted 6-60 aryl; Or C 2 - 60 heteroaryl containing N, O, or S,
  • R are identical to each other and are -L-Ar < 3 >
  • L is a bond or a substituted or unsubstituted ( 60 arylene, Ar 3 is substituted or unsubstituted C 6 - 60 aryl; Or C 2 -60 heteroaryl including N, O, or S,
  • R 1 and are each independently selected from the group consisting of hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted d- 60 alkyl; Substituted or unsubstituted d-60 haloalkyl; Substituted or unsubstituted (60 haloalkoxy; a substituted or unsubstituted C 3 - 60 cycloalkyl, substituted or unsubstituted C 2 - 60 alkenyl group; a substituted or unsubstituted C 6 - 60 aryl, or a substituted or unsubstituted the 0, N, C 2, including one or more of Si and S - is a 60 heteroaryl, or R 'and R 1' together are a substituted or unsubstituted C 6 - to form a ring 60 '
  • L 'and L &quot are each independently a single bond; Substituted or unsubstituted C 6 - 60 arylene; Or a substituted or unsubstituted C 2 -C 6 alkyl group containing at least one of O, N, Si and S,
  • R 'r substituted or unsubstituted d-so alkyl; Substituted or unsubstituted C 3 - 60 cycloalkyl; Substituted or unsubstituted C 6 -C 60 aryl; Or a substituted or unsubstituted C 2 - 60 heteroaryl containing at least one of O, N, Si and S,
  • R ' 2 and R' 3 are each independently hydrogen; heavy hydrogen; halogen; Cyano; Substituted or unsubstituted d-60 alkyl; Substituted or unsubstituted C 3 - 60 cycloalkyl; Substituted or unsubstituted C 6 -C 60 aryl; Or a substituted or unsubstituted C 2 - 60 heteroaryl containing at least one of O, N, Si and S,
  • n and m are each independently an integer of 0 to 4; ⁇ Effects of the Invention ⁇
  • the organic light emitting device described above is excellent in driving voltage, efficiency, and lifetime.
  • Fig. 1 shows an example of an organic light-emitting device comprising a substrate 1, an anode 2, a light-emitting layer 3 and a cathode 4.
  • Quot means a bond connected to another substituent.
  • substituted or unsubstituted 1 refers to a substituent selected from the group consisting of deuterium, halogen, nitrile, nitro, hydroxyl, carbonyl, ester, An aryloxy group, an aryloxy group, a silyl group, a boron group, an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aralkyl group, an aralkenyl group, an alkylaryl group, an alkylamine group, An arylamine group, an arylphosphine group, or a heterocyclic group containing at least one of N, O and S atoms, or may be substituted or unsubstituted with at least one substituent selected from the group consisting of N, O and S atoms, Substituted biphenyl group "refers to a substituent selected from the group consisting of N, O
  • It is preferably 1 to 40. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the ester group may be substituted with a straight-chain, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms in the ester group.
  • it may be a compound of the following structural formula,
  • the number of carbon atoms in the amide group is not particularly limited, but is preferably 1 to 25 carbon atoms.
  • a compound having the following structure Specifically a compound having the following structure.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group and a phenylsilyl group Not limited to this Do not.
  • the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, and a phenylboron group.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an embodiment of the present invention, the alkyl group has 1 to 20 carbon atoms. According to another embodiment, the alkyl group has 1 to 10 carbon atoms. According to another embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a tert-butyl group, But are not limited to, pentyl, isopentyl, neopentyl, tert-pentyl, n-butyl, n-butyl, 1-methylpentyl, N-heptyl, 1-methylnucleosilyl, cyclopentylmethylcyclohectylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, But are not limited to, dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylnucyl, 5-methylnucyl and the like.
  • the alkenyl group may be straight-chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms. According to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms.
  • the cycloalkyl group has 3 to 20 carbon atoms. According to another embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specific examples include cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4 , 5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the aryl group has 6 to 30 carbon atoms. According to one embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group or the like as the monocyclic aryl group, but is not limited thereto.
  • polycyclic aryl group examples include, but are not limited to, a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a klycenyl group and a fluorenyl group.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. Wherein the fluorenyl group is substituted
  • the heterocyclic group is a heterocyclic group containing at least one of 0, N, Si and S as a hetero atom, and the number of carbon atoms is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • heterocyclic group examples include a thiophene group, a furan group, a pyridine group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, A pyridazinyl group, an isoquinoline group, an indole group, an isoquinoline group, an isoquinoline group, an isoquinoline group, an isoquinoline group, an isoquinoline group, an isoquinoline group, A benzothiazole group, a benzothiophene group, a dibenzothiophene group, a benzofuranyl group, a phenanthroline group, a phenanthroline group, an isooxazolyl group, a benzooxazolyl group, , Thiadiazolyl group, phenothi
  • the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group and the arylamine group is the same as the aforementioned aryl group.
  • the alkyl group in the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the alkyl group described above.
  • the heteroaryl among the heteroarylamines can be applied to the description of the above-mentioned heterocyclic group.
  • the alkenyl group in the aralkenyl group is the same as the above-mentioned alkenyl group.
  • the description of the aryl group described above can be applied except that arylene is a divalent group.
  • the description of the above-mentioned heterocyclic group can be applied except that the heteroarylene is a divalent group.
  • the description of the above-mentioned aryl group or cycloalkyl group can be applied except that the hydrocarbon ring is not a monovalent group and two substituents are bonded to each other.
  • the description of the above-mentioned heterocyclic group can be applied except that the heterocyclic ring is not a monovalent group and two substituents are bonded to each other.
  • the present invention provides the following organic light emitting device:
  • the positive electrode and the negative electrode used in the present invention refer to an electrode which is used in a light-emitting device.
  • the positive electrode material is preferably a material having a large work function so that hole injection can be smoothly conducted to the organic material layer.
  • Specific examples of the positive electrode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); ⁇ : ⁇ 1 SN0 or 2: a combination of a metal and an oxide such as Sb;
  • There are conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene (1 1) 1), polypyrrole and polyaniline, But is not limited thereto.
  • the negative electrode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; Layer structure materials such as LiF / Al or LiO 2 / M, but are not limited thereto.
  • a hole injection layer may be further included on the anode.
  • the hole injection layer is made of a hole injection material, and the hole injection material has a capability of transporting holes .
  • the hole injection effect in the anode, the light emitting layer or A compound having an excellent hole injection effect with respect to the light emitting material and preventing migration of excitons generated in the light emitting layer to the electron injection layer or the electron injection material and having excellent thin film forming ability is preferable. It is preferable that the HOMOiighest occupied molecular orbital of the hole injecting material be between the work function of the anode material and the HOMO of the surrounding organic layer.
  • the hole-transporting material examples include metal porphyrin, oligothiophene, arylamine-based organic materials, nucleantitrile-tetra-phenylene-based organic materials, quinacridone-based organic materials, perylene perylene-based organic materials, anthraquinone, polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the light emitting layer according to the present invention includes the first host compound represented by Formula 1 and the second host compound represented by Formula 2.
  • X is all N.
  • a and Ar < 2 > are each independently phenyl or biphenyl.
  • R is the same as R means that the structure of R is the same as that of R.
  • L is a bond, phenylene, or naphthylene.
  • Ar 3 is phenyl, phenyl substituted with cyano, biphenyl, terphenyl, naphthyl, phenanthrenyl, triphenylenyl, pyridinyl, dibenzofuranyl, dibenzothiophenyl, 9,9 -Dimethyl-911-fluorenyl, carbazolyl, 9-phenyl-9H-carbazolyl, 9,9-dimethyl-911-xanthenyl, or phenoxatinyl.
  • Representative examples of the compound represented by the above formula (1) are as follows:
  • the compound represented by the formula (1) can be prepared by the same method as in the following reaction formula (1).
  • Step 1-1 is a step of counteracting the compound represented by Formula 1A and the compound represented by Formula 1B to prepare the compound represented by Formula 1C.
  • the reaction is preferably carried out in the presence of a cerium palladium catalyst and a base in the Suzuki coupling reaction, The Hanwagon can be modified as known in the art.
  • X 1 is halogen, more preferably bromo or chloro.
  • the step 1-2 is a step of counteracting the compound represented by the formula 1C and the compound represented by the formula 1D to prepare the compound represented by the formula 1.
  • the reaction is carried out in the presence of a palladium catalyst and a base as a Suzuki coupling reaction, and the reaction for the Suzuki coupling reaction can be modified as known in the art.
  • X 1 is halogen, more preferably bromo or chloro.
  • the above production method can be more specific in the production example to be described later. 2, preferably Y 1 is O, NR ', C (CH 3 ) 2 , or
  • R ' is phenyl, phenyl substituted with cyano, biphenylyltriphenylenyl, cyclohexyl, dimethylfluorenyl, or dibenzofuranyl.
  • L < 1 > and L " are single bonds.
  • the phenyl is phenyl, biphenyl, terphenyl, triphenylenyl, or phenanthrenyl.
  • R '2 and R' 3 are each independently selected from the group consisting of hydrogen; Phenyl; Phenyl substituted with cyano; Or pyridinyl.
  • Representative examples of the compound represented by the general formula (2) are as follows: LI
  • the compound represented by the above formula (2) can be prepared by the same method as in the following reaction formula (2).
  • the step 2 is a step of counteracting the compound represented by the formula (2A) and the compound represented by the formula (2B) to prepare the compound represented by the formula (2).
  • the van is a Suzuki coupling reaction, It is preferred to carry out in the presence of a base, and the reaction time for the Suzuki coupling reaction can be varied as is known in the art.
  • X ' is halogen, more preferably bromo or chloro.
  • the above production method can be more specific in the production example to be described later.
  • the weight ratio of the first host compound to the second host compound is from 1: 99 to 99: 1.
  • the light emitting layer may include a dopant material in addition to the host compound.
  • the splittable material is not particularly limited as long as it is used for an organic light emitting device.
  • the splittable material include an aromatic amine derivative, a styrylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • Specific examples of the aromatic amine derivative include a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and examples thereof include pyrene, anthracene, chrysene, and ferriplantene having an arylamino group.
  • a substituted arylamine group in which at least one arylvinyl group is substituted and at least one substituent selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group is substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group is substituted or unsubstituted.
  • Specific examples thereof include, but are not limited to, styrylamine, styryldiamine, styryltriamine, styryltetraamine, and the like.
  • the metal complex include iridium complex, platinum complex, and the like, but are not limited thereto. Other floors
  • the organic light emitting device may further include a hole injecting layer, a hole transporting layer, an electron transporting layer, and / or an electron transporting layer, if necessary.
  • the hole injecting layer is a layer for injecting holes from the electrode.
  • the hole injecting layer has the ability to transport holes, so that the hole injecting layer has a hole injecting effect in the anode, Or a compound having an excellent hole injecting effect on the light emitting material and preventing the migration of excitons generated in the light emitting layer to the electron injecting layer or the electron injecting material and also having excellent thin film forming ability.
  • the HOMO occupied molecular orbital of the hole injecting material be between the work function of the anode material and the HOMO of the surrounding ridge layer.
  • the hole injecting material include organic materials such as porphyrin, oligothiophene, arylamine-based organic materials, quinacridone-based tetraphenylene-based organic materials, quinacridone-based organic materials, perylene ) Organic materials, anthraquinone, polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is a layer that transports holes from the anode or the hole injection layer to the hole transport layer and transports the holes from the anode or the hole injection layer to the light emitting layer.
  • Large materials are suitable. Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the electron transporting layer is a layer that receives electrons from the electron injection layer or the cathode and transports electrons to the light emitting layer.
  • the electron transporting material is a material capable of transferring electrons from the cathode well to the light emitting layer. The material is suitable.
  • the electron transporting layer can be used with any desired cathode material as used according to the prior art.
  • a suitable cathode material is a conventional material having a low work function followed by an aluminum layer or a silver layer. Specifically cesium, barium, calcium, ytterbium and samarium, in each case followed by an aluminum layer or a silver layer.
  • the electron injection layer is a layer for injecting electrons from the electrode, And has an electron injecting effect from the cathode, an excellent electron injecting effect on the light emitting layer or the light emitting material, preventing migration of the excitons generated in the light emitting layer to the hole injecting layer, .
  • Specific examples thereof include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, A nitrogen-containing 5-membered ring derivative, and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8- Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8- hydroxyquinolinato) gallium, bis (10- Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8- quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) (2-naphthalato) gallium, and the like But is not limited thereto.
  • Organic light emitting device 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8- Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8- hydroxyquinolinato) gallium, bis (10- Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato
  • the organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except that the light emitting layer includes one host and a second host.
  • the organic light emitting device according to the present invention can be manufactured by sequentially laminating an anode, an organic layer, and a cathode on a substrate.
  • a metal oxide or a metal oxide having conductivity or a metal oxide having conductivity on the substrate may be formed on the substrate by using a PVD (physico-caliper deposition) method such as sputtering or e-beam evaporation.
  • An anode is formed by vapor-depositing an alloy on the anode, and a hole injecting layer, a hole transporting layer, a light emitting layer, and / or an electron transporting layer Forming an organic material layer, and then depositing a material usable as a cathode thereon.
  • an organic light emitting device can be formed by sequentially depositing a cathode material, an organic material layer, and a cathode material on a substrate.
  • the first host compound and the second host compound may be formed as a light emitting layer by a solution coating method as well as a vacuum deposition method in the production of an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating and the like, but is not limited thereto.
  • an organic light emitting device can be manufactured by sequentially depositing an organic material layer and a cathode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the organic light emitting device according to the present invention may be a front emission type, a back emission type, or a both-sided emission type, depending on the material used.
  • the production of the above-described organic light-emitting device will be specifically described in the following examples. However, the following examples are intended to illustrate the present invention, and the scope of the present invention is not limited thereto.
  • the concentrated compound was extracted with chloroform and water, and the organic layer was washed with magnesium sulfate After drying the organic layer, 23.5 g of the compound A-K was obtained through the use of a nucleic acid and an ethyl acetate column.
  • Compound 2 (13 g, yield 78%) was prepared by using Intermediate 1-2 and 1,1'-biphenyl-4-ylboronic acid in the same manner as in the above compound preparation example.
  • Compound 2 was obtained in the same manner as in the preparation of Compound 2-3 using Compound 2-1 (15 g, 36.7 ⁇ ol) and 2-bromo [b, d] thiophene (9.7 g, -7 (16.3 g, yield 75%).
  • the glass substrate coated with ITO (indium tin oxide) at a thickness of 1,300 A was immersed in distilled water containing detergent and washed with ultrasonic waves. At this time, a Fischer Co. product was used as a detergent, and Mi 1 lipore Co. ) Distilled water, which was filtered with a filter (Fi lter) of the product, was used.
  • the ITO was washed for 30 minutes, then washed twice with distilled water and ultrasonically cleaned for 10 minutes. After the distilled water was washed, it was ultrasonically washed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was cleaned using oxygen plasma for 5 minutes, and then the substrate was transported by a vacuum evaporator.
  • the following HI-1 compound was thermally vacuum deposited on the ITO transparent electrode prepared above to a thickness of 50 A to form a hole injection layer.
  • the following HT-1 compound was thermally vacuum deposited on the hole injection layer to form a hole transport layer, and the HT-2 compound was vacuum-deposited to a thickness of 50 A on the HT-1 vapor deposition layer to form an electron blocking layer .
  • Compound 1 prepared above and Compound 2-4 prepared above were deposited on the electron blocking layer by simultaneous evaporation at the weight ratio shown in Table 1, and the weight ratio (12%; Compound 1, Compound 2- 4, and the total weight of YGD), the following YGD compound was co-deposited to form a light emitting layer with a thickness of 400A.
  • the following ET-1 compound was vacuum-deposited on the light-emitting layer to a thickness of 250 A, and the following ET-2 compound was co-deposited with Li at a weight ratio of 2% by weight to a thickness of 100 A to form an electron transport layer and an electron injection layer.
  • Aluminum was deposited on the electron injection layer to a thickness of 1000 A to form a cathode.
  • T95 means the time required for the luminance to be reduced to 95% when the initial luminance at a current density of 50 mA / cm 2 is taken as 100%.
  • the glass substrate coated with thin ITO (indium tin oxide) film with a thickness of 1, 300 A was immersed in distilled water containing detergent and washed with ultrasonic waves. At this time, a Fischer Co. product was used as a detergent, and distilled water, which was filtered with a filter of Millipore Co., was used as distilled water.
  • the ITO was washed for 30 minutes and then washed twice with distilled water and ultrasonically cleaned for 10 minutes. After the distilled water was washed, it was ultrasonically washed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was cleaned using a plasma for 5 minutes, and then the substrate was transported by a vacuum evaporator.
  • the following HI-1 compound was thermally vacuum deposited on the ITO transparent electrode prepared above to a thickness of 500 A to form a hole injection layer.
  • the following HT-3 compound was thermally vacuum-deposited on the hole injection layer to a thickness of 800 A, and HT-4 compound was sequentially vacuum-deposited to a thickness of 500 A to form a hole transport layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 구동 전압, 효율 및 수명이 개선된 유기발광 소자를 제공한다.

Description

【발명의 명칭】
유기 발광 소자
【기술분야】 .
관련 출원 (들)과의 상호 인용
본 출원은 2017년 8월 10일자 한국 특허 출원 제 10-2017-0101813호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
【배경기술】
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기 에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 웅답 시간을 가지며, 휘도, 구동 전압 및 웅답 속도 특성이 우수하여 많은 연구가 진행되고 있다. 유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 .유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 아루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 액시톤 (exci ton)이 형성되며, 이 액시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. 상기와 같은 유기 발광 소자에서, 구동 전압, 효율 및 수명이 개선된 유기 발광소자의 개발이 지속적으로 요구되고 있다.
【선행기술문헌】
【특허문헌】 (특허문헌 0001) 한국특허 공개번호 게 10-2000-0051826호 【발명의 내용】
【해결하려는 과제】
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
【과제의 해결 수단】
본발명은 하기의 유기 발광 소자를 제공한다:
음극; 양극; 및 상기 음극과 양극 사이에 적어도 하나 이상의 발광층을 포함하고,
상기 발광층은 하기 화학식 1-1 또는 화학식 1ᅳ2로 표시되는 제 1 호스트 화합물 및 하기 화학식 2로 표시되는 게 2 호스트 화합물을 포함하는, 유기 발광소자:
음극; 양극; 및 상기 음극과 양극 사이에 적어도 하나 이상의 발광층을 포함하고,
상기 발광층은 하기 화학식 1로 표시되는 제 1 호스트 화합물 및 하기 화학식 2로 표시되는 게 2호스트 화합물을 포함하는,
유기 발광 소자:
Figure imgf000003_0001
상기 화학식 1에서,
X는 N , 또는 CH이고, 단 X 중 적어도 하나는 N이고,
An 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 N, 0, 또는 S를 포함하는 C2-60 헤테로아릴이고,
R은 서로 동일하고 — L-Ar3이고,
L은 결합; 또는 치환또는 비치환된 ( 60 아릴렌이고, Ar3은 치환 또는 비치환된 C6-60 아릴 ; 또는 N, 0, 또는 S를 포함하 C2-60 헤테로아릴이고,
[화학식 2] .
Figure imgf000004_0001
상기 화학식 2에서,
Y'는 0, S, NR', 또는 CR ' R' '이고,
여기서, R1 및 는 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 니트로 ; 아미노; 차환 또는 비치환된 d-60 알킬 ; 치환 또는 비치환된 d-60 할로알킬; 치환 또는 비치환된 ( 60 할로알콕시 ; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C2-60 알케닐; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N , Si 및 S 중 1개 이상을 포함하는 C260 헤테로아릴이고, 또는 R' 및 R1 '가 함께 치환 또는 비치환된 C6-60 방향족 고리를 형성하고'
L ' 및 L ' '는 각각 독립적으로 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-
60 헤테로아릴렌이고,
R' r 치환 또는 비치환된 d-so 알킬; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고,
R' 2 및 R' 3은 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 치환 또는 비치환된 d-60 알킬 ; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고,
n 및 m은 각각 독립적으로 0 내지 4의 정수이다. 【발명의 효과】
상술한 유기 발광소자는, 구동 전압, 효율 및 수명이 우수하다.
【도면의 간단한 설명】
도 1은 기판 ( 1), 양극 (2), 발광층 (3) , 음극 (4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 ( 1), 양극 (2), 정공주입층 (5), 정공수송층 (6), 발광층 (7) , 전자수송층 (8) 및 음극 (4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 이해를 돕기 위하여 보다상세히 설명한다.
본 명세서에서,
Figure imgf000005_0001
는 다른 치환기에 연결되는 결합을 의미한다. 본 명세서에서 "치환 또는 비치환된1' 이라는 용어는 중수소; 할로겐기 ; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기 ; 헤테로아릴아민기 ; 아릴아민기 ; 아릴포스핀기; 또는 N , 0 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기 "는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다. 본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수
1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure imgf000006_0001
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한
Figure imgf000006_0002
본 명세서에 있어서, 어미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물 .
Figure imgf000006_0003
본 명세서에 있어서, 실릴가는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다. 본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브름 또는 요오드가 았다. 본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 알 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n—부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 핵실, n—핵실, 1—메틸펜틸, 2—메틸펜틸, 4- 메틸 -2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸핵실, 사이클로펜틸메틸ᅳ사이클로핵틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸핵실, 2-프로필펜틸, n-노닐, 2 , 2-디메틸헵틸, 1-에틸-프로필, 1 , 1- 디메틸-프로필, 이소핵실, 2-메틸펜틸, 4-메틸핵실, 5-메틸핵실 등이 있으나, 이들에 한정되지 않는다. 본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1- 펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸 -1-부테닐, 1 ,3-부타디에닐, 알릴, 1- 페닐비닐 -1-일, 2-페닐비닐 -1-일, 2,2-디페닐비닐 -1-일, 2-페닐 -2- (나프틸 -1- 일)비닐 -1-일 , 2 , 2-비스 (디페닐 -1-일)비닐 -1-일 , 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다. 본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시.상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2 , 3- 디메틸사이클로펜틸, 사이클로핵실, 3—메틸사이클로핵실, 4-메틸사이클로핵실 2 , 3-디메틸사이클로핵실, 3,4,5—트리메틸사이클로핵실, 4-tert— 부틸사이클로핵실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다. 본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 본 명세서에 있어서ᅳ 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는
Figure imgf000008_0001
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다. 본 명세서에 있어서, 헤테로고리기는 이종 원소로 0, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피를기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰를린기 (phenanthrol ine) , 이소옥사졸릴기 , 티아디아졸릴기 , 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다. 본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다ᅳ 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 발명은 하기의 유기 발광 소자를 제공한다:
음극; 양극; 및 상기 음극과 양극 사이에 적어도 하나 이상의 발광층을 포함하고, 상기 발광층은 상기 화학식 1—1 또는 화학식 1-2로 표시되는 게 1 호스트 화합물 및 상기 화학식 2로 표시되는 제 2 호스트 화합물을 포함하는, 유기 발광 소자. 이하, 각 구성 별로 본 발명을 상세히 설명한다. 음극 및 양극
본 발명에서 사용되는 양극 및 음극은, 유가 발광 소자에서 사용되는 전극을 의미한다ᅳ 상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크름, 구리, 아연, 금과—같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물 ( IT0) , 인듐아연 산화물 ( IZ0)과 같은 금속 산화물; ΖηΟ :Α1 또는 SN02 : Sb와 같은 금속과 산화물의 조합; 폴리 (3- 메틸티오펜), 폴리 [3,4-(에틸렌-1,2-디옥시)티오펜] (1 1) 1) , 폴리피를 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 아들에만 한정되는 것은 아니다. 상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 Li02/M과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다. 또한, 상기 양극 상에는 정공 주입층이 추가로 포함될 수 있다. 상기 정공 주입층은 정공 주입 물질로 이루어져 있으며, 정공 주입 물질로는 정공을 수송하는 능력을 가져 .양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMOOiighest occupied molecular orbi tal )가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주밉 물질의 구체적인 예로는, 금속 포피린 (porphyr in) , 올리고티오펜, 아릴아민 계열의 유기물, 핵사니트릴핵사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacr idone)계열의 유기물, 페릴렌 (perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나 이들에만 한정 되는 것은 아니다. 발광층
본 발명에 따른 발광층은 상기 화학식 1로 표시되는 제 1 호스트 화합물 및 상기 화학식 2로 표시되는 게 2 호스트 화합물을 포함한다. 상기 화학식 1에서, 바람직하게는, X는 모두 N이다. 바람직하게는, A 및 Ar2는 각각 독립적으로 페닐, 또는 비페닐릴이다. 상기 화학식 1에서ᅳ R이 서로 동일하다는 의미는 R의 구조는 물론 R의 치환 위치도 동일한 것을 의미한다. 예를 들어, R이 피리디닐인 경우, 피리디닐이 디벤조퓨란에 치환된'치환 위치도 동일한 것을 의미한다. 바람직하게는, L은 결합, 페닐렌, 또는 나프틸렌이다. 바람직하게는, Ar3은 페닐, 시아노로 치환된 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 트리페닐레닐, 피리디닐, 디벤조퓨라닐, 디벤조티오페닐, 9 , 9-디메틸-911-플루오레닐, 카바졸릴, 9-페닐 -9H-카바졸릴, 9,9-디메틸-911-크산테닐, 또는 페노크산티닐이다. 상기 화학식 1로 표시되는 화합물의 대표적인 예는 다음과 같다:
Figure imgf000012_0001
Figure imgf000013_0001

Figure imgf000014_0001
l7S6C00/8l0ZaM/X3d 6Ζ.9ΐεθ/6ΪΟΖ OAV
Figure imgf000015_0001
l7S6C00/8l0ZaM/X3d 6Ζ.9ΐεθ/6ΪΟΖ OAV
Figure imgf000016_0001
상기 화학식 1로 표시되는 화합물은 하기 반웅식 1과 같은 제조 방법으로 제조할 수 있다.
Figure imgf000016_0002
상기 단계 1-1은, 상기 화학식 1A로 표시되는 화합물과 상기 화학식 1B로 표시되는 화합물을 반웅시켜 상기 화학식 1C로 표시되는 화합물을 제조하는 단계이다. 상기 반응은 스즈키 커플링 반웅으로세 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며ᅳ 스즈키 커플링 반웅을 위한 반웅기는 당업계에 알려진 바에 따라 변경이 가능하다. 일례로, 상기 X 1는 할로겐, 보다 바람직하게는 브로모 또는 클로로이다. 상기 단계 1-2은, 상기 화학식 1C로 표시되는 화합물과 상기 화학식 1D로 표시되는 화합물을 반웅시켜 상기 화학식 1로 표시되는 화합물을 제조하는 단계이다. 상기 반웅은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 .바람직하며, 스즈키 커플링 반웅을 위한 반웅기는 당업계에 알려진 바에 따라 변경이 가능하다. 일례로, 상기 X 1는 할로겐, 보다 바람직하게는 브로모 또는 클로로이다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. 2에서, 바람직하게는 Y 1는 0, NR' , C(CH3)2 , 또는
Figure imgf000017_0001
이고, 여기서 R'는 페닐, 시아노로 치환된 페닐, 비페닐릴 트리페닐레닐, 사이클로핵실, 디메틸플루오레닐, 또는 디벤조퓨라닐이다. 바람직하게는, L 1 및 L ' '는 단일 결합이다. 바람직하게는, !?^은 페닐, 비페닐릴, 터페닐릴, 트리페닐레닐, 또는 페난트레닐이다. 바람직하게는, R' 2 및 R ' 3은 각각 독립적으로, 수소; 페닐; 시아노로 치환된 페닐; 또는 피리디닐이다. 상기 화학식 2로 표시되는 화합물의 대표적인 예는 다음과 같다: LI
Figure imgf000018_0001
l7S6C00/8l0ZaM/X3d 6Ζ.9ΐεθ/6ΪΟΖ OAV
Figure imgf000019_0001
l7S6C00/8l0ZaM/X3d 6Ζ.9ΐεθ/6ΪΟΖ OAV
Figure imgf000020_0001
상기 화학식 2로 표시되는 화합물은 하기 반웅식 2와 같은 제조 방법으로 제조할 수 있다.
Figure imgf000020_0002
상기 단계 2는, 상기 화학식 2A로 표시되는 화합물과 상기 화학식 2B로 표시되는 화합물을 반웅시켜 상기 화학식 2로 표시되는 화합물을 제조하는 단계이다. 상기 반웅은 스즈키 커플링 반웅으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반웅을 위한 반웅기는 당업계에 알려진 바에 따라 변경이 가능하다. 일례로, 상기 X '는 할로겐, 보다 바람직하게는 브로모 또는 클로로이다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. 바람직하게는, 상기 게 1 호스트 화합물과 제 2 호스트 화합물의 중량비는 1 : 99 내지 99 : 1로 사용한다. 또한, 상기 발광층은 상기 호스트 화합물 이외에 도펀트 재료를 포함할 수 있다. 상기 도편트 재료로는 유기 발광 소자에 사용되는 것이면 특별히 제한되지 않으며, 일례로 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로, 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다. 기타층
또한, 본 발명에 따른 유기 발광 소자는, 필요에 따라 정공주입층, 정공수송층, 전자수송층, 및 /또는 전자전달층을 포함할 수 있다. 상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMOOiighest occupied molecular orbi tal )가 양극 물질의 일함수와 주변 융기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린 (porphyr in) , 올리고티오펜, 아릴아민 계열의 유기물, 핵사니트릴핵사아자트리페닐렌 계열의 유기물, 퀴나크리돈 (quinacr idone)계열의 유기물, 페릴렌 (perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 정공수송층은 양극 또는 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다. 상기 전자수송층은 전자주입층 또는 음극으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8ᅳ히드록시퀴놀린의 A1 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본 -금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다. 상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다. 상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스 (8- 하이드록시퀴놀리나토)아연, 비스 (8-하이드록시퀴놀리나토)구리, 비스 (8- 하이드록시퀴놀리나토)망간, 트리스 (8-하이드록시퀴놀리나토)알루미늄, 트리스 (2-메틸 -8-하이드록시퀴놀리나토)알루미늄, 트리스 (8- 하이드록시퀴놀리나토)갈륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)베릴륨, 비스 ( 10-하이드록시벤조 [h]퀴놀리나토)아연, 비스 (2-메틸 -8- 퀴놀리나토)클로로갈륨, 비스 (2-메틸 -8-퀴놀리나토) ( 0-크레졸라토)갈륨, 비스 (2-메틸 -8-퀴놀리나토 ) ( 1-나프를라토)알루미늄 , 비스 (2—메틸 -8- 퀴놀리나토) (2-나프를라토)갈륨 등이 있으나, 이에 한정되지 않는다. 유기 발광 소자
본 발명에 따른 유기 발광 소자는, 상기 발광층에 게 1 호스트와 제 2 호스트를 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 양극, 유기물층 및 음극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법 (sputter ing)이나 전자빔 증발법 (e-beam evaporat i on)과 같은 PVD(phys i cal Vapor Depos i t ion)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 /또는 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다. 또한, 상기 게 1 호스트 화합물 및 제 2 호스트 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 발광층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다. 이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다 (W0 2003/012890) . 다만, 제조 방법이 이에 한정되는 것은 아니다. 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다. 상술한 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
Figure imgf000024_0001
1) 화합물 A— 1의 제조
질소 분위기에서 (2—브로모 -6—플로로페닐)보론산 (30.0 g, 137 mmol )과 2 , 4-다이클로로 -6-아이오도페놀 (43.6 g , 150 匪 ol )를 테트라하이드로퓨란 400 mL에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트 (56.8 g , 411 '匪 ol )를 물 150 mL에 / 녹여 투입하고 교반한 후 테트라키스트리페닐- 포스피노팔라듐 (4.8 g , 1 mol«을 투입하였다. 12시간 반웅 후 상온으로 온도를 낮추고 유기층과 물층을 분리한 후 유기층을 감압 증류하였다. 농축한 화합물을 클로로포름과 물로 추출한 후 유기층을 황산마그네슘을 이용해 건조하였다. 이후 유기층을 건조한 후 핵산과 에틸아세테이트 컬럼을 통해 화합물 A-K23.5 g, 수율 51«을 제조하였다.
2) 화합물 A의 제조
질소 분위기에서 화합물 A-K23.5 g, 70 隱 ol )을 다이메틸로품아마이드 200 mL에 넣고 교반하였다. 이후 포타슘카보네이트 ( 19.3 g, 140 匪 ol )를 투입한 후 환류하였다. 2시간 후 상온으로 온도를 낮추고 여과하였다. 여과물을 클로로포름과 물로 추출한 후 유기층을 무수황산마그네슴을 이용해 건조하였다. 이후 유기층을 감압 증류한 후 에틸아세테이트를 이용해 재결정하였다. 생성된 고체를 여과 후 건조하여 화합물 A( 18 g , 수율 81%)를 제조하였다.
MS : [M+H]+=314
[실시예 1]
Figure imgf000025_0001
a) 화합물 1-1의 제조
질소 분위기에서 중간체 A(15.0 g, 48 隱 ol) 및 아세트산칼륨 (14 g, 142 匪 ol)을 섞고, 1,4-디옥산 150 mL에 첨가하고 교반하면서 가열하였다. 환류 상태에서 비스 (디벤질리딘아세톤)팔라듐 (0.8 g, 3 mol%)과 트리사이클로핵실포스핀 (0.8 g, 6 mol%)을 넣고 3시간 동안 가열 및 교반하였다. 반웅 종료 후, 상은으로 온도를 낮춘 후 여과하였다. 여과액에 물을 붓고 클로로포름으로 추출하고, 유기층을 무수황산마그네슘으로 건조하였다. 감압 증류 후 에탄올로 재결정하여 화합물 1-1(15.7 g, 수율 91%)을 제조하였다. b) 화합물 1-2의 제조
질소 분위기에서 중간체 1-1(15.7 g, 50 隱 ol)와 2-클로로 -4,6- 디페닐 -1,3,5-트리아진 (14.6 g, 55 噴 ol)를 테트라하이드로퓨란 200 mL에 넣고 교반 및 환류하였다. 이후 포타슘카보네이트 (20.6 g, 149 隱 ol)를 물 60 mL에 녹여 투입한 후 층분히 교반한 후 테트라키스트리페닐- 포스피노팔라듐 (1.7 g, 1 mol%)을 투입하였다.. 18시간 반응 후 상온으로 온도를 낮추고 여과하였다. 여과물을 클로로포름과 물로 추출한 후 유기층을 무수황산마그네슘을 이용해 건조하였다. 이후 유기층을 감압 농축한 후 에틸아세테이트를 이용해 재결정하였다. 생성된 고체를 여과 후 건조하여 화합물 1-2(17.9 g, 수율 77%)을 제조하였다. c) 화합물 1의 제조
. 질소 분위기에서 중간체 1-2(10.0 g, 21 醒 ol) 및 다이벤조 [b,d]퓨란- 4-일보론산 (10.0 g, 47 腿 ol)을 테트라하이드로퓨란 200 mL에 넣고 교반 및 환류하였다. 이후 포타슘포스페이트 (27.2 g, 128 mmol)를 물 60 mL에 녹여 투입한 후 층분히 교반한 후 비스 (디벤질리딘아세톤)팔라듐 (0.7 g, 1 mol%)과 트리사이클로핵실포스핀 (0.7 g, 2.6 隱 ol)을 투입하였다. 24시간 반웅 후 상온으로 은도를 낮추고 여과하였다. 여과물을 클로로포름과 물로 추출한 후 유기층을 무수황산마그네슘을 투입하여 교반한 후 여과하여 감압 농축하였다. 농축된 화합물에 클로로포름과 에틸아세테이트를 투입하여 재결정하였다. 생성된 고체를 여과 후 건조하여 화합물 1(7 g, 수율 45%)을 제조하였다. M'S:[M+H]+=732
Figure imgf000027_0001
중간체 1-2와 1,1'-비페닐 -4-일보론산을 사용하여 상기 화합물 제조예와 동일한 방법으로 화합물 2(13 g, 수율 78%)를 제조하였다.
MS:[M+H]+=704 .
Figure imgf000027_0002
a) 화합물 3-1의 제조
중간체 1-1(20 g, 55隱 ol)과 2-( 1, 1 '—비페닐一 3-일) -4-클로로 -6-페닐- 1,3,5-트리아진 (19.0 g, 55 誦 ol)을 사용하여 상기 화합물 1-2의 제조예와 동일한 방법으로 화합물 3-1(22.8 g, 수율 76%)를 제조하였다. b) 화합물 3의 제조
^간체 3-1(20 g, 46 隱 ol)과 페닐보론산 (12.3 g, 101 醒 ol)을 사용하여 상기 화합물 1의 제조예와 동일한 방법으로 화합물 3(23.6 g, 수율 8 )을 제조하였다.
MS:[M+H]+=628
Figure imgf000028_0001
질소 분위기에서 증간체 1-2(15.0 g, 32 隱 ol) 및 -카바졸(11.8 g, 70 瞧 ol)를 자일렌 100 mL에 넣고 교반 및 환류하였다. 이후 나트륨 터셔리- 부특사이드 (6.2 g, 64 I OI)를 투입한 후 충분히 교반한 후 비스 (트리-터트- 부틸포스핀)팔라듐 (0 160 mg, 1 mol«을 투입하였다. 24시간 반웅 후 상온으로 온도를 낮추고 여과하였다. 여과물을 클로로포름과 물로 추출한 후 유기층을 무수황산마그네슘을 이용해 건조하였다. 이후 유기층을 감압 농축하고, 를루엔으로 재결정하여 화합물 4(16.6 g, 수율 71%)를 제조하였다.
MS:[M+H]+=730
Figure imgf000028_0002
질소 분위기에서 중간체 1—2(10.0 g, 21 mmol) 및 페난스렌 -9-일 보로닉 에시드 (10.4 g, 47 醒 ol)를 테트라하이드로퓨란 200 mL에 넣고 교반 및 환류하였다. 이후 포타슘포스페이트 (27.2 g, 128誦 ol)를 물 60 mL에 녹여 투입한 후 충분히 교반한 후 비스 (디벤질리딘아세톤)팔라듐 (0.7 g, 1 mol%)과 트리사이클로핵실포스핀 (0.7 g, 2.6 隱 ol)을 투입하였다. 24시간 반웅 후 상온으로 온도를 낮추고 여과하였다. 여과물을 클로로포름과 물로 추출한 후 유기층을 황산마그네슘을 이용해 건조하였다. 이후 유기층을 감압 증류 후 에틸 아세테이트를 이용해 재결정하였다. 생성된 고체를 여과 후 건조하여 화합물 5(12.6 g, 81%)을 제조하였다.
MS:[M+H]+=752
Figure imgf000029_0001
중간체 1-2(15 g, 32 隱 ol)와 (4- (피리딘 -2-일)페닐)보론산 (14.0 g, 70.5 mmol)을 사용하여 상기 화합물 1—2의 제조예와 동일한 방법으로 화합물 6(16.9 g, 수율 75%)을 제조하였다.
MS:[M+H]+=706
7) 화합물 7의 제조
Figure imgf000030_0001
중간체 1-2(15 g, 32 隱 ol)와 (9, 9-디메틸—9H-들루오렌 -2- 일)보론산 (16.8 g, 70.5 隱 ol)을 사용하여 상기 화합물 1-2의 제조예와 동일한 방법으로 화합물 7(18.3 g, 수율 73%)을 제조하였다.
MS:[M+H]+=784
Figure imgf000030_0002
중간체 1-2(15 g, 32 瞧 ol)와 디벤조 [b,d]티오펜 -4-일보론산 (16.0g, 70.5 醒 ol)을 사용하여 상기 화합물 1-2의 제조예와 동일한 방법으로 화합물 8(18.3 g, 수율 75%)을 제조하였다.
MS:[M+H]+=764
[실시예 2]
1) 화합물 2-1의 제조
Figure imgf000031_0001
9-(1,1'-비페닐 )— 4—일) -3-브로모 -9H-카바졸 (15 g, 27 腿 ol)과 디벤조 [b,d]퓨란 -2일보론산 (5.7 g, 27 讓 ol)을 테트라하이드로퓨란 80 mL에 분산시킨 후, 2 M 탄산칼륨수용액 (40 mL, 81 隱 ol)을 첨가하고 테트라키스트리페닐-포스피노팔라듐 (0.3 g, 1 mol%)을 넣은 후 6시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 물층을 제거하여 감압 농축하고, 에틸아세테이트를 투입하여 1시간 동안 환류 하에 교반하여 실은으로 식힌 후 고체를 여과하였다. 얻어진 고체에 클로로포름을 넣고 환류 하에 녹이고, 에틸아세테이트를 추가하여 재결정으로 화합물 2—1(11.5 g, 수율 7 )을 제조하였다.
MS:[M+H]+=486
Figure imgf000031_0002
a) 화합물 2-2-1 제조
2-클로로다벤조 [bᅳ d]티오펜 (22 g, 101 隱 ol)을 클로로포름 50 mL에 녹이고, 넁각하여 0°C로 온도를 낮추고, Br2 용액 (5.5 mL, 108 隱 ol)을 천천히 적가하였다. 3시간 동안 교반하여 반웅이 종결되면 소듐바이카보네이트 수용액을 투입하여 교반하였다. 물층을 분리하고 유기층을 모아서 무수황산마그네슘으로 건조하고 여과하여 감압 농축하였다. 농축한 화합물을 컬럼 정제를 통해 분리하여 화합물 2-2-1(10 g, 수율 49 %)을 제조하였다. b) 화합물 2-2-2의 제조
화합물 2-2-1(15 g, 50 匪 ol)와 (9-페닐 -9H-카바졸 -3-일)보론산 (15.2 g, 53 瞧 ol)을 테트라하이드로퓨란 200 mL에 분산시킨 후, 2 M 탄산칼륨수용액 (75 mL, 151 画 ol)을 첨가하고 테트라키스트리페닐- 포스피노팔라듐 (0.6 g, 1 mol%)을 넣은 후 6시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 물층을 제거하여 감압 농축하고, 에틸아세테이트를 투입하여 3시간 동안 교반하여 석출된 고체를 여과하였다. 얻어진 고체를 클로로포름과 에탄올 흔합액으로 추가로 교반한 후 여과하여 화합물 2-2- 2(18.8 g, 수율 81 %)를 제조하였다. c) 화합물 2-2의 제조
화합물 2-2-2(17 g, 37 醒 ol)와 1, I1-비페닐 -3-일보론산 (8.7 g, 43.5 隱 ol)을 테트라하이드로퓨란 160 mL에 분산시킨 후, 2 M 탄산칼륨수용액 (65 mL, 111 瞧 ol)을 첨가하고 테트라키스트리페닐-포스피노팔라듐 (0.4 g, 1 mol«을 넣은 후 6시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 물층을 제거하여 감압 농축하고, 농축된 화합물을 클로로포름 300 mL에 녹여 물로 세척하여 분리하고, 유기층을 무수황산마그네슘으로 처리하여 여과였다. 여액을 가온하여 환류 하에 절반 정도 제거하고, 에틸아세테이트 100 mL를 추가하여 재결정을 통해 화합물 2-2(14.2 g, 수율 73%)를 제조하였다.
MS:[M+H]+=527
3) 화합물 2-3의 제조
Figure imgf000033_0001
2-3
a) 화합물 2-3-1의 제조
3-브로모 -9H-카바졸 (15 g, 61 隱 ol)과 (9-페닐 -9H-카바졸 -3- 일)보론산 (18.4 g, 64 mmol)을 사용하여 상기 화합물 2-1의 제조예와 동일한 방법으로 화합물 2-3-1(20.2 g, 수율 81%)을 제조하였다. b) 화합물 2ᅳ 3의 제조
화합물 2-3-1(12 g, 30 隱 ol)과 3—브로모 -9-페닐 -9H-카바졸 (9.5 g, 30 mmol)을 를루엔 150 mL에 투입하여 녹이고, 나트륨 터셔리 -부록사이드 (5.6 g, 59 匪 ol)를 첨가하여 가온하였다. 비스 (트리 터셔리-부틸포스핀)팔라듐 (0.15 g, 1 mol%)을 투입하여 12시간 환류 교반하였다. 반웅이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. ^은 노란색의 고체를 클로로포름으로 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘과 산성백토를 넣고 교반한 후 여과하여 감압 증류하였다. 클로로포름과 에틸아세테이트를 이용하여 재결정하여 흰색의 고체 화합물인 화학식 2-3(14.5 g, 수율 76%)을 제조하였다.
MS:[M+H]+=650
Figure imgf000034_0001
9— (1,1'-비페닐 -3-일) -3-브로모 -9H-카바졸 (16 g, 40 隱 ol)과 9-(1,1'- 비페닐 -3-일) -9H-카바졸 -3-일)보론산 (14.6 g, 40匪 ol)을 사용하여 화합물 2- 1의 제조예와동일한 방법으로 화합물 2-4(19.7 g, 수율 77%)를 제조하였다.
MS:[M+H]+=637
Figure imgf000034_0002
a) 화합물 2-5-1의 제조
(9H-카바졸ᅳ 2-일)보론산 (20 g, 95 圍 ol)과 3— (4-클로로페닐) -9-페닐- -카바졸(33.5 g, 95瞧 ol)을 사용하여 상기 화합물 1-6의 제조예와 동일한 방법으로 화합물 2-5-1(38 g, 수율 83%)를 제조하였다. b) 화합물 2-5의 제조
화합물 2-5—1(15 g, 31 匪 ol)과 브로모벤젠 (4.90 g, 31 誦 ol)을 사용하여 상기 화합물 2— 3의 제조예와 동일한 방법으로 화합물 2-5(13.1 g, 수율 76%)를 제조하였다.
MS:[M+H]+=561
Figure imgf000035_0001
2-6
a) 화합물 2-6-1의 제조
2-브로모 -9,9'-디메틸 -9H-플루오렌 (15 g, 55 隱 ol)과 (9H-카바졸 -3- 일)보론산 (13 g, 61.6 mmol)을 사용하여 상기 화합물 2-1의 제조예와 동일한 방법으로 화합물 2-6-1(18.4 g, 수율 83%)를 제조하였다. b) 화합물 2— 6의 제조
화합물 2-6-1(15 g/41.7 睡01)과 2-브로모-9-페닐-911-카바졸(13.4 g, 41.7 隱 ol)을 사용하여 상기 화합물 2-3의 제조예와 동일한 방법으로 화합물 2-6(19.0 g, 수율 76%)을 제조하였다ᅳ
MS:[M+H]+=601
7) 화합물 2-7의 제조
Figure imgf000036_0001
a) 화합물 2—그 1의 제조
3-브로모 9H-카바졸 (15 g, 61 匪 ol)과 9-([1,1'-비페닐 ]-4-일) -9H- 카바졸 -3-일)보론산 (22 g, 61 隱 ol)을 사용하여 화합물 2-1의 제조예와 동일한 방법으로 화합물 2-7-1(24 g, 수율 81%)을 제조하였다. b) 화합물 2— 7의 제조
화합물 2—그 1(15 g, 36.7 隱 ol)과 2—브로모 [b,d]티오펜 (9.7 g, 36.7 隱 ol)을 사용하여 상기 화합물 2-3의 제조예와 동일한 방법으로 화합물 2- 7(16.3 g, 수율 75%)을 제조하였다.
MS:[M+H]+=591
[실험예]
실험예 1
IT0( indium tin oxide)가 1,300A의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사 (Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사 (Mi 1 lipore Co. ) 제품의 필터 (Fi lter)로 2차로 걸러진 증류수를 사용하였다. IT0를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 상기와 같이 준비된 IT0 투명 전극 위에 하기 HI-1 화합물을 50A의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 위에 하기 HT-1 화합물을 250 A의 두께로 열 진공 증착하여 정공수송층을 형성하고, HT-1 증착막 위에 하기 HT-2 화합물을 50 A 두께로 진공 증착하여 전자저지층을 형성하였다. 이어서, 상기 전자저지층 위에 앞서 제조한 화합물 1과 앞서 제조한 화합물 2-4를 하기 표 1의 중량비로 동시 증발에 의해 증착하고, 이때 하기 표 1의 중량비 (12%; 화합물 1 , 화합물 2-4, 및 YGD 총 중량 대비)로 인광 도펀트인 하기 YGD 화합물을 공증착하여 두께 400A로 발광층을 형성하였다. 상기 발광층 위에 하기 ET— 1 화합물을 250A의 두께로 진공 증착하고, 추가로 하기 ET-2 화합물을 100 A 두께로 2% 중량비의 Li과 공증착하여 전자수송층 및 전자주입층을 형성하였다. 상기 전자주입층 위에 1000 A 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure imgf000038_0001
Figure imgf000038_0002
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 A /sec를 유지하였고, 알루미늄은 2 A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 X 10_7 ~ 5 X 10— 8 torr를 유지하였다. 실험예 2 내지 9
상기 실험예 1과 동일한 방법으로 제조하되, 발광층 형성시 인광 호스트 물질 및 도펀트 함량을 하기 표 1과 같이 변경하였다는 점을 제외하고는, 상기 실험예 1과 동일한 방법을 이용하여 유기 발광 소자를 각각 제작하였다. 비교실험예 1 내지 11
상기 실험예 1과 동일한 방법으로 제조하되, 발광층 형성시 인광 호스트 물질 및 도펀트 함량을 하기 표 1과 같이 변경하였다는 점을 제외하고는, 상기 실험예 1과 동일한 방법을 이용하여 유기 발광 소자를 각각 제작하였다ᅳ 이때 사용된 호스트 물질 A 내지 E , PH— 1은 하기와 같다.
Figure imgf000039_0001
Compound C Compound D
Figure imgf000039_0002
Compound E 상기 실험예 및 비교실험예에서 제조한 유기 발광 소자에 전류를 인가하여 , 전압, 효율, 휘도, 색좌표 '및 수명을 측정하고 그 결과를 하기 표
1에 나타내었다. 이때, T95은 전류 밀도 50 mA/cm2에서의 초기 휘도를 100%로 하였을 때 휘도가 95%로 감소되는데 소요되는 시간을 의미한다.
【표 11
전압 (V) 효율 (Cd/A) 수명 호스트 (중량비%)/ 색좌표
No . (@10mA/ (@10mA/cm2 (T95 , h) 도편트 함량 (x ,y)
cm2) ) (@50mA/cm2) 실험예 1 (화합물 1 :화합물 2-4) /YGD 3.49 . 23.7 (0.462, 0.529) 135.5 (200:200)/12
(화합물 2:화합물 2-3) /YGD
실험예 2 3.33 22.8 (0.460,0.531) 165.5
(280: 120)/ 12%
(화합물 2:화합물 2-4) /YGD
실험예 3 3.36 23.6 (0.457,0.534) 180.3
(200: 200)/ 12%
(화합물 3:화합물 2-4) /YGD
실험예 4 3.39 23.5 (0.459,0.532) 140.0
(200:200-)/ 12%
(화합물 3:화합물 2-5) /YGD
실험예 5 3.53 24.3 (0.458,0.533) 141.5
(200:200)/ 15%
(화합물 3:화합물 2-6) /YGD
실험예 6 3.39 24.3 (0.454,0.537) 150.0
(280:120)/15%
(화합물 4:화합물 2-5) /YGD
. 실험예 7 3.35 24.0 (0.458,0.533) 120.2
(200:200)/15
(화합물 5:화합물 2-4) /YGD
실험예 8 3.56 23.4 (0.449,0.541) 130.5
(120: 280)/ 12%
(화합물 5:화합물 2-7) /YGD
실험예 9 3.22 23.4 (0.458,0.532) 126.5
(200: 200)/ 12%
비교실험예 (화합물 D/YGD
3.03 21.5 (0.472,0.521) 69.0 1 (400)/16
비교실험예 (화합물 1:PH-1)/YGD'
3.90 23.3 (0.445,0.545) 90.1 2 150: 250)/ 15%
비교실험예 (화합물 2) /YGD
2.90 19.7 (0.474,0.519) 79.2 3 (400)/12%
비교실험예 (화합물 A)/YGD
2.98 20.1 (0.481,0.513) 48.2 4 (400)/16%
비교실험예 (화합물 B:PH— D/YGD
3.50 22.2 (0.461,0.530) 80.2 5 (120/280)/ 12%
비교실험예 (화합물 C) /YGD
3.59 19.7 (0.462,0.529) 41.9 6 (400)/12%
비교실험예 (화합물 C:화합물 2-4) /YGD
3.73 22.2 (0.458,0.533) 73.3 7 (200/200)/ 10%
비교실험예 (화합물 D:화합물 2-3) /YGD
3.68 22.6 (0.454,0.536) 74.2 8 (120: 280)/ 12%
비교실험예 (화합물 D:화합물 2-4) /YGD
3.50 22.2 (0.461,0.530) 85.2 9 (200/200)/ 10%
비교실험예 (화합물 E)/YGD
2.98 20.1 (0.481,0.513) 27.7 10 (400)/16%
비교실험예 (화합물 E:PH-1)/YGD
4.03 21.8 (0.449,0.541) 49.9 11 (200:200)/12% 실험예 10
IT0( indium tin oxide)가 1, 300 A의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사 (Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사 (Millipore Co.) 제품의 필터 (Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다. 상기와 같이 준비된 IT0 투명 전극 위에 하기 HI-1 화합물을 500A의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 위에 하기 HT-3 화합물을 800 A의 두께로 열 진공증착하고, 순차적으로 하기 HT-4 화합물을 500A 두께로 진공 증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 앞서 제조한 화합물 1과 앞서 제조한 화합물 2-1을 하기 표 2의 중량비 ( 175 : 175)로 동시 증발에 의해 증착하고, 이때 하기 표 2의 중량비 (5%; 화합물 1, 화합물 2-1 , 및 GD— 1 총 중량 대비 )로 인광 도펀트인 하기 GD-1 화합물을 공증착하여 하기 표 2의 두께 (350 A )로 발광층을 형성하였다. 상기 발광층 위에 하기 ET— 3 화합물을 50 A의 두께로 진공 증착하여 정공저지층을 형성하고, 상기 정공저지층 위에 하기 ET-4 화합물 및 LiQ를 1 : 1의 중량비로 진공증착하여 250 A의 전자수송층을 형성하였다. 상기 전자수송층 위에 순차적으로 10A 두께의 리튬 프루라이드 (LiF)를 증착하고, 이어 1000 A 두께로 알루미늄을 증착하여 음극을
Figure imgf000041_0001
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 A/sec를 유지하였고, 음극의 리튬플루오라이드는 으 3 A/sec , 알루미늄은 2 A/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 X 10"7 ~ 5X 10— 8 torr를 유지하였다. 실험예 11 내지 16
상기 실험예 10과 동일한 방법으로 제조하되, 발광층 형성시 인광 호스트 물질 및 도펀트 함량을 하기 표 2와 같이 변경하였다는 점을 제외하고는, 상기 실험예 10과 동일한 방법을 이용하여 유기 발광 소자를 각각 제작하였다. 비교실험예 12 내지 16
상기 실험예 10과 동일한 방법으로 제조하되, 발광층 형성시 인광 호스트 물질 및 도펀트 함량을 하기 표 2와 같이 변경하였다는 점을 제외하고는, 상기 실험예 10과 동일한 방법을 이용하여 유기 발광 소자를 각각 제작하였다ᅳ 이때 사용된 호스트 물질 A, C 및 E는 앞서 비교실험예 1 내지 11에서 사용한 것과 각각 동일하다. 상기 실험예 및 비교실험예에서 제조한 유기 발광 소자에 전류를 *_ 인가하여, 전압, 효율, 휘도, 색좌표 및 수명을 측정하고 그 결과를 하기 표 2에 나타내었다. 이때, T95은 전류 밀도 50 mA/cm2에서의 초기 휘도를 100%로 하였을 때 휘도가 95%로 감소되는데 소요되는 시간을 의미한다.
【표 2】
발광층
(호스트) / 전압 (V) 효율 (Cd/A) 색좌표
No .
ᅵ도펀트 함량 두께
(@10mA/cm2) (il0mA/cmz) (x,y)
( A )
(화합물 1:화합물 2- 실험예 10 D/GD-1 350 4.03 17.5 (0.32,0.63) 160.5
(175 : 175)/»
(화합물 1:화합물 2- 실험예 11 2)/GD-l 350 4.17 17.5 (0.32 , 0.63) 150.4
( 175: 175) /M
(화합물 1 :화합물 2- 실험예 12 6)/GD— 1 350 4.15 16.9 (0.33 , 0.63) 132.9
( 140:210)/6% (화합물 2:화합물 2- 실험예 13 2)/GD-l 350 3.88 17.1 (0.32,0.64) 150.3
(175:175)/5 -
(화합물 2:화합물 2- 실험예 14 D/GD-1 400 4.10 17.9 (0.35,0.61) 158.1
(200:200)/5%
(화합물 3:화합물 2- 실험예 15 D/GD-1 350 4.02 18.1 (0.33,0.64) 128.9
(175:175)/5%
(화합물 6:화합물 2一
실험예 16 2)/GD-l 400 4.20 17.6 (0.34,0.62) 121.6 .
(200:200)/5%
(화합물 7:화합물 2- 실험예 17 2)/GD-l 350 3.95 17.5 (0.33,0.62) 133.2
(140:210)/5%
(화합물 8:화합물 2- 실험예 18 6)/GD-l 350 4.10 18.2 (0.31,0.64) 129.8
(175:175)/5%
(화합물 A:화합물 2—
,비교실험예
D/GD-1 350 4.17 16.9 (0.31,0.64) 90.8 12
(175:175)/»
(화합물 C:화합물 2- 비교실험예
D/GD-1 400 4.35 16.6 (0.35,0.61) 75.0 13
(200:200)/5%
비교실험예 (화합물 D/GD-1
350 3.78 15.5 (0.35,0.61) 58.1 ' 14 (350) /5%
비교실험예 (화합물 C)/GD-1
350 3.95 14.9 (0.35,0.61) 46.3 15 (350) /6%
(화합물 E:화합물 PH- 비교실험예
D/GD-1 350 4.62 16.7 (0.34,0.62) 47.2 16
(140:210)/6
【부호의 설명】
1: 기판 2: ᄋ 그
3: 발광층 4: ᄋ 그
ᄆ ᄀ
5: 정공주입층 6: 고 소 A
Λό ο丁方" 5"
7: 발광층 - 8: 잔자수송층

Claims

【특허청구범위】
【청구항 11
'음극; 양극; 및 상기 음극과 양극 사이에 적어도 하나 이상의 발광층을 포함하고,
상기 발광층은 하기 화학식 1로 표시되는 제 1 호스트 화합물 및 하기 화학식 2로 표시되는 게 2 호스트 화합물을 포함하는,
유기 발광 소자:
Figure imgf000044_0001
상기 화학식 1에서,
X는 N, 또는 CH이고, 단 X중 적어도 하나는 N이고
An 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 N , 0, 또는 S를 포함하는 C2-60 헤테로아릴이고,
R은 서로 동일하고 -L-Ar3이고,
L은 결합; 또는 치환또는 비치환된 C6-60 아릴렌이고,
Ar3은 치환 또는 비치환된 C6-60 아릴; 또는 N, 0, 또는 S를 포함하는 C2-60 헤테로아릴이고,
Figure imgf000044_0002
'3)m 상기 화학식 2에서,
Y'는 0, S, NR1, 또는 CR'R' '이고,
여기서, R1 및 R1'는 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 니트로 ; 아미노; 치환 또는 비치환된 d-K) 알킬 ; 치환 또는 비치환된 d-60 할로알킬 ; 치환 또는 비치환된 d-so 할로알콕시 ; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C260 알케닐; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고, 또는 R1 및 가 함께 치환 또는 비치환된 C6-60 방향족 고리를 형성하고,
L' 및 L''는 각각 독립적으로 단일 결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-
60 헤테로아릴렌이고,
은 치환 또는 비치환된 d-60 알킬 ; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 0, N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고,
R'2 및 R'3은 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 치환 또는 비치환된 ( 60 알킬 ; 치환 또는 비치환된 C3-60 사이클로알킬 ; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 으 N, Si 및 S 중 1개 이상을 포함하는 C2-60 헤테로아릴이고,
n 및 m은 각각 독립적으로 0 내지 4의 정수이다.
【청구항 2]
제 1항에 있어서,
X는 모두 N인 ,
유기 발광 소자.
【청구항 3】
제 1항에 있어서,
A 및 Ar2는 각각 독립적으로 페닐, 또는 비페닐릴인,
유기 발광소자.
【청구항 4]
게 1항에 있어서,
L은 결합, 페닐렌, 또는 나프틸렌인ᅳ
유기 발광 소자.
【청구항 5]
게 1항에 있어서,
Ar3은 페닐, 시아노로 치환된 페닐, 비페닐릴, 터페닐릴, 나프틸 페난쓰레닐, 트리페닐레닐, 피리디닐, 디벤조퓨라닐, 디벤조티오페닐, 9ᅳ 9- 디메틸 -9H-플루오레닐, 카바졸릴, 9-페닐 -9H-카바졸릴, 9,9-디메틸-911- 크산테닐, 또는 페노크산티닐인,
유기 발광 소자.
【청구항 6】
제 1항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
유기 발광 소자:
9
Figure imgf000047_0001
l7S6C00/8l0ZaM/X3d 6Ζ.9ΐεθ/6ΪΟΖ OAV
Figure imgf000048_0001
l7S6C00/8l0ZaM/X3d 6Ζ.9ΐεθ/6ΪΟΖ OAV
Figure imgf000049_0001
l7S6C00/8l0ZaM/X3d 6Ζ.9ΐεθ/6ΪΟΖ OAV 6
Figure imgf000050_0001
l7S6C00/8l0ZaM/X3d 6Ζ.9ΐεθ/6ΪΟΖ OAV
Figure imgf000051_0001
【청구항 7】
제 1항에 있어서,
Y'는 0, NR', C(CH3)2, 또는 ^° 이고,
여기서, R'는 페닐, 시아노로 치환된 페닐, 비페닐릴, 트리페닐레닐, 사이클로핵실, 디메틸플루오레닐, 또는 디벤조퓨라닐인,
유기 발광 소자.
【청구항 8】
제 1항에 있어서,
L' 및 L''는 단일 결합인,
유기 발광 소자.
【청구항 9】
제 1항에 있어서,
은 페닐, 비페닐릴, 터페닐릴, 트리페닐레닐, 또는 페난트레닐인, 유기 발광 소자.
【청구항 10]
제 1항에 있어서
R'2 및 R' 3은 각각 독립적으로, 수소; 페닐; 시아노로 치환된 페닐; 또는 피리디닐인,
유기 발광 소자.
【청구항 11】
제 1항에 있어서,
상기 화학식 2로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
유기 발광소자:
Figure imgf000053_0001
l7S6C00/8l0ZaM/X3d 6Ζ.9ΐεθ/6ΪΟΖ OAV
Figure imgf000054_0001
l7S6C00/8l0ZaM/X3d 6Ζ.9ΐεθ/6ΪΟΖ OAV
Figure imgf000055_0001
l7S6C00/8l0ZaM/X3d 6Ζ.9ΐεθ/6ΪΟΖ OAV
PCT/KR2018/003954 2017-08-10 2018-04-04 유기 발광 소자 WO2019031679A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880002539.7A CN109661450B (zh) 2017-08-10 2018-04-04 有机发光器件
US16/319,203 US10818848B2 (en) 2017-08-10 2018-04-04 Organic light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170101813A KR101856728B1 (ko) 2017-08-10 2017-08-10 유기 발광 소자
KR10-2017-0101813 2017-08-10

Publications (1)

Publication Number Publication Date
WO2019031679A1 true WO2019031679A1 (ko) 2019-02-14

Family

ID=62184765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003954 WO2019031679A1 (ko) 2017-08-10 2018-04-04 유기 발광 소자

Country Status (4)

Country Link
US (1) US10818848B2 (ko)
KR (1) KR101856728B1 (ko)
CN (1) CN109661450B (ko)
WO (1) WO2019031679A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020169241A1 (de) * 2019-02-18 2020-08-27 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
WO2021089447A1 (de) 2019-11-04 2021-05-14 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021180614A1 (de) 2020-03-11 2021-09-16 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021180625A1 (de) 2020-03-11 2021-09-16 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
US12010912B2 (en) 2018-07-24 2024-06-11 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180108426A (ko) 2017-03-24 2018-10-04 희성소재 (주) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR101915712B1 (ko) * 2017-03-24 2018-11-06 희성소재 (주) 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
US12063855B2 (en) * 2018-03-29 2024-08-13 Duk San Neolux Co., Ltd. Compound for organic electric element, organic electric element using the same, and electronic device therefor
CN111836872B (zh) * 2018-03-29 2023-10-24 德山新勒克斯有限公司 用于有机电气元件的化合物、使用所述化合物的有机电气元件及其电子装置
KR102206482B1 (ko) 2018-04-24 2021-01-22 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
EP3802520A1 (de) * 2018-05-30 2021-04-14 Merck Patent GmbH Zusammensetzung für organische elektronische vorrichtungen
KR102569556B1 (ko) * 2018-06-26 2023-08-23 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 헤테로환 화합물
WO2020022779A1 (ko) * 2018-07-24 2020-01-30 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR102231624B1 (ko) * 2018-09-04 2021-03-24 주식회사 엘지화학 유기 발광 소자
US11807632B2 (en) 2018-10-22 2023-11-07 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same
KR102336599B1 (ko) 2018-11-16 2021-12-07 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자
CN112805278B (zh) * 2019-02-19 2024-08-23 株式会社Lg化学 化合物及包含其的有机发光元件
WO2020222569A1 (ko) * 2019-05-02 2020-11-05 주식회사 엘지화학 유기 발광 소자
EP3832746A4 (en) * 2019-05-02 2021-12-08 LG Chem, Ltd. ORGANIC LIGHT EMITTING DEVICE
KR102424910B1 (ko) * 2019-07-24 2022-07-25 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021015603A1 (ko) * 2019-07-24 2021-01-28 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR102143580B1 (ko) 2019-08-23 2020-08-12 엘티소재주식회사 유기 발광 소자, 이의 제조 방법 및 유기물층용 조성물
CN110452155B (zh) * 2019-08-30 2021-07-06 苏州大学 咔唑类衍生物及其在电致发光器件中的应用
CN113519073B (zh) * 2019-11-11 2024-03-05 株式会社Lg化学 有机发光器件
EP4063359A4 (en) * 2019-11-21 2023-12-06 LT Materials Co., Ltd. HETEROCYCLIC COMPOUND, ORGANIC ELECTROLUMINESCENT DEVICE INCLUDING SAME, COMPOSITION FOR ORGANIC LAYER OF ORGANIC ELECTROLUMINESCENT DEVICE, AND METHOD FOR MANUFACTURING ORGANIC ELECTROLUMINESCENT DEVICE
KR102689558B1 (ko) * 2020-06-30 2024-07-26 삼성에스디아이 주식회사 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
WO2022140878A1 (zh) * 2020-12-28 2022-07-07 京东方科技集团股份有限公司 有机电致发光器件和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160027940A (ko) * 2014-09-02 2016-03-10 주식회사 엘지화학 유기 발광 소자
KR20160028524A (ko) * 2014-05-05 2016-03-11 메르크 파텐트 게엠베하 유기 발광 소자용 재료
US20160093808A1 (en) * 2014-09-29 2016-03-31 Universal Display Corporation Organic electroluminescent materials and devices
KR101614738B1 (ko) * 2015-11-02 2016-04-22 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101744248B1 (ko) * 2016-09-06 2017-06-07 주식회사 엘지화학 유기발광 소자

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (ko) 1999-01-27 2004-05-10 주식회사 엘지화학 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자 및 그의 제조 방법
KR101812581B1 (ko) 2013-10-11 2017-12-27 제일모직 주식회사 유기광전자소자용 유기합화물, 유기 광전자 소자 및 표시 장치
KR102474330B1 (ko) 2014-07-29 2022-12-05 메르크 파텐트 게엠베하 유기 전계발광 소자용 재료
CN112457844B (zh) 2014-12-29 2024-06-25 东进世美肯株式会社 新颖化合物及包含其的有机发光器件
US9406892B2 (en) 2015-01-07 2016-08-02 Universal Display Corporation Organic electroluminescent materials and devices
US11522140B2 (en) 2015-08-17 2022-12-06 Universal Display Corporation Organic electroluminescent materials and devices
JP6754185B2 (ja) 2015-12-10 2020-09-09 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び電子デバイス用有機機能性材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160028524A (ko) * 2014-05-05 2016-03-11 메르크 파텐트 게엠베하 유기 발광 소자용 재료
KR20160027940A (ko) * 2014-09-02 2016-03-10 주식회사 엘지화학 유기 발광 소자
US20160093808A1 (en) * 2014-09-29 2016-03-31 Universal Display Corporation Organic electroluminescent materials and devices
KR101614738B1 (ko) * 2015-11-02 2016-04-22 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101744248B1 (ko) * 2016-09-06 2017-06-07 주식회사 엘지화학 유기발광 소자

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12010912B2 (en) 2018-07-24 2024-06-11 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same
WO2020169241A1 (de) * 2019-02-18 2020-08-27 Merck Patent Gmbh Zusammensetzung für organische elektronische vorrichtungen
JP2022520284A (ja) * 2019-02-18 2022-03-29 メルク パテント ゲーエムベーハー 有機電子デバイス用の組成物
WO2021089447A1 (de) 2019-11-04 2021-05-14 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021180614A1 (de) 2020-03-11 2021-09-16 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung
WO2021180625A1 (de) 2020-03-11 2021-09-16 Merck Patent Gmbh Organische elektrolumineszierende vorrichtung

Also Published As

Publication number Publication date
US20190372012A1 (en) 2019-12-05
US10818848B2 (en) 2020-10-27
KR101856728B1 (ko) 2018-05-10
CN109661450A (zh) 2019-04-19
CN109661450B (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
KR101856728B1 (ko) 유기 발광 소자
KR102134383B1 (ko) 유기 발광 소자
KR20200063053A (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102123015B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2018016898A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR101978453B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR20170116927A (ko) 유기화합물을 포함하는 캡핑층 및 이를 포함한 유기전계발광소자
JP7124260B2 (ja) 有機金属化合物およびこれを含む有機発光素子
KR20190079571A (ko) 유기 발광 소자
JP7187752B2 (ja) 新規な化合物およびこれを利用した有機発光素子
KR102342781B1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102101476B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR102160653B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
JP2021535915A (ja) 新規なヘテロ環化合物およびこれを利用した有機発光素子
KR20200035905A (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR20210034528A (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
KR102069310B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
WO2018190522A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
KR102032954B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
CN112334472A (zh) 新型化合物及包含其的有机发光器件
KR102298596B1 (ko) 유기 발광 소자
KR102288990B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2019004612A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
WO2018101691A1 (ko) 유기 발광 소자
KR102121433B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18844613

Country of ref document: EP

Kind code of ref document: A1