WO2019031355A1 - Backlight unit and electronic device - Google Patents

Backlight unit and electronic device Download PDF

Info

Publication number
WO2019031355A1
WO2019031355A1 PCT/JP2018/028877 JP2018028877W WO2019031355A1 WO 2019031355 A1 WO2019031355 A1 WO 2019031355A1 JP 2018028877 W JP2018028877 W JP 2018028877W WO 2019031355 A1 WO2019031355 A1 WO 2019031355A1
Authority
WO
WIPO (PCT)
Prior art keywords
constant current
led
backlight unit
circuit
voltage generation
Prior art date
Application number
PCT/JP2018/028877
Other languages
French (fr)
Japanese (ja)
Inventor
齊藤 浩二
森 泰樹
正樹 植畑
和也 近藤
一久 吉本
晃祐 川本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2019031355A1 publication Critical patent/WO2019031355A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/508Cooling arrangements characterised by the adaptation for cooling of specific components of electrical circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Definitions

  • the present invention relates to a backlight unit and an electronic device.
  • a liquid crystal module (LCM: Liquid Crystal Module) 204 of a conventional laptop PC (Personal Computer: personal computer) 201 includes a backlight unit 202, a display control substrate 203, and a liquid crystal panel (not shown). including.
  • a plurality of LEDs 210, a flexible printed circuit (FPC) 207 on which a plurality of LEDs 210 are mounted, and a light guide plate 206 are stored in a bezel 205.
  • the display control board 203 includes a plurality of LED driver ICs (Integrated Circuits) 240, a power supply IC 251, a Tcon (Timing Controller: Timing Controller) 252, and an EEPROM (Electrically Erasable Programmable Read-Only Memory: A non-volatile memory 253 such as a trademark) and an input connector 254 are provided.
  • the light emitted from the plurality of LEDs 210 enters the light guide plate 206 from one side surface of the light guide plate 206, emits from the main surface of the light guide plate 206 out of the light guide plate 206, and illuminates a liquid crystal panel (not shown).
  • the backlight unit 202 has three LED arrays 212.
  • an LED string 211 is configured by connecting eight LEDs 210 in series, and four LED strings 211 are configured in parallel.
  • the LED driver IC 240 is provided in one-to-one correspondence with the LED array 212.
  • the LED driver IC 240 includes, in the LED array 212, the channels ch201 to ch204 to which the cathodes of the LED rows 211 are connected, the constant current circuit 220 for supplying a constant current to each LED row 211, and the anodes of the LED rows 211. And a booster circuit 230 for generating a voltage to be supplied.
  • the LED driver IC 240 is connected between the coil 232 and the anode of the diode 231, and the cathode of the diode 231 is connected to the anode of each LED row 211.
  • the boosting circuit 230 of the LED driver IC 240, the coil 232, and the diode 231 constitute a boosting circuit block 233 that supplies a boosted voltage to the anode of each LED string 211.
  • the backlight unit 202 needs to be a direct light type, not a side light type.
  • Patent Document 1 discloses a direct type backlight unit.
  • the direct type backlight unit has more LEDs.
  • the number of LED driver ICs 240 provided corresponding to the LED arrays 212 and in which the constant current circuit 220 and the booster circuit 230 are integrated also increases.
  • the area of the display control board 203 shown in FIG. 17 also needs to be increased.
  • the Y dimension Y200 of the liquid crystal module which is the length to the opposite side) also becomes large.
  • An object of one embodiment of the present invention is to obtain a direct-type backlight unit while suppressing an increase in size of a display control substrate.
  • a back light unit concerning one mode of the present invention is a direct-back type back light unit, and a substrate and a plurality of LED arranged on the above-mentioned substrate were connected Or a plurality of LED arrays, and one or more constant current ICs provided on the base material corresponding to the LED arrays and supplying constant current to the LEDs included in the LED arrays, the LED array comprising A plurality of LED strings including a plurality of LEDs connected in series, and the constant current IC includes a plurality of constant current circuits connected to each of the plurality of LED strings.
  • FIG. 2 is a cross-sectional view illustrating the configuration of the electronic device according to the first embodiment.
  • FIG. 2 is a plan view illustrating a configuration of a liquid crystal module of Embodiment 1.
  • FIG. 6 is a plan view illustrating a configuration of a backlight unit and a display control board in the electronic device of Embodiment 1.
  • FIG. 2 is a diagram illustrating a circuit of a backlight unit and a voltage generation circuit block in the electronic device of Embodiment 1.
  • FIG. 2 is a diagram illustrating a configuration of a constant current IC of Embodiment 1.
  • FIG. 7 is a diagram illustrating a configuration in which a voltage generation IC is provided on a main control substrate in the electronic device of Embodiment 1.
  • FIG. 7 is a diagram illustrating a configuration of an electronic device of a second embodiment.
  • FIG. 7 is a diagram illustrating a configuration of an electronic device of a third embodiment.
  • FIG. 7 is a circuit diagram of a backlight unit and an LED driver according to a first comparative example. It is a figure showing the composition of the electronic equipment of the 2nd comparative example. It is a figure showing the composition of the liquid crystal module of the conventional notebook PC. It is a circuit diagram of a backlight unit and an LED driver in a conventional notebook PC.
  • FIG. 6 is a diagram for explaining the operation of the voltage generation circuit block of the first embodiment. It is a figure showing the voltage in the voltage generation circuit block of FIG. It is sectional drawing showing the structure of the liquid crystal module for televisions.
  • first comparative example and the second comparative example As in the conventional side light type backlight module shown in FIGS. 17 and 18, a constant current circuit and a booster circuit are integrally provided for each LED array. It is a liquid crystal module having a direct type backlight module provided with an LED driver IC.
  • FIG. 14 is a diagram illustrating the configuration of the electronic device 101 of the first comparative example.
  • the liquid crystal module 104 of the electronic device 101 such as a notebook PC includes a backlight unit 102, a display control substrate 103, and a liquid crystal panel (not shown).
  • a bezel 105 stores a plurality of LEDs 110, a base material 107 such as an FPC on which the plurality of LEDs 110 are mounted, and a diffusion plate 106.
  • the plurality of LEDs 110 are provided in a matrix on the base material 107, and a diffusion plate 106 is provided to cover the plurality of LEDs 110.
  • the display control board 103 is provided with a plurality of LED driver ICs 140, a power source IC 151, a Tcon 152, a nonvolatile memory 153 such as an EEPROM, an input connector 154 and the like.
  • the light emitted from the plurality of LEDs 110 enters the diffusion plate 106 from the back surface of the diffusion plate 106, exits from the main surface of the diffusion plate 106 to the outside of the diffusion plate 106, and illuminates a liquid crystal panel (not shown).
  • FIG. 15 is a circuit diagram of a backlight unit and an LED driver according to a first comparative example.
  • the backlight unit 102 has eight LED arrays 112.
  • an LED string 111 is configured by connecting four LEDs 110 in series, and sixteen LED strings 111 are configured in parallel.
  • the LED driver IC 140 is provided in one-to-one correspondence with the LED array 112. That is, eight LED driver ICs 140 are also provided.
  • the LED driver IC 140 includes the channels ch101 to ch116 to which the cathode of each LED array 111 is connected in the LED array 112, the constant current circuit 120 for supplying a constant current to each LED array 111, and the anode of each LED array 111. And a booster circuit 130 for generating a voltage to be supplied.
  • the LED driver IC 140 is connected between the coil 132 and the anode of the diode 131, and the cathode of the diode 131 is connected to the anode of each LED string 111.
  • the boosting circuit 130 of the LED driver IC 140, the coil 132, and the diode 131 constitute a boosting circuit block 133 that supplies a boosted voltage to the anode of each LED array 111.
  • the area of the display control board 103 needs to be greatly enlarged.
  • the lower side of the display control board 103 (the side facing the backlight unit 102) from the upper side of the backlight unit 102 (the side opposite to the side facing the display control board 103).
  • the Y dimension Y100 of the liquid crystal module which is the length to the side opposite to
  • FIG. 16 is a diagram illustrating the configuration of the electronic device 101A of the second comparative example.
  • the electronic device 101A is provided not on the display control substrate 103 but on the base 107 so as to be adjacent to one side surface of the diffusion plate 106 instead of providing the eight LED drivers 140.
  • the circuit configuration of the backlight unit and the LED driver of the electronic device 101A is the same as the circuit configuration of the backlight unit and the LED driver shown in FIG.
  • the lower side of the display control board 103 (the side facing the backlight unit 102) and the upper side of the backlight unit 102 (the side opposite to the side facing the display control board 103)
  • the Y dimension Y100A of the liquid crystal module which is the length to the opposite side) does not increase, and can be approximately the same as the Y dimension Y200 of the liquid crystal module shown in FIG.
  • the area of the backlight unit 102 is increased, or Alternatively, when provided on both the front and back sides of the base material 107, the thickness of the backlight unit 102 becomes thick.
  • the eight LED drivers 140 and the peripheral circuits including the eight coils 132 and the diodes 131 corresponding to them are not provided on both the front and back sides of the substrate 107
  • the peripheral circuit including the coil 132 and the diode 131 corresponding to a part of the LED driver 140 among the eight LED drivers 140 can not be provided on the base material 107, and must be provided on the display control substrate 103. .
  • the coil 132 and the diode 131 corresponding to a part of the LED driver 140 among the eight LED drivers 140 are provided on the display control board 103, and the coil 132 and the diode corresponding to the other part LED driver 140
  • the substrate 131 is provided on the substrate 7
  • the electrical characteristics between the LED drivers 140 change, and the luminance of each LED array 112 can not be controlled with high accuracy.
  • FIG. 1 is a cross-sectional view illustrating the configuration of the electronic device 1 according to the first embodiment.
  • the electronic device 1 is various electronic devices having a display area of an image.
  • the electronic device 1 may be a television, but is preferably a mobile electronic device such as a notebook PC, a tablet terminal, a mobile phone terminal or the like.
  • the electronic device 1 will be described as being a notebook PC.
  • the electronic device 1 includes a liquid crystal module 4, a main control substrate 9 which is a mother board, and a bezel 5 (see FIG. 2) for storing a backlight unit of the liquid crystal module 4.
  • the main control board 9 comprehensively controls the operation of the electronic device 1.
  • the main control board 9 is made of resin, metal or the like, and various circuits are provided.
  • the liquid crystal module 4 includes a liquid crystal panel 8, a backlight unit 2, and a display control substrate 3.
  • the backlight unit 2 is disposed on the back side of the liquid crystal panel 8 and illuminates the liquid crystal panel 8 from the back side.
  • the liquid crystal panel 8 is configured such that a TFT substrate provided with TFT elements (Thin Film Transistors) for each pixel and a counter substrate face each other with a liquid crystal layer interposed.
  • TFT elements Thin Film Transistors
  • the display control board 3 controls the driving of the backlight unit 2 and the liquid crystal panel 8 by outputting a drive signal to the backlight unit 2 and the liquid crystal panel 8 according to an instruction from the main control board 9.
  • the display control board 3 is made of resin, metal or the like, and various circuits are mounted.
  • FIG. 2 is a plan view showing the configuration of the liquid crystal module 4 of the first embodiment.
  • the liquid crystal panel 8 has a display area 81 in which pixels are arranged in a matrix and displays an image, and a frame area 4 a which is an area around the display area 81.
  • the frame area 4 a is an area from the edge of the display area 81 to the outermost edge of the backlight unit 2 or the liquid crystal panel 8.
  • the frame area 4 a refers to an area from the edge of the display area 81 to the edge of the bezel 5 (that is, the edge of the backlight unit 2).
  • an area above the display area 81 is referred to as an upper frame 4aT
  • an area below the display area 81 is referred to as a lower frame 4aD
  • an area to the right of the display area 81 is right
  • the area to the left of the display area 81 is referred to as a left frame 4aL.
  • a landscape type is generally adopted in liquid crystal modules for notebook PCs.
  • the mounting area of the source driver SD is secured in the lower frame 4aD of the liquid crystal module 4, and the display control substrate 3 is disposed outside the lower frame 4aD.
  • a region outside the display area 81 may be referred to as a panel frame. Further, which of the backlight unit 2 and the liquid crystal panel 8 is the outermost edge varies depending on the application of the liquid crystal module 4.
  • FIG. 3 is a plan view showing the configuration of the backlight unit 2 and the display control board 3 in the electronic device 1 of the first embodiment.
  • the liquid crystal panel 8 of the liquid crystal module 4 is not shown.
  • the backlight unit 2 is a direct type backlight unit, and can emit light by the local dimming method.
  • the backlight unit 2 includes a substrate 7, a plurality of LEDs 10 (light emitting elements) mounted on the substrate 7, a diffusion plate 6 provided on the plurality of LEDs 10, and a plurality of substrates mounted on the substrate 7. It includes a current IC and a bezel 5 that houses the base 7 and the diffusion plate 6.
  • the substrate 7 is, for example, an FPC.
  • the base 7 is not limited to the FPC, and may be a substrate or the like made of a material such as resin or metal.
  • the display control substrate 3 is electrically connected to the base 7, and outputs various signals to the backlight unit 2 and the liquid crystal panel 8 through the connection portion.
  • the display control board 3 is provided with a power supply IC 51, a Tcon 52, a non-volatile memory 53 such as an EEPROM, an input connector 54 and the like. Furthermore, the display control board 3 is provided with one or more voltage generation circuit blocks 33 for supplying a desired voltage to the LED 10.
  • the voltage generation circuit block 33 includes a voltage generation IC 30, a diode 31 and a coil 32.
  • the voltage generation IC 30 may include the function of the diode 31. In this case, the diode 31 is unnecessary.
  • FIG. 4 is a diagram showing a circuit of the backlight unit 2 and the voltage generation circuit block 33 in the electronic device 1 of the first embodiment.
  • the backlight unit 2 includes one or more LED arrays 12 and one or more constant current ICs 20 for supplying a constant current to the LEDs 10.
  • the LED array 12 is connected in series to one voltage generation circuit block 33.
  • a voltage generation IC 30 for generating a voltage to be supplied to the anode of the LED 10 is connected between the anode of the diode 31 and the coil 32.
  • the voltage generation IC 30 is provided on the display control substrate 3 which is a substrate different from the substrate 7 on which the constant current IC 20 is provided.
  • the voltage generation IC 30 includes a boost circuit, a step-down circuit or a step-up / step-down circuit for supplying a desired current to the LED 10.
  • each LED array 12 is configured by connecting in parallel a plurality of LED strings 11 connected in series.
  • the LED array 11 is configured by connecting four LEDs 10 in series
  • each LED array 12 is configured by connecting 16 LED arrays 11 in parallel.
  • eight LED arrays 12 are provided side by side.
  • the anodes of the LED arrays 11 are configured by connecting the anodes of the LED arrays 11 to each other.
  • the anode of each LED array 12 is connected to the cathode of the diode 31.
  • the constant current IC 20 is provided to the LED array 12 in a one-to-one correspondence.
  • eight LED arrays 12 are provided, so eight constant current ICs 20 are also provided.
  • FIG. 5 is a diagram illustrating the configuration of the constant current IC 20 according to the first embodiment.
  • the constant current IC 20 has a control signal input circuit 21, a constant current circuit block control circuit 22 (constant current control circuit), a plurality of constant current circuits C1 to C16, and a plurality of channels ch1 to ch16.
  • each LED row 11 is connected to each of the channels ch1 to ch16.
  • the constant current circuits C1 to C16 are provided corresponding to the channels ch1 to ch16 (in other words, corresponding to the respective LED columns 11). Constant current circuits C1 to C16 are connected to the channels ch1 to ch16, respectively. The constant current circuits C1 to C16 are circuits for causing a constant current to flow in each LED row 11.
  • the control signal input circuit 21 is an interface input circuit that receives an input of a control signal.
  • the control signal input circuit 21 obtains a control signal such as SCS, SCLK, or SDI from the control circuit provided on the display control board 3, the control signal input circuit 21 outputs an instruction signal to the constant current circuit block control circuit 22 based on the control signal. Do.
  • the constant current circuit block control circuit 22 individually controls the current supplied to each of the constant current circuits C1 to C16 based on the control signal acquired from the control signal input circuit 21. In other words, the current supplied to each LED row 11 is controlled for each LED row 11. In this way, local dimming can be performed to adjust the luminance for each of the LED rows 11.
  • the constant current IC 20 can be configured to access using, for example, an interface standard such as SPI (Serial Peripheral Interface).
  • SPI Serial Peripheral Interface
  • the interface standard for accessing the constant current IC 20 is arbitrary, and is not limited to SPI.
  • a voltage supplied to the anode of each LED array 11 according to the current flowing in the constant current circuits C1 to C16 (that is, the current flowing in each LED array 11) between each constant current IC 20 and the voltage generation IC 30 A control circuit may be provided which outputs a voltage adjustment signal for adjusting the voltage to the voltage generation IC 30.
  • the voltage generation IC 30 can adjust the voltage supplied to each of the LED rows 11 to increase the luminous efficiency of each LED 10.
  • FIG. 19 is a diagram for explaining the operation of the voltage generation circuit block 33.
  • FIG. 20 is a diagram showing voltages in the voltage generation circuit block 33 of FIG.
  • the voltage generation IC 30 of the voltage generation circuit block 33 is a boost IC.
  • the configuration and operation of the voltage circuit block 33 shown in FIGS. 19 and 20 are an example, and other aspects can be adopted.
  • the voltage generation circuit block 33 further includes a first capacitance Cin on the input side disposed upstream of the coil 32 and a second capacitance Cout on the output side connected to the cathode of the diode 31.
  • the voltage generation IC 30 has a switch 30 a connected between the coil 32 and the diode 31.
  • the voltage on the input side of the voltage generation circuit block 33 is a voltage vin
  • the voltage on the output side (the side connected to the backlight unit 2) is a voltage Vout.
  • FIG. 6 is a cross-sectional view of the backlight unit 2 of the first embodiment.
  • the base material 7 is arrange
  • the diffusion plate 6 is provided above the plurality of LEDs 10 so as not to overlap with the constant current IC 20.
  • the base 7 on which the constant current IC 20 and the plurality of LEDs 10 are mounted is the bezel 5 in which the back surface which is the surface opposite to the mounting surface of the constant current IC 20 and the plurality of LEDs 10 is made of metal.
  • the heat generated from the constant current IC 20 and the plurality of LEDs 10 can be dissipated to the bezel 5 through the base 7. Therefore, the heat dissipation efficiency can be increased.
  • the constant current IC 20 and the plurality of LEDs 10 may be mounted directly on the surface of the bezel 5 instead of on the substrate 7. According to this, since the heat generated from the constant current IC 20 and the plurality of LEDs 10 is directly dissipated to the bezel 5, it is possible to further enhance the radiation efficiency.
  • FIG. 21 is a cross-sectional view showing a configuration of a liquid crystal module 304 for television.
  • the liquid crystal module 304 has a direct type backlight unit in which the FPC 307 on which the LED array 12 is mounted and the diffusion plate 6 disposed above the LED array 12 are stored in the bezel 305. Further, the side wall of the bezel 505 in the lower frame is inclined, and the outer surface of the side wall of the inclined bezel 505 (the surface opposite to the side on which the diffusion plate 6, the LED array 12 and the FPC 307 are stored) A display control board 303 on which an LED driver IC 340, a coil 332 and the like are mounted is disposed.
  • the display control substrate 303 on which the LED driver IC 340, the coil 332, and the like are mounted can be disposed on the outer surface of the side wall of the inclined bezel 505.
  • the said structure since a certain amount of thickness is required, it can not apply to the liquid crystal module for manufacturing a notebook PC with severe thickness restrictions.
  • FIG. 7 is a diagram showing the configuration of a display control board used in a conventional notebook PC.
  • FIG. 8 is an enlarged view of a part of the display control board of FIG.
  • the display control board 203 is provided with a connector 250, an LED driver IC 240, a diode 231 and a coil 232.
  • An FPC 207 extending from the backlight unit 202 to the display control board 203 is connected to the connector 250.
  • the number of pins of the connector 250 is ten, and the coil 232 has a size of 4 mm ⁇ 4 mm and a thickness of about 1.2 mm.
  • the width Y 203 of the display control board 203 is about 8 mm.
  • an area including a part of the LED driver IC 240 (a part including the constant current circuit 220) and the peripheral circuit is a constant current circuit block 229.
  • a region including another part of the LED driver IC 240 (a portion including the booster circuit 230) and a peripheral circuit having the diode 231 and the coil 232 is a booster circuit block 233.
  • the peripheral circuits of the constant current circuit block 229 and the peripheral circuits of the booster circuit block 233 shown in FIG. 8 are merely examples, and differ depending on the type and application of the liquid crystal module.
  • the peripheral circuits of the booster circuit block 233 require a larger number of circuit components than the peripheral circuits of the constant current circuit block 229.
  • the diode 231 and the coil 232 included in the peripheral circuit of the booster circuit block 233 have a large area compared with other circuit components, and further, the vicinity of another part of the LED driver IC 240 (part including the booster circuit 230). Need to be
  • the display control board 203 Assuming that a large number of sets of the booster circuit block 233 and the constant current circuit block 229 are provided on the display control board 203 as the number of LEDs to be controlled increases, the display control board 203 is increased in width Y203, etc. The area of the substrate 203 needs to be increased.
  • booster circuit blocks 233 having this large area are provided in the backlight unit 202, it is necessary to greatly enlarge the lower frame of the backlight unit 202 or to greatly expand the thickness of the backlight unit 202. There is. Alternatively, it is necessary to provide the display control substrate 203 with the diodes 231 and the coils 232 included in the peripheral circuits of some of the plurality of booster circuit blocks 233 among the plurality of booster circuit blocks 233.
  • the constant current circuit block 229 has a smaller area than the booster circuit block 233.
  • the backlight unit 2 of the present embodiment corresponds to the substrate 7, the plurality of LED arrays 12 disposed on the substrate 7, and the respective LED arrays 12.
  • a plurality of constant current ICs provided on the substrate 7 are provided.
  • Each constant current IC includes a plurality of constant current circuits C1 to C16 connected to the cathodes of the respective LED strings of the corresponding LED array 12.
  • constant current circuits C 1 to C 16 for supplying a constant current to the respective LED strings 11 included in the LED array 12 are collectively provided in the constant current IC 20.
  • the constant current circuit is provided on the substrate 7.
  • the display control board 3 is provided with a voltage generation circuit block 33 for supplying a desired voltage to the anode of each LED row of the LED array 12.
  • the area of the display control board is increased compared to the case where the LED driver in which the constant current circuit and the booster circuit are integrated as shown in FIGS. 17 and 18 are provided on the display control board. It can be suppressed. That is, according to the above configuration, it is possible to configure the direct type backlight unit 2 while suppressing an increase in the area of the display control substrate 3.
  • the backlight unit 2 is a direct type backlight unit not provided with the voltage generation circuit.
  • the heat generation source can be dispersed, so that heat generation can also be suppressed.
  • the voltage generation circuit has a larger power loss than a constant current circuit, and thereby generates a large amount of heat.
  • GND can be sufficiently obtained, and power loss can be reduced.
  • relatively large circuit parts can be selected for the size and thickness of the current generating circuit and peripheral circuits, so the boosting efficiency is improved. Also, heat generation can be reduced.
  • the maximum thickness of the circuit component in the case of being provided on a display control substrate for a television is about 12 mm
  • the maximum thickness of the circuit component in the case of being provided on a display control substrate for a notebook PC is about 1.2 mm
  • the maximum thickness of the circuit component in the case of being provided on the FPC of the notebook PC is about 0.9 mm.
  • the number of pins of the connector is considered.
  • the number of pins of the connector is designed to be about 10 to 16.
  • the number of pins of the connector 250 shown in FIGS. 7 and 8 is ten, of which two are connected to the anodes of the plurality of LED arrays 12 and six are connected to the cathodes of the LED array 12.
  • 2 is NC (No Connection: not connected).
  • the liquid crystal module 4 for example, it is assumed that one screen is divided into 128 and local dimming is performed, and the one screen is driven by eight 16ch constant current ICs and two voltage generation ICs.
  • the number of pins is 2 for anode, 4 for GND, 1 for logic power supply, 4 for SPI, 1 for EN and 2 for NC, the total number of pins is 16 It will be enough.
  • the installation area of the connector for connecting the FPC provided on the display control substrate can be reduced.
  • the number of voltage generation ICs 30 is smaller than the number of constant current ICs 20.
  • the LED driver IC 240 When the LED driver IC 240 is provided outside the backlight unit 202 as shown in FIGS. 17 and 18, since the booster circuit and the constant current circuit are integrated, the booster circuit and the constant current circuit are fixed in the liquid crystal module. The same number of current circuits were present.
  • the voltage generation IC 30 can be smaller than the constant current circuits C1 to C16. . Furthermore, the voltage generation IC 30 can be less than the constant current IC 20. This can reduce the cost.
  • the load on the voltage generation IC 30 can also be reduced. Therefore, it is possible to drive more constant current ICs (that is, each LED controlled by the constant current IC) with less voltage generation IC.
  • one or more voltage generation ICs 30 may be provided not on the display control board 3 but on the main control board 9.
  • FIG. 10 is a diagram illustrating the configuration of the electronic device 1 of the second embodiment.
  • the number of voltage generation ICs 30 may be an integer (but one or more) of the number of constant current ICs 20.
  • FIG. 10 shows an example in which two voltage generation ICs 30 that are one fourth of the eight constant current ICs 20 are provided.
  • the load of the voltage generation IC 30 can be equally divided by setting the number of voltage generation ICs 30 to be an integral number (but one or more) of the number of constant current ICs 20. Therefore, the peripheral circuits included in the voltage generation IC 30 As a result, it is possible to select an optimal and inexpensive peripheral circuit.
  • FIG. 11 is a diagram illustrating the configuration of the electronic device 1 of the third embodiment.
  • FIG. 12 is a diagram illustrating configurations of a constant current IC 20 and a voltage generation IC 30 included in the electronic device 1 of the third embodiment.
  • FIG. 13 is a diagram showing how a plurality of constant current ICs are connected in parallel to a voltage generation IC.
  • two circuits including two constant current ICs 20 and one voltage generation IC 30 are provided.
  • the number of the constant current IC 20, the voltage generation IC 30, and the circuit including them is not limited to the number shown in FIG.
  • the constant current IC 20 includes, in addition to the constant current circuits C1 to C16 and the channels ch1 to ch16, the channels ch17 to ch20, the abnormality detection circuit 24, and the abnormality condition notification signal input circuit 25. And an abnormal condition notification signal output circuit 26.
  • the constant current IC 20 may include the constant current circuit block control circuit 22 and the control signal input circuit 21 shown in FIG.
  • the abnormal state notification signal input circuit 25 is connected to the channel ch17 and the channel ch18.
  • the abnormal state notification signal output circuit 26 is connected to the channel ch19 and the channel ch20.
  • the abnormality detection circuit 24 detects an abnormal state of the constant current circuits C1 to C16 by monitoring each of the constant current circuits C1 to C16.
  • the abnormal state is, for example, an abnormal current, an abnormal voltage, or an abnormal temperature.
  • the abnormality detection circuit 24 monitors the current flowing in each of the constant current circuits C1 to C16, compares it with a predetermined upper limit current value set in advance, and compares it with the upper limit current value. If it is large, it is judged as an abnormal current.
  • the channel ch20 of the first stage constant current IC20 is connected to the channel ch17 of the second stage constant current IC20.
  • the channel ch 20 of the second stage constant current IC 20 is connected to the voltage generation IC 30.
  • the channel ch19 of the first stage constant current IC20 is connected to the channel ch18 of the second stage constant current IC20.
  • the channel ch19 of the second stage constant current IC 20 is connected to the voltage generation IC 30.
  • the abnormal state detection circuit 24 When the abnormal state detection circuit 24 detects an abnormal state of any of the constant current circuits C1 to C16, it outputs an abnormal state notification signal DATA, which is a signal notifying an abnormal state, to the abnormal state notification signal output circuit 26.
  • an abnormal state notification signal DATA which is a signal notifying an abnormal state
  • the abnormality detection circuit 24 of the first stage constant current IC 20 detects an abnormal state of any of the constant current circuits C1 to C16, it outputs an abnormal state notification signal DATA to the abnormal state notification signal output circuit 26. .
  • the abnormal state notification signal output circuit 26 of the first stage constant current IC 20 outputs the abnormal state notification signal DATA from the channel ch 19 and outputs the clock signal CLK from the channel ch 20.
  • the abnormal condition notification signal DATA output from the channel ch19 of the first stage constant current IC20 is input to the abnormal condition notification signal input circuit 25 of the second stage constant current IC20 through the channel ch18
  • the clock signal CLK output from the channel ch20 of the first stage constant current IC20 is input to the abnormal state notification signal input circuit 25 of the second stage constant current IC20 through the channel ch17.
  • the abnormal state notification signal input circuit 25 of the second stage constant current IC 20 outputs the abnormal state notification signal DATA and the clock signal CLK inputted thereto to the abnormal state notification signal output circuit 26 of the second stage constant current IC 20. Output to
  • the abnormal state notification signal output circuit 26 of the second stage constant current IC 20 outputs the input abnormal state notification signal DATA from the channel ch 19 and outputs the clock signal CLK from the channel ch 20.
  • both the abnormal state notification signal DATA output from the channel ch19 of the second stage constant current IC20 and the clock signal CLK output from the channel ch20 of the second stage constant current IC20 are abnormal state notification signal receiving circuits. It is input to 35.
  • the abnormal condition notification signal receiving circuit 35 outputs the input abnormal condition notification signal DATA and the clock signal CLK to the voltage generation operation control circuit 36.
  • the voltage generation IC stops the generation of the voltage. Thereby, the voltage supplied to the anode of each LED array 12 is also stopped, and each LED array 12 is turned off. That is, the current flowing in the constant current circuits C1 to C16 of the first and second stage constant current ICs 20 is also stopped.
  • a path in which the channel ch19 of the first stage constant current IC20 and the channel ch18 of the second stage constant current IC20 are connected, and the channel ch19 of the second stage constant current IC20 and the voltage generation IC 30 are connected Is a path for transmitting and receiving an abnormal state notification signal which is a signal notifying an abnormal state.
  • the area allocated for installing a connector for connecting the FPC and the display control board is very small, and it is necessary to reduce the number of pins of the connector.
  • the path which transmits / receives an abnormal condition notification signal which is a signal which notifies an abnormal condition among a plurality of constant current IC20 and voltage generation IC30 is connected in series.
  • an abnormal condition notification signal which is a signal which notifies an abnormal condition among a plurality of constant current IC20 and voltage generation IC30
  • the number of wires can be reduced by connecting in series a path for transmitting and receiving an abnormal state notification signal which is a signal notifying an abnormal state between the plurality of constant current ICs 20 and the voltage generation IC 30.
  • a backlight unit is a direct-type backlight unit, comprising: a substrate; and one or more LED arrays to which a plurality of LEDs disposed on the substrate are connected; And one or more constant current ICs for supplying constant current to the LEDs included in the LED array corresponding to the array, and the LED array includes a plurality of LEDs connected in series.
  • the constant current IC includes a plurality of constant current circuits connected to each of the plurality of LED strings.
  • a plurality of constant current circuits for supplying a constant current to the plurality of LED rows included in the LED array are collectively provided in the constant current IC. Therefore, among the constant current IC and the circuit for supplying a desired voltage to the anodes of the plurality of LED strings, the constant current IC is provided on the base material and desired for the anodes of the plurality of LED strings.
  • the circuit for supplying the voltage V.sub.2 can be provided on another substrate different from the above substrate.
  • the constant current IC is a control signal input circuit that acquires a control signal input to the constant current IC, and an instruction from the control signal input circuit And a constant current control circuit for adjusting the current flowing from each of the LED rows to each of the constant current circuits based on a signal. According to the above configuration, it is possible to adjust the current flowing for each of the LED strings in the LED array. Thereby, the brightness can be adjusted for each of the LED rows in the LED array.
  • the backlight unit, the display control substrate, and the display control substrate are disposed, and include a voltage generation IC and peripheral circuit components And a voltage generation circuit block for supplying a voltage to the anodes of the columns.
  • the number of the voltage generation ICs may be smaller than the number of the constant current ICs. This can reduce the cost.
  • the number of voltage generation ICs may be an integer (but one or more) of the number of the constant current ICs. According to the above configuration, since loads of a plurality of voltage generation ICs can be equally divided, it is possible to select an optimal and inexpensive peripheral circuit as a peripheral circuit included in the voltage generation IC.
  • the plurality of constant current ICs and the voltage generation IC connect in series a path for transmitting and receiving an abnormal state notification signal which is a signal notifying an abnormal state. It may be done. According to the above configuration, the number of wires can be reduced.
  • the backlight unit stores the base material, the one or more LED arrays, and the one or more constant current ICs
  • the bezel is in contact with a surface of the base opposite to the side on which the one or more LED arrays and the one or more constant current ICs are disposed in the base.
  • the backlight unit stores the one or more LED arrays and the one or more constant current ICs, and is made of metal.
  • a bezel may be provided, and the substrate may be part of the bezel.
  • the heat radiation efficiency can be increased.

Abstract

According to the present invention, a direct backlight unit is obtained, while suppressing increase in the size of a display control substrate. A direct backlight unit (2) according to the present invention is configured such that a constant current IC (20) having a plurality of constant current circuits (C1-C16) is provided on a substrate (7) which is provided with an LED (10).

Description

バックライトユニット及び電子機器Backlight unit and electronic device
 本発明はバックライトユニット及び電子機器に関する。 The present invention relates to a backlight unit and an electronic device.
 図17に示すように、従来のノート型PC(Personal Computer:パーソナルコンピューター)201の液晶モジュール(LCM:Liquid Crystal Module)204は、バックライトユニット202と、表示制御基板203と、図示しない液晶パネルとを含む。 As shown in FIG. 17, a liquid crystal module (LCM: Liquid Crystal Module) 204 of a conventional laptop PC (Personal Computer: personal computer) 201 includes a backlight unit 202, a display control substrate 203, and a liquid crystal panel (not shown). including.
 サイドライト型のバックライトユニット202は、ベゼル205に、複数のLED210と、複数のLED210が搭載されたFPC(Flexible Printed Circuits:フレキシブルプリント回路基板)207と、導光板206とが格納されている。 In the side light type backlight unit 202, a plurality of LEDs 210, a flexible printed circuit (FPC) 207 on which a plurality of LEDs 210 are mounted, and a light guide plate 206 are stored in a bezel 205.
 表示制御基板203には、複数のLEDドライバIC(Integrated Circuit:集積回路)240と、電源IC251と、Tcon(Timing Controller:タイミング・コントローラー)252と、EEPROM(Electrically Erasable Programmable Read-Only Memory:(登録商標))等の不揮発性メモリ253と、入力コネクタ254等が設けられている。 The display control board 203 includes a plurality of LED driver ICs (Integrated Circuits) 240, a power supply IC 251, a Tcon (Timing Controller: Timing Controller) 252, and an EEPROM (Electrically Erasable Programmable Read-Only Memory: A non-volatile memory 253 such as a trademark) and an input connector 254 are provided.
 複数のLED210から出射した光は導光板206の一側面から導光板206内に進入し、導光板206の主面から導光板206外へ出射し、液晶パネル(不図示)を照明する。 The light emitted from the plurality of LEDs 210 enters the light guide plate 206 from one side surface of the light guide plate 206, emits from the main surface of the light guide plate 206 out of the light guide plate 206, and illuminates a liquid crystal panel (not shown).
 図18に示すように、バックライトユニット202は3個のLEDアレイ212を有する。各LEDアレイ212は、8個のLED210が直列に接続されることでLED列211が構成され、そのLED列211が4個並列に並んで構成されている。 As shown in FIG. 18, the backlight unit 202 has three LED arrays 212. In each LED array 212, an LED string 211 is configured by connecting eight LEDs 210 in series, and four LED strings 211 are configured in parallel.
 LEDドライバIC240は、LEDアレイ212と一対一対応で設けられている。LEDドライバIC240は、LEDアレイ212における、各LED列211のカソードが接続されるチャネルch201~ch204と、各LED列211に定電流を流すための定電流回路220と、各LED列211のアノードに供給する電圧を生成する昇圧回路230とを有する。 The LED driver IC 240 is provided in one-to-one correspondence with the LED array 212. The LED driver IC 240 includes, in the LED array 212, the channels ch201 to ch204 to which the cathodes of the LED rows 211 are connected, the constant current circuit 220 for supplying a constant current to each LED row 211, and the anodes of the LED rows 211. And a booster circuit 230 for generating a voltage to be supplied.
 コイル232とダイオード231のアノードとの間にLEDドライバIC240が接続され、ダイオード231のカソードは、各LED列211のアノードと接続されている。 The LED driver IC 240 is connected between the coil 232 and the anode of the diode 231, and the cathode of the diode 231 is connected to the anode of each LED row 211.
 LEDドライバIC240の昇圧回路230と、コイル232と、ダイオード231とで、各LED列211のアノードに昇圧した電圧を供給する昇圧回路ブロック233を構成している。 The boosting circuit 230 of the LED driver IC 240, the coil 232, and the diode 231 constitute a boosting circuit block 233 that supplies a boosted voltage to the anode of each LED string 211.
 また、近年、ノート型PC等のモバイル型の電子機器においても、テレビと同様に画質の高品質化が要求されており、バックライトモジュールをローカルディミング(領域毎に発光)させる方式が要求されている。ローカルディミング方式にて発光させるには、バックライトユニット202をサイドライト型ではなく、直下型の構成にする必要がある。 Also, in recent years, even in mobile electronic devices such as notebook PCs, high quality image quality is required as in television, and a method for locally dimming the backlight module (emitting light for each area) is required. There is. In order to emit light by the local dimming method, the backlight unit 202 needs to be a direct light type, not a side light type.
 特許文献1には、直下型のバックライトユニットが開示されている。 Patent Document 1 discloses a direct type backlight unit.
日本国公開特許公報「特開2012‐186350号公報(2012年9月27日公開)」Japanese Patent Publication No. 2012-186350 (published on September 27, 2012)
 しかし、サイドライト型のバックライトユニットと比べて、直下型のバックライトユニットはLEDの個数が多くなる。 However, as compared with the sidelight type backlight unit, the direct type backlight unit has more LEDs.
 例えば、図18においてLEDアレイ212の個数が多くなると、LEDアレイ212に対応して設けられている、定電流回路220と昇圧回路230とが一体化されたLEDドライバIC240の個数も多くなる。 For example, when the number of LED arrays 212 in FIG. 18 increases, the number of LED driver ICs 240 provided corresponding to the LED arrays 212 and in which the constant current circuit 220 and the booster circuit 230 are integrated also increases.
 LEDドライバIC240の個数が多くなると、図17に示した表示制御基板203の面積も大きくする必要がある。表示制御基板203の面積が大きくなると、バックライトユニット202の上辺(表示制御基板203と対向する辺とは逆側の辺)から表示制御基板203の下辺(バックライトユニット202と対向する辺とは逆側の辺)までの長さである液晶モジュールのY寸法Y200も大きくなる。 As the number of LED driver ICs 240 increases, the area of the display control board 203 shown in FIG. 17 also needs to be increased. When the area of the display control substrate 203 is increased, the upper side of the backlight unit 202 (the side opposite to the side facing the display control substrate 203) and the lower side of the display control substrate 203 (the side facing the backlight unit 202) The Y dimension Y200 of the liquid crystal module which is the length to the opposite side) also becomes large.
 しかし、テレビとは異なり、ノート型PC等のモバイル型の電子機器においては、利便性の観点から、表示制御基板のサイズの制約が厳しい。 However, unlike televisions, mobile electronic devices such as notebook PCs are severely restricted in the size of display control boards from the viewpoint of convenience.
 特許文献1においても、定電流制御部と昇圧回路部とが一対一で対応して設けられているため、LEDの個数が増加すると、それに伴い、定電流制御部と昇圧回路部とを配置するための表示制御基板のサイズが大きくなる。 Also in Patent Document 1, since the constant current control unit and the booster circuit unit are provided in one-to-one correspondence, when the number of LEDs increases, the constant current control unit and the booster circuit unit are arranged accordingly The size of the display control board is increased.
 本発明の一態様は、表示制御基板のサイズの増大を抑制しつつ直下型のバックライトユニットを得ることを目的とする。 An object of one embodiment of the present invention is to obtain a direct-type backlight unit while suppressing an increase in size of a display control substrate.
 上記の課題を解決するために、本発明の一態様に係るバックライトユニットは、直下型のバックライトユニットであって、基材と、上記基材に配置された複数のLEDが接続された一又は複数のLEDアレイと、上記LEDアレイに対応して上記基材に設けられ、当該LEDアレイに含まれるLEDに定電流を流すための一又は複数の定電流ICとを備え、上記LEDアレイは、複数のLEDが直列に接続された複数のLED列を含み、上記定電流ICは、上記複数のLED列それぞれに接続された複数の定電流回路を含むことを特徴とする。 In order to solve the above-mentioned subject, a back light unit concerning one mode of the present invention is a direct-back type back light unit, and a substrate and a plurality of LED arranged on the above-mentioned substrate were connected Or a plurality of LED arrays, and one or more constant current ICs provided on the base material corresponding to the LED arrays and supplying constant current to the LEDs included in the LED arrays, the LED array comprising A plurality of LED strings including a plurality of LEDs connected in series, and the constant current IC includes a plurality of constant current circuits connected to each of the plurality of LED strings.
 本発明の一態様によれば、表示制御基板のサイズの増大を抑制しつつ直下型のバックライトユニットを得るという効果を奏する。 According to one aspect of the present invention, it is possible to obtain a direct type backlight unit while suppressing an increase in the size of the display control substrate.
実施形態1に係る電子機器の構成を表す断面図である。FIG. 2 is a cross-sectional view illustrating the configuration of the electronic device according to the first embodiment. 実施形態1の液晶モジュールの構成を表す平面図である。FIG. 2 is a plan view illustrating a configuration of a liquid crystal module of Embodiment 1. 実施形態1の電子機器のうち、バックライトユニット及び表示制御基板の構成を表す平面図である。FIG. 6 is a plan view illustrating a configuration of a backlight unit and a display control board in the electronic device of Embodiment 1. 実施形態1の電子機器における、バックライトユニット及び電圧生成回路ブロックの回路を表す図である。FIG. 2 is a diagram illustrating a circuit of a backlight unit and a voltage generation circuit block in the electronic device of Embodiment 1. 実施形態1の定電流ICの構成を表す図である。FIG. 2 is a diagram illustrating a configuration of a constant current IC of Embodiment 1. (a)は実施形態1のバックライトユニットの構成の一例を示す断面図であり、(b)は実施形態1のバックライトユニットの構成の他の例を示す断面図である。(A) is sectional drawing which shows an example of a structure of the backlight unit of Embodiment 1, (b) is sectional drawing which shows the other example of a structure of the backlight unit of Embodiment 1. FIG. 従来のノート型PCに使用されている表示制御基板の構成を表す図である。It is a figure showing the composition of the display control board used for the conventional notebook PC. 図7の表示制御基板の一部を拡大した図である。It is the figure which expanded a part of display control board of FIG. 実施形態1の電子機器において、電圧生成ICを主制御基板に設けた構成を表す図である。FIG. 7 is a diagram illustrating a configuration in which a voltage generation IC is provided on a main control substrate in the electronic device of Embodiment 1. 実施形態2の電子機器の構成を表す図である。FIG. 7 is a diagram illustrating a configuration of an electronic device of a second embodiment. 実施形態3の電子機器の構成を表す図である。FIG. 7 is a diagram illustrating a configuration of an electronic device of a third embodiment. 実施形態3の電子機器が備える定電流IC及び電圧生成ICの構成を表す図である。It is a figure showing the composition of constant current IC and voltage generation IC with which electronic equipment of Embodiment 3 is provided. 複数の定電流ICが電圧生成ICに並列で接続されている様子を表す図である。It is a figure showing a mode that several constant current IC is connected in parallel with voltage generation IC. 第1比較例の電子機器の構成を表す図である。It is a figure showing the composition of the electronic equipment of the 1st comparative example. 第1比較例に係るバックライトユニット及びLEDドライバの回路図である。FIG. 7 is a circuit diagram of a backlight unit and an LED driver according to a first comparative example. 第2比較例の電子機器の構成を表す図である。It is a figure showing the composition of the electronic equipment of the 2nd comparative example. 従来のノート型PCの液晶モジュールの構成を表す図である。It is a figure showing the composition of the liquid crystal module of the conventional notebook PC. 従来のノート型PCにおける、バックライトユニット及びLEDドライバの回路図である。It is a circuit diagram of a backlight unit and an LED driver in a conventional notebook PC. 実施形態1の電圧生成回路ブロックの動作を説明する図である。FIG. 6 is a diagram for explaining the operation of the voltage generation circuit block of the first embodiment. 図19の電圧生成回路ブロック内の電圧を表す図である。It is a figure showing the voltage in the voltage generation circuit block of FIG. テレビ向けの液晶モジュールの構成を表す断面図である。It is sectional drawing showing the structure of the liquid crystal module for televisions.
 〔比較例〕
 まず、第1比較例及び第2比較例の構成について説明する。第1比較例及び第2比較例は、図17及び図18に示した従来のサイドライト型のバックライトモジュールと同様に、LEDアレイ毎に、定電流回路と昇圧回路とが一体として設けられたLEDドライバICを設けた、直下型のバックライトモジュールを有する液晶モジュールである。
Comparative Example
First, the configurations of the first comparative example and the second comparative example will be described. In the first comparative example and the second comparative example, as in the conventional side light type backlight module shown in FIGS. 17 and 18, a constant current circuit and a booster circuit are integrally provided for each LED array. It is a liquid crystal module having a direct type backlight module provided with an LED driver IC.
 図14は、第1比較例の電子機器101の構成を表す図である。図14に示すように、ノート型PC等の電子機器101の液晶モジュール104は、バックライトユニット102と、表示制御基板103と、図示しない液晶パネルとを含む。 FIG. 14 is a diagram illustrating the configuration of the electronic device 101 of the first comparative example. As shown in FIG. 14, the liquid crystal module 104 of the electronic device 101 such as a notebook PC includes a backlight unit 102, a display control substrate 103, and a liquid crystal panel (not shown).
 直下型のバックライトユニット102は、ベゼル105に、複数のLED110と、複数のLED110が搭載されたFPC等の基材107と、拡散板106とが格納されている。複数のLED110は、基材107上にマトリクス状に設けられており、複数のLED110の上方を覆って拡散板106が設けられている。 In the direct-type backlight unit 102, a bezel 105 stores a plurality of LEDs 110, a base material 107 such as an FPC on which the plurality of LEDs 110 are mounted, and a diffusion plate 106. The plurality of LEDs 110 are provided in a matrix on the base material 107, and a diffusion plate 106 is provided to cover the plurality of LEDs 110.
 表示制御基板103には、複数のLEDドライバIC140と、電源IC151と、Tcon152と、EEPROM等の不揮発性メモリ153と、入力コネクタ154等が設けられている。 The display control board 103 is provided with a plurality of LED driver ICs 140, a power source IC 151, a Tcon 152, a nonvolatile memory 153 such as an EEPROM, an input connector 154 and the like.
 複数のLED110から出射した光は拡散板106の裏面から拡散板106内に進入し、拡散板106の主面から拡散板106外へ出射し、液晶パネル(不図示)を照明する。 The light emitted from the plurality of LEDs 110 enters the diffusion plate 106 from the back surface of the diffusion plate 106, exits from the main surface of the diffusion plate 106 to the outside of the diffusion plate 106, and illuminates a liquid crystal panel (not shown).
 図15は第1比較例に係るバックライトユニット及びLEDドライバの回路図である。図15に示すように、バックライトユニット102は8個のLEDアレイ112を有する。各LEDアレイ112は、4個のLED110が直列に接続されることでLED列111が構成され、そのLED列111が16個並列に並んで構成されている。 FIG. 15 is a circuit diagram of a backlight unit and an LED driver according to a first comparative example. As shown in FIG. 15, the backlight unit 102 has eight LED arrays 112. In each LED array 112, an LED string 111 is configured by connecting four LEDs 110 in series, and sixteen LED strings 111 are configured in parallel.
 LEDドライバIC140は、LEDアレイ112と一対一対応で設けられている。つまり、LEDドライバIC140も8個設けられている。 The LED driver IC 140 is provided in one-to-one correspondence with the LED array 112. That is, eight LED driver ICs 140 are also provided.
 LEDドライバIC140は、LEDアレイ112における、各LED列111のカソードが接続されるチャネルch101~ch116と、各LED列111に定電流を流すための定電流回路120と、各LED列111のアノードに供給する電圧を生成する昇圧回路130とを有する。 The LED driver IC 140 includes the channels ch101 to ch116 to which the cathode of each LED array 111 is connected in the LED array 112, the constant current circuit 120 for supplying a constant current to each LED array 111, and the anode of each LED array 111. And a booster circuit 130 for generating a voltage to be supplied.
 コイル132とダイオード131のアノードとの間にLEDドライバIC140が接続され、ダイオード131のカソードは、各LED列111のアノードと接続されている。 The LED driver IC 140 is connected between the coil 132 and the anode of the diode 131, and the cathode of the diode 131 is connected to the anode of each LED string 111.
 LEDドライバIC140の昇圧回路130と、コイル132と、ダイオード131とで、各LED列111のアノードに昇圧した電圧を供給する昇圧回路ブロック133を構成している。 The boosting circuit 130 of the LED driver IC 140, the coil 132, and the diode 131 constitute a boosting circuit block 133 that supplies a boosted voltage to the anode of each LED array 111.
 第1比較例に係る液晶モジュールによると、LEDアレイ112を8個設けると、それに対応してLEDドライバ140も8個設ける必要がある。 In the liquid crystal module according to the first comparative example, when eight LED arrays 112 are provided, it is necessary to provide eight LED drivers 140 correspondingly.
 このため図14に示すように、8個のLEDドライバ140を搭載させるために、表示制御基板103の面積を大幅に大きくする必要がある。この結果、第1比較例の構成によると、バックライトユニット102の上辺(表示制御基板103と対向する辺とは逆側の辺)から表示制御基板103の下辺(バックライトユニット102と対向する辺とは逆側の辺)までの長さである液晶モジュールのY寸法Y100も大幅に大きくなる。 Therefore, as shown in FIG. 14, in order to mount eight LED drivers 140, the area of the display control board 103 needs to be greatly enlarged. As a result, according to the configuration of the first comparative example, the lower side of the display control board 103 (the side facing the backlight unit 102) from the upper side of the backlight unit 102 (the side opposite to the side facing the display control board 103). The Y dimension Y100 of the liquid crystal module, which is the length to the side opposite to
 図16は、第2比較例の電子機器101Aの構成を表す図である。電子機器101Aは、図14に示した電子機器101において、8個のLEDドライバ140を、表示制御基板103に設けるのではなく、拡散板106の一側面に隣接するように、基材107に設けた構成である。すなわち、電子機器101Aは、図17に示したサイドライト型のバックライトモジュール202において複数のLED210が配置されていた領域に、8個のLEDドライバ140を設けた構成である。 FIG. 16 is a diagram illustrating the configuration of the electronic device 101A of the second comparative example. In the electronic device 101 shown in FIG. 14, the electronic device 101A is provided not on the display control substrate 103 but on the base 107 so as to be adjacent to one side surface of the diffusion plate 106 instead of providing the eight LED drivers 140. Configuration. That is, the electronic device 101A has a configuration in which eight LED drivers 140 are provided in the area where the plurality of LEDs 210 are arranged in the side light type backlight module 202 shown in FIG.
 なお、電子機器101Aのバックライトユニット及びLEDドライバの回路構成は、図15に示したバックライトユニット及びLEDドライバの回路構成と同じである。 The circuit configuration of the backlight unit and the LED driver of the electronic device 101A is the same as the circuit configuration of the backlight unit and the LED driver shown in FIG.
 図16に示すように、電子機器101Aの構成によると、図14に示した電子機器101と比べて、表示制御基板103の面積が増大することを抑制することができる。 As shown in FIG. 16, according to the configuration of the electronic device 101A, an increase in the area of the display control substrate 103 can be suppressed as compared with the electronic device 101 shown in FIG.
 この結果、電子機器101Aの構成によると、バックライトユニット102の上辺(表示制御基板103と対向する辺とは逆側の辺)から表示制御基板103の下辺(バックライトユニット102と対向する辺とは逆側の辺)までの長さである液晶モジュールのY寸法Y100Aは大きくならず、図17に示した液晶モジュールのY寸法Y200と同程度とすることができる。 As a result, according to the configuration of the electronic device 101A, the lower side of the display control board 103 (the side facing the backlight unit 102) and the upper side of the backlight unit 102 (the side opposite to the side facing the display control board 103) The Y dimension Y100A of the liquid crystal module which is the length to the opposite side) does not increase, and can be approximately the same as the Y dimension Y200 of the liquid crystal module shown in FIG.
 しかし、図15に示したように、昇圧回路130の近傍に、昇圧回路130の周辺回路であるコイル132とダイオード131とを設ける必要がある。すなわち、LEDドライバ140の個数分だけ、LEDドライバ140の近傍にコイル132及びダイオード131を設ける必要がある。後述するように、コイル132とダイオード131は、設置面積が比較的大きい。 However, as shown in FIG. 15, it is necessary to provide a coil 132 and a diode 131, which are peripheral circuits of the booster circuit 130, in the vicinity of the booster circuit 130. That is, it is necessary to provide the coil 132 and the diode 131 in the vicinity of the LED driver 140 by the number of the LED drivers 140. As described later, the coil 132 and the diode 131 have relatively large footprints.
 このため、8個のLEDドライバ140と、それらに対応する8個のコイル132及びダイオード131を含む周辺回路と、を全てバックライトユニット102に設ける場合、バックライトユニット102の面積を大きくするか、又は、基材107の表裏両面に設けた場合は、バックライトユニット102の厚さが厚くなる。 Therefore, in the case where the eight LED drivers 140 and the peripheral circuits including the eight coils 132 and the diodes 131 corresponding to them are all provided in the backlight unit 102, the area of the backlight unit 102 is increased, or Alternatively, when provided on both the front and back sides of the base material 107, the thickness of the backlight unit 102 becomes thick.
 または、バックライトユニット102の面積を大きくせず、8個のLEDドライバ140と、それらに対応する8個のコイル132及びダイオード131を含む周辺回路とを基材107の表裏両面に設けない場合は、8個のLEDドライバ140のうち、一部のLEDドライバ140に対応するコイル132及びダイオード131を含む周辺回路が、基材107に設けることができず、表示制御基板103に設けなければならなくなる。 Alternatively, when the area of the backlight unit 102 is not increased and the eight LED drivers 140 and the peripheral circuits including the eight coils 132 and the diodes 131 corresponding to them are not provided on both the front and back sides of the substrate 107, The peripheral circuit including the coil 132 and the diode 131 corresponding to a part of the LED driver 140 among the eight LED drivers 140 can not be provided on the base material 107, and must be provided on the display control substrate 103. .
 このように、8個のLEDドライバ140のうち、一部のLEDドライバ140に対応するコイル132及びダイオード131を表示制御基板103に設け、他の一部のLEDドライバ140に対応するコイル132及びダイオード131を基材7に設けると、LEDドライバ140間での電気的特性が変わり、精度よく、各LEDアレイ112の輝度を制御することができない。 As described above, the coil 132 and the diode 131 corresponding to a part of the LED driver 140 among the eight LED drivers 140 are provided on the display control board 103, and the coil 132 and the diode corresponding to the other part LED driver 140 When the substrate 131 is provided on the substrate 7, the electrical characteristics between the LED drivers 140 change, and the luminance of each LED array 112 can not be controlled with high accuracy.
 〔実施形態1〕
 図1は実施形態1に係る電子機器1の構成を表す断面図である。
Embodiment 1
FIG. 1 is a cross-sectional view illustrating the configuration of the electronic device 1 according to the first embodiment.
 電子機器1は、画像の表示エリアを有する種々の電子機器である。電子機器1は、テレビであってもよいが、ノート型PC、タブレット端末、携帯電話端末等のモバイル型の電子機器でることが好ましい。一例として、電子機器1は、ノート型PCであるものとして説明する。 The electronic device 1 is various electronic devices having a display area of an image. The electronic device 1 may be a television, but is preferably a mobile electronic device such as a notebook PC, a tablet terminal, a mobile phone terminal or the like. As an example, the electronic device 1 will be described as being a notebook PC.
 図1に示すように、電子機器1は、液晶モジュール4と、マザーボードである主制御基板9と、液晶モジュール4のバックライトユニットを格納するベゼル5(図2参照)とを含む。主制御基板9は電子機器1の動作を総合的に制御する。主制御基板9は樹脂又は金属等から構成され、各種回路が設けられている。 As shown in FIG. 1, the electronic device 1 includes a liquid crystal module 4, a main control substrate 9 which is a mother board, and a bezel 5 (see FIG. 2) for storing a backlight unit of the liquid crystal module 4. The main control board 9 comprehensively controls the operation of the electronic device 1. The main control board 9 is made of resin, metal or the like, and various circuits are provided.
 液晶モジュール4は、液晶パネル8と、バックライトユニット2と、表示制御基板3とを含む。バックライトユニット2は液晶パネル8の背面側に配置され、当該背面側から液晶パネル8を照明する。液晶パネル8は、液晶層を介在させて、TFT素子(Thin Film Transistor)が画素毎に設けられたTFT基板と、対向基板とが対向配置されて構成されている。 The liquid crystal module 4 includes a liquid crystal panel 8, a backlight unit 2, and a display control substrate 3. The backlight unit 2 is disposed on the back side of the liquid crystal panel 8 and illuminates the liquid crystal panel 8 from the back side. The liquid crystal panel 8 is configured such that a TFT substrate provided with TFT elements (Thin Film Transistors) for each pixel and a counter substrate face each other with a liquid crystal layer interposed.
 表示制御基板3は、主制御基板9からの指示により、バックライトユニット2及び液晶パネル8に駆動信号を出力することで、バックライトユニット2及び液晶パネル8の駆動を制御する。表示制御基板3は樹脂又は金属等から構成され、各種回路が搭載されている。 The display control board 3 controls the driving of the backlight unit 2 and the liquid crystal panel 8 by outputting a drive signal to the backlight unit 2 and the liquid crystal panel 8 according to an instruction from the main control board 9. The display control board 3 is made of resin, metal or the like, and various circuits are mounted.
 図2は実施形態1の液晶モジュール4の構成を表す平面図である。図2に示すように、液晶パネル8は、画素がマトリクス状に配置され画像を表示する表示エリア81と、表示エリア81の周辺の領域である額縁エリア4aとを有する。額縁エリア4aは、表示エリア81のエッジから、バックライトユニット2又は液晶パネル8の最外形エッジまでの領域である。ここでは、額縁エリア4aは、表示エリア81のエッジから、ベゼル5のエッジ(すなわちバックライトユニット2のエッジ)までの領域を指すものとする。 FIG. 2 is a plan view showing the configuration of the liquid crystal module 4 of the first embodiment. As shown in FIG. 2, the liquid crystal panel 8 has a display area 81 in which pixels are arranged in a matrix and displays an image, and a frame area 4 a which is an area around the display area 81. The frame area 4 a is an area from the edge of the display area 81 to the outermost edge of the backlight unit 2 or the liquid crystal panel 8. Here, the frame area 4 a refers to an area from the edge of the display area 81 to the edge of the bezel 5 (that is, the edge of the backlight unit 2).
 図2に示すように、額縁エリア4aのうち、表示エリア81より上方の領域を上額縁4aTと称し、表示エリア81より下方の領域を下額縁4aDと称し、表示エリア81より右側の領域を右額縁4aRと称し、表示エリア81より左側の領域を左額縁4aLと称する。 As shown in FIG. 2, in the frame area 4a, an area above the display area 81 is referred to as an upper frame 4aT, an area below the display area 81 is referred to as a lower frame 4aD, and an area to the right of the display area 81 is right The area to the left of the display area 81 is referred to as a left frame 4aL.
 ノート型PC用の液晶モジュールでは、ランドスケープ型が一般的に採用されている。例えば、液晶モジュール4のうち、下額縁4aDに、ソースドライバSDの実装領域を確保しており、表示制御基板3は下額縁4aDの外側に配置される。 A landscape type is generally adopted in liquid crystal modules for notebook PCs. For example, the mounting area of the source driver SD is secured in the lower frame 4aD of the liquid crystal module 4, and the display control substrate 3 is disposed outside the lower frame 4aD.
 なお、液晶パネル8のうち、表示エリア81よりも外側の領域をパネル額縁と称する場合がある。また、バックライトユニット2と液晶パネル8とのうちどちらが最外形エッジとなるかは、液晶モジュール4の用途によって様々である。 In the liquid crystal panel 8, a region outside the display area 81 may be referred to as a panel frame. Further, which of the backlight unit 2 and the liquid crystal panel 8 is the outermost edge varies depending on the application of the liquid crystal module 4.
 (電子機器1の構成)
 図3は、実施形態1の電子機器1のうち、バックライトユニット2及び表示制御基板3の構成を表す平面図である。図3では、液晶モジュール4のうち液晶パネル8の図示を省略している。
(Configuration of electronic device 1)
FIG. 3 is a plan view showing the configuration of the backlight unit 2 and the display control board 3 in the electronic device 1 of the first embodiment. In FIG. 3, the liquid crystal panel 8 of the liquid crystal module 4 is not shown.
 図3に示すように、バックライトユニット2は、直下型のバックライトユニットであり、ローカルディミング方式による発光が可能である。バックライトユニット2は、基材7と、基材7に搭載された複数のLED10(発光素子)と、複数のLED10上に設けられた拡散板6と、基材7に搭載された複数の定電流ICと、基材7及び拡散板6を格納するベゼル5とを含む。 As shown in FIG. 3, the backlight unit 2 is a direct type backlight unit, and can emit light by the local dimming method. The backlight unit 2 includes a substrate 7, a plurality of LEDs 10 (light emitting elements) mounted on the substrate 7, a diffusion plate 6 provided on the plurality of LEDs 10, and a plurality of substrates mounted on the substrate 7. It includes a current IC and a bezel 5 that houses the base 7 and the diffusion plate 6.
 基材7は、例えば、FPCである。なお、基材7は、FPCに限定されず、樹脂又は金属等の材質から構成される基板等であってもよい。 The substrate 7 is, for example, an FPC. The base 7 is not limited to the FPC, and may be a substrate or the like made of a material such as resin or metal.
 表示制御基板3は、基材7と電気的に接続されており、当該接続部分を通して、バックライトユニット2及び液晶パネル8に各種の信号を出力する。 The display control substrate 3 is electrically connected to the base 7, and outputs various signals to the backlight unit 2 and the liquid crystal panel 8 through the connection portion.
 表示制御基板3には、電源IC51と、Tcon52と、EEPROM等の不揮発性メモリ53と、入力コネクタ54等が設けられている。さらに、表示制御基板3には、LED10に所望の電圧を供給するための一又は複数の電圧生成回路ブロック33が設けられている。電圧生成回路ブロック33は、電圧生成IC30と、ダイオード31と、コイル32とを含む。なお、電圧生成IC30にダイオード31の機能が含まれていてもよい。この場合、ダイオード31は不要である。 The display control board 3 is provided with a power supply IC 51, a Tcon 52, a non-volatile memory 53 such as an EEPROM, an input connector 54 and the like. Furthermore, the display control board 3 is provided with one or more voltage generation circuit blocks 33 for supplying a desired voltage to the LED 10. The voltage generation circuit block 33 includes a voltage generation IC 30, a diode 31 and a coil 32. The voltage generation IC 30 may include the function of the diode 31. In this case, the diode 31 is unnecessary.
 図4は、実施形態1の電子機器1における、バックライトユニット2及び電圧生成回路ブロック33の回路を表す図である。 FIG. 4 is a diagram showing a circuit of the backlight unit 2 and the voltage generation circuit block 33 in the electronic device 1 of the first embodiment.
 バックライトユニット2は、一又は複数のLEDアレイ12と、LED10に定電流を流すための一又は複数の定電流IC20とを含む。 The backlight unit 2 includes one or more LED arrays 12 and one or more constant current ICs 20 for supplying a constant current to the LEDs 10.
 本実施形態では、1個の電圧生成回路ブロック33に、LEDアレイ12が直列に接続されている。電圧生成回路ブロック33においては、ダイオード31のアノードとコイル32との間に、LED10のアノードに供給する電圧を生成する電圧生成IC30が接続されている。 In the present embodiment, the LED array 12 is connected in series to one voltage generation circuit block 33. In the voltage generation circuit block 33, a voltage generation IC 30 for generating a voltage to be supplied to the anode of the LED 10 is connected between the anode of the diode 31 and the coil 32.
 上述のように、電圧生成IC30は、定電流IC20が設けられた基材7とは異なる基板である表示制御基板3に設けられている。電圧生成IC30は、LED10に所望の電流を流すための、昇圧回路、降圧回路又は昇降圧回路を含む。 As described above, the voltage generation IC 30 is provided on the display control substrate 3 which is a substrate different from the substrate 7 on which the constant current IC 20 is provided. The voltage generation IC 30 includes a boost circuit, a step-down circuit or a step-up / step-down circuit for supplying a desired current to the LED 10.
 例えば、各LEDアレイ12は、直列に複数個接続されたLED列11が複数個並列に接続されることで構成されている。例えば、4個のLED10が直列に接続されることでLED列11が構成され、LED列11が16個並列に接続されることで各LEDアレイ12が構成されている。例えば、LEDアレイ12は8個並んで設けられている。 For example, each LED array 12 is configured by connecting in parallel a plurality of LED strings 11 connected in series. For example, the LED array 11 is configured by connecting four LEDs 10 in series, and each LED array 12 is configured by connecting 16 LED arrays 11 in parallel. For example, eight LED arrays 12 are provided side by side.
 各LEDアレイ12において、各LED列11のアノード同士は互いに接続されることで、各LEDアレイ12のアノードが構成されている。各LEDアレイ12のアノードは、ダイオード31のカソードと接続されている。 In each LED array 12, the anodes of the LED arrays 11 are configured by connecting the anodes of the LED arrays 11 to each other. The anode of each LED array 12 is connected to the cathode of the diode 31.
 定電流IC20は、LEDアレイ12に一対一対応で設けられている。本実施形態では、LEDアレイ12が8個設けられているため、定電流IC20も8個設けられている。 The constant current IC 20 is provided to the LED array 12 in a one-to-one correspondence. In the present embodiment, eight LED arrays 12 are provided, so eight constant current ICs 20 are also provided.
 図5は、実施形態1の定電流IC20の構成を表す図である。定電流IC20は、制御信号入力回路21と、定電流回路ブロック制御回路22(定電流制御回路)と、複数の定電流回路C1~C16と、複数のチャネルch1~ch16とを有する。 FIG. 5 is a diagram illustrating the configuration of the constant current IC 20 according to the first embodiment. The constant current IC 20 has a control signal input circuit 21, a constant current circuit block control circuit 22 (constant current control circuit), a plurality of constant current circuits C1 to C16, and a plurality of channels ch1 to ch16.
 チャネルch1~ch16それぞれには、各LED列11のカソードが接続されている。 The cathode of each LED row 11 is connected to each of the channels ch1 to ch16.
 定電流回路C1~C16は、チャネルch1~ch16に対応して(換言すると、各LED列11に対応して)設けられている。チャネルch1~ch16には、それぞれ、定電流回路C1~C16が接続されている。定電流回路C1~C16は、各LED列11に定電流を流す回路である。 The constant current circuits C1 to C16 are provided corresponding to the channels ch1 to ch16 (in other words, corresponding to the respective LED columns 11). Constant current circuits C1 to C16 are connected to the channels ch1 to ch16, respectively. The constant current circuits C1 to C16 are circuits for causing a constant current to flow in each LED row 11.
 制御信号入力回路21は、制御信号の入力を受け付けるインターフェース入力回路である。制御信号入力回路21は、表示制御基板3に設けられた制御回路からSCS、SCLK、SDI等の制御信号を取得すると、当該制御信号に基づいて、定電流回路ブロック制御回路22へ指示信号を出力する。 The control signal input circuit 21 is an interface input circuit that receives an input of a control signal. When the control signal input circuit 21 obtains a control signal such as SCS, SCLK, or SDI from the control circuit provided on the display control board 3, the control signal input circuit 21 outputs an instruction signal to the constant current circuit block control circuit 22 based on the control signal. Do.
 定電流回路ブロック制御回路22は、制御信号入力回路21から取得した制御信号に基づいて、定電流回路C1~C16それぞれに流す電流を個別に制御する。換言すると、各LED列11に流す電流を、LED列11毎に制御する。これにより、LED列11毎に輝度を調整するローカルディミングを行うことができる。 The constant current circuit block control circuit 22 individually controls the current supplied to each of the constant current circuits C1 to C16 based on the control signal acquired from the control signal input circuit 21. In other words, the current supplied to each LED row 11 is controlled for each LED row 11. In this way, local dimming can be performed to adjust the luminance for each of the LED rows 11.
 定電流IC20は、例えば、SPI(Serial Peripheral Interface:シリアル・ペリフェラル・インタフェース)等のインターフェース規格を用いてアクセスする構成とすることができる。なお、定電流IC20にアクセスするためのインターフェース規格は任意であり、SPIに限定されるものではない。 The constant current IC 20 can be configured to access using, for example, an interface standard such as SPI (Serial Peripheral Interface). The interface standard for accessing the constant current IC 20 is arbitrary, and is not limited to SPI.
 また、各定電流IC20と、電圧生成IC30との間に、定電流回路C1~C16に流れる電流(すなわち、各LED列11に流れる電流)に応じて、各LED列11のアノードに供給する電圧を調整する電圧調整信号を電圧生成IC30に出力する制御回路を設けてもよい。これにより、電圧生成IC30は、LED列11毎に供給する電圧を調整し、各LED10の発光効率を上げることができる。 In addition, a voltage supplied to the anode of each LED array 11 according to the current flowing in the constant current circuits C1 to C16 (that is, the current flowing in each LED array 11) between each constant current IC 20 and the voltage generation IC 30 A control circuit may be provided which outputs a voltage adjustment signal for adjusting the voltage to the voltage generation IC 30. As a result, the voltage generation IC 30 can adjust the voltage supplied to each of the LED rows 11 to increase the luminous efficiency of each LED 10.
 (電圧生成回路ブロック33の動作)
 図19は電圧生成回路ブロック33の動作を説明する図である。図20は、図19の電圧生成回路ブロック33内の電圧を表す図である。ここでは、電圧生成回路ブロック33の電圧生成IC30は昇圧ICであるものとする。なお、図19及び図20に示す電圧回路ブロック33の構成及び動作は一例であり、他の態様も採りえる。
(Operation of voltage generation circuit block 33)
FIG. 19 is a diagram for explaining the operation of the voltage generation circuit block 33. In FIG. FIG. 20 is a diagram showing voltages in the voltage generation circuit block 33 of FIG. Here, it is assumed that the voltage generation IC 30 of the voltage generation circuit block 33 is a boost IC. The configuration and operation of the voltage circuit block 33 shown in FIGS. 19 and 20 are an example, and other aspects can be adopted.
 一例として、電圧生成回路ブロック33は、さらに、コイル32の上流側に配置された入力側の第1容量Cinと、ダイオード31のカソードに接続された出力側の第2容量Coutとを有する。また、電圧生成IC30はコイル32とダイオード31との間に接続されているスイッチ30aを有する。電圧生成回路ブロック33の入力側の電圧を電圧vinとし、出力側(バックライトユニット2はと接続されている側)の電圧を電圧Voutとする。 As an example, the voltage generation circuit block 33 further includes a first capacitance Cin on the input side disposed upstream of the coil 32 and a second capacitance Cout on the output side connected to the cathode of the diode 31. In addition, the voltage generation IC 30 has a switch 30 a connected between the coil 32 and the diode 31. The voltage on the input side of the voltage generation circuit block 33 is a voltage vin, and the voltage on the output side (the side connected to the backlight unit 2) is a voltage Vout.
 図19及び図20に示すように、スイッチ30aをオンにすると、電圧生成回路ブロック33の入力側の電圧Vinによって、コイル32及びスイッチ30aを通り電流I_L(on)が流れる。このときコイル32にエネルギーが蓄積される。このスイッチ30aがオンされているときは、負荷(すなわち、バックライトユニット2)へ第2容量Coutに蓄えられた電荷による電流I_L(on)が流れる。 As shown in FIGS. 19 and 20, when the switch 30a is turned on, a current I_L (on) flows through the coil 32 and the switch 30a by the voltage Vin on the input side of the voltage generation circuit block 33. At this time, energy is stored in the coil 32. When the switch 30a is turned on, a current I_L (on) due to the charge stored in the second capacitor Cout flows to the load (that is, the backlight unit 2).
 次いで、スイッチ30aをオフにすると、コイル32流れている電流を保持するために、蓄えられたエネルギーを放出して、コイル32から流れた電流I_L(off)は、ダイオード31を通り、これにより第2容量Coutの電荷が充電されると共に、電流I_L(off)が負荷(すなわち、バックライトユニット2)へ流れる。 Then, when the switch 30a is turned off, the stored energy is released to hold the current flowing through the coil 32, and the current I_L (off) from the coil 32 passes through the diode 31, thereby While the charge of 2 capacity Cout is charged, current I_L (off) flows into a load (namely, back light unit 2).
 このように、スイッチ30aのオンオフにより、電圧生成回路ブロック33に接続されたバックライトユニット2へ電力供給がされる。 Thus, power is supplied to the backlight unit 2 connected to the voltage generation circuit block 33 by turning on and off the switch 30a.
 (バックライトユニット2のベゼル5の構成)
 図6は実施形態1のバックライトユニット2の断面図である。
(Configuration of bezel 5 of backlight unit 2)
FIG. 6 is a cross-sectional view of the backlight unit 2 of the first embodiment.
 図6の(a)に示すように、金属で構成されているベゼル5上に、基材7を配置し、この基材7上に定電流IC20と複数のLED10とを実装する。そして、複数のLED10の上方であって、定電流IC20と重ならないように拡散板6を設ける。 As shown to (a) of FIG. 6, the base material 7 is arrange | positioned on the bezel 5 comprised with the metal, and the constant current IC 20 and several LED10 are mounted on this base material 7. As shown in FIG. Then, the diffusion plate 6 is provided above the plurality of LEDs 10 so as not to overlap with the constant current IC 20.
 このように、定電流IC20及び複数のLED10が実装されている基材7は、定電流IC20及び複数のLED10の実装面とは反対側の面である裏面が、金属で構成されているベゼル5と接触している。これにより、定電流IC20及び複数のLED10から発生した熱を、基材7を介して、ベゼル5に放熱することができる。このため、放熱効率を上げることができる。 Thus, the base 7 on which the constant current IC 20 and the plurality of LEDs 10 are mounted is the bezel 5 in which the back surface which is the surface opposite to the mounting surface of the constant current IC 20 and the plurality of LEDs 10 is made of metal. In contact with Thus, the heat generated from the constant current IC 20 and the plurality of LEDs 10 can be dissipated to the bezel 5 through the base 7. Therefore, the heat dissipation efficiency can be increased.
 又は、図6の(b)に示すように、定電流IC20と、複数のLED10とを、基材7上ではなく、直接ベゼル5の表面に実装してもよい。これによると、定電流IC20及び複数のLED10から発生した熱が直接ベゼル5に放熱されるため、より、放熱効率を上げることができる。 Alternatively, as shown in (b) of FIG. 6, the constant current IC 20 and the plurality of LEDs 10 may be mounted directly on the surface of the bezel 5 instead of on the substrate 7. According to this, since the heat generated from the constant current IC 20 and the plurality of LEDs 10 is directly dissipated to the bezel 5, it is possible to further enhance the radiation efficiency.
 図21は、テレビ向けの液晶モジュール304の構成を表す断面図である。液晶モジュール304は、ベゼル305内に、LEDアレイ12が搭載されたFPC307と、LEDアレイ12の上方に配置された拡散板6とが格納された直下型のバックライトユニットを有する。また、下額縁におけるベゼル505の側壁は傾斜しており、この傾斜するベゼル505の側壁の外側面(拡散板6、LEDアレイ12及びFPC307が格納されている側とは反対側の面)に、LEDドライバIC340及びコイル332等が搭載された表示制御基板303が配置されている。このように、テレビの製造に用いられる液晶モジュール304においては、傾斜させたベゼル505の側壁の外側面に、LEDドライバIC340及びコイル332等が搭載された表示制御基板303を配置することができる。しかし、当該構成によると、ある程度の厚みが必要となるため、厚みの制約が厳しいノート型PCを製造するための液晶モジュールに適用することはできない。 FIG. 21 is a cross-sectional view showing a configuration of a liquid crystal module 304 for television. The liquid crystal module 304 has a direct type backlight unit in which the FPC 307 on which the LED array 12 is mounted and the diffusion plate 6 disposed above the LED array 12 are stored in the bezel 305. Further, the side wall of the bezel 505 in the lower frame is inclined, and the outer surface of the side wall of the inclined bezel 505 (the surface opposite to the side on which the diffusion plate 6, the LED array 12 and the FPC 307 are stored) A display control board 303 on which an LED driver IC 340, a coil 332 and the like are mounted is disposed. As described above, in the liquid crystal module 304 used for manufacturing a television, the display control substrate 303 on which the LED driver IC 340, the coil 332, and the like are mounted can be disposed on the outer surface of the side wall of the inclined bezel 505. However, according to the said structure, since a certain amount of thickness is required, it can not apply to the liquid crystal module for manufacturing a notebook PC with severe thickness restrictions.
 (主な効果)
 図7は、従来のノート型PCに使用されている表示制御基板の構成を表す図である。図8は、図7の表示制御基板の一部を拡大した図である。
(Main effect)
FIG. 7 is a diagram showing the configuration of a display control board used in a conventional notebook PC. FIG. 8 is an enlarged view of a part of the display control board of FIG.
 図7に示すように、表示制御基板203に、コネクタ250、LEDドライバIC240、ダイオード231及びコイル232が設けられている。そして、バックライトユニット202から表示制御基板203に延びるFPC207がコネクタ250に接続されている。 As shown in FIG. 7, the display control board 203 is provided with a connector 250, an LED driver IC 240, a diode 231 and a coil 232. An FPC 207 extending from the backlight unit 202 to the display control board 203 is connected to the connector 250.
 例えば、コネクタ250のピン数は10本であり、コイル232は、サイズが4mm×4mmで厚みが1.2mm程度である。例えば、表示制御基板203の幅Y203は8mm程度である。 For example, the number of pins of the connector 250 is ten, and the coil 232 has a size of 4 mm × 4 mm and a thickness of about 1.2 mm. For example, the width Y 203 of the display control board 203 is about 8 mm.
 図8に示すように、LEDドライバIC240の一部(定電流回路220を含む部分)と周辺回路とを含む領域が定電流回路ブロック229である。また、LEDドライバIC240の他の一部(昇圧回路230を含む部分)と、ダイオード231及びコイル232を有する周辺回路とを含む領域が昇圧回路ブロック233である。なお、図8に示す定電流回路ブロック229の周辺回路及び昇圧回路ブロック233の周辺回路は、一例であり、液晶モジュールの機種及び用途等によって異なる。 As shown in FIG. 8, an area including a part of the LED driver IC 240 (a part including the constant current circuit 220) and the peripheral circuit is a constant current circuit block 229. Further, a region including another part of the LED driver IC 240 (a portion including the booster circuit 230) and a peripheral circuit having the diode 231 and the coil 232 is a booster circuit block 233. The peripheral circuits of the constant current circuit block 229 and the peripheral circuits of the booster circuit block 233 shown in FIG. 8 are merely examples, and differ depending on the type and application of the liquid crystal module.
 図8に示すように、昇圧回路ブロック233の周辺回路には、定電流回路ブロック229の周辺回路と比べて、多数の回路部品が必要であることが分かる。特に、昇圧回路ブロック233の周辺回路に含まれるダイオード231及びコイル232は、他の回路部品と比べて面積が大きく、さらに、LEDドライバIC240の他の一部(昇圧回路230を含む部分)の近くに設ける必要がある。 As shown in FIG. 8, it can be understood that the peripheral circuits of the booster circuit block 233 require a larger number of circuit components than the peripheral circuits of the constant current circuit block 229. In particular, the diode 231 and the coil 232 included in the peripheral circuit of the booster circuit block 233 have a large area compared with other circuit components, and further, the vicinity of another part of the LED driver IC 240 (part including the booster circuit 230). Need to be
 制御するLEDの数の増加に伴い、この昇圧回路ブロック233と定電流回路ブロック229とのセットを、表示制御基板203に多数設けるとすると、表示制御基板203の幅Y203を大きくする等、表示制御基板203の面積を大きくする必要がある。 Assuming that a large number of sets of the booster circuit block 233 and the constant current circuit block 229 are provided on the display control board 203 as the number of LEDs to be controlled increases, the display control board 203 is increased in width Y203, etc. The area of the substrate 203 needs to be increased.
 また、この面積が大きい昇圧回路ブロック233を、多数、バックライトユニット202に設けるとすると、バックライトユニット202の下額縁を大幅に大きくしたり、バックライトユニット202の厚みを大幅に広げたりする必要がある。または、複数の昇圧回路ブロック233のうち、一部の昇圧回路ブロック233の周辺回路に含まれるダイオード231及びコイル232を、表示制御基板203に設ける必要がある。 Further, if a large number of booster circuit blocks 233 having this large area are provided in the backlight unit 202, it is necessary to greatly enlarge the lower frame of the backlight unit 202 or to greatly expand the thickness of the backlight unit 202. There is. Alternatively, it is necessary to provide the display control substrate 203 with the diodes 231 and the coils 232 included in the peripheral circuits of some of the plurality of booster circuit blocks 233 among the plurality of booster circuit blocks 233.
 一方、定電流回路ブロック229は、昇圧回路ブロック233と比べて面積が小さい。 On the other hand, the constant current circuit block 229 has a smaller area than the booster circuit block 233.
 そこで、図3~図5に示したように、本実施形態のバックライトユニット2は、基材7と、基材7に配置された複数のLEDアレイ12と、各LEDアレイ12に対応して基材7に設けられた複数の定電流ICとを備える。そして、各定電流ICは、対応するLEDアレイ12の各LED列のカソードと接続された複数の定電流回路C1~C16を含む。 Therefore, as shown in FIGS. 3 to 5, the backlight unit 2 of the present embodiment corresponds to the substrate 7, the plurality of LED arrays 12 disposed on the substrate 7, and the respective LED arrays 12. A plurality of constant current ICs provided on the substrate 7 are provided. Each constant current IC includes a plurality of constant current circuits C1 to C16 connected to the cathodes of the respective LED strings of the corresponding LED array 12.
 このように、バックライトユニット2は、LEDアレイ12に含まれる各LED列11に定電流を流すための定電流回路C1~C16をまとめて定電流IC20に設けている。 As described above, in the backlight unit 2, constant current circuits C 1 to C 16 for supplying a constant current to the respective LED strings 11 included in the LED array 12 are collectively provided in the constant current IC 20.
 つまり、LEDアレイ12に所望の定電流を流すために必要な、定電流回路と電圧生成回路とのうち、定電流回路は基材7に設けている。 That is, among the constant current circuit and the voltage generation circuit necessary for supplying a desired constant current to the LED array 12, the constant current circuit is provided on the substrate 7.
 そして、LEDアレイ12の各LED列のアノードに所望の電圧を供給するための電圧生成回路ブロック33は表示制御基板3に設けている。 The display control board 3 is provided with a voltage generation circuit block 33 for supplying a desired voltage to the anode of each LED row of the LED array 12.
 これにより、図17及び図18に示したような、定電回路と昇圧回路とが一体として構成されているLEDドライバを、表示制御基板に設ける場合と比べて、表示制御基板の面積の増大を抑制することができる。すなわち、上記構成によると、表示制御基板3の面積の増大を抑制しつつ、直下型のバックライトユニット2を構成することができる。 Thereby, the area of the display control board is increased compared to the case where the LED driver in which the constant current circuit and the booster circuit are integrated as shown in FIGS. 17 and 18 are provided on the display control board. It can be suppressed. That is, according to the above configuration, it is possible to configure the direct type backlight unit 2 while suppressing an increase in the area of the display control substrate 3.
 換言すると、バックライトユニット2は、定電流回路と電圧生成回路とのうち、電圧生成回路を備えていない直下型のバックライトユニットである。 In other words, of the constant current circuit and the voltage generation circuit, the backlight unit 2 is a direct type backlight unit not provided with the voltage generation circuit.
 加えて、液晶モジュール4によると、定電流回路と電圧生成回路とを別々の基板に設けることで、熱の発生源を分散化できるため、発熱の抑制も可能である。 In addition, according to the liquid crystal module 4, by providing the constant current circuit and the voltage generation circuit on different substrates, the heat generation source can be dispersed, so that heat generation can also be suppressed.
 また、電圧生成回路は、定電流回路よりも電力ロスが大きく、これにより、発熱量も大きい。この電圧生成回路を、基材7ではなく、別の基板である表示制御基板3に設けることで、十分にGNDをとることができ、電力ロスを低減することができる。加えて、基材7ではなく、別の基板である表示制御基板3であれば、電流生成回路および周辺回路のサイズ及び厚みとも比較的大きな回路部品を選定することができるため、昇圧効率をアップさせ、また、発熱も低減することができる。 In addition, the voltage generation circuit has a larger power loss than a constant current circuit, and thereby generates a large amount of heat. By providing this voltage generation circuit on the display control substrate 3 which is not a substrate 7 but another substrate, GND can be sufficiently obtained, and power loss can be reduced. In addition, if it is not the base 7 but the display control board 3 which is another board, relatively large circuit parts can be selected for the size and thickness of the current generating circuit and peripheral circuits, so the boosting efficiency is improved. Also, heat generation can be reduced.
 一例として、テレビ用の表示制御基板に設ける場合の回路部品の厚みの最大は12mm程度であり、ノート型PC用の表示制御基板に設ける場合の回路部品の厚みの最大は1.2mm程度であり、ノート型PCのFPCに設ける場合の回路部品の厚みの最大は0.9mm程度である。 As an example, the maximum thickness of the circuit component in the case of being provided on a display control substrate for a television is about 12 mm, and the maximum thickness of the circuit component in the case of being provided on a display control substrate for a notebook PC is about 1.2 mm The maximum thickness of the circuit component in the case of being provided on the FPC of the notebook PC is about 0.9 mm.
 ここで、コネクタのピン数について検討する。 Here, the number of pins of the connector is considered.
 通常、ローカルディミングを採用しない液晶モジュールにおいては、コネクタのピン数は10~16本位で設計されている。図7及び図8に示したコネクタ250のピン数は10本であり、そのうち、2本が複数のLEDアレイ12のアノードと接続されており、6本がLEDアレイ12のカソードと接続されており、2本がNC(No Connection:未接続)である。 Usually, in a liquid crystal module that does not employ local dimming, the number of pins of the connector is designed to be about 10 to 16. The number of pins of the connector 250 shown in FIGS. 7 and 8 is ten, of which two are connected to the anodes of the plurality of LED arrays 12 and six are connected to the cathodes of the LED array 12. , 2 is NC (No Connection: not connected).
 直下型のバックライトモジュールとし、ローカルディミングを採用する場合、従来の構造のように、LEDドライバ(電圧生成回路+定電流回路)をバックライトモジュールの外部に設けたとする。1画面を128分割してローカルディミングを行うとし、その1画面を32chのLEDドライバ4個で駆動させる場合、ピン数は、アノード用に8本、カソード用に128本、2本をNCとすると、合計138本のピンが必要となる。 In the case of adopting a direct-type backlight module and adopting local dimming, it is assumed that an LED driver (voltage generation circuit + constant current circuit) is provided outside the backlight module as in the conventional structure. Assuming that one screen is divided into 128 and local dimming is performed, and the one screen is driven by four 32 ch LED drivers, the number of pins is assumed to be 8 for anode and 128 for cathode, and 2 for NC. A total of 138 pins are required.
 一方、本実施形態の液晶モジュール4の場合、例えば、1画面を128分割してローカルディミングを行うとし、その1画面を、16chの定電流ICが8個と、電圧生成IC2個とで駆動させる場合、ピン数は、アノード用に2本、GND用に4本、ロジック電源用に1本、SPI用に4本、EN用に1本、2本をNCとすると、合計16本のピン数で済むことになる。 On the other hand, in the case of the liquid crystal module 4 according to the present embodiment, for example, it is assumed that one screen is divided into 128 and local dimming is performed, and the one screen is driven by eight 16ch constant current ICs and two voltage generation ICs. In the case where the number of pins is 2 for anode, 4 for GND, 1 for logic power supply, 4 for SPI, 1 for EN and 2 for NC, the total number of pins is 16 It will be enough.
 このように、本実施形態の液晶モジュール4によると、必要なピン数を削減することができるため、表示制御基板に設けられた、FPCを接続するコネクタの設置面積を小さくすることができる。 As described above, according to the liquid crystal module 4 of the present embodiment, since the required number of pins can be reduced, the installation area of the connector for connecting the FPC provided on the display control substrate can be reduced.
 また、液晶モジュール4では、電圧生成IC30の個数は、定電流IC20の個数よりも少ない。 In the liquid crystal module 4, the number of voltage generation ICs 30 is smaller than the number of constant current ICs 20.
 図17及び図18に示したような、バックライトユニット202の外部にLEDドライバIC240を設けている場合、昇圧回路と定電流回路とが一体型であるため、液晶モジュール内に、昇圧回路と定電流回路とが同数存在していた。 When the LED driver IC 240 is provided outside the backlight unit 202 as shown in FIGS. 17 and 18, since the booster circuit and the constant current circuit are integrated, the booster circuit and the constant current circuit are fixed in the liquid crystal module. The same number of current circuits were present.
 一方、本実施形態のように、複数の定電流回路C1~C16を定電流IC20に含めてバックライトユニット2に設けた場合、電圧生成IC30は、定電流回路C1~C16より少なくすることができる。さらに、電圧生成IC30は、定電流IC20よりも少なくすることができる。これにより、コストダウンを行うことができる。 On the other hand, when a plurality of constant current circuits C1 to C16 are included in the constant current IC 20 and provided in the backlight unit 2 as in the present embodiment, the voltage generation IC 30 can be smaller than the constant current circuits C1 to C16. . Furthermore, the voltage generation IC 30 can be less than the constant current IC 20. This can reduce the cost.
 加えて、1個の定電流ICが制御するLEDの個数も相対的に減るため、電圧生成IC30の負荷を低減することもできる。このため、少ない電圧生成ICでより多くの定電流IC(すなわち、定電流ICが制御する各LED)を駆動することができる。 In addition, since the number of LEDs controlled by one constant current IC is also relatively reduced, the load on the voltage generation IC 30 can also be reduced. Therefore, it is possible to drive more constant current ICs (that is, each LED controlled by the constant current IC) with less voltage generation IC.
 また、図9に示すように、一又は複数の電圧生成IC30(すなわち、電圧生成回路ブロック33)を、表示制御基板3ではなく主制御基板9に設けてもよい。 Further, as shown in FIG. 9, one or more voltage generation ICs 30 (that is, the voltage generation circuit block 33) may be provided not on the display control board 3 but on the main control board 9.
 〔実施形態2〕
 図10は、実施形態2の電子機器1の構成を表す図である。図10に示すように、電圧生成IC30の個数を、定電流IC20の個数の整数(但し1以上)分の1としてもよい。図10では、8個の定電流IC20に対し、4分の1である2個の電圧生成IC30が設けられている例を示している。
Second Embodiment
FIG. 10 is a diagram illustrating the configuration of the electronic device 1 of the second embodiment. As shown in FIG. 10, the number of voltage generation ICs 30 may be an integer (but one or more) of the number of constant current ICs 20. FIG. 10 shows an example in which two voltage generation ICs 30 that are one fourth of the eight constant current ICs 20 are provided.
 このように、電圧生成IC30の個数を、定電流IC20の個数の整数(但し1以上)分の1とすることで、電圧生成IC30の負荷を均等割りできるため、電圧生成IC30に含まれる周辺回路として、最適かつ安価な周辺回路を選定することが可能となる。 Thus, the load of the voltage generation IC 30 can be equally divided by setting the number of voltage generation ICs 30 to be an integral number (but one or more) of the number of constant current ICs 20. Therefore, the peripheral circuits included in the voltage generation IC 30 As a result, it is possible to select an optimal and inexpensive peripheral circuit.
 〔実施形態3〕
 図11は、実施形態3の電子機器1の構成を表す図である。図12は、実施形態3の電子機器1が備える定電流IC20及び電圧生成IC30の構成を表す図である。図13は複数の定電流ICが電圧生成ICに並列で接続されている様子を表す図である。
Third Embodiment
FIG. 11 is a diagram illustrating the configuration of the electronic device 1 of the third embodiment. FIG. 12 is a diagram illustrating configurations of a constant current IC 20 and a voltage generation IC 30 included in the electronic device 1 of the third embodiment. FIG. 13 is a diagram showing how a plurality of constant current ICs are connected in parallel to a voltage generation IC.
 図11に示す例では、2個の定電流IC20と1個の電圧生成IC30とを含む回路が2個設けられている。しかし、定電流IC20、電圧生成IC30及びそれらを含む回路の個数は図11に示す個数に限定されるものではない。 In the example shown in FIG. 11, two circuits including two constant current ICs 20 and one voltage generation IC 30 are provided. However, the number of the constant current IC 20, the voltage generation IC 30, and the circuit including them is not limited to the number shown in FIG.
 図11及び図12に示すように、定電流IC20は、定電流回路C1~C16およびチャネルch1~ch16に加え、さらに、チャネルch17~ch20と、異常検出回路24と、異常状態通知信号入力回路25と、異常状態通知信号出力回路26とを含む。なお、定電流IC20は、図5に示した、定電流回路ブロック制御回路22と、制御信号入力回路21とを含んでもよい。 As shown in FIGS. 11 and 12, the constant current IC 20 includes, in addition to the constant current circuits C1 to C16 and the channels ch1 to ch16, the channels ch17 to ch20, the abnormality detection circuit 24, and the abnormality condition notification signal input circuit 25. And an abnormal condition notification signal output circuit 26. The constant current IC 20 may include the constant current circuit block control circuit 22 and the control signal input circuit 21 shown in FIG.
 異常状態通知信号入力回路25は、チャネルch17及びチャネルch18と接続されている。異常状態通知信号出力回路26は、チャネルch19及びチャネルch20と接続されている。 The abnormal state notification signal input circuit 25 is connected to the channel ch17 and the channel ch18. The abnormal state notification signal output circuit 26 is connected to the channel ch19 and the channel ch20.
 異常検出回路24は、定電流回路C1~C16それぞれを監視することで、定電流回路C1~C16の異常状態を検出する。この異常状態とは、例えば、異常電流、異常電圧、又は、異常温度等である。 The abnormality detection circuit 24 detects an abnormal state of the constant current circuits C1 to C16 by monitoring each of the constant current circuits C1 to C16. The abnormal state is, for example, an abnormal current, an abnormal voltage, or an abnormal temperature.
 異常検出回路24は、例えば異常電流を検出する場合は、各定電流回路C1~C16に流れる電流を監視して、予め設定されている所定の上限電流値と比較し、その上限電流値よりも大きい場合は異常電流と判定する。 For example, when detecting an abnormal current, the abnormality detection circuit 24 monitors the current flowing in each of the constant current circuits C1 to C16, compares it with a predetermined upper limit current value set in advance, and compares it with the upper limit current value. If it is large, it is judged as an abnormal current.
 第1段目の定電流IC20のチャネルch20は、第2段目の定電流IC20のチャネルch17と接続されている。第2段目の定電流IC20のチャネルch20は電圧生成IC30と接続されている。 The channel ch20 of the first stage constant current IC20 is connected to the channel ch17 of the second stage constant current IC20. The channel ch 20 of the second stage constant current IC 20 is connected to the voltage generation IC 30.
 第1段目の定電流IC20のチャネルch19は、第2段目の定電流IC20のチャネルch18と接続されている。第2段目の定電流IC20のチャネルch19は電圧生成IC30と接続されている。 The channel ch19 of the first stage constant current IC20 is connected to the channel ch18 of the second stage constant current IC20. The channel ch19 of the second stage constant current IC 20 is connected to the voltage generation IC 30.
 異常検出回路24は、定電流回路C1~C16の何れかの異常状態を検出すると、異常状態を知らせる信号である異常状態通知信号DATAを異常状態通知信号出力回路26に出力する。 When the abnormal state detection circuit 24 detects an abnormal state of any of the constant current circuits C1 to C16, it outputs an abnormal state notification signal DATA, which is a signal notifying an abnormal state, to the abnormal state notification signal output circuit 26.
 例えば、第1段目の定電流IC20の異常検出回路24が、定電流回路C1~C16の何れかの異常状態を検出すると、異常状態通知信号出力回路26に、異常状態通知信号DATAを出力する。 For example, when the abnormality detection circuit 24 of the first stage constant current IC 20 detects an abnormal state of any of the constant current circuits C1 to C16, it outputs an abnormal state notification signal DATA to the abnormal state notification signal output circuit 26. .
 すると、第1段目の定電流IC20の異常状態通知信号出力回路26は、チャネルch19から異常状態通知信号DATAを出力すると共に、チャネルch20からクロック信号CLKを出力する。 Then, the abnormal state notification signal output circuit 26 of the first stage constant current IC 20 outputs the abnormal state notification signal DATA from the channel ch 19 and outputs the clock signal CLK from the channel ch 20.
 そして、第1段目の定電流IC20のチャネルch19から出力された異常状態通知信号DATAはチャネルch18を通って第2段目の定電流IC20の異常状態通知信号入力回路25へ入力されると共に、第1段目の定電流IC20のチャネルch20から出力されたクロック信号CLKはチャネルch17を通って第2段目の定電流IC20の異常状態通知信号入力回路25へ入力される。 Then, the abnormal condition notification signal DATA output from the channel ch19 of the first stage constant current IC20 is input to the abnormal condition notification signal input circuit 25 of the second stage constant current IC20 through the channel ch18, The clock signal CLK output from the channel ch20 of the first stage constant current IC20 is input to the abnormal state notification signal input circuit 25 of the second stage constant current IC20 through the channel ch17.
 すると、第2段目の定電流IC20の異常状態通知信号入力回路25は、入力された異常状態通知信号DATA及びクロック信号CLKを、第2段目の定電流IC20の異常状態通知信号出力回路26へ出力する。 Then, the abnormal state notification signal input circuit 25 of the second stage constant current IC 20 outputs the abnormal state notification signal DATA and the clock signal CLK inputted thereto to the abnormal state notification signal output circuit 26 of the second stage constant current IC 20. Output to
 そして、第2段目の定電流IC20の異常状態通知信号出力回路26は、入力された異常状態通知信号DATAを、チャネルch19から出力すると共に、チャネルch20からクロック信号CLKを出力する。 Then, the abnormal state notification signal output circuit 26 of the second stage constant current IC 20 outputs the input abnormal state notification signal DATA from the channel ch 19 and outputs the clock signal CLK from the channel ch 20.
 ついで、第2段目の定電流IC20のチャネルch19から出力された異常状態通知信号DATA及び第2段目の定電流IC20のチャネルch20から出力されたクロック信号CLKは共に、異常状態通知信号受信回路35へ入力される。 Then, both the abnormal state notification signal DATA output from the channel ch19 of the second stage constant current IC20 and the clock signal CLK output from the channel ch20 of the second stage constant current IC20 are abnormal state notification signal receiving circuits. It is input to 35.
 すると、異常状態通知信号受信回路35は、入力された異常状態通知信号DATA及びクロック信号CLKを電圧生成動作制御回路36へ出力する。 Then, the abnormal condition notification signal receiving circuit 35 outputs the input abnormal condition notification signal DATA and the clock signal CLK to the voltage generation operation control circuit 36.
 そして、電圧生成動作制御回路36に、異常状態通知信号DATA及びクロック信号CLKが入力されると、電圧生成ICは、電圧の生成を停止する。これにより、各LEDアレイ12のアノードへ供給される電圧も停止し、各LEDアレイ12は消灯する。すなわち、第1段目及び第2段目の定電流IC20の定電流回路C1~C16に流れる電流も停止する。 Then, when the abnormal state notification signal DATA and the clock signal CLK are input to the voltage generation operation control circuit 36, the voltage generation IC stops the generation of the voltage. Thereby, the voltage supplied to the anode of each LED array 12 is also stopped, and each LED array 12 is turned off. That is, the current flowing in the constant current circuits C1 to C16 of the first and second stage constant current ICs 20 is also stopped.
 この第1段目の定電流IC20のチャネルch19と第2段目の定電流IC20のチャネルch18とが接続され、第2段目の定電流IC20のチャネルch19と電圧生成IC30と接続されている経路が、異常状態を知らせる信号である異常状態通知信号を送受信する経路である。 A path in which the channel ch19 of the first stage constant current IC20 and the channel ch18 of the second stage constant current IC20 are connected, and the channel ch19 of the second stage constant current IC20 and the voltage generation IC 30 are connected Is a path for transmitting and receiving an abnormal state notification signal which is a signal notifying an abnormal state.
 ここで、ノート型PCの分野等では、FPCと表示制御基板とを接続するコネクタを設置するために割り当てられる面積が非常に小さく、コネクタのピン数を少なくする必要がある。 Here, in the field of laptop PCs, etc., the area allocated for installing a connector for connecting the FPC and the display control board is very small, and it is necessary to reduce the number of pins of the connector.
 また、バックライトモジュールの下額縁のサイズの極小化のため、FPC上の配線本数も極力少なくする必要がある。 In addition, in order to minimize the size of the lower frame of the backlight module, it is necessary to reduce the number of wires on the FPC as much as possible.
 そこで、本実施形態では、複数の定電流IC20及び電圧生成IC30間で、異常状態を知らせる信号である異常状態通知信号を送受信する経路が直列接続されている。これにより、図12の破線Zに示すように、複数の定電流IC20と電圧生成IC30とを接続する配線が2本で済む。 So, in this embodiment, the path which transmits / receives an abnormal condition notification signal which is a signal which notifies an abnormal condition among a plurality of constant current IC20 and voltage generation IC30 is connected in series. As a result, as shown by the broken line Z in FIG. 12, only two wires are required to connect the plurality of constant current ICs 20 and the voltage generation IC 30.
 一方、図13に示すような、複数の定電流IC20のチャネルch19及びチャネルch20それぞれが、電圧生成ICと接続されている場合、複数の定電流IC20と電圧生成ICとを接続する配線が多くなる。図13の例では、破線Z200に示すように4本必要となる。 On the other hand, when each of the channels ch19 and ch20 of the plurality of constant current ICs 20 is connected to the voltage generation IC as shown in FIG. 13, the number of wirings connecting the plurality of constant current ICs 20 and the voltage generation IC increases. . In the example of FIG. 13, four are required as indicated by the broken line Z200.
 このように、複数の定電流IC20及び電圧生成IC30間で、異常状態を知らせる信号である異常状態通知信号を送受信する経路が直列接続されていることで、配線の本数を減らすことができる。 Thus, the number of wires can be reduced by connecting in series a path for transmitting and receiving an abnormal state notification signal which is a signal notifying an abnormal state between the plurality of constant current ICs 20 and the voltage generation IC 30.
 〔まとめ〕
 本発明の態様1に係るバックライトユニットは、直下型のバックライトユニットであって、基材と、上記基材に配置された複数のLEDが接続された一又は複数のLEDアレイと、上記LEDアレイに対応して上記基材に設けられ、当該LEDアレイに含まれるLEDに定電流を流すための一又は複数の定電流ICとを備え、上記LEDアレイは、複数のLEDが直列に接続された複数のLED列を含み、上記定電流ICは、上記複数のLED列それぞれに接続された複数の定電流回路を含むことを特徴とする。
[Summary]
A backlight unit according to aspect 1 of the present invention is a direct-type backlight unit, comprising: a substrate; and one or more LED arrays to which a plurality of LEDs disposed on the substrate are connected; And one or more constant current ICs for supplying constant current to the LEDs included in the LED array corresponding to the array, and the LED array includes a plurality of LEDs connected in series. The constant current IC includes a plurality of constant current circuits connected to each of the plurality of LED strings.
 上記構成によると、上記LEDアレイに含まれる複数のLED列に定電流を流すための定電流回路を複数個まとめて上記定電流ICに設けている。このため、上記定電流ICと、上記複数のLED列のアノードに所望の電圧を供給するための回路とのうち、上記定電流ICは上記基材に設け、上記複数のLED列のアノードに所望の電圧を供給するための回路は上記基材とは異なる別の基板に設けることができる。 According to the above configuration, a plurality of constant current circuits for supplying a constant current to the plurality of LED rows included in the LED array are collectively provided in the constant current IC. Therefore, among the constant current IC and the circuit for supplying a desired voltage to the anodes of the plurality of LED strings, the constant current IC is provided on the base material and desired for the anodes of the plurality of LED strings. The circuit for supplying the voltage V.sub.2 can be provided on another substrate different from the above substrate.
 これにより、定電回路と昇圧回路とが一体として構成されているLEDドライバを、上記表示制御基板に設ける場合と比べて、表示制御基板等の別の基板の面積の増大を抑制することができる。すなわち、上記構成によると、表示制御基板等の別の基板の面積の増大を抑制しつつ、直下型のバックライトユニットを構成することができる。 Thereby, it is possible to suppress an increase in the area of another substrate such as a display control substrate as compared with the case where the LED driver in which the constant current circuit and the booster circuit are integrally configured are provided on the display control substrate. . That is, according to the above configuration, it is possible to configure the direct type backlight unit while suppressing an increase in the area of another substrate such as a display control substrate.
 本発明の態様2に係るバックライトユニットは、上記態様1において、上記定電流ICは、当該定電流ICへ入力される制御信号を取得する制御信号入力回路と、上記制御信号入力回路からの指示信号に基づいて、上記各LED列から各定電流回路へ流す電流をそれぞれ調整する定電流制御回路とを含んでもよい。上記構成によると、上記LEDアレイにおけるLED列毎に流れる電流を調整することができる。これにより、上記LEDアレイにおけるLED列毎に輝度を調整することができる。 In the backlight unit according to aspect 2 of the present invention, in the above aspect 1, the constant current IC is a control signal input circuit that acquires a control signal input to the constant current IC, and an instruction from the control signal input circuit And a constant current control circuit for adjusting the current flowing from each of the LED rows to each of the constant current circuits based on a signal. According to the above configuration, it is possible to adjust the current flowing for each of the LED strings in the LED array. Thereby, the brightness can be adjusted for each of the LED rows in the LED array.
 本発明の態様3に係る電子機器は、上記態様1又は2において、上記バックライトユニットと、表示制御基板と、上記表示制御基板に配置され、電圧生成IC及び周辺回路部品を含み、上記各LED列のアノードに電圧を供給するための電圧生成回路ブロックとを備えていてもよい。 In the electronic device according to aspect 3 of the present invention, in the above aspect 1 or 2, the backlight unit, the display control substrate, and the display control substrate are disposed, and include a voltage generation IC and peripheral circuit components And a voltage generation circuit block for supplying a voltage to the anodes of the columns.
 上記構成によると、上記表示制御基板に複数の定電流回路を設ける必要がないため、比較的設置面積が大きい電圧生成回路ブロックを複数、上記表示制御基板に設けても、当該表示制御基板の面積が増大することを抑制することができる。 According to the above configuration, since it is not necessary to provide a plurality of constant current circuits on the display control substrate, even if a plurality of voltage generation circuit blocks having a relatively large installation area are provided on the display control substrate, the area of the display control substrate Can be suppressed.
 本発明の態様4に係る電子機器は、上記態様3において、上記電圧生成ICの個数は、上記定電流ICの個数よりも少なくてもよい。これにより、コストダウンを行うことができる。 In the electronic device according to aspect 4 of the present invention, in the aspect 3, the number of the voltage generation ICs may be smaller than the number of the constant current ICs. This can reduce the cost.
 本発明の態様5に係る電子機器は、上記態様3又は4において、上記電圧生成ICの個数は、上記定電流ICの個数の整数(但し1以上)分の1であってもよい。上記構成によると、複数の電圧生成ICの負荷を均等割りできるため、電圧生成ICに含まれる周辺回路として、最適かつ安価な周辺回路を選定することが可能となる。 In the electronic device according to aspect 5 of the present invention, in the above aspect 3 or 4, the number of voltage generation ICs may be an integer (but one or more) of the number of the constant current ICs. According to the above configuration, since loads of a plurality of voltage generation ICs can be equally divided, it is possible to select an optimal and inexpensive peripheral circuit as a peripheral circuit included in the voltage generation IC.
 本発明の態様6に係る電子機器は、上記態様3~5において、上記複数の定電流IC及び上記電圧生成IC間で、異常状態を知らせる信号である異常状態通知信号を送受信する経路が直列接続されていてもよい。上記構成によると、配線の本数を減らすことができる。 In the electronic device according to aspect 6 of the present invention, in the above aspects 3 to 5, the plurality of constant current ICs and the voltage generation IC connect in series a path for transmitting and receiving an abnormal state notification signal which is a signal notifying an abnormal state. It may be done. According to the above configuration, the number of wires can be reduced.
 本発明の態様7に係る電子機器は、上記態様3~6において、上記バックライトユニットは、上記基材、上記一又は複数のLEDアレイ及び上記一又は複数の定電流ICを格納し、金属から構成されているベゼルを備え、上記基材における、上記一又は複数のLEDアレイ及び上記一又は複数の定電流ICが配置されている面とは反対側の面と、上記ベゼルとは接触していてもよい。 In the electronic device according to aspect 7 of the present invention, in the above aspects 3 to 6, the backlight unit stores the base material, the one or more LED arrays, and the one or more constant current ICs, The bezel is in contact with a surface of the base opposite to the side on which the one or more LED arrays and the one or more constant current ICs are disposed in the base. May be
 本発明の態様8に係る電子機器は、上記態様3~6において、上記バックライトユニットは、上記一又は複数のLEDアレイ及び上記一又は複数の定電流ICを格納し、金属から構成されているベゼルを備え、上記基材は上記ベゼルの一部であってもよい。 In the electronic device according to aspect 8 of the present invention, in the above aspects 3 to 6, the backlight unit stores the one or more LED arrays and the one or more constant current ICs, and is made of metal. A bezel may be provided, and the substrate may be part of the bezel.
 上記構成によると放熱効率を上げることができる。 According to the above configuration, the heat radiation efficiency can be increased.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
1 電子機器
2 バックライトユニット
3 表示制御基板
4 液晶モジュール
4a 額縁エリア
5 ベゼル
6 拡散板
7 基材
8 液晶パネル
9 主制御基板
10 LED
11 LED列
12 LEDアレイ
20 定電流IC
21 制御信号入力回路
22 定電流回路ブロック制御回路
24 異常検出回路
25 異常状態通知信号入力回路
26 異常状態通知信号出力回路
30 電圧生成IC
31 ダイオード
32 コイル
33 電圧生成回路ブロック
35 異常状態通知信号受信回路
36 電圧生成動作制御回路
81 表示エリア
REFERENCE SIGNS LIST 1 electronic device 2 back light unit 3 display control board 4 liquid crystal module 4 a frame area 5 bezel 6 diffusion plate 7 base 8 liquid crystal panel 9 main control board 10 LED
11 LED array 12 LED array 20 constant current IC
21 control signal input circuit 22 constant current circuit block control circuit 24 abnormality detection circuit 25 abnormal state notification signal input circuit 26 abnormal state notification signal output circuit 30 voltage generation IC
31 diode 32 coil 33 voltage generation circuit block 35 abnormal state notification signal reception circuit 36 voltage generation operation control circuit 81 display area

Claims (8)

  1.  直下型のバックライトユニットであって、
     基材と、
     上記基材に配置された複数のLEDが接続された一又は複数のLEDアレイと、
     上記LEDアレイに対応して上記基材に設けられ、当該LEDアレイに含まれるLEDに定電流を流すための一又は複数の定電流ICとを備え、
     上記LEDアレイは、複数のLEDが直列に接続された複数のLED列を含み、
     上記定電流ICは、上記複数のLED列それぞれに接続された複数の定電流回路を含むことを特徴とするバックライトユニット。
    It is a direct type backlight unit,
    A substrate,
    One or more LED arrays to which a plurality of LEDs disposed on the substrate are connected;
    And one or more constant current ICs provided on the base material corresponding to the LED array, for supplying a constant current to the LEDs included in the LED array,
    The LED array includes a plurality of LED strings in which a plurality of LEDs are connected in series;
    A backlight unit comprising: a plurality of constant current circuits connected to each of the plurality of LED strings.
  2.  上記定電流ICは、当該定電流ICへ入力される制御信号を取得する制御信号入力回路と、
     上記制御信号入力回路からの指示信号に基づいて、上記各LED列から各定電流回路へ流す電流をそれぞれ調整する定電流制御回路とを含むことを特徴とする請求項1に記載のバックライトユニット。
    The constant current IC includes a control signal input circuit that acquires a control signal input to the constant current IC.
    2. The backlight unit according to claim 1, further comprising: a constant current control circuit for adjusting the current flowing from each of the LED rows to each of the constant current circuits based on an instruction signal from the control signal input circuit. .
  3.  請求項1又は2に記載のバックライトユニットと、
     表示制御基板と、
     上記表示制御基板に配置され、電圧生成IC及び周辺回路部品を含み、上記各LED列のアノードに電圧を供給するための電圧生成回路ブロックとを備えていることを特徴とする電子機器。
    A backlight unit according to claim 1 or 2.
    Display control board,
    An electronic apparatus comprising: a voltage generation circuit block disposed on the display control substrate, including a voltage generation IC and a peripheral circuit component, for supplying a voltage to an anode of each of the LED rows.
  4.  上記電圧生成ICの個数は、上記定電流ICの個数よりも少ないことを特徴とする請求項3に記載の電子機器。 The electronic device according to claim 3, wherein the number of the voltage generation ICs is smaller than the number of the constant current ICs.
  5.  上記電圧生成ICの個数は、上記定電流ICの個数の整数(但し1以上)分の1であることを特徴とする請求項3又は4に記載の電子機器。 5. The electronic device according to claim 3, wherein the number of the voltage generation ICs is an integer (1 or more) of the number of the constant current ICs.
  6.  上記複数の定電流IC及び上記電圧生成IC間に、異常を知らせる信号である異常信号を送受信する経路が直列に接続されていることを特徴とする請求項3~5の何れか1項に記載の電子機器。 A path for transmitting and receiving an abnormal signal, which is a signal notifying an abnormality, is connected in series between the plurality of constant current ICs and the voltage generation IC, according to any one of claims 3 to 5. Electronic devices.
  7.  上記バックライトユニットは、上記基材、上記一又は複数のLEDアレイ及び上記一又は複数の定電流ICを格納し、金属から構成されているベゼルを備え、
     上記基材における、上記一又は複数のLEDアレイ及び上記一又は複数の定電流ICが配置されている面とは反対側の面と、上記ベゼルとは接触していることを特徴とする請求項3~6の何れか1項に記載の電子機器。
    The backlight unit includes a bezel that stores the base, the one or more LED arrays, and the one or more constant current ICs, and is made of metal.
    The bezel is in contact with the surface of the base opposite to the surface on which the one or more LED arrays and the one or more constant current ICs are disposed. The electronic device according to any one of 3 to 6.
  8.  上記バックライトユニットは、上記一又は複数のLEDアレイ及び上記一又は複数の定電流ICを格納し、金属から構成されているベゼルを備え、
     上記基材は上記ベゼルの一部であることを特徴とする請求項3~6の何れか1項に記載の電子機器。
    The backlight unit includes a bezel that stores the one or more LED arrays and the one or more constant current ICs, and is made of metal.
    The electronic device according to any one of claims 3 to 6, wherein the base material is a part of the bezel.
PCT/JP2018/028877 2017-08-08 2018-08-01 Backlight unit and electronic device WO2019031355A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017153663 2017-08-08
JP2017-153663 2017-08-08

Publications (1)

Publication Number Publication Date
WO2019031355A1 true WO2019031355A1 (en) 2019-02-14

Family

ID=65270999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028877 WO2019031355A1 (en) 2017-08-08 2018-08-01 Backlight unit and electronic device

Country Status (1)

Country Link
WO (1) WO2019031355A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022002208A (en) * 2020-06-22 2022-01-06 グローバル テクノロジーズ カンパニー リミテッド Backlit device for display and current control integrated circuit thereof
JP7404128B2 (en) 2020-03-26 2023-12-25 ダイハツ工業株式会社 heads up display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211221A (en) * 2007-02-27 2008-09-11 Samsung Electro Mech Co Ltd Backlight unit having light-emitting diodes and method of manufacturing the same
JP2009129707A (en) * 2007-11-22 2009-06-11 Sony Corp Backlight device, and liquid crystal display device
JP2011186178A (en) * 2010-03-09 2011-09-22 Hitachi Displays Ltd Liquid crystal display device
JP2011233260A (en) * 2010-04-23 2011-11-17 Rohm Co Ltd Control circuit and control method for switching power supply, and light-emitting device and electric apparatus using the same
JP2013132107A (en) * 2011-12-20 2013-07-04 Rohm Co Ltd Dc/dc converter and control circuit and control method for current driver, and light-emitting device and electronic equipment using them
US20140285748A1 (en) * 2013-03-19 2014-09-25 Shenzhen China Star Optoelectronics Technology Co., Ltd. LED Backlight Driving Circuit, Backlight Module, and Liquid Crystal Display Device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008211221A (en) * 2007-02-27 2008-09-11 Samsung Electro Mech Co Ltd Backlight unit having light-emitting diodes and method of manufacturing the same
JP2009129707A (en) * 2007-11-22 2009-06-11 Sony Corp Backlight device, and liquid crystal display device
JP2011186178A (en) * 2010-03-09 2011-09-22 Hitachi Displays Ltd Liquid crystal display device
JP2011233260A (en) * 2010-04-23 2011-11-17 Rohm Co Ltd Control circuit and control method for switching power supply, and light-emitting device and electric apparatus using the same
JP2013132107A (en) * 2011-12-20 2013-07-04 Rohm Co Ltd Dc/dc converter and control circuit and control method for current driver, and light-emitting device and electronic equipment using them
US20140285748A1 (en) * 2013-03-19 2014-09-25 Shenzhen China Star Optoelectronics Technology Co., Ltd. LED Backlight Driving Circuit, Backlight Module, and Liquid Crystal Display Device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7404128B2 (en) 2020-03-26 2023-12-25 ダイハツ工業株式会社 heads up display device
JP2022002208A (en) * 2020-06-22 2022-01-06 グローバル テクノロジーズ カンパニー リミテッド Backlit device for display and current control integrated circuit thereof
JP7372956B2 (en) 2020-06-22 2023-11-01 グローバル テクノロジーズ カンパニー リミテッド Backlight device for display and its current control integrated circuit

Similar Documents

Publication Publication Date Title
US11790836B2 (en) Display module and driving method thereof
US7956544B2 (en) Light source module, backlight assembly having the same, display device having the same and method for reducing number of wires used in interconnect cable of the same
US9076357B2 (en) Redundant operation of a backlight unit of a display device under a shorted LED condition
KR100669205B1 (en) Driving apparatus for dual flat display
US9271379B2 (en) Redundant operation of a backlight unit of a display device under open circuit or short circuit LED string conditions
KR101710154B1 (en) Power circuit for liquid crystal display device and liquid crystal display device including the same
JP2006128125A (en) Light-emitting diode backlight device and liquid crystal display device equipped therewith
KR20200063125A (en) Backlight apparatus
WO2019031355A1 (en) Backlight unit and electronic device
US10403197B2 (en) Gate driver IC, chip-on-film substrate, and display apparatus
CN114512062B (en) Light-emitting module, driving method thereof and display device
US11715413B2 (en) Display module, display apparatus and method for manufacturing the same
US20120092361A1 (en) Display device
KR102490380B1 (en) Liquid crystal display
KR20110032500A (en) Organic electroluminescent display and method of driving the same
JP6771515B2 (en) Circuit board and display device
JPWO2018211808A1 (en) Lighting device and display device
US11100852B2 (en) Display device
US8599187B2 (en) Organic light-emitting display device
WO2023228978A1 (en) Light-emitting device drive circuit, and lighting device and electronic apparatus using same
KR20070091919A (en) Liquid crystal display
CN116110347A (en) Display device and electronic apparatus
JP2012168471A (en) Liquid crystal display device and television receiver
CN117980980A (en) Backlight module and display device
KR101609377B1 (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18843215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP