WO2019031077A1 - ウィンドファーム制御システム及びウィンドファームの制御方法 - Google Patents
ウィンドファーム制御システム及びウィンドファームの制御方法 Download PDFInfo
- Publication number
- WO2019031077A1 WO2019031077A1 PCT/JP2018/023753 JP2018023753W WO2019031077A1 WO 2019031077 A1 WO2019031077 A1 WO 2019031077A1 JP 2018023753 W JP2018023753 W JP 2018023753W WO 2019031077 A1 WO2019031077 A1 WO 2019031077A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wind
- yaw angle
- wind farm
- threshold
- control
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 19
- 238000010248 power generation Methods 0.000 claims abstract description 67
- 230000008859 change Effects 0.000 claims abstract description 46
- 238000005259 measurement Methods 0.000 claims abstract description 31
- 238000004891 communication Methods 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 14
- 230000002159 abnormal effect Effects 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000009434 installation Methods 0.000 claims description 2
- 230000004044 response Effects 0.000 claims description 2
- 230000005856 abnormality Effects 0.000 claims 2
- 241000287828 Gallus gallus Species 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 11
- 230000002123 temporal effect Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/04—Automatic control; Regulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a control system of a wind farm provided with a plurality of wind power generators, and in particular, a wind farm control system and a wind farm capable of improving the operation rate of the wind farm even when a sudden change in wind direction occurs. Control method.
- the wind turbine generator performs yaw angle control (active yaw control) to make the direction of the rotor surface face the wind direction, thereby improving the amount of generated power.
- yaw angle control active yaw control
- the detecting unit in the wind farm senses a risk factor of the external environment
- a stop command is sent to the wind turbine generator in the wind farm to prevent breakdown of the entire system of the wind farm. Techniques to prevent this have been proposed.
- the yawing system of each wind turbine is controlled to position the front of the nacelle toward the changed wind direction. It is described that the direction of the nacelle is rotated (active yaw control) as described above.
- the active yaw control can not follow in time, and the wind generator is equipped with a protection function that shuts down the wind generator to protect the wind generator from the wind load from the suddenly changed wind direction. It is done.
- the wind direction constantly fluctuates due to the wind disturbance, and it is difficult to distinguish the sudden change of the wind direction and the fluctuation of the wind direction returning in a short time.
- the operation rate of the wind power generator decreases and the amount of generated power decreases.
- the other wind turbines in the wind farm when stopped due to similar wind direction fluctuations, cause a decrease in the overall operation rate of the wind farm.
- the present invention provides a wind farm control system and a wind farm control method capable of improving the operation rate of a wind farm and increasing the amount of generated power when a sudden change in wind direction is instantaneous.
- a wind farm control system comprises a plurality of wind power generators including at least a rotor that rotates in response to wind, a nacelle, a tower that rotatably supports the nacelle, and a control device.
- a control of a wind farm including a plurality of wind turbines including at least a rotor rotating by receiving wind, a nacelle, a tower supporting the nacelle rotatably and a control device.
- the method includes at least a wind direction measurement value and a yaw angle measurement value transmitted from a control device of one wind power generation device having detected a sudden change in wind direction among a plurality of wind power generation devices installed in the wind farm It is determined whether the obtained yaw angle error is within a predetermined first threshold in a predetermined period, and a command value including a change of the predetermined first threshold of another wind turbine or a yaw angle based on the determination result Are transmitted to the control device of the other wind turbine generator.
- FIG. 1 It is a whole schematic block diagram of the wind farm control system of Example 1 which concerns on one Example of this invention. It is a wind farm control system shown in FIG. 1, Comprising: It is a figure which shows schematic structure of the wind power generator set in the wind farm. It is a block diagram which shows the function of the general control apparatus shown in FIG. It is a graph which shows an example of the determination criteria of the necessity of control in the control necessity determination part which comprises the general control device shown in FIG. It is a graph which shows an example when the threshold value of the yaw angle error of the wind power generator which concerns on Example 1 is changed high.
- FIG. 6 is a diagram showing an operating state of a plurality of wind turbines in the wind farm according to the first embodiment. It is a whole schematic block diagram of the wind farm control system of Example 2 which concerns on the other Example of this invention. It is a whole schematic block diagram of the wind farm control system of Example 3 which concerns on the other Example of this invention.
- a downwind type wind power generator is described as an example of each wind power generation device installed in a wind farm that constitutes a wind farm control system according to an embodiment of the present invention.
- the wind farm which comprises the wind farm control system which concerns on embodiment of this invention can be provided in any place on the ocean, a mountain part, and a plain part.
- preferred embodiments of the present invention will be described with reference to the drawings.
- the following is an example of implementation to the last, and it is not the meaning intended to limit the application object of this invention to the following specific aspect.
- FIG. 1 is an overall schematic configuration diagram of a wind farm control system according to a first embodiment of the present invention.
- the wind farm control system 1 is installed in the wind farm 100 in which a plurality of wind turbines 2 including the wind turbine 2a and the wind turbine 2b are installed, and in each wind turbine.
- Control devices 31 31a, 31b) for giving a yaw angle command, a torque command, etc., and information on operation / stop state of each wind power generation device 2, wind direction / speed measurement values, yaw angle etc.
- the general control unit 10 for transmitting the yaw angle control command or the torque upper limit value, etc., and the communication network 5 for mutually communicably connecting the plurality of control units 31 and each control unit 31 and the general control unit 10 Prepare.
- the communication network 5 may be wired or wireless.
- FIG. 1 it is assumed that the wind 20 indicated by the white arrow is generated, and the wind power generation device 2 a among the plurality of wind power generation devices installed in the wind farm 100. Is the most windward side, and the case where the other wind power generation device 2 including the wind power generation device 2b is positioned downwind is shown.
- the wind turbine 2a located on the windward side, the wind turbine 2b located on the windward side, and the control device installed in the wind turbine 2a located on the windside It is expressed as 31a and the control apparatus 31b installed in the wind power generator 2b located on the downwind side.
- the wind power generation device 2 and the control device 31 installed in the wind power generation device 2 shall be expressed. .
- FIG. 2 is a view showing a schematic configuration of the wind turbine generator 2 installed in the wind farm 100, which is the wind farm control system 1 shown in FIG. Although only the structure of one wind power generator 2 is shown in FIG. 2 for convenience of explanation, other plural wind power generators 2 installed in the wind farm 100 also have the same structure.
- the wind turbine generator 2 includes blades 24 that rotate by receiving wind, a hub 23 that supports the blades 24, a nacelle 22, and a tower 21 that rotatably supports the nacelle 22.
- the generator 28 rotates the rotor at a rotational speed increased by the speed increaser 27 to perform a power generation operation.
- the portion for transmitting the rotational energy of the blade 24 to the generator 28 is referred to as a power transmission portion.
- the main shaft 25, the shrink disk 26, and the speed increasing gear 27 are included in the power transmission portion.
- the speed increasing gear 27 and the generator 28 are held on the main frame 29.
- the rotor is configured by the blades 24 and the hub 23.
- a power converter 30 for converting the frequency of electric power
- a switch and transformer not shown
- controller 31 for example, a control board or SCADA (Supervisory Control And Data Acquisition) is used.
- SCADA Supervisory Control And Data Acquisition
- blades 24 and the hub 23 is shown in a present Example, it is not restricted to this, You may comprise a rotor and the braid
- the sensor 4 installed in the wind turbine generator 2 is, for example, a pitch angle sensor 4a installed at the root of the blade 24 and measuring a pitch angle of the blade 24, a strain sensor 4b measuring stress applied to the blade 24, and a nacelle 22
- the wind direction and anemometer 4c installed in the upper part of the above, and the yaw angle sensor 4d which measures the azimuth of the nacelle 22 are included.
- a thermometer installed in the upper part of the nacelle 22 for measuring the outside air temperature
- a thermometer for measuring the temperature in the nacelle 22 and Also included are hygrometers that measure humidity.
- it includes a sensor (not shown) that measures the number of rotations of the generator 28, the amount of power generation, and the like.
- it is not restricted to the structure which installs all the above-mentioned sensors.
- the control device 31 acquires measurement data from the pitch angle sensor 4a, the strain sensor 4b, the wind direction anemometer 4c, the yaw angle sensor 4d described above, and the various sensors 4 described above via signal lines.
- the pitch angle, the nacelle azimuth angle (yaw angle command), the generator rotational speed, etc. are appropriately controlled based on the acquired measurement data, and the acquired measurement data can be managed via the communication network 5, for example, operation management It transmits to the server 7 installed in the center 3.
- an electronic terminal 6 communicably connected to the server 7 is further installed.
- the server 7 functions as the general control device 10 shown in FIG.
- the control device 31 transmits the acquired measurement data to the control device 31 installed in the other wind power generation apparatus 2 constituting the wind farm 100 shown in FIG. Send.
- FIG. 3 is a block diagram showing the functions of the general control device 10 shown in FIG.
- the overall control device 10 includes a yaw angle error abnormal value determination unit 11, a control necessity determination unit 12, a command value determination unit 13, and a load fatigue calculation unit 14.
- the yaw angle error abnormal value determination unit 11, the control necessity determination unit 12, the command value determination unit 13, and the load fatigue calculation unit 14 store, for example, a processor (CPU (Central Processing Unit) not shown) and various programs.
- a storage device such as an external storage device, and a processor such as a CPU reads and executes various programs stored in the ROM.
- the calculation result is stored in RAM or an external storage device.
- each function is shown as a block in FIG. 3, since these functions realize the functions to be described later by the program as described above, they are independent programs or programs of a combination of all or a plurality of functions. May be stored in a storage unit (not shown).
- the yaw angle error abnormal value determination unit 11 measures the wind direction measured by the wind direction and anemometer 4 c and the operation stop information of the wind turbine 2 transmitted from each control device 31 (for example, SCADA) shown in FIGS. 1 and 2. The value and the yaw angle measurement value measured by the yaw angle sensor 4 d are received from the input signal line group 15 via the communication network 5.
- the yaw angle error abnormal value determination unit 11 determines the value of the yaw angle error that is the difference between the wind direction measurement value of the stopped wind power generation device 2 and the yaw angle measurement value. Determines whether the predetermined threshold is exceeded.
- the yaw angle error is measured by the wind direction measurement value measured by the wind direction anemometer 4 c and the yaw angle sensor 4 d by the control device 31 (for example, SCADA) installed in each wind power generation device 2 It is obtained as the difference between the yaw angle measurement values.
- the determined yaw angle error is received by the yaw angle error abnormal value determination unit 11 through the communication network 5 and the input signal line group 15 described above.
- the control necessity determination unit 12 stops the stopped wind power generation device 2 due to a sudden change in the wind direction I will judge. Then, the control necessity determination unit 12 generates fatigue in the other wind power generation devices 2 in the wind farm 100 using the load fatigue calculation unit 14 from the measurement values of the wind direction and the wind speed measured by the wind direction anemometer 4 c. Determine if there is a possibility. For example, as shown in FIG. 2, when the strain sensor 4 b for measuring the stress applied to the blade 24 is provided, the load fatigue computing unit 14 converts the amount of strain measured by the strain sensor 4 b into a load.
- the load fatigue computing unit 14 measures the wind direction and the wind speed measured by the wind direction anemometer 4c, the received yaw angle error, and the fluctuation of the wind direction profile ( Based on the time-series data of the wind direction fluctuation, it is determined whether or not fatigue may occur in the other wind turbines 2 in the wind farm 100. Whether damage due to fatigue occurs can be determined based on the specifications of the wind turbine generator 2, for example. In addition, what is necessary is just to use a known method about the calculation method of load fatigue generation
- the command value determination unit 13 determines the wind direction measured by the wind direction anemometer 4 c when it is determined by the control necessity determination unit 12 that fatigue may occur in another wind power generator 2 in the wind farm 100. And from the measured value of the wind speed, the control method of the other wind power generator 2 in the wind farm 100, that is, the command value such as the yaw angle, pitch angle, generator torque etc. The calculated command values such as the yaw angle, the pitch angle, and the generator torque are transmitted to the corresponding control devices 31 via the output signal line group 16 and the communication network 5.
- FIG. 4 is a graph showing an example of determination criteria for control necessity in the control necessity determination unit 12 configuring the general control device 10 shown in FIG. 3.
- the graph shows the operation stop state of the wind turbine 2a transmitted from the control device 31a (FIG. 1) installed in the wind turbine 2a located on the windward side via the communication network 5 and the input signal line group 15.
- the time change (time-dependent change) of the wind speed, the wind direction, and the yaw angle error is shown, respectively.
- Yaw angle error is the yaw angle and the wind direction deviation of the wind turbine generator 2a is by exceeded the first threshold value Th1 is a predetermined threshold value at time t 1, shows a case where the wind turbine generator 2a is stopped There is.
- the wind turbine Once the wind turbine is shut down, it will be shut down for a certain period of time and then restarted. In other words, once stopped, the wind turbine requires a certain time to restart (restart).
- the yaw angle error transmitted from the control device 31a within the predetermined time ⁇ t has fallen below the first threshold value Th1, which is a predetermined threshold value.
- Th1 which is a predetermined threshold value.
- the threshold of yaw angle error with respect to the other wind turbines 2 in the wind farm 100 is increased.
- the predetermined time ⁇ t (t 2 -t 1 ) is important in determining whether the rapid fluctuation of the wind direction is instantaneous or continuous. For example, based on past performance data or specifications (design values) of the wind power generation device 2, breakage or damage of the rotor constituting the wind power generation device 2 may occur due to overloading of the above-mentioned load. Not set appropriately in the range. Therefore, if the yaw angle error falls below the first threshold Th1 which is the predetermined threshold value within the predetermined time ⁇ t, the other wind power generation devices 2 are continuously continued by the yaw angle control without stopping the other wind power generation devices 2. Can be operated.
- FIG. 5 is a graph showing an example when the threshold value of the yaw angle error of the wind turbine generator according to the present embodiment is changed to a higher value. That is, when the control necessity determination unit 12 configuring the overall control device 10 determines that the control is necessary, another wind power generation device 2 in the wind farm 100, for example, the wind power generation device 2b located on the downwind side It is a graph which shows an example when the threshold value of the yaw angle error transmitted from the control apparatus 31b (FIG. 1) is changed high.
- the yaw is a sudden change in wind direction that occur in time t 2
- the angular error does not exceed the changed first threshold Th1 ′, and the wind turbine 2b located on the downwind side continues the operation without stopping.
- the time predetermined threshold yaw angle error is changed to the first threshold value Th1 'after the change in FIG. 5 is a t 2, as shown in FIG.
- the control device 31a for example, SCADA
- the temporal change (time-dependent change) of the yaw angle error shown in FIG. 5 corresponds to the control device 31 b of the wind turbine 2 b located on the downwind side of the wind turbine 2 installed in the wind farm 100 ( For example, it is calculated by SCADA). Therefore, the delay by the installation position in the wind farm 100 of the wind power generator 2 and the control delay are included, and it becomes a graph which shows the time change of the yaw angle error as shown in FIG.
- the first threshold Th1 which is a predetermined threshold of the yaw angle error is appropriately set within a range of, for example, 20 ° to 30 ° as a design value. Further, the first threshold value Th1 ′ after the change is set to, for example, 45 °.
- the first threshold Th1 which is a predetermined threshold of the yaw angle error and the first threshold Th1 'after the change are not limited to the above values. It may be appropriately set based on the design value or the specification of the wind turbine generator 2.
- FIG. 6 is a graph showing another example of the determination criteria for necessity of control in the control necessity determination unit 12 configuring the general control device 10 shown in FIG. 3.
- the control device 31 a installed in the wind power generation device 2 a positioned on the windward side
- the wind turbine generator 2a is stopped because the yaw angle error obtained by SCADA exceeds the first threshold Th1 which is the predetermined threshold, unlike in FIG. It shows a state in which the value of the yaw angle error does not fall below a first threshold Th1 which is a predetermined threshold.
- Wind turbines located on the windward side as fatigue may be generated with respect to the other wind turbine generators 2 including the wind turbine generator 2b located on the downwind side
- the other wind power generation device 2 including the wind power generation device 2b located on the downwind side can continue the operation based on the wind direction and the wind speed condition transmitted from the control device 31a (for example, SCADA) installed in 2a
- the load fatigue computing unit 14 computes conditions such as the angle, the pitch angle, and the torque command value. Then, with the determined condition as a command value, the control device 31b installed in the wind turbine 2b located on the downwind side and the other wind turbine 2 are installed via the output signal line group 16 and the communication network 5. It is transmitted to the control device 31.
- FIG. 7 is a graph showing an example when the yaw angle of the wind turbine generator according to the present embodiment is controlled to be changed. That is, as described above, when the control necessity determination unit 12 configuring the overall control device 10 determines that the control is necessary as described above, the wind turbine 2 b located on the downwind side installed in the wind farm 100 It is a graph which shows an example at the time of controlling so that a yaw angle may be changed with other wind power generators 2 including.
- the yaw angle follows the wind direction by control, and the yaw errors do not exceed the first threshold Th1 which is a predetermined threshold, and the wind turbine 2b located on the downwind side Continue driving without stopping.
- Th1 which is a predetermined threshold
- the wind turbine 2b located on the downwind side Continue driving without stopping.
- fatigue caused by load can also be prevented by making the yaw angle follow the wind direction.
- FIG. 8 is a diagram showing an operating state of a plurality of wind turbines in a wind farm according to a comparative example
- FIG. 9 is a diagram showing an operating state of a plurality of wind turbines in a wind farm according to this embodiment.
- FIG. 8 and FIG. 9 have shown the driving
- FIG. 8 shows, in chronological order, the operating states of the wind turbine 2a, the wind turbine 2b, the wind turbine 2b2 and the wind turbine 2b3 installed in the conventional wind farm as a comparative example and located on the windward side. ing.
- FIG. 8 shows, in chronological order, the operating states of the wind turbine 2a, the wind turbine 2b, the wind turbine 2b2 and the wind turbine 2b3 installed in the conventional wind farm as a comparative example and located on the windward side. ing.
- FIG. 8 shows, in chronological order, the operating states of the wind turbine 2a,
- FIG. 9 shows the operating state when the above-described control of this embodiment is applied, and when the wind turbine 2a located on the windward side at time 00:03 stops due to a yaw angle error,
- the control necessity determination unit 12 configuring the above-described overall control device 10 determines that control is necessary, and the first wind power generation device 2b1, the wind power generation device 2b2, and the wind power generation device 2b3 have a predetermined threshold of yaw angle error.
- the threshold value Th1 to the first threshold value Th1 ′ after the change, the wind power generation device 2b1, the wind power generation device 2b2, and the wind power generation device 2b3 continue the operation without stopping even in the same wind direction fluctuation,
- the operating status is maintained. This can improve the overall operation rate of the wind farm.
- the general control device 10 may be mounted on the control device 31 of each of the wind turbines 2 installed in the wind farm 100.
- one control device 31 serves as a master and executes the above-described control, and the yaw angle, the pitch angle, and the generator with respect to the other control devices 31 as slaves via the output signal line group 16 and the communication network 5.
- Send command values such as torque.
- a wind farm control system and a wind farm control method capable of improving the operation rate of the wind farm and increasing the amount of generated power when the sudden change of the wind direction is instantaneous. It becomes possible to offer. Moreover, according to the present embodiment, it is also possible to reduce fatigue of a rotor or the like that constitutes a wind turbine.
- FIG. 10 is an overall schematic configuration diagram of a wind farm control system of a second embodiment according to another embodiment of the present invention.
- a plurality of sensors 40 installed at the outside of the wind farm 100 for measuring the wind speed and the wind direction, etc., and the control necessity of configuring the overall control device 10 based on the wind speed and the wind direction measured by the sensor 40
- the second embodiment differs from the first embodiment in that the determination unit 12 executes a process.
- the same components as those of the first embodiment are denoted by the same reference numerals, and the description thereof will not be repeated.
- the wind farm control system 1a includes a plurality of sensors 40 disposed outside the wind farm 100 and at mutually spaced positions.
- the plurality of sensors 40 are connected to the general control device 10 via signal lines, and transmit measurement values regarding the wind conditions such as the measured wind speed and wind direction to the general control device 10.
- the change in the wind speed and the wind direction of the wind 20 can be captured by the sensor 40 before being transmitted to the plurality of wind turbines 2 installed in the wind farm 100.
- the control necessity determination unit 12 configuring the overall control device 10 measures the wind direction measured by the plurality of sensors 40, and the yaw angle error received from the control device 31 installed in each wind power generator 2 In the same manner as in the first embodiment described above, the state in which the yaw angle error exceeds the first threshold Th1 that is the predetermined threshold and exceeds the first threshold Th1 in any of the wind turbines 2
- the first threshold value Th1 of the yaw angle error of the other wind power generation device 2 is changed to the first threshold value Th1 ′ after the change depending on whether or not the predetermined period ⁇ t is continued, or the other wind power generation device 2
- Conditions such as the yaw angle, pitch angle, and torque command are calculated by the load fatigue calculation unit 14, and the conditions such as the yaw angle, pitch angle, and torque command, which are the calculation results, are set as the command value in the other wind power generator 2 Output signal line group 16 to the control device 31 Via the communication network 5.
- the control necessity determining unit 12 configuring the overall control device 10 of the wind turbine generator 2 whose yaw angle error exceeds the first threshold Th1 that is the predetermined threshold is also Change the first threshold Th1 to the first threshold Th1 ′ after the change, or calculate the conditions such as the yaw angle, pitch angle, torque command, etc. of the other wind power generator 2 in the load fatigue calculation unit 14 and perform calculation
- the conditions such as the yaw angle, the pitch angle, and the torque command, which are the results, are transmitted as command values to the control device 31 installed in the wind power generator 2 via the output signal line group 16 and the communication network 5.
- the control necessity determination unit 12 determines the yaw angle error in the wind turbine 2a located on the windward side as in the above-described first embodiment. According to whether or not the state where the first threshold Th1 which is the predetermined threshold is exceeded and the first threshold Th1 is exceeded continues for the predetermined period ⁇ t, the other wind power generating apparatus 2b located on the downwind side The first threshold Th1 of the yaw angle error of the wind turbine 2 is changed to the first threshold Th1 ′ after the change, or the yaw angle of the other wind turbine 2 including the wind turbine 2b located on the downwind side
- the load fatigue computing unit 14 computes conditions such as pitch angle, torque command, etc., and sends the computed condition as a command value to the other wind turbine 2 including the wind turbine 2b located on the downwind side.
- the wind power generation device 2 installed second from the windward side is not necessarily the wind power generation device 2a located at the windward side (the wind power generation device located first).
- the wind exceeds the first threshold Th1 which is the predetermined threshold and the first threshold Th1 is exceeded, depending on whether or not the state in which the first threshold Th1 is exceeded continues for the predetermined period ⁇ t.
- the first threshold Th1 of the yaw angle error of the other wind turbine 2 including the wind turbine 2a located on the upper side is changed to the first threshold Th1 ′ after the change, or the wind turbine positioned on the windward side
- Conditions such as yaw angle, pitch angle and torque command of other wind power generators 2 including 2a are calculated by the load fatigue calculation unit 14, and conditions which are calculation results are transmitted to the other wind power generators 2 as command values. It becomes composition.
- the difference from the first embodiment is that the wind turbine generator 2 in which the above-mentioned yaw angle error exceeds the first threshold Th1 which is a predetermined threshold is also measured by the wind direction measurement value measured by the sensor 40 and the yaw angle sensor 4d.
- the point that the control necessity can be determined by the overall control device 10 before the yaw angle error which is the difference between the measured yaw angle values actually exceeds the first threshold value Th1 which is the predetermined threshold value.
- the first threshold Th1 which is a predetermined threshold of the yaw angle error of the wind turbine 2a located on the windward side itself, is also changed.
- the first threshold Th1 which is a predetermined threshold of the yaw angle error of the wind turbine 2a located on the windward side itself
- the general control device 10 may be mounted on the control device 31 of each of the wind turbines 2 installed in the wind farm 100.
- one control device 31 serves as a master and executes the above-described control, and the yaw angle, the pitch angle, and the generator with respect to the other control devices 31 as slaves via the output signal line group 16 and the communication network 5.
- Send command values such as torque.
- the operation in addition to the effects of the first embodiment, when the sudden change in wind direction is instantaneous, the operation can be continued without stopping all the wind power generators installed in the wind farm. It becomes possible to further improve the operation rate of the wind farm.
- FIG. 11 is a whole schematic block diagram of the wind farm control system of Example 3 based on the other Example of this invention.
- the overall control device is another wind farm 200 outside the wind farm 100, or a solar power plant (not shown), or other information from a facility capable of measuring and acquiring weather information including wind speed and direction.
- the second embodiment differs from the first embodiment in that the control necessity determination unit that performs the process is executed based on the input information and based on the input information.
- control necessity determination part which comprises a general control apparatus performs processing based on the information input from the other wind farm 200
- the solar power plant which is not shown in figure, the other wind speed, and wind direction
- the overall control device inputs information from a facility capable of measuring and acquiring meteorological information including, and the control necessity determination unit configuring the overall control device executes processing based on the input information. It is.
- symbol is attached
- the wind farm control system 1b includes the general control device 10 connected to another wind farm 200 via a signal line.
- the general control device 10 receives measurement values such as the wind speed and the wind direction measured by another wind farm 200 via a signal line.
- the wind farm 100 and the wind farm 200 are provided at mutually separated positions, the wind conditions differ depending on the geographical conditions. Therefore, when using measured values such as wind speed and wind direction measured by another wind farm 200, it is desirable to use measured values by another wind farm 200 in an environment where a wind condition similar to that of the wind farm 100 exists. .
- the control necessity determination unit 12 configuring the overall control device 10 is installed in the received measured values such as the wind speed and the wind direction measured by the other wind farm 200, and the wind turbine 2a located on the windward side. The processing is executed based on the yaw angle error received from the control device 31a.
- the control necessity determination unit 12 sets a first threshold value, which is a predetermined threshold value for stopping the operation, to the yaw angle error received from the control device 31a installed in the wind turbine 2a positioned on the windward side.
- a second threshold Th2 lower than Th1 is provided, and the second threshold Th2 is used to determine whether control is necessary.
- control necessity determination unit 12 is a difference between the measured value of the wind speed and the wind direction measured by another wind farm 200 via the signal line and the measured yaw angle value measured by the yaw angle sensor 4d. If a certain yaw angle error exceeds the second threshold Th2, it is determined that control is necessary, and the first threshold Th1 of the yaw angle error of the other wind turbine 2 including the wind turbine 2a located on the windward side is changed.
- the load fatigue operation unit 14 changes the conditions such as the yaw angle, pitch angle, and torque command of the other wind turbine generator 2 including the wind turbine generator 2a which is changed to the later first threshold value Th1 ′ or located on the windward side
- the calculation is performed, and the condition that is the calculation result is transmitted as the command value to the control device 31 of the other wind power generation device 2 including the wind power generation device 2a located on the windward side.
- the control necessity determination unit 12 determines the difference between the measured value of the wind speed and the wind direction measured by another wind farm 200 via the signal line and the measured yaw angle value measured by the yaw angle sensor 4d.
- a state in which a certain yaw angle error exceeds a first threshold Th1 which is a predetermined threshold for stopping driving continues for a predetermined period ⁇ t
- the output signal line group 16 and the communication network from the command value determination unit 13 An operation stop command is transmitted as a command value to the control device 31a of the wind turbine 2a located on the windward side through 5 as a command value.
- the control command can be transmitted to the other wind power generator 2 installed in the wind farm 100, and the wind power generation located on the wind side
- the apparatus 2a itself also changes the first threshold Th1 of the yaw angle error to the first threshold Th1 after the change or changes the yaw angle, pitch angle, torque command, etc. when the second threshold Th2 is exceeded. By doing this, it is possible to continue the operation without stopping.
- the general control device 10 may be mounted on the control device 31 of each of the wind turbines 2 installed in the wind farm 100.
- one control device 31 serves as a master and executes the above-described control, and the yaw angle, the pitch angle, and the generator with respect to the other control devices 31 as slaves via the output signal line group 16 and the communication network 5.
- Send command values such as torque.
- the control by the wind farm control system can be started early, and in the case where the sudden change of the wind direction is instantaneous, Operation can be continued without stopping all installed wind power generators, and it is possible to further improve the operation rate of the wind farm. Moreover, according to the present embodiment, cooperation with other wind farms is also possible.
- the wind farm control system is limited to the case where the wind turbine generator 2 installed in the wind farm is a downwind type wind turbine generator in the above-described first to third embodiments, but the wind The command value (control command) transmitted from the general control device 10 to the control device 31b of the wind turbine 2b located on the downwind side installed in the farm 100 and the control device 31 of the other wind turbine 2 has a yaw angle According to the wind direction, the free-yo that changes freely by the weathercock effect is included. As a result, when the fluctuation of the wind direction is large, it is possible to quickly follow the wind direction to the yaw angle, and it is possible to reduce the load on the drive motor of the yaw angle control device not shown.
- the yaw angle can be made to quickly follow the wind direction.
- the command value (control command) transmitted from the general control device 10 includes free yaw, it is possible to reduce the load of the drive motor of the yaw angle control device.
- the command value (control command) transmitted from the general control device 10 to the controller 31 of the above includes a command value that can speed up the tracking of the above-mentioned active yaw control of the wind turbine.
- command value (control command) transmitted from the general control device 10
- control installed in each wind power generation device 2 A command value or the like is used to shorten the time constant of the wind direction averaging time when calculating the yaw angle error by the device 31 (for example, SCADA), or to increase the output of the drive motor of the yaw angle control device (not shown).
- the present invention is not limited to the embodiments described above, but includes various modifications.
- the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
- part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
- Wind farm control system 2 Wind power generation device 2a: Wind power generation device 2b located on the windward side: Wind power generation device 3 located on the windward side: Operation management center 4a: Pitch angle sensor 4b: Strain sensor 4c ... Wind direction anemometer 4 d ... Yaw angle sensor 5 ... Communication network 6 ... Electronic terminal 7 ... Server 10 ... Overall control device 11 ... Yaw angle error abnormal value judgment unit 12 ... Control necessity judgment unit 13 ... Command value determination unit 14 ...
- Load Fatigue operation unit 15 Input signal line group 16: Output signal line group 20: Wind 21: Tower 22: Nacelle 23: Hub 24: Hub 24: Blade 25: Main shaft 26: Shrink disk 27: Speed increaser 28: Generator 29: Main frame 30: Power converter 31, 31a, 31b: Control device 40: Sensor 100, 200: Wind farm
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
Abstract
急激な風向の変動が瞬時的である場合では、ウィンドファームにおける稼働率を向上し、発電電力量を増加し得るウィンドファーム制御システムを提供する。 ウィンドファーム制御システム1は、少なくとも風を受けて回転するロータとナセル22とナセル22をヨー回転可能に支持するタワー21と制御装置31を備える風力発電装置2を、複数備えるウィンドファーム100を有する。ウィンドファーム100に設置される複数の風力発電装置2のうち、風向の急激な変動を検知した一の風力発電装置2の制御装置31より送信される少なくとも風向計測値及びヨー角計測値より求まるヨー角誤差が、所定の期間において所定の第1の閾値以内か否かを判定し、判定結果に基づき他の風力発電装置2の所定の第1の閾値の変更又はヨー角を含む指令値を他の風力発電装置2の制御装置31へ送信する。
Description
本発明は、複数基の風力発電装置を備えるウィンドファームの制御システムに係り、特に、急激な風向の変動が生じた場合においても、ウィンドファームにおける稼働率を向上し得るウィンドファーム制御システム及びウィンドファームの制御方法に関する。
石油など化石燃料の枯渇が懸念されるようになって久しく、また、地球環境の温暖化対策のために、CO2の排出削減が全世界で解決すべき急務の課題となっている。これらの課題の解決を図るために、化石燃料を使用せず、また、CO2も排出しない発電の方法として、太陽光発電や風力発電など自然エネルギーを用いた発電の導入が世界中で急速に進行している。
これに伴って、2基以上の風力発電装置からなる風力発電装置群(以下、ウィンドファームと称する)も増加している。風力発電装置の導入量が増加し、基幹電源としての役割を求められるに伴って、ウィンドファーム全体での発電電力量の向上が望まれている。そのため、風力発電装置はロータ面の向きを風向に正対させるヨー角制御(アクティブヨー制御)を行い、発電電力量を向上させている。
例えば、特許文献1には、ウィンドファーム内の検知部で外部環境の危険要素を感知した場合、ウィンドファーム内の風力発電装置に停止指令を送ることで、ウィンドファームの全体システムの故障を未然に防止する技術が提案されている。なお、特許文献1では、外部環境の危険要素が急激な局地的な風向変化に該当する場合は、各風力発電装置のヨーイングシステムを制御して、変化した風向に向けてナセルの正面が位置されるようにナセルの方向を回転させる(アクティブヨー制御する)旨記載されている。
これに伴って、2基以上の風力発電装置からなる風力発電装置群(以下、ウィンドファームと称する)も増加している。風力発電装置の導入量が増加し、基幹電源としての役割を求められるに伴って、ウィンドファーム全体での発電電力量の向上が望まれている。そのため、風力発電装置はロータ面の向きを風向に正対させるヨー角制御(アクティブヨー制御)を行い、発電電力量を向上させている。
例えば、特許文献1には、ウィンドファーム内の検知部で外部環境の危険要素を感知した場合、ウィンドファーム内の風力発電装置に停止指令を送ることで、ウィンドファームの全体システムの故障を未然に防止する技術が提案されている。なお、特許文献1では、外部環境の危険要素が急激な局地的な風向変化に該当する場合は、各風力発電装置のヨーイングシステムを制御して、変化した風向に向けてナセルの正面が位置されるようにナセルの方向を回転させる(アクティブヨー制御する)旨記載されている。
低気圧の通過などで風向が急変すると、アクティブヨー制御の追従が間に合わず、急変した風向からの風荷重から風力発電装置を保護するために風力発電装置を停止する保護機能が風力発電装置に搭載されている。しかしながら、風向は風の乱れによって常に変動しており、風向の急変と、短時間で元に戻る風向の変動を区別することは困難である。風向の変動により風力発電装置を停止した場合、風力発電装置の稼働率が低下し、発電電力量が減少する。さらに、ウィンドファーム内の他の風力発電装置も、同様の風向の変動により停止すると、ウィンドファーム全体の稼働率の低下を招く。
特許文献1に記載される構成では、仮に急激な風向の変動が瞬時的に生じた場合(短時間で元に戻る風向の変動)であっても、アクティブヨー制御で対応が困難と判断されると、本来であればウィンドファーム内の他の風力発電装置が稼働し得る場合であっても、ウィンドファーム内の全ての風力発電装置が停止され、発電効率が低下する虞がある。
特許文献1に記載される構成では、仮に急激な風向の変動が瞬時的に生じた場合(短時間で元に戻る風向の変動)であっても、アクティブヨー制御で対応が困難と判断されると、本来であればウィンドファーム内の他の風力発電装置が稼働し得る場合であっても、ウィンドファーム内の全ての風力発電装置が停止され、発電効率が低下する虞がある。
そこで、本発明は、急激な風向の変動が瞬時的である場合では、ウィンドファームにおける稼働率を向上し、発電電力量を増加し得るウィンドファーム制御システム及びウィンドファームの制御方法を提供する。
上記課題を解決するため、本発明に係るウィンドファーム制御システムは、少なくとも風を受けて回転するロータとナセルと前記ナセルをヨー回転可能に支持するタワーと制御装置を備える風力発電装置を、複数備えるウィンドファームを有し、前記ウィンドファームに設置される複数の風力発電装置のうち、風向の急激な変動を検知した一の風力発電装置の制御装置より送信される少なくとも風向計測値及びヨー角計測値より求まるヨー角誤差が、所定の期間において所定の第1の閾値以内か否かを判定し、判定結果に基づき他の風力発電装置の前記所定の第1の閾値の変更又はヨー角を含む指令値を前記他の風力発電装置の制御装置へ送信することを特徴とする。
また、本発明に係るウィンドファームの制御方法は、少なくとも風を受けて回転するロータとナセルと前記ナセルをヨー回転可能に支持するタワーと制御装置を備える風力発電装置を、複数備えるウィンドファームの制御方法であって、前記ウィンドファームに設置される複数の風力発電装置のうち、風向の急激な変動を検知した一の風力発電装置の制御装置より送信される少なくとも風向計測値及びヨー角計測値より求まるヨー角誤差が、所定の期間において所定の第1の閾値以内か否かを判定し、判定結果に基づき他の風力発電装置の前記所定の第1の閾値の変更又はヨー角を含む指令値を前記他の風力発電装置の制御装置へ送信することを特徴とする。
また、本発明に係るウィンドファームの制御方法は、少なくとも風を受けて回転するロータとナセルと前記ナセルをヨー回転可能に支持するタワーと制御装置を備える風力発電装置を、複数備えるウィンドファームの制御方法であって、前記ウィンドファームに設置される複数の風力発電装置のうち、風向の急激な変動を検知した一の風力発電装置の制御装置より送信される少なくとも風向計測値及びヨー角計測値より求まるヨー角誤差が、所定の期間において所定の第1の閾値以内か否かを判定し、判定結果に基づき他の風力発電装置の前記所定の第1の閾値の変更又はヨー角を含む指令値を前記他の風力発電装置の制御装置へ送信することを特徴とする。
本発明によれば、急激な風向の変動が瞬時的である場合では、ウィンドファームにおける稼働率を向上し、発電電力量を増加し得るウィンドファーム制御システム及びウィンドファームの制御方法を提供することが可能となる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本明細書では、本発明の実施形態に係るウィンドファーム制御システムを構成するウィンドファーム内に設置される各風力発電装置として、ダウンウィンド型の風力発電装置を一例として説明するが、アップウィンド型の風力発電装置においても同様に適用できる。また、本発明の実施形態に係るウィンドファーム制御システムを構成するウィンドファームは、洋上、山岳部及び平野部の何れの場所にも設けることができる。
以下、本発明を実施する上で好適な実施例について図面を用いて説明する。尚、下記はあくまでも実施の例であって、本発明の適用対象を下記具体的態様に限定することを意図する趣旨ではない。
以下、本発明を実施する上で好適な実施例について図面を用いて説明する。尚、下記はあくまでも実施の例であって、本発明の適用対象を下記具体的態様に限定することを意図する趣旨ではない。
図1は、本発明の一実施例に係る実施例1のウィンドファーム制御システムの全体概略構成図である。図1に示すように、ウィンドファーム制御システム1は、風力発電装置2a及び風力発電装置2bを含む複数基の風力発電装置2が設置されたウィンドファーム100と、各風力発電装置内に設置され、ヨー角指令やトルク指令等を与える制御装置31(31a,31b)と、各風力発電装置2の運転・停止状態、風向・風速計測値、及びヨー角等の情報を収集すると共に各制御装置31に対してヨー角制御指令またはトルク上限値等を送信する全体制御装置10と、複数の制御装置31間及び各制御装置31と全体制御装置10とを相互に通信可能に接続する通信ネットワーク5を備える。ここで通信ネットワーク5は、有線であるか、無線であるかを問わない。なお、図1に示す例では、白抜き矢印にて示す風20が発生している場合を想定しており、ウィンドファーム100内に設置される複数基の風力発電装置のうち、風力発電装置2aが最も風上側に位置し、風力発電装置2bを含む他の風力発電装置2が風下側に位置する場合を示している。
なお以下では、特定の風力発電装置を示す場合に、風上側に位置する風力発電装置2a及び風下側に位置する風力発電装置2b、風上側に位置する風力発電装置2a内に設置される制御装置31a及び風下側に位置する風力発電装置2b内に設置される制御装置31bと表現する。また、ウィンドファーム100内に設置される任意の風力発電装置或いは全ての風力発電装置を示す場合には、風力発電装置2及び風力発電装置2内に設置される制御装置31と表現するものとする。
なお以下では、特定の風力発電装置を示す場合に、風上側に位置する風力発電装置2a及び風下側に位置する風力発電装置2b、風上側に位置する風力発電装置2a内に設置される制御装置31a及び風下側に位置する風力発電装置2b内に設置される制御装置31bと表現する。また、ウィンドファーム100内に設置される任意の風力発電装置或いは全ての風力発電装置を示す場合には、風力発電装置2及び風力発電装置2内に設置される制御装置31と表現するものとする。
ここで、ウィンドファーム100に設置される複数基の風力発電装置2の構成について説明する。図2は、図1に示すウィンドファーム制御システム1であって、ウィンドファーム100内に設置される風力発電装置2の概略構成を示す図である。図2では説明の便宜上1基の風力発電装置2の構成のみを示すが、ウィンドファーム100内に設置される他の複数基の風力発電装置2も同様の構成を有する。
図2に示すように、風力発電装置2は、風を受けて回転するブレード24、ブレード24を支持するハブ23、ナセル22、及びナセル22を回動可能に支持するタワー21を備える。ナセル22内に、ハブ23に接続されハブ23と共に回転する主軸25、主軸25に連結されるシュリンクディスク26、シュリンクディスク26を介して主軸25に接続され回転速度を増速する増速機27、及び増速機27により増速された回転速度で回転子を回転させて発電運転する発電機28を備えている。ブレード24の回転エネルギーを発電機28に伝達する部位は、動力伝達部と称され、本実施例では、主軸25、シュリンクディスク26、及び増速機27が動力伝達部に含まれる。そして、増速機27及び発電機28は、メインフレーム29上に保持されている。また、ブレード24及びハブ23によりロータが構成される。図2に示すように、タワー21内の底部(下部)に、電力の周波数を変換する電力変換器30、電流の開閉を行うスイッチング用の開閉器及び変圧器(図示せず)、及び制御装置31等が配されている。
図2に示すように、風力発電装置2は、風を受けて回転するブレード24、ブレード24を支持するハブ23、ナセル22、及びナセル22を回動可能に支持するタワー21を備える。ナセル22内に、ハブ23に接続されハブ23と共に回転する主軸25、主軸25に連結されるシュリンクディスク26、シュリンクディスク26を介して主軸25に接続され回転速度を増速する増速機27、及び増速機27により増速された回転速度で回転子を回転させて発電運転する発電機28を備えている。ブレード24の回転エネルギーを発電機28に伝達する部位は、動力伝達部と称され、本実施例では、主軸25、シュリンクディスク26、及び増速機27が動力伝達部に含まれる。そして、増速機27及び発電機28は、メインフレーム29上に保持されている。また、ブレード24及びハブ23によりロータが構成される。図2に示すように、タワー21内の底部(下部)に、電力の周波数を変換する電力変換器30、電流の開閉を行うスイッチング用の開閉器及び変圧器(図示せず)、及び制御装置31等が配されている。
制御装置31として、例えは、制御盤又はSCADA(Supervisory Control And Data Acquisition)が用いられる。
本実施例では、3枚のブレード24とハブ23にてロータを構成する例を示すが、これに限られず、ロータはハブと少なくとも1枚のブレード24にて構成しても良い。
本実施例では、3枚のブレード24とハブ23にてロータを構成する例を示すが、これに限られず、ロータはハブと少なくとも1枚のブレード24にて構成しても良い。
風力発電装置2に設置されるセンサ4は、例えば、ブレード24の根元に設置されブレード24のピッチ角を計測するピッチ角センサ4a、ブレード24に付加される応力を計測する歪センサ4b、ナセル22の上部に設置される風向風速計4c、及びナセル22の方位角を計測するヨー角センサ4dを含む。また、図示しないが風力発電装置2に設置されるセンサ4として、例えば、ナセル22の上部に設置され外気温度を計測する温度計、ナセル22内の温度を計測する温度計、及びナセル22内の湿度を計測する湿度計も含まれる。また、更には、図示しない、発電機28の回転数、発電量などを計測するセンサを含む。なお、上述の全てのセンサを設置する構成に限られるものではない。
制御装置31(例えば、SCADA)は、上述のピッチ角センサ4a、歪センサ4b、風向風速計4c、ヨー角センサ4d、及び上述の各種センサ4から信号線を介して計測データを取得し、当該取得された計測データに基づき、ピッチ角、ナセル方位角(ヨー角指令)、発電機回転速度等を適切に制御すると共に、取得された計測データを、通信ネットワーク5を介して、例えば、運転管理センター3内に設置されるサーバ7へ送信する。運転管理センター3内には、更に、サーバ7と通信可能に接続される電子端末6が設置されている。例えばサーバ7は、図1に示した全体制御装置10として機能する。また、制御装置31(例えば、SCADA)は、取得された計測データを図1に示すウィンドファーム100を構成する他の風力発電装置2内に設置される制御装置31へ、通信ネットワーク5を介して送信する。
図3は、図1に示す全体制御装置10の機能を示すブロック線図である。図3に示すように、全体制御装置10は、ヨー角誤差異常値判定部11、制御要否判定部12、指令値決定部13、及び荷重疲労演算部14から構成されている。これら、ヨー角誤差異常値判定部11、制御要否判定部12、指令値決定部13、及び荷重疲労演算部14は、例えば、図示しないCPU(Central Processing Unit)などのプロセッサ、各種プログラムを格納するROM、演算過程のデータを一時的に格納するRAM、外部記憶装置などの記憶装置にて実現されると共に、CPUなどのプロセッサがROMに格納された各種プログラムを読み出し実行し、実行結果である演算結果をRAM又は外部記憶装置に格納する。なお、図3では機能毎にブロックにて示すが、これらは上述の通りプログラムにて後述する機能が実現されるものであるため、それぞれ独立したプログラム、或いは、全て又は複数の機能の組み合わせのプログラムを図示しない記憶部に格納する構成としても良い。
ヨー角誤差異常値判定部11は、図1及び図2に示す各制御装置31(例えば、SCADA)から送信される、風力発電装置2の運転停止情報、風向風速計4cにより計測された風向計測値、及びヨー角センサ4dにより計測されたヨー角計測値等を、通信ネットワーク5を介して入力信号線群15より受信する。ヨー角誤差異常値判定部11は、運転を停止した風力発電装置2が存在する場合には、当該停止した風力発電装置2の風向計測値とヨー角計測値の差分であるヨー角誤差の値が、所定の閾値を超えているか否かを判定する。なお、ここで、ヨー角誤差は、各風力発電装置2内に設置される制御装置31(例えば、SCADA)により、風向風速計4cにより計測された風向計測値及びヨー角センサ4dにより計測されたヨー角計測値の差分として求められる。求められたヨー角誤差は、上述の通信ネットワーク5及び入力信号線群15を介してヨー角誤差異常値判定部11に受信される。
制御要否判定部12は、ヨー角誤差異常値判定部11による判定の結果、ヨー角誤差の値が所定の閾値を超えていた場合、停止した風力発電装置2は風向の急変により停止したものと判断する。そして、制御要否判定部12は、風向風速計4cにより計測された風向及び風速の計測値から、荷重疲労演算部14を用いてウィンドファーム100内の他の風力発電装置2に疲労が発生する可能性があるかどうかを判定する。例えば、図2に示すように、ブレード24に付加される応力を計測する歪センサ4bを有する場合は、当該歪センサ4bにより計測された歪量を荷重疲労演算部14が荷重に変換し、ウィンドファーム100内の他の風力発電装置2に疲労が発生する可能性があるか否かを判定する。また、歪センサ4bを有しない場合には、荷重疲労演算部14は、風向風速計4cにより計測された風向及び風速の計測値並びに受信されたヨー角誤差、更には、風向のプロファイルの変動(風向変動の時系列データ)に基づき、ウィンドファーム100内の他の風力発電装置2に疲労が発生する可能性があるか否かを判定する。疲労による破損が生じるか否かは、例えば、風力発電装置2の仕様に基づき判定可能である。なお、荷重疲労発生の演算手法については、既知の手法を用いれば良い。
指令値決定部13は、制御要否判定部12によりウィンドファーム100内の他の風力発電装置2に疲労が発生する可能性があると判定された場合に、風向風速計4cにより計測される風向及び風速の計測値から、荷重疲労演算部14を用いて、ウィンドファーム100内の他の風力発電装置2の制御方法、すなわち、ヨー角、ピッチ角、発電機トルク等の指令値を演算し、求めたヨー角、ピッチ角、発電機トルク等の指令値を、出力信号線群16及び通信ネットワーク5を介して対応する各制御装置31に送信する。
図4は、図3に示す全体制御装置10を構成する制御要否判定部12における制御要否の判定基準の一例を示すグラフである。グラフは、最も風上側に位置する風力発電装置2aに設置される制御装置31a(図1)から通信ネットワーク5及び入力信号線群15を介して送信される、風力発電装置2aの稼働停止状態、風速、風向、及びヨー角誤差の時間変化(経時変化)をそれぞれ示している。風力発電装置2aのヨー角と風向の偏差であるヨー角誤差が、時間t1にて所定の閾値である第1の閾値Th1を超過したことにより、風力発電装置2aが停止した場合を示している。一度風力発電装置を停止すると、一定の時間停止を継続し、その後再起動する。換言すれば、風力発電装置は、一旦停止されると再稼働(再起動)までに一定の時間を要する。図4のヨー角誤差の時間変化(経時変化)のグラフに示されるように、所定時間Δt内に制御装置31aより送信されるヨー角誤差が所定の閾値である第1の閾値Th1を下回った場合には、本来停止が必要ではない風向の変動と判定し、換言すれば、瞬時的な風向の変動と判定し、ウィンドファーム100内の他の風力発電装置2に対するヨー角誤差の閾値を高めに補正する。ここで、所定時間Δt(t2-t1)は、風向の急激な変動が瞬時的なものか、継続的なものかを判断する上で重要となる。例えば、過去の実績データ或いは、風力発電装置2の仕様(設計値)などに基づき、上述の荷重負荷が過負荷となることに因る風力発電装置2を構成するロータの破損或いは損傷が生じ得ないで範囲で適宜設定される。従って、所定時間Δt以内にヨー角誤差が所定の閾値である第1の閾値Th1を下回れば、他の風力発電装置2を停止することなく、ヨー角制御により継続して他の風力発電装置2を稼働させることができる。
図5は、本実施例に係る風力発電装置のヨー角誤差の閾値を高めに変更したときの一例を示すグラフである。すなわち、全体制御装置10を構成する制御要否判定部12が制御要と判定した場合において、ウィンドファーム100内の他の風力発電装置2である、例えば、風下側に位置する風力発電装置2bの制御装置31b(図1)より送信されるヨー角誤差の閾値を高めに変更したときの一例を示すグラフである。風力発電装置2bにおいて、制御によりヨー角誤差の所定の閾値である第1の閾値Th1から変更後の第1の閾値Th1’に変更されることで、時間t2で発生する風向の急変ではヨー角誤差は、変更後の第1の閾値Th1’を超過せず、風下側に位置する風力発電装置2bは停止せずに運転を継続する。なお、図5においてヨー角誤差の所定の閾値が変更後の第1の閾値Th1’に変更される時間がt2となっているのは、図1に示すように、ウィンドファーム100内に設置される風力発電装置の位置に応じて遅れ(制御ディレイ:信号を受信してからの遅れ)が生じるものの時間t2にて、風下側に位置する風力発電装置2bに設置される制御装置31b(例えば、SCADA)が、ヨー角誤差の所定の閾値である第1の閾値Th1から変更後の第1の閾値Th1’に変更されるようヨー角の制御を開始した場合を例示している。すなわち、図4と図5によるヨー角誤差の時間変化(経時変化)における遅れは、図4に示すヨー角誤差の時間変化(経時変化)が、ウィンドファーム100内に設置される風力発電装置2のうち、最も風上側に位置する風力発電装置2aの制御装置31a(他えば、SCADA)により演算されたものである。これに対し、図5に示すヨー角誤差の時間変化(経時変化)は、ウィンドファーム100内に設置される風力発電装置2のうち、風下側に位置する風力発電装置2bの制御装置31b(他えば、SCADA)により演算されたものである。従って、風力発電装置2のウィンドファーム100内における設置位置による遅れ及び制御ディレイが含まれ、図5に示すようなヨー角誤差の時間変化を示すグラフとなる。
なお、ヨー角誤差の所定の閾値である第1の閾値Th1は、設計値として、例えば20°~30°の範囲内で適宜設定される。また、変更後の第1の閾値Th1’は、例えば45°に設定される。なお、ヨー角誤差の所定の閾値である第1の閾値Th1及び変更後の第1の閾値Th1’は、上記の値に限られるものではない。風力発電装置2の設計値或いは仕様に基づき適宜設定すれば良い。
なお、ヨー角誤差の所定の閾値である第1の閾値Th1は、設計値として、例えば20°~30°の範囲内で適宜設定される。また、変更後の第1の閾値Th1’は、例えば45°に設定される。なお、ヨー角誤差の所定の閾値である第1の閾値Th1及び変更後の第1の閾値Th1’は、上記の値に限られるものではない。風力発電装置2の設計値或いは仕様に基づき適宜設定すれば良い。
図6は、図3に示す全体制御装置10を構成する制御要否判定部12における制御要否の判定基準の他の一例を示すグラフである。図6に示すように、図4と同様に、ウィンドファーム100内に設置される複数基の風力発電装置2のうち、最も風上側に位置する風力発電装置2aに設置される制御装置31a(他えば、SCADA)により求められるヨー角誤差が、所定の閾値である第1の閾値Th1を超過したことで、風力発電装置2aが停止した状態であるが、図4と異なり、所定時間Δt内にヨー角誤差の値が所定の閾値である第1の閾値Th1を下回らない状態を示している。このような場合には、実際に風向の急変が発生していると判定し、換言すれば、瞬時的な風向の変動でなく継続的な風向の変動と判定し、ウィンドファーム100内に設置される他の風力発電装置2、すなわち、風下側に位置する風力発電装置2bを含む他の風力発電装置2に対して、疲労が発生する可能性があるものとして、風上側に位置する風力発電装置2aに設置される制御装置31a(他えば、SCADA)より送信された風向及び風速条件に基づいて、風下側に位置する風力発電装置2bを含む他の風力発電装置2が運転を継続可能なヨー角、ピッチ角、トルク指令値等の条件を荷重疲労演算部14が演算する。そして求められた条件を指令値として、出力信号線群16及び通信ネットワーク5を介して、風下側に位置する風力発電装置2bに設置される制御装置31b及び他の風力発電装置2に設置される制御装置31へ送信する。
図7は、本実施例に係る風力発電装置のヨー角を変更するように制御したときの一例を示すグラフである。すなわち、図7は、上述のように、全体制御装置10を構成する制御要否判定部12が制御要と判定した場合に、ウィンドファーム100内に設置される風下側に位置する風力発電装置2bを含む他の風力発電装置2でヨー角を変更するように制御したときの一例を示すグラフである。風下側に位置する風力発電装置2bにおいて、制御によりヨー角が風向に追従し、ヨー各誤差が所定の閾値である第1の閾値Th1を超過することなく、風下側に位置する風力発電装置2bは停止せずに運転を継続する。他の風力発電装置2についても同様である。なお、ヨー角を風向に追従させたことで、荷重による疲労も防止できる。
図8は、比較例に係るウィンドファーム内の複数基の風力発電装置の運転状態を示す図であり、図9は、本実施例に係るウィンドファーム内の複数基の風力発電装置の運転状態を示す図である。なお、図8及び図9共に、条件として、瞬時的な風向の変動が生じた場合の複数基の風力発電装置の運転状態を示している。
図8では、比較例として従来のウィンドファーム内に設置される、風上側に位置する風力発電装置2a、風力発電装置2b1、風力発電装置2b2、及び風力発電装置2b3の運転状態を時系列に示している。図8において、時刻00:03において、風上側に位置する風力発電装置2aがヨー角誤差により停止し、その後、同様のヨー角誤差が風力発電装置2b1にて時刻00:04において発生し停止する。また、時刻00:06において、ヨー角誤差により風力発電装置2b2が停止し、時刻00:07において、ヨー角誤差により風力発電装置2b3が停止する。このためウィンドファームの稼働率が低下する。
図8では、比較例として従来のウィンドファーム内に設置される、風上側に位置する風力発電装置2a、風力発電装置2b1、風力発電装置2b2、及び風力発電装置2b3の運転状態を時系列に示している。図8において、時刻00:03において、風上側に位置する風力発電装置2aがヨー角誤差により停止し、その後、同様のヨー角誤差が風力発電装置2b1にて時刻00:04において発生し停止する。また、時刻00:06において、ヨー角誤差により風力発電装置2b2が停止し、時刻00:07において、ヨー角誤差により風力発電装置2b3が停止する。このためウィンドファームの稼働率が低下する。
これに対し、図9は本実施例の上述の制御を適用した場合の運転状態を示しており、時刻00:03で風上側に位置する風力発電装置2aがヨー角誤差により停止したときに、上述の全体制御装置10を構成する制御要否判定部12が制御要と判定し、風力発電装置2b1、風力発電装置2b2、及び風力発電装置2b3のヨー角誤差の所定の閾値である第1の閾値Th1を変更後の第1の閾値Th1’に変更することにより、風力発電装置2b1、風力発電装置2b2、及び風力発電装置2b3は、同様の風向変動でも停止せずに運転を継続し、運転状態として稼働状態を維持している。これによりウィンドファーム全体の稼働率が向上できる。
なお、本実施例では全体制御装置10を、ウィンドファーム100より離間する位置にある運転管理センター3内に設置されるサーバ7に実装する構成を説明したが、これに限られるものではない。例えば、全体制御装置10を、ウィンドファーム100内に設置される各風力発電装置2の制御装置31に実装する構成としても良い。この場合、一つの制御装置31がマスターとなり上述の制御を実行し、スレーブである他の制御装置31に対し、出力信号線群16及び通信ネットワーク5を介して、ヨー角、ピッチ角、発電機トルク等の指令値を送信する。
以上の通り本実施例によれば、急激な風向の変動が瞬時的である場合では、ウィンドファームにおける稼働率を向上し、発電電力量を増加し得るウィンドファーム制御システム及びウィンドファームの制御方法を提供することが可能となる。
また、本実施例によれば、風力発電装置を構成するロータ等の疲労を低減することも可能となる。
また、本実施例によれば、風力発電装置を構成するロータ等の疲労を低減することも可能となる。
図10は、本発明の他の実施例に係る実施例2のウィンドファーム制御システムの全体概略構成図である。本実施例では、ウィンドファーム100の外部に複数台設置される風速及び風向等を計測するセンサ40を有し、センサ40により計測された風速及び風向に基づき全体制御装置10を構成する制御要否判定部12が処理を実行する点が実施例1と異なる。実施例1と同様の構成要素に同一の符号を付し、以下では実施例1と重複する説明を省略する。
図10に示すように本実施例に係るウィンドファーム制御システム1aは、ウィンドファーム100の外部であって相互に離間する位置に配される複数のセンサ40を備える。複数のセンサ40は、信号線を介して全体制御装置10に接続され、計測される風速及び風向等の風況に関する計測値を全体制御装置10へ送信する。このような構成とすることで、風20の風速及び風向の変化は、ウィンドファーム100内に設置される複数基の風力発電装置2に伝わる前にセンサ40にて捉えることが可能となる。全体制御装置10を構成する制御要否判定部12は、複数のセンサ40にて計測された風向の計測値、及び、各風力発電装置2に設置される制御装置31から受信されるヨー角誤差に基づき、上述の実施例1と同様に、いずれかの風力発電装置2で、ヨー角誤差が所定の閾値である第1の閾値Th1を超過し、第1の閾値Th1を超過した状態が、所定の期間Δt継続しているか否かによって、他の風力発電装置2のヨー角誤差の第1の閾値Th1を変更後の第1の閾値Th1’へ変更するか、または他の風力発電装置2のヨー角、ピッチ角、トルク指令等の条件を荷重疲労演算部14で演算し、演算結果であるヨー角、ピッチ角、トルク指令等の条件を指令値として当該他の風力発電装置2に設置される制御装置31へ出力信号線群16及び通信ネットワーク5を介して送信する。この場合において、上記ヨー角誤差が所定の閾値である第1の閾値Th1を超過した風力発電装置2に対しても、全体制御装置10を構成する制御要否判定部12は、ヨー角誤差の第1の閾値Th1を変更後の第1の閾値Th1’へ変更するか、または他の風力発電装置2のヨー角、ピッチ角、トルク指令等の条件を荷重疲労演算部14で演算し、演算結果であるヨー角、ピッチ角、トルク指令等の条件を指令値として当該風力発電装置2に設置される制御装置31へ出力信号線群16及び通信ネットワーク5を介して送信する。
ここで、図10に示すような風20の風向である場合、上述の実施例1と同様に、制御要否判定部12は、最も風上側に位置する風力発電装置2aで、ヨー角誤差が所定の閾値である第1の閾値Th1を超過し、第1の閾値Th1を超過した状態が、所定の期間Δt継続しているか否かによって、風下側に位置する風力発電装置2bを含む他の風力発電装置2のヨー角誤差の第1の閾値Th1を変更後の第1の閾値Th1’へ変更するか、または風下側に位置する風力発電装置2bを含む他の風力発電装置2のヨー角、ピッチ角、トルク指令等の条件を荷重疲労演算部14で演算し、演算結果である条件を指令値として風下側に位置する風力発電装置2bを含む他の風力発電装置2へ送信する。なお、例えば、ウィンドファーム100が山岳部に設けられている場合においては、山岳部の斜面の形状に依存し、斜面を下から上へと吹き上げる風20が発生し得る。従って、このような場合、必ずしも最も風上側に位置する風力発電装置2a(1番目に位置する風力発電装置)ではなく、風上より2番目に設置される風力発電装置2、例えば、風下側に位置する風力発電装置2bで、ヨー角誤差が所定の閾値である第1の閾値Th1を超過し、第1の閾値Th1を超過した状態が、所定の期間Δt継続しているか否かによって、風上側に位置する風力発電装置2aを含む他の風力発電装置2のヨー角誤差の第1の閾値Th1を変更後の第1の閾値Th1’へ変更するか、または風上側に位置する風力発電装置2aを含む他の風力発電装置2のヨー角、ピッチ角、トルク指令等の条件を荷重疲労演算部14で演算し、演算結果である条件を指令値として当該他の風力発電装置2へ送信する構成となる。
実施例1との相違は、上述のヨー角誤差が所定の閾値である第1の閾値Th1を超過した風力発電装置2も、センサ40により計測された風向計測値とヨー角センサ4dにより計測されるヨー角計測値の差分であるヨー角誤差が実際に所定の閾値である第1の閾値Th1を超過する前に全体制御装置10により制御要否を判定できる点にある。これにより、本実施例に係るウィンドファーム制御システム1aでは、例えば、最も風上側に位置する風力発電装置2a自身のヨー角誤差の所定の閾値である第1の閾値Th1、ヨー角等も変更することで、ウィンドファーム100内のいずれの風力発電装置2も停止することなく、運転を継続できる特徴がある。
なお、本実施例では全体制御装置10を、ウィンドファーム100より離間する位置にある運転管理センター3内に設置されるサーバ7に実装する構成を説明したが、これに限られるものではない。例えば、全体制御装置10を、ウィンドファーム100内に設置される各風力発電装置2の制御装置31に実装する構成しても良い。この場合、一つの制御装置31がマスターとなり上述の制御を実行し、スレーブである他の制御装置31に対し、出力信号線群16及び通信ネットワーク5を介して、ヨー角、ピッチ角、発電機トルク等の指令値を送信する。
本実施例によれば、実施例1の効果に加え、急激な風向の変動が瞬時的である場合では、ウィンドファーム内に設置される全ての風力発電装置を停止することなく運転継続することが可能となり、更にウィンドファームにおける稼働率を向上することが可能となる。
図11は、本発明の他の実施例に係る実施例3のウィンドファーム制御システムの全体概略構成図である。本実施例では、ウィンドファーム100の外部にある他のウィンドファーム200、または、図示しない太陽光発電所、その他風速及び風向を含む気象情報を計測及び取得し得る施設からの情報を、全体制御装置が入力し、当該入力された情報に基づき全体制御装置を構成する制御要否判定部が処理を実行する点が実施例1と異なる。以下では、他のウィンドファーム200から入力された情報に基づき全体制御装置を構成する制御要否判定部が処理を実行する場合を一例として説明するが、図示しない太陽光発電所、その他風速及び風向を含む気象情報を計測及び取得し得る施設からの情報を、全体制御装置が入力し、当該入力された情報に基づき全体制御装置を構成する制御要否判定部が処理を実行する場合においても同様である。実施例1と同様の構成要素に同一の符号を付し、実施例1と重複する説明を省略する。
図11に示すように、本実施例に係るウィンドファーム制御システム1bは、他のウィンドファーム200と信号線を介して接続される全体制御装置10を備える。全体制御装置10は、信号線を介して他のウィンドファーム200により計測された風速及び風向等の計測値を受信する。なお、ウィンドファーム100及びウィンドファーム200が相互に離間した位置に設けられている場合、地理的状況によって風況は異なる。従って、他のウィンドファーム200により計測された風速及び風向等の計測値を用いる場合は、ウィンドファーム100と同様の風況が存在する環境にある他のウィンドファーム200による計測値を用いることが望ましい。
全体制御装置10を構成する制御要否判定部12は、受信された他のウィンドファーム200より計測された風速及び風向等の計測値、及び、最も風上側に位置する風力発電装置2aに設置される制御装置31aから受信されるヨー角誤差に基づき処理を実行する。ここで、制御要否判定部12は、最も風上側に位置する風力発電装置2aに設置される制御装置31aから受信されるヨー角誤差に、運転を停止する所定の閾値である第1の閾値Th1よりも低い第2の閾値Th2を設け、制御要否の判定に第2の閾値Th2を用いる。具体的には、制御要否判定部12は、信号線を介して他のウィンドファーム200により計測された風速及び風向等の計測値とヨー角センサ4dにより計測されたヨー角計測値の差分であるヨー角誤差が第2の閾値Th2を超過した場合、制御要と判定し、風上側に位置する風力発電装置2aを含む他の風力発電装置2のヨー角誤差の第1の閾値Th1を変更後の第1の閾値Th1’へ変更するか、または風上側に位置する風力発電装置2aを含む他の風力発電装置2のヨー角、ピッチ角、トルク指令等の条件を荷重疲労演算部14で演算し、演算結果である条件を指令値として風上側に位置する風力発電装置2aを含む他の風力発電装置2の制御装置31へ送信する。なお、このとき、制御要否判定部12は、信号線を介して他のウィンドファーム200により計測された風速及び風向等の計測値とヨー角センサ4dにより計測されたヨー角計測値の差分であるヨー角誤差が、運転を停止する所定の閾値である第1の閾値Th1を超過した状態が、所定の期間Δt継続している場合、指令値決定部13より出力信号線群16及び通信ネットワーク5を介して最も風上側に位置する風力発電装置2aの制御装置31aへ運転停止指令を指令値として送信する。これにより、風上側に位置する風力発電装置2aが停止する以前に、ウィンドファーム100内に設置される他の風力発電装置2に制御指令を送信することができると共に、風上側に位置する風力発電装置2a自身も、第2の閾値Th2を超過した時点で、ヨー角誤差の第1の閾値Th1を変更後の第1の閾値Th1’へ変更、若しくはヨー角、ピッチ角、トルク指令等を変更することで、停止することなく運転を継続することが可能となる。
ウィンドファーム100の計測情報を、全体制御装置10により信号線を介して他のウィンドファーム200に送信することで、他のウィンドファーム200においても上述のウィンドファーム100内における制御と同様の制御を行うことが可能となる。
なお、本実施例では全体制御装置10を、ウィンドファーム100より離間する位置にある運転管理センター3内に設置されるサーバ7に実装する構成を説明したが、これに限られるものではない。例えば、全体制御装置10を、ウィンドファーム100内に設置される各風力発電装置2の制御装置31に実装する構成しても良い。この場合、一つの制御装置31がマスターとなり上述の制御を実行し、スレーブである他の制御装置31に対し、出力信号線群16及び通信ネットワーク5を介して、ヨー角、ピッチ角、発電機トルク等の指令値を送信する。
以上の通り本実施例によれば、実施例1の効果に加え、ウィンドファーム制御システムによる制御を早期に開始することができ、急激な風向の変動が瞬時的である場合では、ウィンドファーム内に設置される全ての風力発電装置を停止することなく運転継続することが可能となり、更にウィンドファームにおける稼働率を向上することが可能となる。
また、本実施例によれば、他のウィンドファームとの連携も可能となる。
また、本実施例によれば、他のウィンドファームとの連携も可能となる。
本実施例に係るウィンドファーム制御システムでは、上述の実施例1乃至実施例3において、ウィンドファーム内に設置される風力発電装置2がダウンウィンド型の風力発電装置である場合に限られるものの、ウィンドファーム100内に設置される風下側に位置する風力発電装置2bの制御装置31b及び他の風力発電装置2の制御装置31へ全体制御装置10より送信される指令値(制御指令)は、ヨー角を風向に応じて風見鶏効果により自由に変化させるフリーヨーを含む。これにより、風向の変動が大きい場合に、ヨー角を速やかに風向に追従できると共に、図示しないヨー角制御装置の駆動モーターの負荷を低減することが可能となる。
以上の通り本実施例によれば、実施例1の効果に加え、風向の変動が大きい場合に、ヨー角を速やかに風向に追従させることが可能となる。
また、本実施例によれば、全体制御装置10より送信される指令値(制御指令)がフリーヨーを含むことにより、ヨー角制御装置の駆動モーターの負荷を低減することが可能となる。
また、本実施例によれば、全体制御装置10より送信される指令値(制御指令)がフリーヨーを含むことにより、ヨー角制御装置の駆動モーターの負荷を低減することが可能となる。
本実施例に係るウィンドファーム制御システムでは、上述の実施例1乃至実施例4において、ウィンドファーム100内に設置される風下側に位置する風力発電装置2bの制御装置31b及び他の風力発電装置2の制御装置31へ全体制御装置10より送信される指令値(制御指令)は、風力発電装置の上述のアクティブヨー制御の追従を高速化し得る指令値を含む。具体的には、全体制御装置10より送信される指令値(制御指令)として、例えば、アクティブヨー制御を開始する最小のヨー角誤差を小さくする指令値、各風力発電装置2に設置される制御装置31(例えば、SCADA)によりヨー角誤差を演算する際の風向の平均化時間の時定数を短くする、または図示しないヨー角制御装置の駆動モーターの出力を上げる指令値等が用いられる。
以上の通り本実施例によれば、実施例1の効果に加え、アクティブヨー制御の追従を高速化することが可能となる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
1,1a,1b…ウィンドファーム制御システム
2…風力発電装置
2a…風上側に位置する風力発電装置
2b…風下側に位置する風力発電装置
3…運転管理センター
4a…ピッチ角センサ
4b…歪センサ
4c…風向風速計
4d…ヨー角センサ
5…通信ネットワーク
6…電子端末
7…サーバ
10…全体制御装置
11…ヨー角誤差異常値判定部
12…制御要否判定部
13…指令値決定部
14…荷重疲労演算部
15…入力信号線群
16…出力信号線群
20…風
21…タワー
22…ナセル
23…ハブ
24…ブレード
25…主軸
26…シュリンクディスク
27…増速機
28…発電機
29…メインフレーム
30…電力変換器
31,31a,31b…制御装置
40…センサ
100,200…ウィンドファーム
2…風力発電装置
2a…風上側に位置する風力発電装置
2b…風下側に位置する風力発電装置
3…運転管理センター
4a…ピッチ角センサ
4b…歪センサ
4c…風向風速計
4d…ヨー角センサ
5…通信ネットワーク
6…電子端末
7…サーバ
10…全体制御装置
11…ヨー角誤差異常値判定部
12…制御要否判定部
13…指令値決定部
14…荷重疲労演算部
15…入力信号線群
16…出力信号線群
20…風
21…タワー
22…ナセル
23…ハブ
24…ブレード
25…主軸
26…シュリンクディスク
27…増速機
28…発電機
29…メインフレーム
30…電力変換器
31,31a,31b…制御装置
40…センサ
100,200…ウィンドファーム
Claims (15)
- 少なくとも風を受けて回転するロータとナセルと前記ナセルをヨー回転可能に支持するタワーと制御装置を備える風力発電装置を、複数備えるウィンドファームを有し、
前記ウィンドファームに設置される複数の風力発電装置のうち、風向の急激な変動を検知した一の風力発電装置の制御装置より送信される少なくとも風向計測値及びヨー角計測値より求まるヨー角誤差が、所定の期間において所定の第1の閾値以内か否かを判定し、判定結果に基づき他の風力発電装置の前記所定の第1の閾値の変更又はヨー角を含む指令値を前記他の風力発電装置の制御装置へ送信することを特徴とするウィンドファーム制御システム。 - 請求項1に記載のウィンドファーム制御システムにおいて、
前記ヨー角誤差が、所定の期間において所定の第1の閾値以内か否かを判定するヨー角誤差異常値判定部と、前記ヨー角誤差異常値判定部による判定結果に基づき前記他の風力発電装置の前記所定の第1の閾値の変更又はヨー角を含む指令値を前記他の風力発電装置の制御装置への送信の要否を判定する制御要否判定部と、を有する全体制御装置を備え、
前記全体制御装置は、前記ウィンドファームから離間する位置に配され、各風力発電装置の制御装置と通信ネットワークを介して接続されることを特徴とするウィンドファーム制御システム。 - 請求項1に記載のウィンドファーム制御システムにおいて、
各風力発電装置の制御装置は、
前記ヨー角誤差が、所定の期間において所定の第1の閾値以内か否かを判定するヨー角誤差異常値判定部と、前記ヨー角誤差異常値判定部による判定結果に基づき前記他の風力発電装置の前記所定の第1の閾値の変更又はヨー角を含む指令値を前記他の風力発電装置の制御装置への送信の要否を判定する制御要否判定部と、を有し、
前記各風力発電装置の制御装置は、相互に通信ネットワークを介して接続されることを特徴とするウィンドファーム制御システム。 - 請求項2又は請求項3に記載のウィンドファーム制御システムにおいて、
前記制御要否判定部は、前記ヨー角誤差異常値判定部により前記ヨー角誤差が所定の期間において所定の第1の閾値以内と判定された場合、前記他の風力発電装置の前記所定の第1の閾値を当該第1の閾値よりも高い閾値に変更することを特徴とするウィンドファーム制御システム。 - 請求項2又は請求項3に記載のウィンドファーム制御システムにおいて、
前記制御要否判定部は、前記ヨー角誤差異常値判定部により前記ヨー角誤差が所定の期間において所定の第1の閾値を超過する状態が継続すると判定された場合、前記ヨー角を含む指令値を前記他の風力発電装置の制御装置へ送信することを特徴とするウィンドファーム制御システム。 - 請求項5に記載のウィンドファーム制御システムにおいて、
前記制御要否判定部は、前記ヨー角誤差異常値判定部により前記ヨー角誤差が所定の期間において所定の第1の閾値を超過する状態が継続すると判定された場合、荷重疲労演算部により求められる前記他の風力発電装置が運転継続可能なヨー角とピッチ角及びトルク指令値を含む指令値を前記他の風力発電装置の制御装置へ送信することを特徴とするウィンドファーム制御システム。 - 請求項4に記載のウィンドファーム制御システムにおいて、
前記ウィンドファームの外部であって相互に離間する位置に配される複数のセンサを備え、
前記一の風力発電装置の制御装置は、前記複数のセンサにより計測される少なくとも風向計測値及び前記ヨー角計測値よりヨー角誤差を求めることを特徴とするウィンドファーム制御システム。 - 請求項5に記載のウィンドファーム制御システムにおいて、
前記ウィンドファームの外部であって相互に離間する位置に配される複数のセンサを備え、
前記一の風力発電装置の制御装置は、前記複数のセンサにより計測される少なくとも風向計測値及び前記ヨー角計測値よりヨー角誤差を求めることを特徴とするウィンドファーム制御システム。 - 請求項4に記載のウィンドファーム制御システムにおいて、
前記ウィンドファームの外部にある他のウィンドファームと、太陽光発電所と、風速及び風向を含む気象情報を計測及び取得し得る施設のうち、いずれか1つからの風向計測値及び前記ヨー角計測値より前記一の風力発電装置の制御装置がヨー角誤差を求め、
前記制御要否判定部は、前記所定の第1の閾値よりも低い第2の閾値を前記ヨー角誤差が超過する場合、前記他の風力発電装置の前記所定の第1の閾値を当該第1の閾値よりも高い閾値に変更することを特徴とするウィンドファーム制御システム。 - 請求項5に記載のウィンドファーム制御システムにおいて、
前記制御要否判定部が前記他の風力発電装置の制御装置へ送信する指令値は、ヨー角を風向に応じて風見鶏効果により自由に変化させるフリーヨーを含むことを特徴とするウィンドファーム制御システム。 - 請求項5に記載のウィンドファーム制御システムにおいて、
前記制御要否判定部が前記他の風力発電装置の制御装置へ送信する指令値は、ヨー制御の追従を高速化し得る指令値を含むことを特徴とするウィンドファーム制御システム。 - 少なくとも風を受けて回転するロータとナセルと前記ナセルをヨー回転可能に支持するタワーと制御装置を備える風力発電装置を、複数備えるウィンドファームの制御方法であって、
前記ウィンドファームに設置される複数の風力発電装置のうち、風向の急激な変動を検知した一の風力発電装置の制御装置より送信される少なくとも風向計測値及びヨー角計測値より求まるヨー角誤差が、所定の期間において所定の第1の閾値以内か否かを判定し、判定結果に基づき他の風力発電装置の前記所定の第1の閾値の変更又はヨー角を含む指令値を前記他の風力発電装置の制御装置へ送信することを特徴とするウィンドファームの制御方法。 - 請求項12に記載のウィンドファームの制御方法において、
前記ヨー角誤差が所定の期間において所定の第1の閾値以内と判定された場合、前記他の風力発電装置の前記所定の第1の閾値を当該第1の閾値よりも高い閾値に変更することを特徴とするウィンドファームの制御方法。 - 請求項12に記載のウィンドファームの制御方法において、
前記ヨー角誤差が所定の期間において所定の第1の閾値を超過する状態が継続すると判定された場合、前記ヨー角を含む指令値を前記他の風力発電装置の制御装置へ送信することを特徴とするウィンドファームの制御方法。 - 請求項14に記載のウィンドファームの制御方法において、
前記ヨー角誤差が所定の期間において所定の第1の閾値を超過する状態が継続すると判定された場合、荷重疲労演算部により求められる前記他の風力発電装置が運転継続可能なヨー角とピッチ角及びトルク指令値を含む指令値を前記他の風力発電装置の制御装置へ送信することを特徴とするウィンドファームの制御方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017152937A JP6811150B2 (ja) | 2017-08-08 | 2017-08-08 | ウィンドファーム制御システム及びウィンドファームの制御方法 |
JP2017-152937 | 2017-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019031077A1 true WO2019031077A1 (ja) | 2019-02-14 |
Family
ID=65272217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/023753 WO2019031077A1 (ja) | 2017-08-08 | 2018-06-22 | ウィンドファーム制御システム及びウィンドファームの制御方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6811150B2 (ja) |
TW (1) | TWI707086B (ja) |
WO (1) | WO2019031077A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112796940A (zh) * | 2021-01-29 | 2021-05-14 | 东方电气风电有限公司 | 一种风向数据缺失风机的对风方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7236374B2 (ja) * | 2019-12-05 | 2023-03-09 | 株式会社日立製作所 | 風力発電装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007285214A (ja) * | 2006-04-18 | 2007-11-01 | Nabtesco Corp | 風車の制御装置 |
WO2011092810A1 (ja) * | 2010-01-27 | 2011-08-04 | 三菱重工業株式会社 | 風力発電装置及び風力発電装置のヨー旋回制御方法 |
US20110193344A1 (en) * | 2010-12-29 | 2011-08-11 | Vestas Wind Systems A/S | Control Network for Wind Turbine Park |
JP2015127528A (ja) * | 2013-12-27 | 2015-07-09 | 斗山重工業株式会社 | ウィンドファーム、その制御方法、及び風力発電ユニット |
JP2015161172A (ja) * | 2014-02-26 | 2015-09-07 | 三菱重工業株式会社 | 風力発電装置のヨー制御システム及びヨー制御方法 |
-
2017
- 2017-08-08 JP JP2017152937A patent/JP6811150B2/ja active Active
-
2018
- 2018-06-22 WO PCT/JP2018/023753 patent/WO2019031077A1/ja active Application Filing
- 2018-07-25 TW TW107125650A patent/TWI707086B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007285214A (ja) * | 2006-04-18 | 2007-11-01 | Nabtesco Corp | 風車の制御装置 |
WO2011092810A1 (ja) * | 2010-01-27 | 2011-08-04 | 三菱重工業株式会社 | 風力発電装置及び風力発電装置のヨー旋回制御方法 |
US20110193344A1 (en) * | 2010-12-29 | 2011-08-11 | Vestas Wind Systems A/S | Control Network for Wind Turbine Park |
JP2015127528A (ja) * | 2013-12-27 | 2015-07-09 | 斗山重工業株式会社 | ウィンドファーム、その制御方法、及び風力発電ユニット |
JP2015161172A (ja) * | 2014-02-26 | 2015-09-07 | 三菱重工業株式会社 | 風力発電装置のヨー制御システム及びヨー制御方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112796940A (zh) * | 2021-01-29 | 2021-05-14 | 东方电气风电有限公司 | 一种风向数据缺失风机的对风方法 |
CN112796940B (zh) * | 2021-01-29 | 2022-05-24 | 东方电气风电股份有限公司 | 一种风向数据缺失风机的对风方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201910633A (zh) | 2019-03-16 |
JP6811150B2 (ja) | 2021-01-13 |
TWI707086B (zh) | 2020-10-11 |
JP2019031929A (ja) | 2019-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9957951B2 (en) | Wind turbine | |
AU2015371617B2 (en) | Optimal wind farm operation | |
US7999406B2 (en) | Wind turbine plant high wind derating control | |
US9822762B2 (en) | System and method for operating a wind turbine | |
EP3059830B1 (en) | Reactive power compensation based on reactive power capability of a renewable energy system | |
US9856855B2 (en) | Disablement of wind turbines in a wind park | |
US20120133138A1 (en) | Plant power optimization | |
US11242841B2 (en) | System and method for controlling a wind turbine based on a collective pitch-offset | |
US8121739B2 (en) | Reactive power management for wind power plant internal grid | |
CA2923290C (en) | Wind turbine control using signal controller | |
WO2012149984A1 (en) | System and method for operating a wind turbine using an adaptive speed reference | |
US20120112460A1 (en) | Probing power optimization for wind farms | |
CN110608134B (zh) | 控制风力涡轮以最大限度减小转子叶片损坏的系统和方法 | |
US9759189B2 (en) | Wind power plant and method of controlling wind turbine generator in a wind power plant | |
WO2019031077A1 (ja) | ウィンドファーム制御システム及びウィンドファームの制御方法 | |
TW201934870A (zh) | 風力發電裝置及風力發電系統 | |
WO2018110268A1 (ja) | 運転支援システム及び運転支援方法 | |
KR20130106287A (ko) | 풍차 제어 장치 및 그 방법 및 풍력 발전 시스템 | |
WO2016138647A1 (en) | System and method for mitigating loads on a wind turbine | |
EP3124789B1 (en) | Wind turbine control using secondary controller to adjust wind speed and/or direction input values |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18844863 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18844863 Country of ref document: EP Kind code of ref document: A1 |