WO2019030997A1 - Hardening apparatus - Google Patents

Hardening apparatus Download PDF

Info

Publication number
WO2019030997A1
WO2019030997A1 PCT/JP2018/017584 JP2018017584W WO2019030997A1 WO 2019030997 A1 WO2019030997 A1 WO 2019030997A1 JP 2018017584 W JP2018017584 W JP 2018017584W WO 2019030997 A1 WO2019030997 A1 WO 2019030997A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cooling
coolant
unit
hardening
Prior art date
Application number
PCT/JP2018/017584
Other languages
French (fr)
Japanese (ja)
Inventor
田中 健一
祐輝 山下
Original Assignee
中外炉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中外炉工業株式会社 filed Critical 中外炉工業株式会社
Publication of WO2019030997A1 publication Critical patent/WO2019030997A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like

Definitions

  • the present disclosure relates to a quenching apparatus for quenching a workpiece such as a machine part.
  • a quenching apparatus including a heating chamber for heating the workpiece and a cooling tank for cooling the workpiece heated in the heating chamber (See, for example, Patent Document 1).
  • An oil (quenched oil) is filled in the cooling tank of the quenching device of Patent Document 1 as a coolant for cooling the work.
  • the workpiece is cooled by immersing the workpiece in the quenching oil in the cooling tank.
  • Patent Document 2 When the hardening device of Patent Document 1 is operated, the temperature of the hardened oil used for cooling the work rises each time. Therefore, it is necessary to cool the quenching oil to a predetermined temperature in preparation for the next cooling process. Therefore, as disclosed in Patent Document 2, a cooling device for cooling the temperature of the quenched oil has been proposed.
  • This indication solves the above-mentioned subject, and it aims at providing a hardening device which can perform temperature control of a coolant more efficiently.
  • the hardening device is a hardening device for hardening a workpiece, which includes a cooling tank containing a liquid coolant for cooling the heat-treated workpiece, and a cooling agent in the cooling tank. , A heating unit for heating the coolant in the cooling tank, a temperature measuring unit for measuring the temperature of the coolant in the cooling tank, and a control unit for controlling the operation of the cooling unit and the heating unit And, after the quenching time of the work by the coolant is completed, the control unit cools the coolant without operating the cooling unit and the heating unit, and before the next work is input. At a predetermined timing, when the temperature measured by the temperature measuring unit is higher than a predetermined temperature keeping temperature, the cooling unit is operated to control the cooling of the coolant.
  • the cooling agent is allowed to cool without operating the cooling unit, and the operation of the cooling unit is started based on the measured temperature of the coolant thereafter.
  • temperature control can be efficiently performed as compared with the case where the cooling unit is operated immediately after the work is cooled to perform forced cooling as in the prior art.
  • the control unit changes to the operation of the cooling unit until the next workpiece is input.
  • the heating unit may be controlled to operate so that the measured temperature approaches the heat retention temperature.
  • control unit operates the cooling unit at the predetermined timing, and then the heating unit is moved so that the measured temperature approaches the heat retention temperature until the next workpiece is inserted. You may control to drive.
  • the temperature of the coolant can be made the temperature keeping temperature when the next work is introduced, and the work can be subjected to desired cooling processing.
  • the control unit has a prediction program for predicting a temperature transition when the coolant is allowed to cool and / or a prediction program for predicting a temperature transition when the coolant is cooled by the cooling unit.
  • the timing to start the operation of the cooling unit may be determined based on the prediction program so that the measured temperature becomes the heat retention temperature when or before the next work is input. Thereby, the temperature control of the coolant can be performed more efficiently.
  • control unit may determine a timing at which the cooling unit is started so that the measured temperature becomes the heat retention temperature when the next workpiece is introduced. Thereby, control which does not operate a heating part becomes possible, and temperature control of a coolant can be performed more efficiently.
  • temperature control of the coolant can be performed more efficiently.
  • the figure which shows an example of the flow of the hardening process by the hardening apparatus of Embodiment 1 The figure which shows an example of the flow of the hardening process by the hardening apparatus of Embodiment 1
  • the figure which shows an example of the flow of the hardening process by the hardening apparatus of Embodiment 1 The figure which shows an example of the flow of the hardening process by the hardening apparatus of Embodiment 1
  • the figure which shows an example of the flow of the hardening process by the hardening apparatus of Embodiment 1 The figure which shows an example of the temperature transition of the coolant at the time of performing temperature control by the temperature control mechanism of the hardening apparatus of Embodiment 1.
  • Diagram showing an example of the temperature transition of the coolant when the temperature control method of the conventional example is performed The figure which shows the example of the temperature transition of the coolant at the time of temperature control by the temperature control mechanism of the hardening apparatus of Embodiment 2.
  • FIG. 1 is a schematic view showing a schematic configuration of a hardening device 2 in the first embodiment.
  • the hardening apparatus 2 shown in FIG. 1 is a heat treatment furnace as an apparatus for hardening a workpiece W (a mechanical component (for example, a gear, a shaft) or the like) as an object to be treated.
  • a workpiece W a mechanical component (for example, a gear, a shaft) or the like
  • the quenching device 2 shown in FIG. 1 has a function of performing a cooling process in addition to the heating process of the workpiece W, and is configured as a multi-chamber heat treatment furnace that constitutes a plurality of spaces.
  • the hardening device 2 includes a heating chamber 4, a relay chamber 6, a cooling tank 8, a transport tray 10, a lift elevator 12, a first door 14, and a second door 16. , A third door 18, a control unit 20, and a temperature control mechanism 24.
  • the cooling tank 8 contains a liquid coolant C (oil, water, chemical solution, etc.) for cooling (quenching) the work W.
  • the cooling tank 8 is provided with a temperature control mechanism 24 for controlling the temperature of the coolant C.
  • the temperature control mechanism 24 illustrated in FIG. 1 includes a stirring unit 26, a motor 28, a temperature measurement unit 30, a heating unit 32, a cooling flow path 33, a pump 34, and a cooling unit 36. These functions will be described later.
  • the invention of the present disclosure is particularly characterized by the temperature control method of the coolant C by the temperature control mechanism 24, and a specific method will be described later.
  • the heating chamber 4 is a space for heating the work W.
  • the work W is heated to a predetermined temperature in the heating chamber 4.
  • FIG. 1 a state in which the work W is disposed in the heating chamber 4 is illustrated.
  • a first door 14 and a second door 16 are provided as doors for carrying the work W in and out of the heating chamber 4.
  • the first door 14 and the second door 16 are moved up and down by a drive mechanism (not shown).
  • the heating chamber 4 can be opened and closed by the vertical movement of the first door 14 and the second door 16.
  • the third door 18 also has the same configuration, so the description will be omitted.
  • the relay chamber 6 is a space provided on the side of the heating chamber 4.
  • the relay chamber 6 is a space serving as a relay point when the workpiece W heated in the heating chamber 4 moves to the cooling tank 8.
  • the cooling tank 8 is provided below the relay chamber 6.
  • the cooling tank 8 is a tank for cooling the work W.
  • the cooling tank 8 of the first embodiment has a function of performing an oil-cooling type cooling process, and an oil at a predetermined temperature (for example, 120 ° C.) is accommodated as the liquid coolant C.
  • the conveyance tray 10 is a member for placing and conveying the work W in the hardening device 2.
  • the elevating elevator 12 is a member for raising and lowering the transport tray 10 on which the work W is placed between the relay chamber 6 and the cooling tank 8.
  • the control unit 20 is a member that controls the operation of the hardening device 2.
  • the control unit 20 is electrically connected to each component of the hardening device 2 described above, and can control the operation of each component.
  • the control unit 20 is configured of, for example, a microcomputer.
  • the stirring unit 26 is a member that stirs the coolant C in the cooling tank 8.
  • the stirring by the stirring unit 26 makes the temperature of the coolant C in the cooling tank 8 uniform.
  • the stirring unit 26 shown in FIG. 1 has a propeller 26 a at its tip and is rotationally driven by a motor 28.
  • the temperature measurement unit 30 is a member that measures the temperature of the coolant C in the cooling tank 8.
  • the temperature measurement unit 30 in the first embodiment is a thermocouple (temperature sensor), the present invention is not limited to this, as long as the temperature measurement unit 30 can measure the temperature of the coolant C in the cooling tank 8.
  • the heating unit 32 is a member that heats the coolant C in the cooling tank 8.
  • the heating part 32 in Embodiment 1 is a heater, it is not restricted to this, as long as it can heat the coolant C in the cooling tank 8.
  • the cooling flow path 33 is a flow path for sending the coolant C in the cooling tank 8 to the cooling unit 36 described later.
  • the cooling channel 33 shown in FIG. 1 is provided as a channel that bypasses the cooling tank 8.
  • the cooling channel 33 includes an upstream channel 33 a connected from the cooling tank 8 to the cooling unit 36 and a downstream channel 33 b connected from the cooling unit 36 to the cooling tank 8.
  • the pump 34 is a pump for drawing the coolant C in the cooling tank 8 into the upstream side flow path 33 a and sending it to the cooling unit 36.
  • the cooling unit 36 is a member that cools the coolant C.
  • the cooling unit 36 in the first embodiment is a heat exchanger, the invention is not limited to this, as long as the cooling unit C in the cooling tank 8 can be cooled.
  • the work W is carried into the heating chamber 4 as shown in FIG. 2A.
  • the first door 14 is raised and opened.
  • the heating chamber 4 is preheated by a heater (not shown) provided therein.
  • the workpiece W placed on the transport tray 10 outside the hardening device 2 is carried into the inside of the hardening device 2 (A1 in the figure).
  • any conveyance mechanism may be used, such as rotating a roller (not shown) on which the conveyance tray 10 is placed from the outside.
  • the first door 14 is lowered and closed, and the work W in the heating chamber 4 is heated to a predetermined temperature (for example, 850 ° C.).
  • the transport tray 10 is moved to the relay chamber 6. Specifically, the second door 16 is raised and opened, and the work W after the heat treatment is horizontally moved toward the relay chamber 6 (A2 in the drawing).
  • the above-mentioned transport mechanism (not shown) is used.
  • the transfer tray 10 and the work W are placed on the elevator 12 in the relay chamber 6. Thereafter, the second door 16 is lowered and closed.
  • the transport tray 10 is lowered to the cooling tank 8 using the elevator 12.
  • the transport tray 10 is disposed in the cooling tank 8, and the work W is immersed in the liquid coolant C (A3 in the figure).
  • the workpiece W is cooled to a predetermined temperature (for example, 120 ° C.) and subjected to quenching treatment.
  • the work W for which the cooling process in the cooling tank 8 is completed is then returned to the relay chamber 6 as shown in FIG. 2D (A4 in the figure). Thereafter, as shown in FIG. 2E, the third door 18 is opened, and the transport tray 10 on which the workpiece W is placed is unloaded out of the hardening device 2 (A5 in the figure).
  • the hardening process is performed on the workpiece W.
  • the same quenching process is performed on a plurality of works W sequentially transferred to the quenching device 2.
  • the temperature of the coolant C in the cooling tank 8 used for cooling the work W rises (e.g., rises to about 140 ° C.) with each hardening process.
  • a predetermined temperature for example, 120 ° C.
  • the temperature control of the coolant C is performed using the temperature control mechanism 24 described above.
  • a specific temperature control method will be described using FIGS. 3 and 4.
  • FIG. 3 and 4 are graphs showing the transition of the temperature of the coolant C when the temperature of the coolant C is controlled by the temperature control mechanism 24 of the first embodiment.
  • the horizontal axis represents time
  • the vertical axis represents temperature (temperature measured by the temperature measurement unit 30).
  • the temperature control mechanism 24 releases the coolant C without operating the heating unit 32 and the cooling unit 36 after the quenching time X1 for one work W is completed.
  • Perform cold operation (heat release) (cooling time X2, X5).
  • the temperature measuring unit 30 continuously measures the temperature of the coolant C (for example, every one minute), and during the time until the predetermined timing Xt determined in advance, the measurement temperature Determines whether the temperature is lower than the temperature T1.
  • the hardening time X1 is the time from when the workpiece W is attached to the coolant C to when it is pulled up.
  • the predetermined timing Xt is a timing stored (set) in advance in the control unit 20 as a time point (for example, 10 minutes before) the time point Xn at which the next work W is put into the cooling tank 8 (for example, 10 minutes)
  • the time point Xn at which the next work W is introduced into the cooling tank 8 is also stored in the control unit 20).
  • the heat retention temperature T1 is a temperature stored in advance in the control unit 20 as a desired temperature of the coolant C at the start of the cooling process of the work W.
  • FIG. 3 shows the case where the measurement temperature does not fall below the heat retention temperature T1 until the predetermined timing Xt.
  • the cooling operation of the coolant C is continued without operating the heating unit 32 and the cooling unit 36 from the end of the hardening time X1 to the predetermined timing Xt (cooling time X2).
  • the cooling unit 36 is operated at a predetermined timing Xt.
  • the coolant C is cooled by the operation of the cooling unit 36 and reaches the heat retention temperature T1 (cooling time X3).
  • the heat retention operation is performed in which the heating unit 32 is intermittently operated such that the measured temperature approaches the heat retention temperature T1 (heat retention time X4).
  • FIG. 4 shows the case where the measured temperature of the coolant C falls below the heat retention temperature T1 by the predetermined timing Xt.
  • the operation of the cooling unit 36 (cooling time X3) shown in FIG.
  • the heat retention operation similar to that shown in FIG. 3 is performed until the time point Xn when the next work W is introduced into the cooling tank 8 (heat retention time X6).
  • the temperature of the coolant C is maintained at the heat retention temperature T1 in any case at the time point Xn when the next work W is introduced into the cooling tank 8 . Thereby, desired cooling processing can be performed on the next workpiece W.
  • FIG. 5 An example of the temperature transition of the coolant C according to the temperature control method of the conventional example is shown in FIG. 5 with respect to the temperature control method of the first embodiment described above.
  • the cooling unit 36 is operated immediately after the end of the hardening time X1 of the workpiece W (cooling time X7). Thereafter, the heat retention operation at the heat retention temperature T1 is performed until the time point Xn at which the next work W is input (heat retention time X8).
  • both the cooling time X7 and the heat retention time X8 become long, and in particular, the heat retention time X8 becomes significantly longer as the time point Xn at which the next work W is introduced is later.
  • the heat retention operation for ON / OFF controlling the heating unit 32 becomes long, and the temperature control method becomes inefficient.
  • the cooling unit 36 and the heating unit 32 are not operated, and the cooling operation thereafter is performed.
  • the operation of the cooling unit 36 is started based on the measured temperature of C. According to such a method, the period for operating the cooling unit 36 and the period for operating the heating unit 32 become shorter as compared with the conventional example shown in FIG. can do. Thereby, temperature control of the coolant C can be performed more efficiently.
  • control unit 20 has a prediction program for predicting the temperature transition of the coolant C, and the temperature control is performed based on the prediction program. Different from Form 1.
  • the temperature transition of the coolant C when the coolant C is allowed to cool without operating the cooling unit 36 and the temperature of the coolant C when the coolant C is cooled by the cooling unit 36 It predicts the transition.
  • the temperature transition when the coolant C is allowed to cool can be obtained from, for example, an arithmetic expression that predicts the temperature transition based on factors such as the type of the coolant C and the amount of heat released from the cooling tank 8.
  • the temperature transition when the coolant C is cooled by the cooling unit 36 is, for example, a temperature transition based on factors such as the type of the coolant C, the amount of heat released from the cooling tank 8, and the size of the output of the cooling unit 36. It is obtained from an arithmetic expression to be predicted.
  • FIG. 1 An example of the temperature transition of the coolant C by the temperature control method of Embodiment 2 is shown in FIG.
  • a cooling time X10 for cooling the agent C is determined.
  • the operation start timing of the cooling unit 36 which is the timing at which the cooling time X9 is switched to the cooling time X10, is determined based on the prediction program.
  • the operation start timing of the cooling unit 36 is determined such that the measured temperature of the coolant C is just the heat retention temperature T1 at the time point Xn when the next work W is introduced.
  • the heat retention operation using the heating unit 32 is not necessary, and a desired cooling process can be performed on the next workpiece W only by operating the cooling unit 36.
  • temperature control of the coolant C can be performed more efficiently.
  • the invention of the present disclosure has been described above by citing the first and second embodiments described above, the invention of the present disclosure is not limited to the first and second embodiments.
  • the heating unit 32 and the cooling unit 36 are illustrated in FIG. 1 as being in different places, but the present invention is not limited to such a case.
  • the cooling unit and the heating unit may be in the same place, or an apparatus in which the cooling and heating functions are combined may be used.
  • the present invention is not limited to such a case, and a liquid coolant other than oil may be used.
  • the present invention is not limited to such a case.
  • the heat treatment is performed in the heating chamber 4, it may be transported in any order as long as the cooling treatment is performed in the cooling tank 8.
  • the configuration of the transport path and the processing chamber may be changed according to the processing type of the work W, such as a batch type of returning to the position.
  • both the prediction of the temperature transition when the coolant C is allowed to cool and the prediction of the temperature transition when the coolant C is cooled by the cooling unit 36 are described. However, this is not the case. Only one of the predictions may be performed.
  • the control unit 20 has a prediction program that predicts the temperature transition when the coolant C is allowed to cool and / or a prediction program that predicts the temperature transition when the coolant C is cooled by the cooling unit 36. May be
  • the cooling unit 36 is started to operate so that the measured temperature of the coolant C becomes just the heat retention temperature T1 at the time point Xn when the next work W is introduced, but in such a case Not limited to.
  • the operation start timing of the cooling unit 36 may be determined based on a prediction program so that the measured temperature of the coolant C becomes the heat retention temperature T1.
  • the present disclosure is applicable to any hardening device that hardens a workpiece.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

Provided is a hardening apparatus that performs hardening processing of a workpiece, said apparatus comprising: a cooling bath that accommodates a liquid coolant for cooling the workpiece, which has been subjected to heating processing; a cooling unit that cools the coolant in the cooling bath; a heating unit that heats the coolant in the cooling bath; a temperature measuring unit that measures the temperature of the coolant in the cooling bath; and a control unit that controls the operations of the cooling unit and the heating unit. The control unit performs control in such a way that: after the end of the time during which the workpiece is hardened by means of the coolant, the cooling unit and the heating unit are not operated, and the coolant is allowed to cool; and, at a predetermined timing before the next workpiece is introduced, the cooling unit is operated to cool the coolant if the temperature of the coolant measured by the temperature measuring unit is higher than a temperature to be maintained, which is set in advance.

Description

焼入れ装置Hardening equipment
 本開示は、機械部品等のワークを焼入れ処理する焼入れ装置に関する。 The present disclosure relates to a quenching apparatus for quenching a workpiece such as a machine part.
 従来より、機械部品(例えばギア、シャフト)等のワークを焼入れ処理する装置として、ワークを加熱する加熱室と、加熱室で加熱されたワークを冷却する冷却槽とを備える焼入れ装置が提案されている(例えば、特許文献1参照)。 Conventionally, as an apparatus for quenching a workpiece such as a mechanical component (for example, a gear, a shaft), a quenching apparatus including a heating chamber for heating the workpiece and a cooling tank for cooling the workpiece heated in the heating chamber has been proposed (See, for example, Patent Document 1).
 特許文献1の焼入れ装置の冷却槽には、ワークを冷却するための冷却剤として油(焼入油)が充填されている。冷却槽内の焼入油にワークを浸漬させることにより、ワークが冷却される。 An oil (quenched oil) is filled in the cooling tank of the quenching device of Patent Document 1 as a coolant for cooling the work. The workpiece is cooled by immersing the workpiece in the quenching oil in the cooling tank.
 特許文献1の焼入れ装置を運転した場合、ワークの冷却に使用した焼入油の温度はその都度上昇する。このため、次の冷却処理に備え、焼入油を所定温度まで冷却する必要がある。そこで、特許文献2のように焼入油の温度を冷却するための冷却装置が提案されている。 When the hardening device of Patent Document 1 is operated, the temperature of the hardened oil used for cooling the work rises each time. Therefore, it is necessary to cool the quenching oil to a predetermined temperature in preparation for the next cooling process. Therefore, as disclosed in Patent Document 2, a cooling device for cooling the temperature of the quenched oil has been proposed.
特開2014-237886号公報JP, 2014-237886, A 特開平6-158148号公報Japanese Patent Application Laid-Open No. 6-158148
 しかしながら、特許文献2のような焼入油の冷却装置を用いた場合、あるワークを冷却した後、次のワークがくるまでの間、焼入油を冷却および加熱して所定の保温温度に維持する必要がある。一方、ワークの処理方法には、連続的にワークを処理する連続式の場合や、複数のワークをまとめて処理するバッチ式があり、次のワークが冷却槽に搬送されるまでの時間間隔も様々である(例えば数分から数時間など)。 However, when using a cooling device for quenching oil as in Patent Document 2, after cooling a certain work, the quenching oil is cooled and heated until the next work comes, and maintained at a predetermined heat retention temperature There is a need to. On the other hand, there are two types of workpiece processing methods: continuous processing that processes workpieces continuously, and batch processing that processes multiple workpieces together, and the time interval until the next workpiece is transported to the cooling tank Various (eg, minutes to hours).
 このような中で、特に次のワークが搬送されるまでの時間間隔が長い場合には、焼入油を保温するための保温運転が長くなる。このように、ワークを冷却するための焼入油等の冷却剤の温度制御が非効率に行われる場合があり、冷却剤の温度制御を効率的に行うことに関して未だ改善の余地があるといえる。 Under such circumstances, particularly when the time interval until the next work is transported is long, the heat retention operation for keeping the quenching oil warm becomes long. As described above, temperature control of a coolant such as quenching oil for cooling a work may be performed inefficiently, and it can be said that there is still room for improvement in efficiently performing temperature control of the coolant. .
 本開示は、前記課題を解決するものであり、冷却剤の温度制御をより効率的に行うことができる焼入れ装置を提供することを目的とする。 This indication solves the above-mentioned subject, and it aims at providing a hardening device which can perform temperature control of a coolant more efficiently.
 本開示の一態様の焼入れ装置は、ワークを焼入れ処理する焼入れ装置であって、加熱処理したワークを冷却するための液状の冷却剤を収容した冷却槽と、前記冷却槽内の冷却剤を冷却する冷却部と、前記冷却槽内の冷却剤を加熱する加熱部と、前記冷却槽内の冷却剤の温度を測定する温度測定部と、前記冷却部および前記加熱部の運転を制御する制御部と、を備え、前記制御部は、冷却剤によるワークの焼入れ時間終了後は前記冷却部および前記加熱部を運転せずに冷却剤を放冷し、次のワークが投入されるよりも前の所定のタイミングで、前記温度測定部による冷却剤の測定温度が予め定めた保温温度よりも高い場合には、前記冷却部を運転して冷却剤を冷却するように制御する。 The hardening device according to one aspect of the present disclosure is a hardening device for hardening a workpiece, which includes a cooling tank containing a liquid coolant for cooling the heat-treated workpiece, and a cooling agent in the cooling tank. , A heating unit for heating the coolant in the cooling tank, a temperature measuring unit for measuring the temperature of the coolant in the cooling tank, and a control unit for controlling the operation of the cooling unit and the heating unit And, after the quenching time of the work by the coolant is completed, the control unit cools the coolant without operating the cooling unit and the heating unit, and before the next work is input. At a predetermined timing, when the temperature measured by the temperature measuring unit is higher than a predetermined temperature keeping temperature, the cooling unit is operated to control the cooling of the coolant.
 前記構成によれば、ワークの焼入れ時間終了後には冷却部を運転せずに冷却剤を放冷し、その後の冷却剤の測定温度に基づいて冷却部の運転を開始している。これにより、従来のようにワークの冷却直後から冷却部を運転して強制冷却する場合に比べて、温度制御を効率的に行うことができる。 According to the above configuration, after the quenching time of the work is completed, the cooling agent is allowed to cool without operating the cooling unit, and the operation of the cooling unit is started based on the measured temperature of the coolant thereafter. As a result, temperature control can be efficiently performed as compared with the case where the cooling unit is operated immediately after the work is cooled to perform forced cooling as in the prior art.
 前記焼入れ装置において、前記制御部は、前記所定のタイミングよりも前に、前記測定温度が前記保温温度を下回る場合には、前記冷却部の運転に替えて、次のワークが投入されるまでの間、前記測定温度が前記保温温度に近付くように前記加熱部を運転するように制御してもよい。これにより、冷却剤の温度を保温温度付近に維持することで、次のワークが投入されるときには冷却剤の温度を保温温度とすることができ、ワークに所望の冷却処理を行うことができる。 In the quenching apparatus, when the measured temperature is lower than the heat retention temperature before the predetermined timing, the control unit changes to the operation of the cooling unit until the next workpiece is input. In the meantime, the heating unit may be controlled to operate so that the measured temperature approaches the heat retention temperature. As a result, by maintaining the temperature of the coolant near the temperature keeping temperature, the temperature of the coolant can be made the temperature keeping temperature when the next work is introduced, and the work can be subjected to desired cooling processing.
 前記焼入れ装置において、前記制御部は、前記所定のタイミングで前記冷却部を運転した後、次のワークが投入されるまでの間、前記測定温度が前記保温温度に近付くように、前記加熱部を運転するように制御してもよい。これにより、冷却剤の温度を保温温度付近に維持することで、次のワークが投入されるときには冷却剤の温度を保温温度とすることができ、ワークに所望の冷却処理を行うことができる。 In the quenching apparatus, the control unit operates the cooling unit at the predetermined timing, and then the heating unit is moved so that the measured temperature approaches the heat retention temperature until the next workpiece is inserted. You may control to drive. As a result, by maintaining the temperature of the coolant near the temperature keeping temperature, the temperature of the coolant can be made the temperature keeping temperature when the next work is introduced, and the work can be subjected to desired cooling processing.
 前記焼入れ装置において、前記制御部は、冷却剤を放冷した場合の温度推移を予測する予測プログラムおよび/又は前記冷却部で冷却剤を冷却した場合の温度推移を予測する予測プログラムを有し、次のワークが投入される時又はその前に前記測定温度が前記保温温度になるように、前記予測プログラムに基づいて前記冷却部を運転開始するタイミングを決定してもよい。これにより、冷却剤の温度制御をより効率的に行うことができる。 In the hardening device, the control unit has a prediction program for predicting a temperature transition when the coolant is allowed to cool and / or a prediction program for predicting a temperature transition when the coolant is cooled by the cooling unit. The timing to start the operation of the cooling unit may be determined based on the prediction program so that the measured temperature becomes the heat retention temperature when or before the next work is input. Thereby, the temperature control of the coolant can be performed more efficiently.
 前記焼入れ装置において、前記制御部は、次のワークが投入される時に前記測定温度が前記保温温度になるように前記冷却部を運転開始するタイミングを決定してもよい。これにより、加熱部を運転しない制御が可能となり、冷却剤の温度制御をより効率的に行うことができる。 In the quenching apparatus, the control unit may determine a timing at which the cooling unit is started so that the measured temperature becomes the heat retention temperature when the next workpiece is introduced. Thereby, control which does not operate a heating part becomes possible, and temperature control of a coolant can be performed more efficiently.
 本開示によれば、冷却剤の温度制御をより効率的に行うことができる。 According to the present disclosure, temperature control of the coolant can be performed more efficiently.
実施形態1の焼入れ装置の概略構成を示す図The figure which shows schematic structure of the hardening apparatus of Embodiment 1. 実施形態1の焼入れ装置による焼入れ処理のフローの一例を示す図The figure which shows an example of the flow of the hardening process by the hardening apparatus of Embodiment 1 実施形態1の焼入れ装置による焼入れ処理のフローの一例を示す図The figure which shows an example of the flow of the hardening process by the hardening apparatus of Embodiment 1 実施形態1の焼入れ装置による焼入れ処理のフローの一例を示す図The figure which shows an example of the flow of the hardening process by the hardening apparatus of Embodiment 1 実施形態1の焼入れ装置による焼入れ処理のフローの一例を示す図The figure which shows an example of the flow of the hardening process by the hardening apparatus of Embodiment 1 実施形態1の焼入れ装置による焼入れ処理のフローの一例を示す図The figure which shows an example of the flow of the hardening process by the hardening apparatus of Embodiment 1 実施形態1の焼入れ装置の温度制御機構により温度制御を行った場合の冷却剤の温度推移の一例を示す図The figure which shows an example of the temperature transition of the coolant at the time of performing temperature control by the temperature control mechanism of the hardening apparatus of Embodiment 1. 実施形態1の焼入れ装置の温度制御機構により温度制御を行った場合の冷却剤の温度推移の一例を示す図The figure which shows an example of the temperature transition of the coolant at the time of performing temperature control by the temperature control mechanism of the hardening apparatus of Embodiment 1. 従来例の温度制御方法を行った場合の冷却剤の温度推移の例を示す図Diagram showing an example of the temperature transition of the coolant when the temperature control method of the conventional example is performed 実施形態2の焼入れ装置の温度制御機構により温度制御した場合の冷却剤の温度推移の例を示す図The figure which shows the example of the temperature transition of the coolant at the time of temperature control by the temperature control mechanism of the hardening apparatus of Embodiment 2.
 以下、本開示に係る焼入れ装置および焼入れ方法の好適な実施形態について、添付の図面を参照しながら説明する。本開示は、以下の実施形態の具体的な構成に限定されるものではなく、同様の技術的思想に基づく構成が本開示に含まれる。 Hereinafter, preferred embodiments of a hardening device and a hardening method according to the present disclosure will be described with reference to the attached drawings. The present disclosure is not limited to the specific configurations of the following embodiments, and configurations based on similar technical ideas are included in the present disclosure.
(実施形態1)
 図1は、実施形態1における焼入れ装置2の概略構成を示す模式図である。
(Embodiment 1)
FIG. 1 is a schematic view showing a schematic configuration of a hardening device 2 in the first embodiment.
 図1に示す焼入れ装置2は、被処理物としてのワークW(機械部品(例えばギア、シャフト)など)を焼入れ処理する装置としての熱処理炉である。 The hardening apparatus 2 shown in FIG. 1 is a heat treatment furnace as an apparatus for hardening a workpiece W (a mechanical component (for example, a gear, a shaft) or the like) as an object to be treated.
 図1に示す焼入れ装置2は、ワークWの加熱処理に加えて冷却処理を行う機能を有しており、複数の空間を構成する多室型熱処理炉として構成されている。図1に示すように、焼入れ装置2は、加熱室4と、中継室6と、冷却槽8と、搬送トレイ10と、昇降エレベータ12と、第1の扉14と、第2の扉16と、第3の扉18と、制御部20と、温度制御機構24とを備える。 The quenching device 2 shown in FIG. 1 has a function of performing a cooling process in addition to the heating process of the workpiece W, and is configured as a multi-chamber heat treatment furnace that constitutes a plurality of spaces. As shown in FIG. 1, the hardening device 2 includes a heating chamber 4, a relay chamber 6, a cooling tank 8, a transport tray 10, a lift elevator 12, a first door 14, and a second door 16. , A third door 18, a control unit 20, and a temperature control mechanism 24.
 焼入れ装置2を運転させると、加熱室4でワークWを加熱処理するとともに、加熱処理したワークWを中継室6に水平搬送した後、昇降エレベータ12により下方の冷却槽8まで下降させて、冷却処理する。このような構成において、冷却槽8の中にはワークWを冷却(焼入れ)するための液状の冷却剤C(油、水、薬液など)が収容されている。 When the hardening device 2 is operated, the work W is heated in the heating chamber 4, and the heat-treated work W is horizontally transported to the relay chamber 6, and then lowered to the cooling tank 8 below by the elevator 12 for cooling To process. In such a configuration, the cooling tank 8 contains a liquid coolant C (oil, water, chemical solution, etc.) for cooling (quenching) the work W.
 冷却槽8には、冷却剤Cの温度を制御するための温度制御機構24が設けられている。図1に示す温度制御機構24は、撹拌部26と、モータ28と、温度測定部30と、加熱部32と、冷却流路33と、ポンプ34と、冷却部36とを備える。これらの機能については後述する。 The cooling tank 8 is provided with a temperature control mechanism 24 for controlling the temperature of the coolant C. The temperature control mechanism 24 illustrated in FIG. 1 includes a stirring unit 26, a motor 28, a temperature measurement unit 30, a heating unit 32, a cooling flow path 33, a pump 34, and a cooling unit 36. These functions will be described later.
 本開示の発明は特に、温度制御機構24による冷却剤Cの温度制御方法に特徴を有するものであり、具体的な方法については後述する。 The invention of the present disclosure is particularly characterized by the temperature control method of the coolant C by the temperature control mechanism 24, and a specific method will be described later.
 次に、焼入れ装置2のそれぞれの構成要素について説明する。 Next, respective components of the hardening device 2 will be described.
 加熱室4は、ワークWを加熱処理するための空間である。加熱室4でワークWを所定温度まで加熱する。図1では、加熱室4にワークWが配置されている状態を例示する。 The heating chamber 4 is a space for heating the work W. The work W is heated to a predetermined temperature in the heating chamber 4. In FIG. 1, a state in which the work W is disposed in the heating chamber 4 is illustrated.
 加熱室4にワークWを搬出入するための扉として、第1の扉14および第2の扉16が設けられている。第1の扉14および第2の扉16は、図示しない駆動機構により上下動される。第1の扉14および第2の扉16の上下動により、加熱室4が開閉可能である。第3の扉18も同様の構成であるため、説明を省略する。 A first door 14 and a second door 16 are provided as doors for carrying the work W in and out of the heating chamber 4. The first door 14 and the second door 16 are moved up and down by a drive mechanism (not shown). The heating chamber 4 can be opened and closed by the vertical movement of the first door 14 and the second door 16. The third door 18 also has the same configuration, so the description will be omitted.
 中継室6は、加熱室4の側方に設けられた空間である。中継室6は、加熱室4で加熱処理されたワークWが冷却槽8へ移動する際の中継地点となる空間である。図1の例では、中継室6の下方に冷却槽8が設けられている。 The relay chamber 6 is a space provided on the side of the heating chamber 4. The relay chamber 6 is a space serving as a relay point when the workpiece W heated in the heating chamber 4 moves to the cooling tank 8. In the example of FIG. 1, the cooling tank 8 is provided below the relay chamber 6.
 冷却槽8は、ワークWを冷却処理するための槽である。本実施形態1の冷却槽8は、油冷式の冷却処理を行う機能を有しており、液状の冷却剤Cとして所定温度(例えば120℃)の油が収容されている。 The cooling tank 8 is a tank for cooling the work W. The cooling tank 8 of the first embodiment has a function of performing an oil-cooling type cooling process, and an oil at a predetermined temperature (for example, 120 ° C.) is accommodated as the liquid coolant C.
 搬送トレイ10は、焼入れ装置2内でワークWを載置して搬送するための部材である。同様に、昇降エレベータ12は、ワークWを載置した搬送トレイ10を中継室6と冷却槽8の間で昇降させるための部材である。 The conveyance tray 10 is a member for placing and conveying the work W in the hardening device 2. Similarly, the elevating elevator 12 is a member for raising and lowering the transport tray 10 on which the work W is placed between the relay chamber 6 and the cooling tank 8.
 制御部20は、焼入れ装置2の運転を制御する部材である。制御部20は、上述した焼入れ装置2の各構成要素に電気的に接続されており、各構成要素の運転を制御可能である。制御部20は例えばマイクロコンピュータなどにより構成される。 The control unit 20 is a member that controls the operation of the hardening device 2. The control unit 20 is electrically connected to each component of the hardening device 2 described above, and can control the operation of each component. The control unit 20 is configured of, for example, a microcomputer.
 次に、温度制御機構24のそれぞれの構成要素について説明する。 Next, respective components of the temperature control mechanism 24 will be described.
 撹拌部26は、冷却槽8内の冷却剤Cを撹拌する部材である。撹拌部26による撹拌により、冷却槽8内における冷却剤Cの温度の均一化を図る。図1に示す撹拌部26はその先端にプロペラ26aを有し、モータ28によって回転駆動される。 The stirring unit 26 is a member that stirs the coolant C in the cooling tank 8. The stirring by the stirring unit 26 makes the temperature of the coolant C in the cooling tank 8 uniform. The stirring unit 26 shown in FIG. 1 has a propeller 26 a at its tip and is rotationally driven by a motor 28.
 温度測定部30は、冷却槽8内の冷却剤Cの温度を測定する部材である。実施形態1における温度測定部30は熱電対(温度センサ)であるが、これに限らず、冷却槽8内の冷却剤Cの温度を測定可能な構成であればよい。 The temperature measurement unit 30 is a member that measures the temperature of the coolant C in the cooling tank 8. Although the temperature measurement unit 30 in the first embodiment is a thermocouple (temperature sensor), the present invention is not limited to this, as long as the temperature measurement unit 30 can measure the temperature of the coolant C in the cooling tank 8.
 加熱部32は、冷却槽8内の冷却剤Cを加熱する部材である。実施形態1における加熱部32はヒータであるが、これに限らず、冷却槽8内の冷却剤Cを加熱可能な構成であればよい。 The heating unit 32 is a member that heats the coolant C in the cooling tank 8. Although the heating part 32 in Embodiment 1 is a heater, it is not restricted to this, as long as it can heat the coolant C in the cooling tank 8.
 冷却流路33は、冷却槽8内の冷却剤Cを後述する冷却部36へ送るための流路である。図1に示す冷却流路33は、冷却槽8をバイパスする流路として設けられている。冷却流路33は、冷却槽8から冷却部36に接続される上流側流路33aと、冷却部36から冷却槽8に接続される下流側流路33bとを備える。 The cooling flow path 33 is a flow path for sending the coolant C in the cooling tank 8 to the cooling unit 36 described later. The cooling channel 33 shown in FIG. 1 is provided as a channel that bypasses the cooling tank 8. The cooling channel 33 includes an upstream channel 33 a connected from the cooling tank 8 to the cooling unit 36 and a downstream channel 33 b connected from the cooling unit 36 to the cooling tank 8.
 ポンプ34は、冷却槽8内の冷却剤Cを上流側流路33aへ引き込むとともに、冷却部36へ送るためのポンプである。 The pump 34 is a pump for drawing the coolant C in the cooling tank 8 into the upstream side flow path 33 a and sending it to the cooling unit 36.
 冷却部36は、冷却剤Cを冷却する部材である。実施形態1における冷却部36は熱交換器であるが、これに限らず、冷却槽8内の冷却剤Cを冷却可能な構成であればよい。 The cooling unit 36 is a member that cools the coolant C. Although the cooling unit 36 in the first embodiment is a heat exchanger, the invention is not limited to this, as long as the cooling unit C in the cooling tank 8 can be cooled.
 上述した温度制御機構24の各構成要素は、制御部20によって運転が制御される。 The operation of each component of the temperature control mechanism 24 described above is controlled by the control unit 20.
 このように構成される焼入れ装置2を運転した場合の焼入れ処理のフローの例について、図2A~図2Eを用いて説明する。 An example of the flow of the hardening process when the hardening device 2 configured as described above is operated will be described with reference to FIGS. 2A to 2E.
 まず、図2Aに示すようにワークWを加熱室4へ搬入する。具体的には、第1の扉14を上昇させて開く。加熱室4は内部に設けたヒータ等(図示せず)により、予め加熱されている。次に、焼入れ装置2の外側で搬送トレイ10の上に載置された状態のワークWを焼入れ装置2の内部へ搬入する(図中A1)。搬送トレイ10の搬入には、搬送トレイ10を載せるローラ(図示せず)を外部から回転駆動させるなど、どのような搬送機構であってもよい。その後、第1の扉14を下降させて閉じ、加熱室4内のワークWを所定温度(例えば、850℃)まで加熱する。 First, the work W is carried into the heating chamber 4 as shown in FIG. 2A. Specifically, the first door 14 is raised and opened. The heating chamber 4 is preheated by a heater (not shown) provided therein. Next, the workpiece W placed on the transport tray 10 outside the hardening device 2 is carried into the inside of the hardening device 2 (A1 in the figure). In order to carry in the conveyance tray 10, any conveyance mechanism may be used, such as rotating a roller (not shown) on which the conveyance tray 10 is placed from the outside. Thereafter, the first door 14 is lowered and closed, and the work W in the heating chamber 4 is heated to a predetermined temperature (for example, 850 ° C.).
 次に、搬送トレイ10を中継室6に移動させる。具体的には、第2の扉16を上昇させて開き、加熱処理後のワークWを中継室6に向けて水平移動させる(図中A2)。搬送トレイ10の移動には、前述した図示しない搬送機構を利用する。 Next, the transport tray 10 is moved to the relay chamber 6. Specifically, the second door 16 is raised and opened, and the work W after the heat treatment is horizontally moved toward the relay chamber 6 (A2 in the drawing). For the movement of the transport tray 10, the above-mentioned transport mechanism (not shown) is used.
 図2Bに示すように、中継室6において昇降エレベータ12の上に搬送トレイ10およびワークWが載置される。その後、第2の扉16を下降させて閉じる。 As shown in FIG. 2B, the transfer tray 10 and the work W are placed on the elevator 12 in the relay chamber 6. Thereafter, the second door 16 is lowered and closed.
 次に、図2Cに示すように、昇降エレベータ12を用いて、搬送トレイ10を冷却槽8へ下降させる。昇降エレベータ12の下降により、搬送トレイ10が冷却槽8に配置され、ワークWが液状の冷却剤Cに浸漬される(図中A3)。これにより、ワークWが所定温度(例えば、120℃)まで冷却されて焼入れ処理される。 Next, as shown in FIG. 2C, the transport tray 10 is lowered to the cooling tank 8 using the elevator 12. By lowering the lifting elevator 12, the transport tray 10 is disposed in the cooling tank 8, and the work W is immersed in the liquid coolant C (A3 in the figure). Thereby, the workpiece W is cooled to a predetermined temperature (for example, 120 ° C.) and subjected to quenching treatment.
 冷却槽8での冷却処理が終了したワークWはその後、図2Dに示すように、中継室6に戻される(図中A4)。その後、図2Eに示すように、第3の扉18を開き、ワークWを載置している搬送トレイ10を焼入れ装置2の外部に搬出する(図中A5)。 The work W for which the cooling process in the cooling tank 8 is completed is then returned to the relay chamber 6 as shown in FIG. 2D (A4 in the figure). Thereafter, as shown in FIG. 2E, the third door 18 is opened, and the transport tray 10 on which the workpiece W is placed is unloaded out of the hardening device 2 (A5 in the figure).
 上述した図2A-2Eの処理を行うことにより、ワークWに対する焼入れ処理が実行される。焼入れ装置2に順次搬入される複数のワークWに対して、同様の焼入処理を実行していく。 By performing the process of FIGS. 2A to 2E described above, the hardening process is performed on the workpiece W. The same quenching process is performed on a plurality of works W sequentially transferred to the quenching device 2.
 このような焼入れ処理を継続した場合、ワークWの冷却に使用した冷却槽8内の冷却剤Cは、焼入れ処理ごとに温度が上昇する(例えば約140℃に上昇)。一方で、次のワークWが冷却槽8に投入されるときには、冷却剤Cの温度を所定温度(例えば120℃)まで下げておく必要がある。すなわち、焼入れ処理が終了する度に冷却剤Cを冷却する必要がある。 When such a hardening process is continued, the temperature of the coolant C in the cooling tank 8 used for cooling the work W rises (e.g., rises to about 140 ° C.) with each hardening process. On the other hand, when the next work W is introduced into the cooling tank 8, it is necessary to lower the temperature of the coolant C to a predetermined temperature (for example, 120 ° C.). That is, it is necessary to cool the coolant C every time the quenching process is completed.
 本実施形態1の焼入れ装置2では、前述した温度制御機構24を用いて冷却剤Cの温度制御を行っている。具体的な温度制御方法について、図3、図4を用いて説明する。 In the hardening device 2 of the first embodiment, the temperature control of the coolant C is performed using the temperature control mechanism 24 described above. A specific temperature control method will be described using FIGS. 3 and 4.
 図3、図4は、実施形態1の温度制御機構24により冷却剤Cの温度を制御した場合の冷却剤Cの温度推移を示すグラフである。図3、図4では、横軸に時間、縦軸に温度(温度測定部30による測定温度)が示される。 3 and 4 are graphs showing the transition of the temperature of the coolant C when the temperature of the coolant C is controlled by the temperature control mechanism 24 of the first embodiment. In FIG. 3 and FIG. 4, the horizontal axis represents time, and the vertical axis represents temperature (temperature measured by the temperature measurement unit 30).
 実施形態1の温度制御機構24は、図3、図4に示すように、1つのワークWに対する焼入れ時間X1の終了後、加熱部32および冷却部36を運転せずに、冷却剤Cの放冷運転(放熱)を行う(放冷時間X2、X5)。冷却剤Cの放冷運転と並行して、温度測定部30により冷却剤Cの温度を継続的に測定するとともに(例えば1分毎)、予め定めた所定のタイミングXtまでの間に、測定温度が保温温度T1を下回っているかどうかを判断する。 As shown in FIGS. 3 and 4, the temperature control mechanism 24 according to the first embodiment releases the coolant C without operating the heating unit 32 and the cooling unit 36 after the quenching time X1 for one work W is completed. Perform cold operation (heat release) (cooling time X2, X5). In parallel with the cooling operation of the coolant C, the temperature measuring unit 30 continuously measures the temperature of the coolant C (for example, every one minute), and during the time until the predetermined timing Xt determined in advance, the measurement temperature Determines whether the temperature is lower than the temperature T1.
 焼入れ時間X1は、ワークWを冷却剤Cに付けてから引き上げるまでの時間のことである。所定のタイミングXtとは、次のワークWが冷却槽8に投入される時点Xnよりも前(例えば10分前)の時点として制御部20に予め記憶(設定)されたタイミングのことである(次のワークWが冷却槽8に投入される時点Xnも同様に制御部20に記憶されている)。また保温温度T1は、ワークWの冷却処理の開始時における冷却剤Cの所望の温度として制御部20に予め記憶された温度のことである。 The hardening time X1 is the time from when the workpiece W is attached to the coolant C to when it is pulled up. The predetermined timing Xt is a timing stored (set) in advance in the control unit 20 as a time point (for example, 10 minutes before) the time point Xn at which the next work W is put into the cooling tank 8 (for example, 10 minutes) The time point Xn at which the next work W is introduced into the cooling tank 8 is also stored in the control unit 20). The heat retention temperature T1 is a temperature stored in advance in the control unit 20 as a desired temperature of the coolant C at the start of the cooling process of the work W.
 図3に示す例は、所定のタイミングXtまでに測定温度が保温温度T1を下回っていない場合を示す。このような場合、焼入れ時間X1の終了後から所定のタイミングXtまでの間、加熱部32および冷却部36を運転せずに冷却剤Cの放冷運転を継続する(放冷時間X2)。 The example shown in FIG. 3 shows the case where the measurement temperature does not fall below the heat retention temperature T1 until the predetermined timing Xt. In such a case, the cooling operation of the coolant C is continued without operating the heating unit 32 and the cooling unit 36 from the end of the hardening time X1 to the predetermined timing Xt (cooling time X2).
 その後、所定のタイミングXtにおいて冷却部36を運転する。冷却部36の運転により、冷却剤Cが冷却され、保温温度T1まで到達する(冷却時間X3)。 Thereafter, the cooling unit 36 is operated at a predetermined timing Xt. The coolant C is cooled by the operation of the cooling unit 36 and reaches the heat retention temperature T1 (cooling time X3).
 さらに、冷却剤Cの測定温度が保温温度T1に到達した後、測定温度が保温温度T1に近付くように加熱部32を間欠的に運転する保温運転を行う(保温時間X4)。 Furthermore, after the measured temperature of the coolant C reaches the heat retention temperature T1, the heat retention operation is performed in which the heating unit 32 is intermittently operated such that the measured temperature approaches the heat retention temperature T1 (heat retention time X4).
 一方で、図4は、所定のタイミングXtまでに冷却剤Cの測定温度が保温温度T1を下回る場合を示す。図4に示すように、焼入れ時間X1の終了後から所定のタイミングXtまで放冷運転を行った後(放冷時間X5)、図3で示した冷却部36の運転(冷却時間X3)に替えて、次のワークWが冷却槽8に投入される時点Xnまで、図3に示したものと同様の保温運転を行う(保温時間X6)。 On the other hand, FIG. 4 shows the case where the measured temperature of the coolant C falls below the heat retention temperature T1 by the predetermined timing Xt. As shown in FIG. 4, after the cooling operation is performed from the end of the hardening time X1 to a predetermined timing Xt (cooling time X5), the operation of the cooling unit 36 (cooling time X3) shown in FIG. The heat retention operation similar to that shown in FIG. 3 is performed until the time point Xn when the next work W is introduced into the cooling tank 8 (heat retention time X6).
 図3、図4に示すような制御によれば、次のワークWが冷却槽8に投入される時点Xnにおいていずれの場合であっても冷却剤Cの温度が保温温度T1に維持されている。これにより、次のワークWに対して所望の冷却処理を行うことができる。 According to the control shown in FIGS. 3 and 4, the temperature of the coolant C is maintained at the heat retention temperature T1 in any case at the time point Xn when the next work W is introduced into the cooling tank 8 . Thereby, desired cooling processing can be performed on the next workpiece W.
 上述した実施形態1の温度制御方法に対して、従来例の温度制御方法による冷却剤Cの温度推移の例を図5に示す。 An example of the temperature transition of the coolant C according to the temperature control method of the conventional example is shown in FIG. 5 with respect to the temperature control method of the first embodiment described above.
 図5に示す従来例では、ワークWの焼入れ時間X1の終了直後から冷却部36を運転している(冷却時間X7)。その後、次のワークWが投入される時点Xnまでの間、保温温度T1での保温運転を行う(保温時間X8)。 In the conventional example shown in FIG. 5, the cooling unit 36 is operated immediately after the end of the hardening time X1 of the workpiece W (cooling time X7). Thereafter, the heat retention operation at the heat retention temperature T1 is performed until the time point Xn at which the next work W is input (heat retention time X8).
 このような温度制御方法によれば、冷却時間X7および保温時間X8がともに長くなってしまい、特に次のワークWが投入される時点Xnが遅いほど保温時間X8が大幅に長くなってしまう。これにより、加熱部32をON/OFF制御する保温運転が長くなり、非効率な温度制御方法となってしまう。 According to such a temperature control method, both the cooling time X7 and the heat retention time X8 become long, and in particular, the heat retention time X8 becomes significantly longer as the time point Xn at which the next work W is introduced is later. As a result, the heat retention operation for ON / OFF controlling the heating unit 32 becomes long, and the temperature control method becomes inefficient.
 これに対して、上述した実施形態1の温度制御方法によれば、ワークWの焼入れ時間X1の終了後には、冷却部36と加熱部32を運転しない放冷運転を行うとともに、その後の冷却剤Cの測定温度に基づいて冷却部36の運転を開始している。このような方法によれば、図5に示す従来例と比較して、冷却部36を運転させる期間や加熱部32を運転させる期間が短くなり、特に加熱部32を運転させる期間を大幅に短くすることができる。これにより、冷却剤Cの温度制御をより効率的に行うことができる。 On the other hand, according to the temperature control method of the first embodiment described above, after completion of the quenching time X1 of the work W, the cooling unit 36 and the heating unit 32 are not operated, and the cooling operation thereafter is performed. The operation of the cooling unit 36 is started based on the measured temperature of C. According to such a method, the period for operating the cooling unit 36 and the period for operating the heating unit 32 become shorter as compared with the conventional example shown in FIG. can do. Thereby, temperature control of the coolant C can be performed more efficiently.
(実施形態2)
 本開示に係る実施形態2による冷却剤Cの温度制御方法について説明する。実施形態2では、主に実施形態1と異なる点について説明し、実施形態1と重複する記載は省略する。
Second Embodiment
The temperature control method of the coolant C according to the second embodiment of the present disclosure will be described. In the second embodiment, points different from the first embodiment will be mainly described, and the description overlapping with the first embodiment will be omitted.
 実施形態2では、実施形態1の温度制御方法に加えて、冷却剤Cの温度推移を予測する予測プログラムを制御部20が有しており、予測プログラムに基づいて温度制御を行う点が、実施形態1と異なる。 In the second embodiment, in addition to the temperature control method of the first embodiment, the control unit 20 has a prediction program for predicting the temperature transition of the coolant C, and the temperature control is performed based on the prediction program. Different from Form 1.
 実施形態2における予測プログラムは、冷却部36を運転せずに冷却剤Cを放冷した場合の冷却剤Cの温度推移と、冷却部36により冷却剤Cを冷却した場合の冷却剤Cの温度推移を予測するものである。冷却剤Cを放冷した場合の温度推移は例えば、冷却剤Cの種類、冷却槽8からの放熱量などの要因に基づいて温度推移を予測する演算式から求められる。また、冷却部36により冷却剤Cを冷却した場合の温度推移は例えば、冷却剤Cの種類、冷却槽8からの放熱量、冷却部36の出力の大きさなどの要因に基づいて温度推移を予測する演算式から求められる。 In the prediction program in the second embodiment, the temperature transition of the coolant C when the coolant C is allowed to cool without operating the cooling unit 36 and the temperature of the coolant C when the coolant C is cooled by the cooling unit 36 It predicts the transition. The temperature transition when the coolant C is allowed to cool can be obtained from, for example, an arithmetic expression that predicts the temperature transition based on factors such as the type of the coolant C and the amount of heat released from the cooling tank 8. In addition, the temperature transition when the coolant C is cooled by the cooling unit 36 is, for example, a temperature transition based on factors such as the type of the coolant C, the amount of heat released from the cooling tank 8, and the size of the output of the cooling unit 36. It is obtained from an arithmetic expression to be predicted.
 実施形態2の温度制御方法による冷却剤Cの温度推移の一例を図6に示す。 An example of the temperature transition of the coolant C by the temperature control method of Embodiment 2 is shown in FIG.
 図6に示すように、実施形態2の温度制御方法によれば、前述した予測プログラムに基づいて、冷却剤Cを放冷する放冷時間X9と、放冷時間X9の後に冷却部36により冷却剤Cを冷却する冷却時間X10を定めている。具体的には、放冷時間X9から冷却時間X10に切り替えるタイミングである冷却部36の運転開始のタイミングを予測プログラムに基づいて決定している。 As shown in FIG. 6, according to the temperature control method of the second embodiment, based on the above-described prediction program, cooling by cooling unit 36 after cooling time X9 for cooling coolant C and cooling time X9. A cooling time X10 for cooling the agent C is determined. Specifically, the operation start timing of the cooling unit 36, which is the timing at which the cooling time X9 is switched to the cooling time X10, is determined based on the prediction program.
 実施形態2では特に、次のワークWが投入される時点Xnに冷却剤Cの測定温度がちょうど保温温度T1になるように、冷却部36の運転開始のタイミングを決定している。これにより、加熱部32を用いた保温運転が不要になるとともに、冷却部36を運転するだけで次のワークWに対する所望の冷却処理を実施することができる。このような方法により、冷却剤Cの温度制御をより効率的に行うことができる。 In the second embodiment, in particular, the operation start timing of the cooling unit 36 is determined such that the measured temperature of the coolant C is just the heat retention temperature T1 at the time point Xn when the next work W is introduced. As a result, the heat retention operation using the heating unit 32 is not necessary, and a desired cooling process can be performed on the next workpiece W only by operating the cooling unit 36. By such a method, temperature control of the coolant C can be performed more efficiently.
 なお、予測プログラムを用いる場合には、焼入れ装置2の新たな構成として気温測定部とタイマと冷却速度記憶部とを設けてもよい。これにより、加熱温度とワークWの比熱、重量から放冷必要熱量を計算することもできる。 In addition, when using a prediction program, you may provide an air temperature measurement part, a timer, and a cooling rate memory | storage part as a new structure of the hardening apparatus 2. FIG. In this way, it is also possible to calculate the amount of heat required for cooling from the heating temperature, the specific heat of the work W, and the weight.
 以上、上述の実施形態1、2を挙げて本開示の発明を説明したが、本開示の発明は上述の実施形態1、2に限定されない。例えば、上記実施形態1では、加熱部32と冷却部36が別の場所にある構成として図1に例示したが、このような場合に限らない。冷却部と加熱部が同じ場所にあったり、あるいは、冷却と加熱の機能が合体したような装置を用いる場合であってもよい。 Although the invention of the present disclosure has been described above by citing the first and second embodiments described above, the invention of the present disclosure is not limited to the first and second embodiments. For example, in the first embodiment, the heating unit 32 and the cooling unit 36 are illustrated in FIG. 1 as being in different places, but the present invention is not limited to such a case. The cooling unit and the heating unit may be in the same place, or an apparatus in which the cooling and heating functions are combined may be used.
 上記実施形態1では、冷却槽8に収容される冷却剤Cが焼入油である場合について説明したが、このような場合に限らず、油以外の液状の冷却剤であってもよい。 Although the case where the coolant C contained in the cooling tank 8 is a quenching oil has been described in the first embodiment, the present invention is not limited to such a case, and a liquid coolant other than oil may be used.
 また上記実施形態1では、ワークWが図2A-2Eに示した順で搬送される場合について説明したが、このような場合に限らない。加熱室4で加熱処理を行った後、冷却槽8で冷却処理を行うものであれば、任意の順で搬送されてもよい。また1つの処理室で加熱と冷却を行うものや、第3の扉18を設けずに壁として、冷却の済んだワークWが第2の扉16、第1の扉14を開閉して元の位置に戻っていくというバッチ式など、ワークWの処理形式に応じて搬送経路や処理室の構成を変更してもよい。 In the first embodiment, although the case where the workpiece W is transported in the order shown in FIGS. 2A to 2E has been described, the present invention is not limited to such a case. After the heat treatment is performed in the heating chamber 4, it may be transported in any order as long as the cooling treatment is performed in the cooling tank 8. In addition, the work W which has been cooled and treated as heating and cooling in one processing chamber or as a wall without providing the third door 18 opens and closes the second door 16 and the first door 14, The configuration of the transport path and the processing chamber may be changed according to the processing type of the work W, such as a batch type of returning to the position.
 また上記実施形態1では、ワークWの温度を保温温度T1に近付ける保温運転として、加熱部32のON/OFFを繰返す場合について説明したが、このような方法に限らない。ワークWの温度を保温温度T1に近付けることができれば、加熱部32および/又は冷却部36を用いた任意の運転方法であってもよい。 Moreover, although the case where ON / OFF of the heating part 32 was repeated as heat retention operation which makes the temperature of the workpiece | work W approach heat retention temperature T1 was demonstrated in the said Embodiment 1, it does not restrict to such a method. Any operation method using the heating unit 32 and / or the cooling unit 36 may be used as long as the temperature of the work W can be brought close to the heat retention temperature T1.
 また上記実施形態2では、予測プログラムにおいて、冷却剤Cを放冷した場合の温度推移の予測と、冷却部36で冷却剤Cを冷却した場合の温度推移の予測の両方を行う場合について説明したが、このような場合に限らない。いずれか一方の予測のみを行う場合であってもよい。言い換えれば、制御部20が、冷却剤Cを放冷した場合の温度推移を予測する予測プログラムおよび/又は冷却部36で冷却剤Cを冷却した場合の温度推移を予測する予測プログラムを有していてもよい。 In the second embodiment, in the prediction program, both the prediction of the temperature transition when the coolant C is allowed to cool and the prediction of the temperature transition when the coolant C is cooled by the cooling unit 36 are described. However, this is not the case. Only one of the predictions may be performed. In other words, the control unit 20 has a prediction program that predicts the temperature transition when the coolant C is allowed to cool and / or a prediction program that predicts the temperature transition when the coolant C is cooled by the cooling unit 36. May be
 また上記実施形態2では、次のワークWが投入される時点Xnに冷却剤Cの測定温度がちょうど保温温度T1になるように冷却部36を運転開始する場合について説明したが、このような場合に限らない。次のワークWが投入される前に、冷却剤Cの測定温度が保温温度T1になるように予測プログラムに基づいて冷却部36の運転開始タイミングを決定してもよい。 In the second embodiment, the cooling unit 36 is started to operate so that the measured temperature of the coolant C becomes just the heat retention temperature T1 at the time point Xn when the next work W is introduced, but in such a case Not limited to. Before the next work W is input, the operation start timing of the cooling unit 36 may be determined based on a prediction program so that the measured temperature of the coolant C becomes the heat retention temperature T1.
 なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。 In addition, the effect which each has can be exhibited by combining suitably the arbitrary embodiment in said various embodiment.
 本開示は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した特許請求の範囲による本開示の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。また、各実施形態における要素の組合せや順序の変化は、本開示の範囲及び思想を逸脱することなく実現し得るものである。 While the present disclosure has been fully described in connection with the preferred embodiments with reference to the accompanying drawings, various changes and modifications will be apparent to those skilled in the art. Such variations and modifications are to be understood as included within the scope of the present disclosure as set forth in the appended claims unless they depart therefrom. In addition, changes in the combination or order of elements in each embodiment can be realized without departing from the scope and spirit of the present disclosure.
 本開示は、ワークを焼入れ処理する焼入れ装置であれば適用可能である。 The present disclosure is applicable to any hardening device that hardens a workpiece.
 2 焼入れ装置
 4 加熱室
 6 中継室
 8 冷却槽
 10 搬送トレイ
 12 昇降エレベータ
 14 第1の扉
 16 第2の扉
 18 第3の扉
 20 制御部
 24 温度制御機構
 26 撹拌部
 26a プロペラ
 28 モータ
 30 温度測定部
 32 加熱部
 33 冷却流路
 33a 上流側流路
 33b 下流側流路
 34 ポンプ
 36 冷却部
 C 冷却剤
 W ワーク
 T1 保温温度
 X1 焼入れ時間
 X2、X5、X9 放冷時間
 X3、X7、X10 冷却時間
 X4、X6、X8 保温時間
 Xt 所定のタイミング
 Xn 次のワークが冷却槽に投入される時点
DESCRIPTION OF SYMBOLS 2 Hardening apparatus 4 heating chamber 6 relay chamber 8 cooling tank 10 conveyance tray 12 raising / lowering elevator 14 1st door 16 2nd door 18 3rd door 20 control part 24 temperature control mechanism 26 stirring part 26a propeller 28 motor 30 temperature measurement Part 32 Heating part 33 Cooling flow path 33a Upstream side flow path 33b Downstream side flow path 34 Pump 36 Cooling part C Coolant W Workpiece T1 Heat retention temperature X1 Quenching time X2, X5, X9 Cooling time X3, X7, X10 Cooling time X4 , X6, X8 Incubation time Xt Prescribed timing Xn When the next work is put into the cooling tank

Claims (5)

  1.  ワークを焼入れ処理する焼入れ装置であって、
     加熱処理したワークを冷却するための液状の冷却剤を収容した冷却槽と、
     前記冷却槽内の冷却剤を冷却する冷却部と、
     前記冷却槽内の冷却剤を加熱する加熱部と、
     前記冷却槽内の冷却剤の温度を測定する温度測定部と、
     前記冷却部および前記加熱部の運転を制御する制御部と、を備え、
     前記制御部は、冷却剤によるワークの焼入れ時間終了後は前記冷却部および前記加熱部を運転せずに冷却剤を放冷し、次のワークが投入されるよりも前の所定のタイミングで、前記温度測定部による冷却剤の測定温度が予め定めた保温温度よりも高い場合には、前記冷却部を運転して冷却剤を冷却するように制御する、焼入れ装置。
    A hardening device for hardening the workpiece,
    A cooling tank containing a liquid coolant for cooling the heat-treated workpiece;
    A cooling unit configured to cool the coolant in the cooling tank;
    A heating unit that heats the coolant in the cooling tank;
    A temperature measurement unit that measures the temperature of the coolant in the cooling tank;
    A control unit that controls the operation of the cooling unit and the heating unit;
    The control unit allows the coolant to cool without operating the cooling unit and the heating unit after the quenching time of the work by the coolant is completed, and at a predetermined timing before the next work is input, The quenching apparatus controls to operate the cooling unit to cool the coolant when the temperature measured by the temperature measuring unit is higher than a predetermined temperature keeping temperature.
  2.  前記制御部は、前記所定のタイミングよりも前に、前記測定温度が前記保温温度を下回る場合には、前記冷却部の運転に替えて、次のワークが投入されるまでの間、前記測定温度が前記保温温度に近付くように前記加熱部を運転するように制御する、請求項1に記載の焼入れ装置。 When the measured temperature is lower than the heat retention temperature before the predetermined timing, the control unit changes the operation of the cooling unit until the next work is input, before the predetermined temperature. The hardening apparatus according to claim 1, wherein the heating unit is controlled to operate such that the temperature approaches the heat retention temperature.
  3.  前記制御部は、前記所定のタイミングで前記冷却部を運転した後、次のワークが投入されるまでの間、前記測定温度が前記保温温度に近付くように、前記加熱部を運転するように制御する、請求項1又は2に記載の焼入れ装置。 The control unit controls the heating unit to operate so that the measured temperature approaches the heat retention temperature until the next work is input after operating the cooling unit at the predetermined timing. The hardening apparatus according to claim 1 or 2, wherein
  4.  前記制御部は、冷却剤を放冷した場合の温度推移を予測する予測プログラムおよび/又は前記冷却部で冷却剤を冷却した場合の温度推移を予測する予測プログラムを有し、次のワークが投入される時又はその前に前記測定温度が前記保温温度になるように、前記予測プログラムに基づいて前記冷却部を運転開始するタイミングを決定する、請求項1から3のいずれか1つに記載の焼入れ装置。 The control unit has a prediction program for predicting a temperature transition when the coolant is allowed to cool and / or a prediction program for predicting a temperature transition when the coolant is cooled by the cooling unit, and the next work is input The timing according to any one of claims 1 to 3, wherein operation start time of the cooling unit is determined based on the prediction program such that the measured temperature becomes the heat retention temperature at or before the start of the operation. Hardening equipment.
  5.  前記制御部は、次のワークが投入される時に前記測定温度が前記保温温度になるように前記冷却部を運転開始するタイミングを決定する、請求項4に記載の焼入れ装置。 5. The hardening device according to claim 4, wherein the control unit determines the timing to start the operation of the cooling unit such that the measured temperature becomes the heat retention temperature when the next workpiece is introduced.
PCT/JP2018/017584 2017-08-09 2018-05-07 Hardening apparatus WO2019030997A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017154533A JP6713964B2 (en) 2017-08-09 2017-08-09 Quenching equipment
JP2017-154533 2017-08-09

Publications (1)

Publication Number Publication Date
WO2019030997A1 true WO2019030997A1 (en) 2019-02-14

Family

ID=65272733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017584 WO2019030997A1 (en) 2017-08-09 2018-05-07 Hardening apparatus

Country Status (3)

Country Link
JP (1) JP6713964B2 (en)
TW (1) TW201910520A (en)
WO (1) WO2019030997A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846481A (en) * 2019-11-12 2020-02-28 山东汽车弹簧厂淄博有限公司 Device and method for preparing isolated plate spring steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298213A (en) * 1989-05-10 1990-12-10 Tokico Ltd Production of machine parts by high-frequency bright quenching
JPH07331326A (en) * 1994-06-10 1995-12-19 Fuji Denshi Kogyo Kk Nonoxidizing quenching method and nonoxidizing quenching apparatus
JP2004083930A (en) * 2002-08-22 2004-03-18 Ishikawajima Harima Heavy Ind Co Ltd Cooling apparatus and cooling method
JP2005336570A (en) * 2004-05-28 2005-12-08 Nachi Fujikoshi Corp Method for oil-quenching steel, and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298213A (en) * 1989-05-10 1990-12-10 Tokico Ltd Production of machine parts by high-frequency bright quenching
JPH07331326A (en) * 1994-06-10 1995-12-19 Fuji Denshi Kogyo Kk Nonoxidizing quenching method and nonoxidizing quenching apparatus
JP2004083930A (en) * 2002-08-22 2004-03-18 Ishikawajima Harima Heavy Ind Co Ltd Cooling apparatus and cooling method
JP2005336570A (en) * 2004-05-28 2005-12-08 Nachi Fujikoshi Corp Method for oil-quenching steel, and apparatus therefor

Also Published As

Publication number Publication date
TW201910520A (en) 2019-03-16
JP6713964B2 (en) 2020-06-24
JP2019031724A (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP4305716B2 (en) Heat treatment furnace
EP1726665B1 (en) Double-chamber heat treating furnace
JP4929657B2 (en) Carburizing treatment apparatus and method
DE102015203376A1 (en) Method and plant for the thermal treatment of elongated, flat metallic material, in particular aluminum ingots, in a ring hearth furnace
JP2014237886A (en) Heat processing facility and heat processing method
WO2019030997A1 (en) Hardening apparatus
EP2006582A9 (en) Seal structure for cooling treatment apparatus or multichamber heat treatment apparatus, and for the seal structure, method of pressure regulation and method of operating
US3447788A (en) Heat treating method and apparatus
JPH1081946A (en) Heat treatment apparatus for executing solution treatment of aluminum alloy parts in aircraft industry
JPWO2007013279A1 (en) Heating apparatus and heating method
CN105974892B (en) Workpiece processing system and method
JP4420332B2 (en) Oil quenching method and equipment for steel
KR100906191B1 (en) The Hearth Roller type continuous carburizing heat treatment furnace
JP2008266729A (en) Method for heating steel-made workpiece
US9975275B2 (en) Extrusion die pre-heating device and method
JP5686918B1 (en) Heat treatment equipment
KR100687799B1 (en) refrigerant-cycling and vertically-charged vacuum heat treatment furnace and method for vacuunm heat-treatment
KR100442047B1 (en) Bright heat treatment process of a high atmosphere
JP2007131904A (en) Quenching apparatus
JP2004137539A (en) Warm sizing equipment for ferrous sintered alloy component
JP2022190490A (en) Heat treatment apparatus and method of controlling temperature of coolant in heat treatment apparatus
CN111118267B (en) Isothermal quenching multipurpose furnace production line using oil or oil-atmosphere as quenching medium
JP2005133103A (en) Method for heat-treating aluminum alloy material
CN113631730B (en) Quenching method
JP2009161785A (en) Heat treatment equipment for sizing press

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845074

Country of ref document: EP

Kind code of ref document: A1