JP2008266729A - Method for heating steel-made workpiece - Google Patents

Method for heating steel-made workpiece Download PDF

Info

Publication number
JP2008266729A
JP2008266729A JP2007111717A JP2007111717A JP2008266729A JP 2008266729 A JP2008266729 A JP 2008266729A JP 2007111717 A JP2007111717 A JP 2007111717A JP 2007111717 A JP2007111717 A JP 2007111717A JP 2008266729 A JP2008266729 A JP 2008266729A
Authority
JP
Japan
Prior art keywords
temperature
heating
steel
steel workpiece
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007111717A
Other languages
Japanese (ja)
Inventor
Tatsumi Tanaka
辰実 田中
Akihiro Suzuki
章宏 鈴木
Tetsuji Machi
哲司 町
Toru Monno
門野  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nachi Fujikoshi Corp
Original Assignee
Honda Motor Co Ltd
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nachi Fujikoshi Corp filed Critical Honda Motor Co Ltd
Priority to JP2007111717A priority Critical patent/JP2008266729A/en
Publication of JP2008266729A publication Critical patent/JP2008266729A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating method with which a temperature difference between steel-made workpieces or the temperature difference between the surface and the core of the steel-made workpiece can be reduced. <P>SOLUTION: The steel-made workpiece 11 in a heating chamber 20 is shifted to a front chamber 15 (an arrow mark 3) as shown in (c) before the temperature of the steel-made workpiece reaches a target temperature, and when the shift is finished, a sectioning door 18 is closed. Then, the steel-made workpiece 11 is held in the front chamber 15 for 0.5-2 min and after the lapse of this holding time, the steel-made workpiece 11 is shifted to the heating chamber 20 as per the arrow mark (4). The steel-made workpiece is taken out from the heating chamber one time or several times and naturally cooled in gas. Since the surface temperature of the steel-made workpiece itself is lowered and the temperature difference between the surface and the center is reduced. In the case of a plurality of the steel-made workpieces, since the temperature of the steel-made workpiece near a heater is lowered, the temperature difference between the steel-made workpiece near the heater and the one far from the heater is reduced. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ギヤなどの鋼製ワークの加熱方法の改良に関する。   The present invention relates to an improvement in a method for heating a steel workpiece such as a gear.

ギヤやシャフトなどは強度部品であるため、このような鋼製ワークは、強度向上を目的に、熱処理が施される。熱処理には、焼入れ、浸炭、窒化などの表面強化法が知られている。中でも、真空又は無酸化ガス中で浸炭を実施する真空浸炭法が広く知られている(例えば、特許文献1参照。)。
特開2002−180235公報(図1)
Since gears and shafts are high-strength parts, such steel workpieces are heat-treated for the purpose of improving the strength. For heat treatment, surface strengthening methods such as quenching, carburizing, and nitriding are known. Especially, the vacuum carburizing method which implements carburizing in a vacuum or non-oxidizing gas is widely known (for example, refer patent document 1).
JP 2002-180235 A (FIG. 1)

特許文献1を次図に基づいて説明する。
図5は従来の技術の基本原理を説明する図であり、横軸に工程群が示されている。
加熱工程では、鋼材部品は、室温から浸炭温度(900〜1050℃)まで、大気圧の窒素ガス中で加熱される。
活性化工程では、浸炭温度で雰囲気を真空に代えて鋼材部品の表面を活性化させる。
Patent document 1 is demonstrated based on the following figure.
FIG. 5 is a diagram for explaining the basic principle of the conventional technique, in which a group of processes is shown on the horizontal axis.
In the heating step, the steel material part is heated in nitrogen gas at atmospheric pressure from room temperature to carburizing temperature (900 to 1050 ° C.).
In the activation step, the surface of the steel part is activated by changing the atmosphere to a vacuum at the carburizing temperature.

浸炭工程は、浸炭ガスとしての炭化水素ガスを吹き込み1.3〜2.6kPaの減圧雰囲気に保持することで、浸炭を行わせる。
拡散工程では、雰囲気を13〜26Paの真空に代えて、拡散を促す。
降温工程では、窒素ガスを吹き込み、大気圧の窒素ガス中で鋼材部品を820〜890℃に下げる。
In the carburizing step, carburization is performed by blowing hydrocarbon gas as the carburizing gas and maintaining in a reduced pressure atmosphere of 1.3 to 2.6 kPa.
In the diffusion step, the atmosphere is changed to a vacuum of 13 to 26 Pa to promote diffusion.
In the temperature lowering step, nitrogen gas is blown, and the steel parts are lowered to 820 to 890 ° C. in nitrogen gas at atmospheric pressure.

上記工程群のうちで、加熱工程には次に述べる問題が発生した。
図6は従来の加熱工程の説明図であり、(a)に示す真空加熱炉100は、炉体101に扉102を備え、炉内にヒータ103を備え、炉内の雰囲気温度を測定する熱電対104及びヒータ103の出力を制御する加熱制御部105を備え、真空ポンプ106及び窒素ガス供給源107を備えている。
Among the above process groups, the following problems occurred in the heating process.
FIG. 6 is an explanatory view of a conventional heating process. A vacuum heating furnace 100 shown in FIG. 6A is a thermoelectric device that includes a door 102 in a furnace body 101, a heater 103 in the furnace, and measures the atmospheric temperature in the furnace. A heating control unit 105 that controls the outputs of the pair 104 and the heater 103 is provided, and a vacuum pump 106 and a nitrogen gas supply source 107 are provided.

扉102を開いて、鋼製ワーク110を炉内に装入し、扉102を閉じる。真空ポンプ106で炉内の空気やガスを排気する。真空ポンプ106を止め、窒素ガス供給源107から窒素ガスを供給し、炉内を大気圧の窒素ガスで満たす。次に、ヒータ103に通電し、炉内雰囲気が浸炭温度(例えば930℃)になるように、加熱制御部105で炉内温度を制御する。   The door 102 is opened, the steel workpiece 110 is charged into the furnace, and the door 102 is closed. The vacuum pump 106 exhausts air and gas in the furnace. The vacuum pump 106 is stopped, nitrogen gas is supplied from a nitrogen gas supply source 107, and the furnace is filled with nitrogen gas at atmospheric pressure. Next, the heater 103 is energized, and the heating controller 105 controls the furnace temperature so that the furnace atmosphere becomes a carburizing temperature (for example, 930 ° C.).

鋼製ワーク110がギヤである場合は、(b)に示すように、耐熱性のラックジグバスケット111に多数個のギヤ112A、112B、112C、112D、112E、112Fなどを並べて収納し、このラックジグバスケット111を炉内に装入する。
ラックジグバスケット111の上隅のギヤ112Aの温度T1、ラックジグバスケット111の中央のギヤ112Bの温度T2を、各々試験的に測定した。
When the steel workpiece 110 is a gear, as shown in (b), a large number of gears 112A, 112B, 112C, 112D, 112E, 112F, etc. are stored side by side in a heat-resistant rack jig basket 111. The jig basket 111 is charged into the furnace.
The temperature T1 of the gear 112A at the upper corner of the rack jig basket 111 and the temperature T2 of the gear 112B at the center of the rack jig basket 111 were each measured experimentally.

すると、(c)に示すように、温度T1は迅速に上昇した。上隅のギヤ112Aはヒータ103で直接加熱されているため、何処よりも早く温度が上昇する。
一方、温度T2は上がり方が極端に遅かった。
Then, as shown in (c), the temperature T1 rose rapidly. Since the gear 112A in the upper corner is directly heated by the heater 103, the temperature rises earlier than anywhere.
On the other hand, the temperature T2 was extremely slow to rise.

(b)に示す中央のギヤ112Bは、(a)に示すヒータ103による直接加熱が殆ど期待できない。しかも、ギヤ112A〜112F間の隙間が小さくて、窒素ガスの流れが滞るため、対流伝熱効果が小さい。そこで、このギヤ112Bは、周辺のギヤ112C〜112Fの熱輻射により、主として受熱する。そのために、中央のギヤ112Bは、温度の上昇が最も遅くなる。   The central gear 112B shown in (b) can hardly be expected to be directly heated by the heater 103 shown in (a). Moreover, since the gap between the gears 112A to 112F is small and the flow of nitrogen gas is stagnant, the convective heat transfer effect is small. Therefore, the gear 112B mainly receives heat by the thermal radiation of the peripheral gears 112C to 112F. Therefore, the temperature of the central gear 112B is the slowest.

温度T1と温度T2との温度差ΔTが、極端に大きいことは好ましくない。ギヤ112Aとギヤ112Bの熱履歴が相違し、熱処理不良の原因となる。
鋼製ワーク110が1個のブロックである場合は、表面の温度がT1となり、コアの温度がT2となるため、材質によっては熱応力によって、加熱割れや熱塑性変形が発生する。
It is not preferable that the temperature difference ΔT between the temperature T1 and the temperature T2 is extremely large. The heat histories of the gear 112A and the gear 112B are different, causing heat treatment failure.
When the steel workpiece 110 is a single block, the surface temperature is T1 and the core temperature is T2, and depending on the material, heat cracking or thermoplastic deformation occurs due to thermal stress.

何れにおいても、温度差ΔTの圧縮技術が求められる。   In any case, a compression technique with a temperature difference ΔT is required.

本発明は、鋼製ワークの相互間の温度差又は、鋼製ワークの表面とコアの温度差を小さくすることができる加熱方法を提供することを課題とする。   This invention makes it a subject to provide the heating method which can make small the temperature difference between the steel workpieces, or the temperature difference of the surface of a steel workpiece, and a core.

請求項1に係る発明は、鋼製ワークを熱処理のために目標温度まで加熱する加熱方法であって、前記鋼製ワークを加熱室で、目標温度まで加熱する間において、1回又は複数回前記鋼製ワークを加熱室から取り出し、ガス中で自然冷却することを特徴とする。なお、自然冷却とは、自然対流による冷却を指す。   The invention according to claim 1 is a heating method for heating a steel workpiece to a target temperature for heat treatment, wherein the steel workpiece is heated to a target temperature in a heating chamber one or more times. The steel workpiece is taken out of the heating chamber and naturally cooled in gas. Natural cooling refers to cooling by natural convection.

請求項2に係る発明では、鋼製ワークは、複数段並べられていることを特徴とする。   The invention according to claim 2 is characterized in that the steel workpieces are arranged in a plurality of stages.

請求項3に係る発明では、ガス中での自然冷却は、鋼製ワークの中心温度が下がり始める前に終了することを特徴とする。   In the invention which concerns on Claim 3, natural cooling in gas is complete | finished before the center temperature of steel workpieces begins to fall.

請求項4に係る発明では、鋼製ワークを加熱室から取り出すタイミングは、鋼製ワークの表面温度に基づいて決定することを特徴とする。   In the invention which concerns on Claim 4, the timing which takes out a steel workpiece from a heating chamber is determined based on the surface temperature of a steel workpiece.

請求項5に係る発明では、鋼製ワークを加熱室から取り出すタイミングは、加熱室の雰囲気温度に基づいて決定することを特徴とする。   In the invention which concerns on Claim 5, the timing which takes out a steel workpiece from a heating chamber is determined based on the atmospheric temperature of a heating chamber.

請求項6に係る発明では、ガス中での自然冷却を終了するタイミングは、加熱室から取り出した後の鋼製ワークの表面温度に基づいて決定することを特徴とする。   In the invention which concerns on Claim 6, the timing which complete | finishes natural cooling in gas is determined based on the surface temperature of the steel workpiece | work after taking out from a heating chamber, It is characterized by the above-mentioned.

請求項7に係る発明では、ガス中での自然冷却を終了するタイミングは、加熱室から取り出した後の経過時間に基づいて決定することを特徴とする。   In the invention which concerns on Claim 7, the timing which complete | finishes the natural cooling in gas is determined based on the elapsed time after taking out from a heating chamber, It is characterized by the above-mentioned.

請求項8に係る発明では、鋼製ワークは、浸炭焼入れを施すギヤであることを特徴とする。   The invention according to claim 8 is characterized in that the steel workpiece is a gear for carburizing and quenching.

請求項1に係る発明では、1回又は複数回鋼製ワークを加熱室から取り出し、ガス中で自然冷却する。鋼製ワーク自体にあっては、表面温度が下がるため、表面と中心との温度差が縮まる。鋼製ワークが複数である場合は、ヒータに近い方の鋼製ワークの温度が下がるため、ヒータから遠い方の鋼製ワークとの温度差が縮まる。   In the invention according to claim 1, the steel workpiece is taken out from the heating chamber once or a plurality of times and is naturally cooled in gas. In the steel workpiece itself, the surface temperature decreases, so the temperature difference between the surface and the center is reduced. When there are a plurality of steel workpieces, the temperature of the steel workpiece closer to the heater is lowered, so that the temperature difference with the steel workpiece farther from the heater is reduced.

請求項2に係る発明では、鋼製ワークは、複数段並べられていることを特徴とする。ヒータに近い方の鋼製ワークの温度が下がるため、ヒータから遠い方の鋼製ワークとの温度差が縮まる。   The invention according to claim 2 is characterized in that the steel workpieces are arranged in a plurality of stages. Since the temperature of the steel workpiece closer to the heater is lowered, the temperature difference with the steel workpiece farther from the heater is reduced.

請求項3に係る発明では、ガス中での自然冷却は、鋼製ワークの中心温度が下がり始める前に終了する。鋼製ワークは表面が高温で中心が低温であるため、表面が冷えても中心は暫く温度が上がる。しかし、中心温度も下がり始めると、過冷却であって、次の加熱で熱エネルギーを多く消費する。熱エネルギーの消費を抑えるために、ガス中での自然冷却は、鋼製ワークの中心温度が下がり始める前に終了する。   In the invention which concerns on Claim 3, natural cooling in gas is complete | finished before the center temperature of steel workpieces begins to fall. Since the steel workpiece has a high surface and a low center, the temperature of the center rises for a while even if the surface cools. However, if the center temperature starts to decrease, it is supercooled and consumes a lot of heat energy in the next heating. In order to reduce the consumption of heat energy, the natural cooling in the gas ends before the center temperature of the steel workpiece starts to drop.

請求項4に係る発明では、鋼製ワークを加熱室から取り出すタイミングは、鋼製ワークの表面温度に基づいて決定する。鋼製ワークの温度であれば、信頼性が高まる。   In the invention which concerns on Claim 4, the timing which takes out a steel workpiece from a heating chamber is determined based on the surface temperature of a steel workpiece. If the temperature of the steel workpiece, the reliability increases.

請求項5に係る発明では、鋼製ワークを加熱室から取り出すタイミングは、加熱室の雰囲気温度に基づいて決定する。加熱室には雰囲気温度を測定する温度センサーが常備される。この温度センサーを使用することができるため、コストアップにならない。   In the invention which concerns on Claim 5, the timing which takes out a steel workpiece from a heating chamber is determined based on the atmospheric temperature of a heating chamber. A temperature sensor for measuring the ambient temperature is always provided in the heating chamber. Since this temperature sensor can be used, the cost is not increased.

請求項6に係る発明では、ガス中での自然冷却を終了するタイミングは、加熱室から取り出した後の鋼製ワークの表面温度に基づいて決定する。鋼製ワークの温度であれば、信頼性が高まる。   In the invention which concerns on Claim 6, the timing which complete | finishes the natural cooling in gas is determined based on the surface temperature of the steel workpiece | work after taking out from a heating chamber. If the temperature of the steel workpiece, the reliability increases.

請求項7に係る発明では、ガス中での自然冷却を終了するタイミングは、加熱室から取り出した後の経過時間に基づいて決定する。時間であれば、簡単に測れることができるため、コストアップにならない。   In the invention which concerns on Claim 7, the timing which complete | finishes the natural cooling in gas is determined based on the elapsed time after taking out from a heating chamber. If it is time, it can be easily measured, so there is no cost increase.

請求項8に係る発明では、鋼製ワークは、浸炭焼入れを施すギヤであることを特徴とする。強度が求められるギヤでは、均一加熱が望まれる。そして、浸炭焼入れの前に温度差が小さくなっていれば、好ましい浸炭焼入れが行える。   The invention according to claim 8 is characterized in that the steel workpiece is a gear for carburizing and quenching. For gears that require strength, uniform heating is desired. If the temperature difference is small before carburizing and quenching, preferable carburizing and quenching can be performed.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は真空浸炭処理設備の原理図であり、真空浸炭処理設備10は、鋼製ワーク11を待機させるワーク載せ台12と、扉13及び窒素ガス供給源14を備えている前室15と、この前室15の底に繋がっていて油16が溜められている油焼入れ槽17と、前室15に仕切扉18を介して繋がっている加熱室20とからなる。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a principle view of a vacuum carburizing treatment facility. A vacuum carburizing treatment facility 10 includes a work platform 12 for waiting a steel work 11, a front chamber 15 having a door 13 and a nitrogen gas supply source 14, It consists of an oil quenching tank 17 connected to the bottom of the front chamber 15 and storing oil 16, and a heating chamber 20 connected to the front chamber 15 via a partition door 18.

加熱室20は、炉体21と、この炉体21の内部に配置されたヒータ22と、雰囲気温度を検出する熱電対23と、この熱電対23で検出した温度が、所定の温度になるようにヒータ22の出力を制御する温度制御部24と、炉体21の内部を排気する真空ポンプ25及び炉体21へ窒素ガスを供給する窒素供給源26とからなる。   The heating chamber 20 includes a furnace body 21, a heater 22 disposed inside the furnace body 21, a thermocouple 23 that detects the ambient temperature, and a temperature detected by the thermocouple 23 so that the temperature is a predetermined temperature. The temperature control unit 24 controls the output of the heater 22, the vacuum pump 25 that exhausts the interior of the furnace body 21, and the nitrogen supply source 26 that supplies nitrogen gas to the furnace body 21.

なお、鋼製ワーク11は、図6(b)で説明したものと同じであって、耐熱性のラックジグバスケット27に並べられてた多数個のギヤ28A、28Bなどである。便宜上、ギヤ28Aはヒータ22に最も近いギヤの一つ、ギヤ28Bはヒータ22から最も遠いギヤとした。   The steel workpiece 11 is the same as that described with reference to FIG. 6B, and includes a large number of gears 28 </ b> A and 28 </ b> B arranged in a heat-resistant rack jig basket 27. For convenience, the gear 28A is one of the gears closest to the heater 22, and the gear 28B is the gear farthest from the heater 22.

以上の構成からなる真空浸炭処理設備10で実施する加熱工程を次に述べる。
図2は本発明に係る加熱工程を説明図であり、(a)において、扉13を開いて鋼製ワーク11を前室15へ装入する(矢印(1))。装入が終わったら、扉13を閉める。なお、前室15の雰囲気は、約100℃の窒素ガスである。
Next, the heating process performed in the vacuum carburizing treatment facility 10 having the above-described configuration will be described.
FIG. 2 is an explanatory view of the heating process according to the present invention. In (a), the door 13 is opened and the steel workpiece 11 is inserted into the front chamber 15 (arrow (1)). When the charging is finished, the door 13 is closed. The atmosphere in the front chamber 15 is about 100 ° C. nitrogen gas.

次に、(b)において、仕切扉18を開けて鋼製ワーク11を加熱室20へ装入する。従来は、加熱室20で鋼製ワーク11を目標温度(900℃〜1000℃)まで加熱していた。この従来の昇温曲線は、図6(c)に示したとおりである。   Next, in (b), the partition door 18 is opened and the steel workpiece 11 is charged into the heating chamber 20. Conventionally, the steel workpiece 11 is heated to the target temperature (900 ° C. to 1000 ° C.) in the heating chamber 20. This conventional temperature rise curve is as shown in FIG.

本発明では、鋼製ワーク11の温度が目標温度(加熱最高温度や浸炭温度)に到達する前に、(c)に示すように、加熱室20の鋼製ワーク11を前室15へ移す(矢印(3))。移動が終わったら仕切扉18を閉じることは言うまでもない。そして、鋼製ワーク11を前室15に0.5分〜2分保持する。この保持時間が経過したら、鋼製ワーク11を、矢印(4)のように、加熱室20へ移す。なお、加熱工程では加熱室20の雰囲気は大気圧相当の窒素ガスとした。   In the present invention, before the temperature of the steel workpiece 11 reaches the target temperature (maximum heating temperature or carburizing temperature), the steel workpiece 11 in the heating chamber 20 is moved to the front chamber 15 as shown in (c) ( Arrow (3)). Needless to say, the partition door 18 is closed when the movement is completed. Then, the steel workpiece 11 is held in the front chamber 15 for 0.5 minutes to 2 minutes. When this holding time has elapsed, the steel workpiece 11 is moved to the heating chamber 20 as shown by the arrow (4). In the heating process, the atmosphere in the heating chamber 20 was nitrogen gas corresponding to atmospheric pressure.

図2(b)〜(c)での、鋼製ワーク11の加熱上昇を正確に測るために、ギヤ28Aとギヤ28Bとに測定用の熱電対を直接取付けて、時間と温度の関係を調べた。ギヤ28Aの温度をT1、ギヤ28Bの温度をT2と呼ぶ。この結果を次図で説明する。   In order to accurately measure the heating rise of the steel workpiece 11 in FIGS. 2B to 2C, a thermocouple for measurement is directly attached to the gear 28A and the gear 28B, and the relationship between time and temperature is examined. It was. The temperature of the gear 28A is referred to as T1, and the temperature of the gear 28B is referred to as T2. The results will be described with reference to the next figure.

図3は本発明に係るワークの昇温曲線を示す図であり、横軸は時間、縦軸は温度とした。そして、横軸に沿わせた「加熱室」はワークが加熱室に装入され、「前室」はワークが前室に移されたことを示す。
温度T1は急激に上昇し、温度T2は徐々に上昇するが、P1の時点(タイミング)で、ワークが雰囲気100℃前後の前室に移されたために、温度T1は、890℃から790℃まで一気に下がった。そして、P2の時点(タイミング)で、ワークが加熱室に戻されたために、温度T1は、上昇し始める。
FIG. 3 is a diagram showing a temperature rise curve of a workpiece according to the present invention, where the horizontal axis is time and the vertical axis is temperature. The “heating chamber” along the horizontal axis indicates that the workpiece has been charged into the heating chamber, and the “front chamber” indicates that the workpiece has been transferred to the front chamber.
The temperature T1 rises rapidly, and the temperature T2 rises gradually, but at the time of P1 (timing), the work was moved to the front chamber at around 100 ° C., so the temperature T1 was changed from 890 ° C. to 790 ° C. It went down at once. And since the workpiece | work was returned to the heating chamber at the time (timing) of P2, temperature T1 begins to rise.

一方、温度T2は、P1の時点で横ばいになる。これは、ギヤ28Bが他のギヤで囲まれているため、雰囲気温度の影響を受けにくく、且つ他のギヤから熱を受けるためと考えられる。   On the other hand, the temperature T2 becomes flat at the time point P1. This is presumably because the gear 28B is surrounded by other gears, so that it is less affected by the ambient temperature and receives heat from the other gears.

想像線で示すT101、T101、T102は、従来の曲線である。P3の時点でT101とT102との間の温度差ΔT101は約300℃であった。これに対して、本発明に係る曲線T1とT2との間の温度差ΔT1は約220℃であった。   T101, T101, and T102 indicated by imaginary lines are conventional curves. At time P3, the temperature difference ΔT101 between T101 and T102 was about 300 ° C. On the other hand, the temperature difference ΔT1 between the curves T1 and T2 according to the present invention was about 220 ° C.

また、P4の時点(タイミング)で、ワークが100℃前後の前室に移されたために、温度T1は、930℃から850℃まで一気に下がった。そして、P5の時点(タイミング)で、ワークが加熱室に戻されたために、温度T1は、上昇し始める。   Moreover, since the workpiece | work was moved to the front chamber of about 100 degreeC at the time (timing) of P4, temperature T1 fell at a stretch from 930 degreeC to 850 degreeC. And since the workpiece | work was returned to the heating chamber at the time (timing) of P5, temperature T1 begins to rise.

一方、温度T2は、P4の時点で横ばいになる。
想像線で示すT101、T102は、従来の曲線である。P6の時点でT101とT102との間の温度差ΔT102は約120℃であった。これに対して、本発明に係る曲線T1とT2との間の温度差ΔT2は約60℃であった。
On the other hand, the temperature T2 becomes flat at the time point P4.
T101 and T102 indicated by imaginary lines are conventional curves. At P6, the temperature difference ΔT102 between T101 and T102 was about 120 ° C. In contrast, the temperature difference ΔT2 between the curves T1 and T2 according to the present invention was about 60 ° C.

以上に述べたように、加熱工程において、加熱途中でワークを加熱室から前室に移すことで、温度T1(周縁に配置されたギヤの温度)と温度T2(中央に配置されたギヤの温度)の差は、従来比で30〜50%も減少させることができた。
この結果、極端な温度差に起因する加熱割れの発生を防止することができるようになった。
As described above, in the heating process, the workpiece is moved from the heating chamber to the front chamber in the middle of heating, so that the temperature T1 (the temperature of the gear arranged at the periphery) and the temperature T2 (the temperature of the gear arranged at the center) ) Was reduced by 30 to 50% compared to the conventional method.
As a result, it has become possible to prevent the occurrence of heating cracks due to an extreme temperature difference.

本発明は、実施例で述べたようにラックジグバスケット(複数の棚)にギヤやシャフトを多数個並べて一括処理する際に有益である。しかし、大型のワーク単品に適用することは差し支えない。この場合は、大型ワークの表面と中心(コア)との温度差が小さくなる。   As described in the embodiments, the present invention is useful when a large number of gears and shafts are arranged in a rack jig basket (a plurality of shelves). However, it can be applied to a single large workpiece. In this case, the temperature difference between the surface of the large workpiece and the center (core) is reduced.

また、図3から明らかなように、ワークを前室に長時間置くと過冷却となって、中央の温度T2も横ばいから下降に転じることが予想される。そこで、P2の時点やP5の時点は、下降に転じる前に設定することが望ましい。下降に転じると次の加熱時間が長くなり、投入する熱エネルギーが増加する。下降に転じる前であれば、熱エネルギーの消費を押さえることができる。また、下降に転じると加熱時間(トータル時間)が延びるが、下降に転じる前であれば、加熱時間は延びない。したがって、生産性の低下を押さえることができる。   In addition, as is clear from FIG. 3, it is expected that when the work is placed in the front chamber for a long time, the work is overcooled, and the central temperature T2 also changes from being flat to falling. Therefore, it is desirable to set the time point P2 and the time point P5 before turning down. If it starts to descend, the next heating time becomes longer, and the heat energy to be input increases. If it is before turning down, the consumption of heat energy can be suppressed. In addition, the heating time (total time) is extended when turning down, but the heating time is not extended before turning down. Therefore, a decrease in productivity can be suppressed.

次に重要なのは、加熱室からワークを前室へ移すタイミングの設定である。
実験では目標温度が930℃のときに、P1での温度は890℃であった。そこで、ワークの表面温度を検出して、この温度が890℃に達したら、ワークを加熱室から前室へ移すことが推奨できる。ワークの表面温度は、輻射温度計や放射温度計で測定することができる。ワークの温度であれば、制御の信頼性が高まる。
Next, what is important is setting the timing for moving the workpiece from the heating chamber to the front chamber.
In the experiment, when the target temperature was 930 ° C, the temperature at P1 was 890 ° C. Therefore, it is recommended to detect the surface temperature of the workpiece and to move the workpiece from the heating chamber to the front chamber when this temperature reaches 890 ° C. The surface temperature of the workpiece can be measured with a radiation thermometer or a radiation thermometer. If the temperature of the workpiece, the reliability of the control is increased.

代替案として、雰囲気の温度による制御が挙げられる。図3に破線で示したTaは加熱室での雰囲気温度である。Taはワークが装入された直後から目標温度に向かって上昇する。雰囲気温度Taは、原則としてT1より大きく、時間と共にTaとT1との差は小さくなるものの曲線の傾向は酷似している。そこで、雰囲気の温度がTa1(例えば920℃)に到達したら、ワークを加熱室から前室へ移すことが推奨できる。
雰囲気温度の測定は既存の熱電対を使用することができる。輻射温度計や放射温度計を設ける必要がないので、設備費用を圧縮することができる。
As an alternative, there is control by the temperature of the atmosphere. Ta indicated by a broken line in FIG. 3 is the atmospheric temperature in the heating chamber. Ta increases toward the target temperature immediately after the workpiece is loaded. Although the atmospheric temperature Ta is larger than T1 in principle and the difference between Ta and T1 decreases with time, the tendency of the curves is very similar. Therefore, when the temperature of the atmosphere reaches Ta1 (for example, 920 ° C.), it is recommended to move the workpiece from the heating chamber to the front chamber.
An existing thermocouple can be used to measure the ambient temperature. Since there is no need to provide a radiation thermometer or a radiation thermometer, the equipment cost can be reduced.

また、前室からワークを加熱室へ戻すタイミングも重要である。
実施例では、P1から60秒(1分)が経過したら、ワークを加熱室へ戻すようにした。時間が経過した時点がP2であると認定する。時間であれば、認定は容易であり、制御系のコストアップを抑えることができる。
Moreover, the timing which returns a workpiece | work from a front chamber to a heating chamber is also important.
In the example, when 60 seconds (1 minute) has elapsed from P1, the workpiece is returned to the heating chamber. It is recognized that the point in time has elapsed is P2. If it is time, certification is easy and the cost of the control system can be suppressed.

しかし、理想的には温度で管理することである。そこで、ワークの表面温度を、輻射温度計や放射温度計で測定し、P1からの温度が所定の温度に下がった時点をP2とする。   However, it is ideal to manage by temperature. Therefore, the surface temperature of the workpiece is measured with a radiation thermometer or a radiation thermometer, and the time when the temperature from P1 falls to a predetermined temperature is defined as P2.

真空浸炭処理設備の別実施例を説明する。
図4は別実施例に係る真空浸炭処理設備の原理図であり、真空浸炭処理設備30は、入口扉31を備えた前室32と、この前室32に仕切扉33を介して繋がっている第1加熱室34と、この第1加熱室34に仕切扉35を介して繋がっている中間室36と、この中間室36に仕切扉37を介して繋がっている第2加熱室38と、この第2加熱室38に仕切扉39を介して繋がっている後室41と、この後室41の底に繋がっている油焼入れ槽42とからなる。43は出口扉、44は熱電対、45は窒素ガス供給源、46は真空ポンプ、47はヒータである。
Another embodiment of the vacuum carburizing equipment will be described.
FIG. 4 is a principle diagram of a vacuum carburizing treatment facility according to another embodiment. The vacuum carburizing treatment facility 30 is connected to a front chamber 32 having an entrance door 31 and a partition door 33 to the front chamber 32. A first heating chamber 34; an intermediate chamber 36 connected to the first heating chamber 34 via a partition door 35; a second heating chamber 38 connected to the intermediate chamber 36 via a partition door 37; The rear chamber 41 is connected to the second heating chamber 38 via a partition door 39, and the oil quenching tank 42 is connected to the bottom of the rear chamber 41. 43 is an exit door, 44 is a thermocouple, 45 is a nitrogen gas supply source, 46 is a vacuum pump, and 47 is a heater.

前室32から第1加熱室34へ鋼製ワーク11移し、この第1加熱室34で図3のP1までの加熱を実施する。次に、第1加熱室34の鋼製ワーク11を中間室36へ移し、この中間室36で図3のP1直後の冷却を実施する。この冷却が終わったら、中間室36のワークを第2加熱室38へ移して目標温度までの加熱を実施する。この真空浸炭処理設備30は、鋼製ワークを加熱工程で1回だけ冷却させる加熱方法に好適である。   The steel workpiece 11 is transferred from the front chamber 32 to the first heating chamber 34, and heating up to P1 in FIG. Next, the steel workpiece 11 in the first heating chamber 34 is moved to the intermediate chamber 36, and the cooling immediately after P1 in FIG. When this cooling is finished, the work in the intermediate chamber 36 is transferred to the second heating chamber 38 and heating to the target temperature is performed. This vacuum carburizing equipment 30 is suitable for a heating method in which a steel workpiece is cooled only once in a heating process.

鋼製ワーク11は図左から右へ流し、左方向には戻らないようにすると、入口扉31から鋼製ワーク11を次々に真空浸炭処理設備30へ装入することができ、生産性を高めることができる。又、鋼製ワーク11を第2加熱室38から中間室36へ戻すことにより、複数回の冷却も可能である。さらに、中間室36に、平行に図示しない加熱室や浸炭室を別途接続することにより、種々の加熱条件を与えることが可能である。   If the steel workpieces 11 flow from the left to the right in the figure and do not return to the left, the steel workpieces 11 can be sequentially inserted into the vacuum carburizing treatment facility 30 from the entrance door 31 to increase productivity. be able to. In addition, by returning the steel workpiece 11 from the second heating chamber 38 to the intermediate chamber 36, cooling can be performed a plurality of times. Furthermore, it is possible to give various heating conditions by separately connecting a heating chamber and a carburizing chamber (not shown) to the intermediate chamber 36 in parallel.

すなわち、本発明方法を実施するための真空浸炭処理設備の構造は、図1に限定するものではなく、図4やその他であってもよい。
また、実施の形態では、窒素ガスを使用したが、本発明に使用するガスは、吸熱形ガス、発熱形ガス、不活性ガス等の熱処理に一般に使用されるガスを適宜使用することができることは言うまでもない。
That is, the structure of the vacuum carburizing treatment facility for carrying out the method of the present invention is not limited to that shown in FIG.
In the embodiment, nitrogen gas is used. However, as the gas used in the present invention, a gas generally used for heat treatment such as endothermic gas, exothermic gas, and inert gas can be appropriately used. Needless to say.

尚、鋼製ワークは、ギヤ、シャフトの他、機械部品であれば種類は問わない。   The steel workpiece can be of any type as long as it is a mechanical part other than a gear and a shaft.

本発明は、ギヤの加熱工程に好適である。   The present invention is suitable for a gear heating process.

真空浸炭処理設備の原理図である。It is a principle diagram of a vacuum carburizing treatment facility. 本発明に係る加熱工程を説明図である。It is explanatory drawing about the heating process which concerns on this invention. 本発明に係るワークの昇温曲線を示す図である。It is a figure which shows the temperature rising curve of the workpiece | work which concerns on this invention. 別実施例に係る真空浸炭処理設備の原理図である。It is a principle figure of the vacuum carburizing processing equipment concerning another example. 従来の技術の基本原理を説明する図である。It is a figure explaining the basic principle of the prior art. 従来の加熱工程の説明図である。It is explanatory drawing of the conventional heating process.

符号の説明Explanation of symbols

10…真空浸炭処理設備、11…鋼製ワーク、15…前室、20…加熱室、27…ラックジグバスケット、28A、28B…ギヤ。   DESCRIPTION OF SYMBOLS 10 ... Vacuum carburizing processing equipment, 11 ... Steel workpiece, 15 ... Front chamber, 20 ... Heating chamber, 27 ... Rack jig basket, 28A, 28B ... Gear.

Claims (8)

鋼製ワークを熱処理のために目標温度まで加熱する加熱方法であって、
前記鋼製ワークを加熱室で、目標温度まで加熱する間において、1回又は複数回前記鋼製ワークを加熱室から取り出し、ガス中で自然冷却することを特徴とする鋼製ワークの加熱方法。
A heating method for heating a steel workpiece to a target temperature for heat treatment,
A method for heating a steel workpiece, wherein the steel workpiece is taken out of the heating chamber once or a plurality of times and is naturally cooled in a gas while the steel workpiece is heated to a target temperature in a heating chamber.
前記鋼製ワークは、複数段並べられていることを特徴とする請求項1記載の鋼製ワークの加熱方法。 The method of heating a steel workpiece according to claim 1, wherein the steel workpiece is arranged in a plurality of stages. ガス中での自然冷却は、鋼製ワークの中心温度が下がり始める前に終了することを特徴とする請求項1又は請求項2記載の鋼製ワークの加熱方法。 The method for heating a steel workpiece according to claim 1 or 2, wherein the natural cooling in the gas is finished before the center temperature of the steel workpiece starts to decrease. 前記鋼製ワークを加熱室から取り出すタイミングは、前記鋼製ワークの表面温度に基づいて決定することを特徴とする請求項1記載の鋼製ワークの加熱方法。 The method for heating a steel workpiece according to claim 1, wherein the timing of taking out the steel workpiece from the heating chamber is determined based on a surface temperature of the steel workpiece. 前記鋼製ワークを加熱室から取り出すタイミングは、加熱室の雰囲気温度に基づいて決定することを特徴とする請求項1記載の鋼製ワークの加熱方法。 The method for heating a steel workpiece according to claim 1, wherein the timing for taking out the steel workpiece from the heating chamber is determined based on an atmospheric temperature of the heating chamber. ガス中での自然冷却を終了するタイミングは、加熱室から取り出した後の前記鋼製ワークの表面温度に基づいて決定することを特徴とする請求項1記載の鋼製ワークの加熱方法。 The method for heating a steel workpiece according to claim 1, wherein the timing of ending natural cooling in the gas is determined based on the surface temperature of the steel workpiece after being taken out of the heating chamber. ガス中での自然冷却を終了するタイミングは、加熱室から取り出した後の経過時間に基づいて決定することを特徴とする請求項1記載の鋼製ワークの加熱方法。 The method for heating a steel workpiece according to claim 1, wherein the timing for ending natural cooling in the gas is determined based on an elapsed time after removal from the heating chamber. 前記鋼製ワークは、浸炭焼入れを施すギヤであることを特徴とする請求項1記載の鋼製ワークの加熱方法。 2. The method for heating a steel workpiece according to claim 1, wherein the steel workpiece is a gear for carburizing and quenching.
JP2007111717A 2007-04-20 2007-04-20 Method for heating steel-made workpiece Pending JP2008266729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007111717A JP2008266729A (en) 2007-04-20 2007-04-20 Method for heating steel-made workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111717A JP2008266729A (en) 2007-04-20 2007-04-20 Method for heating steel-made workpiece

Publications (1)

Publication Number Publication Date
JP2008266729A true JP2008266729A (en) 2008-11-06

Family

ID=40046608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111717A Pending JP2008266729A (en) 2007-04-20 2007-04-20 Method for heating steel-made workpiece

Country Status (1)

Country Link
JP (1) JP2008266729A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108584A (en) * 2014-12-03 2016-06-20 株式会社不二越 Vacuum heat treatment method
JP2017226860A (en) * 2016-06-20 2017-12-28 トヨタ自動車株式会社 Surface treatment method and surface treatment apparatus
JP2019510131A (en) * 2015-12-30 2019-04-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method for manufacturing steel transverse elements for drive belts for continuously variable transmissions
JP2019510871A (en) * 2015-12-30 2019-04-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method of austenitizing and / or carburizing of a steel transverse element for a drive belt for a continuously variable transmission
JP2020094256A (en) * 2018-12-14 2020-06-18 ジヤトコ株式会社 Continuous carburization furnace
JP2021092334A (en) * 2019-12-09 2021-06-17 サンファーネス株式会社 Vacuum furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110249U (en) * 1988-01-12 1989-07-25
JPH05171260A (en) * 1991-12-17 1993-07-09 Kawasaki Steel Corp Heating method for heat treatment furnace
JPH07214219A (en) * 1994-01-27 1995-08-15 Toyama Keikinzoku Kogyo Kk Method for heating billet of aluminum or aluminum alloy
JP2003082412A (en) * 2000-12-18 2003-03-19 Nkk Corp Method and device for heat-treating steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110249U (en) * 1988-01-12 1989-07-25
JPH05171260A (en) * 1991-12-17 1993-07-09 Kawasaki Steel Corp Heating method for heat treatment furnace
JPH07214219A (en) * 1994-01-27 1995-08-15 Toyama Keikinzoku Kogyo Kk Method for heating billet of aluminum or aluminum alloy
JP2003082412A (en) * 2000-12-18 2003-03-19 Nkk Corp Method and device for heat-treating steel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016108584A (en) * 2014-12-03 2016-06-20 株式会社不二越 Vacuum heat treatment method
JP2019510131A (en) * 2015-12-30 2019-04-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method for manufacturing steel transverse elements for drive belts for continuously variable transmissions
JP2019510871A (en) * 2015-12-30 2019-04-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Method of austenitizing and / or carburizing of a steel transverse element for a drive belt for a continuously variable transmission
JP7050682B2 (en) 2015-12-30 2022-04-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング How to Make Steel Transverse Elements for Drive Belts for Continuously Variable Transmissions
JP2017226860A (en) * 2016-06-20 2017-12-28 トヨタ自動車株式会社 Surface treatment method and surface treatment apparatus
JP2020094256A (en) * 2018-12-14 2020-06-18 ジヤトコ株式会社 Continuous carburization furnace
JP7086481B2 (en) 2018-12-14 2022-06-20 ジヤトコ株式会社 Continuous carburizing furnace
JP2021092334A (en) * 2019-12-09 2021-06-17 サンファーネス株式会社 Vacuum furnace

Similar Documents

Publication Publication Date Title
JP2008266729A (en) Method for heating steel-made workpiece
ES2716381T3 (en) Transport device for thin-walled, hot-walled steel parts
US7090488B2 (en) Heat treatment furnace
JP2006265606A (en) High frequency induction heat-treatment method, high frequency induction heat-treatment facility and high frequency induction heat-treating article
CN102964058A (en) Glass tempering method and apparatus
CN102007588B (en) Method for reducing temperature of substrate placing table and substrate processing system
US11224976B2 (en) Apparatus for loading/unloading workpieces into/from furnace
UA100554C2 (en) Device and method for thermally treating workpieces, in particular by convective heat-exchange
JP4929657B2 (en) Carburizing treatment apparatus and method
JP2012159218A (en) Brazing apparatus
JP6406883B2 (en) Vacuum heat treatment system
EP1808499B1 (en) High-frequency heat treatment apparatus, high-frequency heat treatment process, and high-frequency heat treated article
WO2006038488A1 (en) High-frequency heat treating system, high-frequency heat treating method and processed product produced by the method
US6780795B2 (en) Heat treatment apparatus for preventing an initial temperature drop when consecutively processing a plurality of objects
JP5443856B2 (en) Heat treatment apparatus, heat treatment equipment and heat treatment method
CN102051457B (en) Chamber furnace with overheating temperature
RU2412256C1 (en) Procedure for heat treatment of elongated steel items
CN105648172A (en) Heat treatment process method for 0Cr13Ni8Mo2Al steel
WO2014203732A1 (en) Gas supply tube and heat processing device
WO2014069149A1 (en) Heat treatment method and method for manufacturing machine part
JP6962084B2 (en) A method for determining the cooling rate of a steel pipe and a method for manufacturing a steel pipe using the method.
WO2017115187A1 (en) Apparatus and methodologies for batch annealing
JP2005344183A (en) Carburization gas-quenching method
ES2219337T3 (en) RECOGNIZED OVEN.
JP6592588B2 (en) Hollow stabilizer manufacturing method and hollow stabilizer manufacturing apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629