WO2019030930A1 - User terminal and radio communication method - Google Patents

User terminal and radio communication method Download PDF

Info

Publication number
WO2019030930A1
WO2019030930A1 PCT/JP2017/029224 JP2017029224W WO2019030930A1 WO 2019030930 A1 WO2019030930 A1 WO 2019030930A1 JP 2017029224 W JP2017029224 W JP 2017029224W WO 2019030930 A1 WO2019030930 A1 WO 2019030930A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
user terminal
dci
control
unit
Prior art date
Application number
PCT/JP2017/029224
Other languages
French (fr)
Japanese (ja)
Inventor
和晃 武田
一樹 武田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2019535569A priority Critical patent/JPWO2019030930A1/en
Priority to PCT/JP2017/029224 priority patent/WO2019030930A1/en
Publication of WO2019030930A1 publication Critical patent/WO2019030930A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • Non-Patent Document 1 LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( Also referred to as New RAT), LTE Rel. 14, 15 and so on.
  • downlink (DL: Downlink) and / or uplink (UL: Uplink) communication is performed with a subframe of 1 ms as a scheduling unit.
  • DL Downlink
  • UL Uplink
  • the subframe is composed of 14 symbols of 15 kHz subcarrier spacing.
  • the subframes are also referred to as transmission time intervals (TTIs) or the like.
  • the user terminal (UE: User Equipment) is a DL data channel based on downlink control information (DCI: Downlink Control Information) (also referred to as DL assignment etc.) from a radio base station (for example, eNB: eNodeB). It controls reception of (for example, PDSCH: Physical Downlink Shared Channel, DL Shared Channel, etc.). Also, the user terminal controls transmission of a UL data channel (for example, PUSCH: also referred to as Physical Uplink Shared Channel, UL shared channel, etc.) based on DCI (also referred to as UL grant, etc.) from the radio base station.
  • DCI Downlink Control Information
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • a user terminal is a control resource area (for example, control resource set (CORESET: control resource) which is a candidate area to which a DL control channel (for example, PDCCH: Physical Downlink Control Channel) is allocated. It is considered to receive (detect) DCI by monitoring (blind decoding)).
  • CORESET control resource set
  • PDCCH Physical Downlink Control Channel
  • one or more frequency bands (for example, bandwidth part (BWP)) in a carrier (also referred to as a component carrier (CC) or a system band) may be It is considered to use for DL and / or UL communication (DL / UL communication).
  • BWP bandwidth part
  • CC component carrier
  • DL / UL communication DL / UL communication
  • the processing load on the user terminal for example, the processing load due to blind decoding for each frequency band
  • the present invention has been made in view of such a point, and provides a user terminal and a wireless communication method capable of appropriately controlling activation / deactivation of one or more frequency bands (for example, BWP) set in a carrier.
  • One purpose is to provide.
  • One aspect of a user terminal of the present invention monitors a control resource area set in a first downlink (DL) frequency band in a carrier, and receives a downlink control information (DCI); And a controller configured to control activation of a second DL frequency band in the carrier based on the DCI.
  • DL downlink
  • DCI downlink control information
  • activation / deactivation of one or more frequency bands (for example, BWPs) set in a carrier can be appropriately controlled.
  • 1A and 1B are diagrams showing an example of setting of BWP. It is a figure which shows an example of the 1st activation control which concerns on a 1st aspect. It is a figure which shows an example of the 1st fallback mechanism which concerns on a 1st aspect. It is a figure which shows an example of the 2nd fallback mechanism which concerns on a 1st aspect. It is a figure which shows an example of the 2nd activation control which concerns on a 1st aspect. It is a figure which shows an example of the 3rd activation control which concerns on a 1st aspect. 7A and 7B are diagrams showing an example of deactivation control according to the first aspect.
  • a carrier for example, NR, 5G or 5G +
  • a carrier component carrier (CC: Component: Carrier) with a wider bandwidth (for example, 100 to 400 MHz) than an existing LTE system (for example, LTE Rel. 8-13) It is considered to allocate a carrier) or a system band etc.). If the user terminal always uses the entire carrier, power consumption may be enormous. For this reason, in the future wireless communication systems, it is considered to configure one or more frequency bands in the carrier in a quasi-static manner for the user terminal. Each frequency band in the carrier is also referred to as a bandwidth part (BWP) or a partial band or the like.
  • BWP bandwidth part
  • FIG. 1 is a diagram showing an example of setting of the BWP. As shown in FIG. 1A, one BWP may be set per carrier for the user terminal.
  • a plurality of BWPs may be set per carrier for the user terminal.
  • a plurality of BWPs configured in a user terminal may have different bandwidths.
  • at least part of the frequency bands may overlap among the plurality of BWPs.
  • BWP # 1 is a partial frequency band of BWP # 2.
  • the user terminal may control activation / deactivation of at least one BWP.
  • the activation of the BWP means that the BWP is available (or transits to the available state), and the BWP configuration information (configuration) (BWP configuration information) is activated or validated, etc. Also called.
  • the deactivation of the BWP means that the BWP is in an unusable state (or transits to the unusable state), and is also called deactivation or invalidation of BWP setting information.
  • one BWP (for example, BWP # 1 in FIG. 1B) set to the user terminal is always kept active, and activation or non-activation of another BWP (s) (for example, BWP # 2 in FIG. 1B). Activation may be controlled. Alternatively, activation or deactivation of all BWPs (for example, both BWPs # 1 and # 2 in FIG. 1B) set in the user terminal may be controlled.
  • BWP activation / deactivation uses at least one of physical layer signaling (for example, DCI), MAC (Medium Access Control) signaling (for example, MAC control element (MAC CE: MAC Control Element)), and RRC signaling. It may be done explicitly or implicitly. For example, it is considered to activate BWP using RRC signaling of user terminal dedicated (dedicated).
  • DCI explicitly or implicitly indicate BWP activation or deactivation.
  • the DCI may be DCI (DL assignment and / or UL grant) used for scheduling of a data channel for the user terminal, or another DCI (for example, DCI common to one or more user terminals ( It may be a group DCI or a common DCI)).
  • indication information indicating activation or deactivation may be included in the DCI.
  • the presence of DCI e.g., DL assignment and / or UL grant
  • BWP used for DL communication may be called DL BWP (frequency band for DL)
  • BWP used for UL communication may be called UL BWP (frequency band for UL).
  • DL BWP and UL BWP may overlap at least a part of frequency bands.
  • BWP when the DL BWP and the UL BWP are not distinguished, they are collectively referred to as BWP.
  • At least one of DL BWPs set in the user terminal includes a control resource region that is a candidate for assignment of DL control channel (DCI).
  • the control resource region is called a control resource set (CORESET), a control subband, a search space set, a search space resource set, a control region, a control subband, an NR-PDCCH region, etc. It is also good.
  • the user terminal monitors one or more search spaces in CORESET to detect DCI for the user terminal.
  • the search space is a common search space (CSS: Common Search Space) in which a common DCI (for example, group DCI or common DCI) is arranged for one or more user terminals and / or a user terminal-specific DCI (for example, DL assignment) And / or a UL grant) may be included in a user terminal (UE) specific search space (USS).
  • CCS Common Search Space
  • a common DCI for example, group DCI or common DCI
  • UE user terminal specific search space
  • the user terminal may receive CORESET configuration information (CORESET configuration information) using higher layer signaling (eg, RRC signaling or SIB).
  • the CORESET setting information includes frequency resources (eg, number of RBs), time resources (eg, starting OFDM symbol number), durations (duration), REG (Resource Element Group) bundle size (REG size), transmission type (eg, number of RBs) of each CORESET. For example, at least one of interleaving, non-interleaving), and a cycle (for example, a monitoring cycle every CORESET) may be indicated.
  • control of activation / deactivation of at least one DL BWP set in a user terminal will be mainly described.
  • setting of BWP DL BWP and / or UL BWP
  • control of activation / deactivation of at least one UL BWP set in a user terminal will be mainly described.
  • slot format of 1 slot is illustrated below, it is applicable suitably also to the slot format of a several slot.
  • the user terminal monitors (blind decode) CORESET (first control resource region) set in DL BWP # 1 (first frequency band) in the carrier at a predetermined cycle, and performs DCI Receive
  • the user terminal controls activation or deactivation of DL BWP # 2 (second frequency band) in the carrier based on the DCI.
  • the user terminal monitors a single CORESET set in a certain DL BWP (for example, DL BWP # 1) in the carrier at a predetermined cycle, and DCI and / or / for the DL BWP.
  • DCI for another DL BWP (s) for example, DL BWP # 2 in the carrier may be received (detected).
  • the DCI for DL BWP # 2 is used to schedule PDSCH (DL data channel) for frequency resources in DL BWP # 2.
  • the user terminal activates DL BWP # 2 based on the DCI for the DL BWP # 2. Also, the user terminal controls the reception of PDSCH based on the DCI in the activated DL BWP # 2.
  • FIG. 2 is a diagram showing an example of first activation control according to the first aspect.
  • FIG. 2 as shown in FIG. 1B, it is assumed that two DL BWPs # 1 and # 2 are set in the carrier set in the user terminal. Also, it is assumed that DL BWP # 1 is a part of the frequency band of DL BWP # 2.
  • CORESET # 1 is set in DL BWP # 1 and CORESET # 2 is set in DL BWP # 2.
  • Each of CORESET # 1 and CORESET # 2 is provided with one or more search spaces.
  • DCI for DL BWP # 1 and DCI for DL BWP # 2 may be arranged in different search spaces.
  • the user terminal when DL BWP # 1 is in the active state, the user terminal can perform CORESET # 1 in a predetermined cycle (for example, every one or more slots, every one or more minislots, or each predetermined number of symbols).
  • the DCI for DL BWP # 1 and the DCI for DL BWP # 2 are monitored (blind decoding).
  • the user terminal when detecting a DCI for DL BWP # 2 in CORESET # 1, the user terminal activates DL BWP # 2.
  • the user terminal receives the PDSCH scheduled to a predetermined time / frequency resource of the DL BWP # 2 based on the DCI for the DL BWP # 2 detected in CORESET # 1.
  • DCI for DL BWP # 1 and DCI for DL BWP # 2 are detected at different timings in CORESET # 1, but multiple DCI of different BWPs may be detected at the same timing.
  • a plurality of search spaces corresponding to each of a plurality of BWPs may be provided in the CORESET # 1, and a plurality of DCIs of different BWPs may be transmitted in the plurality of search spaces.
  • the user terminal may monitor a plurality of search spaces in CORESET # 1 to detect a plurality of DCIs of different BWPs at the same timing.
  • the user terminal can transmit DL BWP # 2 within CORESET # 2 in a predetermined cycle (eg, every one or more slots, every one or more minislots, or every predetermined number of symbols). Monitor the DCI for (blind decoding). The user terminal may receive the PDSCH scheduled to a predetermined time / frequency resource of DL BWP # 2 based on the DCI for DL BWP # 2 detected at CORESET # 2.
  • a predetermined cycle eg, every one or more slots, every one or more minislots, or every predetermined number of symbols.
  • DL BWP # 1 is assumed to be deactivated when DL BWP # 2 is activated in FIG. 2, DL BWP # 1 may be kept active. Further, although a predetermined time is shown in FIG. 2 for switching between activation and deactivation, the predetermined time may not be present.
  • DL BWP # 2 when DL BWP # 2 is activated triggered by detection of DCI for DL BWP # 2 in CO BRESET of DL BWP # 1, DL BWP # 2 is not provided without explicit indication information. Since the activation can be performed, it is possible to prevent an increase in overhead associated with activation control.
  • the radio base station when the radio base station can not receive delivery confirmation information (also referred to as HARQ-ACK, ACK / NACK or A / N, etc.) of the PDSCH in a predetermined period, the user terminal activates DL BWP # 2. It may be recognized that the detection of the DCI for the above has failed, and CORESET # 1 may retransmit the DCI for activation. However, this method may reduce the utilization efficiency of radio resources.
  • delivery confirmation information also referred to as HARQ-ACK, ACK / NACK or A / N, etc.
  • a fallback mechanism may be introduced in order to resolve early recognition mismatch of the active BWP between the radio base station and the user terminal.
  • the fallback mechanism is to provide a common CORESET to one or more BWPs (first fallback mechanism) or to maintain a single activated BWP (second fallback mechanism ) May be.
  • First fallback mechanism In the first fallback mechanism, CORESET common to one or more BWPs set in the user terminal is set, and activation or deactivation of each BWP is controlled.
  • FIG. 3 is a diagram showing an example of a first fallback mechanism according to the first aspect.
  • CORESET common to one or more BWPs here, DL BWPs # 1 and # 2 (also referred to as BWP-common CORESET or common CORESET etc.) and CORESET (BWP- specific to each BWP) It differs from FIG. 2 in that a specific CORESET or a specific CORESET or the like is provided.
  • the BWP-common CORESET is set to the same frequency band (the same one or more PRBs) between the DL BWPs # 1 and # 2.
  • BWP-specific CORESET may be set to different bandwidths (different number of PRBs) and / or different frequency bands (different one or more PRBs) for each BWP.
  • BWP-Common CORESET explicit or implicit indication information for activation of other BWPs (here, DL BWP # 2) may be sent.
  • DL BWP # 2 For example, in BWP-common CORESET in FIG. 3, DCI (DL assignment) for DL BWP # 2 for scheduling the PDSCH of DL BWP # 2 is transmitted as implicit instruction information.
  • system information also referred to as SI: System Information, SIB: System Information Block, etc.
  • RAR Random Access
  • DCI for each BWP may be transmitted.
  • DL assignment for scheduling the PDSCH of DL BWP # 1 may be transmitted.
  • CO RESET specific to DL BWP # 2 DL assignment for scheduling the PDSCH of DL BWP # 2 may be transmitted.
  • the user terminal performs BWP-common CORESET in a predetermined cycle (for example, every one or more slots, every one or more minislots, or each predetermined number of symbols).
  • Monitor For example, in FIG. 3, the user terminal activates DL BWP # 2 and deactivates DL BWP # 1 based on DCI for DL BWP # 2 detected by BWP-common CORESET.
  • the user terminal receives the PDSCH scheduled in the DL BWP # 2 based on the DCI for the DL BWP # 2.
  • the user terminal monitors CORESET specific to the activated BWP at a predetermined cycle. For example, in FIG. 3, when DL BWP # 1 is activated, the user terminal monitors CO BRESET specific to DL BWP # 1 at a predetermined cycle. The user terminal receives the PDSCH scheduled in the DL BWP # 1 based on the DCI for the DL BWP # 1 detected by the CO RESET specific to the DL BWP # 1.
  • the user terminal monitors CO RESET specific to DL BWP # 2 at a predetermined cycle.
  • the user terminal receives the PDSCH scheduled in the DL BWP # 2 based on the DCI for the DL BWP # 2 detected by the CO RESET specific to the DL BWP # 2.
  • the user terminal In the first fallback mechanism, regardless of which BWP is activated, the user terminal continues to monitor BWP-common CORESET at predetermined intervals. For this reason, even if the user terminal fails to detect DCI for DL BWP # 2 with BWP-common CORESET at a certain timing, based on DCI for DL BWP # 2 detected with subsequent BWP-common CORESET. , DL BWP # 2 can be activated. Therefore, it is possible to resolve early on the mismatch in recognition of the active BWP between the wireless base station and the user terminal.
  • BWPs that are kept active are also called active BWPs, primary BWPs, and the like.
  • one or more BWPs whose activation or deactivation is controlled are also called secondary BWPs and the like.
  • secondary BWPs when single BWP is set in a carrier (for example, FIG. 1A), primary BWP is set and secondary BWP is not set.
  • a common search space and UE-specific search space may be set in the primary BWP.
  • a common search space may not be set in the secondary BWP, and a UE-specific search space may be set.
  • the user terminal monitors the common search space of the primary BWP in a predetermined cycle. Also, the user terminal monitors UL grants in the primary BWP's UE-specific search space at predetermined intervals. On the other hand, the user terminal may monitor the DL assignment in a predetermined cycle in the UE-specific search space of the primary BWP, or may stop monitoring the DL assignment if a predetermined condition is satisfied. .
  • the user terminal monitors DL assignment in the UE-specific search space of the secondary BWP, and performs DL assignment in the UE-specific search space of the primary BWP. It is not necessary to monitor.
  • FIG. 4 is a diagram showing an example of a second fallback mechanism according to the first aspect.
  • FIG. 4 differs from FIG. 2 in that DL BWP # 1 which is a primary BWP is maintained active, and activation or deactivation of DL BWP # 2 which is a secondary BWP is controlled.
  • CORESET # 1 may be set in DL BWP # 1
  • CORESET # 2 may be set in DL BWP # 2.
  • CORESET # 1 may include a common search space and a UE-specific search space.
  • CORESET # 2 may not include the common search space but may include the UE-specific search space.
  • the user terminal activates DL BWP # 2 based on DCI (DL assignment) for DL BWP # 2 detected in the common search space of CORESET # 1.
  • the user terminal receives the PDSCH scheduled in the DL BWP # 2 based on the DCI for the DL BWP # 2.
  • the user terminal receives the PDSCH scheduled in the DL BWP # 1 based on the DCI (DL assignment) for the DL BWP # 1 detected in the UE-specific search space of CORESET # 1.
  • the user terminal When DL BWP # 2 is activated, the user terminal monitors the UE-specific search space of CORESET # 2 at a predetermined cycle. The user terminal receives the PDSCH scheduled in the DL BWP # 2 based on the DCI (DL assignment) for the DL BWP # 2 detected in the UE-specific search space.
  • DCI DL assignment
  • the user terminal monitors the common search space of CORESET # 1 at a predetermined cycle.
  • the user terminal monitors the UL grant in a predetermined cycle in the UE-specific search space of CORESET # 1 while monitoring the DL assignment in the UE-specific search space of CORESET # 1. You don't have to.
  • the user terminal keeps monitoring the common search space of CORESET # 1 of the primary BWP regardless of whether the secondary BWP is activated. Therefore, even if the user terminal fails to detect the DCI for DL BWP # 2 at CORESET # 1 at a certain timing, the DL is generated based on the DCI for DL BWP # 2 detected in the subsequent CORESET # 1. BWP # 2 can be activated. Therefore, it is possible to resolve early on the mismatch in recognition of the active BWP between the wireless base station and the user terminal.
  • the user terminal monitors CORESET for each BWP set in a certain DL BWP (for example, DL DL BWP # 1) in the carrier at a predetermined cycle.
  • the user terminal may receive (detect) the DCI for the corresponding BWP in each CORESET.
  • the second activation control is different from the first activation control in that a plurality of CORESETs corresponding to a plurality of BWPs are set to a specific DL BWP.
  • differences from the first activation control will be mainly described.
  • each of the one or more DL BWPs is included in at least one DL BWP.
  • FIG. 5 is a diagram showing an example of second activation control according to the first aspect.
  • FIG. 5 differences from FIG. 2 will be mainly described.
  • FIG. 5 is different from FIG. 2 in that the DL BWP # 1 is provided with CORESET # 1 to which DCI for DL BWP # 1 is transmitted and CORESET # 2 to which DCI for DL BWP # 2 is transmitted. It is different.
  • the user terminal when DL BWP # 1 is activated and DL BWP # 2 is deactivated, the user terminal has a predetermined cycle of CORESET # 1 and CORESET # 2 set in DL BWP # 1. To monitor.
  • the monitoring cycle of CORESET # 1 and CORESET # 2 may be identical or different.
  • the user terminal receives the PDSCH scheduled to the DL BWP # 1 based on the DCI for the DL BWP # 1 detected by the CORESET # 1 of the DL BWP # 1.
  • the user terminal activates DL BWP # 2 and deactivates DL BWP # 1.
  • the user terminal receives the PDSCH scheduled to the DL BWP # 2 based on the DCI for the DL BWP # 2 detected by the CORESET # 2 of the DL BWP # 1.
  • the user terminal monitors CORESET # 2 set in DL BWP # 2 at a predetermined cycle. Do. The user terminal receives the PDSCH scheduled to the DL BWP # 2 based on the DCI for the DL BWP # 2 detected by the CORESET # 2 of the DL BWP # 2.
  • the first fallback mechanism or the second fallback mechanism is applied in order to eliminate early recognition mismatch of the active BWP between the radio base station and the user terminal. May be
  • a plurality of CORESETs corresponding to each of a plurality of BWPs set in the user terminal are set in a certain DL BWP. Then, resources of CORESET # 2) can be used for PDSCH resources.
  • DL BWP # 1 DL BWP # 1
  • s DL BWP
  • DL BWP # 2 DL BWP
  • the DCI for activation indicates activation of another DL BWP.
  • the DCI may be DCI (DL assignment or UL grant) for scheduling, or DCI in a dedicated format.
  • a specific value for example, 0
  • the DCI for activation may include the index (BWP index) of the BWP to be activated.
  • FIG. 6 is a diagram showing an example of third activation control according to the first aspect.
  • differences from FIG. 2 will be mainly described. 6 differs from FIG. 2 in that DCI for activation of DL BWP # 2 is used to explicitly instruct activation of DL BWP # 2.
  • the user terminal when the DL BWP # 1 is activated and the DL BWP # 2 is deactivated, the user terminal has a predetermined period of CORESET # 1 set to the DL BWP # 1. To monitor. The user terminal activates DL BWP # 2 when a DCI for activation is detected in CORESET # 1.
  • the user terminal when the DL BWP # 2 is activated, the user terminal starts monitoring of a predetermined period of CORESET # 2 of the DL BWP # 2.
  • the user terminal receives the PDSCH scheduled to the DL BWP # 2 based on the DCI for the DL BWP # 2 detected by the CORESET # 2 of the DL BWP # 2.
  • the user terminal may transmit an ACK (Acknowledge) to the radio base station.
  • the user terminal may transmit the ACK using a UL BWP UL control channel (eg, PUCCH) or a UL data channel (eg, PUSCH).
  • the radio base station may start scheduling of the PDSCH in DL BWP # 2 after receiving the ACK from the user terminal.
  • the radio base station may start scheduling of the PDSCH in DL BWP # 2 with CORESET # 2 without receiving an ACK from the user terminal.
  • the radio base station since the user terminal continues to monitor CORESET # 1, it can not detect DCI for DL BWP # 2 scheduling PDSCH in DL BWP # 2.
  • the radio base station may recognize in DTX a failure in detection of DCI for activation at the user terminal.
  • activation of the DL BWP is explicitly instructed. Therefore, if an ACK for that is transmitted, activation can be appropriately performed without unnecessarily transmitting PDSCH.
  • the first fallback mechanism or the second fallback mechanism may be applied.
  • the DL BWP activated by the first to third activation controls may be deactivated using explicit deactivation indication information or a timer.
  • the explicit deactivation indication information may be MAC CE or DCI.
  • the DCI may be DCI for scheduling (DL assignment or UL grant), or DCI in a dedicated format. In the case of DCI for scheduling, a specific value (for example, 0) may be set in the resource assignment field in the DCI.
  • the DCI may include the index of the BWP to be deactivated.
  • BWP When using explicit indication information, BWP can be deactivated earlier than when using a timer.
  • the user terminal may deactivate the BWP if the data channel (eg, PDSCH and / or PUSCH) is not scheduled for a predetermined period of time in the activated BWP (DL BWP and / or UL BWP). For example, in FIGS. 2 to 6, the user terminal deactivates DL BWP # 2 because PDSCH is not scheduled for a predetermined period in DL BWP # 2. Also, in FIGS. 2, 3, 5 and 6, the user terminal deactivates DL BWP # 2 and activates DL BWP # 1.
  • the data channel eg, PDSCH and / or PUSCH
  • the user terminal may set a timer each time reception of a data channel (for example, PDSCH and / or PUSCH) is completed in the activated BWP, and may deactivate the BWP when the timer expires.
  • the timer may be a common timer (also referred to as a joint timer or the like) between the DL BWP and the UL BWP, or may be an individual timer.
  • a predetermined period until the DL timer expires includes a DL symbol and a UL symbol is included. It is not necessary. Similarly, the predetermined period until the UL timer expires may include the UL symbol and may not include the DL symbol.
  • the UL BWP may be deactivated as soon as the UL timer expires, or may be deactivated waiting for the DL timer to expire. .
  • the DL BWP may be deactivated as soon as the DL timer expires, or may be deactivated waiting for the expiration of the UL timer.
  • FIG. 7 is a diagram showing an example of deactivation control according to the first aspect.
  • DL BWP # 1 primary BWP
  • DL BWP # 2 secondary BWP
  • UL BWP transition from active to inactive.
  • DL BWP # 2 may be deactivated according to DL timer expiration. Good. It is because UL grant which schedules UL data to UL BWP is transmitted by DL BWP # 1.
  • the UL timer may expire earlier than the DL timer if the UL timer is set when the UL data is lost. There is.
  • the feedback signal for example, ACK / NACK of DL data
  • the UL timer may be reset when the feedback signal is generated.
  • BWP configuration (configuration) and configuration information (BWP configuration information) will be described.
  • the maximum bandwidth of one or more BWPs (DL BWPs and / or UL BWPs) configured for the user terminal may be determined based on the category of the user terminal reported by the user terminal. For example, if the category reported from the user terminal supports 100 MHz, the maximum bandwidth of at least one BWP set in the user terminal may be 100 MHz.
  • the minimum bandwidth of one or more BWPs configured for the user terminal may be the minimum bandwidth (for example, 5 MHz) supported by user terminals of any category.
  • the user terminal may monitor the entire carrier.
  • the BWP may be associated with a particular nucleus (eg, at least one of subcarrier spacing, symbol length, cyclic prefix (CP) length, number of symbols in a slot (or minislot), etc.) .
  • a particular nucleus eg, at least one of subcarrier spacing, symbol length, cyclic prefix (CP) length, number of symbols in a slot (or minislot), etc.
  • CP cyclic prefix
  • FIG. 1B when a plurality of BWPs are set in a user terminal, the same and / or different neurology may be used among the plurality of BWPs.
  • BWP setting information is information indicating a neurology (for example, subcarrier interval), information indicating a frequency position (for example, center frequency), bandwidth (for example, resource block (RB (Resource Block), PRB (Physical)). At least information such as the number of RBs), information indicating the number of time resources (for example, the number of symbols per slot (minislot)), information indicating the number of layers of MIMO, information on Quasi-Co-Location, etc. It may include one.
  • the user terminal performs BWP using higher layer signaling (for example, RRC signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.) and / or MAC signaling).
  • higher layer signaling for example, RRC signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • Only a single UL BWP may be configured for the user terminal, or multiple UL BWPs may be configured.
  • each UL BWP may be controlled based on explicit or implicit indication information, regardless of the activation or deactivation of one or more DL BWPs.
  • the user terminal may activate the UL BWP if the UL grant is detected by monitoring the CO RESET of the DL BWP.
  • activation or deactivation of DL BWP may be controlled with or without UL grant.
  • each UL BWP may be controlled in accordance with the pre-associated DL BWP. For example, if a DW BWP is activated, the UL BWP associated with the DL BWP may also be activated. Similarly, when a DW BWP is deactivated, the UL BWP associated with that DL BWP may also be deactivated.
  • FIG. 8 is a diagram showing an example of setting of UL BWP according to the third aspect.
  • DL BWPs # 1 and # 2 are set as in FIG. 2, but a single UL BWP is set, which is different from FIG.
  • a single UL BWP is set in the user terminal in FIG. 8, the present invention is not limited to this.
  • the user terminal monitors CORESET set to the activated DL BWP at a predetermined cycle.
  • the user terminal activates UL BWP based on the UL grant detected in the CORESET.
  • a user terminal transmits PUSCH scheduled in UL BWP based on the said UL grant.
  • the UL BWP may have a different bandwidth (number of PRBs) than the DL BWPs # 1 and # 2. Also, the UL BWP may be provided in at least a part of the DL BWPs # 1 and # 2.
  • the UL BWP is deactivated, if the BWP used for RACH transmission, periodic CSI report, etc. is set separately from the UL BWP, the RACH or periodic CSI is not activated without activating the UL BWP. You may report.
  • FIG. 9 is a diagram showing another example of setting of UL BWP according to the third aspect. In FIG. 9, differences from FIG. 8 will be mainly described. FIG. 9 differs from FIG. 8 in that a plurality of UL BWPs are set in the user terminal.
  • At least one of the plurality of UL BWPs may have the same bandwidth (the same PRB) as at least one DL BWP.
  • UL BWP # 1 is configured with the same bandwidth (the same PRB) as DL BWP # 1.
  • UL BWP # 2 is configured as part of DL BWP # 2.
  • the UL grant may include an index (BWP index) of UL BWPs for which PUSCH is scheduled.
  • the user terminal may control the activation of the UL BWP based on the BWP index included in the UL grant.
  • the user terminal monitors CORESET set to the activated DL BWP at a predetermined cycle.
  • the user terminal since the UL grant detected in the CORESET includes BWP index # 2, the user terminal may deactivate UL BWP # 1 and activate UL BWP # 2.
  • the user terminal may transmit the PUSCH scheduled in UL BWP # 2 based on the UL grant.
  • UL BWP # 1 is deactivated when UL BWP # 2 is activated, it is not limited to this. Even when UL BWP # 2 is activated, UL BWP # 1 may be kept active.
  • the UL signal is, for example, a UL data channel (eg, PUSCH), a UL control channel (eg, PUCCH), a reference signal (eg, SRS: Sounding Reference Signal and / or DMRS), a random access channel (eg, PRACH: Physical). It is at least one of Random Access Channel).
  • PUSCH UL data channel
  • PUCCH UL control channel
  • reference signal eg, SRS: Sounding Reference Signal and / or DMRS
  • PRACH Physical
  • FIG. 10 is a diagram showing an example of transmission of UL signals in each UL BWP according to the third aspect.
  • UL BWP # 1 and UL BWP # 2 having a wider bandwidth than UL BWP # 1 are set in the user terminal.
  • UL BWP # 1 includes PRACH and / or PUCCH configuration information.
  • at least one setting information of PUSCH, SRS, and DMRS may not be included, or may be included.
  • UL BWP # 2 includes at least one setting information of PUSCH, SRS, and DRMS.
  • configuration information of PRACH and / or PUCCH may not be included or may be included.
  • the UL signals that are always set in each UL BWP may be different, and the UL signals that can be transmitted by the user terminal may be different in each UL BWP.
  • the user terminal may control transmission of the PRACH and / or PUCCH in UL BWP # 1, and may control transmission of at least one of PUSCH, SRS, and DMRS in UL BWP # 2.
  • the user terminal may control activation and / or deactivation of one or more UL BWPs configured for the user terminal based on explicit or implicit indication information.
  • the explicit indication information may be, for example, DCI (UL grant) or MAC CE including a resource allocation field set to a specific value (for example, 0).
  • the implicit indication information may be, for example, RAR, message 4 or the UL grant described in FIGS.
  • the RAR is transmitted from the radio base station according to the PRACH from the user terminal.
  • the message 4 is a collision resolution message transmitted from the radio base station according to the control message when the user terminal transmits the control message of the upper layer using the resource specified by the UL grant included in the RAR. It is.
  • the user terminal that has received the message 4 transitions from the idle state to the RRC connected state.
  • the user terminal may also control the deactivation of the UL BWP using a timer (joint timer or UL timer).
  • a timer joint timer or UL timer.
  • the control of deactivation of UL BWP using the timer is as described in FIG.
  • FIG. 11 is a diagram showing an example of UL BWP activation / deactivation control according to the third aspect.
  • the user terminal is DCI (for example, UL grant for allocating PUSCH in UL BWP # 2 or DCI for activation (for example, UL grant for which a resource allocation field is set to a specific value)), UL BWP # 2 may be activated based on MAC CE, RAR or message 4. In this case, the user terminal may deactivate UL BWP # 1.
  • DCI for example, UL grant for allocating PUSCH in UL BWP # 2 or DCI for activation (for example, UL grant for which a resource allocation field is set to a specific value)
  • UL BWP # 2 may be activated based on MAC CE, RAR or message 4.
  • the user terminal may deactivate UL BWP # 1.
  • the user terminal may deactivate UL BWP # 2 based on deactivation indication information (for example, MAC CE or DCI) or a timer. In this case, the user terminal may activate UL BWP # 1.
  • deactivation indication information for example, MAC CE or DCI
  • UL BWP # 1 UL BWP # 1
  • wireless communication system Wireless communication system
  • the wireless communication method according to each of the above aspects is applied.
  • the wireless communication methods according to the above aspects may be applied singly or in combination.
  • FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to the present embodiment.
  • the radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. can do.
  • the wireless communication system 1 may be called SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), NR (New RAT), or the like.
  • the radio communication system 1 shown in FIG. 12 includes a radio base station 11 forming a macrocell C1, and radio base stations 12a to 12c disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. .
  • the user terminal 20 is arrange
  • the configuration may be such that different mermorologies are applied between cells.
  • the terminology may be at least one of subcarrier spacing, symbol length, cyclic prefix (CP) length, number of symbols per transmission time interval (TTI), and TTI time length.
  • the slot may be a unit of time based on the terminology applied by the user terminal. The number of symbols per slot may be determined according to the subcarrier spacing.
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12.
  • the user terminal 20 is assumed to simultaneously use the macro cell C1 and the small cell C2 using different frequencies by CA or DC.
  • the user terminal 20 can apply CA or DC using a plurality of cells (CCs) (for example, two or more CCs).
  • the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells.
  • the user terminal 20 can perform communication in each cell (carrier) using time division duplex (TDD) or frequency division duplex (FDD).
  • TDD time division duplex
  • FDD frequency division duplex
  • the TDD cell and the FDD cell may be respectively referred to as a TDD carrier (frame configuration second type), an FDD carrier (frame configuration first type), and the like.
  • a slot having a relatively long time length eg, 1 ms
  • TTI normal TTI
  • long TTI long TTI
  • normal subframe also referred to as long subframe or subframe, etc.
  • a slot having a relatively short time length also referred to as a mini slot, a short TTI or a short subframe, etc.
  • two or more time slots may be applied in each cell.
  • Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a carrier having a narrow bandwidth (referred to as an existing carrier, Legacy carrier, etc.).
  • a carrier having a wide bandwidth in a relatively high frequency band for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.
  • the same carrier as that for the base station 11 may be used.
  • the configuration of the frequency band used by each wireless base station is not limited to this.
  • one or more BWPs may be set in the user terminal 20.
  • the BWP consists of at least part of the carrier.
  • a wired connection for example, an optical fiber conforming to a Common Public Radio Interface (CPRI), an X2 interface, etc.
  • a wireless connection Can be configured.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
  • RNC radio network controller
  • MME mobility management entity
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), transmission and reception It may be called a point or the like.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication schemes such as LTE and LTE-A, and may include not only mobile communication terminals but also fixed communication terminals. Also, the user terminal 20 can perform inter-terminal communication (D2D) with another user terminal 20.
  • D2D inter-terminal communication
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication.
  • SC-FDMA is a single carrier transmission scheme that divides the system bandwidth into bands consisting of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between the terminals. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in UL.
  • SC-FDMA can be applied to a side link (SL) used for communication between terminals.
  • SL side link
  • DL data channels (PDSCH: also referred to as Physical Downlink Shared Channel, DL shared channel etc.) shared by each user terminal 20, broadcast channel (PBCH: Physical Broadcast Channel), L1 / L2 A control channel or the like is used.
  • DL data (at least one of user data, upper layer control information, SIB (System Information Block), etc.) is transmitted by the PDSCH.
  • SIB System Information Block
  • MIB Master Information Block
  • the L1 / L2 control channel is a DL control channel (PDCCH (Physical Downlink Control Channel) and / or EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. including.
  • Downlink control information (DCI) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH.
  • the number of OFDM symbols used for PDCCH is transmitted by PCFICH.
  • the EPDCCH is frequency division multiplexed with the PDSCH, and is used for transmission such as DCI as the PDCCH.
  • the PHICH can transmit PUSCH delivery confirmation information (also referred to as A / N, HARQ-ACK, HARQ-ACK bit, A / N codebook, etc.).
  • a UL data channel shared by each user terminal 20 (PUSCH: also referred to as Physical Uplink Shared Channel, UL shared channel, etc.), UL control channel (PUCCH: Physical Uplink Control Channel), random An access channel (PRACH: Physical Random Access Channel) or the like is used.
  • UL data (user data and / or upper layer control information) is transmitted by the PUSCH.
  • Uplink control information (UCI: Uplink Control Information) including at least one of PDSCH delivery acknowledgment information (A / N, HARQ-ACK) channel state information (CSI) and the like is transmitted by the PUSCH or PUCCH.
  • the PRACH can transmit a random access preamble for establishing a connection with a cell.
  • FIG. 13 is a diagram showing an example of the entire configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • Each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more.
  • the radio base station 10 may configure a “receiving device” in UL and may configure a “transmitting device” in DL.
  • User data transmitted from the radio base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data.
  • Control Retransmission control (for example, processing of HARQ (Hybrid Automatic Repeat reQuest)), scheduling, transmission format selection, channel coding, rate matching, scrambling, Inverse Fast Fourier Transform (IFFT) processing and precoding Transmission processing such as at least one of the processing is performed and transferred to the transmission / reception unit 103.
  • HARQ Hybrid Automatic Repeat reQuest
  • IFFT Inverse Fast Fourier Transform
  • Transmission processing such as at least one of the processing is performed and transferred to the transmission / reception unit 103.
  • transmission processing such as channel coding and / or inverse fast Fourier transform is performed and transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101.
  • the transmitter / receiver, the transmitting / receiving circuit or the transmitting / receiving device described based on the common recognition in the technical field according to the present invention can be constituted.
  • the transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
  • the radio frequency signal received by the transmitting and receiving antenna 101 is amplified by the amplifier unit 102.
  • the transmitting and receiving unit 103 receives the UL signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on UL data included in the input UL signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs at least one of setting of a communication channel, call processing such as release, status management of the radio base station 10, and management of radio resources.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the adjacent wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). It is also good.
  • an inter-base station interface for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface.
  • the transmission / reception unit 103 may be a DL signal (for example, at least one of a DL control signal (also referred to as DL control channel or DCI), a DL data signal (also referred to as DL data channel or DL data), and a reference signal)
  • a DL control signal also referred to as DL control channel or DCI
  • a DL data signal also referred to as DL data channel or DL data
  • a reference signal Send
  • the transmission / reception unit 103 may be a UL signal (for example, at least one of a UL control signal (also referred to as UL control channel or UCI), a UL data signal (also referred to as UL data channel or UL data), and a reference signal)
  • the transmission / reception unit 103 may transmit upper layer control information (for example, control information by MAC CE and / or RRC signaling).
  • upper layer control information for example, control information by MAC CE and / or RRC signaling.
  • FIG. 14 is a diagram showing an example of a functional configuration of the radio base station according to the present embodiment.
  • FIG. 14 mainly shows the functional blocks of the characteristic part in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
  • the control unit 301 controls the entire wireless base station 10.
  • the control unit 301 may, for example, generate a DL signal by the transmission signal generation unit 302, map the DL signal by the mapping unit 303, receive processing (for example, demodulation) of the UL signal by the reception signal processing unit 304, and measure it by the measurement unit 305.
  • Control at least one of Also, the control unit 301 may control scheduling of data channels (including DL data channels and / or UL data channels).
  • the control unit 301 may control the transmission direction for each symbol in a time unit (for example, slot) which is a scheduling unit of the DL data channel. Specifically, the control unit 301 may control generation and / or transmission of slot format related information (SFI) indicating DL symbols and / or UL symbols in the slot.
  • SFI slot format related information
  • control unit 301 may control setting of one or more BWPs (one or more DL BWPs and / or one or more UL BWPs) for the user terminal 20. Specifically, the control unit 301 may control generation and / or transmission of BWP setting information (second aspect).
  • control unit 301 may set one or more BWPs (one or more DL BWPs and / or one or more UL BWPs) (a DL frequency band in a carrier and / or a UL frequency band) set in the user terminal 20. It may control activation or deactivation. Specifically, the control unit 301 may control generation and / or transmission of explicit or implicit indication information of the one or more BWPs (first and third aspects).
  • control unit 301 may control setting of one or more CORESETs (control resource regions) in one or more DL BWPs. Also, the control unit 301 may control the setting of the search space in one or more CORESETs.
  • the control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates a DL signal (including at least one of DL data (channel), DCI, DL reference signal, and control information by upper layer signaling) based on an instruction from the control unit 301, It may be output to the mapping unit 303.
  • the transmission signal generation unit 302 can be a signal generator, a signal generation circuit or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 on a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103.
  • the mapping unit 303 maps the reference signal to a predetermined radio resource using the arrangement pattern determined by the control unit 301.
  • the mapping unit 303 may be a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, at least one of demapping, demodulation, and decoding) of the UL signal transmitted from the user terminal 20. Specifically, the reception signal processing unit 304 may output the reception signal and / or the signal after reception processing to the measurement unit 305.
  • reception processing for example, at least one of demapping, demodulation, and decoding
  • the received signal processing unit 304 can be configured from a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Also, the received signal processing unit 304 can constitute a receiving unit according to the present invention.
  • the measurement unit 305 measures the channel quality of UL based on, for example, received power of a reference signal (for example, reference signal received power (RSRP)) and / or received quality (for example, reference signal received quality (RSRQ)). May be The measurement result may be output to the control unit 301.
  • a reference signal for example, reference signal received power (RSRP)
  • RSSQ reference signal received quality
  • FIG. 15 is a diagram showing an example of the entire configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the user terminal 20 may configure a “transmitting device” in UL and may configure a “receiving device” in DL.
  • the radio frequency signals received by the plurality of transmitting and receiving antennas 201 are amplified by the amplifier unit 202, respectively.
  • Each transmission / reception unit 203 receives the DL signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs at least one of FFT processing, error correction decoding, reception processing of retransmission control, and the like on the input baseband signal.
  • the DL data is transferred to the application unit 205.
  • the application unit 205 performs processing on a layer higher than the physical layer and the MAC layer.
  • UL data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs at least one of retransmission control processing (for example, processing of HARQ), channel coding, rate matching, puncturing, discrete Fourier transform (DFT) processing, IFFT processing, and the like.
  • the data is transferred to each transmission / reception unit 203.
  • UCI eg, A / N of DL signal, channel state information (CSI), scheduling request (SR), etc.
  • CSI channel state information
  • SR scheduling request
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
  • the transmitting / receiving unit 203 is a DL signal (for example, at least one of a DL control signal (also referred to as DL control channel or DCI), a DL data signal (also referred to as DL data channel or DL data), and a reference signal) Receive
  • the transmission / reception unit 203 is a UL signal (for example, at least one of a UL control signal (also referred to as a UL control channel or UCI), a UL data signal (also referred to as a UL data channel or UL data), and a reference signal)
  • a DL control signal also referred to as DL control channel or DCI
  • a DL data signal also referred to as DL data channel or DL data
  • a reference signal for example, at least one of a UL control signal (also referred to as a UL control channel or UCI), a UL data signal (also referred to as a UL data channel or UL data), and a reference signal)
  • the transmitting / receiving unit 203 may receive upper layer control information (for example, control information by MAC CE and / or RRC signaling).
  • upper layer control information for example, control information by MAC CE and / or RRC signaling.
  • the transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit or a transmission / reception device described based on the common recognition in the technical field according to the present invention.
  • the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • FIG. 16 is a diagram showing an example of a functional configuration of a user terminal according to the present embodiment.
  • the functional blocks of the characterizing portion in the present embodiment are mainly shown, and the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Have.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 controls, for example, at least one of UL signal generation by the transmission signal generation unit 402, mapping of the UL signal by the mapping unit 403, reception processing of the DL signal by the reception signal processing unit 404, and measurement by the measurement unit 405. Do.
  • the control unit 401 may also control setting of one or more BWPs (one or more DL BWPs and / or one or more UL BWPs) in the carrier. Specifically, the control unit 401 may set the one or more BWPs based on the BWP setting information from the radio base station 20 (second aspect).
  • control unit 401 may control the setting of one or more CORESETs (control resource regions) in one or more DL BWPs. Further, the control unit 401 may control the setting of the search space in one or more CORESETs.
  • control unit 401 monitors the CORESET (or search space in the CORESET) (control resource area) (blind decoding), and DCI (DL assignment, UL grant, group DCI, common DCI for the user terminal 20). , And at least one of activation DCI and deactivation DCI) may be controlled.
  • control unit 401 may control the transmission direction for each symbol in a time unit (for example, a slot) which is a scheduling unit of the DL data channel. Specifically, the control unit 401 may determine DL symbols and / or UL symbols in the slot based on the SFI.
  • a time unit for example, a slot
  • the control unit 401 may determine DL symbols and / or UL symbols in the slot based on the SFI.
  • control unit 401 is configured to set one or more BWPs (one or more DL BWPs and / or one or more UL BWPs) (a DL frequency band in a carrier and / or a UL frequency band) set in the user terminal 20. Activation or deactivation may be controlled (first and third aspects).
  • control unit 401 determines the DL BWP based on DCI (DL assignment for scheduling the PDSCH of the DL BWP # 2) detected by the CORESET of the DL BWP # 1 (the first frequency band for DL).
  • the activation of # 2 (second DL frequency band) may be controlled (first aspect).
  • control unit 401 may control reception of a PDSCH (DL data channel) based on the DCI in the DL BWP # 2 activated based on the DCI (first and second activations) control).
  • control unit 401 sets a control resource area set in DL BWP # 2 activated based on DCI (DCI indicating activation of DLBWP # 2) detected by CORESET of MAC CE or DL BWP # 1. To control the reception of other DCI used for scheduling of the DL data channel in DL BWP # 2 (third activation control).
  • control unit 401 may control the deactivation of the DL BWP # 2 (second DL frequency band) based on a DCI or a MAC control element or a predetermined timer (first aspect) ).
  • control unit 401 may control transmission of a UL signal in UL BWP (frequency band for UL) based on DCI detected in CORESET (control resource region) of DL BWP (frequency band for DL). (Third aspect).
  • control unit 401 may control activation or deactivation of one or more UL BWPs (frequency bands for UL).
  • at least one UL BWP may be set to the same frequency band as at least one DL BWP (DL frequency band) (third aspect).
  • control unit 401 controls transmission of a random access channel and / or a UL control channel in UL BWP # 1 (first UL frequency band), and in UL BWP # 2 (second UL frequency band).
  • the transmission of at least one of a UL data channel, a sounding reference signal, and a demodulation reference signal may be controlled (third aspect).
  • control unit 401 may be a DL BWP (DL frequency) associated with a DCI, a medium access control (MAC) control element, a random access response or a message for collision resolution, or a UL BWP (frequency band for UL).
  • DL BWP DL frequency
  • MAC medium access control
  • UL BWP frequency band for UL
  • the activation of the UL BWP may be controlled based on the bandwidth) (third aspect).
  • control unit 401 may control the deactivation of UL BWP (UL frequency band) based on a DCI or MAC control element or a predetermined timer.
  • the control unit 401 can be configured of a controller, a control circuit or a control device described based on the common recognition in the technical field according to the present invention.
  • Transmission signal generation unit 402 generates retransmission control information of UL signal and DL signal (for example, coding, rate matching, puncturing, modulation, etc.) based on an instruction from control unit 401, and outputs the result to mapping unit 403. Do.
  • the transmission signal generation unit 402 can be a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
  • the mapping unit 403 maps retransmission control information of the UL signal and the DL signal generated by the transmission signal generation unit 402 to radio resources based on an instruction from the control unit 401, and outputs the retransmission control information to the transmission / reception unit 203.
  • the mapping unit 403 maps the reference signal to a predetermined radio resource, using the arrangement pattern determined by the control unit 401.
  • the mapping unit 403 may be a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, at least one of demapping, demodulation, and decoding) of the DL signal.
  • reception processing for example, at least one of demapping, demodulation, and decoding
  • the reception signal processing unit 404 may demodulate the DL data channel using the reference signal of the arrangement pattern determined by the control unit 401.
  • the reception signal processing unit 404 may output the reception signal and / or the signal after reception processing to the control unit 401 and / or the measurement unit 405.
  • the reception signal processing unit 404 outputs, for example, upper layer control information by upper layer signaling, L1 / L2 control information (for example, UL grant and / or DL assignment), and the like to the control unit 401.
  • the received signal processing unit 404 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Also, the received signal processing unit 404 can constitute a receiving unit according to the present invention.
  • Measuring section 405 measures a channel state based on a reference signal (for example, CSI-RS) from radio base station 10, and outputs the measurement result to control section 401.
  • the channel state measurement may be performed for each CC.
  • the measuring unit 405 can be configured of a signal processor, a signal processing circuit or a signal processing device, and a measuring instrument, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
  • each functional block is realized by one physically and / or logically coupled device, or directly and / or indirectly two or more physically and / or logically separated devices. It may be connected by (for example, wired and / or wireless) and realized by the plurality of devices.
  • the wireless base station, the user terminal, and the like in the present embodiment may function as a computer that performs the process of the wireless communication method of the present invention.
  • FIG. 17 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to the present embodiment.
  • the above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
  • processor 1001 may be implemented by one or more chips.
  • Each function in the radio base station 10 and the user terminal 20 is performed, for example, by causing a processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the processor 1001 performs an operation. This is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, or may be realized similarly for other functional blocks.
  • the memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may consist of one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 may store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be composed of
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • the devices shown in FIG. 17 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
  • radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the channels and / or symbols may be signaling.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard.
  • a component carrier CC: Component Carrier
  • CC Component Carrier
  • a radio frame may be configured with one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe.
  • a subframe may be configured with one or more slots in the time domain.
  • the subframes may be of a fixed time length (e.g., 1 ms) independent of the neurology.
  • a slot may be configured with one or more symbols (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.) in the time domain.
  • the slot may be a time unit based on the neurology.
  • the slot may include a plurality of minislots. Each minislot may be comprised of one or more symbols in the time domain.
  • a radio frame, a subframe, a slot, a minislot and a symbol all represent time units when transmitting a signal.
  • subframes, slots, minislots and symbols other names corresponding to each may be used.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot or one minislot may be referred to as a TTI.
  • TTI transmission time interval
  • the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the radio base station performs scheduling to allocate radio resources (such as frequency bandwidth and / or transmission power that can be used in each user terminal) to each user terminal on a TTI basis.
  • the TTI may be a transmission time unit of a channel coded data packet (transport block) or may be a processing unit such as scheduling and / or link adaptation. If one slot or one minislot is referred to as TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (the number of minislots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like.
  • a TTI shorter than a normal TTI may be referred to as a short TTI, a short TTI, a partial TTI (partial or fractional TTI), a short subframe, a short subframe, or the like.
  • a resource block is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI and one subframe may be configured of one or more resource blocks, respectively.
  • the RB may be called a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, or the like.
  • a resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be one subcarrier and one symbol radio resource region.
  • the above-described structures such as the radio frame, subframe, slot, minislot and symbol are merely examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols included in a slot or minislot, and subcarriers included in an RB
  • the number of symbols in TTI, symbol length, cyclic prefix (CP) length, and other configurations may be variously changed.
  • the information, parameters, and the like described in the present specification may be represented by absolute values, may be represented by relative values from predetermined values, or may be represented by corresponding other information.
  • the radio resources may be indicated by a predetermined index.
  • the formulas etc. that use these parameters may differ from those explicitly disclosed herein.
  • data, instructions, commands, information, signals, bits, symbols, chips etc may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
  • information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
  • notification of information is not limited to the aspects / embodiments described herein, and may be performed in other manners.
  • notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
  • DCI downlink control information
  • UCI uplink control information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • notification of predetermined information is not limited to what is explicitly performed, but implicitly (for example, by not notifying the predetermined information or another It may be performed by notification of information.
  • the determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
  • Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • system and "network” as used herein are used interchangeably.
  • base station Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell cell
  • cell group cell group
  • carrier carrier
  • component carrier component carrier
  • a base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
  • a base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication services may also be provided by the Remote Radio Head, where the term "cell” or “sector” refers to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage. Point to.
  • RRH Small base station for indoor use
  • MS mobile station
  • UE user equipment
  • a base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
  • Node station Node station
  • NodeB NodeB
  • eNodeB eNodeB
  • access point access point
  • transmission point reception point
  • femtocell small cell, and so on.
  • the mobile station may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, by those skilled in the art. It may also be called a terminal, a remote terminal, a handset, a user agent, a mobile client, a client or some other suitable term.
  • the radio base station in the present specification may be replaced with a user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the above-described radio base station 10 has.
  • “up” and / or “down” may be read as “side”.
  • the upstream channel may be read as a side channel.
  • a user terminal herein may be read at a radio base station.
  • the radio base station 10 may have a function that the above-described user terminal 20 has.
  • the specific operation to be performed by the base station may be performed by the upper node in some cases.
  • various operations performed for communication with a terminal may be a base station, one or more network nodes other than the base station (eg, It is apparent that this can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) Communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wide Band), Bluetooth (registered trademark),
  • the present invention may be applied to a system utilizing another appropriate wireless communication method of and / or an extended next generation system based on these.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to an element using the designation "first,” “second,” etc. as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
  • determining may encompass a wide variety of operations. For example, “determination” may be calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data) A search on structure), ascertaining, etc. may be considered as “determining”. Also, “determination” may be receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (access) It may be considered as “determining” (eg, accessing data in memory) and the like. Also, “determination” is considered to be “determination” to resolve, select, choose, choose, establish, compare, etc. It is also good. That is, “determination” may be considered as “determining” some action.
  • the terms “connected”, “coupled”, or any variation thereof are any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements “connected” or “connected” to each other.
  • the coupling or connection between elements may be physical, logical or a combination thereof.
  • the two elements are by using one or more wires, cables and / or printed electrical connections, and radio frequency as some non-limiting and non-exclusive examples. It can be considered “connected” or “coupled” to one another by using electromagnetic energy such as electromagnetic energy having wavelengths in the region, microwave region and light (both visible and invisible) regions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention allows the activation/deactivation of one or more frequency bands (for example, a BWP) that are set within a carrier to be properly controlled. A user terminal according to the present invention is provided with: a reception unit that monitors a control resource region, said control resource region being set to a first downlink (DL) frequency band within a carrier, and receives downlink control information (DCI); and a control unit that controls the activation of a second DL frequency band within the carrier on the basis of the DCI.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。 The present invention relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、さらなる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システム(例えば、LTE-A(LTE-Advanced)、FRA(Future Radio Access)、4G、5G、5G+(plus)、NR(New RAT)、LTE Rel.14、15~、などともいう)も検討されている。 In Universal Mobile Telecommunications System (UMTS) networks, Long Term Evolution (LTE) has been specified for the purpose of further higher data rates, lower delays, etc. (Non-Patent Document 1). Also, for the purpose of achieving wider bandwidth and higher speed from LTE, successor systems of LTE (for example, LTE-A (LTE-Advanced), FRA (Future Radio Access), 4G, 5G, 5G + (plus), NR ( Also referred to as New RAT), LTE Rel. 14, 15 and so on.
 また、既存のLTEシステム(例えば、LTE Rel.8-13)では、1msのサブフレームをスケジューリング単位として、下りリンク(DL:Downlink)及び/又は上りリンク(UL:Uplink)の通信が行われる。当該サブフレームは、例えば、通常サイクリックプリフィクス(NCP:Normal Cyclic Prefix)の場合、サブキャリア間隔15kHzの14シンボルで構成される。当該サブフレームは、伝送時間間隔(TTI:Transmission Time Interval)等とも呼ばれる。 Also, in the existing LTE system (for example, LTE Rel. 8-13), downlink (DL: Downlink) and / or uplink (UL: Uplink) communication is performed with a subframe of 1 ms as a scheduling unit. For example, in the case of Normal Cyclic Prefix (NCP), the subframe is composed of 14 symbols of 15 kHz subcarrier spacing. The subframes are also referred to as transmission time intervals (TTIs) or the like.
 また、ユーザ端末(UE:User Equipment)は、無線基地局(例えば、eNB:eNodeB)からの下りリンク制御情報(DCI:Downlink Control Information)(DLアサインメント等ともいう)に基づいて、DLデータチャネル(例えば、PDSCH:Physical Downlink Shared Channel、DL共有チャネル等ともいう)の受信を制御する。また、ユーザ端末は、無線基地局からのDCI(ULグラント等ともいう)に基づいて、ULデータチャネル(例えば、PUSCH:Physical Uplink Shared Channel、UL共有チャネル等ともいう)の送信を制御する。 Also, the user terminal (UE: User Equipment) is a DL data channel based on downlink control information (DCI: Downlink Control Information) (also referred to as DL assignment etc.) from a radio base station (for example, eNB: eNodeB). It controls reception of (for example, PDSCH: Physical Downlink Shared Channel, DL Shared Channel, etc.). Also, the user terminal controls transmission of a UL data channel (for example, PUSCH: also referred to as Physical Uplink Shared Channel, UL shared channel, etc.) based on DCI (also referred to as UL grant, etc.) from the radio base station.
 将来の無線通信システム(例えば、NR)では、ユーザ端末は、DL制御チャネル(例えば、PDCCH:Physical Downlink Control Channel)が割り当てられる候補領域である制御リソース領域(例えば、制御リソースセット(CORESET:control resource set))を監視(ブラインド復号)して、DCIを受信(検出)することが検討されている。 In the future wireless communication system (for example, NR), a user terminal is a control resource area (for example, control resource set (CORESET: control resource) which is a candidate area to which a DL control channel (for example, PDCCH: Physical Downlink Control Channel) is allocated. It is considered to receive (detect) DCI by monitoring (blind decoding)).
 また、当該将来の無線通信システムにおいては、キャリア(コンポーネントキャリア(CC:Component Carrier)又はシステム帯域等ともいう)内の一以上の周波数帯域(例えば、帯域幅部分(BWP:Bandwidth part))を、DL及び/又はUL通信(DL/UL通信)に用いることが検討されている。 In the future wireless communication system, one or more frequency bands (for example, bandwidth part (BWP)) in a carrier (also referred to as a component carrier (CC) or a system band) may be It is considered to use for DL and / or UL communication (DL / UL communication).
 このように、キャリア内にDL/UL通信に用いられる一以上の周波数帯域(例えば、BWP)を設定可能とする場合、ユーザ端末における処理負荷(例えば、各周波数帯域のブラインド復号による処理負荷)を軽減するため、当該周波数帯域のアクティブ化(activation)及び/又は非アクティブ化(deactivation)(アクティブ化/非アクティブ化)を適切に制御することが望まれる。 As described above, when one or more frequency bands (for example, BWP) used for DL / UL communication can be set in the carrier, the processing load on the user terminal (for example, the processing load due to blind decoding for each frequency band) In order to reduce, it is desirable to appropriately control the activation and / or deactivation (activation / deactivation) of the frequency band.
 本発明はかかる点に鑑みてなされたものであり、キャリア内に設定される一以上の周波数帯域(例えば、BWP)のアクティブ化/非アクティブ化を適切に制御可能なユーザ端末及び無線通信方法を提供することを目的の一とする。 The present invention has been made in view of such a point, and provides a user terminal and a wireless communication method capable of appropriately controlling activation / deactivation of one or more frequency bands (for example, BWP) set in a carrier. One purpose is to provide.
 本発明のユーザ端末の一態様は、キャリア内の第1の下りリンク(DL)用周波数帯域に設定される制御リソース領域を監視して、下りリンク制御情報(DCI)を受信する受信部と、前記DCIに基づいて、前記キャリア内の第2のDL用周波数帯域のアクティブ化を制御する制御部と、を具備することを特徴とする。 One aspect of a user terminal of the present invention monitors a control resource area set in a first downlink (DL) frequency band in a carrier, and receives a downlink control information (DCI); And a controller configured to control activation of a second DL frequency band in the carrier based on the DCI.
 本発明によれば、キャリア内に設定される一以上の周波数帯域(例えば、BWP)のアクティブ化/非アクティブ化を適切に制御可能できる。 According to the present invention, activation / deactivation of one or more frequency bands (for example, BWPs) set in a carrier can be appropriately controlled.
図1A及び1Bは、BWPの設定例を示す図である。1A and 1B are diagrams showing an example of setting of BWP. 第1の態様に係る第1のアクティブ化制御の一例を示す図である。It is a figure which shows an example of the 1st activation control which concerns on a 1st aspect. 第1の態様に係る第1のフォールバックメカニズムの一例を示す図である。It is a figure which shows an example of the 1st fallback mechanism which concerns on a 1st aspect. 第1の態様に係る第2のフォールバックメカニズムの一例を示す図である。It is a figure which shows an example of the 2nd fallback mechanism which concerns on a 1st aspect. 第1の態様に係る第2のアクティブ化制御の一例を示す図である。It is a figure which shows an example of the 2nd activation control which concerns on a 1st aspect. 第1の態様に係る第3のアクティブ化制御の一例を示す図である。It is a figure which shows an example of the 3rd activation control which concerns on a 1st aspect. 図7A及び7Bは、第1の態様に係る非アクティブ化制御の一例を示す図である。7A and 7B are diagrams showing an example of deactivation control according to the first aspect. 第3の態様に係るUL BWPの設定の一例を示す図である。It is a figure which shows an example of the setting of UL BWP which concerns on a 3rd aspect. 第3の態様に係るUL BWPの設定の他の例を示す図である。It is a figure which shows the other example of the setting of UL BWP which concerns on a 3rd aspect. 第3の態様に係る各UL BWPにおけるUL信号の送信の一例を示す図である。It is a figure which shows an example of transmission of UL signal in each UL BWP which concerns on a 3rd aspect. 第3の態様に係るUL BWPのアクティブ化/非アクティブ化制御の一例を示す図である。It is a figure which shows an example of activation / deactivation control of UL BWP which concerns on a 3rd aspect. 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。It is a figure which shows an example of schematic structure of the radio | wireless communications system which concerns on this Embodiment. 本実施の形態に係る無線基地局の全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the wireless base station which concerns on this Embodiment. 本実施の形態に係る無線基地局の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the wireless base station which concerns on this Embodiment. 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the user terminal which concerns on this Embodiment. 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。It is a figure which shows an example of a function structure of the user terminal which concerns on this Embodiment. 本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the wireless base station which concerns on this Embodiment, and a user terminal.
 将来の無線通信システム(例えば、NR、5G又は5G+)では、既存のLTEシステム(例えば、LTE Rel.8-13)より広い帯域幅(例えば、100~400MHz)のキャリア(コンポーネントキャリア(CC:Component Carrier)又はシステム帯域等ともいう)を割り当てることが検討されている。ユーザ端末は、常に当該キャリア全体を利用すると、消費電力が膨大になる恐れがある。このため、将来の無線通信システムは、当該キャリア内の一以上の周波数帯域をユーザ端末に準静的に設定(configure)することが検討されている。当該キャリア内の各周波数帯域は、帯域幅部分(BWP:Bandwidth part)又は部分帯域等とも呼ばれる。 In the future wireless communication system (for example, NR, 5G or 5G +), a carrier (component carrier (CC: Component: Carrier) with a wider bandwidth (for example, 100 to 400 MHz) than an existing LTE system (for example, LTE Rel. 8-13) It is considered to allocate a carrier) or a system band etc.). If the user terminal always uses the entire carrier, power consumption may be enormous. For this reason, in the future wireless communication systems, it is considered to configure one or more frequency bands in the carrier in a quasi-static manner for the user terminal. Each frequency band in the carrier is also referred to as a bandwidth part (BWP) or a partial band or the like.
 図1は、BWPの設定例を示す図である。図1Aに示すように、ユーザ端末には、キャリアあたり1つのBWPが設定されてもよい。 FIG. 1 is a diagram showing an example of setting of the BWP. As shown in FIG. 1A, one BWP may be set per carrier for the user terminal.
 また、図1Bに示すように、ユーザ端末には、キャリアあたり複数のBWP(ここでは、2BWP#1及び#2)が設定されてもよい。図1Bに示すように、ユーザ端末に設定される複数のBWPは異なる帯域幅を有してもよい。また、当該複数のBWP間において少なくとも一部の周波数帯域が重複してもよい。例えば、図1Bでは、BWP#1は、BWP#2の一部の周波数帯域である。 Also, as shown in FIG. 1B, a plurality of BWPs (here, 2 BWPs # 1 and # 2) may be set per carrier for the user terminal. As shown in FIG. 1B, a plurality of BWPs configured in a user terminal may have different bandwidths. In addition, at least part of the frequency bands may overlap among the plurality of BWPs. For example, in FIG. 1B, BWP # 1 is a partial frequency band of BWP # 2.
 また、ユーザ端末は、少なくとも一つのBWPのアクティブ化/非アクティブ化を制御してもよい。BWPのアクティブ化とは、当該BWPを利用可能な状態である(又は当該利用可能な状態に遷移する)ことであり、BWPの設定情報(configuration)(BWP設定情報)のアクティブ化又は有効化等とも呼ばれる。また、BWPの非アクティブ化とは、当該BWPを利用不可能な状態である(又は当該利用不可能な状態に遷移する)ことであり、BWP設定情報の非アクティブ化又は無効化等とも呼ばれる。 Also, the user terminal may control activation / deactivation of at least one BWP. The activation of the BWP means that the BWP is available (or transits to the available state), and the BWP configuration information (configuration) (BWP configuration information) is activated or validated, etc. Also called. In addition, the deactivation of the BWP means that the BWP is in an unusable state (or transits to the unusable state), and is also called deactivation or invalidation of BWP setting information.
 なお、ユーザ端末に設定される一つのBWP(例えば、図1BのBWP#1)は、常にアクティブに維持され、他のBWP(s)(例えば、図1BのBWP#2)のアクティブ化又は非アクティブ化が制御されてもよい。或いは、ユーザ端末に設定される全てのBWP(例えば、図1BのBWP#1及び#2の双方)のアクティブ化又は非アクティブ化が制御されてもよい。 In addition, one BWP (for example, BWP # 1 in FIG. 1B) set to the user terminal is always kept active, and activation or non-activation of another BWP (s) (for example, BWP # 2 in FIG. 1B). Activation may be controlled. Alternatively, activation or deactivation of all BWPs (for example, both BWPs # 1 and # 2 in FIG. 1B) set in the user terminal may be controlled.
 BWPのアクティブ化/非アクティブ化は、物理レイヤシグナリング(例えば、DCI)、MAC(Medium Access Control)シグナリング(例えば、MAC制御要素(MAC CE:MAC Control Element))、RRCシグナリングの少なくとも一つを用いて、明示的又は黙示的に行われてもよい。例えば、ユーザ端末個別(dedicated)のRRCシグナリングを用いて、BWPをアクティブ化することが検討されている。 BWP activation / deactivation uses at least one of physical layer signaling (for example, DCI), MAC (Medium Access Control) signaling (for example, MAC control element (MAC CE: MAC Control Element)), and RRC signaling. It may be done explicitly or implicitly. For example, it is considered to activate BWP using RRC signaling of user terminal dedicated (dedicated).
 或いは、DCIが、BWPのアクティブ化又は非アクティブ化を明示的又は黙示的に示すことが検討されている。当該DCIは、ユーザ端末に対するデータチャネルのスケジューリングに用いられるDCI(DLアサインメント及び/又はULグラント)であってもよいし、又は、他のDCI(例えば、一以上のユーザ端末に共通のDCI(グループDCI又は共通DCI))であってもよい。 Alternatively, it is considered that DCI explicitly or implicitly indicate BWP activation or deactivation. The DCI may be DCI (DL assignment and / or UL grant) used for scheduling of a data channel for the user terminal, or another DCI (for example, DCI common to one or more user terminals ( It may be a group DCI or a common DCI)).
 明示的な指示では、上記DCI内にアクティブ化又は非アクティブ化を示す指示(indication)情報が含まれてもよい。黙示的な指示では、DCI(例えば、DLアサインメント及び/又はULグラント)の存在自体が、BWPのアクティブ化又は非アクティブ化を示してもよい。 In the explicit indication, indication information indicating activation or deactivation may be included in the DCI. In an implicit indication, the presence of DCI (e.g., DL assignment and / or UL grant) may itself indicate BWP activation or deactivation.
 なお、DL通信に利用されるBWPは、DL BWP(DL用周波数帯域)と呼ばれてもよく、UL通信に利用されるBWPは、UL BWP(UL用周波数帯域)と呼ばれてもよい。DL BWP及びUL BWPは、少なくとも一部の周波数帯域が重複してもよい。以下、DL BWP及びUL BWPを区別しない場合は、BWPと総称する。 In addition, BWP used for DL communication may be called DL BWP (frequency band for DL), and BWP used for UL communication may be called UL BWP (frequency band for UL). DL BWP and UL BWP may overlap at least a part of frequency bands. Hereinafter, when the DL BWP and the UL BWP are not distinguished, they are collectively referred to as BWP.
 ユーザ端末に設定されるDL BWPの少なくとも1つ(例えば、プライマリCCに含まれるDL BWP)は、DL制御チャネル(DCI)の割当て候補となる制御リソース領域を含む。当該制御リソース領域は、制御リソースセット(CORESET:control resource set)、コントロールサブバンド(control subband)、サーチスペースセット、サーチスペースリソースセット、制御領域、制御サブバンド、NR-PDCCH領域などと呼ばれてもよい。 At least one of DL BWPs set in the user terminal (for example, DL BWPs included in the primary CC) includes a control resource region that is a candidate for assignment of DL control channel (DCI). The control resource region is called a control resource set (CORESET), a control subband, a search space set, a search space resource set, a control region, a control subband, an NR-PDCCH region, etc. It is also good.
 ユーザ端末は、CORESET内の一以上のサーチスペースを監視(monitor)して、当該ユーザ端末に対するDCIを検出する。当該サーチスペースは、一以上のユーザ端末に共通のDCI(例えば、グループDCI又は共通DCI)が配置される共通サーチスペース(CSS:Common Search Space)及び/又はユーザ端末固有のDCI(例えば、DLアサインメント及び/又はULグラント)が配置されるユーザ端末(UE)固有サーチスペース(USS:UE-specific Search Space)を含んでもよい。 The user terminal monitors one or more search spaces in CORESET to detect DCI for the user terminal. The search space is a common search space (CSS: Common Search Space) in which a common DCI (for example, group DCI or common DCI) is arranged for one or more user terminals and / or a user terminal-specific DCI (for example, DL assignment) And / or a UL grant) may be included in a user terminal (UE) specific search space (USS).
 ユーザ端末は、上位レイヤシグナリング(例えば、RRCシグナリング又はSIB)を用いて、CORESETの設定情報(CORESET設定情報)を受信してもよい。CORESET設定情報は、各CORESETの周波数リソース(例えば、RB数)、時間リソース(例えば、開始OFDMシンボル番号)、時間長(duration)、REG(Resource Element Group)バンドルサイズ(REGサイズ)、送信タイプ(例えば、インターリーブ、非インターリーブ)、周期(例えば、CORESETごとのモニタ周期)等の少なくとも一つを示してもよい。 The user terminal may receive CORESET configuration information (CORESET configuration information) using higher layer signaling (eg, RRC signaling or SIB). The CORESET setting information includes frequency resources (eg, number of RBs), time resources (eg, starting OFDM symbol number), durations (duration), REG (Resource Element Group) bundle size (REG size), transmission type (eg, number of RBs) of each CORESET. For example, at least one of interleaving, non-interleaving), and a cycle (for example, a monitoring cycle every CORESET) may be indicated.
 このように、キャリア内にDL/UL通信に用いられる一以上のBWPを設定可能とする場合、少なくとも一つのBWPのアクティブ化/非アクティブ化の様々な制御方法が検討されている。しかしながら、当該少なくとも一つのBWPのアクティブ化/非アクティブ化をより簡易に及び/又はより高い処理効率で制御することが望まれる。 As described above, when one or more BWPs used for DL / UL communication can be set in the carrier, various control methods of activation / deactivation of at least one BWP are under study. However, it is desirable to control the activation / deactivation of the at least one BWP more simply and / or with higher processing efficiency.
 そこで、本発明者らは、ユーザ端末に設定される少なくとも一つのBWPのアクティブ化/非アクティブ化をより簡易に及び/又はより高い処理効率で制御する方法を検討し、本発明に至った。以下の第1の態様では、ユーザ端末に設定される少なくとも一つのDL BWPのアクティブ化/非アクティブ化の制御を中心に説明する。第2の態様では、BWP(DL BWP及び/又はUL BWP)の設定を中心に説明する。第3の態様では、ユーザ端末に設定される少なくとも一つのUL BWPのアクティブ化/非アクティブ化の制御を中心に説明する。 Therefore, the present inventors examined a method of controlling activation / deactivation of at least one BWP set in a user terminal more simply and / or with higher processing efficiency, and reached the present invention. In the following first aspect, control of activation / deactivation of at least one DL BWP set in a user terminal will be mainly described. In the second aspect, setting of BWP (DL BWP and / or UL BWP) will be mainly described. In the third aspect, control of activation / deactivation of at least one UL BWP set in a user terminal will be mainly described.
 以下、本発明の一実施の形態について図面を参照して詳細に説明する。なお、以下では、1スロットのスロットフォーマットを例示するが、複数のスロットのスロットフォーマットにも適宜適用可能である。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, although the slot format of 1 slot is illustrated below, it is applicable suitably also to the slot format of a several slot.
(第1の態様)
 第1の態様では、ユーザ端末は、キャリア内のDL BWP#1(第1の周波数帯域)に設定されるCORESET(第1の制御リソース領域)を所定周期で監視(ブラインド復号)して、DCIを受信する。ユーザ端末は、当該DCIに基づいて、当該キャリア内のDL BWP#2(第2の周波数帯域)のアクティブ化又は非アクティブ化を制御する。
(First aspect)
In the first aspect, the user terminal monitors (blind decode) CORESET (first control resource region) set in DL BWP # 1 (first frequency band) in the carrier at a predetermined cycle, and performs DCI Receive The user terminal controls activation or deactivation of DL BWP # 2 (second frequency band) in the carrier based on the DCI.
<第1のアクティブ化制御>
 第1のアクティブ化制御において、ユーザ端末は、キャリア内のあるDL BWP(例えば、DL BWP#1)に設定される単一のCORESETを所定周期で監視して、当該DL BWP用のDCI及び/又は当該キャリア内の他のDL BWP(s)(例えば、DL BWP#2)用のDCIを受信(検出)してもよい。
<First activation control>
In the first activation control, the user terminal monitors a single CORESET set in a certain DL BWP (for example, DL BWP # 1) in the carrier at a predetermined cycle, and DCI and / or / for the DL BWP. Alternatively, DCI for another DL BWP (s) (for example, DL BWP # 2) in the carrier may be received (detected).
 DL BWP#2用のDCIは、DL BWP#2内の周波数リソースに対するPDSCH(DLデータチャネル)のスケジューリングに用いられる。ユーザ端末は、当該DL BWP#2用のDCIに基づいて、DL BWP#2をアクティブ化する。また、ユーザ端末は、アクティブ化されたDL BWP#2において、当該DCIに基づいてPDSCHの受信を制御する。 The DCI for DL BWP # 2 is used to schedule PDSCH (DL data channel) for frequency resources in DL BWP # 2. The user terminal activates DL BWP # 2 based on the DCI for the DL BWP # 2. Also, the user terminal controls the reception of PDSCH based on the DCI in the activated DL BWP # 2.
 図2は、第1の態様に係る第1のアクティブ化制御の一例を示す図である。例えば、図2では、図1Bに示されるように、ユーザ端末に設定されるキャリア内に2つのDL BWP#1及び#2が設定されるものとする。また、DL BWP#1は、DL BWP#2の一部の周波数帯域であるものとする。 FIG. 2 is a diagram showing an example of first activation control according to the first aspect. For example, in FIG. 2, as shown in FIG. 1B, it is assumed that two DL BWPs # 1 and # 2 are set in the carrier set in the user terminal. Also, it is assumed that DL BWP # 1 is a part of the frequency band of DL BWP # 2.
 また、図2では、DL BWP#1内にCORESET#1が設定され、DL BWP#2内にCORESET#2が設定されるものとする。CORESET#1及びCORESET#2には、それぞれ、一以上のサーチスペースが設けられる。例えば、CORESET#1において、DL BWP#1用のDCI及びDL BWP#2用のDCIは、それぞれ異なるサーチスペースに配置されてもよい。 Further, in FIG. 2, it is assumed that CORESET # 1 is set in DL BWP # 1 and CORESET # 2 is set in DL BWP # 2. Each of CORESET # 1 and CORESET # 2 is provided with one or more search spaces. For example, in CORESET # 1, DCI for DL BWP # 1 and DCI for DL BWP # 2 may be arranged in different search spaces.
 また、図2において、DL BWP#1がアクティブ状態である場合、ユーザ端末は、所定周期(例えば、一以上のスロット毎、一以上のミニスロット毎又は所定数のシンボル毎)で、CORESET#1でDL BWP#1用のDCI及びDL BWP#2用のDCIを監視(ブラインド復号)する。 Further, in FIG. 2, when DL BWP # 1 is in the active state, the user terminal can perform CORESET # 1 in a predetermined cycle (for example, every one or more slots, every one or more minislots, or each predetermined number of symbols). The DCI for DL BWP # 1 and the DCI for DL BWP # 2 are monitored (blind decoding).
 ユーザ端末は、CORESET#1内でDL BWP#1用のDCIを検出する場合、当該DL BWP#1用のDCIに基づいて、DL BWP#1の所定の時間及び/又は周波数リソース(時間/周波数リソース)にスケジューリングされた(割り当てられた)PDSCHを受信する。 When the user terminal detects DCI for DL BWP # 1 in CORESET # 1, based on the DCI for DL BWP # 1, a predetermined time and / or frequency resource of DL BWP # 1 (time / frequency) Receive the PDSCH scheduled (assigned) on the resource).
 一方、ユーザ端末は、CORESET#1内でDL BWP#2用のDCIを検出する場合、DL BWP#2をアクティブ化する。ユーザ端末は、CORESET#1で検出された当該DL BWP#2用のDCIに基づいて、DL BWP#2の所定の時間/周波数リソースにスケジューリングされたPDSCHを受信する。 On the other hand, when detecting a DCI for DL BWP # 2 in CORESET # 1, the user terminal activates DL BWP # 2. The user terminal receives the PDSCH scheduled to a predetermined time / frequency resource of the DL BWP # 2 based on the DCI for the DL BWP # 2 detected in CORESET # 1.
 なお、図2では、CORESET#1でDL BWP#1用のDCIとDL BWP#2用のDCIが異なるタイミングで検出されるが、同一のタイミングで異なるBWPの複数のDCIを検出可能としてもよい。例えば、CORESET#1内に複数のBWPそれぞれに対応する複数のサーチスペースを設け、当該複数のサーチスペースでそれぞれ異なるBWPの複数のDCIを送信してもよい。ユーザ端末は、CORESET#1内の複数のサーチスペースを監視して、同一のタイミングで異なるBWPの複数のDCIを検出してもよい。 In FIG. 2, DCI for DL BWP # 1 and DCI for DL BWP # 2 are detected at different timings in CORESET # 1, but multiple DCI of different BWPs may be detected at the same timing. . For example, a plurality of search spaces corresponding to each of a plurality of BWPs may be provided in the CORESET # 1, and a plurality of DCIs of different BWPs may be transmitted in the plurality of search spaces. The user terminal may monitor a plurality of search spaces in CORESET # 1 to detect a plurality of DCIs of different BWPs at the same timing.
 DL BWP#2がアクティブ化されると、ユーザ端末は、所定周期(例えば、一以上のスロット毎、一以上のミニスロット毎又は所定数のシンボル毎)で、CORESET#2内でDL BWP#2用のDCIを監視(ブラインド復号)する。ユーザ端末は、CORESET#2で検出されたDL BWP#2用のDCIに基づいて、DL BWP#2の所定の時間/周波数リソースにスケジューリングされたPDSCHを受信してもよい。 When DL BWP # 2 is activated, the user terminal can transmit DL BWP # 2 within CORESET # 2 in a predetermined cycle (eg, every one or more slots, every one or more minislots, or every predetermined number of symbols). Monitor the DCI for (blind decoding). The user terminal may receive the PDSCH scheduled to a predetermined time / frequency resource of DL BWP # 2 based on the DCI for DL BWP # 2 detected at CORESET # 2.
 なお、図2では、DL BWP#2がアクティブ化されると、DL BWP#1が非アクティブ化されるものとするが、DL BWP#1がアクティブに維持されてもよい。また、図2では、アクティブ化又は非アクティブ化の切り替え用に所定時間が示されるが、当該所定時間はなくともよい。 Although DL BWP # 1 is assumed to be deactivated when DL BWP # 2 is activated in FIG. 2, DL BWP # 1 may be kept active. Further, although a predetermined time is shown in FIG. 2 for switching between activation and deactivation, the predetermined time may not be present.
 図2に示すように、DL BWP#1のCORESET内におけるDL BWP#2用のDCIの検出をトリガとしてDL BWP#2がアクティブ化される場合、明示的な指示情報なしにDL BWP#2をアクティブ化できるので、アクティブ化の制御に伴うオーバーヘッドの増加を防止できる。 As shown in FIG. 2, when DL BWP # 2 is activated triggered by detection of DCI for DL BWP # 2 in CO BRESET of DL BWP # 1, DL BWP # 2 is not provided without explicit indication information. Since the activation can be performed, it is possible to prevent an increase in overhead associated with activation control.
 一方、図2では、ユーザ端末が、CORESET#1でDL BWP#2用のDCI(すなわち、DL BWP#2のアクティブ化用のDCI)の検出に失敗(miss)しても、無線基地局は、当該検出の失敗を認識できない。このため、ユーザ端末がDL BWP#1のCORESET#1を監視し続けているのに、無線基地局は、DL BWP#2をユーザ端末が利用可能であると誤認識して、DL BWP#2内にPDSCHをスケジューリングするDCIをCORESET#2で送信する恐れがある。 On the other hand, in FIG. 2, even if the user terminal misses detection of DCI for DL BWP # 2 (that is, DCI for activation of DL BWP # 2) at CORESET # 1, the radio base station can not , Can not recognize the failure of the detection. For this reason, although the user terminal continues to monitor CORESET # 1 of DL BWP # 1, the radio base station erroneously recognizes DL BWP # 2 as the user terminal can use it, and DL BWP # 2 There is a risk of sending DCI in CORESET # 2 to schedule the PDSCH inside.
 この場合、無線基地局は、当該PDSCHの送達確認情報(HARQ-ACK、ACK/NACK又はA/N等ともいう)を所定期間内に受信できない場合、ユーザ端末が、DL BWP#2のアクティブ化用のDCIの検出に失敗したと認識し、CORESET#1でアクティブ化用のDCIを再送してもよい。しかしながら、この方法では、無線リソースの利用効率が低下する恐れがある。 In this case, when the radio base station can not receive delivery confirmation information (also referred to as HARQ-ACK, ACK / NACK or A / N, etc.) of the PDSCH in a predetermined period, the user terminal activates DL BWP # 2. It may be recognized that the detection of the DCI for the above has failed, and CORESET # 1 may retransmit the DCI for activation. However, this method may reduce the utilization efficiency of radio resources.
 そこで、無線基地局とユーザ端末との間におけるアクティブBWPの認識不一致を早期に解消するために、フォールバックメカニズムが導入されてもよい。ここで、フォールバックメカニズムは、一以上のBWPに共通のCORESETを設けること(第1のフォールバックメカニズム)、又は、単一のアクティブ化されたBWPを維持し続けること(第2のフォールバックメカニズム)であってもよい。 Therefore, a fallback mechanism may be introduced in order to resolve early recognition mismatch of the active BWP between the radio base station and the user terminal. Here, the fallback mechanism is to provide a common CORESET to one or more BWPs (first fallback mechanism) or to maintain a single activated BWP (second fallback mechanism ) May be.
≪第1のフォールバックメカニズム≫
 第1のフォールバックメカニズムでは、ユーザ端末に設定される一以上のBWPに共通のCORESETが設定され、各BWPのアクティブ化又は非アクティブ化が制御される。
«First fallback mechanism»
In the first fallback mechanism, CORESET common to one or more BWPs set in the user terminal is set, and activation or deactivation of each BWP is controlled.
 図3は、第1の態様に係る第1のフォールバックメカニズムの一例を示す図である。なお、図3では、図2との相違点を中心に説明する。図3では、一以上のBWP(ここでは、DL BWP#1及び#2)に共通のCORESET(BWP-共通(common)CORESET又は共通CORESET等ともいう)と、各BWPに固有のCORESET(BWP-固有(specific)CORESET又は固有CORESET等ともいう)とが設けられる点で、図2と異なる。 FIG. 3 is a diagram showing an example of a first fallback mechanism according to the first aspect. In FIG. 3, differences from FIG. 2 will be mainly described. In FIG. 3, CORESET common to one or more BWPs (here, DL BWPs # 1 and # 2) (also referred to as BWP-common CORESET or common CORESET etc.) and CORESET (BWP- specific to each BWP) It differs from FIG. 2 in that a specific CORESET or a specific CORESET or the like is provided.
 図3に示すように、BWP-共通CORESETは、DL BWP#1及び#2間で同一の周波数帯域(同一の一以上のPRB)に設定される。一方、BWP-固有CORESETは、BWP毎に異なる帯域幅(異なるPRB数)及び/又は異なる周波数帯域(異なる一以上のPRB)に設定されてもよい。 As shown in FIG. 3, the BWP-common CORESET is set to the same frequency band (the same one or more PRBs) between the DL BWPs # 1 and # 2. On the other hand, BWP-specific CORESET may be set to different bandwidths (different number of PRBs) and / or different frequency bands (different one or more PRBs) for each BWP.
 例えば、図3では、DL BWP#2は、DL BWP#1よりも広い帯域幅を有するので、DL BWP#2固有のCORESETは、DL BWP#1固有のCORESETよりも大きい数のPRBで構成されてもよい。 For example, in FIG. 3, since DL BWP # 2 has a wider bandwidth than DL BWP # 1, the CO RESET specific to DL BWP # 2 is configured with a larger number of PRBs than the CORESET specific to DL BWP # 1. May be
 BWP-共通CORESETでは、他のBWP(ここでは、DL BWP#2)のアクティブ化のための明示的又は黙示的な指示情報が送信されてもよい。例えば、図3のBWP-共通CORESETでは、黙示的な指示情報として、DL BWP#2のPDSCHをスケジューリングするDL BWP#2用のDCI(DLアサインメント)が送信される。 In BWP-Common CORESET, explicit or implicit indication information for activation of other BWPs (here, DL BWP # 2) may be sent. For example, in BWP-common CORESET in FIG. 3, DCI (DL assignment) for DL BWP # 2 for scheduling the PDSCH of DL BWP # 2 is transmitted as implicit instruction information.
 また、当該BWP-共通CORESETが共通サーチスペースとして用いられる場合、BWP-共通CORESETでは、システム情報(SI:System Information、SIB:System Information Block等ともいう)及び/又はランダムアクセス応答(RAR:Random Access Response)等を伝送するための制御情報が送信されてもよい。 In addition, when the BWP-common CORESET is used as a common search space, in the BWP-common CORESET, system information (also referred to as SI: System Information, SIB: System Information Block, etc.) and / or random access response (RAR: Random Access) Control information for transmitting a response or the like may be transmitted.
 一方、各BWP固有-CORESETでは、各BWP用のDCIが送信されてもよい。例えば、DL BWP#1固有のCORESETでは、DL BWP#1のPDSCHをスケジューリングするDLアサインメントが送信されてもよい。また、DL BWP#2固有のCORESETでは、DL BWP#2のPDSCHをスケジューリングするDLアサインメントが送信されてもよい。 On the other hand, in each BWP specific-CORESET, DCI for each BWP may be transmitted. For example, in CO RESET specific to DL BWP # 1, DL assignment for scheduling the PDSCH of DL BWP # 1 may be transmitted. Moreover, in CO RESET specific to DL BWP # 2, DL assignment for scheduling the PDSCH of DL BWP # 2 may be transmitted.
 図3において、どのBWPがアクティブ化されているかに関係なく、ユーザ端末は、所定周期(例えば、一以上のスロット毎、一以上のミニスロット毎又は所定数のシンボル毎)で、BWP-共通CORESETを監視する。例えば、図3では、ユーザ端末は、BWP-共通CORESETで検出されたDL BWP#2用のDCIに基づいて、DL BWP#2をアクティブ化し、DL BWP#1を非アクティブ化する。ユーザ端末は、当該DL BWP#2用のDCIに基づいて、DL BWP#2内にスケジューリングされたPDSCHを受信する。 In FIG. 3, regardless of which BWP is activated, the user terminal performs BWP-common CORESET in a predetermined cycle (for example, every one or more slots, every one or more minislots, or each predetermined number of symbols). Monitor For example, in FIG. 3, the user terminal activates DL BWP # 2 and deactivates DL BWP # 1 based on DCI for DL BWP # 2 detected by BWP-common CORESET. The user terminal receives the PDSCH scheduled in the DL BWP # 2 based on the DCI for the DL BWP # 2.
 また、ユーザ端末は、アクティブ化されているBWPに固有のCORESETを所定周期で監視する。例えば、図3では、DL BWP#1がアクティブ化されている場合、ユーザ端末は、DL BWP#1固有のCORESETを所定周期で監視する。ユーザ端末は、DL BWP#1固有のCORESETで検出されたDL BWP#1用のDCIに基づいて、DL BWP#1内にスケジューリングされたPDSCHを受信する。 Also, the user terminal monitors CORESET specific to the activated BWP at a predetermined cycle. For example, in FIG. 3, when DL BWP # 1 is activated, the user terminal monitors CO BRESET specific to DL BWP # 1 at a predetermined cycle. The user terminal receives the PDSCH scheduled in the DL BWP # 1 based on the DCI for the DL BWP # 1 detected by the CO RESET specific to the DL BWP # 1.
 一方、DL BWP#2がアクティブ化されている場合、ユーザ端末は、DL BWP#2固有のCORESETを所定周期で監視する。ユーザ端末は、DL BWP#2固有のCORESETで検出されたDL BWP#2用のDCIに基づいて、DL BWP#2内にスケジューリングされたPDSCHを受信する。 On the other hand, when DL BWP # 2 is activated, the user terminal monitors CO RESET specific to DL BWP # 2 at a predetermined cycle. The user terminal receives the PDSCH scheduled in the DL BWP # 2 based on the DCI for the DL BWP # 2 detected by the CO RESET specific to the DL BWP # 2.
 第1のフォールバックメカニズムでは、どのBWPがアクティブ化されているかに関係なく、ユーザ端末は、所定周期でBWP-共通CORESETを監視し続ける。このため、ユーザ端末が、あるタイミングのBWP-共通CORESETでDL BWP#2用のDCIの検出に失敗しても、後続のBWP-共通CORESETで検出されたDL BWP#2用のDCIに基づいて、DL BWP#2をアクティブ化できる。このため、無線基地局とユーザ端末との間におけるアクティブBWPの認識不一致を早期に解消できる。 In the first fallback mechanism, regardless of which BWP is activated, the user terminal continues to monitor BWP-common CORESET at predetermined intervals. For this reason, even if the user terminal fails to detect DCI for DL BWP # 2 with BWP-common CORESET at a certain timing, based on DCI for DL BWP # 2 detected with subsequent BWP-common CORESET. , DL BWP # 2 can be activated. Therefore, it is possible to resolve early on the mismatch in recognition of the active BWP between the wireless base station and the user terminal.
≪第2のフォールバックメカニズム≫
 第2のフォールバックメカニズムでは、単一のBWPがアクティブに維持され、他のBWPのアクティブ化又は非アクティブ化が制御される。
«Second fallback mechanism»
In the second fallback mechanism, a single BWP is kept active and the activation or deactivation of other BWPs is controlled.
 アクティブに維持されるBWPは、アクティブBWP、プライマリBWP等とも呼ばれる。また、アクティブ化又は非アクティブ化が制御される一以上のBWPは、セカンダリBWP等とも呼ばれる。なお、キャリア内に単一のBWPが設定される場合(例えば、図1A)、プライマリBWPが設定され、セカンダリBWPは設定されない。 BWPs that are kept active are also called active BWPs, primary BWPs, and the like. In addition, one or more BWPs whose activation or deactivation is controlled are also called secondary BWPs and the like. In addition, when single BWP is set in a carrier (for example, FIG. 1A), primary BWP is set and secondary BWP is not set.
 プライマリBWPには、共通サーチスペース及びUE固有サーチスペースが設定されてもよい。一方、セカンダリBWPには、共通サーチスペースが設定されず、UE固有サーチスペースが設定されてもよい。 A common search space and UE-specific search space may be set in the primary BWP. On the other hand, a common search space may not be set in the secondary BWP, and a UE-specific search space may be set.
 ユーザ端末は、プライマリBWPの共通サーチスペースを所定周期で監視する。また、ユーザ端末は、プライマリBWPのUE固有サーチスペースでULグラントを所定周期で監視する。一方、ユーザ端末は、プライマリBWPのUE固有サーチスペースでDLアサインメントを所定周期で監視してもよいし、又は、所定の条件が満たされる場合、当該DLアサインメントの監視を中止してもよい。 The user terminal monitors the common search space of the primary BWP in a predetermined cycle. Also, the user terminal monitors UL grants in the primary BWP's UE-specific search space at predetermined intervals. On the other hand, the user terminal may monitor the DL assignment in a predetermined cycle in the UE-specific search space of the primary BWP, or may stop monitoring the DL assignment if a predetermined condition is satisfied. .
 例えば、ユーザ端末は、セカンダリBWPが設定され、当該セカンダリBWPがアクティブ化される場合、当該セカンダリBWPのUE固有サーチスペースでDLアサインメントを監視し、プライマリBWPのUE固有サーチスペースでDLアサインメントを監視しなくともよい。 For example, when the secondary BWP is configured and the secondary BWP is activated, the user terminal monitors DL assignment in the UE-specific search space of the secondary BWP, and performs DL assignment in the UE-specific search space of the primary BWP. It is not necessary to monitor.
 図4は、第1の態様に係る第2のフォールバックメカニズムの一例を示す図である。なお、図4では、図2との相違点を中心に説明する。図4では、プライマリBWPであるDL BWP#1がアクティブに維持され、セカンダリBWPであるDL BWP#2のアクティブ化又は非アクティブ化が制御される点で、図2と異なる。 FIG. 4 is a diagram showing an example of a second fallback mechanism according to the first aspect. In FIG. 4, differences from FIG. 2 will be mainly described. FIG. 4 differs from FIG. 2 in that DL BWP # 1 which is a primary BWP is maintained active, and activation or deactivation of DL BWP # 2 which is a secondary BWP is controlled.
 図4において、DL BWP#1には、CORESET#1が設定され、DL BWP#2には、CORESET#2が設定されてもよい。CORESET#1には、共通サーチスペースとUE固有サーチスペースが含まれてもよい。一方、CORESET#2には、共通サーチスペースは含まれず、UE固有サーチスペースが含まれてもよい。 In FIG. 4, CORESET # 1 may be set in DL BWP # 1, and CORESET # 2 may be set in DL BWP # 2. CORESET # 1 may include a common search space and a UE-specific search space. On the other hand, CORESET # 2 may not include the common search space but may include the UE-specific search space.
 図4において、ユーザ端末は、CORESET#1の共通サーチスペースで検出されたDL BWP#2用のDCI(DLアサインメント)に基づいて、DL BWP#2をアクティブ化する。ユーザ端末は、当該DL BWP#2用のDCIに基づいて、DL BWP#2内にスケジューリングされたPDSCHを受信する。 In FIG. 4, the user terminal activates DL BWP # 2 based on DCI (DL assignment) for DL BWP # 2 detected in the common search space of CORESET # 1. The user terminal receives the PDSCH scheduled in the DL BWP # 2 based on the DCI for the DL BWP # 2.
 また、ユーザ端末は、CORESET#1のUE固有サーチスペースで検出されたDL BWP#1用のDCI(DLアサインメント)に基づいて、DL BWP#1内にスケジューリングされたPDSCHを受信する。 Also, the user terminal receives the PDSCH scheduled in the DL BWP # 1 based on the DCI (DL assignment) for the DL BWP # 1 detected in the UE-specific search space of CORESET # 1.
 DL BWP#2がアクティブ化されると、ユーザ端末は、CORESET#2のUE固有サーチスペースを所定周期で監視する。ユーザ端末は、当該UE固有サーチスペースで検出されたDL BWP#2用のDCI(DLアサインメント)に基づいて、DL BWP#2内にスケジューリングされたPDSCHを受信する。 When DL BWP # 2 is activated, the user terminal monitors the UE-specific search space of CORESET # 2 at a predetermined cycle. The user terminal receives the PDSCH scheduled in the DL BWP # 2 based on the DCI (DL assignment) for the DL BWP # 2 detected in the UE-specific search space.
 なお、DL BWP#2がアクティブ化されても、ユーザ端末は、CORESET#1の共通サーチスペースを所定周期で監視する。一方、DL BWP#2がアクティブ化される場合、ユーザ端末は、CORESET#1のUE固有サーチスペースでULグラントを所定周期で監視する一方、CORESET#1のUE固有サーチスペースでDLアサインメントを監視しなくともよい。 In addition, even if DL BWP # 2 is activated, the user terminal monitors the common search space of CORESET # 1 at a predetermined cycle. On the other hand, when DL BWP # 2 is activated, the user terminal monitors the UL grant in a predetermined cycle in the UE-specific search space of CORESET # 1 while monitoring the DL assignment in the UE-specific search space of CORESET # 1. You don't have to.
 第2のフォールバックメカニズムでは、ユーザ端末は、セカンダリBWPがアクティブ化されているかに関係なく、ユーザ端末は、プライマリBWPのCORESET#1の共通サーチスペースを監視し続ける。このため、ユーザ端末が、あるタイミングのCORESET#1でDL BWP#2用のDCIの検出に失敗しても、後続のCORESET#1で検出されたDL BWP#2用のDCIに基づいて、DL BWP#2をアクティブ化できる。このため、無線基地局とユーザ端末との間におけるアクティブBWPの認識不一致を早期に解消できる。 In the second fallback mechanism, the user terminal keeps monitoring the common search space of CORESET # 1 of the primary BWP regardless of whether the secondary BWP is activated. Therefore, even if the user terminal fails to detect the DCI for DL BWP # 2 at CORESET # 1 at a certain timing, the DL is generated based on the DCI for DL BWP # 2 detected in the subsequent CORESET # 1. BWP # 2 can be activated. Therefore, it is possible to resolve early on the mismatch in recognition of the active BWP between the wireless base station and the user terminal.
<第2のアクティブ化制御>
 第2のアクティブ化制御において、ユーザ端末は、キャリア内のあるDL BWP(例えば、DL DL BWP#1)に設定される各BWP用のCORESETを所定周期で監視する。ユーザ端末は、各CORESETで対応するBWP用のDCIを受信(検出)してもよい。第2のアクティブ化制御では、複数のBWPそれぞれに対応する複数のCORESETが、特定のDL BWPに設定される点で、第1のアクティブ化制御と異なる。以下では、第1のアクティブ化制御との相違点を中心に説明する。
<Second activation control>
In the second activation control, the user terminal monitors CORESET for each BWP set in a certain DL BWP (for example, DL DL BWP # 1) in the carrier at a predetermined cycle. The user terminal may receive (detect) the DCI for the corresponding BWP in each CORESET. The second activation control is different from the first activation control in that a plurality of CORESETs corresponding to a plurality of BWPs are set to a specific DL BWP. Hereinafter, differences from the first activation control will be mainly described.
 第2のアクティブ化制御において、ユーザ端末に一以上のBWP(一以上のDL BWP及び/又は一以上のUL BWP)が設定される場合、少なくとも一つのDL BWP内に当該一以上のDL BWPそれぞれに対応する一以上のCORESETが設けられてもよい。 In the second activation control, when one or more BWPs (one or more DL BWPs and / or one or more UL BWPs) are set in the user terminal, each of the one or more DL BWPs is included in at least one DL BWP. There may be provided one or more CORESETs corresponding to.
 図5は、第1の態様に係る第2のアクティブ化制御の一例を示す図である。図5では、図2との相違点を中心に説明する。図5では、DL BWP#1に、DL BWP#1用のDCIが送信されるCORESET#1と、DL BWP#2用のDCIが送信されるCORESET#2とが設けられる点で、図2と異なる。 FIG. 5 is a diagram showing an example of second activation control according to the first aspect. In FIG. 5, differences from FIG. 2 will be mainly described. In FIG. 5, FIG. 2 is different from FIG. 2 in that the DL BWP # 1 is provided with CORESET # 1 to which DCI for DL BWP # 1 is transmitted and CORESET # 2 to which DCI for DL BWP # 2 is transmitted. It is different.
 図5において、DL BWP#1がアクティブ化されており、DL BWP#2が非アクティブ化されている場合、ユーザ端末は、DL BWP#1に設定されるCORESET#1及びCORESET#2を所定周期で監視する。なお、CORESET#1及びCORESET#2の監視周期は、同一であってもよいし、又は、異なってもよい。 In FIG. 5, when DL BWP # 1 is activated and DL BWP # 2 is deactivated, the user terminal has a predetermined cycle of CORESET # 1 and CORESET # 2 set in DL BWP # 1. To monitor. The monitoring cycle of CORESET # 1 and CORESET # 2 may be identical or different.
 ユーザ端末は、DL BWP#1のCORESET#1で検出されるDL BWP#1用のDCIに基づいて、DL BWP#1にスケジューリングされたPDSCHを受信する。 The user terminal receives the PDSCH scheduled to the DL BWP # 1 based on the DCI for the DL BWP # 1 detected by the CORESET # 1 of the DL BWP # 1.
 また、ユーザ端末は、DL BWP#1のCORESET#2でDL BWP#2用のDCIが検出されるとDL BWP#2をアクティブ化し、DL BWP#1を非アクティブ化する。ユーザ端末は、DL BWP#1のCORESET#2で検出されるDL BWP#2用のDCIに基づいて、DL BWP#2にスケジューリングされたPDSCHを受信する。 Also, when the DCI for DL BWP # 2 is detected in CORESET # 2 of DL BWP # 1, the user terminal activates DL BWP # 2 and deactivates DL BWP # 1. The user terminal receives the PDSCH scheduled to the DL BWP # 2 based on the DCI for the DL BWP # 2 detected by the CORESET # 2 of the DL BWP # 1.
 また、図5において、DL BWP#1が非アクティブ化されており、DL BWP#2がアクティブ化されている場合、ユーザ端末は、DL BWP#2に設定されるCORESET#2を所定周期で監視する。ユーザ端末は、DL BWP#2のCORESET#2で検出されるDL BWP#2用のDCIに基づいて、DL BWP#2にスケジューリングされたPDSCHを受信する。 Further, in FIG. 5, when DL BWP # 1 is deactivated and DL BWP # 2 is activated, the user terminal monitors CORESET # 2 set in DL BWP # 2 at a predetermined cycle. Do. The user terminal receives the PDSCH scheduled to the DL BWP # 2 based on the DCI for the DL BWP # 2 detected by the CORESET # 2 of the DL BWP # 2.
 なお、第2のアクティブ化制御でも、無線基地局とユーザ端末との間におけるアクティブBWPの認識不一致を早期に解消するために、上記第1のフォールバックメカニズム又は第2のフォールバックメカニズムが適用されてもよい。 Also in the second activation control, the first fallback mechanism or the second fallback mechanism is applied in order to eliminate early recognition mismatch of the active BWP between the radio base station and the user terminal. May be
 以上の第2のアクティブ化制御では、あるDL BWPに、ユーザ端末に設定される複数のBWPそれぞれに対応する複数のCORESETが設定されるので、アクティブ化制御をおこなわない期間は、CORESET(図5ではCORESET#2に相当)のリソースをPDSCHのリソースに使用することができる。 In the second activation control described above, a plurality of CORESETs corresponding to each of a plurality of BWPs set in the user terminal are set in a certain DL BWP. Then, resources of CORESET # 2) can be used for PDSCH resources.
<第3のアクティブ化制御>
 第3のアクティブ化制御において、ユーザ端末は、キャリア内のあるDL BWP(例えば、DL BWP#1)に設定されるCORESETを所定周期で監視して、他のDL BWP(s)(例えば、DL BWP#2)のアクティブ化用のDCIを受信(検出)してもよい。
<Third activation control>
In the third activation control, the user terminal monitors CORESET set in a certain DL BWP (for example, DL BWP # 1) in the carrier at a predetermined cycle, and the other DL BWP (s) (for example, DL) A DCI for activation of BWP # 2) may be received (detected).
 当該アクティブ化用のDCIは、他のDL BWPのアクティブ化を示す。例えば、当該DCIは、スケジューリング用のDCI(DLアサインメント又はULグラント)であってもよいし、専用フォーマットのDCIであってもよい。スケジューリング用のDCIである場合、当該DCI内のリソース割り当てフィールドには特定の値(例えば、0)が設定されてもよい。アクティブ化用のDCIには、アクティブ化するBWPのインデックス(BWPインデックス)が含まれてもよい。 The DCI for activation indicates activation of another DL BWP. For example, the DCI may be DCI (DL assignment or UL grant) for scheduling, or DCI in a dedicated format. In the case of DCI for scheduling, a specific value (for example, 0) may be set in the resource assignment field in the DCI. The DCI for activation may include the index (BWP index) of the BWP to be activated.
 図6は、第1の態様に係る第3のアクティブ化制御の一例を示す図である。図6では、図2との相違点を中心に説明する。図6では、DL BWP#2のアクティブ化用のDCIを用いて、DL BWP#2のアクティブ化を明示的に指示する点で、図2と異なる。 FIG. 6 is a diagram showing an example of third activation control according to the first aspect. In FIG. 6, differences from FIG. 2 will be mainly described. 6 differs from FIG. 2 in that DCI for activation of DL BWP # 2 is used to explicitly instruct activation of DL BWP # 2.
 図6において、ユーザ端末は、DL BWP#1がアクティブ化されており、DL BWP#2が非アクティブ化されている場合、ユーザ端末は、DL BWP#1に設定されるCORESET#1を所定周期で監視する。ユーザ端末は、CORESET#1でアクティブ化用のDCIが検出されると、DL BWP#2をアクティブ化する。 In FIG. 6, when the DL BWP # 1 is activated and the DL BWP # 2 is deactivated, the user terminal has a predetermined period of CORESET # 1 set to the DL BWP # 1. To monitor. The user terminal activates DL BWP # 2 when a DCI for activation is detected in CORESET # 1.
 図6において、ユーザ端末は、DL BWP#2がアクティブ化されると、当該DL BWP#2のCORESET#2の所定周期の監視を開始する。ユーザ端末は、DL BWP#2のCORESET#2で検出されるDL BWP#2用のDCIに基づいて、DL BWP#2にスケジューリングされたPDSCHを受信する。 In FIG. 6, when the DL BWP # 2 is activated, the user terminal starts monitoring of a predetermined period of CORESET # 2 of the DL BWP # 2. The user terminal receives the PDSCH scheduled to the DL BWP # 2 based on the DCI for the DL BWP # 2 detected by the CORESET # 2 of the DL BWP # 2.
 ユーザ端末は、当該アクティブ化用のDCIの検出に成功する場合、無線基地局に対してACK(Acknowledge)を送信してもよい。例えば、ユーザ端末は、UL BWPのUL制御チャネル(例えば、PUCCH)又はULデータチャネル(例えば、PUSCH)を用いて当該ACKを送信してもよい。無線基地局は、ユーザ端末からのACKの受信後に、DL BWP#2におけるPDSCHのスケジューリングを開始してもよい。 When the user terminal succeeds in detecting the DCI for activation, the user terminal may transmit an ACK (Acknowledge) to the radio base station. For example, the user terminal may transmit the ACK using a UL BWP UL control channel (eg, PUCCH) or a UL data channel (eg, PUSCH). The radio base station may start scheduling of the PDSCH in DL BWP # 2 after receiving the ACK from the user terminal.
 或いは、無線基地局は、ユーザ端末からのACKを受信しなくとも、CORESET#2でDL BWP#2におけるPDSCHのスケジューリングを開始してもよい。この場合、ユーザ端末は、CORESET#1を監視し続けているので、DL BWP#2におけるPDSCHをスケジューリングするDL BWP#2用のDCIを検出できない。このため、無線基地局は、DTXで、ユーザ端末におけるアクティブ化用のDCIの検出の失敗を認識してもよい。 Alternatively, the radio base station may start scheduling of the PDSCH in DL BWP # 2 with CORESET # 2 without receiving an ACK from the user terminal. In this case, since the user terminal continues to monitor CORESET # 1, it can not detect DCI for DL BWP # 2 scheduling PDSCH in DL BWP # 2. Thus, the radio base station may recognize in DTX a failure in detection of DCI for activation at the user terminal.
 以上の第3のアクティブ化制御では、DL BWPのアクティブ化が明示的に指示されるので、それに対するACKを送信すれば、PDSCHを無駄に送信することなく適切にアクティブ化を行うことができる。なお、第3のアクティブ化制御でも、上記第1のフォールバックメカニズム又は第2のフォールバックメカニズムが適用されてもよい。 In the third activation control described above, activation of the DL BWP is explicitly instructed. Therefore, if an ACK for that is transmitted, activation can be appropriately performed without unnecessarily transmitting PDSCH. In the third activation control, the first fallback mechanism or the second fallback mechanism may be applied.
<非アクティブ化制御>
 第1~第3のアクティブ化制御によりアクティブ化されたDL BWPは、明示的な非アクティブ化の指示情報又はタイマを用いて、非アクティブ化されてもよい。
<Deactivation control>
The DL BWP activated by the first to third activation controls may be deactivated using explicit deactivation indication information or a timer.
≪明示的な指示情報を用いる場合≫
 明示的な非アクティブ化の指示情報(非アクティブ化指示情報)は、MAC CE又はDCIであってもよい。当該DCIは、スケジューリング用のDCI(DLアサインメント又はULグラント)であってもよいし、専用フォーマットのDCIであってもよい。スケジューリング用のDCIである場合、当該DCI内のリソース割り当てフィールドには特定の値(例えば、0)が設定されてもよい。当該DCIには、非アクティブ化するBWPのインデックスが含まれてもよい。
«When using explicit instruction information»
The explicit deactivation indication information (deactivation indication information) may be MAC CE or DCI. The DCI may be DCI for scheduling (DL assignment or UL grant), or DCI in a dedicated format. In the case of DCI for scheduling, a specific value (for example, 0) may be set in the resource assignment field in the DCI. The DCI may include the index of the BWP to be deactivated.
 明示的な指示情報を用いる場合、タイマを用いる場合と比較して早期にBWPを非アクティブ化することができる。 When using explicit indication information, BWP can be deactivated earlier than when using a timer.
≪タイマを用いる場合≫
 ユーザ端末は、アクティブ化されているBWP(DL BWP及び/又はUL BWP)においてデータチャネル(例えば、PDSCH及び/又はPUSCH)が所定期間スケジューリングされない場合、当該BWPを非アクティブ化してもよい。例えば、図2~6では、ユーザ端末は、DL BWP#2においてPDSCHが所定期間スケジューリングされないので、DL BWP#2を非アクティブ化する。また、図2、3、5、6では、ユーザ端末は、DL BWP#2を非アクティブ化して、DL BWP#1をアクティブ化する。
<< When using a timer >>
The user terminal may deactivate the BWP if the data channel (eg, PDSCH and / or PUSCH) is not scheduled for a predetermined period of time in the activated BWP (DL BWP and / or UL BWP). For example, in FIGS. 2 to 6, the user terminal deactivates DL BWP # 2 because PDSCH is not scheduled for a predetermined period in DL BWP # 2. Also, in FIGS. 2, 3, 5 and 6, the user terminal deactivates DL BWP # 2 and activates DL BWP # 1.
 ユーザ端末は、アクティブ化されているBWPにおいて、データチャネル(例えば、PDSCH及び/又はPUSCH)の受信が完了する毎にタイマを設定し、当該タイマが満了すると、当該BWPを非アクティブ化してもよい。当該タイマは、DL BWP用とUL BWP用との間で共通のタイマ(ジョイントタイマ等ともいう)であってもよいし、又は、個別のタイマであってもよい。 The user terminal may set a timer each time reception of a data channel (for example, PDSCH and / or PUSCH) is completed in the activated BWP, and may deactivate the BWP when the timer expires. . The timer may be a common timer (also referred to as a joint timer or the like) between the DL BWP and the UL BWP, or may be an individual timer.
 DL BWP用のタイマ(DLタイマ)とUL BWP用のタイマ(ULタイマ)とが個別に設けられる場合、DLタイマが満了するまでの所定期間には、DLシンボルが含まれ、ULシンボルは含まれなくともよい。同様に、ULタイマが満了するまでの所定期間には、ULシンボルが含まれ、DLシンボルが含まれなくともよい。 When a timer for DL BWP (DL timer) and a timer for UL BWP (UL timer) are separately provided, a predetermined period until the DL timer expires includes a DL symbol and a UL symbol is included. It is not necessary. Similarly, the predetermined period until the UL timer expires may include the UL symbol and may not include the DL symbol.
 また、DLタイマとULタイマとが個別に設けられる場合、UL BWPは、ULタイマが満了すると直ちに非アクティブ化されてもよいし、又は、DLタイマの満了を待って非アクティブ化されてもよい。同様に、DL BWPは、DLタイマが満了すると直ちに非アクティブ化されてもよいし、又は、ULタイマの満了を待って非アクティブ化されてもよい。 Also, if the DL timer and the UL timer are provided separately, the UL BWP may be deactivated as soon as the UL timer expires, or may be deactivated waiting for the DL timer to expire. . Similarly, the DL BWP may be deactivated as soon as the DL timer expires, or may be deactivated waiting for the expiration of the UL timer.
 図7は、第1の態様に係る非アクティブ化制御の一例を示す図である。図7では、DL BWP#1(プライマリBWP)としてアクティブに維持されており、DL BWP#2(セカンダリBWP)及びUL BWPがアクティブから非アクティブに遷移するものとする。 FIG. 7 is a diagram showing an example of deactivation control according to the first aspect. In FIG. 7, it is assumed that DL BWP # 1 (primary BWP) is maintained active, and DL BWP # 2 (secondary BWP) and UL BWP transition from active to inactive.
 図7Aに示すように、UL BWPにULデータ(PUSCH)があり、ULタイマよりもDLタイマが先に満了する場合、DL BWP#2は、DLタイマの満了に応じて非アクティブ化されてもよい。UL BWPにULデータをスケジューリングするULグラントは、DL BWP#1で送信されるためである。 As shown in FIG. 7A, if there is UL data (PUSCH) in UL BWP, and DL timer expires earlier than UL timer, DL BWP # 2 may be deactivated according to DL timer expiration. Good. It is because UL grant which schedules UL data to UL BWP is transmitted by DL BWP # 1.
 一方、DL BWP#2にDLデータ(PDSCH)があり、ULデータ(PUSCH)がない場合、ULデータがなくなった時点でULタイマが設定されると、DLタイマよりULタイマが先に満了する恐れがある。この場合、ULタイマの満了に応じてUL BWPが非アクティブ化されると、フィードバック信号(例えば、DLデータのACK/NACK)をフィードバックできない恐れがある。そこで、図7Bに示すように、フィードバック信号の発生時点でULタイマはリセットされてもよい。 On the other hand, if there is DL data (PDSCH) in DL BWP # 2 and there is no UL data (PUSCH), the UL timer may expire earlier than the DL timer if the UL timer is set when the UL data is lost. There is. In this case, when the UL BWP is deactivated in response to the expiration of the UL timer, there is a possibility that the feedback signal (for example, ACK / NACK of DL data) can not be fed back. Therefore, as shown in FIG. 7B, the UL timer may be reset when the feedback signal is generated.
 タイマを用いる場合、明示的な非アクティブ化の指示情報を送信する必要がないので、非アクティブ化の制御に伴うオーバーヘッドを削減できる。 When a timer is used, it is not necessary to transmit explicit deactivation instruction information, so the overhead associated with controlling deactivation can be reduced.
(第2の態様)
 第2の態様では、BWPの設定(configuration)及び設定情報(BWP設定情報)について説明する。
(Second aspect)
In the second aspect, BWP configuration (configuration) and configuration information (BWP configuration information) will be described.
 ユーザ端末に設定される一以上のBWP(DL BWP及び/又はUL BWP)の最大帯域幅は、ユーザ端末によって報告されるユーザ端末のカテゴリに基づいて決定されてもよい。例えば、ユーザ端末から報告されたカテゴリが100MHzをサポートする場合、ユーザ端末に設定される少なくとも一つのBWPの最大帯域幅は100MHzであってもよい。 The maximum bandwidth of one or more BWPs (DL BWPs and / or UL BWPs) configured for the user terminal may be determined based on the category of the user terminal reported by the user terminal. For example, if the category reported from the user terminal supports 100 MHz, the maximum bandwidth of at least one BWP set in the user terminal may be 100 MHz.
 ユーザ端末に設定される一以上のBWPの最小帯域幅は、どのカテゴリのユーザ端末もサポートする最小帯域幅(例えば、5MHz)であってもよい。 The minimum bandwidth of one or more BWPs configured for the user terminal may be the minimum bandwidth (for example, 5 MHz) supported by user terminals of any category.
 ユーザ端末にBWPが設定されない場合、ユーザ端末は、キャリア全体を監視してもよい。 If BWP is not set in the user terminal, the user terminal may monitor the entire carrier.
 また、BWPは、特定のニューメロロジー(例えば、サブキャリア間隔、シンボル長、サイクリックプレフィックス(CP)長、スロット(又はミニスロット)内のシンボル数の少なくとも一つなど)と関連付けられてもよい。例えば、図1Bに示すように、複数のBWPがユーザ端末に設定される場合、当該複数のBWP間で同一及び/又は異なるニューメロロジーが用いられてもよい。 Also, the BWP may be associated with a particular nucleus (eg, at least one of subcarrier spacing, symbol length, cyclic prefix (CP) length, number of symbols in a slot (or minislot), etc.) . For example, as shown in FIG. 1B, when a plurality of BWPs are set in a user terminal, the same and / or different neurology may be used among the plurality of BWPs.
 また、BWP設定情報は、ニューメロロジー(例えば、サブキャリア間隔)を示す情報、周波数位置(例えば、中心周波数)を示す情報、帯域幅(例えば、リソースブロック(RB(Resource Block)、PRB(Physical RB)などとも呼ばれる)の数)を示す情報、時間リソース(例えば、スロット(ミニスロット)あたりのシンボル数)を示す情報、MIMOのレイヤ数を示す情報、Quasi-Co-Locationに関する情報などの少なくとも一つを含んでもよい。 In addition, BWP setting information is information indicating a neurology (for example, subcarrier interval), information indicating a frequency position (for example, center frequency), bandwidth (for example, resource block (RB (Resource Block), PRB (Physical)). At least information such as the number of RBs), information indicating the number of time resources (for example, the number of symbols per slot (minislot)), information indicating the number of layers of MIMO, information on Quasi-Co-Location, etc. It may include one.
 ユーザ端末は、上位レイヤシグナリング(例えば、RRCシグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)及び/又はMACシグナリング)を用いて、BWP設定情報を受信してもよい。 The user terminal performs BWP using higher layer signaling (for example, RRC signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.) and / or MAC signaling). Configuration information may be received.
 また、ユーザ端末に複数のBWPが設定され、当該複数のBWP間で異なるスロットタイプ(例えば、シンボル数及び/又はニューメロロジーなど)が適用される場合、特定のBWPで他のBWPのスケジューリングを行うクロスBWPスケジューリングはサポートされなくともよい。一方、当該複数のBWP間で同一のスロットタイプが適用される場合、上記クロスBWPスケジューリングが適用されてもよい。 In addition, when a plurality of BWPs are set in the user terminal and different slot types (for example, the number of symbols and / or the neurology etc.) are applied among the plurality of BWPs, scheduling of other BWPs in a specific BWP Performing cross-BWP scheduling may not be supported. On the other hand, when the same slot type is applied among the plurality of BWPs, the cross BWP scheduling may be applied.
(第3の態様)
 第3の態様では、ユーザ端末に一以上のUL BWP、及び、当該UL BWPのアクティブ化又は非アクティブ化の制御について説明する。
(Third aspect)
In a third aspect, control of one or more UL BWPs and activation or deactivation of the UL BWPs in a user terminal will be described.
 ユーザ端末には、単一のUL BWPだけが設定されてもよいし、又は、複数のUL BWPが設定されてもよい。 Only a single UL BWP may be configured for the user terminal, or multiple UL BWPs may be configured.
 各UL BWPのアクティブ化又は非アクティブ化は、一以上のDL BWPのアクティブ化又は非アクティブ化に関係なく、明示的又は黙示的な指示情報に基づいて制御されてもよい。例えば、ユーザ端末は、DL BWPのCORESETの監視によりULグラントが検出される場合、UL BWPをアクティブ化してもよい。また、DL BWPのアクティブ化又は非アクティブ化は、ULグラントの有無に関係なく制御されてもよい。 The activation or deactivation of each UL BWP may be controlled based on explicit or implicit indication information, regardless of the activation or deactivation of one or more DL BWPs. For example, the user terminal may activate the UL BWP if the UL grant is detected by monitoring the CO RESET of the DL BWP. Also, activation or deactivation of DL BWP may be controlled with or without UL grant.
 或いは、各UL BWPのアクティブ化又は非アクティブ化は、予め関連付けられたDL BWPに合わせて制御されてもよい。例えば、あるDW BWPがアクティブ化される場合、当該DL BWPに関連付けられるUL BWPもアクティブ化されてもよい。同様に、あるDW BWPが非アクティブ化される場合、当該DL BWPに関連付けられるUL BWPも非アクティブ化されてもよい。 Alternatively, activation or deactivation of each UL BWP may be controlled in accordance with the pre-associated DL BWP. For example, if a DW BWP is activated, the UL BWP associated with the DL BWP may also be activated. Similarly, when a DW BWP is deactivated, the UL BWP associated with that DL BWP may also be deactivated.
 図8は、第3の態様に係るUL BWPの設定の一例を示す図である。図8では、図2との相違点を中心に説明する。図8では、図2と同様に、DL BWP#1及び#2が設定されるが、単一のUL BWPが設定される点で、図2と異なる。なお、図8では、ユーザ端末に単一のUL BWPが設定されるものとするが、これに限られない。 FIG. 8 is a diagram showing an example of setting of UL BWP according to the third aspect. In FIG. 8, differences from FIG. 2 will be mainly described. 8, DL BWPs # 1 and # 2 are set as in FIG. 2, but a single UL BWP is set, which is different from FIG. Although a single UL BWP is set in the user terminal in FIG. 8, the present invention is not limited to this.
 例えば、図8では、ユーザ端末は、アクティブ化されているDL BWPに設定されるCORESETを所定周期で監視する。ユーザ端末は、当該CORESETで検出されたULグラントに基づいて、UL BWPをアクティブ化する。ユーザ端末は、当該ULグラントに基づいて、UL BWP内にスケジューリングされたPUSCHを送信する。 For example, in FIG. 8, the user terminal monitors CORESET set to the activated DL BWP at a predetermined cycle. The user terminal activates UL BWP based on the UL grant detected in the CORESET. A user terminal transmits PUSCH scheduled in UL BWP based on the said UL grant.
 図8に示すように、UL BWPは、DL BWP#1及び#2と異なる帯域幅(PRB数)を有してもよい。また、UL BWPは、DL BWP#1及び#2の少なくとも一部に設けられてもよい。 As shown in FIG. 8, the UL BWP may have a different bandwidth (number of PRBs) than the DL BWPs # 1 and # 2. Also, the UL BWP may be provided in at least a part of the DL BWPs # 1 and # 2.
 また、UL BWPが非アクティブ化されている場合でも、RACH送信や周期CSI報告等に用いられるBWPが当該UL BWPとは別に設定される場合は、UL BWPをアクティブ化することなくRACHや周期CSI報告を行っても良い。 Also, even if the UL BWP is deactivated, if the BWP used for RACH transmission, periodic CSI report, etc. is set separately from the UL BWP, the RACH or periodic CSI is not activated without activating the UL BWP. You may report.
 図9は、第3の態様に係るUL BWPの設定の他の例を示す図である。図9では、図8との相違点を中心に説明する。図9では、ユーザ端末に、複数のUL BWPが設定される点で、図8と異なる。 FIG. 9 is a diagram showing another example of setting of UL BWP according to the third aspect. In FIG. 9, differences from FIG. 8 will be mainly described. FIG. 9 differs from FIG. 8 in that a plurality of UL BWPs are set in the user terminal.
 図9に示すように、当該複数のUL BWPの少なくとも一つは、少なくとも一つのDL BWPと同一の帯域幅(同一のPRB)であってもよい。例えば、図9では、UL BWP#1は、DL BWP#1と同一の帯域幅(同一のPRB)で構成される。UL BWP#2は、DL BWP#2の一部で構成される。 As shown in FIG. 9, at least one of the plurality of UL BWPs may have the same bandwidth (the same PRB) as at least one DL BWP. For example, in FIG. 9, UL BWP # 1 is configured with the same bandwidth (the same PRB) as DL BWP # 1. UL BWP # 2 is configured as part of DL BWP # 2.
 図9に示すように、ユーザ端末に複数のUL BWPが設定される場合、ULグラントには、PUSCHがスケジューリングされたUL BWPのインデックス(BWPインデックス)が含まれてもよい。ユーザ端末は、当該ULグラントに含まれるBWPインデックスに基づいて、UL BWPのアクティブ化を制御してもよい。 As shown in FIG. 9, when a plurality of UL BWPs are configured for a user terminal, the UL grant may include an index (BWP index) of UL BWPs for which PUSCH is scheduled. The user terminal may control the activation of the UL BWP based on the BWP index included in the UL grant.
 例えば、図9では、ユーザ端末は、アクティブ化されているDL BWPに設定されるCORESETを所定周期で監視する。図9では、当該CORESETで検出されたULグラントにBWPインデックス#2が含まれるので、ユーザ端末は、UL BWP#1を非アクティブ化し、UL BWP#2をアクティブ化してもよい。ユーザ端末は、当該ULグラントに基づいて、UL BWP#2内にスケジューリングされたPUSCHを送信してもよい。 For example, in FIG. 9, the user terminal monitors CORESET set to the activated DL BWP at a predetermined cycle. In FIG. 9, since the UL grant detected in the CORESET includes BWP index # 2, the user terminal may deactivate UL BWP # 1 and activate UL BWP # 2. The user terminal may transmit the PUSCH scheduled in UL BWP # 2 based on the UL grant.
 なお、図9では、UL BWP#2がアクティブ化される場合、UL BWP#1が非アクティブ化されるものとするが、これに限られない。UL BWP#2がアクティブ化される場合でも、UL BWP#1がアクティブに維持されてもよい。 Although it is assumed in FIG. 9 that UL BWP # 1 is deactivated when UL BWP # 2 is activated, it is not limited to this. Even when UL BWP # 2 is activated, UL BWP # 1 may be kept active.
<複数のUL BWPの用途>
 ユーザ端末に複数のUL BWPが設定される場合、当該複数のUL BWP間で同一のUL信号を送信可能としてもよいし、異なるUL信号を送信可能としてもよい。当該UL信号は、例えば、ULデータチャネル(例えば、PUSCH)、UL制御チャネル(例えば、PUCCH)、参照信号(例えば、SRS:Sounding Reference Signal及び/又はDMRS)、ランダムアクセスチャネル(例えば、PRACH:Physical Random Access Channel)の少なくとも一つである。
<Applications of multiple UL BWPs>
When a plurality of UL BWPs are set in the user terminal, the same UL signal may be transmitted between the plurality of UL BWPs, or different UL signals may be transmitted. The UL signal is, for example, a UL data channel (eg, PUSCH), a UL control channel (eg, PUCCH), a reference signal (eg, SRS: Sounding Reference Signal and / or DMRS), a random access channel (eg, PRACH: Physical). It is at least one of Random Access Channel).
 図10は、第3の態様に係る各UL BWPにおけるUL信号の送信の一例を示す図である。図10では、ユーザ端末にUL BWP#1と、UL BWP#1より広い帯域幅を有するUL BWP#2とが設定されるものとする。 FIG. 10 is a diagram showing an example of transmission of UL signals in each UL BWP according to the third aspect. In FIG. 10, it is assumed that UL BWP # 1 and UL BWP # 2 having a wider bandwidth than UL BWP # 1 are set in the user terminal.
 図10に示すように、UL BWP#1では、PRACH及び/又はPUCCHの設定情報が含まれる。一方、UL BWP#1では、PUSCH、SRS及びDMRSの少なくとも一つの設定情報は含まれなくともよいし、又は、含まれてもよい。また、UL BWP#2では、PUSCH、SRS及びDRMSの少なくとも一つの設定情報が含まれる。一方、UL BWP#2では、PRACH及び/又はPUCCHの設定情報は含まれなくともよいし、又は、含まれてもよい。 As shown in FIG. 10, UL BWP # 1 includes PRACH and / or PUCCH configuration information. On the other hand, in UL BWP # 1, at least one setting information of PUSCH, SRS, and DMRS may not be included, or may be included. In addition, UL BWP # 2 includes at least one setting information of PUSCH, SRS, and DRMS. On the other hand, in UL BWP # 2, configuration information of PRACH and / or PUCCH may not be included or may be included.
 このように、各UL BWPにおいて必ず設定されるUL信号は異なってもよく、各UL BWPにおいてユーザ端末が送信可能なUL信号は異なってもよい。例えば、図10では、ユーザ端末は、UL BWP#1では、PRACH及び/又はPUCCHの送信を制御し、UL BWP#2では、PUSCH、SRS及びDMRSの少なくとも一つの送信を制御してもよい。 Thus, the UL signals that are always set in each UL BWP may be different, and the UL signals that can be transmitted by the user terminal may be different in each UL BWP. For example, in FIG. 10, the user terminal may control transmission of the PRACH and / or PUCCH in UL BWP # 1, and may control transmission of at least one of PUSCH, SRS, and DMRS in UL BWP # 2.
 図10では、各UL BWPにおいて必ず設定されるUL信号を異ならせることができるので、複数のUL BWPがユーザ端末に設定される場合に、各UL BWPにおけるUL信号の送信を効率的に行うことができる。 In FIG. 10, since UL signals to be set in each UL BWP can be made different, efficient transmission of UL signals in each UL BWP should be performed when a plurality of UL BWPs are set as user terminals. Can.
<アクティブ化/非アクティブ化制御>
 ユーザ端末は、明示的又は黙示的な指示情報に基づいて、当該ユーザ端末に設定される一以上のUL BWPのアクティブ化及び/又は非アクティブ化を制御してもよい。明示的な指示情報は、例えば、特定の値(例えば、0)に設定されたリソース割り当てフィールドを含むDCI(ULグラント)又はMAC CEであってもよい。
<Activation / Deactivation Control>
The user terminal may control activation and / or deactivation of one or more UL BWPs configured for the user terminal based on explicit or implicit indication information. The explicit indication information may be, for example, DCI (UL grant) or MAC CE including a resource allocation field set to a specific value (for example, 0).
 黙示的な指示情報は、例えば、RAR、メッセージ4又は図8及び9で説明したULグラントであってもよい。RARは、ユーザ端末からのPRACHに応じて無線基地局から送信される。また、メッセージ4は、ユーザ端末がRARに含まれるULグラントが指定するリソースを用いて上位レイヤの制御メッセージを送信する場合に、無線基地局から当該制御メッセージに応じて送信される衝突解決用メッセージである。メッセージ4を受信したユーザ端末は、アイドル状態からRRC接続状態に遷移する。 The implicit indication information may be, for example, RAR, message 4 or the UL grant described in FIGS. The RAR is transmitted from the radio base station according to the PRACH from the user terminal. Also, the message 4 is a collision resolution message transmitted from the radio base station according to the control message when the user terminal transmits the control message of the upper layer using the resource specified by the UL grant included in the RAR. It is. The user terminal that has received the message 4 transitions from the idle state to the RRC connected state.
 また、ユーザ端末は、タイマ(ジョイントタイマ又はULタイマ)を用いて、UL BWPの非アクティブ化を制御してもよい。当該タイマを用いたUL BWPの非アクティブ化の制御については、図7等で説明した通りである。 The user terminal may also control the deactivation of the UL BWP using a timer (joint timer or UL timer). The control of deactivation of UL BWP using the timer is as described in FIG.
 図11は、第3の態様に係るUL BWPのアクティブ化/非アクティブ化制御の一例を示す図である。図11では、ユーザ端末は、DCI(例えば、UL BWP#2内のPUSCHを割り当てるULグラント、又は、アクティブ化用のDCI(例えば、リソース割り当てフィールドが特定の値に設定されるULグラント))、MAC CE、RAR又はメッセージ4に基づいて、UL BWP#2をアクティブ化してもよい。この場合、ユーザ端末は、UL BWP#1を非アクティブ化してもよい。 FIG. 11 is a diagram showing an example of UL BWP activation / deactivation control according to the third aspect. In FIG. 11, the user terminal is DCI (for example, UL grant for allocating PUSCH in UL BWP # 2 or DCI for activation (for example, UL grant for which a resource allocation field is set to a specific value)), UL BWP # 2 may be activated based on MAC CE, RAR or message 4. In this case, the user terminal may deactivate UL BWP # 1.
 また、図11では、ユーザ端末は、非アクティブ化指示情報(例えば、MAC CE又はDCI)又はタイマに基づいて、UL BWP#2を非アクティブ化してもよい。この場合、ユーザ端末は、UL BWP#1をアクティブ化してもよい。 Also, in FIG. 11, the user terminal may deactivate UL BWP # 2 based on deactivation indication information (for example, MAC CE or DCI) or a timer. In this case, the user terminal may activate UL BWP # 1.
 なお、図11では、アクティブBWPが変更されるが、単一のUL BWP(例えば、UL BWP#1)が常にアクティブに維持されてもよい。 Note that although the active BWP is changed in FIG. 11, a single UL BWP (e.g., UL BWP # 1) may always be kept active.
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(Wireless communication system)
Hereinafter, the configuration of the radio communication system according to the present embodiment will be described. In the wireless communication system, the wireless communication method according to each of the above aspects is applied. Note that the wireless communication methods according to the above aspects may be applied singly or in combination.
 図12は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)、NR(New RAT)などと呼ばれても良い。 FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to the present embodiment. The radio communication system 1 applies carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are integrated. can do. The wireless communication system 1 may be called SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), NR (New RAT), or the like.
 図12に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。セル間で異なるニューメロロジーが適用される構成としてもよい。なお、ニューメロロジーとは、サブキャリア間隔、シンボル長、サイクリックプリフィクス(CP)長、1伝送時間間隔(TTI)あたりのシンボル数、TTIの時間長の少なくとも一つであってもよい。また、スロットは、ユーザ端末が適用するニューメロロジーに基づく時間単位であってもよい。スロットあたりのシンボル数は、サブキャリア間隔に応じて定められてもよい。 The radio communication system 1 shown in FIG. 12 includes a radio base station 11 forming a macrocell C1, and radio base stations 12a to 12c disposed in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. . Moreover, the user terminal 20 is arrange | positioned at macro cell C1 and each small cell C2. The configuration may be such that different mermorologies are applied between cells. The terminology may be at least one of subcarrier spacing, symbol length, cyclic prefix (CP) length, number of symbols per transmission time interval (TTI), and TTI time length. Also, the slot may be a unit of time based on the terminology applied by the user terminal. The number of symbols per slot may be determined according to the subcarrier spacing.
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、2個以上のCC)を用いてCA又はDCを適用することができる。また、ユーザ端末は、複数のセルとしてライセンスバンドCCとアンライセンスバンドCCを利用することができる。 The user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. The user terminal 20 is assumed to simultaneously use the macro cell C1 and the small cell C2 using different frequencies by CA or DC. Also, the user terminal 20 can apply CA or DC using a plurality of cells (CCs) (for example, two or more CCs). Also, the user terminal can use the license band CC and the unlicensed band CC as a plurality of cells.
 また、ユーザ端末20は、各セル(キャリア)で、時分割複信(TDD:Time Division Duplex)又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。TDDのセル、FDDのセルは、それぞれ、TDDキャリア(フレーム構成第2のタイプ)、FDDキャリア(フレーム構成第1のタイプ)等と呼ばれてもよい。 In addition, the user terminal 20 can perform communication in each cell (carrier) using time division duplex (TDD) or frequency division duplex (FDD). The TDD cell and the FDD cell may be respectively referred to as a TDD carrier (frame configuration second type), an FDD carrier (frame configuration first type), and the like.
 また、各セル(キャリア)では、相対的に長い時間長(例えば、1ms)を有するスロット(TTI、通常TTI、ロングTTI、通常サブフレーム、ロングサブフレーム又はサブフレーム等ともいう)、及び/又は、相対的に短い時間長を有するスロット(ミニスロット、ショートTTI又はショートサブフレーム等ともいう)が適用されてもよい。また、各セルで、2以上の時間長のスロットが適用されてもよい。 Also, in each cell (carrier), a slot having a relatively long time length (eg, 1 ms) (TTI, normal TTI, long TTI, normal subframe, also referred to as long subframe or subframe, etc.), and / or A slot having a relatively short time length (also referred to as a mini slot, a short TTI or a short subframe, etc.) may be applied. Also, two or more time slots may be applied in each cell.
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHz、30~70GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。また、ユーザ端末20は、一以上のBWPが設定されてもよい。BWPは、キャリアの少なくとも一部で構成される。 Communication can be performed between the user terminal 20 and the radio base station 11 using a relatively low frequency band (for example, 2 GHz) and a carrier having a narrow bandwidth (referred to as an existing carrier, Legacy carrier, etc.). On the other hand, between the user terminal 20 and the radio base station 12, a carrier having a wide bandwidth in a relatively high frequency band (for example, 3.5 GHz, 5 GHz, 30 to 70 GHz, etc.) may be used. The same carrier as that for the base station 11 may be used. The configuration of the frequency band used by each wireless base station is not limited to this. In addition, one or more BWPs may be set in the user terminal 20. The BWP consists of at least part of the carrier.
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。 Between the wireless base station 11 and the wireless base station 12 (or between two wireless base stations 12), a wired connection (for example, an optical fiber conforming to a Common Public Radio Interface (CPRI), an X2 interface, etc.) or a wireless connection Can be configured.
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。 The radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30. The upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto. Further, each wireless base station 12 may be connected to the higher station apparatus 30 via the wireless base station 11.
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。 The radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like. Also, the radio base station 12 is a radio base station having local coverage, and is a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), transmission and reception It may be called a point or the like. Hereinafter, when the radio base stations 11 and 12 are not distinguished, they are collectively referred to as the radio base station 10.
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。また、ユーザ端末20は、他のユーザ端末20との間で端末間通信(D2D)を行うことができる。 Each user terminal 20 is a terminal compatible with various communication schemes such as LTE and LTE-A, and may include not only mobile communication terminals but also fixed communication terminals. Also, the user terminal 20 can perform inter-terminal communication (D2D) with another user terminal 20.
 無線通信システム1においては、無線アクセス方式として、下りリンク(DL)にOFDMA(直交周波数分割多元接続)が適用でき、上りリンク(UL)にSC-FDMA(シングルキャリア-周波数分割多元接続)が適用できる。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、ULでOFDMAが用いられてもよい。また、端末間通信に用いられるサイドリンク(SL)にSC-FDMAを適用できる。 In the radio communication system 1, as the radio access scheme, OFDMA (Orthogonal Frequency Division Multiple Access) can be applied to the downlink (DL), and SC-FDMA (Single Carrier-Frequency Division Multiple Access) is applied to the uplink (UL) it can. OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers) and data is mapped to each subcarrier to perform communication. SC-FDMA is a single carrier transmission scheme that divides the system bandwidth into bands consisting of one or continuous resource blocks for each terminal, and a plurality of terminals use different bands to reduce interference between the terminals. is there. The uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in UL. Further, SC-FDMA can be applied to a side link (SL) used for communication between terminals.
 無線通信システム1では、DLチャネルとして、各ユーザ端末20で共有されるDLデータチャネル(PDSCH:Physical Downlink Shared Channel、DL共有チャネル等ともいう)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、L1/L2制御チャネルなどが用いられる。PDSCHにより、DLデータ(ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などの少なくとも一つ)が伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。 In the wireless communication system 1, as DL channels, DL data channels (PDSCH: also referred to as Physical Downlink Shared Channel, DL shared channel etc.) shared by each user terminal 20, broadcast channel (PBCH: Physical Broadcast Channel), L1 / L2 A control channel or the like is used. DL data (at least one of user data, upper layer control information, SIB (System Information Block), etc.) is transmitted by the PDSCH. Also, a MIB (Master Information Block) is transmitted by the PBCH.
 L1/L2制御チャネルは、DL制御チャネル(PDCCH(Physical Downlink Control Channel)及び/又はEPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。EPDCCHは、PDSCHと周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。PHICHにより、PUSCHの送達確認情報(A/N、HARQ-ACK、HARQ-ACKビット又はA/Nコードブック等ともいう)を伝送できる。 The L1 / L2 control channel is a DL control channel (PDCCH (Physical Downlink Control Channel) and / or EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. including. Downlink control information (DCI) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH. The number of OFDM symbols used for PDCCH is transmitted by PCFICH. The EPDCCH is frequency division multiplexed with the PDSCH, and is used for transmission such as DCI as the PDCCH. The PHICH can transmit PUSCH delivery confirmation information (also referred to as A / N, HARQ-ACK, HARQ-ACK bit, A / N codebook, etc.).
 無線通信システム1では、ULチャネルとして、各ユーザ端末20で共有されるULデータチャネル(PUSCH:Physical Uplink Shared Channel、UL共有チャネル等ともいう)、UL制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ULデータ(ユーザデータ及び/又は上位レイヤ制御情報)が伝送される。PDSCHの送達確認情報(A/N、HARQ-ACK)チャネル状態情報(CSI)などの少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルを伝送できる。 In the radio communication system 1, as a UL channel, a UL data channel shared by each user terminal 20 (PUSCH: also referred to as Physical Uplink Shared Channel, UL shared channel, etc.), UL control channel (PUCCH: Physical Uplink Control Channel), random An access channel (PRACH: Physical Random Access Channel) or the like is used. UL data (user data and / or upper layer control information) is transmitted by the PUSCH. Uplink control information (UCI: Uplink Control Information) including at least one of PDSCH delivery acknowledgment information (A / N, HARQ-ACK) channel state information (CSI) and the like is transmitted by the PUSCH or PUCCH. The PRACH can transmit a random access preamble for establishing a connection with a cell.
<無線基地局>
 図13は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されてもよい。無線基地局10は、ULにおいて「受信装置」を構成し、DLにおいて「送信装置」を構成してもよい。
<Wireless base station>
FIG. 13 is a diagram showing an example of the entire configuration of the radio base station according to the present embodiment. The radio base station 10 includes a plurality of transmitting and receiving antennas 101, an amplifier unit 102, a transmitting and receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Each of the transmitting and receiving antenna 101, the amplifier unit 102, and the transmitting and receiving unit 103 may be configured to include one or more. The radio base station 10 may configure a “receiving device” in UL and may configure a “transmitting device” in DL.
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。 User data transmitted from the radio base station 10 to the user terminal 20 by downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、レートマッチング、スクランブリング、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理及びプリコーディング処理の少なくとも一つなどの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化及び/又は逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。 The baseband signal processing unit 104 performs packet data convergence protocol (PDCP) layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) for user data. Control) Retransmission control (for example, processing of HARQ (Hybrid Automatic Repeat reQuest)), scheduling, transmission format selection, channel coding, rate matching, scrambling, Inverse Fast Fourier Transform (IFFT) processing and precoding Transmission processing such as at least one of the processing is performed and transferred to the transmission / reception unit 103. Also, with regard to the downlink control signal, transmission processing such as channel coding and / or inverse fast Fourier transform is performed and transferred to the transmission / reception unit 103.
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。 The transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 for each antenna into a radio frequency band and transmits the baseband signal. The radio frequency signal frequency-converted by the transmitting and receiving unit 103 is amplified by the amplifier unit 102 and transmitted from the transmitting and receiving antenna 101.
 本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmitter / receiver, the transmitting / receiving circuit or the transmitting / receiving device described based on the common recognition in the technical field according to the present invention can be constituted. The transmitting and receiving unit 103 may be configured as an integrated transmitting and receiving unit, or may be configured from a transmitting unit and a receiving unit.
 一方、UL信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅されたUL信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。 On the other hand, for the UL signal, the radio frequency signal received by the transmitting and receiving antenna 101 is amplified by the amplifier unit 102. The transmitting and receiving unit 103 receives the UL signal amplified by the amplifier unit 102. The transmission / reception unit 103 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 104.
 ベースバンド信号処理部104では、入力されたUL信号に含まれるULデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定、解放などの呼処理、無線基地局10の状態管理、無線リソースの管理の少なくとも一つを行う。 The baseband signal processing unit 104 performs Fast Fourier Transform (FFT) processing, Inverse Discrete Fourier Transform (IDFT) processing, and error correction on UL data included in the input UL signal. Decoding, reception processing of MAC retransmission control, and reception processing of RLC layer and PDCP layer are performed, and are transferred to the higher station apparatus 30 via the transmission path interface 106. The call processing unit 105 performs at least one of setting of a communication channel, call processing such as release, status management of the radio base station 10, and management of radio resources.
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。 The transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface. Also, the transmission path interface 106 transmits / receives signals (backhaul signaling) to / from the adjacent wireless base station 10 via an inter-base station interface (for example, an optical fiber conforming to CPRI (Common Public Radio Interface), X2 interface). It is also good.
 また、送受信部103は、DL信号(例えば、DL制御信号(DL制御チャネル又はDCI等ともいう)、DLデータ信号(DLデータチャネル又はDLデータ等ともいう)、及び、参照信号の少なくとも一つ)を送信する。また、送受信部103は、UL信号(例えば、UL制御信号(UL制御チャネル又はUCI等ともいう)、ULデータ信号(ULデータチャネル又はULデータ等ともいう)、及び、参照信号の少なくとも一つ)を受信する。 In addition, the transmission / reception unit 103 may be a DL signal (for example, at least one of a DL control signal (also referred to as DL control channel or DCI), a DL data signal (also referred to as DL data channel or DL data), and a reference signal) Send In addition, the transmission / reception unit 103 may be a UL signal (for example, at least one of a UL control signal (also referred to as UL control channel or UCI), a UL data signal (also referred to as UL data channel or UL data), and a reference signal) Receive
 また、送受信部103は、上位レイヤ制御情報(例えば、MAC CE及び/又はRRCシグナリングによる制御情報)を送信してもよい。 Also, the transmission / reception unit 103 may transmit upper layer control information (for example, control information by MAC CE and / or RRC signaling).
 図14は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、図14は、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図14に示すように、ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305とを備えている。 FIG. 14 is a diagram showing an example of a functional configuration of the radio base station according to the present embodiment. FIG. 14 mainly shows the functional blocks of the characteristic part in the present embodiment, and the wireless base station 10 also has other functional blocks necessary for wireless communication. As shown in FIG. 14, the baseband signal processing unit 104 includes a control unit 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305.
 制御部301は、無線基地局10全体の制御を実施する。制御部301は、例えば、送信信号生成部302によるDL信号の生成、マッピング部303によるDL信号のマッピング、受信信号処理部304によるUL信号の受信処理(例えば、復調など)及び測定部305による測定の少なくとも一つを制御する。また、制御部301は、データチャネル(DLデータチャネル及び/又はULデータチャネルを含む)のスケジューリングを制御してもよい。 The control unit 301 controls the entire wireless base station 10. The control unit 301 may, for example, generate a DL signal by the transmission signal generation unit 302, map the DL signal by the mapping unit 303, receive processing (for example, demodulation) of the UL signal by the reception signal processing unit 304, and measure it by the measurement unit 305. Control at least one of Also, the control unit 301 may control scheduling of data channels (including DL data channels and / or UL data channels).
 制御部301は、DLデータチャネルのスケジューリング単位となる時間単位(例えば、スロット)におけるシンボル毎の伝送方向を制御してもよい。具体的には、制御部301は、スロット内のDLシンボル及び/又はULシンボルを示すスロットフォーマット関連情報(SFI)の生成及び/又は送信を制御してもよい。 The control unit 301 may control the transmission direction for each symbol in a time unit (for example, slot) which is a scheduling unit of the DL data channel. Specifically, the control unit 301 may control generation and / or transmission of slot format related information (SFI) indicating DL symbols and / or UL symbols in the slot.
 また、制御部301は、ユーザ端末20に対する一以上のBWP(一以上のDL BWP及び/又は一以上のUL BWP)の設定を制御してもよい。具体的には、制御部301は、BWP設定情報の生成及び/又は送信を制御してもよい(第2の態様)。 Also, the control unit 301 may control setting of one or more BWPs (one or more DL BWPs and / or one or more UL BWPs) for the user terminal 20. Specifically, the control unit 301 may control generation and / or transmission of BWP setting information (second aspect).
 また、制御部301は、ユーザ端末20に設定される一以上のBWP(一以上のDL BWP及び/又は一以上のUL BWP)(キャリア内のDL用周波数帯域及び/又はUL用周波数帯域)のアクティブ化又は非アクティブ化を制御してもよい。具体的には、制御部301は、当該一以上のBWPの明示的又は黙示的な指示情報の生成及び/又は送信を制御してもよい(第1及び第3の態様)。 In addition, the control unit 301 may set one or more BWPs (one or more DL BWPs and / or one or more UL BWPs) (a DL frequency band in a carrier and / or a UL frequency band) set in the user terminal 20. It may control activation or deactivation. Specifically, the control unit 301 may control generation and / or transmission of explicit or implicit indication information of the one or more BWPs (first and third aspects).
 また、制御部301は、一以上のDL BWPにおける一以上のCORESET(制御リソース領域)の設定を制御してもよい。また、制御部301は、一以上のCORESET内におけるサーチスペースの設定を制御してもよい。 Also, the control unit 301 may control setting of one or more CORESETs (control resource regions) in one or more DL BWPs. Also, the control unit 301 may control the setting of the search space in one or more CORESETs.
 制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 301 can be configured of a controller, a control circuit, or a control device described based on the common recognition in the technical field according to the present invention.
 送信信号生成部302は、制御部301からの指示に基づいて、DL信号(DLデータ(チャネル)、DCI、DL参照信号、上位レイヤシグナリングによる制御情報の少なくとも一つを含む)を生成して、マッピング部303に出力してもよい。 The transmission signal generation unit 302 generates a DL signal (including at least one of DL data (channel), DCI, DL reference signal, and control information by upper layer signaling) based on an instruction from the control unit 301, It may be output to the mapping unit 303.
 送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。 The transmission signal generation unit 302 can be a signal generator, a signal generation circuit or a signal generation device described based on the common recognition in the technical field according to the present invention.
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成されたDL信号を、所定の無線リソースにマッピングして、送受信部103に出力する。例えば、マッピング部303は、制御部301によって決定される配置パターンを用いて、参照信号を所定の無線リソースにマッピングする。 The mapping unit 303 maps the DL signal generated by the transmission signal generation unit 302 on a predetermined radio resource based on an instruction from the control unit 301, and outputs the DL signal to the transmission / reception unit 103. For example, the mapping unit 303 maps the reference signal to a predetermined radio resource using the arrangement pattern determined by the control unit 301.
 マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。 The mapping unit 303 may be a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
 受信信号処理部304は、ユーザ端末20から送信されるUL信号の受信処理(例えば、デマッピング、復調及び復号の少なくとも一つなど)を行う。具体的には、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力してもよい。 The reception signal processing unit 304 performs reception processing (for example, at least one of demapping, demodulation, and decoding) of the UL signal transmitted from the user terminal 20. Specifically, the reception signal processing unit 304 may output the reception signal and / or the signal after reception processing to the measurement unit 305.
 受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部304は、本発明に係る受信部を構成することができる。 The received signal processing unit 304 can be configured from a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Also, the received signal processing unit 304 can constitute a receiving unit according to the present invention.
 測定部305は、例えば、参照信号の受信電力(例えば、RSRP(Reference Signal Received Power))及び/又は受信品質(例えば、RSRQ(Reference Signal Received Quality))に基づいて、ULのチャネル品質を測定してもよい。測定結果は、制御部301に出力されてもよい。 The measurement unit 305 measures the channel quality of UL based on, for example, received power of a reference signal (for example, reference signal received power (RSRP)) and / or received quality (for example, reference signal received quality (RSRQ)). May be The measurement result may be output to the control unit 301.
<ユーザ端末>
 図15は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。ユーザ端末20は、ULにおいて「送信装置」を構成し、DLにおいて「受信装置」を構成してもよい。
<User terminal>
FIG. 15 is a diagram showing an example of the entire configuration of the user terminal according to the present embodiment. The user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205. The user terminal 20 may configure a “transmitting device” in UL and may configure a “receiving device” in DL.
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅されたDL信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。 The radio frequency signals received by the plurality of transmitting and receiving antennas 201 are amplified by the amplifier unit 202, respectively. Each transmission / reception unit 203 receives the DL signal amplified by the amplifier unit 202. The transmission / reception unit 203 frequency-converts the received signal into a baseband signal and outputs the result to the baseband signal processing unit 204.
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などの少なくとも一つを行う。DLデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。 The baseband signal processing unit 204 performs at least one of FFT processing, error correction decoding, reception processing of retransmission control, and the like on the input baseband signal. The DL data is transferred to the application unit 205. The application unit 205 performs processing on a layer higher than the physical layer and the MAC layer.
 一方、ULデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御処理(例えば、HARQの処理)、チャネル符号化、レートマッチング、パンクチャ、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などの少なくとも一つが行われて各送受信部203に転送される。UCI(例えば、DL信号のA/N、チャネル状態情報(CSI)、スケジューリング要求(SR)の少なくとも一つなど)についても、チャネル符号化、レートマッチング、パンクチャ、DFT処理及びIFFT処理などの少なくとも一つが行われて各送受信部203に転送される。 On the other hand, UL data is input from the application unit 205 to the baseband signal processing unit 204. The baseband signal processing unit 204 performs at least one of retransmission control processing (for example, processing of HARQ), channel coding, rate matching, puncturing, discrete Fourier transform (DFT) processing, IFFT processing, and the like. The data is transferred to each transmission / reception unit 203. Also for UCI (eg, A / N of DL signal, channel state information (CSI), scheduling request (SR), etc.), at least one of channel coding, rate matching, puncturing, DFT processing, IFFT processing, etc. Is transferred to each of the transmitting and receiving units 203.
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。 The transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it. The radio frequency signal frequency-converted by the transmitting and receiving unit 203 is amplified by the amplifier unit 202 and transmitted from the transmitting and receiving antenna 201.
 また、送受信部203は、DL信号(例えば、DL制御信号(DL制御チャネル又はDCI等ともいう)、DLデータ信号(DLデータチャネル又はDLデータ等ともいう)、及び、参照信号の少なくとも一つ)を受信する。また、送受信部203は、UL信号(例えば、UL制御信号(UL制御チャネル又はUCI等ともいう)、ULデータ信号(ULデータチャネル又はULデータ等ともいう)、及び、参照信号の少なくとも一つ)を送信する。 In addition, the transmitting / receiving unit 203 is a DL signal (for example, at least one of a DL control signal (also referred to as DL control channel or DCI), a DL data signal (also referred to as DL data channel or DL data), and a reference signal) Receive In addition, the transmission / reception unit 203 is a UL signal (for example, at least one of a UL control signal (also referred to as a UL control channel or UCI), a UL data signal (also referred to as a UL data channel or UL data), and a reference signal) Send
 また、送受信部203は、上位レイヤ制御情報(例えば、MAC CE及び/又はRRCシグナリングによる制御情報)を受信してもよい。 Also, the transmitting / receiving unit 203 may receive upper layer control information (for example, control information by MAC CE and / or RRC signaling).
 送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。また、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。 The transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit or a transmission / reception device described based on the common recognition in the technical field according to the present invention. The transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
 図16は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、図16においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図16に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を備えている。 FIG. 16 is a diagram showing an example of a functional configuration of a user terminal according to the present embodiment. In FIG. 16, the functional blocks of the characterizing portion in the present embodiment are mainly shown, and the user terminal 20 also has other functional blocks necessary for wireless communication. As shown in FIG. 16, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Have.
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、例えば、送信信号生成部402によるUL信号の生成、マッピング部403によるUL信号のマッピング、受信信号処理部404によるDL信号の受信処理及び測定部405による測定の少なくとも一つを制御する。 The control unit 401 controls the entire user terminal 20. The control unit 401 controls, for example, at least one of UL signal generation by the transmission signal generation unit 402, mapping of the UL signal by the mapping unit 403, reception processing of the DL signal by the reception signal processing unit 404, and measurement by the measurement unit 405. Do.
 また、制御部401は、キャリア内の一以上のBWP(一以上のDL BWP及び/又は一以上のUL BWP)の設定を制御してもよい。具体的には、制御部401は、無線基地局20からのBWP設定情報に基づいて、当該一以上のBWPを設定してもよい(第2の態様)。 The control unit 401 may also control setting of one or more BWPs (one or more DL BWPs and / or one or more UL BWPs) in the carrier. Specifically, the control unit 401 may set the one or more BWPs based on the BWP setting information from the radio base station 20 (second aspect).
 また、制御部401は、一以上のDL BWPにおける一以上のCORESET(制御リソース領域)の設定を制御してもよい。また、制御部401は、一以上のCORESET内におけるサーチスペースの設定を制御してもよい。 Also, the control unit 401 may control the setting of one or more CORESETs (control resource regions) in one or more DL BWPs. Further, the control unit 401 may control the setting of the search space in one or more CORESETs.
 また、制御部401は、当該CORESET(又は当該CORESET内のサーチスペース)(制御リソース領域)の監視(ブラインド復号)、及び、ユーザ端末20に対するDCI(DLアサインメント、ULグラント、グループDCI、共通DCI、アクティブ化用のDCI、非アクティブ化用のDCIの少なくとも一つ)の検出を制御してもよい。 Also, the control unit 401 monitors the CORESET (or search space in the CORESET) (control resource area) (blind decoding), and DCI (DL assignment, UL grant, group DCI, common DCI for the user terminal 20). , And at least one of activation DCI and deactivation DCI) may be controlled.
 また、制御部401は、DLデータチャネルのスケジューリング単位となる時間単位(例えば、スロット)におけるシンボル毎の伝送方向を制御してもよい。具体的には、制御部401は、SFIに基づいて、スロットにおけるDLシンボル及び/又はULシンボルを決定してもよい。 Also, the control unit 401 may control the transmission direction for each symbol in a time unit (for example, a slot) which is a scheduling unit of the DL data channel. Specifically, the control unit 401 may determine DL symbols and / or UL symbols in the slot based on the SFI.
 また、制御部401は、ユーザ端末20に設定される一以上のBWP(一以上のDL BWP及び/又は一以上のUL BWP)(キャリア内のDL用周波数帯域及び/又はUL用周波数帯域)のアクティブ化又は非アクティブ化を制御してもよい(第1及び第3の態様)。 Further, the control unit 401 is configured to set one or more BWPs (one or more DL BWPs and / or one or more UL BWPs) (a DL frequency band in a carrier and / or a UL frequency band) set in the user terminal 20. Activation or deactivation may be controlled (first and third aspects).
 具体的には、制御部401は、DL BWP#1(第1のDL用周波数帯域)のCORESETで検出されるDCI(DL BWP#2のPDSCHをスケジューリングするDLアサインメント)に基づいて、DL BWP#2(第2のDL用周波数帯域)のアクティブ化を制御してもよい(第1の態様)。また、制御部401は、当該DCIに基づいてアクティブ化されるDL BWP#2において、当該DCIに基づいてPDSCH(DLデータチャネル)の受信を制御してもよい(第1及び第2のアクティブ化制御)。 Specifically, the control unit 401 determines the DL BWP based on DCI (DL assignment for scheduling the PDSCH of the DL BWP # 2) detected by the CORESET of the DL BWP # 1 (the first frequency band for DL). The activation of # 2 (second DL frequency band) may be controlled (first aspect). Further, the control unit 401 may control reception of a PDSCH (DL data channel) based on the DCI in the DL BWP # 2 activated based on the DCI (first and second activations) control).
 また、制御部401は、MAC CE又はDL BWP#1のCORESETで検出されるDCI(DLBWP#2のアクティブ化を示すDCI)に基づいてアクティブ化されるDL BWP#2に設定される制御リソース領域を監視して、DL BWP#2におけるDLデータチャネルのスケジューリングに用いられる他のDCIの受信を制御してもよい(第3のアクティブ化制御)。 In addition, the control unit 401 sets a control resource area set in DL BWP # 2 activated based on DCI (DCI indicating activation of DLBWP # 2) detected by CORESET of MAC CE or DL BWP # 1. To control the reception of other DCI used for scheduling of the DL data channel in DL BWP # 2 (third activation control).
 また、制御部401は、DCI又はMAC制御要素、又は、所定のタイマに基づいて、DL BWP#2(第2のDL用周波数帯域)の非アクティブ化を制御してもよい(第1の態様)。 Further, the control unit 401 may control the deactivation of the DL BWP # 2 (second DL frequency band) based on a DCI or a MAC control element or a predetermined timer (first aspect) ).
 また、制御部401は、DL BWP(DL用周波数帯域)のCORESET(制御リソース領域)で検出されたDCIに基づいて、UL BWP(UL用周波数帯域)においてUL信号の送信を制御してもよい(第3の態様)。 In addition, the control unit 401 may control transmission of a UL signal in UL BWP (frequency band for UL) based on DCI detected in CORESET (control resource region) of DL BWP (frequency band for DL). (Third aspect).
 また、制御部401は、一以上のUL BWP(UL用周波数帯域)のアクティブ化又は非アクティブ化を制御してもよい。なお、少なくとも一つのUL BWPは、少なくとも一つのDL BWP(DL用周波数帯域)と同一の周波数帯域に設定されてもよい(第3の態様)。 Also, the control unit 401 may control activation or deactivation of one or more UL BWPs (frequency bands for UL). Note that at least one UL BWP may be set to the same frequency band as at least one DL BWP (DL frequency band) (third aspect).
 また、制御部401は、UL BWP#1(第1のUL用周波数帯域)においてランダムアクセスチャネル及び/又はUL制御チャネルの送信を制御し、UL BWP#2(第2のUL用周波数帯域)においてULデータチャネル、サウンディング参照信号、復調用参照信号の少なくとも一つの送信を制御してもよい(第3の態様)。 In addition, the control unit 401 controls transmission of a random access channel and / or a UL control channel in UL BWP # 1 (first UL frequency band), and in UL BWP # 2 (second UL frequency band). The transmission of at least one of a UL data channel, a sounding reference signal, and a demodulation reference signal may be controlled (third aspect).
 また、制御部401は、DCI、MAC(Medium Access Control)制御要素、ランダムアクセス応答又は衝突解決用のメッセージのいずれか、又は、UL BWP(UL用周波数帯域)に関連付けられるDL BWP(DL用周波数帯域)に基づいて、当該UL BWPのアクティブ化を制御してもよい(第3の態様)。 In addition, the control unit 401 may be a DL BWP (DL frequency) associated with a DCI, a medium access control (MAC) control element, a random access response or a message for collision resolution, or a UL BWP (frequency band for UL). The activation of the UL BWP may be controlled based on the bandwidth) (third aspect).
 また、制御部401は、DCI又はMAC制御要素、又は、所定のタイマに基づいて、UL BWP(UL用周波数帯域)の非アクティブ化を制御してもよい。 In addition, the control unit 401 may control the deactivation of UL BWP (UL frequency band) based on a DCI or MAC control element or a predetermined timer.
 制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。 The control unit 401 can be configured of a controller, a control circuit or a control device described based on the common recognition in the technical field according to the present invention.
 送信信号生成部402は、制御部401からの指示に基づいて、UL信号、DL信号の再送制御情報を生成(例えば、符号化、レートマッチング、パンクチャ、変調など)して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。 Transmission signal generation unit 402 generates retransmission control information of UL signal and DL signal (for example, coding, rate matching, puncturing, modulation, etc.) based on an instruction from control unit 401, and outputs the result to mapping unit 403. Do. The transmission signal generation unit 402 can be a signal generator, a signal generation circuit, or a signal generation device described based on the common recognition in the technical field according to the present invention.
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成されたUL信号、DL信号の再送制御情報を無線リソースにマッピングして、送受信部203へ出力する。例えば、マッピング部403は、制御部401によって決定される配置パターンを用いて、参照信号を所定の無線リソースにマッピングする。 The mapping unit 403 maps retransmission control information of the UL signal and the DL signal generated by the transmission signal generation unit 402 to radio resources based on an instruction from the control unit 401, and outputs the retransmission control information to the transmission / reception unit 203. For example, the mapping unit 403 maps the reference signal to a predetermined radio resource, using the arrangement pattern determined by the control unit 401.
 マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。 The mapping unit 403 may be a mapper, a mapping circuit or a mapping device described based on the common recognition in the technical field according to the present invention.
 受信信号処理部404は、DL信号の受信処理(例えば、デマッピング、復調及び復号の少なくとも一つなど)を行う。例えば、受信信号処理部404は、制御部401によって決定される配置パターンの参照信号を用いて、DLデータチャネルを復調してもよい。 The reception signal processing unit 404 performs reception processing (for example, at least one of demapping, demodulation, and decoding) of the DL signal. For example, the reception signal processing unit 404 may demodulate the DL data channel using the reference signal of the arrangement pattern determined by the control unit 401.
 また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、制御部401及び/又は測定部405に出力してもよい。受信信号処理部404は、例えば、上位レイヤシグナリングによる上位レイヤ制御情報、L1/L2制御情報(例えば、ULグラント及び/又はDLアサインメント)などを、制御部401に出力する。 Further, the reception signal processing unit 404 may output the reception signal and / or the signal after reception processing to the control unit 401 and / or the measurement unit 405. The reception signal processing unit 404 outputs, for example, upper layer control information by upper layer signaling, L1 / L2 control information (for example, UL grant and / or DL assignment), and the like to the control unit 401.
 受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。 The received signal processing unit 404 can be composed of a signal processor, a signal processing circuit or a signal processing device described based on the common recognition in the technical field according to the present invention. Also, the received signal processing unit 404 can constitute a receiving unit according to the present invention.
 測定部405は、無線基地局10からの参照信号(例えば、CSI-RS)に基づいて、チャネル状態を測定し、測定結果を制御部401に出力する。なお、チャネル状態の測定は、CC毎に行われてもよい。 Measuring section 405 measures a channel state based on a reference signal (for example, CSI-RS) from radio base station 10, and outputs the measurement result to control section 401. The channel state measurement may be performed for each CC.
 測定部405は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。 The measuring unit 405 can be configured of a signal processor, a signal processing circuit or a signal processing device, and a measuring instrument, a measuring circuit or a measuring device described based on the common recognition in the technical field according to the present invention.
<ハードウェア構成>
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
<Hardware configuration>
The block diagram used for the explanation of the above-mentioned embodiment has shown the block of a functional unit. These functional blocks (components) are realized by any combination of hardware and / or software. Moreover, the implementation means of each functional block is not particularly limited. That is, each functional block may be realized by one physically and / or logically coupled device, or directly and / or indirectly two or more physically and / or logically separated devices. It may be connected by (for example, wired and / or wireless) and realized by the plurality of devices.
 例えば、本実施の形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the wireless base station, the user terminal, and the like in the present embodiment may function as a computer that performs the process of the wireless communication method of the present invention. FIG. 17 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to the present embodiment. The above-described wireless base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007 and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term "device" can be read as a circuit, a device, a unit, or the like. The hardware configuration of the radio base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the figure, or may be configured without including some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサで実行されてもよいし、処理が同時に、逐次に、又はその他の手法で、1以上のプロセッサで実行されてもよい。なお、プロセッサ1001は、1以上のチップで実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be a plurality of processors. Also, the processing may be performed by one processor, or the processing may be performed by one or more processors simultaneously, sequentially, or in other manners. The processor 1001 may be implemented by one or more chips.
 無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一つを制御することで実現される。 Each function in the radio base station 10 and the user terminal 20 is performed, for example, by causing a processor 1001 to read predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the processor 1001 performs an operation. This is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like. For example, the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Also, the processor 1001 reads a program (program code), a software module, data, and the like from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these. As a program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, or may be realized similarly for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer readable recording medium, and for example, at least at least a read only memory (ROM), an erasable programmable ROM (EPROM), an electrically EPROM (EEPROM), a random access memory (RAM), or any other suitable storage medium. It may consist of one. The memory 1002 may be called a register, a cache, a main memory (main storage device) or the like. The memory 1002 may store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to an embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer readable recording medium, and for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc ROM), etc.), a digital versatile disk, Blu-ray® disc), removable disc, hard disc drive, smart card, flash memory device (eg card, stick, key drive), magnetic stripe, database, server, at least one other suitable storage medium May be composed of The storage 1003 may be called an auxiliary storage device.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, and the like to realize, for example, frequency division duplex (FDD) and / or time division duplex (TDD). It may be configured. For example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, and the like) that performs output to the outside. The input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、図17に示す各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 The devices shown in FIG. 17 are connected by a bus 1007 for communicating information. The bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 Also, the radio base station 10 and the user terminal 20 may be microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
(変形例)
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
The terms described in the present specification and / or the terms necessary for the understanding of the present specification may be replaced with terms having the same or similar meanings. For example, the channels and / or symbols may be signaling. Also, the signal may be a message. The reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot (Pilot), a pilot signal or the like according to an applied standard. Also, a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency or the like.
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。 Also, a radio frame may be configured with one or more periods (frames) in the time domain. Each of the one or more periods (frames) that constitute a radio frame may be referred to as a subframe. Furthermore, a subframe may be configured with one or more slots in the time domain. The subframes may be of a fixed time length (e.g., 1 ms) independent of the neurology.
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)で構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において一つ又は複数のシンボルで構成されてもよい。 A slot may be configured with one or more symbols (such as orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, etc.) in the time domain. Also, the slot may be a time unit based on the neurology. Also, the slot may include a plurality of minislots. Each minislot may be comprised of one or more symbols in the time domain.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。 A radio frame, a subframe, a slot, a minislot and a symbol all represent time units when transmitting a signal. For radio frames, subframes, slots, minislots and symbols, other names corresponding to each may be used. For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as a TTI, and one slot or one minislot may be referred to as a TTI. May be That is, the subframe and / or TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅及び/又は送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。TTIは、チャネル符号化されたデータパケット(トランスポートブロック)の送信時間単位であってもよいし、スケジューリング及び/又はリンクアダプテーションなどの処理単位となってもよい。なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the radio base station performs scheduling to allocate radio resources (such as frequency bandwidth and / or transmission power that can be used in each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this. The TTI may be a transmission time unit of a channel coded data packet (transport block) or may be a processing unit such as scheduling and / or link adaptation. If one slot or one minislot is referred to as TTI, one or more TTIs (ie, one or more slots or one or more minislots) may be the minimum time unit of scheduling. In addition, the number of slots (the number of minislots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、又はショートサブフレームなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, or the like. A TTI shorter than a normal TTI may be referred to as a short TTI, a short TTI, a partial TTI (partial or fractional TTI), a short subframe, a short subframe, or the like.
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、RBは、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペアなどと呼ばれてもよい。 A resource block (RB: Resource Block) is a resource allocation unit in time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. Also, an RB may include one or more symbols in the time domain, and may be one slot, one minislot, one subframe, or one TTI in length. One TTI and one subframe may be configured of one or more resource blocks, respectively. The RB may be called a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (RE: Resource Element). For example, one RE may be one subcarrier and one symbol radio resource region.
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボルの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。 The above-described structures such as the radio frame, subframe, slot, minislot and symbol are merely examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols included in a slot or minislot, and subcarriers included in an RB And the number of symbols in TTI, symbol length, cyclic prefix (CP) length, and other configurations may be variously changed.
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。さらに、これらのパラメータを使用する数式などは、本明細書で明示的に開示したものと異なってもよい。 In addition, the information, parameters, and the like described in the present specification may be represented by absolute values, may be represented by relative values from predetermined values, or may be represented by corresponding other information. . For example, the radio resources may be indicated by a predetermined index. Furthermore, the formulas etc. that use these parameters may differ from those explicitly disclosed herein.
 本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的なものではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的なものではない。 The names used for parameters and the like in the present specification are not limited in any respect. For example, since various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable names, various assignments are made to these various channels and information elements. The name is not limited in any way.
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described herein may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips etc that may be mentioned throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or particles, optical fields or photons, or any of these May be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Also, information, signals, etc. may be output from the upper layer to the lower layer and / or from the lower layer to the upper layer. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルで管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals and the like may be stored in a specific place (for example, a memory) or may be managed by a management table. Information, signals, etc. input and output can be overwritten, updated or added. The output information, signals and the like may be deleted. The input information, signals and the like may be transmitted to other devices.
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the aspects / embodiments described herein, and may be performed in other manners. For example, notification of information may be physical layer signaling (eg, downlink control information (DCI), uplink control information (UCI)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), MAC (Medium Access Control) signaling, other signals, or a combination thereof.
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。 The physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like. Also, RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Also, MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of "it is X") is not limited to what is explicitly performed, but implicitly (for example, by not notifying the predetermined information or another It may be performed by notification of information.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be performed by a value (0 or 1) represented by one bit, or may be performed by a boolean value represented by true or false. , Numerical comparison (for example, comparison with a predetermined value) may be performed.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software may be called software, firmware, middleware, microcode, hardware description language, or any other name, and may be instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. Should be interpreted broadly to mean applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。 Also, software, instructions, information, etc. may be sent and received via a transmission medium. For example, software may use a wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and / or a wireless technology (infrared, microwave, etc.), a website, a server These or other wired and / or wireless technologies are included within the definition of the transmission medium, as transmitted from a remote source, or other remote source.
 本明細書で使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" as used herein are used interchangeably.
 本明細書では、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。 In this specification, “base station (BS: Base Station)”, “radio base station”, “eNB”, “gNB”, “cell”, “sector”, “cell group”, “carrier” and “component carrier” The term "can be used interchangeably. A base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。 A base station may accommodate one or more (e.g., three) cells (also called sectors). If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small base station for indoor use (RRH: Communication services may also be provided by the Remote Radio Head, where the term "cell" or "sector" refers to part or all of the coverage area of a base station and / or a base station subsystem serving communication services in this coverage. Point to.
 本明細書では、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。 As used herein, the terms "mobile station (MS)," user terminal, "" user equipment (UE) "and" terminal "may be used interchangeably. A base station may also be called in terms of a fixed station (Node station), NodeB, eNodeB (eNB), access point (access point), transmission point, reception point, femtocell, small cell, and so on.
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 The mobile station may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, by those skilled in the art. It may also be called a terminal, a remote terminal, a handset, a user agent, a mobile client, a client or some other suitable term.
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び/又は「下り」は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。 Also, the radio base station in the present specification may be replaced with a user terminal. For example, each aspect / embodiment of the present invention may be applied to a configuration in which communication between a wireless base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device). In this case, the user terminal 20 may have a function that the above-described radio base station 10 has. Also, “up” and / or “down” may be read as “side”. For example, the upstream channel may be read as a side channel.
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。 Similarly, a user terminal herein may be read at a radio base station. In this case, the radio base station 10 may have a function that the above-described user terminal 20 has.
 本明細書において、基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)から成るネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In this specification, the specific operation to be performed by the base station may be performed by the upper node in some cases. In a network consisting of one or more network nodes having a base station, various operations performed for communication with a terminal may be a base station, one or more network nodes other than the base station (eg, It is apparent that this can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway), etc. but not limited thereto or a combination thereof.
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in this specification may be used alone, may be used in combination, and may be switched and used along with execution. Moreover, as long as there is no contradiction, you may replace the order of the processing procedure of each aspect / embodiment, sequence, flowchart, etc. which were demonstrated in this specification. For example, for the methods described herein, elements of the various steps are presented in an exemplary order and are not limited to the particular order presented.
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in the present specification includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile) Communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), NR (New Radio), NX (New radio access), FX (Future generation radio access), GSM (registered trademark) (Global System for Mobile communications), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802 .20, UWB (Ultra-Wide Band), Bluetooth (registered trademark), The present invention may be applied to a system utilizing another appropriate wireless communication method of and / or an extended next generation system based on these.
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本明細書で使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書で使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to an element using the designation "first," "second," etc. as used herein does not generally limit the quantity or order of those elements. These designations may be used herein as a convenient way of distinguishing between two or more elements. Thus, reference to the first and second elements does not mean that only two elements can be taken or that the first element must somehow precede the second element.
 本明細書で使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 The term "determining" as used herein may encompass a wide variety of operations. For example, “determination” may be calculating, computing, processing, deriving, investigating, looking up (eg, table, database or other data) A search on structure), ascertaining, etc. may be considered as "determining". Also, "determination" may be receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (access) It may be considered as "determining" (eg, accessing data in memory) and the like. Also, “determination” is considered to be “determination” to resolve, select, choose, choose, establish, compare, etc. It is also good. That is, "determination" may be considered as "determining" some action.
 本明細書で使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。本明細書で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を使用することにより、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどの電磁エネルギーを使用することにより、互いに「接続」又は「結合」されると考えることができる。 As used herein, the terms "connected", "coupled", or any variation thereof are any direct or indirect connection between two or more elements or It means a bond and can include the presence of one or more intermediate elements between two elements "connected" or "connected" to each other. The coupling or connection between elements may be physical, logical or a combination thereof. As used herein, the two elements are by using one or more wires, cables and / or printed electrical connections, and radio frequency as some non-limiting and non-exclusive examples. It can be considered "connected" or "coupled" to one another by using electromagnetic energy such as electromagnetic energy having wavelengths in the region, microwave region and light (both visible and invisible) regions.
 本明細書又は請求の範囲で「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When the terms "including", "comprising" and variations thereof are used in the specification or in the claims, these terms as well as the term "comprising" are inclusive. It is intended to be. Further, it is intended that the term "or" as used herein or in the claims is not an exclusive OR.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 Although the present invention has been described above in detail, it is apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be implemented as modifications and changes without departing from the spirit and scope of the present invention defined by the description of the claims. Accordingly, the description in the present specification is for the purpose of illustration and does not have any limiting meaning on the present invention.

Claims (6)

  1.  キャリア内の第1の下りリンク(DL)用周波数帯域に設定される制御リソース領域を監視して、下りリンク制御情報(DCI)を受信する受信部と、
     前記DCIに基づいて、前記キャリア内の第2のDL用周波数帯域のアクティブ化を制御する制御部と、
    を具備することを特徴とするユーザ端末。
    A reception unit that monitors a control resource region set in a first downlink (DL) frequency band in a carrier and receives downlink control information (DCI);
    A control unit that controls activation of a second DL frequency band in the carrier based on the DCI;
    A user terminal characterized by comprising.
  2.  前記DCIは、前記第2のDL用周波数帯域内における下りリンク(DL)データチャネルのスケジューリングに用いられ、
     前記制御部は、前記DCIに基づいてアクティブ化される前記第2のDL用周波数帯域において、前記DCIに基づいて前記DLデータチャネルの受信を制御することを特徴とする請求項1に記載のユーザ端末。
    The DCI is used to schedule downlink (DL) data channels in the second DL frequency band,
    The user according to claim 1, wherein the control unit controls reception of the DL data channel based on the DCI in the second DL frequency band activated based on the DCI. Terminal.
  3.  前記DCIは、前記第2のDL用周波数帯域のアクティブ化を示し、
     前記受信部は、前記DCIに基づいてアクティブ化される前記第2のDL用周波数帯域に設定される制御リソース領域を監視して、前記第2のDL用周波数帯域内におけるDLデータチャネルのスケジューリングに用いられる他のDCIを受信することを特徴とする請求項1に記載のユーザ端末。
    The DCI indicates activation of the second DL frequency band,
    The receiving unit monitors a control resource region set in the second DL frequency band activated based on the DCI, and schedules DL data channel in the second DL frequency band. The user terminal according to claim 1, characterized in that it receives another DCI to be used.
  4.  前記第1のDL用周波数帯域はアクティブに維持されることを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。 The user terminal according to any one of claims 1 to 3, wherein the first DL frequency band is maintained active.
  5.  前記制御部は、前記受信部によって受信される前記DCI又はMAC制御要素、又は、所定のタイマに基づいて、前記第2のDL用周波数帯域の非アクティブ化を制御することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。 The control unit controls the deactivation of the second DL frequency band based on the DCI or MAC control element received by the reception unit, or a predetermined timer. The user terminal according to any one of claims 1 to 4.
  6.  ユーザ端末において、
     キャリア内の第1の下りリンク(DL)用周波数帯域に設定される制御リソース領域を監視して、下りリンク制御情報(DCI)を受信する工程と、
     前記DCIに基づいて、前記キャリア内の第2のDL用周波数帯域のアクティブ化を制御する工程と、
    を有することを特徴とする無線通信方法。
    At the user terminal
    Monitoring a control resource region set in a first downlink (DL) frequency band in a carrier and receiving downlink control information (DCI);
    Controlling activation of a second DL frequency band in the carrier based on the DCI;
    A wireless communication method comprising:
PCT/JP2017/029224 2017-08-10 2017-08-10 User terminal and radio communication method WO2019030930A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019535569A JPWO2019030930A1 (en) 2017-08-10 2017-08-10 User terminal and wireless communication method
PCT/JP2017/029224 WO2019030930A1 (en) 2017-08-10 2017-08-10 User terminal and radio communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029224 WO2019030930A1 (en) 2017-08-10 2017-08-10 User terminal and radio communication method

Publications (1)

Publication Number Publication Date
WO2019030930A1 true WO2019030930A1 (en) 2019-02-14

Family

ID=65272190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029224 WO2019030930A1 (en) 2017-08-10 2017-08-10 User terminal and radio communication method

Country Status (2)

Country Link
JP (1) JPWO2019030930A1 (en)
WO (1) WO2019030930A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202562A1 (en) * 2019-04-05 2020-10-08 株式会社Nttドコモ User device and base station device
US10999870B2 (en) 2017-08-18 2021-05-04 Asustek Computer Inc. Method and apparatus for random access configuration in a wireless communication system
CN113455068A (en) * 2019-02-22 2021-09-28 株式会社Ntt都科摩 User device and base station device
CN113615231A (en) * 2019-03-28 2021-11-05 株式会社Ntt都科摩 User device and base station device
CN114208247A (en) * 2019-08-14 2022-03-18 株式会社Ntt都科摩 Terminal and communication method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On bandwidth parties", 3GPP TSG RAN WG1 NR AD-HOC #2 R1-1711565, 30 June 2017 (2017-06-30), XP051300748 *
INTERDIGITAL INC.: "Bandwidth Adaptaion via BWP Selection in NR", 3GPP TSG RAN WG1 NR AD-HOC #2 R1-1710878, 30 June 2017 (2017-06-30), XP051300080 *
INTERDIGITAL INC.: "CORESET Monitoring Under Dynamic Change of BWP", 3GPP TSG RAN WG1 NR AD- HOC #2 R1-1710872, 30 June 2017 (2017-06-30), XP051300074 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10999870B2 (en) 2017-08-18 2021-05-04 Asustek Computer Inc. Method and apparatus for random access configuration in a wireless communication system
US11452144B2 (en) 2017-08-18 2022-09-20 Asustek Computer Inc. Method and apparatus for random access configuration in a wireless communication system
CN113455068A (en) * 2019-02-22 2021-09-28 株式会社Ntt都科摩 User device and base station device
CN113455068B (en) * 2019-02-22 2024-04-09 株式会社Ntt都科摩 Terminal and base station
CN113615231A (en) * 2019-03-28 2021-11-05 株式会社Ntt都科摩 User device and base station device
CN113615231B (en) * 2019-03-28 2024-03-08 株式会社Ntt都科摩 Terminal, base station, communication method and system
WO2020202562A1 (en) * 2019-04-05 2020-10-08 株式会社Nttドコモ User device and base station device
CN114208247A (en) * 2019-08-14 2022-03-18 株式会社Ntt都科摩 Terminal and communication method

Also Published As

Publication number Publication date
JPWO2019030930A1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
JP7254714B2 (en) Terminal, wireless communication method, base station and system
WO2019030929A1 (en) User terminal and wireless communication method
JP7121053B2 (en) Terminal, wireless communication method, base station and system
JP7248594B2 (en) Terminal, wireless communication method, base station and system
WO2019097633A1 (en) User terminal and wireless communication method
WO2019193768A1 (en) User terminal and wireless base station
WO2019097643A1 (en) User terminal and wireless communications method
JP7107845B2 (en) Terminal, wireless communication method and wireless communication system
WO2019111301A1 (en) User equipment and radio communication method
WO2019087340A1 (en) User equipment and wireless communication method
WO2019224875A1 (en) User terminal
WO2019021489A1 (en) User terminal and radio communication method
WO2019021488A1 (en) User terminal, base station device and radio communication method
WO2019069471A1 (en) User terminal and wireless communication method
WO2019016952A1 (en) User terminal and wireless communication method
WO2019097649A1 (en) User terminal and wireless communication method
WO2018143388A1 (en) User terminal and wireless communication method
JP7100070B2 (en) Terminals, wireless communication methods, base stations and systems
WO2019030930A1 (en) User terminal and radio communication method
WO2019135287A1 (en) User terminal and wireless communication method
WO2019030871A1 (en) User terminal and radio communication method
WO2019030870A1 (en) User terminal and radio communication method
WO2019082244A1 (en) User terminal and radio communication method
WO2019026216A1 (en) User terminal and wireless communications method
WO2019135288A1 (en) User terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535569

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921131

Country of ref document: EP

Kind code of ref document: A1