WO2019029616A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2019029616A1
WO2019029616A1 PCT/CN2018/099615 CN2018099615W WO2019029616A1 WO 2019029616 A1 WO2019029616 A1 WO 2019029616A1 CN 2018099615 W CN2018099615 W CN 2018099615W WO 2019029616 A1 WO2019029616 A1 WO 2019029616A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
bearer
amount
message
enb
Prior art date
Application number
PCT/CN2018/099615
Other languages
English (en)
French (fr)
Inventor
彭文杰
张宏卓
戴明增
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112020000154-6A priority Critical patent/BR112020000154A2/pt
Priority to JP2019570975A priority patent/JP7007406B2/ja
Priority to CN201880052199.9A priority patent/CN111034104B/zh
Priority to CA3064656A priority patent/CA3064656C/en
Priority to RU2019143655A priority patent/RU2772980C2/ru
Priority to EP18843649.7A priority patent/EP3609113A4/en
Priority to KR1020197036229A priority patent/KR102363791B1/ko
Publication of WO2019029616A1 publication Critical patent/WO2019029616A1/zh
Priority to US16/566,436 priority patent/US10743213B2/en
Priority to US16/916,529 priority patent/US11412414B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/082Load balancing or load distribution among bearers or channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/088Load balancing or load distribution among core entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0027Control or signalling for completing the hand-off for data sessions of end-to-end connection for a plurality of data sessions of end-to-end connections, e.g. multi-call or multi-bearer end-to-end data connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • H04W84/20Master-slave selection or change arrangements

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a communication method and apparatus.
  • MR-DC Multi-RAT Dual Connectivity
  • LTE long term evolution
  • WLAN wireless local area network interoperability
  • LTE-WLAN interworking LWI
  • Figure 1 is a schematic diagram of a dual connectivity network.
  • terminal 01 can communicate with both primary node A and secondary node B at the same time.
  • the primary node A and the secondary node B are connected to the core network C.
  • the access technologies used by the primary node A and the secondary node B may be the same or different.
  • the primary node A is an evolved universal terrestrial radio access network NodeB (eNB)
  • the secondary node B is a new radio node B (gNB)
  • the primary node A is a gNB
  • the secondary node B is an eNB
  • the primary node A is an eNB or a gNB
  • the secondary node B is a wireless local area network (WLAN) device, where the WLAN device can be a WLAN termination (WT), an access controller (AC), or Access point (AP).
  • the core network may be a 4G core network EPC, or a 5G core network (5G core, 5GC).
  • an auxiliary bearer or an auxiliary shunt bearer may be established for the terminal 01.
  • the auxiliary bearer may be referred to as a secondary cell group (SCG) bearer in the MR-DC, and corresponds to the entire bearer to the WLAN side in the LWI; the auxiliary shunt bearer may be referred to as a secondary cell group (SCG) in the MR-DC.
  • SCG secondary cell group
  • SCG secondary cell group
  • MR-DC For related content of MR-DC, for example, reference may be made to, for example, related content of 3GPP TS 37.340 V0 .2.1 section 4.
  • LWI For related content of 3GPP TS 36.300 V14.2.0 section 22A.
  • FIG. 2 is a schematic illustration of an auxiliary carrier.
  • a user plane connection is established between the core network C and the secondary node B for the terminal 01, and the secondary node B and the terminal 01 establish a user plane connection.
  • all data of the bearer is sent by the core network C to the secondary node B, and then sent by the secondary node B to the terminal 01.
  • all data of the bearer is sent by the terminal 01 to the secondary node B, and then sent by the secondary node B to the core network C.
  • FIG. 4 is a schematic illustration of an auxiliary shunt load.
  • a user plane connection is established between the core network C and the secondary node B for the terminal 01, and the secondary node B and the terminal 01 establish a user plane connection, and the master node A and the terminal 01 establish a user plane connection.
  • all data of the bearer is sent by the core network C to the secondary node B, and the secondary node B sends part of the data to the primary node A, and the primary node A sends the partial data to the terminal 01, and the secondary node B The remaining data is sent to terminal 01.
  • the terminal 01 may send part of the data of the bearer to the master node A, and the master node A sends the part of the data to the secondary node B, and the terminal 01 sends the remaining data of the bearer to the secondary node B.
  • the Node B sends all the data of the received bearer to the core network C.
  • the terminal 01 may be configured to send all the data of the bearer to the master node A, and the master node A sends the data to the secondary node B. Or configured to send all data of the bearer to the secondary node B.
  • the present application provides a communication method and apparatus for calculating the amount of data more accurately.
  • the application provides a communication method, including:
  • the master node receives at least one first message from the at least one secondary node, where the first message includes first information, where the first information is used to indicate the data volume of the first data transmitted by the first bearer by sending the secondary node of the first message. ;
  • the master node sends a second message to the core network, where the second message includes second information, where the second information is used to indicate the data volume of the first data that is transmitted by the first bearer by using the at least one secondary node.
  • the first bearer is an auxiliary bearer, an auxiliary split bearer or a primary split bearer.
  • the foregoing second message further includes the bearer identifier of the first bearer; or the first data is the data of the first stream, and the second message further includes the identifier of the first stream; or, the first data is The data of a session, the second message further includes the identifier of the first session.
  • the first message further includes the bearer identifier of the first bearer; or the first data is the data of the first stream, and the first message further includes the identifier of the first stream; or, the first data is The data of a session, the first message further includes the identifier of the first session.
  • the data volume of the first data is at least one of an uplink data volume and a downlink data volume, or a sum of an uplink data volume and a downlink data volume.
  • the data volume of the foregoing first data does not include a header overhead of a PDCP layer, an RLC layer, a MAC layer, or a SDAP layer.
  • the first message or the second message further includes a timestamp, where the timestamp is used to indicate a start and end time of the data amount.
  • the foregoing first data is transmitted by using at least one radio access technology, where the data volume includes data amount of the first data that is transmitted by each of the at least one radio access technologies, and the second message further includes the foregoing At least one identifier of a wireless access technology.
  • the primary node sends a third message to the secondary node, where the third message is used to request the secondary node to send the data quantity of the first data that is transmitted by the first bearer by using the secondary node.
  • the third message includes the bearer identifier of the first bearer; or the first data is the data of the first stream, the third message includes the identifier of the first stream, or the first data is the first session.
  • the third message includes the identifier of the first session.
  • the foregoing primary node receives the first message in a process of a secondary node handover, a process of releasing a secondary node, a process of modifying a secondary node configuration, or a process of switching a primary node.
  • the foregoing second message further includes a bearer type of the first bearer.
  • the application provides a communication method, including:
  • the core network element receives the second message sent by the primary node, where the second message includes the second information, where the second information is used to indicate the amount of data of the first data transmitted by the first bearer through the at least one secondary node;
  • the core network element obtains the amount of data transmitted by the first bearer through the primary node and the secondary node according to the total amount of data of the first bearer and the data amount of the first data.
  • the application provides a communication method, including:
  • the secondary node acquires the data amount of the first data that is transmitted by the first secondary bearer through the foregoing secondary node.
  • the secondary node sends a first message to the primary node, where the first message includes first information, and the first information includes an amount of data for indicating the first data that is transmitted by the first bearer by using the at least one secondary node.
  • the first bearer is an auxiliary bearer, an auxiliary split bearer or a primary split bearer.
  • the first message further includes the bearer identifier of the first bearer; or the first data is the data of the first stream, and the first message further includes the identifier of the first stream; or, the first data is The data of a session, the first message further includes the identifier of the first session.
  • the foregoing secondary node sends the first message in a process of a secondary node handover, a process of releasing a secondary node, a process of modifying a secondary node configuration, or a process of switching a primary node.
  • the application provides a communication method, including:
  • the master node sends the first data to the secondary node when establishing the first auxiliary bearer or the first auxiliary offload bearer;
  • the primary node sends a first message to the core network, where the first message includes the first information, where the first information is used to indicate the data amount of the first data.
  • the first message further includes the bearer identifier of the first auxiliary bearer or the first auxiliary offload bearer.
  • the first data is the data of the first stream
  • the first message further includes the identifier of the first stream.
  • the first data is the data of the first session
  • the first message further includes the identifier of the first session.
  • the data amount is at least one of an uplink data amount and a downlink data amount, or a sum of the uplink data amount and the downlink data amount.
  • the foregoing data volume does not include a header overhead of a PDCP layer, an RLC layer, a MAC layer, or a SDAP layer.
  • the foregoing first message further includes a radio access technology of the foregoing secondary node.
  • the foregoing first message further includes a bearer type of the auxiliary bearer or the auxiliary offload bearer.
  • the application provides a communication method, including:
  • the core network element receives the first message sent by the master node, where the first message includes the first information, where the first information is used to indicate that the master node sends the first auxiliary bearer or the first auxiliary offload bearer to the secondary node when establishing the first auxiliary bearer or the first auxiliary offloading bearer.
  • the amount of data of the first data is used to indicate that the master node sends the first auxiliary bearer or the first auxiliary offload bearer to the secondary node when establishing the first auxiliary bearer or the first auxiliary offloading bearer.
  • the application provides a communication method, including:
  • the master node acquires, by the first auxiliary offload, the amount of data of the first data transmitted by the foregoing primary node;
  • the primary node sends a first message to the core network, where the first message includes first information, and the first information is used to indicate the amount of data.
  • the foregoing first message further includes a bearer identifier of the first auxiliary offloading bearer.
  • the first data is the data of the first stream
  • the first message further includes the identifier of the first stream.
  • the first data is the data of the first session
  • the first message further includes the identifier of the first session.
  • the data quantity of the first data is at least one of an uplink data quantity and a downlink data quantity, or a sum of the uplink data quantity and the downlink data quantity.
  • the data volume of the foregoing first data does not include a header overhead of the PDCP layer, the RLC layer, the MAC layer, and the SDAP layer.
  • the first message further includes a timestamp, where the timestamp is used to indicate a start and end time of the data amount of the first data.
  • the foregoing first message further includes a bearer type of the first auxiliary offloading bearer.
  • the primary node sends the migration data to the secondary node when the first auxiliary offloading bearer is established, the primary node sends the second information to the core network, where the second information is used to indicate the data volume of the migrated data. .
  • the application provides a communication method, including:
  • the core network element receives the first message sent by the primary node, where the first message includes the first information, where the first information is used to indicate that the first auxiliary offload carries the data amount of the first data transmitted by the primary node.
  • the core network element calculates, according to the total amount of data carried by the first auxiliary offload and the data amount of the first data, the amount of data transmitted by the first auxiliary offload bearer through the primary node and the secondary node.
  • the present application provides a communication device including a memory and a processor for storing a computer program, the processor for calling and running the computer program from the memory, so that the communication device performs the first aspect, The method of the above four aspects or the sixth aspect.
  • the present application provides a communication device including a memory and a processor for storing a computer program for calling and running the computer program from the memory, such that the communication device performs the second aspect or the The method of the above five aspects or the seventh aspect.
  • the application provides a core network element, including a memory and a processor, the memory is configured to store a computer program, the processor is configured to call and run the computer program from the memory, so that the communication device performs the third aspect The above method.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the communication apparatus provided in the foregoing eighth aspect, which is configured to perform the foregoing first to tenth aspects. Designed program.
  • the present application also provides a computer program product comprising instructions, the computer program product comprising computer execution instructions for causing a computer to perform the methods of the first to tenth aspects described above when the instructions are run on a computer.
  • the present application further provides a chip system including a processor for supporting a terminal device to implement the functions involved in the above first to tenth aspects.
  • the chip system further comprises a memory for storing program instructions and data necessary for the communication device, such as data or information related to the method of the first to tenth aspects described above.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a dual connectivity network provided by the present application.
  • FIG. 2 is a schematic diagram of an auxiliary load provided by the present application.
  • FIG. 3 is a schematic diagram of an auxiliary shunt load provided by the present application.
  • FIG. 4 is a schematic diagram of a dual connectivity application scenario provided by the present application.
  • FIG. 5 is a flowchart of a method for calculating a data amount in an SCG offload bearer provided by the present application
  • FIG. 6 is a flowchart of a method for calculating data volume when establishing an SCG offload bearer or an SCG bearer according to the present application
  • FIG. 7 is a flowchart of another method for calculating data volume when establishing an SCG offload bearer or an SCG bearer provided by the present application;
  • FIG. 8a is a flowchart of a method for calculating data volume in an SCG offload bearer or an SCG bearer provided by the present application;
  • FIG. 8b is a schematic diagram of data flow in an SCG bearer provided by the present application.
  • FIG. 9 is a flowchart of a method for calculating data volume in an SCG offload bearer or an SCG bearer provided by the present application.
  • FIG. 10 is a flowchart of a method for calculating data volume in an SCG offload bearer or an SCG bearer provided by the present application;
  • 11 is a flow chart of a method for calculating data volume in an SCG offload bearer or an SCG bearer provided by the present application.
  • FIG. 12a is a flowchart of a method for calculating data volume in an SCG offload bearer or an SCG bearer provided by the present application.
  • Figure 12b is a communication device provided by the present application.
  • Figure 13 is another communication device provided by the present application.
  • FIG. 14 is a schematic diagram of a primary shunt bearer provided by the present application.
  • the core network C can know the amount of data transmitted between the core network C and the secondary node B after the secondary bearer is established, it is not known that during the establishment of the secondary bearer, Whether the primary node A has transferred the data to the secondary node B for transmission, and the amount of data transmitted by the secondary node B that is learned by the core network C is inaccurate; in addition, in the scenario of the auxiliary offloaded bearer, the core network C can know that the auxiliary traffic is off. The total amount of data transmitted is carried, and the amount of data transmitted by the primary node A and the secondary node B cannot be known.
  • Solution 1 In the scenario of the auxiliary offloading bearer, the primary node A reports the amount of data that the bearer diverts through the primary node A. Through the solution, the core network can know the amount of data transmitted by the bearer through the secondary node B through the data volume of the bearer to the primary node A, so that the core network can separately know the amount of data transmitted by the bearer through different nodes, thereby achieving more accurate. The amount of data statistics.
  • Solution 2 In the scenario of the auxiliary bearer or the auxiliary offloading bearer, the master node A reports to the core network C the amount of data sent by the master node A to the secondary node B in the process of establishing the secondary bearer or the auxiliary offloading bearer.
  • the core network C can correct the amount of data transmitted by the bearer through the secondary node B, correctly obtain the amount of data transmitted by the bearer through the secondary node, and achieve accurate statistics of the amount of data.
  • Solution 3 In the scenario of the auxiliary bearer or the auxiliary offload bearer, the amount of data transmitted by the secondary node B through the secondary node B is sent to the primary node A, and the primary node A sends the data volume to the core network.
  • the core network can know the amount of data transmitted by the bearer through the primary node A according to the amount of data transmitted by the secondary node B, and achieve accurate statistics of the data volume.
  • the access technologies of the primary node A and the secondary node B are different, the amount of data transmitted by the bearer through different access technologies can be known, thereby implementing more accurate statistics of the amount of data.
  • FIG. 4 is an application scenario of the network shown in Figure 1.
  • the master node A is eNB 01
  • the secondary node B is gNB 01
  • the core network C is EPC or 5GC.
  • the network establishes an SCG offload bearer for the terminal 01.
  • the 5GC supports a session and a flow, that is, the 5GC can identify the flow to which the data belongs or the session to which the data belongs, where the session can include one or more flows; the EPC supports the bearer. That is, the EPC can identify the bearer to which the data belongs.
  • the 5GC may also support bearers, and the EPC may also support streams and sessions. This application does not limit this.
  • S501 to S504 show the transmission process of the downlink data carried by the SCG offloading in the SCG offloading bearer scenario.
  • the core network C needs to send the data A of the SCG offload bearer to the terminal 01, and the gNB 01 can offload a part of the data A, for example, the data A-1, to the eNB 01 to send to the terminal 01.
  • the core network C sends the data A of the SCG offload to the gNB 01.
  • the gNB 01 transmits a part of the data A-1 of the data A to the eNB 01.
  • the eNB 01 transmits the data A-1 to the terminal 01.
  • the gNB 01 transmits another part of the data data A-2 of the data A to the terminal 01.
  • S505 to S508 show the transmission process of the uplink data carried by the SCG offloading in the SCG offloading bearer scenario.
  • the terminal 01 needs to send the data B of the SCG offloaded bearer to the core network C, and the terminal 01 can offload a part of the data of the data B, for example, the data B-1, to the eNB 01 to send it to the gNB 01.
  • the terminal 01 transmits a part of the data data B-1 of the data B to the eNB 01.
  • the eNB 01 sends the data B-1 to the gNB 01.
  • the terminal 01 transmits another part of the data data B-2 of the data B to the gNB 01.
  • the EPC 01 can separately know the data amount of data transmitted through the eNB 01 through the SCG offload bearer and the data amount of data transmitted through the gNB 01.
  • the eNB 01 collects the data amount of the data transmitted by the SCG offload bearer through the eNB 01 (hereinafter referred to as the data amount M).
  • the amount of data of the data transmitted by the SCG offloading through the gNB 01 is expressed as the data amount S as follows.
  • the reporting of the amount of data may be based on uplink and downlink granularity.
  • the data amount M is at least one of the data amount of the data A-1 and the data amount of the data B-1.
  • the data amount M may be the sum of the data amounts of the data A-1 and the data B-1.
  • the amount of the statistic data may be real-time, or may be periodic, or triggered by an event (for example, the network initiates a certain specific process), which is not limited in this embodiment of the present application.
  • the eNB 01 sends a first message to the core network C.
  • the first message includes first information, where the first information is used to indicate the data quantity M.
  • the eNB 01 may include the bearer identifier and the session identifier corresponding to the data amount M when reporting to the core network C according to the needs of the network. Or stream identification.
  • the first information may further include a bearer identifier, a session identifier, or a stream identifier corresponding to the data amount M.
  • the amount of data corresponding to the bearer, or the amount of data corresponding to the session, or the amount of data corresponding to the stream may be indicated by the core network C to the eNB 01.
  • the core network C obtains the data amount M and the data amount S, respectively.
  • the data quantity S may be at least one of the data quantity of the data A-2 and the data quantity of the data B-1; optionally, the data quantity M may be the data A-2 and the data B-2.
  • the sum of the amount of data may be at least one of the data quantity of the data A-2 and the data quantity of the data B-1; optionally, the data quantity M may be the data A-2 and the data B-2. The sum of the amount of data.
  • the core network C can know the amount of data of the data A, the core network C can obtain the data amount of the data A-2 based on the data amount of the data A and the data amount of the data A-1.
  • the data amount of the data A-2 is equal to the data amount of the data A minus the data amount of the data A-1.
  • the core network C can know the amount of data of the data B, the core network C can obtain the data amount of the data B-2 according to the data amount of the data B and the data amount of the data B-1.
  • the data amount of the data B-2 is equal to the data amount of the data B minus the data amount of the data B-1.
  • the core network C can know the sum of the data amounts of the data A and the quantity B, the core network C can obtain the data A according to the sum of the data amounts of the data A and the quantity B and the sum of the data amounts of the data A-1 and the data B-1.
  • the sum of the data amounts of the data A-2 and the data B-2 is equal to the sum of the data amounts of the data A and the number B minus the sum of the data amounts of the data A-1 and the data B-1.
  • the eNB 01 may periodically send the first message to the core network C. This period may be determined by gNB 01 or eNB 01, or sent by the core network C to the eNB 01.
  • the amount of data M reported by the first message may be the amount of data transmitted by the SCG offloading bearer in the current period through the eNB01, or may be that the SCG offloading bearer accumulates data transmitted by the eNB01 after the SCG offloading bearer is established. the amount.
  • the eNB 01 may send the first message to the core network C after receiving a request for the core network C to report the amount of data of the SCG offload bearer.
  • the amount of data M reported by the first message may be the amount of data transmitted by the SCG offloading bearer through the eNB 01 after the request from the last core network C to the request, or may be established by the SCG offloading bearer. After that, the SCG offloading carries the accumulated amount of data transmitted through the eNB01.
  • the eNB 01 may release the interface between the eNB 01 and the core network C, the connection between the eNB 01 and the core network C is suspended, or the bearer deactivation process of the eNB 01 is performed.
  • the amount of data M is reported by the first message.
  • the eNB 01 can be reported by the first message in the NG interface release between the eNB 01 and the core network C, or the PDU session resource release process.
  • the first message may be an existing message in the foregoing process, or may be a newly added message.
  • the first message may further include a bearer type of the bearer corresponding to the data volume M.
  • the bearer type of the SCG offload bearer is an SCG offload bearer.
  • the first message in S510 further includes a timestamp, and the timestamp is used to indicate the start and end time corresponding to the amount of data transmitted by the eNB 01 in the S509. .
  • the core network for example, the serving gateway (SGW) of the core network, packet data
  • SGW serving gateway
  • PGW packet data network gateway
  • the core network is based on multi-dimensional data volume statistics, and can implement multi-dimensional charging.
  • the statistics of the amount of data in S509 can exclude the head overhead of the data.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • service data adaptation protocol service data adaptation protocol
  • Header overhead of protocol layers such as SDAP.
  • the eNB 01 may send the data volume of the data sent to the gNB 01 to the core network C in the process of establishing the SCG offload bearer.
  • the core network C can correct the amount of data of the data transmitted by the SCG offloading through the secondary node, thereby achieving more accurate statistics of the amount of data.
  • a session can include one or more streams.
  • Data A and Data B are the data of Session A.
  • Session A includes stream 1 and stream 2.
  • the data A-1 may include partial data of stream 1 (abbreviated as data A-1-f1) and partial data of stream 2 (abbreviated as data A-1-f2).
  • the data A-2 may include partial data of stream 1 (abbreviated as data A-2-f1) and partial data of stream 2 (abbreviated as data A-2-f2).
  • the data B-1 may include partial data of stream 1 (abbreviated as data B-1-f1) and partial data of stream 2 (abbreviated as data B-1-f2).
  • the data B-2 may include partial data of stream 1 (abbreviated as data B-2-f1) and partial data of stream 2 (abbreviated as data B-2-f2).
  • the eNB 01 may perform statistics on the amount of data at the flow granularity or statistics on the number of sessions. For example, the at least one of the uplink data volume and the downlink data volume transmitted by the eNB 01 carried by the SCG offload bearer bearer, or the sum of the uplink and downlink data traffic is counted; or the session carried by the SCG offload bearer is counted.
  • A is at least one of an amount of uplink data and a downlink data amount transmitted by the eNB 01, or a sum of uplink and downlink data amounts.
  • the data volume M reported by the eNB 01 may be the data volume of the flow granularity, or may be the data volume of the session granularity, and the eNB 01 may report the data volume when reporting the data volume M.
  • At least one of the flow identifier and the session identifier corresponding to the M (for example, carried in the first message in S510).
  • the data quantity M is the downlink data quantity of the stream 1 (for example, the data quantity of the data A-1-f1), and the stream identifier of the stream 1 is reported, and optionally, the session identifier of the session A corresponding to the stream 1 is reported.
  • the data amount M is the uplink data volume of the stream 2 (for example, the data amount of the data B-1-f2, and the flow identifier of the stream 2 can be reported, and optionally, the session identifier of the session A corresponding to the stream 2 can be reported above);
  • the quantity M is the amount of downlink data of the session A (for example, the data amount of the data A-1, and the session identifier of the session A is reported);
  • the data quantity M is the uplink data volume of the session A (for example, the data amount of the data B-1, report) Session A's session ID).
  • the eNB 01 reports the amount of data transmitted by the SCG offload bearer through the eNB 01, and the core network C can calculate the SCG offload bearer according to the total data volume of the SCG offload bearer and the amount of data transmitted by the SCG offload bearer through the eNB 01.
  • the core network C can separately know the data amount of the data transmitted by the SCG offload bearer through the eNB 01 and the gNB 01, respectively.
  • the core network C can separately know the amount of data transmitted by the SCG offload bearer through different radio access technologies, and achieve accurate calculation of the data amount.
  • the solution 1 is also applicable to other application scenarios of the auxiliary offloading bearer.
  • the primary node A is the gNB
  • the secondary node B is the eNB
  • the core network C is the EPC or the 5GC
  • the primary node A is the eNB
  • the secondary node B is the WT
  • the core network C is the EPC or the 5GC
  • the primary node A is the gNB.
  • the secondary node B is a WT
  • the core network C is an EPC or a 5GC. This embodiment of the present application does not limit this.
  • the method provided by the first scheme will be described from the master node side and the core network side respectively.
  • the following is a method of the first scheme described from the master node side.
  • the method M1 comprises:
  • the primary node acquires the data volume information of the data transmitted by the primary node by the auxiliary offloading;
  • the primary node sends a first message to the core network, where the first message includes first information, where the first information is used to indicate that the auxiliary traffic offloading carries data amount information of data transmitted by the primary node.
  • the following is a method of the first scheme described from the core network side.
  • the method M2 comprises:
  • the method M1 further includes: M103: the primary node sends the second information to the core network, where the second information is used to indicate the amount of data of the data that the primary node sends to the secondary node in the process of establishing the auxiliary offloaded bearer.
  • M103 the core network can correct the data amount of the data carried by the auxiliary shunt to achieve more accurate data volume statistics.
  • the core network element receives the first message from the primary node, where the first message includes the first information, where the first information is used to indicate the amount of data of the auxiliary offloaded bearer transmitted by the primary node;
  • the core network element obtains, according to the data quantity of the data transmitted by the auxiliary offloading bearer and the data quantity of the data transmitted by the primary shunting bearer by the primary shunting bearer, the data quantity information of the data transmitted by the auxiliary shunting bearer through the secondary node.
  • the method M2 further includes: the core network element receives the second information from the primary node, where the second information is used to indicate the amount of data of the data that the primary node sends to the secondary node in the process of establishing the auxiliary offloaded bearer.
  • the core network element can correct the data amount of the data carried by the auxiliary offload to achieve more accurate data volume statistics.
  • the core network can separately learn the data amount of the data transmitted by the auxiliary shunt bearer through the primary node and the secondary node, thereby realizing more accurate data volume statistics.
  • Example 2 The master node A is the eNB 01, the core network is the EPC or the 5GC, and the terminal 01 communicates with the eNB 01.
  • the eNB 01 selects the gNB 01 as the secondary node B and establishes an SCG bearer or an SCG offload bearer.
  • S601-S603 illustrate the process of increasing some signaling interactions of the secondary node. It should be noted that the name of the message in the process or the process may be different with the development of the technology, or different networks, and the comparison of the embodiments of the present application is not limited.
  • the eNB 01 sends a secondary node addition request message to the gNB 01.
  • the gNB 01 sends a secondary node increase request acknowledgement message to the eNB 01.
  • the eNB 01 sends a secondary node reconfiguration complete message to the gNB 01.
  • S604-S605 shows a process in which the primary node performs data migration to the secondary node to enable the secondary node to transmit the data.
  • S604 The eNB 01 sends a sequence number (SN) status to the gNB 01.
  • the eNB 01 sends the data that is not transmitted by the eNB 01 to the gNB 01.
  • the untransmitted data may be at least one of the following: eNB 01 downlink data to be sent to the terminal 01, and uplink data of the eNB 01 to be sent to the terminal 01 of the core network C.
  • the above S601 to S605 can refer to the relevant contents of steps 1, 2, 5, 7, and 8 of FIG. 10.2.1-1 of, for example, 3GPP TS 37.340 V0.2.1 section 10.2.1.
  • the eNB 01 acquires the data amount of data (hereinafter referred to as migration data) transmitted by the eNB 01 to the gNB 01.
  • the statistics of this amount of data can eliminate the overhead of migrating data. For example, header overhead of protocol layers such as PDCP, RLC, MAC, and SDAP. With this design, the amount of data of the actual service can be accurately calculated, and the user experience is better.
  • protocol layers such as PDCP, RLC, MAC, and SDAP.
  • the eNB 01 sends a bearer change indication message to the core network C, where the bearer change indication message includes first information, where the first information is used to indicate the data volume of the migrated data.
  • the eNB 01 may also carry the foregoing first information by using other messages.
  • the message carrying the first information in this example is referred to as a first message.
  • the statistics or reporting of the data volume of the migrated data may be based on a bearer granularity, a session granularity, or a flow granularity.
  • the first message further includes one or more of a bearer identifier corresponding to the migration data, that is, an identifier of the SCG bearer or the SCG offload bearer, a session identifier, and a flow identifier.
  • the amount of data reported to the core network C can be indicated by the core network C to the primary node.
  • the statistics or reporting of the data volume of the migrated data may be based on the uplink and downlink granularity.
  • the related content refer to the related content of the first example.
  • the first message may further include a wireless access technology of the secondary node.
  • a wireless access technology of the secondary node For related content, refer to the related content of Example 1.
  • the first message may further include a bearer type of the SCG bearer or the SCG offload bearer.
  • a bearer type of the SCG bearer or the SCG offload bearer For related content, refer to the related content of Example 1.
  • the first information may also be sent by the primary node to the core network by using a new message.
  • the core network C can know the amount of data that the primary node migrates to the secondary node in the process of establishing the SCG bearer or the SCG offload bearer, so that the core network C can correctly learn the data transmitted by the SCG bearer or the SCG offload bearer through the secondary node.
  • the amount of data enables more accurate data volume statistics.
  • the core network C sends an end flag to the eNB 01.
  • the above S608 to S609 can refer to, for example, the relevant contents of steps 11 and 12 of FIG. 10.2.1-1 of 3GPP TS 37.340 V0.2.1 section 10.2.1.
  • Example 2 in Example 1 The alternative designs and implementations associated with Example 2 in Example 1 are equally applicable to Example 2 and are not described herein.
  • the example 2 is also applicable to other application scenarios of the auxiliary bearer or the auxiliary offload bearer.
  • the primary node A is the gNB
  • the secondary node B is the eNB
  • the core network C is the EPC or the 5GC
  • the primary node A is the eNB
  • the secondary node B is the WT
  • the core network C is the EPC or the 5GC
  • the primary node A is the gNB
  • the secondary node B is a WT
  • the core network C is an EPC or a 5GC. This embodiment of the present application does not limit this.
  • Example 3 The primary node A is the eNB 01, the secondary node B is the gNB 01, and the core network C is the EPC or the 5GC.
  • Example 3 mainly involves modifying the configuration of the secondary node to establish an SCG offload bearer or an SCG bearer.
  • S701-S704 illustrate the process of modifying some of the signaling interactions of the secondary node configuration. It should be noted that the name of the message in the process or the process may be different with the development of the technology, or different networks, and the comparison of the embodiments of the present application is not limited.
  • the gNB 01 sends a message to the eNB 01 requesting to modify the configuration of the secondary node.
  • the gNB 01 can initiate the configuration process of modifying the gNB 01.
  • the eNB 01 sends a modify secondary node configuration request message to the gNB 01.
  • S703 The gNB 01 sends an acknowledgement message to the eNB 01 to modify the secondary node configuration request.
  • the eNB 01 sends a secondary node reconfiguration complete message to the gNB 01.
  • S705-S706 shows a process in which the primary node performs data migration to the secondary node, so that the secondary node transmits the migrated data (hereinafter referred to as migration data).
  • S705 The eNB 01 sends a sequence number (SN) status to the gNB 01.
  • the eNB 01 sends the data that is not transmitted by the eNB 01 to the gNB 01.
  • the untransmitted data may be at least one of the following: eNB 01 downlink data to be sent to the terminal 01, and uplink data of the eNB 01 to be sent to the terminal 01 of the core network C.
  • the above S701 to S706 can refer to, for example, the related contents of steps 1, 2, 3, 6, 8 and 9 of FIG. 10.3.1-2 of 3GPP TS 37.340 V0.2.1 section 10.3.1.
  • the eNB 01 acquires the data amount of the data that the eNB 01 sends to the gNB 01.
  • the statistics of this amount of data can eliminate the overhead of migrating data. For example, header overhead of protocol layers such as PDCP, RLC, MAC, and SDAP. With this design, the amount of data of the actual service can be accurately calculated, and the user experience is better.
  • protocol layers such as PDCP, RLC, MAC, and SDAP.
  • the eNB 01 sends a bearer change indication message to the core network C, where the bearer change indication message includes first information, where the first information is used to indicate the data volume of the migrated data.
  • the eNB 01 may also carry the foregoing first information by using other messages.
  • the message carrying the first information in this example is referred to as a first message.
  • the statistics or reporting of the data volume of the migrated data may be based on a bearer granularity, a session granularity, or a flow granularity.
  • the first message further includes one or more of a bearer identifier corresponding to the migration data, that is, an identifier of the SCG bearer or the SCG offload bearer, a session identifier, and a flow identifier.
  • a bearer identifier corresponding to the migration data that is, an identifier of the SCG bearer or the SCG offload bearer, a session identifier, and a flow identifier.
  • the amount of data reported to the core network C can be indicated by the core network C to the primary node.
  • the statistics or reporting of the data volume of the migrated data may be based on the uplink and downlink granularity.
  • the related content refer to the related contents of Examples 1 and 2.
  • the first message may further include a wireless access technology of the secondary node.
  • a wireless access technology of the secondary node please refer to the related content of examples one and two.
  • the first message may further include a bearer type of the SCG bearer or the SCG offload bearer.
  • a bearer type of the SCG bearer or the SCG offload bearer please refer to the related content of examples one and two.
  • the first information may also be sent by the primary node to the core network by using a new message.
  • the S708 core network C can learn the amount of data that the primary node migrates to the secondary node during the establishment of the SCG bearer or the SCG offload bearer, so that the core network C can correctly know the data of the data transmitted through the SCG bearer or the SCG offload bearer through the secondary node. Achieve more accurate data volume statistics. To reflect the integrity of the process, the rest of the path update is shown below.
  • the core network C sends an end flag to the eNB 01.
  • the EPC 01 sends a bearer change confirmation message to the eNB 01.
  • the above S709 to S710 can refer to, for example, the relevant contents of steps 11 and 12 of FIG. 10.2.1-1 of 3GPP TS 37.340 V0.2.1 section 10.2.1.
  • Example 3 in Examples 1 and 2 are also applicable to Example 3, and are not described herein.
  • the example 3 is also applicable to other application scenarios of the auxiliary bearer or the auxiliary offload bearer.
  • the primary node A is the gNB
  • the secondary node B is the eNB
  • the core network C is the EPC or the 5GC
  • the primary node A is the eNB
  • the secondary node B is the WT
  • the core network C is the EPC or the 5GC
  • the primary node A is the gNB
  • the secondary node B is a WT
  • the core network C is an EPC or a 5GC. This embodiment of the present application does not limit this.
  • the following is the method of the second scheme described from the master node side.
  • the method M3 includes:
  • the primary node sends the migration data to the secondary node when establishing the secondary bearer or the auxiliary offloaded bearer;
  • the primary node sends a first message to the core network, where the first message includes first information, where the first information is used to indicate the amount of data of the migrated data.
  • the method of the second scheme is described below from the core network side.
  • the method M4 includes:
  • the core network element receives the first message from the primary node, where the first message includes the first information, where the first information is used to indicate that the auxiliary bearer or the auxiliary offload bearer is established when the auxiliary bearer or the auxiliary offload bearer is established.
  • the master node sends the amount of data of the migrated data to the secondary node.
  • the core network element acquires, according to the data volume of the migrated data, the data volume of the auxiliary bearer or the auxiliary offload bearer data transmitted by the secondary node.
  • the core network can correct the data amount of the data carried by the auxiliary bearer or the auxiliary offload bearer through the secondary node, thereby realizing more accurate data volume statistics.
  • Example 4 The primary node A is the eNB 01, the secondary node B is the gNB 01, and the core network C is the EPC or the 5GC.
  • the network establishes the SCG or SCG offload bearer for the terminal 01.
  • the primary node A remains unchanged, and the secondary node B switches from gNB01 (source gNB) to gNB 02 (target gNB).
  • the transmission process of the uplink data and the downlink data carried by the SCG offloading may refer to the related description of S501-S508 in FIG. 5.
  • the 5GC supports a session and a flow, that is, the 5GC can identify the flow to which the data belongs or the session to which the data belongs, where the session can include one or more flows; the EPC supports the bearer. That is, the EPC can identify the bearer to which the data belongs.
  • the 5GC may also support bearers, and the EPC may also support streams and sessions. This application does not limit this.
  • the following example shows some of the process of signaling interaction. It should be noted that the name of the message in the process or the process may be different with the development of the technology, or different networks, and the comparison of the embodiments of the present application is not limited.
  • S801-S806 show some signaling interaction procedures for switching the secondary node.
  • the eNB 01 sends a secondary node addition request message to the gNB 02.
  • the gNB 02 sends a secondary node increase request acknowledgement message to the eNB 01.
  • the eNB 01 sends a secondary node release request message to the gNB 01.
  • the eNB 01 sends a secondary node reconfiguration complete message to the gNB 02.
  • S805 eNB 01, gNB 01 and gNB 02 complete SN state transmission and data forwarding.
  • S801 to S806 can refer to the relevant contents of steps 1-3, 6 and 8a-14 of Fig. 10.5.1.1 of 3GPP TS 37.340 V0.2.1, section 10.5.1, respectively.
  • S807-S809 shows the data amount of the data transmitted by the source secondary node to the primary node for transmitting the secondary bearer or the secondary traffic distribution bearer through the source secondary node.
  • the eNB 01 sends a terminal 01 context release message to the gNB 01, where the message includes information indicating that the gNB 01 sends the SCG bearer to the eNB 01 or the data amount of the SCG offload bearer transmitted through the gNB 01.
  • the message itself may also be understood as an indication that the gNB 01 sends the SCG bearer to the eNB 01 or the SCG offload carries the data amount of data transmitted by the gNB 01.
  • the above indication can also be performed by adding a new message.
  • the gNB 01 counts the amount of data of the data transmitted by the gNB 01 by the SCG bearer or the SCG offload.
  • the amount of data of the SCG offload bearer or the SCG bearer transmitted through the gNB 01 can be expressed as the data amount S.
  • the data amount S may be at least one of the data amount of the data A-2 and the data amount of the data B-2.
  • the data amount S may be the sum of the data amounts of the data A-2 and the data B-2.
  • the data amount S may be at least one of the data amount of the data C transmitted by the gNB 01 to the terminal 01 and the data amount of the data D sent by the terminal 01 to the gNB 01.
  • the amount of data may be the sum of the data amounts of the data C and the data D.
  • the statistics of the amount of data can be based on the uplink and downlink granularity.
  • the data forwarding or the path update may be completed, thereby ensuring that the gNB01 does not perform data transmission with the terminal 01 during and after the statistical data amount S, thereby ensuring the accuracy of the data amount.
  • the statistics of the amount of data may be based on bearer granularity, session granularity, or flow granularity.
  • bearer granularity For related content, please refer to the relevant content of examples one to three.
  • the gNB 01 sends a first message to the eNB 01, where the first message includes first information, where the first information is used to indicate the data amount S.
  • the data volume reported by the primary node to the core network is similar, and the amount of data reported by the secondary node to the primary node may be based on the bearer granularity, the session granularity, or the flow granularity.
  • the first message further includes one or more of a bearer identifier corresponding to the data volume S (ie, an identifier of the SCG bearer or the SCG offload bearer), a session identifier, and a flow identifier.
  • the amount of data of the granularity reported by the specific secondary node to the primary node may be negotiated by the primary node and the secondary node, or indicated by the core network C to the primary node.
  • the amount of data reported by the secondary node to the primary node may be based on uplink and downlink granularity.
  • uplink and downlink granularity For a detailed description of related content, refer to the related contents of Example 1 to Example 3.
  • the amount of data of the data transmitted by the auxiliary secondary carrier or the auxiliary traffic offloading bearer through the source secondary node can be known before the secondary node is switched.
  • the secondary or secondary traffic distribution carries data of data transmitted by the source secondary node, and reports the accumulated data amount when it needs to report to the core network.
  • S810 shows the master node reporting the amount of data to the core network.
  • the eNB 01 sends a second message to the core network C, where the second message includes second information, where the second information is used to indicate the amount of data of the SCG bearer or the SCG offloading data transmitted by the source secondary node.
  • the amount of data may be the amount of data of the SCG bearer or the SCG offloading bearer transmitted through the source secondary node in one handover.
  • it may be the amount of data S.
  • the amount of data may be a cumulative amount of data of data transmitted by the SCG bearer or the SCG offload bearer through multiple source secondary nodes in multiple handovers.
  • it may be the accumulated value of the plurality of data amounts S received by the master node.
  • the core network C obtains the data volume of the data transmitted by the SCG bearer or the SCG offloading bearer through the source and the secondary node, and may obtain the SCG bearer or the SCG offload bearer transmitted by the master node according to the total data of the data carried by the SCG bearer or the SCG offload. The amount of data in the data.
  • the eNB 01 reports to the core network C (for example, S810), and may further include a radio access technology of the gNB 01.
  • the core network C for example, S810
  • the eNB 01 reports to the core network C (for example, S810), and may further include a radio access technology of the gNB 01.
  • the core network C for example, S810
  • the eNB 01 may further include a radio access technology of the gNB 01.
  • the related content please refer to the related content of examples one to three.
  • the same bearer may be replaced by multiple gNBs.
  • the SCG or SCG offload bearer is initially established on the eNB 01 and the gNB 01, and then the gNB 01 is switched, released, or configured.
  • gNB 01 sends the bearer to the eNB 01 for the amount of data transmitted by gNB 01; then eNB 01 moves the bearer to another gNB, such as gNB 03, and then gNB 03 is occurring.
  • the gNB03 transmits the amount of data transmitted by the bearer through the gNB 03 to the eNB 01.
  • the eNB 01 can obtain the data amount corresponding to the radio access technology 1 of the gNB 01 corresponding to the bearer 1, and the data amount corresponding to the radio access technology 2 of the gNB 02, and then report the data amount to the core network C.
  • the eNB 01 may further include the same SCG or SCG offload bearer, and the data amount of the same radio access technology is accumulated, and the different radio access technologies are obtained after being accumulated. The corresponding amount of data is then reported to the core network C.
  • the primary station reports the data volume (for example, S810) to the core network C.
  • S810 is executed after S809.
  • the primary node may periodically send a second message to the core network C.
  • the master node may send the second message after receiving the request of the core network to report the auxiliary bearer or the auxiliary offload bearer; as a fourth optional implementation manner, the master node may be in the core The interface between the networks is released, the connection is suspended, and the second message is sent in a process such as bearer deactivation. It should be noted that one or more of the above four implementation manners may be deployed in the network at the same time.
  • the optional second message may be a message in an existing process or a new message. For details on the timing of reporting the data volume, refer to the description of S510 on the timing of reporting in Example 1.
  • the reporting of the data volume S may be based on a bearer granularity, a session granularity, or a flow granularity.
  • the second message further includes one or more of a bearer identifier corresponding to the data volume, that is, an identifier of the SCG bearer or the SCG offload bearer, a session identifier, and a stream identifier.
  • the amount of data reported to the core network C can be indicated by the core network C to the primary node.
  • the reporting of the data volume S may be based on uplink and downlink granularity.
  • uplink and downlink granularity For a detailed description of related content, refer to the relevant content of examples one to three.
  • the second message may further include a bearer type of the SCG bearer or the SCG offload bearer.
  • a bearer type of the SCG bearer or the SCG offload bearer please refer to the related content of examples one to three.
  • the second message in S810 further includes a timestamp, where the timestamp is used to indicate the start and end time corresponding to the amount of data reported in S810.
  • the statistics of the amount of data in Example 4 can exclude the head overhead of the data.
  • the header overhead of the protocol layer such as PDCP, RLC, MAC, and SDAP layer.
  • the second message may further include, for example, the first information in S607 of the second example, or the first information of the S708 in the third example.
  • the first information in S607 of the second example or the first information of the S708 in the third example.
  • the first information in S607 of the second example or the first information of the S708 in the third example.
  • data A and data B are data of session A.
  • Session A includes stream 1 and stream 2.
  • the data A-1 may include partial data of stream 1 (abbreviated as data A-1-f1) and partial data of stream 2 (abbreviated as data A-1-f2).
  • the data A-2 may include partial data of stream 1 (abbreviated as data A-2-f1) and partial data of stream 2 (abbreviated as data A-2-f2).
  • the data B-1 may include partial data of stream 1 (abbreviated as data B-1-f1) and partial data of stream 2 (abbreviated as data B-1-f2).
  • the data B-2 may include partial data of stream 1 (abbreviated as data B-2-f1) and partial data of stream 2 (abbreviated as data B-2-f2).
  • the gNB 01 may perform statistics on the amount of data at the flow granularity or statistics on the number of sessions. For example, the at least one of the uplink data volume and the downlink data volume transmitted by the gNB 01 of the stream 1 of the SCG offload bearer is counted; or the amount of uplink data transmitted by the session A of the SCG offload bearer and transmitted by the gNB 01 is counted. At least one of the amount of downlink data.
  • the data quantity S reported by the gNB 01 may be the data volume of the flow granularity, or may be the data volume of the session granularity
  • the first message in S809 further includes the data quantity S corresponding to the data quantity S.
  • Stream ID or session ID the data amount S is the downlink data amount of the stream 1 (for example, the data amount of the data A-2-f1)
  • the stream identifier corresponding to the data amount S is the stream identifier of the stream 1
  • the data amount S is the uplink data of the stream 2.
  • the amount (for example, the data amount of the data B-2-f2), the stream identifier corresponding to the data amount S is the stream identifier of the stream 2; the data amount S is the downlink data amount of the session A (for example, the data amount of the data A-2)
  • the session identifier corresponding to the data amount S is the session identifier of the session A; the data amount S is the uplink data amount of the session A (for example, the data amount of the data B-2), and the session identifier corresponding to the data amount S is the session A.
  • Session ID for example, the data amount of the data B-2-f2
  • the second message may further include at least one of a flow identifier or a session identifier corresponding to the reported data volume. If the first message obtained by the eNB 01 includes the data amount S and the session identifier, the second message may include the data amount S and the session identifier. If the first message obtained by the eNB 01 includes the data quantity S and the flow identifier, the eNB 01 obtains the session identifier corresponding to the flow identifier according to the correspondence between the session and the flow, and the eNB 01 may report the session identifier, that is, the second message may be The data amount S is included, and at least one of a session identifier or a stream identifier.
  • data C and data D are data of session C.
  • Session C includes stream 3 and stream 4.
  • the data C may include the downlink data of the stream 3 and the downlink data of the stream 4
  • the data D may include the uplink data of the stream 3 and the uplink data of the stream 4.
  • the gNB 01 may perform statistics on the amount of data at the flow granularity or statistics on the number of sessions. For example, the at least one of the uplink data volume and the downlink data volume transmitted by the gNB 01 of the stream 3 carried by the SCG bearer is counted; or the uplink data volume and the downlink data transmitted by the session C of the SCG bearer bearer by the gNB 01 are counted. At least one of the quantities.
  • the data quantity S reported by the gNB 01 may be the data volume of the flow granularity, or may be the data volume of the session granularity, and the first message in S809 further includes the data quantity S corresponding to the data quantity S. Stream ID or session ID.
  • the data amount S is the downlink data amount of the stream 3 (for example, the data C-f3)
  • the stream identifier corresponding to the data amount S is the stream identifier of the stream 3
  • the data amount S is the uplink data amount of the stream 4 (for example, the data C-f4)
  • the flow identifier corresponding to the data amount S is the flow identifier of the stream 4
  • the data amount S is the downlink data volume of the session A (data C)
  • the session identifier corresponding to the data amount S is the session identifier of the session A
  • the data amount S is the uplink data amount (data D) of the session A
  • the session identifier corresponding to the data amount S is the session identifier of the session A.
  • the second message may include the data volume S and the session identifier. If the first message obtained by the eNB 01 includes the data amount S and the flow identifier, the second message may include the data amount S and the flow identifier. If the first message obtained by the eNB 01 includes the data quantity S and the flow identifier, the eNB 01 obtains the session identifier corresponding to the flow identifier according to the correspondence between the session and the flow, and the eNB 01 may report the session identifier, that is, the second message may be Includes data volume S and session ID.
  • the core network can know the data volume of the data transmitted by the auxiliary bearer or the auxiliary offload bearer through the source secondary node before the secondary node is switched, thereby realizing more accurate data volume statistics.
  • the core network can know the data amount of the data transmitted by the auxiliary node or the auxiliary offloading bearer through the primary node before the secondary node switches according to the data amount of the data transmitted by the source secondary node or the auxiliary offloading bearer, thereby realizing more accurate data. Quantity statistics.
  • Example 5 The primary node A is the eNB 01, the secondary node B is the gNB 01, and the core network C is the EPC or the 5GC.
  • the network establishes the SCG or SCG offload bearer for the terminal 01.
  • Master node A remains unchanged, releasing gNB 01.
  • S901 to S903 show a process of releasing some signaling interactions of the secondary node. It should be noted that the name of the message in the process or the process may be different according to the technical solution or the different network. The comparison of the embodiments of the present application is not limited.
  • the eNB 01 sends a secondary node release request message to the gNB 01.
  • S902 eNB 01, gNB 01 complete SN state transmission and data forwarding.
  • the above S901 to S903 can refer to the relevant contents of steps 1, 4, 5, and 6 of FIG. 10.4.1-1 of, for example, 3GPP TS 37.340 V0.2.1 section 10.4.1.
  • the eNB 01 sends a terminal context release message to the gNB 01, where the message includes information indicating that the gNB01 sends the SCG bearer to the eNB 01 or the data amount of the data transmitted by the SCG offload bearer through the gNB 01.
  • the message itself may also be understood as an indication that the gNB 01 sends the SCG bearer to the eNB 01 or the SCG offload carries the data amount of data transmitted by the gNB 01.
  • the above indication can also be performed by adding a new message.
  • the gNB 01 acquires the data amount S of the data transmitted by the SCNB bearer or the SCG offload bearer through the gNB 01.
  • gNB 01 separately counts the amount of data transmitted by each SCG bearer or SCG offload bearer on gNB 01 through gNB 01. Since the gNB is released at this time, all bearers on the gNB 01 are released or migrated. The amount of data transmitted by each SCG bearer or SCG offload bearer through gNB 01 needs to be counted.
  • the amount of statistical data S may be based on uplink and downlink granularity.
  • S905 For a detailed description of related content, refer to the relevant content of examples one to four.
  • the statistical data amount S (for example, S905) can exclude the header overhead of the data.
  • S905 can exclude the header overhead of the data.
  • the amount of statistical data S may be based on a bearer granularity, a session granularity, or a flow granularity.
  • a bearer granularity for example, S905
  • a session granularity for example, S905
  • a flow granularity for example, S905
  • the gNB 01 When the gNB 01 acquires the data amount S, the data forwarding and the path update are completed, so that the gNB 01 does not perform data transmission with the terminal 01 when and after the data amount S is acquired, thereby ensuring the accuracy of the data amount.
  • the gNB 01 sends a first message to the eNB 01, where the first message includes the data amount S.
  • the gNB 01 Before the gNB 01 is released, the gNB 01 reports the SCG bearer or the SCG offload carries the data amount of data transmitted through the gNB 01.
  • the gNB 01 reporting to the eNB 01 may include at least one of a bearer identifier, a flow identifier, or a session identifier corresponding to the data amount S.
  • a bearer identifier for example, S906
  • a flow identifier for example, S906
  • a session identifier for example, S906
  • the eNB 01 sends a second message to the core network C, where the second message includes the data amount S.
  • the core network C obtains the data volume of the SCG bearer or the SCG offloaded bearer data transmitted by the source and the secondary node, and obtains the SCG bearer or the SCG offload bearer through the master node according to the total data of the data carried by the SCG offloaded bearer under the SCG offloading bearer. The amount of data transferred.
  • the eNB 01 reports to the core network C (for example, S907), and may further include at least one of a bearer identifier, a stream identifier, or a session identifier corresponding to the data volume S.
  • the core network C for example, S907
  • the eNB 01 may further include at least one of a bearer identifier, a stream identifier, or a session identifier corresponding to the data volume S.
  • the eNB 01 reports to the core network C (for example, S907), and may further include a radio access technology of the gNB 01.
  • the core network C for example, S907
  • the eNB 01 may further include a radio access technology of the gNB 01.
  • the eNB 01 may further include the same SCG or SCG offload bearer, and the data amount of the same radio access technology is accumulated.
  • the relevant content of examples one to four refer to the relevant content of examples one to four.
  • the eNB 01 reports to the core network C (for example, S907), and may further include a timestamp, where the statistic data amount S corresponds to the start and end time.
  • the core network C for example, S907
  • the statistic data amount S corresponds to the start and end time.
  • the eNB 01 reports to the core network C (for example, S907), and may further include a bearer type, such as an SCG offload bearer or an SCG bearer.
  • a bearer type such as an SCG offload bearer or an SCG bearer.
  • Example 6 The primary node A is the eNB 01, the secondary node B is the gNB 01, and the core network C is the EPC or the 5GC.
  • the network establishes the SCG or SCG offload bearer for the terminal 01.
  • the eNB 01 or the gNB 01 may request the bearer type change to change the SCG bearer or the SCG offload bearer to the MCG bearer.
  • the gNB 01 sends a message to the eNB 01 requesting to modify the configuration of the secondary node.
  • gNB 01 can initiate the configuration process of modifying gNB 01.
  • the eNB 01 sends a modified secondary node configuration request message to the gNB 01, where the modified secondary node configuration request message is used to indicate that the gNB 01 sends the SCG bearer to the eNB 01 or the data amount of the data transmitted by the SCG offload bearer through the gNB 01.
  • the bearer type change on the gNB 01 may be a partial bearer type change.
  • the data volume of the data transmitted by the gNB 01 is required to be collected, and the modified secondary node configuration request may include the bearer identifier of the partial bearer. At least one of a session identifier or a stream identifier.
  • the modified secondary node configuration request message may include a bearer identifier.
  • the modified secondary node configuration request message may include a session identifier or a flow identifier.
  • the gNB 01 acquires the data amount of the data transmitted by the SCNB bearer or the SCG offload bearer through the gNB 01.
  • the gNB 01 obtains the data quantity of the data transmitted by the corresponding SCG bearer or the SCG offload bearer through the gNB 01 according to at least one of the bearer identifier, the session identifier, or the flow identifier in the modify secondary node configuration request message.
  • the amount of statistical data S may be based on uplink and downlink granularity.
  • S1003 For a detailed description of related content, refer to the relevant content of examples one to four.
  • the statistical data amount S (for example, S1003) can exclude the header overhead of the data.
  • S1003 For a detailed description of related content, refer to the relevant content of examples one to four.
  • the amount of statistical data S may be based on a bearer granularity, a session granularity, or a flow granularity.
  • a bearer granularity for example, S1003
  • a session granularity for example, S1003
  • a flow granularity for example, S1003
  • the gNB 01 when the data volume S is acquired, the gNB 01 no longer performs data transmission with the terminal 01, thereby ensuring the accuracy of the data amount.
  • the gNB 01 sends an acknowledgment message for modifying the secondary node configuration request to the eNB 01, and the acknowledgment message for modifying the secondary node configuration request includes the data amount S.
  • the gNB 01 reporting to the eNB 01 may include at least one of a bearer identifier, a stream identifier, or a session identifier corresponding to the data amount S.
  • a bearer identifier for example, S1004
  • a stream identifier for example, S1004
  • a session identifier for example, S1004
  • the gNB 01 reports to the eNB 01 (for example, S1004), and may further include a timestamp, which is used to indicate the start and end time corresponding to the statistic data amount S.
  • a timestamp which is used to indicate the start and end time corresponding to the statistic data amount S.
  • the eNB 01 sends a second message to the core network C.
  • the eNB 01 sends a secondary node reconfiguration complete message to the gNB 01.
  • S1007 eNB 01 and gNB 01 complete SN state transmission and data forwarding.
  • the unsuccessfully transmitted data may be downlink data that is not sent by the eNB 01 to the terminal 01, uplink data that is not sent to the gNB01, or the downlink data and the uplink data.
  • S1001, S1002, S1004 to S1007 can refer to the relevant contents of steps 1, 2, 3, 6, 8, and 9 of Fig. 10.3.1-2 of, for example, 3GPP TS 37.340 V0.2.1 chapter 10.3.1.
  • the eNB 01 sends a bearer change indication message to the core network C.
  • the second message in S1005 may be a bearer change indication message in S1007.
  • the core network C sends an end flag to the eNB 01.
  • the core network C sends a bearer change confirmation message to the eNB 01.
  • the above S1009 to S10010 can refer to the relevant content of steps 11-12 of FIG. 10.2.1-1, for example, 3GPP TS 37.340 V0.2.1, section 10.2.1.
  • the reporting by the eNB 01 to the core network C may further include at least one of a bearer identifier, a stream identifier, or a session identifier corresponding to the data volume S.
  • a bearer identifier e.g., a bearer identifier
  • a stream identifier e.g., a stream identifier
  • a session identifier e.g., a session identifier corresponding to the data volume S.
  • the eNB 01 reports the radio access technology that may include the gNB 01 to the core network C.
  • the radio access technology may include the gNB 01 to the core network C.
  • the eNB 01 may further include the same SCG or SCG offload bearer, and the data amount of the same radio access technology is accumulated.
  • the relevant content of examples one to four refer to the relevant content of examples one to four.
  • the reporting by the eNB 01 to the core network C may further include a timestamp indicating the start and end time corresponding to the statistical data amount S.
  • a timestamp indicating the start and end time corresponding to the statistical data amount S.
  • the reporting by the eNB 01 to the core network C may further include a bearer type, such as an SCG offload bearer or an SCG bearer.
  • a bearer type such as an SCG offload bearer or an SCG bearer.
  • Example 7 The master node A is the eNB 01, the secondary node B is the gNB 01, and the core network C is the EPC or the 5GC.
  • the network establishes the SCG or SCG offload bearer for the terminal 01. Keep gNB 01 unchanged, and master node A is switched from eNB01 to eNB 02.
  • S1101 to S1108 illustrate the process of releasing some signaling interactions of the secondary node. It should be noted that the name of the message in the process or the process may be different according to the technical solution or the different network. The comparison of the embodiments of the present application is not limited.
  • the eNB 01 sends a handover request message to the eNB 02.
  • the eNB 02 sends a secondary node addition request message to the gNB 01.
  • the gNB 01 sends a secondary node addition request acknowledgement message to the eNB 02.
  • S1104 The eNB 02 sends a handover request acknowledgement message to the eNB 01.
  • the eNB 01 sends a secondary node release request message to the gNB 01.
  • S1106 The eNB 02 sends a secondary node reconfiguration complete message to the gNB 01.
  • S1107 eNB 01, gNB 01 and eNB 02 complete SN state transmission and data forwarding.
  • S1108 eNB 01, gNB 01, eNB 02, and core network C complete the path update procedure.
  • the eNB 02 sends a terminal context release message to the eNB 01.
  • the message is used to indicate that the gNB 01 sends the SCG bearer to the eNB 01 or the SCG offload carries the data amount of data transmitted by the gNB 01.
  • the above S1101 to S1109 can refer to the relevant contents of steps 1-5, 10-17 of FIG. 10.7.1-1 of, for example, 3GPP TS 37.340 V0.2.1 section 10.7.1.
  • the eNB 01 sends a terminal context release message to the gNB 01, where the message is used to indicate that the gNB 01 sends the SCG bearer to the eNB 01 or the data amount of the data transmitted by the SCG offload bearer through the gNB 01.
  • the gNB 01 acquires the data amount (that is, the data amount S) of the data transmitted by the SCNB bearer or the SCG offload bearer through the gNB 01.
  • the amount of statistical data S may be based on uplink and downlink granularity.
  • S905 For a detailed description of related content, refer to the relevant content of examples one to four.
  • the statistical data amount S (for example, S905) can exclude the header overhead of the data.
  • S905 can exclude the header overhead of the data.
  • the amount of statistical data S may be based on a bearer granularity, a session granularity, or a flow granularity.
  • a bearer granularity for example, S905
  • a session granularity for example, S905
  • a flow granularity for example, S905
  • the gNB 01 When the gNB 01 acquires the data amount S, the data forwarding and the path update are completed, so that the gNB 01 does not perform data transmission with the terminal 01 when and after the data amount S is acquired, thereby ensuring the accuracy of the data amount.
  • the gNB 01 sends a first message to the eNB 01, where the first message includes the data amount S.
  • the gNB 01 reporting to the eNB 01 may include at least one of a bearer identifier, a stream identifier, or a session identifier corresponding to the data volume S.
  • a bearer identifier for example, S1112
  • a stream identifier for example, S1112
  • a session identifier for example, S1112
  • the gNB 01 reports to the eNB 01 (for example, S1112), and may further include a timestamp, which is used to indicate the start and end time corresponding to the statistic data amount S.
  • a timestamp which is used to indicate the start and end time corresponding to the statistic data amount S.
  • the eNB 01 sends a second message to the core network C, where the second message includes the data amount S.
  • the eNB 01 reports to the core network C (for example, S1113), and may further include at least one of a bearer identifier, a stream identifier, or a session identifier corresponding to the data volume S.
  • the core network C for example, S1113
  • the eNB 01 reports to the core network C (for example, S1113), and may further include at least one of a bearer identifier, a stream identifier, or a session identifier corresponding to the data volume S.
  • the eNB 01 reports to the core network C (for example, S1113), and may further include the radio access technology of the gNB 01.
  • the core network C for example, S1113
  • the eNB 01 may further include the same SCG or SCG offload bearer, and the data amount of the same radio access technology is accumulated.
  • the relevant content of examples one to four refer to the relevant content of examples one to four.
  • the eNB 01 reports to the core network C (for example, S1113), and may further include a timestamp, where the statistic data amount S corresponds to the start and end time.
  • the core network C for example, S1113
  • the statistic data amount S corresponds to the start and end time.
  • the eNB 01 reports to the core network C (for example, S1113), and may further include a bearer type, such as an SCG offload bearer or an SCG bearer.
  • a bearer type such as an SCG offload bearer or an SCG bearer.
  • timing of reporting the eNB 01 to the core network C may be several optional implementation manners for the timing of reporting the eNB 01 to the core network C (for example, S1113).
  • the core network C for example, S1113
  • Example 8 The primary node A is the eNB 01, the secondary node B is the gNB 01, the core network C is the EPC or the 5GC, and the network establishes the SCG or SCG offload bearer for the terminal 01.
  • S1201-S1203 may be a message in an existing process, or may be a new message. This embodiment does not limit this.
  • the eNB 01 sends a first message to the gNB 01, where the message is used to indicate that the gNB 01 sends the SCG bearer to the eNB 01 or the data amount of the data transmitted by the SCG offload bearer through the gNB 01.
  • the gNB 01 acquires the data volume of the data transmitted by the SCNB bearer or the SCG offload bearer through the gNB 01.
  • the amount of statistical data S may be based on uplink and downlink granularity.
  • S1202 For a detailed description of related content, refer to the relevant content of examples one to four.
  • the statistical data amount S (for example, S1202) can exclude the header overhead of the data.
  • S1202 For a detailed description of related content, refer to the relevant content of examples one to four.
  • the amount of statistical data S may be based on a bearer granularity, a session granularity, or a flow granularity.
  • a bearer granularity for example, S1202
  • a session granularity for example, S1202
  • a flow granularity for example, S1202
  • the gNB 01 no longer performs data transmission with the terminal 01, thereby ensuring the accuracy of the data amount.
  • the gNB 01 sends a second message to the eNB 01, where the second message includes the data amount S.
  • the gNB 01 reporting to the eNB 01 may include at least one of a bearer identifier, a stream identifier, or a session identifier corresponding to the data volume S.
  • a bearer identifier for example, S1203
  • a stream identifier for example, S1203
  • a session identifier for example, S1203
  • the gNB 01 reports to the eNB 01 (for example, S1203), and may further include a timestamp, which is used to indicate the start and end time corresponding to the statistic data amount S.
  • a timestamp which is used to indicate the start and end time corresponding to the statistic data amount S.
  • the eNB 01 sends a third message to the core network C, where the third message includes the data volume, and at least one of a bearer identifier or a session identifier corresponding to the data volume.
  • the eNB 01 reports to the core network C (for example, S1204), and may further include at least one of a bearer identifier, a stream identifier, or a session identifier corresponding to the data volume S.
  • the core network C for example, S1204
  • the eNB 01 may further include at least one of a bearer identifier, a stream identifier, or a session identifier corresponding to the data volume S.
  • the eNB 01 reports to the core network C (for example, S1204), and may further include a radio access technology of the gNB 01.
  • the core network C for example, S1204
  • the eNB 01 may further include a radio access technology of the gNB 01.
  • the eNB 01 may further include the same SCG or SCG offload bearer, and the data amount of the same radio access technology is accumulated.
  • the relevant content of examples one to four refer to the relevant content of examples one to four.
  • the eNB 01 reports to the core network C (for example, S1204), and may further include a timestamp, where the statistic data amount S corresponds to the start and end time.
  • the core network C for example, S1204
  • the statistic data amount S corresponds to the start and end time.
  • the eNB 01 reports to the core network C (for example, S1204), and may further include a bearer type, such as an SCG offload bearer or an SCG bearer.
  • a bearer type such as an SCG offload bearer or an SCG bearer.
  • the eNB 01 reports to the core network C (for example, S1204).
  • the core network C for example, S1204.
  • scheme 3 is also applicable to the auxiliary bearer or the auxiliary split bearer.
  • the primary node A is the gNB
  • the secondary node B is the eNB
  • the core network C is the EPC or the 5GC
  • the primary node A is the eNB
  • the secondary node B is the WT
  • the core network C is the EPC
  • the primary node A is the gNB
  • the secondary node B is WT
  • core network C is 5GC.
  • the methods provided in the third scheme are described below from the primary node side, the secondary node side, and the core network side, respectively.
  • the following is the method of the third scheme described from the master node side.
  • the method M5 includes:
  • the secondary node acquires the amount of data transmitted by the auxiliary node or the auxiliary offloaded bearer by using the secondary node;
  • the foregoing secondary node sends a first message to the primary node, where the first message includes an amount of data used to indicate that the secondary bearer or the auxiliary offloading bearer is transmitted by using the secondary node.
  • M502 For a description of M502, refer to S809, S906, S1004, S1112, and S1203.
  • the following is the method of the third scheme described from the master node side.
  • the method M6 includes:
  • the primary node receives the first message sent by the secondary node, where the first message includes data volume information used to indicate that the secondary bearer or the auxiliary offloading bearer transmits data through the secondary node;
  • M601 For a description of M601, refer to S808, S905, S1003, S1111, and S1202.
  • the foregoing primary node sends a second message to the core network, where the first message includes data volume information used to indicate that the secondary bearer or the auxiliary offloading bearer transmits data that is transmitted by using the secondary node.
  • M602 For a description of M602, refer to S810, S907, S1005, S1113, and S1204.
  • the following is the method of the third scheme described from the core network side.
  • the method M7 includes:
  • the core network element When the bearer on the secondary node is released, the core network element receives the second message from the primary node, and the second message includes data volume information used to indicate that the secondary bearer or the auxiliary offloaded bearer transmits data through the secondary node.
  • the core network element obtains, according to the data volume of the data carried by the auxiliary bearer or the auxiliary offload bearer, and the data volume of the data transmitted by the auxiliary node or the auxiliary offloading bearer through the secondary node, the data transmitted by the auxiliary offloading bearer through the primary node is obtained. Data volume information.
  • FIG. 14 is a schematic diagram of the main offload bearer.
  • a user plane connection is established between the core network C and the master node A for the terminal 01, a master node A and the terminal 01 establish a user plane connection, and the secondary node B and the terminal 01 establish a user plane connection.
  • all data of the bearer is sent by the core network C to the primary node A, and the primary node A sends part of the data to the secondary node B, and the secondary node B sends the partial data to the terminal 01, and the primary node A The remaining data is sent to terminal 01.
  • the terminal 01 may send part of the data of the bearer to the master node A, and the terminal 01 sends the remaining data of the bearer to the secondary node B, and the secondary node B sends the remaining data to the master node A, the master The node A sends all the data of the received bearer to the core network C.
  • the terminal 01 may be configured to send all the data of the bearer to the secondary node B, and the secondary node B sends the data to the primary node A.
  • the master node A For related content of the primary offload bearer, for example, reference may be made to the related content of section 4.2.2 of 3GPP TS37.340 V0.2.1.
  • the secondary node B can send the amount of data transmitted by the primary traffic distribution bearer through the secondary node B to the primary node A, and the primary node A reports the core network C.
  • the core network can know the amount of data transmitted by the bearer through the primary node A according to the amount of data transmitted by the primary node B through the primary node B, and achieve accurate statistics of the amount of data.
  • the primary node A when the primary node A reports the amount of data to the core network C, the primary node A may report the data according to the example shown in Table 1-6.
  • Session identifier The amount of data Session 1 Data volume 1 Session 2 Data volume 2 Session 3 Amount of data 3 ⁇ ⁇
  • the method provided in the embodiments of the present application is described above in conjunction with the first to third embodiments (hereinafter referred to as method embodiments).
  • the communication device provided by the embodiment of the present application is further described below.
  • the embodiment of the present application provides a network device 1200, which may be a secondary node B in the network shown in FIG. 1, and may perform a method performed by the secondary node B.
  • a network device 1200 may be a secondary node B in the network shown in FIG. 1, and may perform a method performed by the secondary node B.
  • Figure 12b As shown in Figure 12b:
  • the network device 1200 includes one or more remote radio units (RRUs) 1201 and one or more baseband units (BBUs) 1202.
  • the RRU 1201 described above may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1203 and a radio frequency unit 1204.
  • the RRU 1201 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals.
  • the above BBU 1202 is mainly used for baseband processing, network device control, and the like.
  • the RRU 1201 and the BBU 1202 may be physically disposed together or physically separated, that is, a distributed network device.
  • the BBU 1202 is a control center of a network device, and may also be referred to as a processing unit, and is mainly used to perform baseband processing functions such as channel coding, multiplexing, modulation, and spreading.
  • the above BBU processing unit
  • the BBU 1202 may be configured by one or more boards, and multiple boards may jointly support a radio access network (such as an LTE network or an NR network) of a single radio access technology, or may support different wireless technologies. Access technology radio access network (such as LTE network, NR network or other network).
  • the BBU 1202 described above also includes a memory 1025 and a processor 1206.
  • the above memory 1025 is used to store necessary instructions and data.
  • the processor 1206 is configured to control the network device to perform necessary actions, for example, to control the network device to perform the method performed by the secondary node B in the foregoing method embodiment.
  • the above memory 1025 and processor 1206 can serve one or more boards. That is, the memory and processor can be individually set on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • an uplink signal (including data, etc.) transmitted by the terminal device is received through the antenna 1203, and a downlink signal (including data and/or control) is transmitted to the terminal device through the antenna 1203 on the downlink.
  • Information in the above processor 1206, processing service data and signaling messages, and these units are performed according to radio access technologies (for example, access technologies of LTE, NR, and other evolved systems) adopted by the radio access network. deal with.
  • the processor 1206 is further configured to perform control management on the action of the network device, and is used to perform processing performed by the secondary node B in the foregoing method embodiment.
  • Figure 12b only shows a simplified design of the network device described above.
  • the foregoing network device may include any number of antennas, memories, processors, radio units, RRUs, BBUs, etc., and all network devices that can implement the present application are within the scope of the present application.
  • the embodiment of the present application provides another communication device 1300, which can perform the method performed by the master node A in the foregoing method embodiment.
  • the communication device 1300 includes a processing system 1307 for performing the method M1, M3 or M5 performed by the master node A in the above method embodiment.
  • Processing system 1307 can be a circuit that can be implemented by a chip.
  • Processing system 1307 includes one or more processors 1301.
  • the processor 1301 may be a general purpose processor or a dedicated processor or the like, and may be, for example, a baseband processor or a central processing unit.
  • the processor 1301 may also integrate the functions of a baseband processor or a central processing unit.
  • the baseband processor is mainly used for processing communication protocols and communication data, and the baseband processor may also be referred to as a baseband processing circuit or a baseband processing chip.
  • the central processing unit is mainly used to control the entire communication device (such as a chip, a network device, a terminal device, etc.), execute a software program, and process data of the software program.
  • the central processing unit can also be referred to as a central processing circuit or a central processing chip.
  • the one or more processors 1301 can perform the method M1, M3 or M5.
  • the processor 1301 may be any one of the following: a central processing unit (English: Central Processing Unit, CPU for short), an ARM processor (English full name of AMR: Advanced RISC Machines, RISC English full name: Reduced Instruction Set Computing , Chinese translation is: reduced instruction set:), field programmable gate array (English: Field Programmable Gate Array, referred to as: FPGA), dedicated processor and other devices with computing processing capabilities.
  • a central processing unit English: Central Processing Unit, CPU for short
  • an ARM processor English full name of AMR: Advanced RISC Machines, RISC English full name: Reduced Instruction Set Computing , Chinese translation is: reduced instruction set:
  • field programmable gate array English: Field Programmable Gate Array, referred to as: FPGA
  • dedicated processor and other devices with computing processing capabilities.
  • the foregoing processor 1301 may be integrated into a many-core processor.
  • the processor 1301 can include instructions 1303 that can be executed in the processor 1301 such that the communication device 1300 performs the method M1, M3 or M5.
  • processing system 1307 can include one or more memories 1302 that are coupled to processor 1303 via bus 1306.
  • An instruction 1304 is stored on the memory 1302, and the instruction 1304 can be executed on the processor 1301 such that the communication device 700 performs the method M1, M3 or M5.
  • data may also be stored in the memory 1302.
  • instructions and/or data may also be stored in the processor 1301.
  • the one or more memories 1302 described above may store instructions and data of the methods in the above method embodiments.
  • the processor 1301 and the memory 1302 may be provided separately or integrated.
  • the memory 1302 may be any one or any combination of the following: a random access memory (English: Random Access Memory, RAM for short), a read only memory (English: read only memory, abbreviated as: ROM), nonvolatile Memory (English: non-volatile memory, referred to as: NVM), solid state drive (English: Solid State Drives, SSD for short), mechanical hard disk, disk, disk array and other storage media.
  • a random access memory (English: Random Access Memory, RAM for short)
  • ROM read only memory
  • NVM nonvolatile Memory
  • SSD Solid State Drives
  • Bus 1306 can include an address bus, a data bus, a control bus, etc., for ease of representation, Figure 13 shows the bus with a thick line.
  • the bus 1306 can be any one or any combination of the following: an industry standard architecture (English: Industry Standard Architecture, ISA for short), and a Peripheral Component Interconnect (PCI) bus. And expand the industry standard structure (English: Extended Industry Standard Architecture, referred to as: EISA) bus and other wired data transmission devices.
  • an industry standard architecture English: Industry Standard Architecture, ISA for short
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the processing system 1307 can also include a transceiver unit 1305 that is coupled to the processor 1303 via a bus 1306.
  • the transceiver unit 1305 can be an input/output circuit of the chip, and the transceiver unit 1305 can implement data interaction with other communication units, such as a radio frequency chip or other units in the network device.
  • the communication device 1300 may further include an antenna 1307, and the antenna 1307 may be connected to the transceiver unit 1305.
  • the communication device 1300 can be a network device (e.g., primary node A).
  • the transceiver unit 1305 can be a radio frequency unit, and the transceiver unit 1305 can implement the data interaction between the communication device 1300 and other devices through the antenna 1307. For example, when the communication device 1300 is the master node A, the transceiver unit 1305 of the communication device 1300 can pass through the antenna 1307.
  • the secondary node B performs data interaction.
  • processor 1301 can be considered a processing unit and memory 1302 is considered a storage unit.
  • Communication device 1300 can include a processing unit.
  • the communication device 1300 may further include at least one of a storage unit or a transceiver unit.
  • the embodiment of the present application also provides a computer readable storage medium.
  • the methods described in the above method embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted as one or more instructions or code on a computer readable medium.
  • the computer readable medium can include computer storage media and communication media, and can also include any medium that can transfer a computer program from one place to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage device, or any other medium that can be used to carry or in an instruction or data structure.
  • the form of the program stores the required program code and is accessible by the computer.
  • any connection is properly termed a computer-readable medium. For example, if you use coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) or wireless technology (such as infrared, radio and microwave) to transfer software from a website, server or other remote source, then coaxial cable, fiber optic cable , twisted pair, DSL or wireless technologies such as infrared, radio and microwave are included in the definition of the medium.
  • DSL digital subscriber line
  • wireless technology such as infrared, radio and microwave
  • Disk and disc as used herein include compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc, wherein the disc usually reproduces data magnetically, and the disc optically reproduces data using a laser. Combinations of the above should also be included within the scope of computer readable media.
  • the embodiment of the present application also provides a computer program product.
  • the methods described in the above method embodiments may be implemented in whole or in part by software, hardware, firmware, or any combination thereof. If implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • a computer program product includes one or more computer instructions. When the above computer program instructions are loaded and executed on a computer, the processes or functions described in the above method embodiments are generated in whole or in part.
  • the above computer may be a general purpose computer, a special purpose computer, a computer network, a network device, a user equipment, or other programmable device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和装置。其中一种通信方法包括主节点从至少一个辅节点接收至少一个第一消息,所述第一消息包括第一信息,所述第一信息用于指示第一承载通过发送所述第一消息的辅节点传输的第一数据的数据量;所述主节点向所述核心网发送第二消息,所述第二消息包括第二信息,所述第二信息用于指示所述第一承载通过所述至少一个辅节点传输的所述第一数据的数据量,可以精确计算数据量。

Description

一种通信方法和装置
本申请要求于2017年8月11日提交中国专利局、申请号为201710687801.3、申请名称为“一种通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法和装置。
背景技术
为了提高数据传输的吞吐量,引入了支持不同接入技术的双连接。例如:多制式双连接(Multi-RAT Dual Connectivity,MR-DC),以及长期演进技术(long term evolution,LTE)和无线局域网(wireless local area network,WLAN)的互操作(LTE-WLAN interworking,LWI。
图1为一种双连接的网络示意图。如图1所示,终端01可以同时与主节点A和辅节点B进行通信。主节点A和辅节点B与核心网C相连。主节点A和辅节点B采用的接入技术可以相同或者不同。例如:主节点A是演进型节点(evolved universal terrestrial radio access network NodeB,eNB),辅节点B是新空口节点(new radio nodeB,gNB),或者主节点A是gNB,辅节点B是eNB,或者主节点A是eNB或者gNB,辅节点B是无线局域网(wireless local area network,WLAN)设备,其中WLAN设备可以是WLAN终结点(WLAN termination,WT),接入控制器(access controller,AC)或者接入点(access point,AP)。核心网可以是4G的核心网EPC,或者5G的核心网(5G core,5GC)。
在图1的网络中,可以为终端01建立辅助承载或者辅助分流承载。辅助承载在MR-DC中可以称为辅小区组(Secondary Cell Group,SCG)承载,在LWI中对应整个挪到WLAN侧的承载;辅助分流承载在MR-DC中可以称为辅小区组(SCG)分流承载。
关于MR-DC的相关内容,例如可以参考例如3GPP TS 37.340V0 .2.1章节4的相关内容,关于LWI的相关内容,可以参考例如3GPP TS 36.300 V14.2.0章节22A的相关内容。
图2为辅助承载的一种示意图。如图3所示,核心网C和辅节点B之间为终端01建立有用户面连接,辅节点B和终端01建立有用户面连接。当有下行数据时,该承载的全部数据由核心网C发送到辅节点B,再由辅节点B发送到终端01。当有上行数据时,该承载的全部数据由终端01发送到辅节点B,再由辅节点B发送到核心网C。
图3为辅助分流承载的一种示意图。如图4所示,核心网C和辅节点B之间为终端01建立有用户面连接,辅节点B和终端01建立有用户面连接,主节点A和终端01 建立有用户面连接。当有下行数据时,该承载的全部数据由核心网C发送到辅节点B,辅节点B将部分数据发送到主节点A,由主节点A将该部分数据发送到终端01,辅节点B将其余数据发送到终端01。当有上行数据时,终端01可以将该承载的部分数据发送到主节点A,由主节点A将该部分数据发送到辅节点B,终端01将该承载的其余数据发送到辅节点B,辅节点B将接收到的该承载的全部数据发送到核心网C;可选的,也可以配置成终端01将该承载的全部数据都发送给主节点A,由主节点A发送到辅节点B,或者配置成终端01将该承载的所有数据发送到辅节点B。
针对辅助承载或者辅助分流承载,如何更精确统计该承载传输的数据量是一个亟待解决的问题。
发明内容
本申请提供了一种通信方法以及装置,用于更精确得计算数据量。
第一方面,本申请提供了一种通信方法,包括:
主节点从至少一个辅节点接收至少一个第一消息,上述第一消息包括第一信息,上述第一信息用于指示第一承载通过发送上述第一消息的辅节点传输的第一数据的数据量;
上述主节点向上述核心网发送第二消息,上述第二消息包括第二信息,上述第二信息用于指示上述第一承载通过上述至少一个辅节点传输的上述第一数据的数据量。
可选的,上述第一承载为辅助承载,辅助分流承载或者主分流承载。
可选的,上述第二消息还包括上述第一承载的承载标识;或者,上述第一数据为第一流的数据,上述第二消息还包括上述第一流的标识;或者,上述第一数据为第一会话的数据,上述第二消息还包括上述第一会话的标识。
可选的,上述第一消息还包括上述第一承载的承载标识;或者,上述第一数据为第一流的数据,上述第一消息还包括上述第一流的标识;或者,上述第一数据为第一会话的数据,上述第一消息还包括上述第一会话的标识。
可选的,上述第一数据的数据量为上行数据量和下行数据量中的至少一种,或者为上行数据量与下行数据量之和。
可选的,上述第一数据的数据量不包括PDCP层,RLC层,MAC层或者SDAP层的头开销。
可选的,上述第一消息或者上述第二消息还包括时间戳,上述时间戳用于指示上述数据量的起止时间。
可选的,上述第一数据是通过至少一种无线接入技术传输的,上述数据量包括上述至少一种无线接入技术各自传输的上述第一数据的数据量,上述第二消息还包括上述至少一种无线接入技术的标识。
可选的,上述主节点向上述辅节点发送第三消息,上述第三消息用于请求上述辅节点发送上述第一承载通过上述辅节点传输的第一数据的数据量。
可选的,上述第三消息包括上述第一承载的承载标识;或者,上述第一数据为第一流的数据,上述第三消息包括上述第一流的标识;或者,上述第一数据为第一会话的数据,上述第三消息包括上述第一会话的标识。
可选的,上述主节点是在辅节点切换的流程中、辅节点释放的流程中、辅节点配 置修改的流程中、或者主节点切换的流程中接收上述第一消息的。
可选的,上述第二消息还包括上述第一承载的承载类型。
第二方面,本申请提供了一种通信方法,包括:
核心网网元接收主节点发送的第二消息,上述第二消息包括第二信息,上述第二信息用于指示第一承载通过至少一个辅节点传输的第一数据的数据量;
核心网网元根据第一承载的数据总量和第一数据的数据量得到第一承载通过上述主节点以及上述辅节点传输的数据量。
第三方面,本申请提供了一种通信方法,包括:
辅节点获取第一承载通过上述辅节点传输的第一数据的数据量。
辅节点向主节点发送第一消息,上述第一消息包括第一信息,上述第一信息包括用于指示上述第一承载通过上述至少一个辅节点传输的上述第一数据的数据量。
可选的,上述第一承载为辅助承载,辅助分流承载或者主分流承载。
可选的,上述第一消息还包括上述第一承载的承载标识;或者,上述第一数据为第一流的数据,上述第一消息还包括上述第一流的标识;或者,上述第一数据为第一会话的数据,上述第一消息还包括上述第一会话的标识。
可选的,上述辅节点是在辅节点切换的流程中、辅节点释放的流程中、辅节点配置修改的流程中、或者主节点切换的流程中发送上述第一消息的。
第四方面,本申请提供了一种通信方法,包括:
主节点在建立第一辅助承载或者第一辅助分流承载时向辅节点发送第一数据;
上述主节点向核心网发送第一消息,上述第一消息包括第一信息;其中,上述第一信息用于指示上述第一数据的数据量。
可选的,上述第一消息还包括上述第一辅助承载或第一辅助分流承载的承载标识。
可选的,上述第一数据为第一流的数据,上述第一消息还包括上述第一流的标识。
可选的,上述第一数据为第一会话的数据,上述第一消息还包括上述第一会话的标识。
可选的,上述数据量为上行数据量和下行数据量中的至少一种,或者为上述上行数据量与上述下行数据量之和。
可选的,上述数据量不包括PDCP层,RLC层,MAC层或者SDAP层的头开销。
可选的,上述第一消息还包括上述辅节点的无线接入技术。
可选的,上述第一消息还包括上述辅助承载或辅助分流承载的承载类型。
第五方面,本申请提供了一种通信方法,包括:
核心网网元接收主节点发送的第一消息,上述第一消息包括第一信息;其中,上述第一信息用于指示主节点在建立第一辅助承载或者第一辅助分流承载时向辅节点发送第一数据的数据量。
第六方面,本申请提供了一种通信方法,包括:
主节点获取第一辅助分流承载通过上述主节点传输的第一数据的数据量;
上述主节点向核心网发送第一消息,上述第一消息包括第一信息,上述第一信息用于指示上述数据量。
可选的,上述第一消息还包括上述第一辅助分流承载的承载标识。
可选的,上述第一数据为第一流的数据,上述第一消息还包括上述第一流的标识。
可选的,上述第一数据为第一会话的数据,上述第一消息还包括上述第一会话的标识。
可选的,上述第一数据的数据量为上行数据量和下行数据量中的至少一种,或者为上述上行数据量与上述下行数据量之和。
可选的,上述第一数据的数据量不包括PDCP层,RLC层,MAC层和SDAP层的头开销。
可选的,上述第一消息还包括时间戳,上述时间戳用于指示上述第一数据的数据量的起止时间。
可选的,上述第一消息还包括上述第一辅助分流承载的承载类型。
可选的,若上述主节点在建立上述第一辅助分流承载时向上述辅节点发送迁移数据,上述主节点向上述核心网发送第二信息,上述第二信息用于指示上述迁移数据的数据量。
第七方面,本申请提供了一种通信方法,包括:
核心网网元接收主节点发送的第一消息,上述第一消息包括第一信息,上述第一信息用于指示第一辅助分流承载通过上述主节点传输的第一数据的数据量。
核心网网元根据第一辅助分流承载的数据总量和第一数据的数据量计算第一辅助分流承载通过上述主节点和上述辅节点传输的数据量。
第八方面,本申请提供了一种通信装置,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得通信装置执行第一方面、第四方面或者第六方面上述的方法。
第九方面,本申请提供了一种通信装置,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得通信装置执行第二方面或者第五方面或者第七方面上述的方法。
第十方面,本申请提供了一种核心网网元,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得通信装置执行第三方面上述的方法。
第十一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述第八方面提供的通信装置所使用的计算机软件指令,其包含用于执行上述第一方面至第十方面所设计的程序。
第十二方面,本申请还提供了一种包含指令的计算机程序产品,该计算机程序产品包括计算机执行指令,当指令在计算机上运行时,使得计算机执行上述第一方面至第十方面的方法。
第十三方面,本申请还提供了一种芯片系统,该芯片系统包括处理器,用于支持终端设备实现上述第一方面至第十方面中所涉及的功能。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存通信装置必要的程序指令和数据,例如保存上述第一方面至第十方面的方法所涉及的数据或信息。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
附图说明
为了更清楚地说明本申请,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本申请提供的一种双连接的网络示意图;
图2是本申请提供的一种辅助承载的示意图;
图3是本申请提供的一种辅助分流承载的示意图;
图4为本申请提供的一种双连接的应用场景的示意图;
图5是本申请提供的一种在SCG分流承载中计算数据量的方法流程图;
图6是本申请提供的一种在建立SCG分流承载或者SCG承载时计算数据量的方法流程图;
图7是本申请提供的另一种在建立SCG分流承载或者SCG承载时计算数据量的方法流程图;
图8a是本申请提供的一种在SCG分流承载或者SCG承载中计算数据量的方法流程图;
图8b是本申请提供的一种在SCG承载中数据流向的的示意图;
图9是本申请提供的一种在SCG分流承载或者SCG承载中计算数据量的方法流程图;
图10是本申请提供的一种在SCG分流承载或者SCG承载中计算数据量的方法流程图;
图11是本申请提供的一种在SCG分流承载或者SCG承载中计算数据量的方法流程图。
图12a是本申请提供的一种在SCG分流承载或者SCG承载中计算数据量的方法流程图。
图12b是本申请提供的一种通信装置;
图13是本申请提供的另一种通信装置;
图14是本申请提供的一种主分流承载的示意图。
具体实施方式
下面将结合本申请中的附图,对本申请中的技术方案进行说明。
图1所示的网络中,在辅助承载的场景下,由于核心网C可以知道辅助承载建立后,核心网C与辅节点B之间传输的数据量,并不知道在辅助承载建立过程中,主节点A是否有将数据转移至辅节点B进行传输,导致核心网C获知的辅节点B传输的数据量不准确;另外,在辅助分流承载的场景下,由于核心网C可以知道通过辅助分流承载传输的数据的总量,并无法获知主节点A以及辅节点B各自传输的数据量。
为了更精确统计辅助承载或者辅助分流承载传输的数据量,本申请实施例提供了以下三种方案。
方案一:在辅助分流承载的场景下,由主节点A上报该承载通过主节点A分流的 数据量。通过该方案,核心网可以通过该承载分流至主节点A的数据量获知该承载通过辅节点B传输的数据量,从而核心网可以分别获知该承载通过不同节点传输的数据量,实现了更精确的数据量统计。
方案二:在辅助承载或辅助分流承载的场景下,主节点A向核心网C上报主节点A在建立辅助承载或辅助分流承载的过程中发送至辅节点B的数据量。通过该方案,核心网C可以修正该承载通过辅节点B传输的数据量,正确获得该承载通过辅节点传输的数据量,实现了数据量的精确统计。
方案三:在辅助承载或辅助分流承载的场景下,由辅节点B将该承载通过辅节点B传输的数据量发送给主节点A,由主节点A将该数据量发送给核心网。通过该方案,核心网根据该承载通过辅节点B传输的数据量可以获知该承载通过主节点A传输的数据量,实现了数据量的精确统计。
另外,在上述方案一至三种,在主节点A和辅节点B的接入技术不同时,可以获知该承载通过不同接入技术传输的数据量,进而实现更精确的数据量的统计。
方案一
以下结合不同的示例,对方案一进行说明。
示例一:图4为图1所示网络的一种应用场景,其中主节点A为eNB 01,辅节点B为gNB 01,核心网C为EPC或者5GC。网络为终端01建立有SCG分流承载。
需要说明的是,在本申请实施例中,5GC支持会话(session)和流(flow),即5GC可以识别数据所属的流或者所属的会话,其中会话可以包括一个或多个流;EPC支持承载,即EPC可以识别数据所属的承载。随着技术的发展,5GC也有可能支持承载,EPC也有可能支持流和会话,本申请对此不作限制。
如图5所示:
S501至S504示出了在SCG分流承载场景下该SCG分流承载的下行数据的传输过程。在下行数据的传输过程中,核心网C需要向终端01发送该SCG分流承载的数据A,gNB 01可以将数据A的一部分数据,例如数据A-1,分流至eNB 01来向终端01发送。
S501:核心网C向gNB 01发送SCG分流承载的数据A。
S502:gNB 01向eNB 01发送数据A的一部分数据数据A-1。
S503:eNB 01向终端01发送数据A-1。
S504:gNB 01向终端01发送数据A的另一部分数据数据A-2。
S505至S508示出了在SCG分流承载场景下该SCG分流承载的上行数据的传输过程。在上行数据的传输过程中,终端01需要向核心网C发送该SCG分流承载的数据B,终端01可以将数据B的一部分数据,例如数据B-1,分流至eNB 01来向gNB 01发送。
S505:终端01向eNB 01发送数据B的一部分数据数据B-1。
S506:eNB 01向gNB 01发送数据B-1。
S507:终端01向gNB 01发送数据B的另一部分数据数据B-2。
S508:gNB 01向EPC 01发送数据B。
通过S509-S511,EPC 01可以分别获知通过该SCG分流承载通过eNB 01传输的 数据的数据量和通过gNB 01传输的数据的数据量。
S509:eNB 01统计该SCG分流承载通过eNB 01传输的数据的数据量(以下表述为数据量M)。
该SCG分流承载通过gNB 01传输的数据的数据量以下表述为数据量S。
可选的,数据量的上报可以基于上下行粒度。数据量M为数据A-1的数据量和数据B-1的数据量中的至少一种数据量。可选的,数据量M可以是数据A-1和数据B-1的数据量之和。
需要说明的是,统计数据量可以是实时的,也可以周期性的,或者由事件触发(例如网络发起了特定的某些流程)的,本申请实施例对此不作限制。
S510:eNB 01向核心网C发送第一消息,第一消息包括第一信息,该第一信息用于指示数据量M。
为了便于核心网C获知eNB 01上报的数据量M对应于哪个承载、或者会话、或者流,根据网络的需要,eNB 01向核心网C上报时可以包括与数据量M对应的承载标识、会话标识或者流标识。例如该第一信息还可以包括数据量M对应的承载标识、会话标识、或者流标识。具体上报承载对应的数据量,或者会话对应的数据量,或者流对应的数据量可以由核心网C向eNB 01指示。
S511:核心网C分别获得数据量M和数据量S。
可选的,数据量S可以是数据A-2的数据量和数据B-1的数据量中的至少一种数据量;可选的,数据量M可以是数据A-2和数据B-2的数据量之和。
由于核心网C可以获知数据A的数据量,核心网C可以根据数据A的数据量和数据A-1的数据量获得数据A-2的数据量。其中数据A-2的数据量等于数据A的数据量减去数据A-1的数据量。
由于核心网C可以获知数据B的数据量,核心网C可以根据数据B的数据量和数据B-1的数据量获得数据B-2的数据量。其中数据B-2的数据量等于数据B的数据量减去数据B-1的数据量。
由于核心网C可以获知数据A和数量B的数据量之和,核心网C可以根据数据A和数量B的数据量之和以及数据A-1和数据B-1的数据量之和获得数据A-2和数据B-2的数据量之和。其中,数据A-2和数据B-2的数据量之和等于数据A和数量B的数据量之和减去数据A-1和数据B-1的数据量之和。
关于eNB 01向核心网C上报数据量(例如S510)的时机,存在以下几种可选的实施方式。
作为第一种可选的实施方式,eNB 01可以周期性的向核心网C发送上述第一消息。该周期可以由gNB 01或者eNB 01决定,或者由核心网C将该周期发送至eNB 01。可选的,通过第一消息上报的数据量M可以是当前周期内的该SCG分流承载通过eNB01传输的数据量,或者可以是该SCG分流承载建立后,该SCG分流承载累计通过eNB01传输的数据量。
作为第二种可选的实施方式,eNB 01可以在收到核心网C请求上报该SCG分流承载的数据量的请求后向核心网C发送上述第一消息。可选的,通过第一消息上报的数据量M可以是自上次核心网C的请求后到这次请求之间该SCG分流承载通过eNB 01传输的数据量,或者可以是该SCG分流承载建立后,该SCG分流承载累计通过eNB01传输的数据量。
作为第三种可选的实施方式,eNB 01可以在eNB 01与核心网C之间的接口释放,eNB 01与核心网C之间的连接断被挂起,或者eNB 01的承载去激活流程中通过第一消息上报数据量M。例如当核心网是5GC时,eNB 01可以在在eNB 01与核心网C之间的NG接口释放,或者PDU会话资源释放流程中通过第一消息上报。可选的,第一消息可以是上述流程中的现有消息,也可以是新增的消息。
需要说明的是,网络中可以同时部署上述3种实施方式中的一种或者多种。
可选的,第一消息还可以包括数据量M对应的承载的承载类型(例如该SCG分流承载的承载类型为SCG分流承载)。
作为一种可选的设计,为了便于核心网C进行数据量的统计,S510中的第一消息还包括时间戳,时间戳用于表示S509中eNB 01生成eNB 01传输的数据量对应的起止时间。
在该示例及以下示例中,通过上报数据量对应的承载标识,时间戳,辅节点的无线接入技术,可以使核心网(例如核心网的网元服务网关(serving gateway,SGW),分组数据网关(packet data network gateway,PGW)等)能够实现更多维度的数据量统计(例如基于承载粒度,基于时间粒度,基于无线接入技术粒度),实现更加精确的数据量统计。进一步的,核心网基于多维度的数据量统计,可以实现多维度的计费。
作为一种可选的设计,S509中数据量的统计可以排除数据的头开销。例如分组数据汇聚层协议(packet data convergence protocol,PDCP)、无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)、业务数据适配协议(service data adaptation protocol,SDAP)等协议层的头开销。通过该设计,可以精确计算实际业务的数据量,用户体验更佳。
作为一种可选的设计,还可以包括在建立该SCG分流承载的过程中,eNB 01将发送至gNB 01的数据的数据量发送给核心网C的步骤。具体可以参照下面方案二的内容。通过该设计,核心网C可以修正该SCG分流承载通过辅节点传输的数据的数据量,从而实现更加精确的数据量的统计。
作为一种可选的设计,为了更精确的进行数据量的统计,可以基于会话或者流粒度进行数据量的统计。主节点和辅节点可以获知数据所属的流(flow)或者会话(session)。示例性的,该会话也可以称为分组数据单元(packet data unit,PDU)session。一个会话可以包括一个或多个流。例如:数据A和数据B为会话A的数据。会话A包括流1和流2。数据A-1可以包括流1的部分数据(简称数据A-1-f1)和流2的部分数据(简称数据A-1-f2)。数据A-2可以包括流1的部分数据(简称数据A-2-f1)和流2的部分数据(简称数据A-2-f2)。数据B-1可以包括流1的部分数据(简称数据B-1-f1)和流2的部分数据(简称数据B-1-f2)。数据B-2可以包括流1的部分数据(简称数据B-2-f1)和流2的部分数据(简称数据B-2-f2)。
可选的,根据网络的需要,在S509部分,eNB 01可以以流粒度进行数据量的统计或者以会话粒度进行数量的统计。例如:统计该SCG分流承载承载所承载的流1通过eNB 01传输的上行数据量和下行数据量中的至少一种,或者上下行数据量之和;或 者,统计该SCG分流承载所承载的会话A通过eNB 01传输的上行数据量和下行数据量中的至少一种,或者上下行数据量之和。
可选的,根据网络的需要,在S510部分,eNB 01上报的数据量M可以是流粒度的数据量,或者可以是会话粒度的数据量,eNB 01上报数据量M时还可以上报与数据量M对应的流标识、会话标识中的至少一种(例如在S510中的第一消息中携带)。例如:数据量M为流1的下行数据量(例如:数据A-1-f1的数据量),上报流1的流标识,可选的还以上报与流1对应的会话A的会话标识;数据量M为流2的上行数据量(例如:数据B-1-f2的数据量,可以上报流2的流标识,可选的还可以上报与流2对应的会话A的会话标识);数据量M为会话A的下行数据量(例如:数据A-1的数据量,上报会话A的会话标识);数据量M为会话A的上行数据量(例如:数据B-1的数据量,上报会话A的会话标识)。
在SCG分流承载中,通过eNB 01上报SCG分流承载通过eNB 01传输的数据量,核心网C能够根据SCG分流承载的总数据量和SCG分流承载通过eNB 01传输的数据量,计算得到SCG分流承载通过gNB 01传输的数据量,从而核心网C可以分别获知SCG分流承载分别通过eNB 01和gNB 01传输的数据的数据量。另外,由于eNB 01和gNB 01的无线接入技术不同,核心网C可以分别获知SCG分流承载通过不同无线接入技术传输的数据量,实现数据量的精确计算。
需要说明的是,方案一同样适用于辅助分流承载的其他应用场景。例如:主节点A为gNB,辅节点B为eNB,核心网C为EPC或者5GC;或者主节点A为eNB,辅节点B为WT,核心网C为EPC或者5GC;或者主节点A为gNB,辅节点B为WT,核心网C为EPC或者5GC。本申请实施例对此不作限制。
以下分别从主节点侧和核心网侧对方案一提供的方法进行说明。
以下为从主节点侧描述的方案一的方法。该方法M1包括:
M101:主节点获取辅助分流承载通过主节点传输的数据的数据量信息;
M101的相关说明可以参考S509的相关内容。
M102:主节点向核心网发送第一消息,上述第一消息包括第一信息,该第一信息用于指示上述辅助分流承载通过主节点传输的数据的数据量信息。
M102的相关说明可以参考S510的相关内容。
以下为从核心网侧描述的方案一的方法。该方法M2包括:
可选的,方法M1还包括M103:主节点向核心网发送第二信息,该第二信息用于指示在建立上述辅助分流承载的过程中该主节点向辅节点发送的数据的数据量。通过M103,核心网可以修正该辅助分流承载的数据的数据量,实现更精确的数据量统计。
M201:核心网网元从主节点接收第一消息,上述第一消息包括第一信息,该第一信息用于指示上述辅助分流承载通过主节点传输的数据的数据量;
M201的相关内容可以参考S509的相关内容。
M202:上述核心网网元根据该辅助分流承载传输的数据的数据量和该辅助分流承载通过主节点传输的数据的数据量获取上述辅助分流承载通过辅节点传输的数据的数据量信息。
M202的相关说明可以参考S510的相关内容。
可选的,方法M2还包括:核心网网元从主节点接收第二信息,该第二信息用于指示在建立上述辅助分流承载的过程中该主节点向辅节点发送的数据的数据量。通过M103,核心网网元可以修正该辅助分流承载的数据的数据量,实现更精确的数据量统计。
方法M1和M2的相关可选的设计和实施方式可以参考上述示例一的相关内容,此处不作限制。
通过方案一,核心网可以分别获知辅助分流承载通过主节点和辅节点传输的数据的数据量,实现了更精确的数据量统计。
方案二
以下结合不同的示例,对方案二进行说明。
示例二:主节点A为eNB 01,核心网为EPC或5GC,终端01与eNB 01进行通信。eNB 01选择gNB 01作为辅节点B,并建立SCG承载或者SCG分流承载。
如图6所示:
S601-S603示出了增加辅节点的一些信令交互的过程。需要说明的是,该过程或者该过程中的消息名称可能随着技术的发展,或者不同的网络而有所不同,本申请实施例对比不作限制。
S601:eNB 01向gNB 01发送辅节点增加请求消息。
S602:gNB 01向eNB 01发送辅节点增加请求确认消息。
S603:eNB 01向gNB 01发送辅节点重配置完成消息。
S604-S605示出了主节点向辅节点进行数据迁移的过程,以使辅节点传输这些数据。
S604:eNB 01向gNB 01发送序列号(sequence number,SN)状态。
S605:eNB 01向gNB 01发送eNB 01未传输的数据。
该未传输的数据可以为以下至少一项:eNB 01待发送至终端01的下行数据、eNB01待发送至核心网C的终端01的上行数据。
上述S601至S605分别可以参考例如:3GPP TS 37.340 V0.2.1章节10.2.1的图10.2.1-1的步骤1,2,5,7以及8的相关内容。
S606:eNB 01获取eNB 01向gNB 01发送的数据(以下简称迁移数据)的数据量。
作为一种可选的设计,该数据量的统计可以排除迁移数据的头开销。例如PDCP、RLC、MAC、SDAP等协议层的头开销。通过该设计,可以精确计算实际业务的数据量,用户体验更佳。
S607:eNB 01向核心网C发送承载改变指示消息,其中承载改变指示消息包括第一信息,该第一信息用于指示迁移数据的数据量。
可选的,eNB 01也可以通过其他消息携带上述第一信息。为了便于叙述,本示例中携带第一信息的消息称为第一消息。
可选的,迁移数据的数据量的统计或者上报可以基于承载粒度、会话粒度、或者流粒度。作为一种示例,第一消息还包括迁移数据对应的承载标识(即该SCG承载或者SCG分流承载的标识)、会话标识和流标识中的一项或者多项。具体向核心网C 上报哪些粒度的数据量可以由核心网C来向主节点指示。上述相关内容的详细说明可以参考示例一的相关内容。
可选的,迁移数据的数据量的统计或者上报可以基于上下行粒度。相关内容的详细说明可以参考示例一的相关内容。
可选的,第一消息还可以包括辅节点的无线接入技术。相关内容可以参考示例一的相关内容。
可选的,第一消息还可以包括该SCG承载或者SCG分流承载的承载类型。相关内容可以参考示例一的相关内容。
可选的,第一信息也可以通过新增的消息由主节点发送至核心网。
通过S607,核心网C能够获知在SCG承载或者SCG分流承载建立过程中,主节点向辅节点迁移的数据量,从而核心网C可以正确获知通过SCG承载或者SCG分流承载通过辅节点传输的数据的数据量,实现了更精确的数据量统计。
为了体现流程的完整性,以下示出了路径更新的其余部分。
S608:核心网C向eNB 01发送结束标志。
S609:EPC 01向eNB 01发送承载改变确认消息。
上述S608至S609可以参考例如:3GPP TS 37.340V0.2.1章节10.2.1的图10.2.1-1的步骤11和12的相关内容。
示例一中与示例二相关的可选的设计和实施方式同样适用于示例二,此处不作赘述。
需要说明的是,示例二同样适用于辅助承载或辅助分流承载的其他应用场景。例如:主节点A为gNB,辅节点B为eNB,核心网C为EPC或者5GC;或者主节点A为eNB,辅节点B为WT,核心网C为EPC或者5GC;或者主节点A为gNB,辅节点B为WT,核心网C为EPC或者5GC。本申请实施例对此不作限制。
示例三:主节点A为eNB 01,辅节点B为gNB 01,核心网C为EPC或者5GC。示例三主要涉及修改辅节点的配置从而建立SCG分流承载或者SCG承载。
如图7所示:
S701-S704示出了修改辅节点配置的一些信令交互的过程。需要说明的是,该过程或者该过程中的消息名称可能随着技术的发展,或者不同的网络而有所不同,本申请实施例对比不作限制。
S701:gNB 01向eNB 01发送请求修改辅节点配置的消息。
S701是可选的,gNB 01可以主动发起修改gNB 01的配置流程。
S702:eNB 01向gNB 01发送修改辅节点配置请求消息。
S703:gNB 01向eNB 01发送修改辅节点配置请求的确认消息。
S704:eNB 01向gNB 01发送辅节点重配置完成消息。
S705-S706示出了主节点向辅节点进行数据迁移的过程,以使辅节点传输这些迁移过来的数据(以下简称迁移数据)。
S705:eNB 01向gNB 01发送序列号(sequence number,SN)状态。
S706:eNB 01向gNB 01发送eNB 01未传输的数据。
该未传输的数据可以为以下至少一项:eNB 01待发送至终端01的下行数据、eNB 01待发送至核心网C的终端01的上行数据。
上述S701至S706分别可以参考例如:3GPP TS 37.340 V0.2.1章节10.3.1的图10.3.1-2的步骤1,2,3,6,8以及9的相关内容。
S707:eNB 01获取eNB 01向gNB 01发送的数据的数据量。
作为一种可选的设计,该数据量的统计可以排除迁移数据的头开销。例如PDCP、RLC、MAC、SDAP等协议层的头开销。通过该设计,可以精确计算实际业务的数据量,用户体验更佳。
S708:eNB 01向核心网C发送承载改变指示消息,其中承载改变指示消息包括第一信息,该第一信息用于指示迁移数据的数据量。
可选的,eNB 01也可以通过其他消息携带上述第一信息。为了便于叙述,本示例中携带第一信息的消息称为第一消息。
可选的,迁移数据的数据量的统计或者上报可以基于承载粒度、会话粒度、或者流粒度。作为一种示例,第一消息还包括迁移数据对应的承载标识(即该SCG承载或者SCG分流承载的标识)、会话标识和流标识中的一项或者多项。具体向核心网C上报哪些粒度的数据量可以由核心网C来向主节点指示。上述相关内容的详细说明可以参考示例一和二的相关内容。
可选的,迁移数据的数据量的统计或者上报可以基于上下行粒度。相关内容的详细说明可以参考示例一和二的相关内容。
可选的,第一消息还可以包括辅节点的无线接入技术。相关内容可以参考示例一和二的相关内容。
可选的,第一消息还可以包括该SCG承载或者SCG分流承载的承载类型。相关内容可以参考示例一和二的相关内容。
可选的,第一信息也可以通过新增的消息由主节点发送至核心网。
通过S708核心网C能够获知在SCG承载或者SCG分流承载建立过程中,主节点向辅节点迁移的数据量,从而核心网C可以正确获知通过SCG承载或者SCG分流承载通过辅节点传输的数据的数据量,实现了更精确的数据量统计。为了体现流程的完整性,以下示出了路径更新的其余部分。
S709:核心网C向eNB 01发送结束标志。
S710:EPC 01向eNB 01发送承载改变确认消息。
上述S709至S710分别可以参考例如:3GPP TS 37.340 V0.2.1章节10.2.1的图10.2.1-1的步骤11和12的相关内容。
示例一和二中与示例三相关的可选的设计同样适用于示例三,此处不作赘述。
需要说明的是,示例三同样适用于辅助承载或辅助分流承载的其他应用场景。例如:主节点A为gNB,辅节点B为eNB,核心网C为EPC或者5GC;或者主节点A为eNB,辅节点B为WT,核心网C为EPC或者5GC;或者主节点A为gNB,辅节点B为WT,核心网C为EPC或者5GC。本申请实施例对此不作限制。
以下分别从主节点侧和核心网侧对方案二提供的方法进行说明。
以下为从主节点侧描述的方案二的方法。该方法M3包括:
M301:在建立辅助承载或者辅助分流承载时,主节点向辅节点发送迁移数据;
M301的相关说明可以参考S605和S706的相关内容。
M302:该主节点向核心网发送第一消息,该第一消息包括第一信息,该第一信息用于指示上述迁移数据的数据量。
M302的相关说明可以参考S607和S708的相关内容。
以下从核心网侧描述方案二的方法。该方法M4包括:
M401:在建立辅助承载或者辅助分流承载时,核心网网元从主节点接收第一消息,该第一消息包括第一信息,该第一信息用于指示在建立上述辅助承载或者辅助分流承载时上述主节点向辅节点发送迁移数据的数据量。
M401的相关说明可以参考S607和S708的相关内容。
M402:核心网网元根据迁移数据的数据量获取该辅助承载或者辅助分流承载通过辅节点传输的数据的数据量。
M402的相关说明可以参考S607和S708的相关内容。
方法M3和M4的相关可选的设计和实施方式可以参考上述示例二和示例三的内容,此处不做赘述。
通过方案二、核心网可以修正辅助承载或者辅助分流承载通过辅节点传输的数据的数据量,实现了更精确的数据量统计。
方案三
以下结合不同的示例,对方案三进行说明。
示例四:主节点A为eNB 01,辅节点B为gNB 01,核心网C为EPC或者5GC,网络为终端01建立有SCG或者SCG分流承载。主节点A保持不变,辅节点B从gNB01(源gNB)切换到gNB 02(目标gNB)。在切换前,SCG分流承载的上行数据和下行数据的传输过程可以参考图5中S501-S508的相关说明。
需要说明的是,在本申请实施例中,5GC支持会话(session)和流(flow),即5GC可以识别数据所属的流或者所属的会话,其中会话可以包括一个或多个流;EPC支持承载,即EPC可以识别数据所属的承载。随着技术的发展,5GC也有可能支持承载,EPC也有可能支持流和会话,本申请对此不作限制。以下示例示出了一些信令交互的过程。需要说明的是,该过程或者该过程中的消息名称可能随着技术的发展,或者不同的网络而有所不同,本申请实施例对比不作限制。
如图8a所示:
S801-S806示出了切换辅节点的一些信令交互过程。
S801:eNB 01向gNB 02发送辅节点增加请求消息。
S802:gNB 02向eNB 01发送辅节点增加请求确认消息。
S803:eNB 01向gNB 01发送辅节点释放请求消息。
S804:eNB 01向gNB 02发送辅节点重配置完成消息。
S805:eNB 01,gNB 01和gNB 02完成SN状态传输和数据转发。
S806:eNB 01、gNB 01、gNB 02以及核心网C完成路径更新流程。
上述S801至S806分别可以参考例如3GPP TS 37.340 V0.2.1章节10.5.1的图10.5.1-1的步骤1-3,6以及8a-14的相关内容。
S807-S809示出了源辅节点向主节点上报辅助承载或者辅助分流承载通过源辅节 点传输的数据的数据量。
S807:eNB 01向gNB 01发送终端01上下文释放消息,该消息中包括用于指示gNB 01向eNB 01发送SCG承载或者SCG分流承载通过gNB 01传输的数据的数据量的信息。可选的,该消息本身也可以理解为是一种指示,指示gNB 01向eNB 01发送SCG承载或者SCG分流承载通过gNB 01传输的数据的数据量。
可选的,也可以通过新增的消息进行上述指示。
S808:gNB 01统计SCG承载或者SCG分流承载通过gNB 01传输的数据的数据量。
SCG分流承载或者SCG承载通过gNB 01传输的数据的数据量可以表述为数据量S。
作为一种示例,参见图5,在SCG分流承载的场景下,数据量S可以是数据A-2的数据量和数据B-2的数据量中的至少一种数据量。可选的,数据量S可以是数据A-2和数据B-2的数据量之和。
作为另一种示例,参见图8b,在SCG承载中,数据量S可以为gNB 01向终端01发送的数据C的数据量和终端01向gNB 01发送的数据D的数据量中的至少一种数据量。可选的,数据量S可以是数据C和数据D的数据量之和。
可以理解,数据量的统计可以基于上下行粒度。
gNB 01统计数据量S时,可以在完成数据转发或者路径更新之后,从而保证gNB01在统计数据量S的时及之后,不再与终端01进行数据传输,从而保证该该数据量的精确性。
可选的,数据量的统计可以基于承载粒度、会话粒度、或者流粒度。相关内容可以参见示例一至三的相关内容。
S809:gNB 01向eNB 01发送第一消息,第一消息包括第一信息,该第一信息用于指示数据量S。可选的,与主节点向核心网上报数据量类似,辅节点向主节点上报数据量可以基于承载粒度、会话粒度、或者流粒度。作为一种示例,第一消息还包括数据量S对应的承载标识(即该SCG承载或者SCG分流承载的标识)、会话标识和流标识中的一项或者多项。具体辅节点向主节点上报哪些粒度的数据量可以由主节点和辅节点协商,或者由核心网C向主节点指示。上述相关内容的详细说明可以参考示例一至示例三的相关内容。
可选的,辅节点向主节点上报数据量可以基于上下行粒度。相关内容的详细说明可以参考示例一至示例三的相关内容。
通过S807-S809主节点可以获知在辅节点切换前,该辅助承载或者辅助分流承载通过源辅节点传输的数据的数据量。
可选的,主节点可以累计多次辅节点切换时,该辅助承载或者辅助分流承载通过源辅节点传输的数据的数据量,在需要向核心网上报的时候上报累计的数据量。S810示出了主节点向核心网上报数据量。
S810:eNB 01向核心网C发送第二消息,该第二消息包括第二信息,该第二信息用于指示该SCG承载或者SCG分流承载通过源辅节点传输的数据的数据量。
可选的,该数据量可以是一次切换中该SCG承载或者SCG分流承载通过源辅节 点传输的数据的数据量。例如可以是数据量S。
可选的,该数据量可以是多次切换中该SCG承载或者SCG分流承载通过多个源辅节点传输的数据的数据量的累计量。例如:可以是主节点收到的多个数据量S的累计值。
核心网C获得该SCG承载或者SCG分流承载通过源辅节点传输的数据的数据量,可以根据该SCG承载或者SCG分流承载的数据的数据总量获得该SCG承载或者SCG分流承载通过主节点传输的数据的数据量。
可选的,eNB 01向核心网C上报(例如S810)还可以包括gNB 01的无线接入技术。相关内容可以参考示例一至三的相关内容。
在eNB 01向核心网C上报数据量S之前,同一个承载可能换过多个gNB,例如:SCG或者SCG分流承载初始建立在eNB 01和gNB 01上,后来gNB 01发生切换,释放,或者配置修改导致gNB 01上的承载被释放时,gNB 01将该承载通过gNB 01传输的数据量发送给eNB 01;然后eNB 01将该承载迁到另外一个gNB上,例如gNB 03,后来gNB 03在发生切换,释放,或者配置修改导致该gNB 03上的承载被释放时,gNB03将该承载通过gNB 03传输的数据量发送给eNB 01。eNB 01可以得到对应于该承载1的,gNB 01的无线接入技术1对应的数据量,以及gNB 02的无线接入技术2对应的数据量,然后向核心网C上报。
可选的,在eNB 01向核心网C上报(例如S810)之前,还可以包括eNB 01对同一SCG或者SCG分流承载,相同无线接入技术的数据量进行累加,累计后得到不同无线接入技术对应的数据量,然后向核心网C上报。
可选的,主站向核心网C上报数据量(例如S810)的时机,存在多种可选的实施方式。作为第一种可选的实施方式,在S809后即执行S810。作为第二种可选的实施方式,主节点可以周期性的向核心网C发送第二消息。作为第三种可选的实施方式,主节点可以收到核心网请求上报该辅助承载或者辅助分流承载的请求后发送第二消息;作为第四种可选的实施方式,主节点可以在与核心网之间的接口释放,连接被挂起,承载去激活等流程中发送第二消息。需要说明的是,网络中可以同时部署上述4种实施方式中的一种或者多种。可选的该第二消息可以是现有流程中的消息,也可以是新增的消息。具体上报数据量的时机可以参考示例一中S510关于上报时机的相关说明。
可选的,数据量S的上报可以基于承载粒度、会话粒度、或者流粒度。作为一种示例,第二消息还包括数据量对应的承载标识(即该SCG承载或者SCG分流承载的标识)、会话标识和流标识中的一项或者多项。具体向核心网C上报哪些粒度的数据量可以由核心网C来向主节点指示。上述相关内容的详细说明可以参考示例一至示例三的相关内容。
可选的,数据量S的上报可以基于上下行粒度。相关内容的详细说明可以参考示例一至三的相关内容。
可选的,第二消息还可以包括该SCG承载或者SCG分流承载的承载类型。相关内容可以参考示例一至三的相关内容。
可选的,为了便于核心网C进行数据量的统计,S810中的第二消息还包括时间戳,时间戳用于表示S810中上报的数据量对应的起止时间。
作为一种可选的设计,示例四中数据量的统计可以排除数据的头开销。例如PDCP、RLC、MAC、SDAP层等协议层的头开销。通过该设计,可以精确计算实际业务的数据量,用户体验更佳。
可选的,第二消息还可以包括例如示例二的S607中的第一信息,或者示例三中S708的第一信息。相关内容可以参考示例二或者示例三。
为了便于理解,以下对示例四中辅助承载和辅助分流承载的数据量的统计和上报作出进一步的举例说明。
1)针对辅助分流承载
参见图5,例如:数据A和数据B为会话A的数据。会话A包括流1和流2。数据A-1可以包括流1的部分数据(简称数据A-1-f1)和流2的部分数据(简称数据A-1-f2)。数据A-2可以包括流1的部分数据(简称数据A-2-f1)和流2的部分数据(简称数据A-2-f2)。数据B-1可以包括流1的部分数据(简称数据B-1-f1)和流2的部分数据(简称数据B-1-f2)。数据B-2可以包括流1的部分数据(简称数据B-2-f1)和流2的部分数据(简称数据B-2-f2)。
可选的,根据网络的需要,在S808部分,gNB 01可以以流粒度进行数据量的统计或者以会话粒度进行数量的统计。例如:统计该SCG分流承载承载的流1的通过gNB 01传输的上行数据量和下行数据量中的至少一种;或者,统计该SCG分流承载承载的会话A通过gNB 01传输的上行数据量和下行数据量中的至少一种。
可选的,根据网络的需要,在S809部分,gNB 01上报的数据量S可以是流粒度的数据量,或者可以是会话粒度的数据量,S809中的第一消息还包括与数据量S对应的流标识或者会话标识。例如:数据量S为流1的下行数据量(例如:数据A-2-f1的数据量),与数据量S对应的流标识为流1的流标识;数据量S为流2的上行数据量(例如:数据B-2-f2的数据量),与数据量S对应的流标识为流2的流标识;数据量S为会话A的下行数据量(例如:数据A-2的数据量),与数据量S对应的会话标识为会话A的会话标识;数据量S为会话A的上行数据量(例如:数据B-2的数据量),与数据量S对应的会话标识为会话A的会话标识。
可选的,根据网络的需要,在S810部分,第二消息还可以包括上报的数据量对应的流标识或者会话标识中的至少一种。若eNB 01获得的第一消息中包括数据量S和会话标识,第二消息可以包括数据量S和该会话标识。若eNB 01获得的第一消息中包括数据量S和流标识,eNB 01根据会话与流的对应关系,获得与该流标识相对应的会话标识,eNB 01可以上报会话标识,即第二消息可以包括数据量S,以及会话标识或者流标识中的至少一种。
2)针对辅助承载
如图8b所示,例如:数据C和数据D为会话C的数据。会话C包括流3和流4。数据C可以包括流3的下行数据和流4的下行数据,数据D可以包括流3的上行数据和流4的上行数据。
可选的,根据网络的需要,在S808部分,gNB 01可以以流粒度进行数据量的统计或者以会话粒度进行数量的统计。例如:统计该SCG承载承载的流3的通过gNB 01传输的上行数据量和下行数据量中的至少一种;或者,统计该SCG承载承载的会话C 通过gNB 01传输的上行数据量和下行数据量中的至少一种。
可选的,根据网络的需要,在S809部分,gNB 01上报的数据量S可以是流粒度的数据量,或者可以是会话粒度的数据量,S809中的第一消息还包括与数据量S对应的流标识或者会话标识。例如:数据量S为流3的下行数据量(例如:数据C-f3),与数据量S对应的流标识为流3的流标识;数据量S为流4的上行数据量(例如:数据C-f4),与数据量S对应的流标识为流4的流标识;数据量S为会话A的下行数据量(数据C),与数据量S对应的会话标识为会话A的会话标识;数据量S为会话A的上行数据量(数据D),与数据量S对应的会话标识为会话A的会话标识。
可选的,根据网络的需要,在S810部分,若eNB 01获得的第一消息中包括数据量S和会话标识,第二消息可以包括数据量S和该会话标识。若eNB 01获得的第一消息中包括数据量S和流标识,第二消息可以包括数据量S和该流标识。若eNB 01获得的第一消息中包括数据量S和流标识,eNB 01根据会话与流的对应关系,获得与该流标识相对应的会话标识,eNB 01可以上报会话标识,即第二消息可以包括数据量S和会话标识。
通过上述方法核心网可以获知辅节点切换前,辅助承载或者辅助分流承载通过源辅节点传输的数据的数据量,实现了更精确的数据量统计。另外,核心网根据辅助承载或者辅助分流承载通过源辅节点传输的数据的数据量可以获知辅节点切换前,辅助承载或者辅助分流承载通过主节点传输的数据的数据量,实现了更精确的数据量统计。
示例五:主节点A为eNB 01,辅节点B为gNB 01,核心网C为EPC或者5GC,网络为终端01建立有SCG或者SCG分流承载。主节点A保持不变,释放gNB 01。
如图9所示:
S901至S903示出了释放辅节点的一些信令交互的过程。需要说明的是,该过程或者该过程中的消息名称可能随着技术的方案,或者不同的网络而有所不同,本申请实施例对比不作限制。
S901:eNB 01向gNB 01发送辅节点释放请求消息。
S902:eNB 01,gNB 01完成SN状态传输和数据转发。
S903:eNB 01、gNB 01以及核心网C完成路径更新流程。
上述S901至S903分别可以参考例如3GPP TS 37.340V0.2.1章节10.4.1的图10.4.1-1的步骤1,4,5,以及6的相关内容。
S904:eNB 01向gNB 01发送终端上下文释放消息,该消息中包括用于指示gNB01向eNB 01发送SCG承载或者SCG分流承载通过gNB 01传输的数据的数据量的信息。可选的,该消息本身也可以理解为是一种指示,指示gNB 01向eNB 01发送SCG承载或者SCG分流承载通过gNB 01传输的数据的数据量。
可选的,也可以通过新增的消息进行上述指示。
S905:gNB 01获取SCG承载或者SCG分流承载通过gNB 01传输的数据的数据量S。
可选的,gNB 01分别统计gNB 01上各个SCG承载或者SCG分流承载通过gNB 01传输的数据量。由于此时gNB被释放,gNB 01上的所有承载都被释放或者迁移。需要统计各个SCG承载或者SCG分流承载通过gNB 01传输的数据量。
可选的,统计数据量S(例如S905)可以基于上下行粒度。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,统计数据量S(例如S905)可以排除数据的头开销。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,统计数据量S(例如S905)可以基于承载粒度、会话粒度、或者流粒度。相关内容的详细说明可以参考示例一至四的相关内容。
gNB 01获取数据量S时,已经完成数据转发和路径更新,从而保证gNB 01在获取数据量S的时候以及之后,不再与终端01进行数据传输,从而保证该数据量的精确性。
S906:gNB 01向eNB 01发送第一消息,第一消息包括数据量S。
实现gNB 01被释放之前,gNB 01上报SCG承载或者SCG分流承载通过gNB 01传输的数据的数据量。
可选的,gNB 01向eNB 01上报(例如S906)可以包括与数据量S对应的承载标识、流标识或者会话标识中的至少一种。相关内容的详细说明可以参考示例一至四的相关内容。
S907:eNB 01向核心网C发送第二消息,该第二消息包括数据量S。
核心网C获得该SCG承载或者SCG分流承载通过源辅节点传输的数据的数据量,在SCG分流承载下,根据该SCG分流承载的数据的数据总量获得该SCG承载或者SCG分流承载通过主节点传输的数据的数据量。
可选的,eNB 01向核心网C上报(例如S907)还可以包括与数据量S对应的承载标识、流标识或者会话标识中的至少一种。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,eNB 01向核心网C上报(例如S907)还可以包括gNB 01的无线接入技术。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,在eNB 01向核心网C上报(例如S907)之前,还可以包括eNB 01对同一SCG或者SCG分流承载,相同无线接入技术的数据量进行累加。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,eNB 01向核心网C上报(例如S907)还可以包括时间戳,用于表示统计数据量S对应的起止时间。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,eNB 01向核心网C上报(例如S907)还可以包括承载类型,例如SCG分流承载或者SCG承载。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,eNB 01向核心网C上报的时机(例如S907),可以存在几种可选的实施方式。相关内容的详细说明可以参考示例一至四的相关内容。
示例六:主节点A为eNB 01,辅节点B为gNB 01,核心网C为EPC或者5GC,网络为终端01建立有SCG或者SCG分流承载。eNB 01或者gNB 01可以请求承载类型改变,将SCG承载或SCG分流承载更改为MCG承载。
如图10所示:
示出了释放辅节点的一些信令交互的过程。需要说明的是,该过程或者该过程中的消息名称可能随着技术的方案,或者不同的网络而有所不同,本申请实施例对比不 作限制。
S1001:gNB 01向eNB 01发送请求修改辅节点配置的消息。
S1001是可选的,gNB 01可以主动发起修改gNB 01的配置流程。
S1002:eNB 01向gNB 01发送修改辅节点配置请求消息,修改辅节点配置请求消息用于指示gNB 01向eNB 01发送SCG承载或者SCG分流承载通过gNB 01传输的数据的数据量。
可选的,由于gNB 01上的承载类型改变可以是部分承载类型改变,此时需要统计该部分承载通过gNB 01传输的数据的数据量,修改辅节点配置请求中可以包括该部分承载的承载标识、会话标识或者流标识中的至少一种。例如:当核心网C是EPC时,修改辅节点配置请求消息可以包括承载标识,当核心网是5GC时,修改辅节点配置请求消息可以包括会话标识或者流标识等。
S1003:gNB 01获取SCG承载或者SCG分流承载通过gNB 01传输的数据的数据量。
可选的,gNB 01根据修改辅节点配置请求消息中的承载标识、会话标识或者流标识中的至少一种,获取相应的SCG承载或者SCG分流承载通过gNB 01传输的数据的数据量。
可选的,统计数据量S(例如S1003)可以基于上下行粒度。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,统计数据量S(例如S1003)可以排除数据的头开销。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,统计数据量S(例如S1003)可以基于承载粒度、会话粒度、或者流粒度。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,gNB 01在获取数据量S的时候以及之后,不再与终端01进行数据传输,从而保证该数据量的精确性。
S1004:gNB 01向eNB 01发送修改辅节点配置请求的确认消息,修改辅节点配置请求的确认消息包括数据量S。
可选的,gNB 01向eNB 01上报(例如S1004)可以包括与数据量S对应的承载标识、流标识或者会话标识中的至少一种。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,gNB 01向eNB 01上报(例如S1004)还可以包括时间戳,用于表示统计数据量S对应的起止时间。相关内容的详细说明可以参考示例一至四的相关内容。
S1005:eNB 01向核心网C发送第二消息。
可选的,eNB 01向核心网C上报的时机,可以存在几种可选的实施方式。相关内容的详细说明可以参考示例一至四的相关内容。
S1006:eNB 01向gNB 01发送辅节点重配置完成消息。
S1007:eNB 01和gNB 01完成SN状态传输和数据转发。
该未成功传输的数据可以为eNB 01未发送至终端01的下行数据、未发送至gNB01的上行数据,或者该下行数据和该上行数据。
上述S1001、S1002、S1004至S1007分别可以参考例如3GPP TS 37.340V0.2.1章 节10.3.1的图10.3.1-2的步骤1,2,3,6,8以及9的相关内容。
S1008:eNB 01向核心网C发送承载改变指示消息。
可选的,S1005中的第二消息可以是S1007中的承载改变指示消息。
S1009:核心网C向eNB 01发送结束标志。
S1010:核心网C向eNB 01发送承载改变确认消息。
上述S1009至S10010分别可以参考例如3GPP TS 37.340V0.2.1章节10.2.1的图10.2.1-1的步骤11-12的相关内容。
可选的,eNB 01向核心网C上报还可以包括与数据量S对应的承载标识、流标识或者会话标识中的至少一种。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,eNB 01向核心网C上报还可以包括gNB 01的无线接入技术。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,在eNB 01向核心网C上报之前,还可以包括eNB 01对同一SCG或者SCG分流承载,相同无线接入技术的数据量进行累加。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,eNB 01向核心网C上报还可以包括时间戳,用于表示统计数据量S对应的起止时间。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,eNB 01向核心网C上报还可以包括承载类型,例如SCG分流承载或者SCG承载。相关内容的详细说明可以参考示例一至四的相关内容。
示例七:主节点A为eNB 01,辅节点B为gNB 01,核心网C为EPC或者5GC,网络为终端01建立有SCG或者SCG分流承载。保持gNB 01不变,将主节点A从eNB01切换至eNB 02。
如图11所示:
S1101至S1108示出了释放辅节点的一些信令交互的过程。需要说明的是,该过程或者该过程中的消息名称可能随着技术的方案,或者不同的网络而有所不同,本申请实施例对比不作限制。
S1101:eNB 01向eNB 02发送切换请求消息。
S1102:eNB 02向gNB 01发送辅节点增加请求消息。
S1103:gNB 01向eNB 02发送辅节点增加请求确认消息。
S1104:eNB 02向eNB 01发送切换请求确认消息。
S1105:eNB 01向gNB 01发送辅节点释放请求消息。
S1106:eNB 02向gNB 01发送辅节点重配置完成消息。
S1107:eNB 01,gNB 01和eNB 02完成SN状态传输和数据转发。
S1108:eNB 01,gNB 01、eNB 02以及核心网C完成路径更新流程。
S1109:eNB 02向eNB 01发送终端上下文释放消息。该消息中用于指示gNB 01向eNB 01发送SCG承载或者SCG分流承载通过gNB 01传输的数据的数据量。
上述S1101至S1109分别可以参考例如3GPP TS 37.340V0.2.1章节10.7.1的图10.7.1-1的步骤1-5,10-17的相关内容。
S1110:eNB 01向gNB 01发送终端上下文释放消息,该消息中用于指示gNB 01向eNB 01发送SCG承载或者SCG分流承载通过gNB 01传输的数据的数据量。
S1111:gNB 01获取SCG承载或者SCG分流承载通过gNB 01传输的数据的数据量(即数据量S)。
可选的,统计数据量S(例如S905)可以基于上下行粒度。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,统计数据量S(例如S905)可以排除数据的头开销。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,统计数据量S(例如S905)可以基于承载粒度、会话粒度、或者流粒度。相关内容的详细说明可以参考示例一至四的相关内容。
gNB 01获取数据量S时,已经完成数据转发和路径更新,从而保证gNB 01在获取数据量S的时候以及之后,不再与终端01进行数据传输,从而保证该数据量的精确性。
S1112:gNB 01向eNB 01发送第一消息,第一消息包括数据量S。
可选的,gNB 01向eNB 01上报(例如S1112)可以包括与数据量S对应的承载标识、流标识或者会话标识中的至少一种。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,gNB 01向eNB 01上报(例如S1112)还可以包括时间戳,用于表示统计数据量S对应的起止时间。相关内容的详细说明可以参考示例一至四的相关内容。
S1113:eNB 01向核心网C发送第二消息,该第二消息包括数据量S。
可选的,eNB 01向核心网C上报(例如S1113)还可以包括与数据量S对应的承载标识、流标识或者会话标识中的至少一种。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,eNB 01向核心网C上报(例如S1113)还可以包括gNB 01的无线接入技术。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,在eNB 01向核心网C上报(例如S1113)之前,还可以包括eNB 01对同一SCG或者SCG分流承载,相同无线接入技术的数据量进行累加。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,eNB 01向核心网C上报(例如S1113)还可以包括时间戳,用于表示统计数据量S对应的起止时间。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,eNB 01向核心网C上报(例如S1113)还可以包括承载类型,例如SCG分流承载或者SCG承载。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,eNB 01向核心网C上报的时机(例如S1113),可以存在几种可选的实施方式。相关内容的详细说明可以参考示例一至四的相关内容。
示例八:主节点A为eNB 01,辅节点B为gNB 01,核心网C为EPC或者5GC,网络为终端01建立有SCG或者SCG分流承载。
如图12a所示:
S1201-S1203可以是现有流程中的消息,也可以是新增的消息。本实施例对此不作限制。
S1201:eNB 01向gNB 01发送第一消息,该消息用于指示gNB 01向eNB 01发送SCG承载或者SCG分流承载通过gNB 01传输的数据的数据量。
S1202:gNB 01获取SCG承载或者SCG分流承载通过gNB 01传输的数据的数据量。
可选的,统计数据量S(例如S1202)可以基于上下行粒度。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,统计数据量S(例如S1202)可以排除数据的头开销。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,统计数据量S(例如S1202)可以基于承载粒度、会话粒度、或者流粒度。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,gNB 01获取数据量S后,不再与终端01进行数据传输,从而保证该数据量的精确性。
S1203:gNB 01向eNB 01发送第二消息,该第二消息包括数据量S。
可选的,gNB 01向eNB 01上报(例如S1203)可以包括与数据量S对应的承载标识、流标识或者会话标识中的至少一种。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,gNB 01向eNB 01上报(例如S1203)还可以包括时间戳,用于表示统计数据量S对应的起止时间。相关内容的详细说明可以参考示例一至四的相关内容。
S1204:eNB 01向核心网C发送第三消息,该第三消息包括该数据量,以及与该数据量对应的承载标识或者会话标识中的至少一种。
可选的,eNB 01向核心网C上报(例如S1204)还可以包括与数据量S对应的承载标识、流标识或者会话标识中的至少一种。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,eNB 01向核心网C上报(例如S1204)还可以包括gNB 01的无线接入技术。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,在eNB 01向核心网C上报(例如S1204)之前,还可以包括eNB 01对同一SCG或者SCG分流承载,相同无线接入技术的数据量进行累加。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,eNB 01向核心网C上报(例如S1204)还可以包括时间戳,用于表示统计数据量S对应的起止时间。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,eNB 01向核心网C上报(例如S1204)还可以包括承载类型,例如SCG分流承载或者SCG承载。相关内容的详细说明可以参考示例一至四的相关内容。
可选的,eNB 01向核心网C上报的时机(例如S1204),可以存在几种可选的实施方式。相关内容的详细说明可以参考示例一至四的相关内容。
需要说明的是,方案三同样适用于辅助承载或者辅助分流承载。例如:主节点A为gNB,辅节点B为eNB,核心网C为EPC或者5GC;或者主节点A为eNB,辅节点B为WT,核心网C为EPC;或者主节点A为gNB,辅节点B为WT,核心网C为5GC。本申请实施例对此不作限制。
以下分别从主节点侧、辅节点侧和核心网侧对方案三提供的方法进行说明。
以下为从主节点侧描述的方案三的方法。该方法M5包括:
M501:在辅节点上的承载被释放时,上述辅节点获取辅助承载或者辅助分流承载 通过上述辅节点传输的数据量;
M501的相关说明可以参考S808,S905,S1003,S1111,S1202。
M502:上述辅节点向主节点发送第一消息,第一消息包括用于指示上述辅助承载或者上述辅助分流承载通过上述辅节点传输的数据量。
M502的相关说明可以参考S809,S906,S1004,S1112,S1203。
以下为从主节点侧描述的方案三的方法。该方法M6包括:
M601:在辅节点上的承载被释放时,主节点接收辅节点发送的第一消息,上述第一消息包括用于指示辅助承载或者辅助分流承载通过上述辅节点传输的数据的数据量信息;
M601的相关说明可以参考S808,S905,S1003,S1111,S1202。
M602:上述主节点向核心网发送第二消息,上述第一消息包括用于指示辅助承载或者辅助分流承载通过上述辅节点传输的数据的数据量信息。
M602的相关说明可以参考S810,S907,S1005,S1113,S1204。
以下为从核心网侧描述的方案三的方法。该方法M7包括:
M701:在辅节点上的承载被释放时,核心网网元从主节点接收第二消息,第二消息包括用于指示辅助承载或者辅助分流承载通过上述辅节点传输的数据的数据量信息。
M701的相关说明可以参考S810,S907,S1005,S1113,S1204。
M702:上述核心网网元根据上述辅助承载或者辅助分流承载传输的数据的数据量和上述辅助承载或者辅助分流承载通过辅节点传输的数据的数据量获取上述辅助分流承载通过主节点传输的数据的数据量信息。
需要说明的是,上述方案三同样适用于主分流承载,图14为主分流承载的示意图。如图14所示,核心网C和主节点A之间为终端01建立有用户面连接,主节点A和终端01建立有用户面连接,辅节点B和终端01建立有用户面连接。当有下行数据时,该承载的全部数据由核心网C发送到主节点A,主节点A将部分数据发送到辅节点B,由辅节点B将该部分数据发送到终端01,主节点A将其余数据发送到终端01。当有上行数据时,终端01可以将该承载的部分数据发送到主节点A,终端01将该承载的其余数据发送到辅节点B,由辅节点B将该其余数据发送到主节点A,主节点A将接收到的该承载的全部数据发送到核心网C;可选的,也可以配置成终端01将该承载的全部数据都发送给辅节点B,由辅节点B发送到主节点A,或者配置成终端01将该承载的所有数据发送到主节点A。关于主分流承载的相关内容,例如可以参考3GPP TS37.340V0.2.1章节4.2.2的相关内容。
在方案三中,类似的,辅节点B可以将主分流承载通过辅节点B传输的数据量发送给主节点A,由主节点A上报给核心网C。核心网根据该主分流承载通过辅节点B传输的数据量可以获知该承载通过主节点A传输的数据量,实现了数据量的精确统计。
作为一种示例,在方案一至方案三中,主节点A向核心网C上报数据量的时候,可以按照表1-6所示的示例进行上报。
承载标识 数据量
承载1 数据量M1
承载2 数据量M2
承载3 数据量M3
··· ···
表1
会话标识 数据量
会话1 数据量1
会话2 数据量2
会话3 数据量3
··· ···
表2
流标识 数据量
流1 数据量1
流2 数据量2
流3 数据量3
··· ···
表3
Figure PCTCN2018099615-appb-000001
表4
Figure PCTCN2018099615-appb-000002
表5
Figure PCTCN2018099615-appb-000003
表6
上面结合方案一至方案三(以下称为方法实施例)对本申请实施例提供的方法进行了介绍。下面对本申请实施例提供的通信装置做进一步说明。
本申请实施例提供了一种网络设备1200,该网络设备可以是图1所示的网络中的辅节点B,可以执行由辅节点B执行的方法。如图12b所示:
网络设备1200包括一个或多个远端射频单元(英文:remote radio unit,简称:RRU)1201和一个或多个基带单元(英文:baseband unit,简称:BBU)1202。上述RRU 1201可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线1203和射频单元1204。上述RRU 1201部分主要用于射频信号的收发以及射频信号与基带信号的转换。上述BBU 1202部分主要用于进行基带处理,对网络设备进行控制等。上述RRU 1201与BBU 1202可以是物理上设置在一起,也可以物理上分离设置的,即分布式网络设备。
上述BBU 1202为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如上述BBU(处理单元)可以用于控制网络设备执行上述方法实施例中由辅节点B执行的方法。
在一个示例中,上述BBU 1202可以由一个或多个单板构成,多个单板可以共同支持单一无线接入技术的无线接入网(例如LTE网或者NR网),也可以分别支持不同无线接入技术的无线接入网(如LTE网,NR网或其他网)。上述BBU 1202还包括存储器1025和处理器1206。上述存储器1025用以存储必要的指令和数据。上述处理器1206用于控制网络设备进行必要的动作,例如用于控制网络设备执行上述方法实施例中由辅节点B执行的方法。上述存储器1025和处理器1206可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
在上行链路上,通过上述天线1203接收终端设备发送的上行链路信号(包括数据等),在下行链路上,通过上述天线1203向终端设备发送下行链路信号(包括数据和/或控制信息),在上述处理器1206中,对业务数据和信令消息进行处理,这些单元根据无线接入网采用的无线接入技术(例如,LTE、NR及其他演进系统的接入技术)来进行处理。上述处理器1206还用于对网络设备的动作进行控制管理,用于执行上述方法实施例中由辅节点B进行的处理。
可以理解的是,图12b仅仅示出了上述网络设备的简化设计。在实际应用中,上 述网络设备可以包含任意数量的天线,存储器,处理器,射频单元,RRU,BBU等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
本申请实施例提供了另一种通信装置1300,该通信装置可以执行上述方法实施例中由主节点A执行的方法。
如图13所示:
通信装置1300包括处理系统1307,用于执行上述方法实施例中由主节点A执行的方法M1,M3或者M5。处理系统1307可以是一种电路,该电路可以由芯片实现。
处理系统1307包括一个或者多个处理器1301。处理器1301可以是通用处理器或者专用处理器等,例如可以是基带处理器或者中央处理器,处理器1301也可以集成基带处理器或者中央处理器的功能。基带处理器主要用于对通信协议以及通信数据进行处理,基带处理器也可以称为基带处理电路或者基带处理芯片。中央处理器主要用于对整个通信装置(例如芯片,网络设备,终端设备等)进行控制,执行软件程序,处理软件程序的数据。中央处理器也可以称为中央处理电路或者中央处理芯片。该一个或者多个处理器1301可以执行方法M1,M3或者M5。
处理器1301可以是以下的任一种:中央处理器(英文:Central Processing Unit,简称:CPU)、ARM处理器(AMR的英文全称为:Advanced RISC Machines,RISC的英文全称为:Reduced Instruction Set Computing,中文翻译为:精简指令集:)、现场可编程门阵列(英文:Field Programmable Gate Array,简称:FPGA)、专用处理器等具有计算处理能力的器件。可选的,上述处理器1301可以集成为众核处理器。
作为一种可选的设计,处理器1301可以包括指令1303,指令1303可以在处理器1301中被运行,使得通信装置1300执行方法M1,M3或者M5。
作为一种可选的设计,处理系统1307可以包括一个或多个存储器1302,存储器1302通过总线1306与处理器1303相连。存储器1302上存有指令1304,指令1304可在处理器1301上被运行,使得通信装置700执行方法M1,M3或者M5。可选的,存储器1302中还可以存储有数据。可选的,处理器1301中也可以存储指令和/或数据。例如,上述一个或多个存储器1302可以存储上述方法实施例中的方法的指令和数据。处理器1301和存储器1302可以单独设置,也可以集成在一起。
存储器1302可以是以下的任一种或任一种组合:随机存取存储器(英文:Random Access Memory,简称:RAM)、只读存储器(英文:read only memory,简称:ROM)、非易失性存储器(英文:non-volatile memory,简称:NVM)、固态硬盘(英文:Solid State Drives,简称:SSD)、机械硬盘、磁盘、磁盘整列等存储介质。
总线1306可以包括地址总线、数据总线、控制总线等,为便于表示,图13用一条粗线表示该总线。总线1306可以是以下的任一种或任一种组合:工业标准体系结构(英文:Industry Standard Architecture,简称:ISA)总线、外设组件互连标准(英文:Peripheral Component Interconnect,简称:PCI)总线、扩展工业标准结构(英文:Extended Industry Standard Architecture,简称:EISA)总线等有线数据传输的器件。
作为一种可选的设计,处理系统1307还可以包括收发单元1305,收发单元1305通过总线1306与处理器1303相连。收发单元1305可以是芯片的输入输出电路,收发单元1305可以实现与其他通信单元(例如射频芯片或者网络设备中的其他单元)进行 数据交互。
作为一种可选的设计,通信装置1300还可以包括天线1307,天线1307可以与收发单元1305相连。该通信装置1300可以是网络设备(例如主节点A)。收发单元1305可以是射频单元,收发单元1305可以通过天线1307实现通信装置1300与其他设备进行数据交互,例如,当通信装置1300是主节点A时,通信装置1300的收发单元1305可以通过天线1307与辅节点B进行数据交互。
作为一种可选的设计,可以将处理器1301视为处理单元,存储器1302视为存储单元。通信装置1300可以包括处理单元。通信装置1300还可以包括存储单元或者收发单元中的至少一种。
本申请实施例还提供了一种计算机可读存储介质。上述方法实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,则功能可以作为一个或多个指令或代码存储在计算机可读介质上或者在计算机可读介质上传输。计算机可读介质可以包括计算机存储介质和通信介质,还可以包括任何可以将计算机程序从一个地方传送到另一个地方的介质。存储介质可以是可由计算机访问的任何可用介质。
作为一种可选的设计,计算机可读介质可以包括RAM,ROM,EEPROM,CD-ROM或其他光盘存储器,磁盘存储器或其他磁存储设备,或可用于承载的任何其他介质或以指令或数据结构的形式存储所需的程序代码,并且可由计算机访问。而且,任何连接被适当地称为计算机可读介质。例如,如果使用同轴电缆,光纤电缆,双绞线,数字用户线(DSL)或无线技术(如红外,无线电和微波)从网站,服务器或其他远程源传输软件,则同轴电缆,光纤电缆,双绞线,DSL或诸如红外,无线电和微波之类的无线技术包括在介质的定义中。如本文所使用的磁盘和光盘包括光盘(CD),激光盘,光盘,数字通用光盘(DVD),软盘和蓝光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光光学地再现数据。上述的组合也应包括在计算机可读介质的范围内。
本申请实施例还提供了一种计算机程序产品。上述方法实施例中描述的方法可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。如果在软件中实现,可以全部或者部分得通过计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行上述计算机程序指令时,全部或部分地产生按照上述方法实施例中描述的流程或功能。上述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。
Figure PCTCN2018099615-appb-000004

Claims (25)

  1. 所述辅节点向主节点发送第一消息,所述第一消息包括第一信息,所述第一信息用于指示所述数据量。
  2. 根据权利要求15所述的方法,其特征在于,所述第一承载为SCG承载或者SCG分流承载。
  3. 根据权利要求15或16所述的方法,其特征在于,
    所述第一消息还包括所述第一承载的承载标识。
  4. 根据权利要求15-17任一项所述的方法,其特征在于,所述第一承载通过所述辅节点与终端的传输停止后,所述辅节点向所述主节点发送所述第一消息。
  5. 根据权利要求15-18任一项所述的方法,其特征在于,所述数据量为上行数据量和下行数据量中的至少一种。
  6. 根据权利要求15-18任一项所述的方法,其特征在于,所述数据量为上行数据量与下行数据量之和。
  7. 根据权利要求15-20任一项所述的方法,其特征在于,所述数据量不包括PDCP,RLC,MAC或者SDAP的头开销。
  8. 根据权利要求15-21任一项所述的方法,其特征在于,所述第一消息还包括时间戳,所述时间戳用于指示所述数据量的起止时间。
  9. 根据权利要求15-22任一项所述的方法,其特征在于,所述辅节点是在辅节点切换的流程中、辅节点释放的流程中、辅节点配置修改的流程中、或者主节点切换的流程中发送所述第一消息的。
  10. 一种通信方法,其特征在于,包括:
    核心网从主节点接收第一消息,所述第一消息包括第一信息,所述第一信息用于指示所述第一承载通过辅节点传输的数据的数据量;
    所述核心网获取所述数据量。
  11. 根据权利要求24所述的方法,其特征在于,所述第一承载为SCG承载或者SCG分流承载。
  12. 根据权利要求24或者25所述的方法,其特征在于,
    所述第一消息还包括所述第一承载的承载标识。
  13. 根据权利要求24-26任一项所述的方法,其特征在于,所述数据量为上行数据量和下行数据量中的至少一种。
  14. 根据权利要求24-27任一项所述的方法,其特征在于,所述数据量为上行数据量与下行数据量之和。
  15. 根据权利要求24-28任一项所述的方法,其特征在于,
    所述数据量不包括PDCP,RLC,MAC或者SDAP的头开销。
  16. 根据权利要求24-29任一项所述的方法,其特征在于,
    所述第一消息还包括时间戳,所述时间戳用于指示所述数据量的起止时间。
  17. 根据权利要求24-30任一项所述的方法,其特征在于,所述第一消息还包括所述辅节点的无线接入技术的标识。
  18. 根据权利要求24-31任一项所述的方法,其特征在于,所述核心网从所述主节点接收所述第一消息包括:所述核心网周期性地从所述主节点接收所述第一消息。
  19. 一种通信装置,其特征在于,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得通信装置执行权利要求1至14任一所述的方法。
  20. 一种通信装置,其特征在于,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得通信装置执行权利要求15至23任一所述的方法。
  21. 一种通信装置,其特征在于,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得通信装置执行权利要求24至32任一所述的方法。
  22. 一种计算机存储介质,其特征在于,用于存储计算机软件指令,当所述计算机软件指令被执行时实现权利要求1-32任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机执行指令,当所述计算机执行指令被执行时实现权利要求1-32任一项所述的方法。
  24. 一种通信系统,所述通信系统包括权利要求33所述的通信装置和权利要求34所述的通信装置。
  25. 一种通信系统,所述通信系统包括权利要求33所述的通信装置和权利要求35所述的通信装置。
PCT/CN2018/099615 2017-08-11 2018-08-09 一种通信方法和装置 WO2019029616A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112020000154-6A BR112020000154A2 (pt) 2017-08-11 2018-08-09 método de comunicação, aparelho de comunicações, aparelho, produto de programa de computador, sistema de comunicações
JP2019570975A JP7007406B2 (ja) 2017-08-11 2018-08-09 通信方法および通信装置
CN201880052199.9A CN111034104B (zh) 2017-08-11 2018-08-09 一种通信方法和装置
CA3064656A CA3064656C (en) 2017-08-11 2018-08-09 Communication method and communications apparatus
RU2019143655A RU2772980C2 (ru) 2017-08-11 2018-08-09 Способ связи и устройство связи
EP18843649.7A EP3609113A4 (en) 2017-08-11 2018-08-09 COMMUNICATION METHOD AND DEVICE
KR1020197036229A KR102363791B1 (ko) 2017-08-11 2018-08-09 통신 방법 및 통신 장치
US16/566,436 US10743213B2 (en) 2017-08-11 2019-09-10 Communication methods and communications apparatuses
US16/916,529 US11412414B2 (en) 2017-08-11 2020-06-30 Communication methods and communications apparatuses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710687801.3 2017-08-11
CN201710687801.3A CN109547176B9 (zh) 2017-08-11 2017-08-11 一种通信方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/566,436 Continuation US10743213B2 (en) 2017-08-11 2019-09-10 Communication methods and communications apparatuses

Publications (1)

Publication Number Publication Date
WO2019029616A1 true WO2019029616A1 (zh) 2019-02-14

Family

ID=65270868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099615 WO2019029616A1 (zh) 2017-08-11 2018-08-09 一种通信方法和装置

Country Status (8)

Country Link
US (2) US10743213B2 (zh)
EP (1) EP3609113A4 (zh)
JP (1) JP7007406B2 (zh)
KR (1) KR102363791B1 (zh)
CN (3) CN110572882B (zh)
BR (1) BR112020000154A2 (zh)
CA (1) CA3064656C (zh)
WO (1) WO2019029616A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110225474B (zh) 2018-03-02 2021-08-13 华为技术有限公司 一种多连接下的数据量上报方法
SG11202101188PA (en) 2018-08-08 2021-03-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Information configuration method and apparatus, terminal and network device
EP3922053A1 (en) * 2019-02-08 2021-12-15 Telefonaktiebolaget Lm Ericsson (Publ) Data volume reporting in 5gs
CN111818572B (zh) * 2019-04-10 2023-01-13 中国移动通信有限公司研究院 一种信息传输方法及设备
CN111866963B (zh) * 2019-04-28 2021-12-31 华为技术有限公司 通信方法、通信装置、计算机存储介质及通信系统
US11546968B2 (en) 2019-08-15 2023-01-03 Apple Inc. Traffic-rate based branch deactivation for UE power efficiency in a dual-connectivity mode
WO2021030984A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 一种配置方法、装置、计算机可读存储介质及系统
CN111093234A (zh) * 2019-11-04 2020-05-01 中兴通讯股份有限公司 交叉流程的处理方法、装置、设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102461069A (zh) * 2009-04-16 2012-05-16 埃尔科姆国际有限公司 建模设备和方法
CN103249078A (zh) * 2012-02-10 2013-08-14 中兴通讯股份有限公司 一种用于最小化路测的吞吐量测量方法和测量节点
CN106454946A (zh) * 2015-08-12 2017-02-22 中兴通讯股份有限公司 一种数据承载的迁移方法、装置和演进型节点
CN106797581A (zh) * 2014-09-26 2017-05-31 诺基亚通信公司 用于网络节点之间的流控制数据请求的下限和上限

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8225002B2 (en) 1999-01-22 2012-07-17 Network Disk, Inc. Data storage and data sharing in a network of heterogeneous computers
TWI397287B (zh) * 2004-07-30 2013-05-21 Ericsson Telefon Ab L M 混合式通信網路中用以提供相關通信對話訊息之方法與系統
FR2881306B1 (fr) 2005-01-21 2007-03-23 Meiosys Soc Par Actions Simpli Procede de journalisation non intrusive d'evenements externes aupres d'un processus applicatif, et systeme mettant en oeuvre ce procede
FR2881308B1 (fr) 2005-01-21 2007-03-23 Meiosys Soc Par Actions Simpli Procede d'acceleration de la transmission de donnees de journalisation en environnement multi ordinateurs et systeme utilisant ce procede
CN101247238B (zh) 2007-02-14 2011-10-05 华为技术有限公司 数据流量统计的方法及系统
KR20140116554A (ko) * 2010-02-12 2014-10-02 인터디지탈 테크날러지 코포레이션 다중 사이트 간의 데이터 분할
CN102202419B (zh) * 2011-04-25 2014-04-02 华为技术有限公司 多种无线接入技术服务一个用户设备的数据分配方法及装置
WO2013022751A1 (en) * 2011-08-10 2013-02-14 Interdigital Patent Holdings, Inc. Uplink feedback for multi-site scheduling
CN102958108B (zh) 2011-08-26 2015-03-18 华为技术有限公司 用于数据传输的方法、分流点设备、用户终端和系统
KR20160062216A (ko) * 2012-03-22 2016-06-01 인터디지탈 패튼 홀딩스, 인크 백홀 트래픽을 오프로딩하는 방법 및 장치
US9408125B2 (en) * 2012-07-05 2016-08-02 Qualcomm Incorporated Aggregation of data bearers for carrier aggregation
EP2908570B1 (en) 2012-11-13 2019-06-19 Huawei Technologies Co., Ltd. Method and base station for transmitting data
US9173147B2 (en) * 2013-01-18 2015-10-27 Blackberry Limited Communicating data using a local wireless access network node
WO2015016550A1 (en) * 2013-07-29 2015-02-05 Lg Electronics Inc. Method for calculating and reporting a buffer status and device therefor
EP2835925B1 (en) * 2013-08-09 2018-08-08 Panasonic Intellectual Property Corporation of America Efficient Status Reporting for UEs in dual connectivity during mobility
ES2806007T3 (es) * 2013-09-26 2021-02-16 Lg Electronics Inc Procedimiento para activar y notificar un estado de la memoria tampón, y dispositivo correspondiente
CN104581948B (zh) * 2013-10-17 2018-10-30 普天信息技术研究院有限公司 一种双连接网络中的bsr处理方法
CN106063326B (zh) 2013-10-31 2020-02-07 日本电气株式会社 无线电通信系统、基站装置、无线电终端和通信控制方法
CN104797000B (zh) * 2014-01-21 2018-06-19 普天信息技术有限公司 双连接网络中的无线承载建立方法及系统
US10159083B2 (en) * 2014-01-24 2018-12-18 Sharp Kabushiki Kaisha Wireless communication system, base station apparatus, terminal apparatus, wireless communication method, and integrated circuit
CN104812000A (zh) * 2014-01-27 2015-07-29 中兴通讯股份有限公司 一种实现数据传输的方法及装置
US10075381B2 (en) * 2014-01-28 2018-09-11 Mediatek Inc. Buffer status report and logical channel prioritization for dual connectivity
KR102211263B1 (ko) * 2014-03-21 2021-02-04 삼성전자주식회사 통신 시스템에서 단말의 버퍼 상태 보고 방법 및 장치
CN104936228B (zh) * 2014-03-21 2019-04-09 上海诺基亚贝尔股份有限公司 用于在双连接系统中流量控制的方法和装置
CN106165511A (zh) * 2014-04-18 2016-11-23 株式会社Ntt都科摩 用户装置、基站、上行数据分割比率计算方法、以及上行数据分割比率提供方法
WO2015170630A1 (ja) * 2014-05-07 2015-11-12 株式会社Nttドコモ 移動局、基地局、上りリンクデータ量報告方法及び上りリンクデータのリソース割り当て方法
US9838282B2 (en) * 2014-05-09 2017-12-05 Telefonaktiebolaget Lm Ericsson (Publ) PDCP and flow control for split bearer
GB2528913B (en) * 2014-08-04 2017-03-01 Samsung Electronics Co Ltd Signalling in dual connectivity mobile communication networks
CN106797574B (zh) * 2014-08-07 2021-04-06 日本电气株式会社 基站、无线通信系统和通信方法
WO2016019543A1 (zh) 2014-08-07 2016-02-11 华为技术有限公司 用户设备位置信息上报方法和装置
CN104168655B (zh) * 2014-08-08 2017-12-19 电信科学技术研究院 一种数据传输方法及装置
GB2528988A (en) * 2014-08-08 2016-02-10 Nec Corp Communication system
US10219317B2 (en) * 2014-09-25 2019-02-26 Lg Electronics Inc. Method for handling of data transmission and reception for SeNB related bearer release at a user equipment in a dual connectivity system and device therefor
CN107113901B (zh) * 2014-11-07 2021-02-19 诺基亚技术有限公司 双连接中的数据转发支持
US10555216B2 (en) * 2015-03-10 2020-02-04 Intel IP Corporation Apparatus, system and method of offloading traffic of a secondary cell group (SCG)
CN106332175A (zh) * 2015-07-01 2017-01-11 中兴通讯股份有限公司 一种控制双连接x2状态报告发送的方法、装置及辅基站
WO2017007171A1 (en) * 2015-07-06 2017-01-12 Lg Electronics Inc. Method for triggering a buffer status reporting in dual connectivity and a device therefor
WO2017007147A1 (en) * 2015-07-06 2017-01-12 Lg Electronics Inc. Method for triggering buffer status report in dual connectivity and a device therefor
US10477430B2 (en) * 2015-07-30 2019-11-12 Kyocera Corporation Radio terminal
EP3331265A1 (en) * 2015-07-31 2018-06-06 NTT Docomo, Inc. Base station, data communication traffic volume management device, data communication traffic volume reporting method and data communication traffic volume acquisition method
WO2017030487A1 (en) 2015-08-14 2017-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Traffic monitoring and reporting in diverse connection scenarios
CN106937396B (zh) * 2015-12-31 2020-06-30 上海无线通信研究中心 一种上行资源调度方法、终端和基站
WO2017113562A1 (zh) 2015-12-31 2017-07-06 华为技术有限公司 一种计费系统、方法及网络设备
CN108432324B (zh) * 2016-01-07 2023-05-12 瑞典爱立信有限公司 用于无线通信系统中的下行链路流控制的方法和设备
WO2017175823A1 (ja) * 2016-04-08 2017-10-12 株式会社Nttドコモ 基地局及び送信制御方法
EP3459292A1 (en) * 2016-05-20 2019-03-27 Nokia Solutions and Networks Oy Power efficiency in multiple radio access technologies scenarios
BR112018017299A2 (pt) * 2016-06-08 2019-01-02 Huawei Tech Co Ltd porta de comunicação, nó de acesso mestre e métodos dos mesmos
WO2017214871A1 (zh) * 2016-06-15 2017-12-21 华为技术有限公司 业务数据分流方法及装置
EP3796741A3 (en) * 2016-09-28 2022-06-08 Sony Group Corporation Telecommunications apparatus and methods for handling split radio bearers
WO2018059704A1 (en) * 2016-09-30 2018-04-05 Nokia Solutions And Networks Oy Communication control for uplink data in multi-connectivity communication mode
GB201621072D0 (en) * 2016-12-12 2017-01-25 Samsung Electronics Co Ltd NR QOS handling
CN108282796B (zh) * 2017-01-05 2022-08-09 中兴通讯股份有限公司 一种无线链路管理的方法及装置、系统
KR102307472B1 (ko) * 2017-03-22 2021-10-01 에스케이텔레콤 주식회사 이중 연결 네트워크에서의 연계 기지국의 데이터 전송 속도를 추정하는 방법 및 그 방법이 적용된 기지국
US10237784B2 (en) * 2017-03-24 2019-03-19 Motorola Mobility Llc Split bearer packet data converge protocol protocol data unit routing
WO2018205094A1 (en) * 2017-05-08 2018-11-15 Nokia Solutions And Networks Oy Core networks controlled traffic transmission in dual/multiple-connectivity system
GB2563590B (en) * 2017-06-16 2021-12-29 Tcl Communication Ltd Methods and devices associated with improvements in or relating to an uplink split bearer in new radio
US10757042B2 (en) * 2017-08-11 2020-08-25 Qualcomm Incorporated Buffer management for multiple radio access technologies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102461069A (zh) * 2009-04-16 2012-05-16 埃尔科姆国际有限公司 建模设备和方法
CN103249078A (zh) * 2012-02-10 2013-08-14 中兴通讯股份有限公司 一种用于最小化路测的吞吐量测量方法和测量节点
CN106797581A (zh) * 2014-09-26 2017-05-31 诺基亚通信公司 用于网络节点之间的流控制数据请求的下限和上限
CN106454946A (zh) * 2015-08-12 2017-02-22 中兴通讯股份有限公司 一种数据承载的迁移方法、装置和演进型节点

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3609113A4

Also Published As

Publication number Publication date
CN111034104B (zh) 2021-06-08
JP7007406B2 (ja) 2022-01-24
CN109547176B (zh) 2022-05-17
JP2020526081A (ja) 2020-08-27
EP3609113A4 (en) 2020-07-29
CN111034104A (zh) 2020-04-17
US20200008100A1 (en) 2020-01-02
RU2019143655A (ru) 2021-06-25
US20200336939A1 (en) 2020-10-22
EP3609113A1 (en) 2020-02-12
BR112020000154A2 (pt) 2020-07-14
CN109547176B9 (zh) 2022-07-01
CA3064656C (en) 2023-07-04
US11412414B2 (en) 2022-08-09
RU2019143655A3 (zh) 2021-12-13
US10743213B2 (en) 2020-08-11
CN109547176A (zh) 2019-03-29
KR102363791B1 (ko) 2022-02-15
CA3064656A1 (en) 2019-02-14
KR20200005618A (ko) 2020-01-15
CN110572882B (zh) 2021-03-05
CN110572882A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
CN111034104B (zh) 一种通信方法和装置
JP7401575B2 (ja) 通信方法、アクセスネットワークデバイス、およびコアネットワークデバイス
JP2023024660A (ja) 無線局、無線端末、及びこれらの方法
EP3703466B1 (en) Service reliability improving method, device, and system
RU2669009C2 (ru) Система связи
WO2021032131A1 (zh) 一种用户面信息上报方法及装置
US11438739B2 (en) Multi-connectivity data volume reporting method
JP6438044B2 (ja) バッファステータスを報告及び受信する方法及び装置
US11350473B2 (en) Method and apparatus for reporting UE capability for MR-DC in NR system
US20170223568A1 (en) Method and Apparatus for Triggering Buffer Status Report and Communications System
CN113746585A (zh) 授时方法和通信装置
JP2023546462A (ja) 通信方法および装置、可読記憶媒体、ならびにシステム
WO2020169039A1 (zh) 一种策略管理的方法及装置
WO2020007231A1 (zh) 一种业务传输方法及装置
WO2016029962A1 (en) Establishing dual connectivity
WO2023029625A1 (zh) 一种服务质量的处理方法、装置和通信系统
RU2772980C2 (ru) Способ связи и устройство связи
CN108810954B (zh) 会话分流的方法及装置
TWI778567B (zh) 在雙連接中動態功率分享的信號增強
WO2023213159A1 (zh) 通信方法及装置
WO2023011006A1 (zh) 一种通信方法、装置及设备
CN117956028A (zh) 数据前传方法、装置及存储介质
CN117545027A (zh) 通信方法、源锚节点集中单元和目标锚节点集中单元
KR20190129378A (ko) 통신 시스템에서 통합 전달 네트워크를 통한 패킷의 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843649

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2018843649

Country of ref document: EP

Effective date: 20191107

ENP Entry into the national phase

Ref document number: 3064656

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20197036229

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019570975

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020000154

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020000154

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200103