WO2019029536A1 - 发送和接收参考信号的方法、网络设备、终端设备和系统 - Google Patents

发送和接收参考信号的方法、网络设备、终端设备和系统 Download PDF

Info

Publication number
WO2019029536A1
WO2019029536A1 PCT/CN2018/099207 CN2018099207W WO2019029536A1 WO 2019029536 A1 WO2019029536 A1 WO 2019029536A1 CN 2018099207 W CN2018099207 W CN 2018099207W WO 2019029536 A1 WO2019029536 A1 WO 2019029536A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset
starting
terminal device
value
srs
Prior art date
Application number
PCT/CN2018/099207
Other languages
English (en)
French (fr)
Inventor
丁梦颖
胡远洲
秦熠
栗忠峰
张闽
肖维民
窦圣跃
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES18844967T priority Critical patent/ES2923916T3/es
Priority to EP18844967.2A priority patent/EP3667990B1/en
Priority to EP22175315.5A priority patent/EP4113887A1/en
Priority to BR112020002907-6A priority patent/BR112020002907A2/pt
Publication of WO2019029536A1 publication Critical patent/WO2019029536A1/zh
Priority to US16/788,031 priority patent/US11818077B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communications and, more particularly, to methods, network devices, terminal devices and systems for transmitting and receiving reference signals.
  • a sounding reference signal is a reference signal used to measure an upstream channel.
  • the network device performs uplink channel measurement based on the SRS sent by the terminal device to obtain channel state information (CSI) of the uplink channel, so as to facilitate scheduling of uplink resources.
  • CSI channel state information
  • the uplink system bandwidth can be divided into two parts.
  • the area on both sides of the uplink system bandwidth is used to send the physical uplink control channel (PUCCH), which is located in the uplink system bandwidth.
  • the intermediate area is used to send a physical uplink share channel (PUSCH). Since the transmission capability of the terminal device in the LTE is the same, the resource size (or the sounding region) of the SRS is the cell level, and the detection regions of any two terminal devices in the same cell are the same.
  • the terminal device sends the SRS on the bandwidth except the PUCCH in the uplink system bandwidth, so that the network device performs uplink channel measurement and resource scheduling.
  • the same is true due to the different transmission capabilities of the terminal devices.
  • the detection areas corresponding to different terminal devices in the cell may also be different. Therefore, the detection area is no longer at the cell level but at the user equipment (UE) level.
  • UE user equipment
  • the application provides a method, a network device, a terminal device and a system for transmitting and receiving a reference signal, which are suitable for resource configuration of an SRS in an NR.
  • a method of transmitting a reference signal comprising:
  • the terminal device determines, according to the offset, a location of a starting subcarrier that transmits the SRS, where the offset is a transmission bandwidth of a starting subcarrier of the sounding region relative to a bandwidth portion (BWP) of the terminal device.
  • the resource size of the starting subcarrier offset, and the offset is determined based on a predefined resource configuration manner;
  • the terminal device sends the SRS according to the location of the starting subcarrier of the transmission SRS.
  • the detection area may be a resource for transmitting the SRS to the terminal device, and may be an area in the uplink system bandwidth (more specifically, in the BWP), where the terminal device can perform channel detection through the SRS, which can be understood as a network device.
  • CSI channel state information
  • the embodiment of the present application determines the location of the starting subcarrier for transmitting the SRS by the terminal device by combining the BWP of the terminal device in the NR, and transmits the SRS based on the location of the starting subcarrier, so that the resource for transmitting the SRS configured for each terminal device is configured. It is also at the user equipment (UE) level, so that the resources for transmitting SRS can be configured according to the transmission or reception capability of each terminal device and the requirement for measuring the bandwidth size, which is more suitable for the NR scenario. Moreover, the method for determining the location of the starting subcarrier for transmitting the SRS provided by the embodiment of the present application does not limit the slot type.
  • the predefined resource configuration manner is determined from a plurality of predefined resource configuration manners, where the predefined multiple resource configuration manners are multiple The offset corresponds.
  • a plurality of terminal devices in the same cell can configure transmission resources of the SRS based on different offsets, so that the network device can perform channel measurement on the resources of the BWP full band, thereby performing resource scheduling.
  • the network device can implement full-band measurement of the BWP, and is more advantageous for estimating the CSI of the downlink channel, so as to facilitate resource scheduling.
  • the method provided by the present application helps the network device to schedule more resources, which is beneficial to improving resource utilization, compared to the resource allocation manner of the SRS in the LTE.
  • the method further comprises:
  • the terminal device acquires an index value of the predefined resource configuration manner, where the index value is used to determine the resource configuration mode, where the predefined multiple resource configuration manners correspond to multiple index values one-to-one .
  • the terminal device may obtain an index value of the predefined resource configuration manner by using any one of the following methods:
  • the first device receives the first information, where the first information includes an index value of the predefined resource configuration manner;
  • Method 2 The terminal device determines an index value of the predefined resource configuration manner according to any one of the following parameters: a system frame number, a slot number, or a comb mapping location.
  • a method of receiving a reference signal including:
  • the network device determines, according to the offset, a location of a starting subcarrier that transmits the SRS, where the offset is a resource size of a starting subcarrier offset of a starting subcarrier of the detecting region relative to a transmission bandwidth of the BWP of the terminal device. And the offset is determined based on a predefined resource configuration manner;
  • the network device receives the SRS from the terminal device according to a location of a starting subcarrier that transmits the SRS.
  • the detection area is an area in which the terminal device performs channel detection through the SRS. It can be understood as a resource area of the channel state information (CSI) that the network device needs to acquire, or a resource area that the terminal device can use to send the SRS.
  • CSI channel state information
  • the embodiment of the present application determines the location of the starting subcarrier for transmitting the SRS by the terminal device by combining the BWP of the terminal device in the NR, and transmits the SRS based on the location of the starting subcarrier, so that the resource for transmitting the SRS configured for each terminal device is configured. It is also UE-level, so that the resources for transmitting SRS can be configured according to the transmission or receiving capability of each terminal device and the requirement for measuring the bandwidth size, which is more suitable for the NR scenario. Moreover, the method for determining the location of the starting subcarrier for transmitting the SRS provided by the embodiment of the present application does not limit the slot type.
  • the pre-defined resource configuration manner is determined from a plurality of predefined resource configuration manners, where the predefined multiple resource configuration manners are multiple The offset corresponds.
  • a plurality of terminal devices in the same cell can configure transmission resources of the SRS based on different offsets, so that the network device can perform channel measurement on the resources of the BWP full band, thereby performing resource scheduling.
  • the network device can implement full-band measurement of the BWP, and is more advantageous for estimating the CSI of the downlink channel, so as to facilitate resource scheduling.
  • the method provided by the present application helps the network device to schedule more resources, which is beneficial to improving resource utilization, compared to the resource allocation manner of the SRS in the LTE.
  • the method further includes:
  • the terminal device determines an index value of the predefined resource configuration manner according to any one of the following parameters: a system frame number, a slot number, or a location of a comb mapping, where the index value is used to determine the resource configuration manner.
  • the pre-defined multiple resource configuration manners are in one-to-one correspondence with multiple index values.
  • the method further includes:
  • the network device sends the first information, where the first information includes an index value of the predefined resource configuration manner.
  • a terminal device including a determining module and a transceiver module, to perform the method in any of the foregoing first aspect or the first aspect.
  • the determining module is configured to perform a function related to determining
  • the transceiver module is configured to perform a function related to transceiving.
  • a network device including a determining module and a transceiver module, to perform the method in any of the foregoing possible implementations of the second aspect or the second aspect.
  • the determining module is configured to perform a function related to determining
  • the transceiver module is configured to perform a function related to transceiving.
  • a fifth aspect provides a terminal device, including: a processor, a memory, and a transceiver, the memory being configured to store a computer program, the processor is configured to call and run the computer program from the memory to control the transceiver to send and receive signals, The terminal device is caused to perform the method of any of the first aspect or the first aspect.
  • a network device comprising: a processor, a memory, and a transceiver, the memory for storing a computer program, the processor for calling and running the computer program from the memory to control the transceiver to send and receive signals,
  • the network device is caused to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • the processor is one or more, and the memory is one or more.
  • the memory may be integrated with the processor or the memory may be separate from the processor.
  • a system comprising the above terminal device and a network device.
  • the multiple resource configuration manners are in one-to-one correspondence with a plurality of formulas, each formula is used to determine an offset, and the multiple formulas include:
  • the SRS can be transmitted in the BWP full-band, so that the uplink channel measurement and resource scheduling effects can be performed on the BWP full-band resources.
  • the network device can estimate the CSI of the downlink channel by using channel reciprocity for resource scheduling. Therefore, based on this design, it helps the network device to schedule more resources, which is beneficial to improve resource utilization.
  • the offset is determined according to the following formula:
  • the detection area is placed in the middle area of the BWP in consideration of the possibility that the PUCCH may be disposed on both sides of the BWP in the NR.
  • the detection area is biased to either side of the BWP, it is possible that a part of the bandwidth resources have no SRS transmission and cannot perform channel measurement and resource scheduling, thereby causing the resources of this part to be idle and wasted.
  • the idle resources can be reduced, and the utilization of resources can be improved; at the same time, unnecessary SRS transmission can be reduced, thereby reducing power consumption.
  • the multiple resource configuration manners are in one-to-one correspondence with a plurality of formulas, each formula is used to determine an offset, and the multiple formulas include:
  • both the transmission of the SRS in the BWP and the channel measurement and scheduling of the resources of the BWP full band are considered, and the possibility that the PUCCH may be disposed on both sides of the BWP in the NR is considered. It is beneficial to reduce idle resources and achieve the effect of improving resource utilization.
  • the multiple resource configuration manners are in one-to-one correspondence with a plurality of formulas, each formula is used to determine an offset, and the multiple formulas include:
  • the bandwidth of the detection area in the LTE is extended. That is, the bandwidth of the detection area configured for the terminal device can refer to the bandwidth of the detection area in the LTE, for example, 96 RB, 80 RB, etc., therefore,
  • the LTE protocol is less modified, but at the same time, different offsets can be configured for different terminal devices by using the above formula, so that the SRS can be transmitted in the BWP full-band, thereby enabling uplink channel measurement of the BWP full-band resources.
  • the effect of resource scheduling can Moreover, the network device can estimate the CSI of the downlink channel by using channel reciprocity for resource scheduling. Therefore, based on this design, the network device can help to schedule more resources, which is beneficial to improve resource utilization.
  • the offset is determined according to the following formula:
  • the bandwidth size of the sounding area in LTE is extended, and the detection area is placed in the middle area of the BWP in consideration of the possibility that the PUCCH may be disposed on both sides of the BWP in the NR.
  • the detection area is biased to either side of the BWP, it is possible that a part of the bandwidth resources have no SRS transmission and cannot perform channel measurement and resource scheduling, thereby causing the resources of this part to be idle and wasted.
  • the idle resources can be reduced, and the utilization of resources can be improved; at the same time, unnecessary SRS transmission can be reduced, thereby reducing power consumption.
  • the multiple resource configuration manners are in one-to-one correspondence with a plurality of formulas, each formula is used to determine an offset, and the multiple formulas include:
  • the bandwidth of the detection area in LTE is extended, and the SRS is transmitted in the BWP to achieve the channel measurement and scheduling of the resources of the BWP, and the NR may be
  • the possibility that PUCCH is configured on both sides of the BWP is beneficial to reduce idle resources, thereby achieving the effect of improving resource utilization.
  • the BWP of the terminal device in the NR determines the location of the starting subcarrier for transmitting the SRS by the terminal device, which is more suitable for the NR scenario.
  • the different offsets can be configured for different terminal devices, so that multiple terminal devices in the same cell can transmit SRS based on different offsets, thereby achieving the effect of transmitting SRS on the BWP full band, which is beneficial to the network device pair.
  • the BWP full band of resources performs channel measurement.
  • the full-bandwidth CSI of the downlink channel can be estimated by using channel reciprocity. Compared with the SRS resource configuration mode in LTE, more channels can be measured, which facilitates scheduling more resources and is beneficial to improving resource utilization.
  • a method for transmitting a reference signal including:
  • the terminal device sends the SRS according to the location of the starting subcarrier of the transmission sounding reference signal SRS;
  • the location of the starting subcarrier for transmitting the SRS is determined by the offset of the detection region, and the offset of the detection region is the transmission of the initial subcarrier of the detection region relative to the bandwidth portion BWP of the terminal device.
  • the resource size of the starting subcarrier offset of the bandwidth, where the detection area is a resource allocated to the terminal device for transmitting the SRS.
  • the detection area may be an area in the uplink system bandwidth (more specifically, in the BWP) that the terminal device can perform channel detection through the SRS, which may be understood as a resource area of the channel state information (CSI) that the network device needs to acquire, or Said that the terminal device can be used to send the resource area of the SRS.
  • CSI channel state information
  • the embodiment of the present application determines the location of the starting subcarrier for transmitting the SRS by the terminal device by combining the BWP of the terminal device in the NR, and transmits the SRS based on the location of the starting subcarrier, so that the resource for transmitting the SRS configured for each terminal device is configured. It is also UE-level, so that the resources for transmitting SRS can be configured according to the transmission or receiving capability of each terminal device and the requirement for measuring the bandwidth size, which is more suitable for the NR scenario. Moreover, the method for determining the location of the starting subcarrier for transmitting the SRS provided by the embodiment of the present application does not limit the slot type.
  • the offset of the detection region satisfies Equation 6:
  • the method further includes: receiving, by the terminal device Indication of value, said Indication of value indication The value.
  • the indication of the value is carried in the higher layer signaling.
  • the high layer signaling may include, for example, a Radio Resource Control (RRC) message or a Media Access Control (MAC)-Control Element (CE).
  • RRC Radio Resource Control
  • MAC Media Access Control
  • CE Media Access Control
  • the offset of the detection region satisfies Equation 7:
  • K ⁇ is an arbitrary value in [0, n-1], for Any value in , and K ⁇ , All are integers.
  • the method further includes:
  • the value of K ⁇ indicates the value K ⁇
  • the indication of the value is carried in the higher layer signaling.
  • the high layer signaling may include, for example, an RRC message or a MAC-CE.
  • the indication information of the K ⁇ value is carried in the high layer signaling.
  • the high layer signaling may include, for example, an RRC message or a MAC-CE.
  • the indication information of the value and the indication information of the K ⁇ value may be carried in the same high layer signaling or different high layer signaling, which is not limited in this application.
  • the resources for transmitting the SRS can be controlled within the range of the BWP, thereby avoiding the problem that the channel measurement accuracy of the SRS cannot be completely mapped into the BWP, thereby facilitating the improvement of the demodulation performance.
  • the terminal devices or antenna ports configured with different comb parameters can transmit SRS in different frequency bands of the system bandwidth, so that the network device realizes all Bandwidth measurement is possible, which can improve data transmission performance of the entire bandwidth, and improve resource utilization and resource scheduling flexibility.
  • the method further includes: receiving, by the terminal device Indication of value, said Indication of value indication The value.
  • the indication of the value is carried in the higher layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • n has a value of four.
  • the method further includes:
  • a method for receiving a reference signal including:
  • the network device Receiving, by the network device, the SRS from the terminal device according to a location of a starting subcarrier that transmits a sounding reference signal SRS;
  • the location of the starting subcarrier for transmitting the SRS is determined by the offset of the detection region, and the offset of the detection region is the transmission of the initial subcarrier of the detection region relative to the bandwidth portion BWP of the terminal device.
  • the resource size of the starting subcarrier offset of the bandwidth which is a resource available for transmitting the SRS.
  • the embodiment of the present application determines the location of the starting subcarrier for transmitting the SRS by the terminal device by combining the BWP of the terminal device in the NR, and transmits the SRS based on the location of the starting subcarrier, so that the resource for transmitting the SRS configured for each terminal device is configured. It is also UE-level, so that the resources for transmitting SRS can be configured according to the transmission or receiving capability of each terminal device and the requirement for measuring the bandwidth size, which is more suitable for the NR scenario. Moreover, the method for determining the location of the starting subcarrier for transmitting the SRS provided by the embodiment of the present application does not limit the slot type.
  • the offset of the detection region satisfies Equation 6:
  • Indicates the offset of the detection area Indicates the number of subcarriers included in each resource block RB, Used to determine the position of the comb mapping, Indicates the number of RBs in which the RB where the starting subcarrier of the sounding region is located is offset from the starting RB of the transmission bandwidth of the BWP, And As an integer, Indicates the number of RBs included in the transmission bandwidth of the BWP of the terminal device, Indicates the number of RBs included in the detection area, and Satisfy Mod means modulo, The number of RBs indicating the starting RB of the transmission bandwidth of the BWP with respect to the starting RB of the system bandwidth, ⁇ [0, n-1], and ⁇ is an integer.
  • the method further includes: sending, by the network device Indication of value, said Indication of value indication The value.
  • the indication of the value is carried in the higher layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the offset satisfies Equation 7:
  • K ⁇ is an arbitrary value in [0, n-1], for Any value in , and K ⁇ , All are integers.
  • the method further includes: sending, by the network device Indication of value, said Indication of value indication Value
  • Indication information indicating information of the network device transmits the value of K ⁇ , the value of K ⁇ indicates the value K ⁇ .
  • the indication of the value is carried in the higher layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the indication information of the K ⁇ value is carried in the high layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the indication information of the value and the indication information of the K ⁇ value may be carried in the same RRC message or a different RRC message, which is not limited in this application.
  • the resources for transmitting the SRS can be controlled within the range of the BWP, thereby avoiding the problem that the channel measurement accuracy of the SRS cannot be completely mapped into the BWP, thereby facilitating the improvement of the demodulation performance.
  • the terminal devices or antenna ports configured with different comb parameters can transmit SRS in different frequency bands of the system bandwidth, so that the network device realizes all Bandwidth measurement is possible, which can improve data transmission performance of the entire bandwidth, and improve resource utilization and resource scheduling flexibility.
  • the method further includes: receiving, by the terminal device Indication of value, said Indication of value indication The value.
  • the indication of the value is carried in the higher layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • n has a value of four.
  • the method further includes:
  • the network device determines, according to the offset of the detection area, a location of a starting subcarrier that transmits the SRS.
  • a method for transmitting a reference signal including:
  • the network device sends the CSI-RS according to a starting position of a resource of the transmission channel state information reference signal CSI-RS in the frequency domain;
  • the starting position of the resource for transmitting the CSI-RS in the frequency domain is determined by the offset of the pilot area, and the offset of the pilot area indicates that the starting resource block RB of the pilot area is relatively
  • the resource size of the starting RB offset of the bandwidth part BWP of the terminal device, or the offset of the pilot area indicates the resource of the starting RB of the pilot area offset from the starting RB of the system bandwidth
  • the size, the pilot area is a resource that can be used to transmit the CSI-RS.
  • the embodiment of the present application determines that the terminal device receives the starting RB of the CSI-RS by combining the BWP of the terminal device in the NR, and transmits the CSI-RS based on the starting RB, so that the terminal device can determine the location and size of the BWP according to the BWP.
  • the method further includes:
  • the network transmits a first shift amount k c indication information device, the first offset indication information indicating k c k c values, wherein a first shift amount k c denotes the pilot region The number of RBs of the starting RB offset relative to the starting RB of the BWP.
  • the indication information of the first offset k c is carried in the high layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the method further includes:
  • the network device sends indication information of a second offset T ⁇ , where the indication information of the second offset T ⁇ indicates a value of T ⁇ ;
  • the network device sends indication information of a third offset k i , where the indication information of the third offset k i indicates a value of k i ;
  • the second offset T ⁇ represents the number of RBs of the starting RB of the mappable location of the pilot region relative to the starting RB of the BWP
  • the third offset k i is used to indicate the pilot.
  • the indication information of the second offset T ⁇ and the indication information of the third offset k i are carried in the high layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the foregoing high-level signaling for carrying the second offset T ⁇ and the indication information for carrying the third offset k i may be the same high-level signaling, or may be different high-level signals. This application does not limit this.
  • the offset of the pilot region can be characterized by an offset from the starting RB of the BWP.
  • the method further includes:
  • the indication information of the start location of the pilot area is sent by the network device, where the indication information of the start location indicates an RB number corresponding to a starting RB of the reference signal in a system bandwidth.
  • the indication information of the starting location of the pilot area is carried in the high layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the offset of the pilot region can be characterized by an offset from the starting RB of the system bandwidth.
  • the method further includes:
  • the network device sends indication information of a reference signal position, where the indication information of the reference signal position indicates an RB in the pilot area used for transmitting the CSI-RS.
  • the indication information of the reference signal location is carried in the high layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the method further includes:
  • the network device sends indication information of a pilot area size, where the indication information indicates a transmission bandwidth occupied by the pilot area.
  • the indication information of the pilot area size is carried in the high layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the indication information of the reference signal position is a bitmap
  • the bitmap includes at least one indication bit
  • each indication bit is used to indicate whether an RB group is used. And transmitting the CSI-RS, where the RB group includes at least one RB.
  • the method further includes:
  • the network device determines, according to the offset of the pilot region, a starting RB that transmits the CSI-RS.
  • a method of receiving a reference signal comprising:
  • the starting position of the resource for transmitting the CSI-RS in the frequency domain is determined by the offset of the pilot area, and the offset of the pilot area indicates that the starting resource block RB of the pilot area is relatively
  • the resource size of the starting RB offset of the bandwidth part BWP of the terminal device, or the offset of the pilot area indicates the resource of the starting RB of the pilot area offset from the starting RB of the system bandwidth
  • the pilot area is a resource configured to the terminal device to transmit the CSI-RS.
  • the embodiment of the present application determines that the terminal device receives the starting RB of the CSI-RS by combining the BWP of the terminal device in the NR, and transmits the CSI-RS based on the starting RB, so that the terminal device can determine the location and size of the BWP according to the BWP.
  • the method further includes:
  • the terminal device receives a first shift amount k c indication information, the first offset indication information indicating k c k c values, wherein a first shift amount k c denotes the pilot region The number of RBs of the starting RB offset relative to the starting RB of the BWP.
  • the indication information of the first offset k c is carried in the high layer signaling.
  • the high layer signaling includes, for example, an RRC message or a MAC-CE.
  • the method further includes:
  • the terminal device receives the indication information of the second offset T ⁇ , and the indication information of the second offset T ⁇ indicates the value of T ⁇ ;
  • the terminal device receives the indication information of the third offset k i , where the indication information of the third offset k i indicates the value of k i ;
  • the second offset T ⁇ represents the number of RBs of the starting RB of the mappable location of the pilot region relative to the starting RB of the BWP
  • the third offset k i is used to indicate the pilot.
  • the indication information of the second offset T ⁇ and the indication information of the third offset k i are carried in the high layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the foregoing high-level signaling for carrying the second offset T ⁇ and the indication information for carrying the third offset k i may be the same high-level signaling, or may be different high-level signals. This application does not limit this.
  • the offset of the pilot region can be characterized by an offset from the starting RB of the BWP.
  • the method further includes:
  • the terminal device receives indication information of a starting location of the pilot area, where the indication information of the starting location indicates an RB number corresponding to a starting RB that transmits the reference signal in a system bandwidth.
  • the indication information of the starting location of the pilot area is carried in the high layer signaling.
  • the high layer signaling includes, for example, an RRC message or a MAC-CE.
  • the method further includes:
  • the terminal device receives indication information of a reference signal position, where the indication information of the reference signal position indicates an RB in the pilot area used for transmitting the CSI-RS.
  • the indication information of the reference signal location is carried in the high layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the indication information of the reference signal position is a bitmap
  • the bitmap includes at least one indication bit
  • each indication bit is used to indicate an RB group. Whether to transmit the CSI-RS, each RB group includes at least one RB.
  • the indication information of the pilot area size is carried in the high layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • a terminal device including a determining module and a transceiver module, to perform the foregoing eighth aspect or the eleventh aspect, and the method in any one of the eighth aspect or the eleventh aspect .
  • the determining module is configured to perform a function related to determining
  • the transceiver module is configured to perform a function related to transceiving.
  • a thirteenth aspect a network device, comprising a determining module and a transceiver module, for performing the method of the above ninth or tenth aspect, and the ninth aspect or the tenth aspect of the possible implementation manner.
  • the determining module is configured to perform a function related to determining
  • the transceiver module is configured to perform a function related to transceiving.
  • a terminal device comprising: a processor, a memory, and a transceiver, the memory for storing a computer program, the processor for calling and running the computer program from the memory to control the transceiver to send and receive signals And causing the terminal device to perform the method of the eighth aspect or the eleventh aspect, and the eighth aspect or the eleventh aspect of the possible implementation manner.
  • a network device comprising: a processor, a memory, and a transceiver, the memory for storing a computer program, the processor for calling and running the computer program from the memory to control the transceiver to send and receive signals
  • the network device is caused to perform the method of the ninth aspect or the tenth aspect, and the ninth aspect or the tenth aspect of the possible implementation manner.
  • the processor is one or more, and the memory is one or more.
  • the memory may be integrated with the processor or the memory may be separate from the processor.
  • a system comprising the above-described terminal device and network device.
  • a computer program product comprising: a computer program (also referred to as a code, or an instruction) that, when executed, causes the computer to perform the method.
  • a seventeenth aspect a computer readable medium storing a computer program (which may also be referred to as a code, or an instruction), when executed on a computer, causing the computer to perform the method.
  • a computer program which may also be referred to as a code, or an instruction
  • a computer program product comprising: computer program code for causing a computer to perform the methods of the various aspects described above when the computer program code is run on a computer.
  • a chip system comprising a processor for supporting a terminal device to implement the functions involved in the above aspects, for example, generating, receiving, transmitting, or processing the method involved in the foregoing method Data and / or information.
  • the chip system further comprises a memory for storing necessary program instructions and data of the terminal device.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • a chip system comprising a processor for supporting a network device to implement the functions involved in the above aspects, for example, generating, receiving, transmitting, or processing the method involved in the above method Data and / or information.
  • the chip system further comprises a memory for storing necessary program instructions and data of the terminal device.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • FIG. 1 is a schematic diagram of a communication system that is suitable for a method of transmitting and receiving a reference signal according to an embodiment of the present application;
  • FIG. 2 is a schematic flowchart of a method for transmitting and receiving a reference signal according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a comb tooth position configured based on different mapping modes
  • FIG. 4 is a schematic diagram of a detection area configured based on different resource configuration manners
  • FIG. 5 is a schematic diagram of a detection area configured based on different resource configuration manners
  • FIG. 6 is a schematic flowchart of a method for transmitting and receiving a reference signal according to another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for transmitting and receiving a reference signal according to another embodiment of the present application.
  • Figure 8 is Schematic diagram of the detection area in the case of different values
  • FIG. 9 is a schematic diagram of a system bandwidth, a bandwidth of a BWP of different terminal devices, and a detection area according to an embodiment of the present application;
  • FIG. 10 is a schematic diagram of a system bandwidth, a bandwidth of a BWP, and a detection area corresponding to different delta values according to an embodiment of the present application;
  • FIG. 11 is a system bandwidth, a bandwidth of a BWP, and corresponding K ⁇ values and according to an embodiment of the present application. Schematic diagram of the detection area at the time of value;
  • FIG. 12 is a schematic flowchart of a method for transmitting and receiving a reference signal according to still another embodiment of the present application.
  • FIG. 13 is a schematic diagram of a system bandwidth, a pilot area of a terminal device, and a BWP according to an embodiment of the present application;
  • FIG. 14 is another schematic diagram of a system bandwidth, a pilot area of a terminal device, and a BWP according to an embodiment of the present application;
  • 15 is a schematic diagram of a system bandwidth, a pilot area, a BWP, and a bitmap of a terminal device according to an embodiment of the present application;
  • 16 is another schematic diagram of a system bandwidth, a pilot area of a terminal device, a BWP, and a bitmap provided by an embodiment of the present application.
  • FIG. 17 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • GSM Global System for Mobile communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • a generation communication system for example, a fifth-generation (5G) communication system
  • 5G system can also be called a new radio access technology (NR) system.
  • FIG. 1 is a schematic diagram of a communication system 100 suitable for use in a method of transmitting and receiving reference signals in accordance with an embodiment of the present application.
  • the communication system 100 can include a network device 102 and terminal devices 104-114.
  • the network device 102 may be any device having a wireless transceiving function or a chip that can be disposed on the device, including but not limited to: a base station (eg, a base station NodeB, an evolved base station eNodeB, a fifth generation ( 5G) Network equipment in the communication system (such as transmission point (TP), transmission reception point (TRP), base station, small base station equipment, etc.), network equipment in future communication systems, and wireless fidelity ( Access nodes, wireless relay nodes, wireless backhaul nodes, etc. in the Wireless-Fidelity, WiFi) system.
  • a base station eg, a base station NodeB, an evolved base station eNodeB, a fifth generation ( 5G) Network equipment in the communication system (such as transmission point (TP), transmission reception point (TRP), base station, small base station equipment, etc.), network equipment in future communication systems, and wireless fidelity ( Access nodes, wireless relay nodes, wireless backhaul nodes, etc. in the Wireless-Fidelity, WiFi
  • Network device 102 can communicate with a plurality of terminal devices, such as terminal devices 104-114 shown in the figures.
  • the terminal device may also be referred to as a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
  • Device user agent, or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet, a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal.
  • VR virtual reality
  • AR augmented reality
  • the embodiment of the present application does not limit the application scenario.
  • the foregoing terminal device and a chip that can be disposed in the foregoing terminal device are collectively referred to as a terminal device.
  • the communication system 100 can also be a public land mobile network (PLMN) network, a device to device (D2D) network, a machine to machine (M2M) network, or other network.
  • PLMN public land mobile network
  • D2D device to device
  • M2M machine to machine
  • FIG. 1 is a simplified schematic diagram of an example for ease of understanding.
  • Other communication devices and terminal devices may also be included in the communication system 100, which are not shown in FIG.
  • the SRS is used to detect the quality of the uplink channel.
  • the terminal device sends the SRS on the uplink channel, and the network device performs the measurement of the uplink channel based on the received SRS, thereby determining the frequency location of the resource block allocated by the terminal device in the uplink scheduling.
  • the uplink system bandwidth can be divided into two parts.
  • the area located on both sides of the uplink system bandwidth is used to transmit the PUCCH, and the uplink channel measurement is not required by sending the SRS.
  • the area located in the middle of the uplink system bandwidth, that is, the transmission PUCCH is removed.
  • the area outside the resource is used to transmit the PUSCH, and the SRS needs to be sent for uplink channel measurement for the network device to perform resource scheduling.
  • a bandwidth for transmitting an SRS for uplink channel measurement may be referred to as a sounding region.
  • the sounding area is cell level and can be determined according to a cell-specific SRS bandwidth configuration parameter C SRS .
  • the size of the resource region (i.e., the detection region) that requires channel measurement can be determined.
  • the detection areas of any two terminal devices in the same cell may be the same.
  • the specific SRS bandwidth configuration may be further indicated by a UE-specific SRS bandwidth configuration parameter B SRS , and each B SRS indicates a set of parameters m SRS, b and N b .
  • m SRS, b represents the number of RBs used by the terminal device to transmit the SRS once, that is, the bandwidth used by the terminal device to transmit the SRS once, that is, the measurement bandwidth
  • Table 1 shows the parameters of the bandwidth configuration of the SRS in LTE.
  • the detection areas corresponding to different B SRSs are the same. For example, when C SRS is 0 or 1, the corresponding detection area is 96 RB; when C SRS is 2, the corresponding detection area is 80 RB, etc., for the sake of brevity, it will not be enumerated here.
  • N b is represented by a first sub-band SRS starting transmission sub-carriers (i.e., the direction from the first high frequency to low frequency subcarriers for transmitting the SRS, or that the first subcarrier).
  • a subband can be understood as a frequency domain resource in which a SRS is transmitted through a transmission opportunity of a slot in a sounding area.
  • N b can be understood as an index of a subband used for transmitting the SRS, and its value can be determined by the higher layer parameter n RRC .
  • the calculation method of n b can be the same as the prior art, and for brevity, it will not be described again here.
  • LTE Indicates the number of RBs at which the starting position of the sounding region (eg, the starting subcarrier of the sounding region) is offset relative to the low frequency of the uplink system bandwidth (eg, the starting subcarrier of the uplink system bandwidth), that is, in the uplink system bandwidth.
  • the number of RBs that can be used to transmit the starting subcarrier of the SRS relative to the starting subcarrier offset of the uplink system bandwidth is a UE-specific SRS bandwidth configuration parameter
  • n b is the SRS in the frequency domain location index
  • UpPTS uplink pilot slot
  • m SRS Indicates the number of resource block RBs included in the uplink system bandwidth. Indicates rounding down, m SRS, 0 indicates the number of RBs included in the detection area, which can be obtained by looking up Table 1. For the corresponding m SRS under different C SRS , the maximum value of 0 , Used to determine the position of the comb mapping, K TC represents the number of comb teeth.
  • determining the location of the starting subcarrier for transmitting the SRS according to the above formula may refer to the prior art. In order to avoid redundancy, a detailed description of the specific process is omitted herein.
  • the location of the resource for transmitting the SRS is related to the uplink system bandwidth. Moreover, for different types of subframes, the locations of the resources configured to transmit the SRS are different, or the starting subcarriers for transmitting the SRS are different from the starting subcarriers of the uplink system bandwidth. However, on the same type of subframe, the resources configured to transmit the SRS are the same.
  • the UpPTS usually only appears on the special subframe for uplink and downlink handover in the TDD system, which is a special case.
  • the location of the starting subcarrier used for the SRS transmission is related to the detection region in which the SRS is configured.
  • the terminal device detection areas in the same cell are the same. Therefore, the resource locations for transmitting the SRS are also the same, and the detection area is always in the middle area of the uplink system bandwidth.
  • This SRS resource configuration method is only configured to allocate resources for transmitting SRS in the middle area of the uplink system bandwidth, which is not flexible enough. For example, when the location of the PUCCH changes, channel measurement cannot be performed on resources on both sides of the uplink system bandwidth.
  • the present application provides a method for transmitting and receiving a reference signal, which is more suitable for resource configuration of an SRS in an NR.
  • BWP Bandwidth Part
  • different BWPs may support different transmission bandwidths (that is, the number of RBs included in the BWP is different), subcarrier spacing, cyclic prefix (CP), etc., and the scheduling unit may be a time slot or a micro time. Gap and so on.
  • One slot format is composed of 14 orthogonal frequency division multiplexing (OFDM) symbols, and the CP of each OFDM symbol is a normal CP; the format of one slot is 12 OFDM symbols, each The CP of the OFDM symbol is an extended CP; the format of one slot is 7 OFDM symbols, and the CP of each OFDM symbol is a normal CP.
  • the OFDM symbols in one slot may be used for uplink transmission; they may all be used for downlink transmission; some may be used for downlink transmission, some for uplink transmission, and some for reservation. It is to be understood that the above examples are merely illustrative and should not be construed as limiting.
  • the slot format is not limited to the above example for system forward compatibility considerations.
  • the technical solution of the present application can be applied to a wireless communication system, for example, the communication system 100 shown in FIG. 1, the communication system may include at least one network device and at least one terminal device, and the network device and the terminal device may pass Wireless air interface communication.
  • the network devices in the communication system may correspond to the network devices 102 shown in FIG. 1
  • the terminal devices may correspond to the terminal devices 104-114 shown in FIG.
  • the terminal device may be any terminal device that has a wireless connection relationship with the network device in the wireless communication system. It can be understood that the network device can transmit the reference signal based on the same technical solution with a plurality of terminal devices having a wireless connection relationship in the wireless communication system. This application does not limit this.
  • FIG. 2 is a schematic flowchart of a method 200 for transmitting and receiving a reference signal according to an embodiment of the present application, which is shown from the perspective of device interaction. As shown in FIG. 2, the method 200 can include steps 210 through 270.
  • the terminal device determines the location of the starting subcarrier transmitting the SRS according to the offset.
  • the offset can understand the resource size of the relative offset between the starting subcarrier of the detection area and the starting subcarrier of the transmission bandwidth of the BWP of the terminal device, that is, the offset and the terminal device
  • the location of the BWP's transmission bandwidth is related.
  • the offset may be represented by a quantity of resource blocks (RBs).
  • the detection area refers to an area where the terminal equipment performs channel detection through the SRS, which can be understood as a resource area in which the network equipment needs to perform channel measurement, or a resource area that the terminal equipment can use to transmit the SRS.
  • the detection area is at the UE level, and the bandwidth of the detection area corresponding to different terminal devices in the same cell may be different.
  • the starting subcarrier of the transmitted SRS Where based on the offset Determining the starting subcarrier of the transmitted SRS
  • Offset It may be determined based on a predefined resource configuration manner, and a specific process of determining an offset based on a predefined resource configuration manner will be described in detail later in conjunction with a specific embodiment.
  • the network device determines the location of the starting subcarrier transmitting the SRS based on the offset.
  • the specific method for the network device to determine the location of the starting subcarrier for transmitting the SRS based on the predetermined resource configuration manner in step 220 is determined by the terminal device in step 210 based on the predetermined resource configuration manner to determine the starting subcarrier of the transmitted SRS.
  • the specific method of the location is the same, and for brevity, it will not be described here.
  • step 230 the terminal device transmits the SRS based on the location of the starting subcarrier of the transmission SRS determined in step 210.
  • the network device receives the SRS from the terminal device based on the location of the starting subcarrier of the transmitted SRS determined in step 220.
  • step 230 may be the same as the prior art, and a detailed description of the specific process is omitted here for the sake of brevity.
  • the embodiment of the present application determines the location of the starting subcarrier for transmitting the SRS by the terminal device by combining the BWP of the terminal device in the NR, and transmits the SRS based on the location of the starting subcarrier, so that the resource for transmitting the SRS configured for each terminal device is configured. It is also UE-level, so that the resources for transmitting SRS can be configured according to the transmission or receiving capability of each terminal device and the requirement for measuring the bandwidth size, which is more suitable for the NR scenario. Moreover, the method for determining the location of the starting subcarrier for transmitting the SRS provided by the embodiment of the present application does not limit the slot type.
  • the transmission bandwidth of the BWP allocated to the terminal device may be 106 RB.
  • the transmission bandwidth of the BWP is 106 RB as an example for detailed description.
  • the system may allocate different bandwidth BWPs for different terminal devices according to factors such as transmission and reception capabilities of the terminal device and service requirements.
  • the bandwidth of the detection area of the SRS is a multiple of 4 RB.
  • the BWP is 106 RB, it is necessary to redefine the detection area of the SRS.
  • the network device can schedule any resource within the BWP, and therefore, the network device wants to be able to perform channel measurement on any resource within the uplink system bandwidth.
  • the network device wants the area where the terminal device uses the SRS for channel sounding to be close to the resource scheduling area of the system, or the network device wants to be able to allocate the largest possible bandwidth for the terminal device for the transmission of the SRS.
  • One possible design is to set the maximum detection area of the SRS to the maximum of a multiple of 4 RB in the range of the BWP bandwidth, that is, 104 RB.
  • the path loss of the SRS sent by the terminal device in different areas of the cell to the network device may be different, for example, the path loss of the terminal device in the cell center area is lower than the path loss of the terminal device in the cell edge area, and may consider The power allocation of the terminal devices in different areas is different. For example, for the terminal equipment in the central area of the cell, the power allocated by each RB is lower. Therefore, the bandwidth of each SRS may be larger; For the terminal equipment in the edge area, the power allocated by each RB is higher. Therefore, the bandwidth of each SRS can be smaller, so that the energy density can be more concentrated, thereby making up for the energy loss caused by the path loss and improving the channel. The quality of the measurement makes the measurement more accurate.
  • Table 2 shows the different SRS bandwidth configuration parameters under the same C SRS in the same cell in the NR.
  • the SRS bandwidth configuration in the same cell can be divided into multiple levels, which respectively correspond to terminal devices in different areas in the cell.
  • the bandwidth of the SRS transmitted by the terminal device in the central area of the cell can be configured as 104 RBs, and the detection area of the SRS is 104 RBs, which can be transmitted once (ie, through an SRS transmission opportunity in one slot). The transmission is completed) the SRS transmission of the entire detection area; the bandwidth of each terminal device that is farther away from the central area of the cell can be configured as 48 RB or 52 RB, considering that the terminal device of the next level and the next level is considered each time.
  • the bandwidth of the transmitted SRS also needs to be a multiple of 4 RBs, so 48 RB is selected, so the detection area of the SRS can be 96 RBs, which can be transmitted through 2 transmissions (ie, through SRS transmission in 2 slots).
  • Transmission; the bandwidth of the SRS transmitted by the terminal device in the far area of the cell can be configured to be 24 RBs, and the detection area of the SRS can still be 96 RBs, which can be transmitted through 4 times (that is, through SRS transmission in 4 time slots)
  • the SRS transmission of the entire detection area; the bandwidth of the SRS in the cell edge area can be configured as 4 RBs per SRS, and the detection area of the SRS can still be 96 RBs, which can be transmitted through 24 times (ie The SRS transmission of the entire sounding area is completed by SRS transmission in 24 time slots.
  • the C SRS is a UE-level SRS configuration parameter, which can be configured to a terminal device having the same transmitting capability or receiving capability, or the bandwidth of the BWP corresponding to the same C SRS is the same.
  • the detection areas corresponding to different B SRSs in the same C SRS may be configured to be the same or different.
  • the bandwidth of the BWP is not an integer multiple of 4 RB
  • the detection area of the SRS needs to be an integer multiple of 4 RBs, no matter how the configuration is performed, one terminal device cannot transmit the SRS over the entire uplink system bandwidth by one SRS transmission.
  • the device can estimate the CSI of the downlink channel by measuring the CSI of the obtained uplink channel through the uplink channel. Therefore, the network device wants to be able to perform channel measurement on any resource within the bandwidth of the BWP.
  • the terminal device can measure the uplink channel by transmitting a reference signal, for example, an SRS, by which the network device can measure the uplink channel to obtain the CSI of the uplink channel.
  • a reference signal for example, an SRS
  • the network device can estimate the CSI of the downlink channel by using the CSI of the uplink channel.
  • the network device wishes to be able to allocate the largest possible bandwidth for the SRS for the transmission of the SRS, or the network device wishes to be able to perform channel measurement on as many resources as possible.
  • the present application pre-defines a plurality of resource configuration manners, and the multiple resource configuration manners may correspond to a plurality of different offsets.
  • the method 200 further includes: Step 240, the terminal device determines the offset according to a predefined resource configuration manner.
  • the resource configuration manner may be determined from multiple predefined resource configuration manners, and the multiple predefined resource configuration manners correspond to multiple different offsets.
  • the method 200 further includes: Step 250, the network device determines the offset according to a predefined resource configuration manner.
  • the resource configuration manner may be determined from multiple predefined resource configuration manners, and the multiple predefined resource configuration manners correspond to multiple different offsets.
  • the network device and the terminal device can respectively determine the resource configuration manner for the terminal device, that is, determine the location of the starting subcarrier for transmitting the SRS for the terminal device, that is, configure the resource for transmitting the SRS.
  • different offsets can be configured for the terminal device at different times.
  • different resource configurations can be configured at different times. In this way, different offsets are configured for different terminal devices.
  • the communication system usually includes a plurality of terminal devices that perform wireless communication with the same network device, and if a part of the terminal devices adopts a resource configuration manner (for example, as resource configuration mode 1), resource configuration is performed.
  • the resource configuration may be implemented by using another resource configuration mode (for example, as resource configuration mode 2) for another part of the terminal device, so that multiple terminal devices in the cell can transmit SRS on the entire band of the BWP at the same time. .
  • the difference between the detection area and the bandwidth of the BWP is: zero.
  • the SRS is a parameter that can be based on different positions for determining the comb mapping.
  • Perform resource mapping That is to say, the position of the comb mapping can be understood as the position where the SRS is mapped to the subcarriers in the frequency domain resource.
  • K TC is 2, that is, Comb2
  • the SRS of one terminal device may be mapped to the subcarrier of the odd bit
  • the SRS of the other terminal device may be mapped to the subcarrier of the even bit, for example, as shown in FIG. Show.
  • FIG. 3 is a schematic diagram of comb tooth positions configured based on different mapping modes. As shown in FIG. 3, the SRSs of the two terminal devices are mapped on different subcarriers in the same sounding region.
  • the terminal device configures resources based on the mapping mode 1
  • the SRS is mapped to the odd-numbered subcarriers.
  • the terminal device configures resources based on the mapping mode 2
  • the SRS is mapped to the even-numbered subcarriers.
  • Comb2 is merely illustrative and should not be construed as limiting the application.
  • K TC is 4, that is, Comb4
  • the SRS of one terminal device may be mapped to the n+4m subcarriers
  • n may be any value of 0, 1, 2, and 3
  • m is a positive integer.
  • the present application parameters for determining the position of the comb mapping And the number of comb teeth K TC is not limited.
  • each terminal device transmits SRS on consecutive frequency domain resources, but is discretely distributed in frequency according to the position of the comb mapping. On the domain resource.
  • the entire detection area is shown for ease of understanding. In fact, not all terminal devices can complete the SRS transmission of the entire detection area by one SRS transmission. In some cases, the detection area needs to be transmitted through multiple time slots to complete the transmission. For example, when the measurement area is 48 RBs, the terminal device can complete the SRS transmission of the sounding area by two SRS transmissions (or two STS transmission opportunities).
  • the starting subcarrier of the sounding region may be the starting subcarrier of the BWP, that is, without considering In the case of the resource configuration mode 2
  • the last subcarrier of the detection area may be the last subcarrier of the BWP, that is, without considering In the case of the difference, the offset is the difference between the detection area and the bandwidth of the BWP.
  • the predefined multiple resource configuration manners are in one-to-one correspondence with multiple formulas.
  • the formula may reflect the offset of the starting subcarrier of the sounding region relative to the starting subcarrier of the transmission bandwidth of the BWP, or the formula may be used to determine the starting subcarrier of the transmitted SRS.
  • the plurality of formulas may include:
  • m SRS, b indicates the number of RBs used by the terminal device to transmit SRS once
  • B SRS is the SRS bandwidth configuration parameter of the UE level of the user equipment
  • N b represents the number of times the terminal device needs to transmit the SRS to measure the upper measurement bandwidth (ie, m SRS, b-1 bandwidth), b′ at [0, b] Traversing the value, therefore, That is, the detection area.
  • the subcarriers mapped by the SRS of each terminal device in the frequency domain may be discretely distributed, and are arranged in a comb-like pattern. Can be used to determine the position of the comb map, or the location of the SRS map. For example, the SRS is mapped onto the odd-numbered subcarriers, or the SRS is mapped onto the even-numbered subcarriers. according to For a specific method for determining the position of the comb mapping, reference may be made to the prior art, which is not limited in this application.
  • the offset corresponding to the difference between the detection area and the bandwidth of the BWP; the offset corresponding to the formula 2 is zero.
  • the method 200 further includes: Step 260: The terminal device acquires an index value of a predefined resource configuration manner, where the index value is used to indicate the predefined resource configuration manner.
  • the terminal device and the network device may pre-save the one-to-one correspondence in a one-to-one correspondence between the plurality of resource configuration modes and the plurality of index values. After the terminal device and the network device respectively determine the index value of the resource configuration mode, the resource for transmitting the SRS may be configured according to the corresponding resource configuration manner.
  • the terminal device can obtain the index value of the predefined resource configuration mode by using at least the following two methods:
  • Step 2601 the terminal device receives the first information, where the first information includes an index value of the predefined resource configuration manner;
  • Step 2602 the terminal device determines an index value of the predefined resource configuration manner according to the following at least one parameter: a system frame number, a slot number, and a comb mapping position.
  • the terminal device may transmit the SRS on multiple consecutive OFDM symbols in one slot.
  • the offset of SRS transmission on multiple OFDM symbols of one terminal in one slot in the case of the same resource allocation manner Are the same.
  • the index number of the predefined resource configuration mode may be determined by the network device and sent to the terminal device by using the first information. This method can be thought of as a way to explicitly indicate how resources are configured.
  • the method 200 further includes: Step 270: The network device determines an index value of the predefined resource configuration parameter according to any one of the following parameters: a system frame number, a slot number, or a location of the comb mapping.
  • the network device sends the first information, where the first information includes an index value of the predefined resource configuration manner.
  • the first information is carried in any one of the following: a radio resource control (RRC) message, a media access control (MAC) control element (CE), and a downlink control.
  • RRC radio resource control
  • MAC media access control
  • DCI Downlink control information
  • system message system message
  • broadcast message broadcast message
  • the first information may also be indicated by a combination of the above enumerated signaling.
  • the network device may indicate, by using an RRC message, a candidate set of resource configuration manners to the terminal device, where the candidate set of the resource configuration manner may include a one-to-one correspondence between multiple resource configuration modes and multiple index values, and then indicate by DCI.
  • the index value of the target resource configuration mode in the candidate set of the foregoing resource configuration manners; or the network device may indicate, to the terminal device, a candidate set of the resource configuration manner by using the RRC message, where the candidate set of the resource configuration manner may include multiple resources.
  • a one-to-one correspondence between the configuration mode and the multiple index values and then indicating a subset of the candidate set of the resource configuration manner by using the MAC CE, and finally indicating the target resource configuration in the subset of the candidate set of the resource configuration manner by using the DCI.
  • the index value of the mode is the index value of the mode.
  • the network device only needs to indicate the value of K in the first information, and the terminal device can determine which one of the above formulas to determine the location of the starting subcarrier for transmitting the SRS.
  • the index number of the predefined resource configuration mode may be determined by the network device and the terminal device according to the parameters listed above. This method can be thought of as a way to implicitly indicate how resources are configured.
  • the method 200 further includes: Step 270: The network device determines, according to any one of the following parameters, an index value of a predefined resource configuration manner: a system frame number, a slot number, or a location of a comb mapping.
  • the index value of the predefined resource configuration manner is determined according to the system frame number, the slot number, and the position of the comb mapping.
  • the position of the comb mapping is based on Ok, among them, or
  • the network device can receive the SRS sent from the terminal device on the entire BWP, that is, the channel measurement can be performed on the entire BWP, thereby performing resource scheduling.
  • the network device can implement full-band measurement of the BWP, and is more advantageous for estimating the CSI of the downlink channel, so as to facilitate resource scheduling.
  • the method provided by the present application helps the network device to schedule more resources, which is beneficial to improving resource utilization, compared to the resource allocation manner of the SRS in the LTE.
  • the difference between the detection area of the SRS and the bandwidth of the BWP and the difference between the detection area of the SRS and the bandwidth of the BWP may be included.
  • the predefined multiple resource configuration manners are in one-to-one correspondence with multiple formulas.
  • the formula may embody the offset of the starting subcarrier used to transmit the SRS relative to the starting subcarrier of the uplink system bandwidth, or the formula may be used to determine the starting subcarrier of the transmitted SRS.
  • the plurality of formulas may include:
  • FIG. 5 is a schematic diagram of a detection area configured based on the above three different resource allocation manners.
  • the starting subcarrier of the sounding region may be the starting subcarrier of the BWP, that is, without considering
  • the last subcarrier of the detection region may be the last subcarrier of the BWP, that is, not considered when configuring the resource configuration corresponding to the second formula.
  • the detection area is located in the middle area of the BWP, and the offset between the two ends of the BWP is the detection area. Half the difference from the bandwidth of the BWP.
  • the terminal device can still obtain the index value of the predefined resource configuration manner according to the method 1 and the method 2 listed above.
  • the network device only needs to indicate the value of K in the first information, and the terminal device can determine which one of the above formulas to determine the location of the starting subcarrier for transmitting the SRS.
  • the index number of the predefined resource configuration mode may be determined by the network device and the terminal device according to any one of the following parameters: a system frame number or a slot number.
  • the index value of the predefined resource configuration mode is determined according to the system frame number or the slot number in detail.
  • the index value K mod(n f , 3) can be defined, where mod() represents modulo.
  • the network device can receive the SRS sent by the terminal device on the entire BWP, that is, the channel measurement can be performed on the entire BWP, thereby performing resource scheduling.
  • the design also considers the possibility of placing the PUCCH on both sides of the BWP.
  • the SRS resource can be configured by Equation 3, so that the detection area is located in the middle area of the BWP, thereby facilitating the utilization of resources.
  • the present application does not exclude the possibility of still using the bandwidth size of the detection area defined in LTE. That is, reference may be made to the bandwidth size of the detection area in which different C SRSs do not correspond in Table 1.
  • the sounding area may be 96 RB, 80 RB, 72 RB, 64 RB, 60 RB, 48 RB, or the like.
  • the present application further provides a formula that corresponds to a plurality of resource allocation methods.
  • the plurality of formulas may include:
  • the offset corresponding to the formula 2 is zero, and the offset corresponding to the formula 4 is the difference between the detection region and the bandwidth of the BWP.
  • the terminal device can still obtain the index value for indicating the predefined resource configuration manner according to the method 1 and the method 2 listed above, and the network device can still follow the method listed above, at least A parameter to determine the index value of the predefined resource configuration method: the system frame number, the slot number, or the location of the comb mapping.
  • the above formula may correspond to a plurality of index values one by one, for example,
  • the above design extends the bandwidth of the detection area in LTE, and the modification to the LTE protocol is small, but at the same time, different offsets can be configured for different terminal devices by using the above formula, so that the SRS can be fully implemented in the BWP. Transmission, so that the measurement of the uplink channel and the effect of resource scheduling can be performed on the resources of the BWP full band.
  • the network device can estimate the CSI of the downlink channel by using channel reciprocity for resource scheduling. Therefore, based on this design, it helps the network device to schedule more resources, which is beneficial to improve resource utilization.
  • the plurality of formulas include:
  • the offset corresponding to the formula 2 is zero, and the offset corresponding to the formula 4 is the difference between the detection region and the bandwidth of the BWP, and the offset corresponding to the formula 5 is half the difference between the detection region and the bandwidth of the BWP.
  • the terminal device can still obtain the index value for indicating the predefined resource configuration manner according to the method 1 and the method 2 listed above, and the network device can still follow the method listed above, at least A parameter to determine the index value of the predefined resource configuration method: the system frame number, the slot number, or the location of the comb mapping.
  • the above formula may correspond to a plurality of index values one by one, for example,
  • the bandwidth of the detection area in LTE is extended, and the SRS is fully transmitted in the BWP to achieve the channel measurement and scheduling of the resources of the BWP, and the NR may be
  • the possibility that PUCCH is configured on both sides of the BWP is beneficial to reduce idle resources, thereby achieving the effect of improving resource utilization.
  • the value of the index value is not limited in this application.
  • FIG. 6 is a schematic flowchart of a method 300 of transmitting and receiving a reference signal according to another embodiment of the present application, which is shown from the perspective of device interaction. As shown in FIG. 6, the method 300 can include steps 310 through 350.
  • step 310 the terminal device determines the location of the starting subcarrier transmitting the SRS according to the offset.
  • step 320 the network device determines the location of the starting subcarrier transmitting the SRS based on the offset.
  • step 310 and step 320 are similar to the specific processes of step 210 and step 220 of method 200, and are not described herein again for brevity.
  • the offset may be determined based on a predefined resource configuration manner.
  • the offset can be determined according to the following formula:
  • the offset is half the difference between the detection area and the bandwidth of the BWP. That is, the detection area is located in the middle area of the BWP.
  • the present application does not exclude the possibility of still using the bandwidth size of the detection area defined in LTE. That is, reference may be made to the bandwidth size of the detection area in which different C SRSs do not correspond in Table 1.
  • the sounding area may be 96 RB, 80 RB, 72 RB, 64 RB, 60 RB, 48 RB, or the like.
  • the present application further provides a formula for determining the offset as follows:
  • the offset is still half the difference between the detection area and the bandwidth of the BWP. That is, the detection area is located in the middle area of the BWP.
  • the method 300 further includes: Step 330: The terminal device determines the offset based on a predefined resource configuration manner.
  • the method further includes: Step 340: The network device determines the offset based on a predefined resource configuration manner.
  • steps 330 and 340 are similar to the specific processes of steps 240 and 250 of method 200, except that the resource configuration used may be different. For the sake of brevity, a detailed description of the specific process is omitted here.
  • step 350 may be performed, and the terminal device transmits the SRS based on the location of the starting subcarrier transmitting the SRS.
  • the network device receives the SRS from the terminal device based on the location of the starting subcarrier transmitting the SRS.
  • step 350 may be the same as the prior art, and a detailed description of the specific process is omitted here for the sake of brevity.
  • the detection area can be configured in the middle area of the BWP, so that the resource idleness that may be caused by the detection area being biased toward any side of the BWP can be reduced, which is beneficial to improving resource utilization;
  • the SRS is sent, thereby reducing power consumption.
  • the present application also provides a method for transmitting and receiving a reference signal, which is advantageous for improving channel measurement accuracy and improving demodulation performance.
  • a method for transmitting and receiving a reference signal provided by an embodiment of the present application is described in detail below with reference to FIG. 7 to FIG.
  • FIG. 7 is a schematic flowchart of a method 1000 for transmitting and receiving a reference signal according to another embodiment of the present application, which is shown from the perspective of device interaction. Specifically, FIG. 7 shows a specific process of transmitting and receiving an uplink reference signal.
  • the terminal device may be, for example, any one of the terminal devices 104-114 in the communication system shown in FIG. 1, and the network device may be, for example, the communication system shown in FIG.
  • the network device 102, the uplink reference signal may be, for example, an SRS. It should be understood that the terminal device may be any terminal device that has a wireless connection relationship with the network device in the wireless communication system.
  • the network device can transmit the reference signal based on the same technical solution with a plurality of terminal devices having a wireless connection relationship in the wireless communication system.
  • the SRS is used as an example of an uplink reference signal to describe the technical solution provided by the present application, but this application should not be limited to the present application, and the application does not exclude other uplinks defined in future protocols. Reference signals to achieve the same or similar functionality.
  • the method 1000 can include steps 1100 through 1500.
  • the steps in method 1000 are described in detail below.
  • step 1100 the terminal device transmits an SRS according to the location of the starting subcarrier transmitting the SRS.
  • the network device receives the SRS according to the location of the starting subcarrier transmitting the SRS.
  • the starting subcarrier for transmitting the SRS may include the starting subcarrier for each transmission of the SRS.
  • the SRS transmission of the detection region may be completed by one or more SRS transmission opportunities, as described herein.
  • the primary transmission SRS can be understood as the transmission of the SRS through an SRS transmission opportunity.
  • the detection area may be a resource allocated to the terminal device for transmitting the SRS, or the detection area is a transmission bandwidth that can be used to transmit the SRS.
  • the detection area can be understood as an area where the terminal device performs channel detection through the SRS, and the terminal equipment can transmit the SRS on the resources of the detection area to perform channel measurement.
  • the method 1000 further includes: Step 1200: The terminal device determines, according to the offset of the detection area, a location of a starting subcarrier that transmits the SRS.
  • the method 1000 further includes: Step 1300: The network device determines, according to the offset of the detection area, the location of the starting subcarrier that transmits the SRS.
  • the location of the starting subcarrier for transmitting the SRS may be predefined, for example, a protocol definition, or may be determined by the terminal device and the network device according to a predefined rule.
  • the network device and the terminal device may pre-store a mapping relationship that can be used to determine the starting subcarrier position of the transmitted SRS.
  • the mapping relationship may include an offset of the detection area versus Correspondence relationship, wherein the physical meaning of each parameter has been described in detail above, and for brevity, it will not be repeated here.
  • the terminal device is determined with In the case, it can be determined directly based on the above correspondence
  • a two-dimensional mapping table may be pre-stored in the network device and the terminal device, and the horizontal axis of the two-dimensional mapping table may be, for example, The vertical axis can be, for example, One and a The intersection in the two-dimensional mapping table is In other words, one and a Can be used to jointly indicate one among them, The B SRS , the C SRS, and the high-level parameter n RRC for determining n b can all be indicated by the network device.
  • the value can be determined according to the parameters indicated by the network device. Therefore, after determining the above parameters, the network device can determine according to the above two-dimensional mapping table. And indicating the above parameters to the terminal device, so that the terminal device determines according to the above two-dimensional mapping table Understand, determine The specific process has been described in detail above in conjunction with the formula, and for brevity, it will not be repeated here.
  • the network device and the terminal device can be determined according to a pre-saved mapping relationship The value. in other words, According to determine.
  • the location of the starting subcarrier for transmitting the SRS may also be calculated by the terminal device according to a predefined formula, for example, by using the formula described above. Calculated. Which is used for determination Specific parameters (for example, The B SRS , the C SRS , and the higher layer parameter n RRC for determining n b may be indicated by the network device.
  • the location of the starting subcarrier for transmitting the SRS Can be based on determine.
  • the method 1000 further includes: Step 1400, the terminal device acquires an offset of the detection area.
  • the method 1000 further includes: Step 1500, the network device acquires an offset of the detection area.
  • the offset may be predefined, for example, a protocol definition, or may be determined by the network device and the terminal device based on pre-defined rules, respectively. This application does not limit the manner in which the offset is acquired.
  • the offset can satisfy any of the following formulas:
  • the above predefined rules may include any one of the above formulas.
  • the uplink system bandwidth is shown by the granularity of the RB group (RBG).
  • RBG RB group
  • the size of the system bandwidth is not necessarily an integer multiple of 4 RB. The size of the system bandwidth is not limited in this application.
  • the bandwidth of the BWP of the terminal device is not necessarily an integer multiple of 4 RB
  • the RB of the starting subcarrier of the BWP of the terminal device (for convenience of description, hereinafter referred to as the starting RB of the BWP) and the system bandwidth
  • the number of RBs between the starting RBs is also not necessarily an integer multiple of 4.
  • the system bandwidth is 31 RB
  • the RB number in the system bandwidth is only shown for ease of understanding, but this should not constitute any limitation on the present application.
  • the present application does not limit the RB numbering rule in the system bandwidth and the RB numbering rule in the BWP.
  • the RB numbers in the bandwidth of the system may also be arranged from bottom to top in order from 0 to 30.
  • the offset of the detection area is used to indicate the resource size of the starting subcarrier offset of the transmission subband of the detection area relative to the transmission bandwidth of the BWP.
  • Figure 8 shows Schematic diagram of the detection area in the case of different values. As shown in the figure, it is assumed that the detection area is 16 RB and the bandwidth of the BWP is 26 RB.
  • the starting subcarrier of the detection area of the terminal device is the starting subcarrier of the BWP, that is, the lower limit of the frequency band corresponding to the BWP;
  • the last subcarrier of the detection area of the terminal device is the last subcarrier of the BWP, that is, the upper limit of the frequency band corresponding to the BWP;
  • the detection area of the terminal device has exceeded the frequency band corresponding to the BWP.
  • the BWP of the terminal device Since the BWP of the terminal device is UE-level, it may be only a part of the bandwidth of the system bandwidth. If the detection area of the terminal device exceeds the bandwidth of the BWP of the terminal device, the accuracy of the channel measurement may be degraded.
  • the range of values is Any integer value in .
  • the value of the terminal device can be controlled within the range of the BWP of the terminal device, so as to avoid the problem that the channel measurement accuracy of the SRS cannot be completely mapped in the BWP, thereby improving the demodulation performance. .
  • two or more terminal devices in the same cell or two or more antenna ports configured by the same terminal device may have overlapping physical resources for transmitting SRS, for example, two or more The bandwidth portions of the BWPs of the plurality of terminal devices or the two or more antenna ports overlap and are configured with the same comb parameters.
  • it is desirable that the overlapping area of the physical resources of any two terminal devices or antenna ports that have the same SRS transmission resource to transmit the SRS is greater than or equal to n RBs.
  • any two of the at least two terminal devices transmit the SRS.
  • the RB where the starting subcarrier is located (for convenience of description, hereinafter referred to as the starting RB of the transmitted SRS) is the same as the value of the RB of the starting RB offset of the system bandwidth, n is n, and n is an integer.
  • the number of RBs of the starting RB of the transmitted SRS with respect to the starting RB offset of the system bandwidth is modulo n
  • the RB of the starting RB of the detection area relative to the starting RB offset of the system bandwidth is modulo, that is, the calculation formula is obtained: among them, The value can be written as ⁇ , ⁇ [1, n-1], and ⁇ is an integer.
  • condition 1) configured with the same comb parameter
  • condition 2) resources of the transmitted SRS overlap
  • the two or more terminal devices The number of RBs between the initial subcarriers of the transmitted SRS and the RBs corresponding to the system bandwidth and the starting RB of the system bandwidth can satisfy: The values are the same.
  • the starting subcarriers of any two antenna ports that are configured with the same comb parameter in the same terminal device are mapped to the number of RBs of the RB corresponding to the starting RB offset of the system bandwidth in the system bandwidth.
  • the values are the same, n>1, and n is an integer.
  • condition 1) configured with the same comb parameter
  • condition 2) resources of the transmitted SRS overlap
  • the two or more antenna ports The number of RBs between the starting RB of the transmitted SRS and the starting RB of the system bandwidth can satisfy: The values are the same.
  • the comb tooth parameter can be used to determine the position of the comb tooth mapping, which can be Said.
  • the specific meaning of the comb tooth parameter has been described in detail above with reference to FIG. 3, and for brevity, it will not be repeated here.
  • the number of RBs indicating that the initial subcarrier of the detection area is mapped to the RB corresponding to the system bandwidth (for convenience of description, the initial RB of the detection area) is offset from the starting RB of the system bandwidth, and can be used for determining the detection.
  • the starting subcarrier of the zone Indicates the number of RBs of the starting RB of the BWP relative to the starting RB offset of the system bandwidth. n>1, and n is an integer.
  • the value is configurable. For example, for any two terminal devices or antenna ports that satisfy the above condition 2), a delta value corresponding to different comb parameters can be configured, and the delta values corresponding to different comb parameters can be different.
  • the starting subcarrier used by the terminal device for each transmission of the SRS can satisfy the above pair.
  • the limitation, or the initial subcarrier used by the terminal device to transmit the SRS through each SRS transmission opportunity, satisfies the above-mentioned pair limits.
  • n is 4.
  • may include: 0, 1, 2, and 3.
  • can be determined.
  • a delta value may be configured corresponding to each comb parameter, for example, for the first comb parameter, ⁇ may be configured as 0; For the two comb parameters, ⁇ can be set to 2; for the third comb parameter, ⁇ can be set to 3; for the fourth comb parameter, ⁇ can be set to 4.
  • ⁇ values may be configured for the terminal device or the antenna port configured with the same comb parameter according to the system frame number, the subframe number, or the time slot.
  • can be configured to be 0
  • can be set to 1
  • can be set to 2.
  • can be set to 3.
  • the limitation is that the resources of the SRS are overlapped (ie, satisfying the above condition 1) and the condition 2)) of the plurality of terminal devices or antenna ports transmitting the SRS starting RB coincidence, or offset
  • the amount is an integer multiple of 4 RB, which is advantageous for ensuring that the terminal device or the antenna port configured with the same comb parameter can transmit the SRS with the same physical resource, and the resource overlap region can be greater than or equal to 4 RB.
  • the resource overlap region of the transmitted SRS is guaranteed to be larger than Or equal to 4 RB, which is often advantageous, for example, in some cases, the flexibility of resource scheduling can be improved.
  • the terminal device transmits a reference signal, for example, an SRS, within a bandwidth of the BWP through multiple antenna ports configured with the same comb parameter
  • a reference signal for example, an SRS
  • the multiple The time domain resources used by the antenna port to transmit reference signals may overlap.
  • Code division multiplexing (CDM) may be used to reduce interference.
  • BWP of multiple terminal devices within the system bandwidth. The bandwidth may also overlap. That is to say, the time-frequency resources used by different terminal devices to transmit reference signals may also overlap, and the CDM method may be used to reduce interference, thereby achieving the effect of improving resource utilization.
  • the receiving end device When receiving the reference signal from the terminal device, the receiving end device (for example, the network device) may perform channel measurement on the received reference signal according to the resource overlapping portion and the resource non-overlapping portion, respectively.
  • the receiving end device for example, the network device
  • the receiving end device may perform channel measurement on the received reference signal according to the resource overlapping portion and the resource non-overlapping portion, respectively.
  • n 4
  • the present application does not limit the value of n.
  • the present application does not exclude the possibility of defining the value of n as other values.
  • the embodiment of the present application can satisfy any two terminal devices or the same terminal device that meet the above conditions 1) and 2) in the same cell.
  • the starting RBs of any two antenna port transmission SRSs of the above condition 1) and condition 2) are controlled at the same RB position, or the offset is an integer multiple of 4 RBs, so that different terminal devices in the same cell.
  • the possibility that the frequency domain resource used for transmitting the SRS has an overlapping area of 4 RBs and more than 4 RBs is greatly improved, or the frequency domain resources of the SRS corresponding to different antenna ports of the same terminal device have a possibility of overlapping areas of 4 RBs and 4 RBs or more. Therefore, it is beneficial to improve the flexibility of SRS resource scheduling, so that resource utilization can be improved.
  • FIG. 9 is a schematic diagram of a system bandwidth, a bandwidth of a BWP of different terminal devices, and a detection area according to an embodiment of the present application.
  • the bandwidth of a BWP of one terminal device (for example, referred to as terminal device #1) is 26 RBs
  • the bandwidth of a BWP of another terminal device (for example, referred to as terminal device #2) is 22 RBs.
  • the detection areas of the terminal device #1 and the terminal device #2 are both 16 RBs, and the resources for transmitting the SRS by the terminal device #1 and the terminal device #2 overlap.
  • the bandwidth of the system and the bandwidth of the BWP of the two terminal devices are not integer multiples of four. If the resource of the detection area of the terminal device is to be an integer multiple of 4 RBs, it is desirable to ensure that the two terminal devices transmit SRS. If the overlapping area of the used resource is greater than or equal to 4 RB, the starting positions of the SRSs of the two terminal devices may be the same. For example, the offset between the starting RB of the transmitting SRS and the starting RB of the system bandwidth is an integer of 4 RB. The multiple may correspond to the position of the RB numbered 12 in the system bandwidth in the figure, or the position of the RB numbered 8 in the system bandwidth.
  • the detection area of the terminal device #1 can be Considering that the 4RB is shifted downward, but if the detection area of the terminal device #1 is shifted downward by 4 RB, the range of the BWP is also exceeded. Therefore, the detection area of the terminal device #1 cannot be further shifted downward, which results in system bandwidth. Some of the resources are never detected. It can be understood that, since the size of the detection area is guaranteed to be an integer multiple of 4 RB, the case where such system bandwidth terminal part resources are always undetectable usually occurs when the system bandwidth is not an integral multiple of 4 RB. Since some resources of the system bandwidth cannot perform channel measurement and cannot obtain accurate channel state information, the network device may not schedule resources for which channel measurement is not performed, which may result in the system resource usage rate not being maximized.
  • the resource of the SRS transmitted by the terminal device #3 can cover 3 RBs at the bottom of the system bandwidth by setting the ⁇ of the terminal device #3. That is to say, the network device can implement the full bandwidth measurement of the system bandwidth by configuring different ⁇ values for the terminal devices configured with different comb parameters.
  • FIG. 10 is a schematic diagram of a system bandwidth, a bandwidth of a BWP, and a detection area corresponding to different delta values according to an embodiment of the present application.
  • the bandwidth of the BWP of the terminal device is 26 RBs
  • the size of the detection area is 16 RBs.
  • the resource size of the starting RB of the BWP of the terminal device relative to the starting RB offset of the system bandwidth may pass To characterize, versus The sum can be combined to form a continuous area.
  • the RB occupied by the area satisfies the RBs occupied by any two consecutive terminal areas corresponding to any two terminal devices or any two antenna ports configured with the same comb parameters.
  • the value of n in Fig. 10 is 4.
  • Figure terminal device #1 Satisfy It can be seen that the starting RB of the detecting area of the terminal device #1 may be the RB numbered 8 or the RB number 12 in the system bandwidth, and the starting RB corresponding to the detecting area is respectively indicated in the system bandwidth. The case of 8 RB or RB numbered 12. Terminal device #3 Satisfy The starting RB of the detecting area of the terminal device #3 may be the RB numbered 7 in the system bandwidth, the RB numbered 11 in the system bandwidth, or the RB number 15 in the system bandwidth.
  • the starting RB of the detection area of the terminal device #3 is the RB numbered 15 in the system bandwidth
  • the three RBs at the bottom of the system bandwidth can be detected, and at this time, the network device can have the system bandwidth. Full bandwidth for channel measurement.
  • the network device may determine the value of ⁇ according to the relative positions of the detection regions of multiple terminal devices or multiple antenna ports in the system bandwidth.
  • the starting position of the transmitted SRS can be controlled to the same RB, or the offset is an integer multiple of 4 RB, it is very large. To a certain extent, it can be ensured that the frequency domain resources used by the two terminal devices or antenna ports for transmitting SRS have an overlapping area of 4 RB or more.
  • the value of K in the figure is 0, it may correspond to two terminal devices having the same comb parameter, and the starting RB of the detection area of one terminal device may be the RB numbered 8 shown in the figure.
  • the initial RB of the detection area of the other terminal device may be the RB numbered 12 or the RB numbered 8.
  • the overlapping area of the detection areas of the two terminal devices includes at least 12 RBs, which satisfy the overlapping area. A condition greater than or equal to 4 RB.
  • the other side is limited
  • the value of the terminal device or the antenna port configured with different comb parameters can send SRS in different frequency bands of the system bandwidth, so that the network device can realize full bandwidth measurement, thereby improving the data transmission performance of the entire bandwidth and improving Resource utilization and resource scheduling flexibility.
  • the method further includes: sending, by the network device Indication information of the value indicating The value.
  • the method further includes: receiving by the terminal device Indication information of the value indicating The value.
  • network device can determine Value, and send the first indication information to the terminal device The value.
  • both the network device and the terminal device can be based on the same The value is determined according to the above formula six
  • the indication of the value is carried in the higher layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the example shown here is for carrying The signaling of the indication information of the value is merely exemplary and should not be construed as limiting the application.
  • the The indication of the value can also be carried in the MAC-CE.
  • the value of the terminal device may be a configuration of the UE level or a port level, and the terminal device may be indicated by the signaling corresponding to the configuration level, which is not limited in this application.
  • the method further includes: sending, by the network device Indication information of the value indicating The value.
  • the method further includes: receiving by the terminal device Indication information of the value indicating The value.
  • Equation 7 The number of RBs indicating that the initial subcarrier of the sounding region is mapped to the RB corresponding to the RB of the system bandwidth relative to the starting RB of the system bandwidth. among them, Indicates the number of RBs of the starting RB of the sounding region relative to the starting RB offset of the system bandwidth. Specifically, K ⁇ ⁇ [0, n-1], and K ⁇ is an integer. The range of starting RBs at which the sounding region can map the location, or the range of resources available for the starting subcarrier of the sounding region, can be indicated.
  • the starting subcarrier of the detection area may be mapped to the number of the RB corresponding to the system bandwidth.
  • n 4.
  • the upper limit of the value is Pass on
  • the limitation of the value limits the mappable position of the detection area within the bandwidth of the BWP, and ensures channel measurement within the bandwidth of the BWP to obtain higher channel measurement accuracy and improve demodulation performance.
  • the corresponding area shows the range of resources available for the starting subcarrier of the sounding area of the terminal device. That is, when the starting subcarrier of the detection area of the terminal device is mapped to the RB in the system bandwidth, it is located in the figure. When the area is shown, a better channel measurement accuracy can be obtained.
  • any two of the at least two terminal devices transmit the SRS.
  • the number of RBs in which the initial subcarrier is mapped to the RB corresponding to the system bandwidth (ie, the starting RB of the transmitted SRS) relative to the starting RB offset of the BWP satisfies: The values are the same, n>1, and n is an integer.
  • condition 1) configured with the same comb parameter
  • condition 2) resources for transmitting the SRS overlap
  • the starting RB of the detection region is relative to the BWP
  • the number of RBs of the starting RB offset satisfies: The values are the same.
  • the starting subcarriers of any two antenna ports that are configured with the same comb parameter in the same terminal device are mapped to the number of RBs of the RB corresponding to the starting RB offset of the system bandwidth in the system bandwidth.
  • the values are the same, n>1, and n is an integer.
  • condition 1) configured with the same comb parameter
  • condition 2) resources of the transmitted SRS overlap
  • the two or more antenna ports The number of RBs between the starting RB of the transmitted SRS and the starting RB of the system bandwidth can satisfy: The values are the same.
  • part of the bandwidth in the system bandwidth may not be detected at all, that is, the network device cannot perform channel measurement on the entire band of the system bandwidth, thereby affecting the system. Resource utilization of bandwidth. Therefore, the network device can pass through a terminal device or an antenna port configured with different comb parameters. Configure different delta values.
  • K ⁇ [0, n-1]
  • K ⁇ is an integer.
  • Equation 7 the value of K ⁇ is directly configured in Equation 7. But understandable, no matter What is the value, as long as K ⁇ can be arbitrarily selected within the range of [0, n-1], it can be guaranteed The value ⁇ is arbitrary in the range of [0, n-1]
  • K ⁇ and ⁇ may be the same or different from K ⁇ .
  • This application does not limit the relationship between K ⁇ and ⁇ .
  • the network device can configure different K ⁇ for the terminal device or the antenna port configured with different comb parameters so that different terminal devices or antenna ports can transmit SRS in different frequency bands of the system bandwidth, so that the network device realizes full bandwidth measurement, Thereby, the data transmission performance of the entire bandwidth can be improved, and the resource utilization and resource scheduling flexibility can be improved.
  • FIG. 11 is a system bandwidth, a bandwidth of a BWP, and corresponding K ⁇ values and according to an embodiment of the present application. Schematic diagram of the detection area at the time of the value. Assume that the bandwidth of the BWP is 26 RBs, and the size of the detection area is 16 RBs. Wherein, the BWPs of the terminal device #1 and the terminal device #2 have the same position in the system bandwidth, and the corresponding The location of the BWP of the terminal device #3 in the system bandwidth is different from the location of the BWP of the terminal device #1 or the terminal device #2 in the system bandwidth, corresponding to the terminal device #3.
  • n the overlapping area of the frequency domain resource for transmitting the SRS of the terminal device or the antenna port configured with the same comb parameter is greater than or equal to an integer multiple of n RBs. It is desirable to be able to configure the terminal device with the same comb parameter or The starting position of the frequency domain resource in which the antenna port transmits the SRS is controlled at the same RB, or the offset is an integer multiple of n RBs.
  • the value of n is 4.
  • terminal device #1 and terminal device #2 in the figure have the same K ⁇ value.
  • the values differ by 1, that is, the starting RBs of the detection areas of the two terminal devices differ by 4 RBs, because the value of n in the figure is 4, that is, the difference is RB.
  • the network device hopes to configure a full bandwidth measurement by configuring different values of K ⁇ for terminal devices or antenna ports configured with different comb parameters.
  • the value of K ⁇ can be controlled within the range of [0, n-1], and different K ⁇ values can be configured for terminal devices or antenna ports configured with different comb parameters.
  • the value of n is 4, the value of K ⁇ may be 0, 1, 2 or 3.
  • the detection area will exceed the bandwidth of the BWP, which will cause the channel measurement accuracy to decrease. However, if the detection area does not exceed the bandwidth of the BWP, the three RBs located at the bottom of the system bandwidth are always undetectable. At this time, it is possible to adjust the value of K ⁇ of the terminal device configured with different comb parameters and having the same BWP. For example, the K ⁇ value can be set to 2, so that the detection area does not exceed the bandwidth of the BWP, and at the same time, Full-band measurement of system bandwidth can be achieved.
  • K ⁇ for implementing the full band measurement listed herein are merely examples and should not be construed as limiting the application.
  • the bandwidth and location of the BWP between the terminal devices may be different.
  • the network device may determine the value of K ⁇ corresponding to each terminal device according to the location, the detection region, and the system bandwidth of the BWP of each terminal device.
  • the method further includes: sending, by the network device Indication information of the value indicating The value.
  • the method further includes: receiving by the terminal device Indication information of the value indicating The value.
  • the method further includes: the network device sending indication information of the K ⁇ value, where the indication information indicates a value of K ⁇ .
  • the method further includes: receiving, by the terminal device, indication information of the K value, the indication information indicating The value.
  • the network device can determine And the value of K ⁇ , and send an indication to the terminal device And the value of K ⁇ .
  • both the network device and the terminal device can be based on the same And the value of K ⁇ , determined according to formula seven
  • the indication of the value is carried in the higher layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the indication information of the K ⁇ value is carried in the high layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the example shown here is for carrying The signaling and the number of the indication information of the value and the indication information of the K ⁇ value are merely exemplary and should not be construed as limiting the application.
  • the The indication information of the value and the indication information of the K ⁇ value may be indicated by one signaling, or may be indicated by a signaling group; for example, the The indication information of the value may also be carried in the MAC-CE, and the indication information of the K ⁇ value may also be carried in the MAC-CE.
  • the value of the K ⁇ and the value of the K ⁇ may be a UE level configuration, or a port level configuration, and the terminal device may be indicated by signaling corresponding to the configuration level, which is not limited in this application.
  • the method further includes: sending, by the network device Indication information of the value indicating The value.
  • the method further includes: receiving by the terminal device Indication information of the value indicating The value.
  • the embodiment of the present application determines the location of the starting subcarrier for transmitting the SRS by the terminal device by combining the BWP of the terminal device in the NR, and transmits the SRS based on the location of the starting subcarrier, so that the transmission configured for each terminal device is configured.
  • the resources of the SRS are also UE-level, so that the resources for transmitting the SRS can be configured according to the transmission or reception capability of each terminal device and the requirement for measuring the bandwidth size, which is more suitable for the NR scenario.
  • the method for determining the location of the starting subcarrier for transmitting the SRS provided by the embodiment of the present application does not limit the slot type.
  • the overlapping portion of the frequency domain resource used by the terminal device or the antenna port transmitting the SRS configured with the same comb parameter can be made greater than or equal to an integer multiple of n RBs.
  • the possibility is greatly improved, or the possibility that the overlapping portion of the frequency domain resources of the SRS corresponding to different ports is greater than or equal to the integer multiple of n RBs is greatly improved; the accuracy of the channel measurement is improved, thereby obtaining better demodulation.
  • Performance at the same time, it can enable the terminal equipment or antenna port configured with different comb parameters to transmit SRS on different frequency domain resources, which helps the network equipment to realize the full bandwidth measurement of the system bandwidth, so that the communication system is over the entire system bandwidth. Both can obtain better demodulation performance, which is beneficial to improve resource utilization.
  • the embodiments of the present application provide various possible implementation methods for transmitting and receiving uplink reference signals, which are applicable to BWPs based on UE level configuration, for example, BWPs in NR.
  • BWP configured at the UE level.
  • the network device only needs to measure the CSI of a certain sub-band, the one or more terminal devices corresponding to the sub-band can be used.
  • the CSI-RS is transmitted on the BWP to measure the CSI of the sub-band, and it is no longer necessary to transmit the CSI-RS at full bandwidth. Therefore, the present application further provides a method for transmitting and receiving a reference signal, which can be used to indicate that a terminal device receives a location of a CSI-RS to apply to a resource configuration of a downlink reference signal in the NR.
  • FIG. 12 is a schematic flowchart of a method for transmitting and receiving a reference signal according to still another embodiment of the present application, which is shown from the perspective of device interaction. Specifically, FIG. 12 shows a specific process of transmitting and receiving a downlink reference signal.
  • the network device may be, for example, the network device 102 in the communication system illustrated in FIG. 1, which may be, for example, the terminal device 104 in the communication system illustrated in FIG. Any of 114. It should be understood that the terminal device may be any terminal device that has a wireless connection relationship with the network device in the wireless communication system.
  • the network device can transmit the reference signal based on the same technical solution with a plurality of terminal devices having a wireless connection relationship in the wireless communication system.
  • the CSI-RS is used as an example of the downlink reference signal to describe the technical solution provided by the present application, but this application should not be limited to the present application, and the application does not exclude the definition in the future protocol.
  • Other downlink reference signals to achieve the same or similar functions such as Demodulation Reference Signal (DMRS), Tracking Reference Signal (TRS), Phase Tracking Reference Signal (PTRS), etc. .
  • DMRS Demodulation Reference Signal
  • TRS Tracking Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the BWP and system bandwidth of the terminal device may be the downlink BWP and the downlink system bandwidth, respectively.
  • the downlink BWP and the uplink BWP may be independent of each other; for the communication system, the downlink system bandwidth and the uplink system bandwidth may also be independent of each other.
  • the downlink BWP and the uplink BWP can respectively occupy different frequency band resources, and the downlink system bandwidth and the uplink system bandwidth can also occupy different frequency band resources respectively.
  • FDD Frequency Division Deplux
  • the method 2000 can include steps 2100 through 2500.
  • the steps in method 2000 are described in detail below.
  • step 2100 the network device transmits the CSI-RS according to the starting position of the resource transmitting the CSI-RS in the frequency domain.
  • the terminal device receives the CSI-RS according to the starting position of the resource transmitting the CSI-RS in the frequency domain.
  • CSI-RS can be used for downlink channel measurement.
  • the network device may send the CSI-RS on the downlink channel, and the terminal device may perform downlink channel measurement based on the received CSI-RS, thereby determining channel quality information (CSI), and feeding back to the network device, so as to facilitate the network device. Perform resource scheduling.
  • CSI channel quality information
  • the network device may pre-configure resources for transmitting the CSI-RS and transmit the CSI-RS based on the configured resources. Since the BWP of each terminal device is configured based on the UE level, the location and transmission bandwidth of the BWP of different terminal devices may be different. Each terminal device may receive a CSI-RS from the network device according to a resource transmitting the CSI-RS on a transmission bandwidth of the respective BWP.
  • One possible case is that resources corresponding to BWPs of two or more terminal devices in the same cell overlap, and pilot areas of the two or more terminal devices also fall within the overlapping resources. Then the two or more terminal devices can receive the same CSI-RS from the network device on the same resource. In other words, multiple terminal devices in the same cell can share the same CSI-RS from the network device.
  • the starting position of the resource of the CSI-RS in the frequency domain may be characterized by the RB, that is, the starting RB of the CSI-RS is transmitted.
  • the starting RB of the transmission CSI-RS may be determined according to the starting RB of the pilot region.
  • the pilot region can be understood as a range of transmission bandwidths that can be used to transmit CSI-RS.
  • the resource of the pilot area may be an area of the network device configured for receiving the CSI-RS.
  • the pilot area is usually in the transmission bandwidth of the BWP, or the bandwidth of the pilot area is smaller than or equal to the transmission bandwidth of the BWP, and the location of the pilot area is usually also in the resource corresponding to the BWP.
  • the terminal device may receive the CSI-RS on the resource corresponding to the pilot area to perform downlink channel measurement.
  • the pilot region can be used to transmit CSI-RS, but does not mean that the network device must transmit CSI-RS over the entire bandwidth of the pilot region.
  • the resources for transmitting the CSI-RS may be continuous or non-contiguous.
  • resources for transmitting CSI-RS may be divided into RB groups as granularity.
  • the resources for transmitting CSI-RS may be contiguous within the RB group and may be continuous or non-contiguous between RB groups. Therefore, the continuum or discontinuity referred to herein is granular in the RB group.
  • Each RB group may include m RBs, m ⁇ 1, and m is a positive integer.
  • the value of m may be an integer multiple of 4, for example, 4, 8, 12, and the like.
  • the network device may send the CSI-RS in the full bandwidth of the entire pilot region; if the resource for transmitting the CSI-RS is discontinuous, the network device may be part of the resources in the pilot region. Send CSI-RS on it. Regardless of whether it is continuous or discontinuous, the starting RBs of the transmitted CSI-RS are all related to the location of the pilot area. For example, if the resources for transmitting the CSI-RS are consecutive, the starting RB of the CSI-RS may be the starting RB of the pilot area, and if the resource for transmitting the CSI-RS is discontinuous, the CSI-RS is transmitted.
  • the starting RB may be the starting RB of the pilot area, or may be an RB in the middle of the pilot area. Continuous or discontinuous situations will be described in detail later with reference to the drawings. Since the location of the pilot region can be characterized by the offset of the pilot region, the offset of the pilot region may be the resource size of the starting RB offset from the starting RB of the BWP, or may be a guide The starting RB of the frequency region is offset from the starting RB of the system bandwidth, and the starting RB of the transmitting CSI-RS may be determined according to the offset of the pilot region. In addition, the network device can complete the transmission of the CSI-RS in the pilot area by using one or more transmission opportunities, which is not limited in this application.
  • the CSI-RS may include a zero-power CSI-RS and a non-zero-power CSI-RS. If the CSI-RS is a zero-power CSI-RS, the network device may be on a resource for transmitting the CSI-RS. Does not carry signals. Therefore, whether it is a zero-power CSI-RS or a non-zero-power CSI-RS, resources determined to be used for transmitting CSI-RS are not used to transmit other signals.
  • the method 2000 further includes: Step 2200, the network device determines an offset of the pilot area.
  • the method 2000 further includes: Step 2300, the terminal device determines an offset of the pilot region.
  • the pilot area of each terminal device may be configured by a network device.
  • the network device may determine the location and size of the pilot area of each terminal device according to the size of the entire downlink system bandwidth and the location and size of the BWP of the terminal device accessing the network device in the system bandwidth. It should be understood that the specific method for determining the location and size of the pilot area of each terminal device by the network device may be the same as the prior art. For the sake of brevity, a detailed description of the specific process is omitted herein.
  • the method 2000 further includes: the network device sending the indication information of the offset of the pilot area.
  • the network device may notify the terminal device of the information of the pilot area (for example, the information including the offset of the pilot area, the bandwidth size of the pilot area, and the like).
  • the network device may notify the offset of the pilot area of the terminal device by any one of the following methods:
  • the network device sends indication information of the first offset k c (ie, an example of indication information of the offset of the pilot region) to the terminal device, where the indication information indicates the value of the first offset k c
  • the first offset k c represents the number of RBs of the starting RB of the pilot region relative to the starting RB offset of the BWP.
  • the network device sends, to the terminal device, indication information of a second offset T ⁇ , where the indication information indicates a value of a second offset T ⁇ of the pilot region, where the second offset T ⁇ represents a pilot The number of RBs of the start RB of the area mappable area relative to the start RB offset of the BWP;
  • the network device sends indication information of the third offset k i to the terminal device, where the indication information indicates a value of k i , where the third offset k i indicates that the starting RB of the pilot region is relative to the pilot region
  • the information indicating the second offset T ⁇ and the information of the third offset k i can be understood as another example of the offset of the probe information.
  • Manner 3 The network device sends, to the terminal device, indication information of the starting RB of the pilot area (that is, another example of the indication information of the offset of the pilot area), where the indication information indicates that the starting RB of the pilot area corresponds to The RB number in the system bandwidth.
  • the downlink system bandwidth is shown by the granularity of the RB group.
  • the bandwidth of the BWP of the terminal device is not necessarily an integer multiple of 4 RB, and the number of RBs between the starting RB of the BWP of the terminal device and the starting RB of the system bandwidth is not necessarily an integer of m. Times.
  • the RB number in the system bandwidth is only shown for ease of understanding, but this should not constitute any limitation on the present application.
  • the present application does not limit the RB numbering rule in the system bandwidth and the RB numbering rule in the BWP.
  • the RB numbers in the bandwidth of the system may also be arranged from bottom to top in order from 0 to 30.
  • the first offset k c is an offset of the pilot region, and the terminal device may directly determine the starting RB of the pilot region according to the first offset k c .
  • the value of k c may be further defined, ie, And k c is an integer. among them, The number of RBs included in the transmission bandwidth of the BWP, which is located above Distinguish Said. It can indicate the number of RBs included in the pilot area.
  • FIG. 13 is a schematic diagram of a system bandwidth, a pilot area of a terminal device, and a BWP according to an embodiment of the present application.
  • the last RB of the pilot area of the terminal device is the last RB of the BWP, that is, the upper limit of the frequency band corresponding to the BWP;
  • the pilot area of the terminal device has exceeded the frequency band corresponding to the BWP.
  • the BWP of the terminal device Since the BWP of the terminal device is UE-level, it may be only part of the bandwidth of the system bandwidth. If the pilot area of the terminal device exceeds the bandwidth of the BWP of the terminal device, the accuracy of the channel measurement may be degraded.
  • the value range of the k c can be obtained as Any integer value in .
  • the pilot area of the terminal device can be controlled within the range of the BWP of the terminal device, so that the problem that the CSI-RS cannot be completely mapped in the BWP and the channel measurement accuracy is reduced can be avoided. Thereby, it is advantageous to improve the demodulation performance.
  • the indication information of the first offset k c is carried in the high layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the indication information that carries the first offset k c through the RRC message is only one possible implementation, and should not be limited to the present application.
  • the indication information of the first offset k c may also be It is carried in MAC-CE.
  • mk i may represent the number of RBs of the starting RB of the pilot region relative to the starting RB of the pilot region mappable region, and it is understood that mk i is an integer multiple of m.
  • T ⁇ ⁇ [0, m-1] by limiting the value of the first offset k c in the first mode, the range of values of k i can be obtained, ie, And T ⁇ and k i are integers.
  • the starting RBs of the CSI-RSs of the terminal devices of the BWPs having multiple overlapping areas may be aligned in the same position in the future protocol, or the offsets of the m RBs are guaranteed to reduce the interference.
  • the first offset amount k c described above is decomposed into two parts of T ⁇ and k i .
  • T ⁇ may be configured by the network device, for example, configuring different T ⁇ values for terminal devices configured with different BWP bandwidth sizes.
  • FIG. 14 is another schematic diagram of a system bandwidth, a pilot area of a terminal device, and a BWP according to an embodiment of the present application.
  • the transmission bandwidth of a BWP of a terminal device for example, referred to as terminal device #1 26 RB, the number of RBs of the starting RB of the BWP relative to the starting RB of the system bandwidth 5; the transmission bandwidth of the BWP of another terminal device (for example, referred to as terminal device #2) 22 RB, the number of RBs of the starting RB of the BWP relative to the starting RB of the system bandwidth Is 6. among them, Indicates the number of RBs of the starting RB of the BWP of the terminal device with respect to the starting RB offset of the system bandwidth.
  • the two terminal devices can share the same CSI-RS transmitted by the network device in the overlapping area, as shown in the figure.
  • the transmission bandwidth of the CSI-RS defined in the current standard may be an integer multiple of 4 RB
  • the starting position of the CSI-RS may be the RB numbered 8 in the system bandwidth shown in the figure, or may be in the system bandwidth.
  • the RB numbered 12 is not limited in this application. In other words, the starting RB of the pilot region mappable location may range from RB numbered 8 in the system bandwidth to RB numbered 12 in the system bandwidth.
  • T ⁇ may be different due to the different positions of the BWP mapping in the system bandwidth.
  • the network device may be a different terminal.
  • the device is configured with different T ⁇ , so that the transmission resources of different CSI-RSs are in different positions in the system bandwidth, thereby facilitating the network device to implement the full bandwidth measurement of the system bandwidth.
  • T ⁇ is only for illustration, and the T ⁇ shown is just satisfied. In fact, the value of T ⁇ is not limited to this application.
  • the value of T ⁇ can be determined by the network device according to the location of each CSI-RS.
  • the indication information of the second offset T ⁇ is carried in the high layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the indication information of the third offset k i is carried in the high layer signaling.
  • the high layer signaling may for example comprise a message or a MAC-CE.
  • the high layer signaling used for carrying the indication information of the second offset T ⁇ and the high layer signaling used to carry the indication information of the third offset k i may be two different high layer signaling, or It is carried in the same high-level signaling, which is not limited in this application.
  • bearer information indicating the second offset T ⁇ indication information or the third shift amount k i by higher layer signaling constitutes any limitation.
  • the offset of the pilot region can be characterized by the number of RBs of the starting RB of the pilot region relative to the starting RB offset of the BWP.
  • the network device may directly indicate to the terminal device the RB number corresponding to the starting RB of the pilot area in the system bandwidth.
  • the terminal device may be based on the starting RB number of the pilot area and the pre-acquired The value determines the position of the starting RB of the pilot region in the BWP.
  • the offset of the pilot region can be characterized by the number of RBs of the starting RB of the pilot region relative to the starting RB offset of the system bandwidth.
  • the starting RB of the pilot area of the terminal device #1 corresponds to the position of the RB number 12 in the system bandwidth
  • the network device can indicate to the terminal device #1 that the starting RB of the pilot area is in the system.
  • the number in the bandwidth is 12.
  • Terminal device #1 can be pre-acquired Value (as shown in the figure, And determining the position of the starting RB of the pilot region in the BWP, that is, the number of RBs of the starting RB of the pilot region relative to the starting RB of the BWP. It is assumed that the starting RB number of the BWP is 0, and the RB number corresponding to the starting RB of the pilot area in the BWP is 8.
  • the indication information of the starting RB of the pilot area is carried in the high layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the indication information of the initial RB of the pilot area is only one possible implementation by the RRC message, and should not be limited to the present application.
  • the indication information of the starting RB of the pilot area is still Can be carried in the MAC-CE.
  • the terminal device can determine the offset of the pilot region.
  • the method 2000 further includes: the network device sending indication information of a pilot area size, where the indication information indicates a transmission bandwidth occupied by the pilot area.
  • the pilot area size can be characterized by the number of RBs.
  • the indication information of the pilot area size is carried in the high layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the starting RB and the pilot area size of the pilot area may be indicated by a piece of indication information.
  • the high layer signaling used to carry the foregoing indication information enumerated by the first mode to the third mode and the high layer signaling used to carry the indication information of the pilot area size may be multiple different high layer signaling, or may be carried on In the same high layer signaling, this application does not limit this.
  • the method 2000 further includes: sending, by the network device Indication information of the value indicating The value.
  • the indication of the value is carried in the higher layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the high layer signaling used to carry the indication information enumerated above is used for carrying
  • the high-level signaling of the indication information of the value may be a plurality of different high-layer signalings, and may be carried in the same high-layer signaling, which is not limited in this application.
  • the network device and the terminal device can determine the offset of the pilot region, and then determine the starting RB of the transmitted CSI-RS according to the offset of the pilot region.
  • the pilot region may also be the full bandwidth of the BWP.
  • the offset of the pilot region may be 0.
  • the bandwidth of the pilot region is not limited in this application.
  • the method 2000 further includes: Step 2400, the network device determines, according to the offset of the pilot area, a starting RB of transmitting the CSI-RS.
  • the method 2000 further includes: Step 2500, the terminal device determines, according to the offset of the pilot region, the starting RB of transmitting the CSI-RS.
  • the resource for transmitting the CSI-RS may be configured by the network device.
  • the network device may determine the location of transmitting the CSI-RS according to the size of the entire downlink system bandwidth, the location and size of the BWP of the terminal device accessing the network device in the system bandwidth, and the location and size of the pilot region of each terminal device.
  • the specific method for the network device to determine to transmit the CSI-RS may be the same as the prior art, and a detailed description of the specific process is omitted herein for the sake of brevity.
  • the network device may notify the terminal device by signaling the starting location (eg, the starting RB) of the transmitting CSI-RS after determining the transmission resource of the CSI-RS, so that the terminal device receives the CSI according to the starting location. RS.
  • the starting location eg, the starting RB
  • the network device and the terminal device may determine resource elements (REs) for transmitting CSI-RS in the RB according to a predefined pilot pattern. After the network device and the terminal device respectively determine the RBs for transmitting the CSI-RS, the REs carrying the CSI-RS may be determined according to the predefined pilot pattern.
  • REs resource elements
  • the transmission resources of the CSI-RS may be continuous or non-contiguous in the pilot area (or within the BWP), and may be specifically configured by the network device.
  • the terminal device may directly determine the starting RB of the transmission CSI-RS according to the offset of the pilot area determined in step 2300, and then obtain the transmitted CSI according to the determination.
  • the starting RB of the -RS receives the CSI-RS.
  • the network device may further indicate to the terminal device the location at which the CSI-RS is transmitted.
  • the method 2000 further includes: the network device sending indication information of the CSI-RS location, where the indication information indicates an RB in the pilot area for transmitting the CSI-RS.
  • the method 2000 further includes: the terminal device receiving indication information of a CSI-RS location from the network device, the indication information indicating an RB in the pilot region for transmitting the CSI-RS.
  • the indication information of the CSI-RS location may be a bitmap.
  • the transmission bandwidth of the CSI-RS defined in the current standard may be an integer multiple of 4 RB, for example, m.
  • Each RB group in the pilot region corresponds to one bit, for example, when a certain RB group is used to transmit a CSI-RS, the corresponding bit can be set to "1"; When a certain RB group is not used to transmit CSI-RS, the corresponding bit can be set to "0".
  • the information indicated by the value in the bit may be predefined by the network device and the terminal device.
  • the information indicated by the bits respectively set to "1" and "0" is shown, but This application should not be construed as limiting.
  • the method for indicating the RB for transmitting the CSI-RS through the bitmap is only one possible implementation, and the present application does not constitute any limitation.
  • the application does not exclude the terminal device from determining the transmission CSI by other means.
  • -RS RB it is predefined that, for example, both the network device and the terminal device pre-agreed to transmit on the odd-numbered RB groups in the system bandwidth, not on the even-numbered RB groups, and so on. This application does not limit this.
  • FIG. 15 is a schematic diagram of a system bandwidth, a pilot area, a BWP, and a bitmap of a terminal device according to an embodiment of the present application.
  • the transmission bandwidth of the BWP of the terminal device 26 RB the number of RBs of the starting RB of the BWP relative to the starting RB of the system bandwidth Is 5.
  • each bit and the RB group is shown in the figure. Based on the indication of each bit in the bitmap, the RB for transmitting the CSI-RS in the pilot region can be determined. As shown, the network device transmits the CSI-RS only in the RB group of the corresponding bit position "1".
  • the network device may configure the pilot area as The entire BWP is such that CSI-RS can be transmitted anywhere in the BWP as needed. In this case, the bandwidth of the pilot area does not necessarily satisfy an integer multiple of m RBs.
  • FIG. 16 is another schematic diagram of a system bandwidth, a pilot area of a terminal device, a BWP, and a bitmap provided by an embodiment of the present application.
  • the transmission bandwidth of the BWP of the terminal device 26 RB
  • the bandwidth of the pilot region is also 26 RB
  • the number of RBs of the starting RB of the BWP relative to the starting RB of the system bandwidth Is 5.
  • the pilot region may include 5 complete RB groups, which may be indicated by 5 bits.
  • the first 3 RBs and the last 3 RBs in the pilot region cannot form a complete RB group, but they can still be regarded as two RB groups, respectively, which can be indicated by 2 bits.
  • two resource granularities are configured in the pilot region, one resource granularity is m RBs, and the other resource granularity is at least one RB smaller than m.
  • the correspondence between the bits in the RB group is shown in the figure.
  • the RB for transmitting the CSI-RS in the pilot region can be determined.
  • the network device transmits the CSI-RS only in the RB group of the corresponding bit position "1".
  • the flexibility of resource scheduling can be further improved.
  • the indication information of the reference signal location is carried in the high layer signaling.
  • the higher layer signaling may include, for example, an RRC message or a MAC-CE.
  • the signaling for indicating the indication information of the reference signal position as exemplified herein is merely exemplary and should not be construed as limiting the application.
  • the indication information of the reference signal position can also be carried in the MAC-CE.
  • the embodiment of the present application determines that the terminal device receives the starting RB of the CSI-RS by combining the BWP of the terminal device in the NR, and transmits the CSI-RS based on the starting RB, so that the terminal device can determine the location and size of the BWP according to the BWP.
  • the resource location indicating the transmission of the CSI-RS on the full band of the system bandwidth can be avoided, thereby It is beneficial to reduce the signaling overhead.
  • the offset of the pilot region it is possible to prevent the transmission resource of the CSI-RS from exceeding the range of the BWP, and the accuracy of the channel measurement of the terminal device is reduced, thereby facilitating the improvement of the demodulation performance. It should be understood that, in the foregoing embodiments, the embodiments are described by using RB as an example of resource unit.
  • RB may refer to the definition of RB in the current LTE protocol, and may also refer to the protocol of the future 5G.
  • the definition of RB does not exclude the possibility of defining other resource units in place of RBs in future protocols.
  • pre-definition may be implemented by pre-storing corresponding codes, tables, or other means that can be used to indicate relevant information in a device (eg, including a terminal device and a network device), The specific implementation manner is not limited.
  • the network device and the terminal device can communicate based on multiple antenna technologies.
  • antenna switching for one-to-two (1T2R) users is supported.
  • the antenna switching of the users of a Tx (transmitting) antenna and b Rx (receiving) antennas is further supported by the method of antenna grouping, where a>1 or b>2, and a ⁇ b.
  • Step 1 The base station sends the SRS configuration information to the user.
  • the number of antenna ports indicated in the antenna port information needs to be no more than the number of antennas that the user can perform uplink transmission at the same time. Therefore, the user needs to report the maximum number of antennas that can be simultaneously transmitted in message three (Msg3) or higher layer signaling, such as RRC signaling.
  • Msg3 message three
  • RRC Radio Resource Control
  • Step 2 The base station sends signaling to the user, where the signaling is used to notify the user to send the SRS in the manner of SRS antenna switching.
  • the base station notifies the user of the total number of antennas used.
  • Step 3 The user transmits the SRS on the four antennas according to the configuration information of the base station.
  • Group 1 contains the antenna ⁇ 2, 3 ⁇ .
  • the antennas in the group are antennas that can be used for uplink transmission at the same time.
  • the identification of the antenna group can be recorded as
  • the n SRS is determined according to the number of times the uplink reference signal is sent, for example, the number of times or the number of times the n SRS is sent by the uplink reference signal is decreased by one.
  • K is the total number of hops for frequency hopping.
  • the following table gives the relationship between the antenna port and the number of transmissions and the bandwidth of the transmission:
  • the user transmits the SRS with the antennas 0 and 1 at the first frequency hopping position
  • the second transmission the user transmits the SRS with the antennas 2 and 3 at the second frequency hopping position
  • the third the user transmits the SRS with antennas 2 and 3 at the first hopping position
  • the fourth transmission the user transmits the SRS with antennas 0 and 1 at the second hopping position.
  • the network device and the terminal device provided by the embodiment of the present application are described in detail below with reference to FIG. 17 to FIG.
  • FIG. 17 is a schematic block diagram of a terminal device 400 according to an embodiment of the present application. As shown in FIG. 17, the terminal device 400 includes a determining module 410 and a transceiver module 420.
  • the determining module 410 is configured to determine, according to the offset, a location of a starting subcarrier that transmits the SRS, where the offset is the transmission bandwidth of the starting subcarrier of the detecting region relative to the bandwidth portion BWP of the terminal device.
  • the resource size of the initial subcarrier offset, and the offset is determined based on a predefined resource configuration manner;
  • the transceiver module 420 is configured to send the SRS according to the location of the starting subcarrier of the transmission SRS determined by the determining module 410.
  • the embodiment of the present application determines the location of the starting subcarrier for transmitting the SRS by the terminal device by combining the BWP of the terminal device in the NR, and transmits the SRS based on the location of the starting subcarrier, so that the resource for transmitting the SRS configured for each terminal device is configured. It is also at the user equipment (UE) level, so that the resources for transmitting SRS can be configured according to the transmission or reception capability of each terminal device and the requirement for measuring the bandwidth size, which is more suitable for the NR scenario. Moreover, the method for determining the location of the starting subcarrier for transmitting the SRS provided by the embodiment of the present application does not limit the slot type.
  • the predefined resource configuration manner is determined from a plurality of predefined resource configuration manners, where the predefined multiple resource configuration manners correspond to multiple offsets.
  • the terminal device 400 further includes an obtaining module, configured to obtain an index value of the predefined resource configuration manner, where the index value is used to indicate the predefined resource configuration manner, where the predefined multiple resources are used.
  • the configuration mode corresponds to multiple index values.
  • the transceiver module 420 is further configured to receive first information, where the first information includes an index value of the predefined resource configuration manner.
  • the determining module 410 is further configured to determine an index value of the predefined resource configuration manner according to any one of the following parameters: a system frame number, a slot number, or a location of a comb mapping.
  • the multiple resource configuration manners are in one-to-one correspondence with multiple formulas, and each formula is used to determine an offset, where the multiple formulas include:
  • the multiple resource configuration manners are in one-to-one correspondence with multiple formulas, and each formula is used to determine an offset, where the multiple formulas include:
  • the offset is determined according to the following formula:
  • the terminal device 400 may correspond to a terminal device in the method 200 of transmitting and receiving a reference signal according to an embodiment of the present application
  • the terminal device 400 may include a terminal for performing the method 200 of transmitting and receiving a reference signal in FIG. a module of the method performed by the device, and each module in the terminal device 400 and the other operations and/or functions described above are respectively used to implement the corresponding process of the method 200 of transmitting and receiving the reference signal in FIG. 3, specifically, the determining module 410 In step 210, step 240, and step 2602 of the method 200, the transceiver module 420 is configured to perform step 230 and step 2601 in the method 200.
  • the specific process of each module performing the foregoing steps has been described in detail in the method 200. , will not repeat them here.
  • the terminal device 400 may correspond to a terminal device in the method 300 of transmitting and receiving a reference signal according to an embodiment of the present application, and the terminal device 400 may include a method performed by the terminal device of the method 300 of transmitting and receiving a reference signal in FIG.
  • the modules, and the various modules in the terminal device 400 and the other operations and/or functions described above, respectively, are for implementing the respective processes of the method 300 of transmitting and receiving reference signals in FIG.
  • the determining module 410 is configured to perform step 310 and step 330 in the method 300.
  • the transceiver module 420 is configured to perform step 350 in the method 300.
  • the specific process for each module to perform the corresponding step is detailed in the method 300. Concise, no longer repeat here.
  • the terminal device 400 may correspond to a terminal device in the method 1000 of transmitting and receiving a reference signal according to an embodiment of the present application, and the terminal device 400 may include a method performed by the terminal device of the method 1000 of transmitting and receiving a reference signal in FIG.
  • the modules, and the various modules in the terminal device 400 and the other operations and/or functions described above, respectively, are for implementing the respective processes of the method 1000 of transmitting and receiving reference signals in FIG.
  • the determining module 410 is configured to perform step 1200 and step 1400 in the method 1000.
  • the transceiver module 420 is configured to perform step 1100 in the method 1000. The specific process in which each module performs the corresponding step is described in detail in the method 1000. Concise, no longer repeat here.
  • the terminal device 400 may correspond to a terminal device in the method 2000 of transmitting and receiving a reference signal according to an embodiment of the present application, and the terminal device 400 may include a method performed by the terminal device of the method 2000 of transmitting and receiving a reference signal in FIG.
  • the modules, and the modules in the terminal device 400 and the other operations and/or functions described above, respectively, are for implementing the respective processes of the method 2000 of transmitting and receiving reference signals in FIG.
  • the determining module 410 is configured to perform step 2200 and step 2400 in the method 2000
  • the transceiver module 420 is configured to perform step 2100 in the method 2000.
  • the specific process in which each module performs the foregoing corresponding steps has been described in detail in the method 2000. Concise, no longer repeat here.
  • FIG. 18 is a schematic structural diagram of a terminal device 500 according to an embodiment of the present application.
  • the terminal device 500 includes a processor 501 and a transceiver 502.
  • the terminal device 500 further includes a memory 503.
  • the processor 502, the transceiver 502 and the memory 503 communicate with each other through an internal connection path for transferring control and/or data signals
  • the memory 503 is for storing a computer program
  • the processor 501 is used for the memory 503.
  • the computer program is called and executed to control the transceiver 502 to send and receive signals.
  • the above processor 501 and memory 503 can synthesize a processing device, and the processor 501 is configured to execute the program code stored in the memory 503 to implement the above functions.
  • the memory 503 can also be integrated in the processor 501 or independent of the processor 501.
  • the terminal device 500 may further include an antenna 504, configured to send uplink data or uplink control signaling output by the transceiver 502 by using a wireless signal.
  • the terminal device 500 may correspond to a terminal device in the method 200 of transmitting and receiving a reference signal according to an embodiment of the present application, and the terminal device 500 may include a terminal for performing the method 200 of transmitting and receiving a reference signal in FIG.
  • a module of the method performed by the device, and each module in the terminal device 500 and the other operations and/or functions described above are respectively configured to implement the respective processes of the method 200 of transmitting and receiving reference signals in FIG.
  • the memory 503 is configured to store program code, such that when executing the program code, the processor 501 executes step 210, step 240, and step 2602 in the method 200, and controls the transceiver 502 to perform step 230 in the method 200 and
  • step 2601 the specific process of performing the foregoing steps in each module has been described in detail in the method 200. For brevity, details are not described herein again.
  • the terminal device 500 may correspond to a terminal device in the method 300 of transmitting and receiving a reference signal according to an embodiment of the present application, and the terminal device 500 may include a method performed by the terminal device of the method 300 of transmitting and receiving a reference signal in FIG.
  • the modules, and the various modules in the terminal device 500 and the other operations and/or functions described above, respectively, are for implementing the respective processes of the method 300 of transmitting and receiving reference signals in FIG.
  • the memory 503 is configured to store program code, such that when the program code is executed, the processor 501 executes step 310 and step 330 in the method 300, and controls the transceiver 502 to perform step 350 in the method 300, and each module executes
  • program code such that when the program code is executed, the processor 501 executes step 310 and step 330 in the method 300, and controls the transceiver 502 to perform step 350 in the method 300, and each module executes
  • the processor 501 executes step 310 and step 330 in the method 300, and controls the transceiver 502 to perform step 350 in the method 300, and each module executes
  • the terminal device 500 may correspond to a terminal device in the method 1000 of transmitting and receiving a reference signal according to an embodiment of the present application, and the terminal device 500 may include a method performed by the terminal device of the method 1000 of transmitting and receiving a reference signal in FIG.
  • the modules, and the modules in the terminal device 500 and the other operating boxes/functions described above, respectively, are used to implement the corresponding flow of the method 1000 of transmitting and receiving reference signals in FIG.
  • the memory 503 is configured to store program code, such that when the program code is executed, the processor 501 executes step 120 and step 1400 in the method 1000, and controls the transceiver 502 to perform step 1100 in the method 1000, and each module executes
  • program code such that when the program code is executed, the processor 501 executes step 120 and step 1400 in the method 1000, and controls the transceiver 502 to perform step 1100 in the method 1000, and each module executes
  • the specific process of the above-mentioned corresponding steps has been described in detail in the method 1000. For brevity, no further details are provided herein.
  • the terminal device 500 may correspond to a terminal device in the method 2000 of transmitting and receiving a reference signal according to an embodiment of the present application, and the terminal device 500 may include a method performed by the terminal device of the method 2000 of transmitting and receiving a reference signal in FIG.
  • the modules, and the modules in the terminal device 500 and the other operations and/or functions described above, respectively, are for implementing the respective processes of the method 2000 of transmitting and receiving reference signals in FIG.
  • the memory 503 is configured to store program code, such that when executing the program code, the processor 501 executes step 2200 and step 2400 in the method 2000, and controls the transceiver 501 to perform the steps in the method 2000. 2100.
  • the specific process of performing the foregoing steps in each module has been described in detail in the method 2000. For brevity, details are not described herein again.
  • the processor 501 can be used to perform the actions implemented by the terminal in the foregoing method embodiments, and the transceiver 502 can be used to perform the actions of the terminal to transmit or transmit to the network device in the foregoing method embodiments.
  • the transceiver 502 can be used to perform the actions of the terminal to transmit or transmit to the network device in the foregoing method embodiments.
  • the above processor 501 and memory 503 can be integrated into one processing device, and the processor 501 is configured to execute the program code stored in the memory 503 to implement the above functions.
  • the memory 503 can also be integrated in the processor 501.
  • the terminal device 500 described above may also include a power source 505 for providing power to various devices or circuits in the terminal.
  • the terminal device 500 may further include one or more of an input unit 506, a display unit 507, an audio circuit 508, a camera 509, a sensor 510, and the like, the audio circuit.
  • an input unit 506 a display unit 507
  • an audio circuit 508 a camera 509
  • a sensor 510 a sensor
  • the terminal device 500 may further include one or more of an input unit 506, a display unit 507, an audio circuit 508, a camera 509, a sensor 510, and the like, the audio circuit.
  • a speaker 5082, a microphone 5084, and the like can also be included.
  • FIG. 19 is a schematic block diagram of a network device 600 provided by an embodiment of the present application. As shown in FIG. 19, the network device 600 includes a determining module 610 and a transceiver module 620.
  • the determining module 610 is configured to determine, according to the offset, a location of a starting subcarrier that transmits the SRS, where the offset is a starting subcarrier of a starting subcarrier of the detecting region relative to a transmission bandwidth of the BWP of the terminal device.
  • the size of the offset resource, and the offset is determined based on a predefined resource configuration manner;
  • the transceiver module 620 is configured to receive an SRS from the terminal device according to the location of the starting subcarrier of the transmission SRS determined by the determining module 610.
  • the embodiment of the present application determines the location of the starting subcarrier for transmitting the SRS by the terminal device by combining the BWP of the terminal device in the NR, and transmits the SRS based on the location of the starting subcarrier, so that the resource for transmitting the SRS configured for each terminal device is configured. It is also at the user equipment (UE) level, so that the resources for transmitting SRS can be configured according to the transmission or reception capability of each terminal device and the requirement for measuring the bandwidth size, which is more suitable for the NR scenario. Moreover, the method for determining the location of the starting subcarrier for transmitting the SRS provided by the embodiment of the present application does not limit the slot type.
  • the predefined resource configuration manner is determined from a plurality of predefined resource configuration manners, where the predefined multiple resource configuration manners correspond to multiple different offsets.
  • the determining module 610 is further configured to determine, according to any one of the following parameters, an index value of the predefined resource configuration manner: a system frame number, a slot number, or a location of a comb mapping, where the index value is used to indicate the advance
  • the defined resource configuration manner wherein the predefined multiple resource configuration manners are in one-to-one correspondence with multiple index values.
  • the transceiver module 620 is further configured to send the first information, where the first information includes an index value of the predefined resource configuration manner.
  • the multiple resource configuration manners are in one-to-one correspondence with multiple formulas, and each formula is used to determine an offset, where the multiple formulas include:
  • the multiple resource configuration manners are in one-to-one correspondence with multiple formulas, and each formula is used to determine an offset, where the multiple formulas include:
  • the offset is determined according to the following formula:
  • network device 600 can correspond to a network device in method 200 of transmitting and receiving reference signals in accordance with embodiments of the present application, which network device 600 can include a network for performing method 200 of transmitting and receiving reference signals in FIG. A module of the method performed by the device.
  • the modules in the network device 600 and the other operations and/or functions described above are respectively used to implement the corresponding processes of the method 200 for transmitting and receiving reference signals in FIG. 3, and specifically, the determining module 610 is configured to perform the steps in the method 200. 220, step 250, and step 270, the transceiver module 620 is configured to perform step 230 in the method 200.
  • the specific process of each module performing the foregoing steps has been described in detail in the method 200. For brevity, no further details are provided herein.
  • network device 600 may correspond to a network device in method 300 of transmitting and receiving reference signals in accordance with embodiments of the present application, which may include a network device for performing method 300 of transmitting and receiving reference signals in FIG.
  • the module of the method of execution are respectively used to implement the corresponding processes of the method 300 for transmitting and receiving reference signals in FIG. 6, and specifically, the determining module 610 is configured to perform the steps in the method 300. 320 and step 340, the transceiver module 620 is configured to perform the step 350 in the method 300.
  • the specific process of each module performing the foregoing steps is described in detail in the method 200. For brevity, no further details are provided herein.
  • network device 600 may correspond to a network device in method 1000 of transmitting and receiving reference signals in accordance with an embodiment of the present application, which may include a method performed by a terminal device of method 1000 of transmitting and receiving reference signals in FIG.
  • the modules, and the modules in the network device 600 and the other operating boxes/functions described above, respectively, are configured to implement the corresponding processes of the method 1000 of transmitting and receiving reference signals in FIG.
  • the determining module 610 is configured to perform step 1300 and step 1500 in the method 1000.
  • the transceiver module 620 is configured to perform step 1100 in the method 1000. The specific process in which each module performs the foregoing corresponding steps is described in detail in the method 1000. Concise, no longer repeat here.
  • network device 600 may correspond to a network device in method 1000 of transmitting and receiving reference signals in accordance with embodiments of the present application, which may include a method performed by a terminal device of method 1000 of transmitting and receiving reference signals in FIG.
  • the modules, and the modules in the network device 600 and the other operating boxes/functions described above, respectively, are configured to implement the respective processes of the method 1000 of transmitting and receiving reference signals in FIG.
  • the determining module 610 is configured to perform step 2300 and step 2500 in the method 2000
  • the transceiver module 620 is configured to perform step 2100 in the method 2000.
  • the specific process in which each module performs the foregoing corresponding steps has been described in detail in the method 2000. Concise, no longer repeat here.
  • FIG. 20 is a schematic structural diagram of a network device 700 according to an embodiment of the present application.
  • the network device 400 includes a processor 710 and a transceiver 720.
  • the network device 700 further includes a memory 730.
  • the processor 710, the transceiver 720, and the memory 730 communicate with each other through an internal connection path for transferring control and/or data signals.
  • the memory 730 is configured to store a computer program, and the processor 710 is configured to be called from the memory 730.
  • the computer program is run to control the transceiver 720 to send and receive signals.
  • the above processor 710 and memory 730 can synthesize a processing device, and the processor 710 is configured to execute the program code stored in the memory 730 to implement the above functions.
  • the memory 730 can also be integrated in the processor 710 or independent of the processor 710.
  • the network device may further include an antenna 740, configured to send downlink data or downlink control signaling output by the transceiver 720 by using a wireless signal.
  • the network device 700 can correspond to a network device in the method 200 of transmitting and receiving reference signals in accordance with embodiments of the present application, which can include a method 200 for performing the transmitting and receiving of reference signals in FIG. A module of the method performed by the network device.
  • each module in the network device 700 and the other operations and/or functions described above are respectively configured to implement the corresponding process of the method 200 of transmitting and receiving reference signals in FIG.
  • the memory 730 is configured to store program code, such that when the program code is executed, the processor 710 executes step 220, step 250, and step 270 in the method 200, and controls the transceiver 720 to execute the method 200 through the antenna 740.
  • the specific process of performing the foregoing steps in each module is described in detail in the method 200. For brevity, no further details are provided herein.
  • the network device 700 can correspond to a network device in a method 300 of transmitting and receiving reference signals in accordance with embodiments of the present application, the network device 700 can include a network for performing the method 300 of transmitting and receiving reference signals in FIG. A module of the method performed by the device. Moreover, each module in the network device 700 and the other operations and/or functions described above are respectively configured to implement the corresponding process of the method 300 of transmitting and receiving reference signals in FIG.
  • the memory 730 is configured to store program code such that when executing the program code, the processor 710 executes steps 320 and 340 of the method 300 and controls the transceiver 720 to perform step 350 of the method 300 via the antenna 740.
  • the specific process in which each module performs the above-mentioned corresponding steps has been described in detail in the method 200. For brevity, no further details are provided herein.
  • network device 700 may correspond to a network device in method 1000 of transmitting and receiving reference signals in accordance with embodiments of the present application, which may include a network device implemented method of method 1000 of transmitting and receiving reference signals in FIG.
  • the modules, and the modules in the network device 700 and the other operating boxes/functions described above, respectively, are configured to implement the respective processes of the method 1000 of transmitting and receiving reference signals in FIG.
  • the memory 703 is configured to store program code, so that when the program code is executed, the processor 701 executes step 1300 and step 1500 in the method 1000, and controls the transceiver 702 to perform step 1100 in the method 1000, and each module executes
  • the specific process of the above-mentioned corresponding steps has been described in detail in the method 1000. For brevity, no further details are provided herein.
  • network device 700 may correspond to a network device in method 1000 of transmitting and receiving reference signals in accordance with an embodiment of the present application, which may include a method performed by a terminal device of method 1000 of transmitting and receiving reference signals in FIG.
  • the modules, and the modules in the network device 600 and the other operating boxes/functions described above, respectively, are configured to implement the respective processes of the method 1000 of transmitting and receiving reference signals in FIG.
  • the memory 703 is configured to store program code, so that when the program code is executed, the processor 701 executes step 2300 and step 2500 in the method 2000, and controls the transceiver 702 to perform step 2100 in the method 2000, and each module executes
  • the specific process of the foregoing corresponding steps has been described in detail in the method 2000. For brevity, no further details are provided herein.
  • the embodiment of the present application further provides a system including the foregoing network device and one or more terminal devices.
  • the processor may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated integration.
  • DSPs digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded or executed on a computer, the processes or functions described in accordance with embodiments of the present application are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be wired from a website site, computer, server or data center (for example, infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that contains one or more sets of available media.
  • the usable medium can be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium.
  • the semiconductor medium can be a solid state hard drive.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本申请提供了一种发送和接收参考信号的方法、网络设备、终端设备和系统,以适用于NR中对SRS的资源配置。该方法包括:终端设备根据传输探测参考信号SRS的起始子载波的位置,发送该SRS;其中,传输该SRS的起始子载波的位置由探测区域的偏移量确定,该探测区域的偏移量指示该探测区域的起始子载波相对于该终端设备的带宽部分BWP的起始子载波偏移的资源大小,该探测区域为可用于传输该SRS的资源。

Description

发送和接收参考信号的方法、网络设备、终端设备和系统
本申请要求于2017年8月11日提交中国专利局、申请号为201710687878.0、申请名称为“发送和接收参考信号的方法、网络设备、终端设备和系统”,以及于2017年11月2日提交中国专利局、申请号为201711066801.8、申请名称为“发送和接收参考信号的方法、网络设备、终端设备和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及发送和接收参考信号的方法、网络设备、终端设备和系统。
背景技术
探测参考信号(sounding reference signal,SRS)是用于测量上行信道的一种参考信号。网络设备基于终端设备发送的SRS进行上行信道测量,以获取上行信道的信道状态信息(channel state information,CSI),以便于进行上行资源的调度。
在长期演进(Long Term Evolution,LTE)系统中,上行系统带宽可以分为两部分,位于上行系统带宽两侧的区域用于发送物理上行控制信道(physical uplink control channel,PUCCH),位于上行系统带宽中间的区域用于发送物理上行共享信道(physical uplink share channel,PUSCH)。由于LTE中终端设备的发射能力是相同的,因此,传输SRS的资源大小(或者说,探测区域(sounding region))是小区级别的,同一小区中的任意两个终端设备的探测区域是相同的,终端设备在上行系统带宽中除去PUCCH之外的带宽上发送SRS,以便于网络设备进行上行信道测量和资源调度。
然而,在某些通信系统中,例如,在第五代(fifth-generation,5G)通信系统的新一代无线接入技术(new radio access technology,NR)中,由于终端设备的发射能力不同,同一小区中的不同终端设备对应的探测区域也可能是不同的,因此,探测区域不再是小区级别的,而是用户设备(user equipment,UE)级别的。
发明内容
本申请提供一种发送和接收参考信号的方法、网络设备、终端设备和系统,以适用于NR中对SRS的资源配置。
第一方面,提供了一种发送参考信号的方法,包括:
终端设备根据偏移量,确定传输SRS的起始子载波的位置,所述偏移量为探测区域的起始子载波相对于所述终端设备的带宽部分(band width part,BWP)的传输带宽的起始子载波偏移的资源大小,且所述偏移量基于预先定义的资源配置方式确定;
所述终端设备根据所述传输SRS的起始子载波的位置,发送所述SRS。
其中,探测区域可以为配置给终端设备的用于传输SRS的资源,可以是上行系统带宽中(更具体地说,BWP中)终端设备可以通过SRS进行信道探测的区域,它可以理解为网络设备需要获取的信道状态信息(CSI)的资源区域,或者说,终端设备可用来发送SRS的资源区域。
因此,本申请实施例通过结合NR中终端设备的BWP确定终端设备传输SRS的起始子载波的位置,并基于起始子载波的位置传输SRS,使得为每个终端设备配置的传输SRS的资源也是用户设备(user equipment,UE)级别的,从而能够根据每个终端设备的发射或接收能力以及对测量带宽大小的需求配置传输SRS的资源,更加适合NR的场景。并且,本申请实施例所提供的确定传输SRS的起始子载波的位置的方法并不限制时隙类型。
结合第一方面,在第一方面的某些实现方式中,所述预先定义的资源配置方式是从预先定义的多种资源配置方式中确定,所述预先定义的多种资源配置方式与多个偏移量对应。
因此,在同一小区中的多个终端设备便可以基于不同的偏移量配置SRS的传输资源,使得网络设备能够在BWP全带的资源上能够进行信道测量,从而进行资源调度。
另外,在具有“信道互易性”的系统中,网络设备能够实现对BWP的全带测量,更有利于对下行信道的CSI的估计,以便于进行资源调度。
基于上述两点,相比于LET中的SRS的资源配置方式而言,本申请所提供的方法有助于网络设备对更多的资源进行调度,有利于提高资源利用率。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
所述终端设备获取所述预先定义的资源配置方式的索引值,所述索引值用于确定所述资源配置方式,其中,所述预先定义的多种资源配置方式与多个索引值一一对应。
所述终端设备可以通过以下任意一种方式获取所述预先定义的资源配置方式的索引值:
方法一、所述终端设备接收第一信息,所述第一信息中包含所述预先定义的资源配置方式的索引值;
方法二、所述终端设备根据以下任意一个参数确定所述预先定义的资源配置方式的索引值:系统帧号、时隙号或者梳齿映射的位置。
第二方面,提供了一种接收参考信号的方法,包括:
网络设备根据偏移量,确定传输SRS的起始子载波的位置,所述偏移量为探测区域的起始子载波相对于终端设备的BWP的传输带宽的起始子载波偏移的资源大小,且所述偏移量基于预先定义的资源配置方式确定;
所述网络设备根据传输所述SRS的起始子载波的位置,接收来自所述终端设备的所述SRS。
其中,探测区域是指终端设备通过SRS进行信道探测的区域,它可以理解为网络设备需要获取的信道状态信息(CSI)的资源区域,或者说,终端设备可用来发送SRS的资源区域。
因此,本申请实施例通过结合NR中终端设备的BWP确定终端设备传输SRS的起始子载波的位置,并基于起始子载波的位置传输SRS,使得为每个终端设备配置的传输SRS的资源也是UE级别的,从而能够根据每个终端设备的发射或接收能力以及对测量带宽大 小的需求配置传输SRS的资源,更加适合NR的场景。并且,本申请实施例所提供的确定传输SRS的起始子载波的位置的方法并不限制时隙类型。
结合第二方面,在第二方面的某些实现方式中,所述预先定义的资源配置方式是从预先定义的多种资源配置方式中确定,所述预先定义的多种资源配置方式与多个偏移量对应。
因此,在同一小区中的多个终端设备便可以基于不同的偏移量配置SRS的传输资源,使得网络设备能够在BWP全带的资源上能够进行信道测量,从而进行资源调度。
另外,在具有“信道互易性”的系统中,网络设备能够实现对BWP的全带测量,更有利于对下行信道的CSI的估计,以便于进行资源调度。
基于上述两点,相比于LET中的SRS的资源配置方式而言,本申请所提供的方法有助于网络设备对更多的资源进行调度,有利于提高资源利用率。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:
所述终端设备根据以下任意一个参数确定所述预先定义的资源配置方式的索引值:系统帧号、时隙号或者梳齿映射的位置,其中,所述索引值用于确定所述资源配置方式,其中,所述预先定义的多种资源配置方式与多个索引值一一对应。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:
所述网络设备发送第一信息,所述第一信息中包含所述预先定义的资源配置方式的索引值。
第三方面,提供了一种终端设备,包括确定模块和收发模块,以执行上述第一方面或第一方面任一种可能实现方式中的方法。所述确定模块用于执行与确定相关的功能,所述收发模块用于执行与收发相关的功能。
第四方面,提供了一种网络设备,包括确定模块和收发模块,以执行上述第二方面或第二方面任一种可能实现方式中的方法。所述确定模块用于执行与确定相关的功能,所述收发模块用于执行与收发相关的功能。
第五方面,提供了一种终端设备,包括:处理器、存储器和收发器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,以控制收发器收发信号,使得该终端设备执行第一方面或第一方面任一种可能实现方式中的方法。
第六方面,提供了一种网络设备,包括:处理器、存储器和收发器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,以控制收发器收发信号,使得该网络设备执行第二方面或第二方面任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
第七方面,提供了一种系统,所述系统包括上述终端设备和网络设备。
在以上方面中的任一方面中,可选地,所述多种资源配置方式与多个公式一一对应,每个公式用于确定一个偏移量,所述多个公式包括:
公式一:
Figure PCTCN2018099207-appb-000001
以及
公式二:
Figure PCTCN2018099207-appb-000002
其中,
Figure PCTCN2018099207-appb-000003
表示所述偏移量,
Figure PCTCN2018099207-appb-000004
表示所述终端设备的BWP的传输带宽所包含的资 源块RB数量,m SRS,b表示所述终端设备传输一次SRS使用的RB数量,B SRS为用户设备UE级别的SRS带宽配置参量,每个B SRS指示一组参数m SRS,b和N b,b=B SRS,且b为整数,N b表示所述终端设备测量m SRS,b-1的带宽所需发送SRS的次数,b'在[0,b]中遍历取值,
Figure PCTCN2018099207-appb-000005
表示每个RB中包含的子载波的数量,
Figure PCTCN2018099207-appb-000006
用于确定梳齿映射的位置。为了简洁,下文中省略对相同参数的说明。
在这种设计中,通过对不同的终端设备配置不同的偏移量,可以使得SRS能够在BWP全带传输,从而能够对BWP全带的资源进行上行信道的测量和资源调度的效果。并且,网络设备可以利用信道互易性,对下行信道的CSI进行估计,以便进行资源调度。因此,基于这种设计有助于网络设备对更多的资源进行调度,有利于提高资源利用率。
在以上方面的任一方面中,可选地,所述偏移量根据以下公式确定:
公式三:
Figure PCTCN2018099207-appb-000007
在这种设计中,考虑到NR中可能将PUCCH配置在BWP的两侧的可能性,将探测区域配置于BWP的中间区域。由于在BWP中,如果探测区域偏向BWP的两侧的任意一侧,就有可能造成一部分带宽的资源没有SRS传输而不能进行信道测量和资源调度,从而造成这一部分的资源被闲置和浪费。通过采用上述公式进行配置,可以减少闲置的资源,有利于提高资源的利用率;同时,可以减少不必要的SRS的发送,从而减少功率消耗。
在以上方面中的任一方面中,可选地,所述多种资源配置方式与多个公式一一对应,每个公式用于确定一个偏移量,所述多个公式包括:
公式一:
Figure PCTCN2018099207-appb-000008
公式二:
Figure PCTCN2018099207-appb-000009
以及
公式三:
Figure PCTCN2018099207-appb-000010
在这种设计中,既考虑到了在BWP全带传输SRS以达到能够对BWP全带的资源进行信道测量和调度的效果,又考虑到了NR中可能将PUCCH配置在BWP的两侧的可能性,有利于减少闲置的资源,从而达到了提高资源利用率的效果。
在以上方面中的任一方面中,可选地,所述多种资源配置方式与多个公式一一对应,每个公式用于确定一个偏移量,所述多个公式包括:
公式二:
Figure PCTCN2018099207-appb-000011
以及
公式四:
Figure PCTCN2018099207-appb-000012
其中,
Figure PCTCN2018099207-appb-000013
表示所述偏移量,
Figure PCTCN2018099207-appb-000014
表示所述终端设备的BWP的传输带宽所包含的资源块RB数量,
Figure PCTCN2018099207-appb-000015
表示向下取整,
Figure PCTCN2018099207-appb-000016
表示m SRS,0的最大值,m SRS,0表示探测区域的所包含的RB数量,
Figure PCTCN2018099207-appb-000017
表示每个RB中包含的子载波的数量,
Figure PCTCN2018099207-appb-000018
用于确定梳齿映射的位置。为了简洁,下文中省略对相同参数的说明。
在这种设计中,延用了LTE中的探测区域的带宽大小,即,为终端设备配置的探测区域的带宽大小可以参考LTE中的探测区域的带宽大小,例如,96RB、80RB等,因此,对LTE协议的改动较小,但同时可以通过采用上述公式对不同的终端设备配置不同的偏移量,使得SRS能够在BWP全带传输,从而能够对BWP全带的资源进行上行信道的测量和资源调度的效果。并且,网络设备可以利用信道互易性,对下行信道的CSI进行估计,以便进行资源调度。因此,基于这种设计有助于网络设备对更多的资源进行调度,有利于 提高资源利用率。
在以上方面中的任一方面中,可选地,所述偏移量根据以下公式确定:
公式五:
Figure PCTCN2018099207-appb-000019
其中,
Figure PCTCN2018099207-appb-000020
表示所述偏移量,
Figure PCTCN2018099207-appb-000021
表示所述终端设备的BWP的传输带宽所包含的资源块RB数量,
Figure PCTCN2018099207-appb-000022
表示向下取整,m SRS,0表示探测区域的所包含的RB数量,
Figure PCTCN2018099207-appb-000023
表示每个RB中包含的子载波的数量,
Figure PCTCN2018099207-appb-000024
用于确定梳齿映射的位置。
在这种设计中,延用了LTE中的探测区域的带宽大小,同时考虑到NR中可能将PUCCH配置在BWP的两侧的可能性,将探测区域配置于BWP的中间区域。由于在BWP中,如果探测区域偏向BWP的两侧的任意一侧,就有可能造成一部分带宽的资源没有SRS传输而不能进行信道测量和资源调度,从而造成这一部分的资源被闲置和浪费。通过采用上述公式进行配置,可以减少闲置的资源,有利于提高资源的利用率;同时,可以减少不必要的SRS的发送,从而减少功率消耗。
在以上方面中的任一方面中,可选地,所述多种资源配置方式与多个公式一一对应,每个公式用于确定一个偏移量,所述多个公式包括:
公式二:
Figure PCTCN2018099207-appb-000025
公式四:
Figure PCTCN2018099207-appb-000026
以及
公式五:
Figure PCTCN2018099207-appb-000027
在这种设计中,延用了LTE中的探测区域的带宽大小,同时又考虑到了在BWP全带传输SRS以达到能够对BWP全带的资源进行信道测量和调度的效果,以及NR中可能将PUCCH配置在BWP的两侧的可能性,有利于减少闲置的资源,从而达到了提高资源利用率的效果。
基于上述技术方案,本申请实施例结合NR中的终端设备的BWP确定终端设备传输SRS的起始子载波的位置,更加适合NR的场景。并且能够为不同的终端设备配置不同的偏移量,使得同一小区中的多个终端设备能够基于不同的偏移量传输SRS,从而达到在BWP全带上传输SRS的效果,有利于网络设备对BWP全带的资源进行信道测量。同时,可以利用信道互易性,对下行信道的全带宽CSI进行估计。相比于LTE中的SRS资源配置方式而言,能够对更多的信道进行测量,从而有利于对更多的资源进行调度,有利于提高资源利用率。
第八方面,提供了一种发送参考信号的方法,包括:
终端设备根据传输探测参考信号SRS的起始子载波的位置,发送所述SRS;
其中,传输所述SRS的起始子载波的位置由探测区域的偏移量确定,所述探测区域的偏移量为探测区域的起始子载波相对于所述终端设备的带宽部分BWP的传输带宽的起始子载波偏移的资源大小,所述探测区域为配置给所述终端设备的用于传输所述SRS的资源。
其中,探测区域可以是上行系统带宽中(更具体地说,BWP中)终端设备可以通过SRS进行信道探测的区域,它可以理解为网络设备需要获取的信道状态信息(CSI)的资源区域,或者说,终端设备可用来发送SRS的资源区域。
因此,本申请实施例通过结合NR中终端设备的BWP确定终端设备传输SRS的起始 子载波的位置,并基于起始子载波的位置传输SRS,使得为每个终端设备配置的传输SRS的资源也是UE级别的,从而能够根据每个终端设备的发射或接收能力以及对测量带宽大小的需求配置传输SRS的资源,更加适合NR的场景。并且,本申请实施例所提供的确定传输SRS的起始子载波的位置的方法并不限制时隙类型。
结合第八方面,在第八方面的某些实现方式中,所述探测区域的偏移量满足公式六:
Figure PCTCN2018099207-appb-000028
其中,
Figure PCTCN2018099207-appb-000029
表示所述探测区域的偏移量,
Figure PCTCN2018099207-appb-000030
表示每个资源块RB中包含的子载波的数量,
Figure PCTCN2018099207-appb-000031
用于确定梳齿映射的位置,
Figure PCTCN2018099207-appb-000032
表示所述探测区域的起始子载波所在的RB相对于所述BWP的传输带宽的起始RB所偏移的RB数,
Figure PCTCN2018099207-appb-000033
Figure PCTCN2018099207-appb-000034
为整数,
Figure PCTCN2018099207-appb-000035
表示所述终端设备的BWP的传输带宽所包含的RB数量,
Figure PCTCN2018099207-appb-000036
表示所述探测区域所包含的RB数量,且
Figure PCTCN2018099207-appb-000037
满足
Figure PCTCN2018099207-appb-000038
mod表示取模,
Figure PCTCN2018099207-appb-000039
表示所述BWP的传输带宽的起始RB相对于系统带宽的起始RB偏移的RB数,Δ∈[0,n-1],且Δ为整数。可选地,所述方法还包括:所述终端设备接收
Figure PCTCN2018099207-appb-000040
值的指示信息,所述
Figure PCTCN2018099207-appb-000041
值的指示信息指示
Figure PCTCN2018099207-appb-000042
的取值。
可选地,所述
Figure PCTCN2018099207-appb-000043
值的指示信息携带在高层信令中。该高层信令中可以包括例如无线资源控制(Radio Resource Control,RRC)消息或媒体接入控制(Media Access Control,MAC)-控制元素(Control Element,CE)中。
结合第八方面,在第八方面的某些实现方式中,所述探测区域的偏移量满足公式七:
Figure PCTCN2018099207-appb-000044
其中,
Figure PCTCN2018099207-appb-000045
表示所述探测区域的偏移量,
Figure PCTCN2018099207-appb-000046
表示每个RB中包含的子载波的数量,
Figure PCTCN2018099207-appb-000047
用于确定梳齿映射的位置,
Figure PCTCN2018099207-appb-000048
表示所述探测区域的起始子载波所在的RB相对于所述BWP的带宽的起始RB所偏移的RB数,K Δ为[0,n-1]中的任意值,
Figure PCTCN2018099207-appb-000049
Figure PCTCN2018099207-appb-000050
Figure PCTCN2018099207-appb-000051
中的任意值,且K Δ
Figure PCTCN2018099207-appb-000052
均为整数。
可选地,所述方法还包括:
所述终端设备接收
Figure PCTCN2018099207-appb-000053
值的指示信息,所述
Figure PCTCN2018099207-appb-000054
值的指示信息指示
Figure PCTCN2018099207-appb-000055
的取值;
所述终端设备接收K Δ值的指示信息,所述K Δ值的指示信息指示K Δ的取值
可选地,所述
Figure PCTCN2018099207-appb-000056
值的指示信息携带在高层信令中。该高层信令中可以包括例如RRC消息或MAC-CE中。
可选地,所述K Δ值的指示信息携带在在高层信令中。该高层信令中可以包括例如RRC消息或MAC-CE中。
应理解,上述承载
Figure PCTCN2018099207-appb-000057
值的指示信息和K Δ值的指示信息可携带在同一个高层信令或者不同的高层信令中,本申请对此不做限定。
基于上述设计,一方面可以将传输SRS的资源控制在BWP的范围内,从而避免SRS不能完全被映射BWP内而造成的信道测量精度下降的问题,从而有利于提高解调性能。并且,通过给配置不同梳齿参数的终端设备或天线端口配置不同的Δ,可以使配置有不同梳齿参数的终端设备或天线端口能够在系统带宽的不同频带上发送SRS,使得网络设备实现全带宽测量成为可能,从而能够提高整个带宽的数据传输性能,提高资源利用率和资源调度的灵活性。
结合上述可能的实现方式,在某些可能的实现方式中,可选地,所述方法还包括:所 述终端设备接收
Figure PCTCN2018099207-appb-000058
值的指示信息,所述
Figure PCTCN2018099207-appb-000059
值的指示信息指示
Figure PCTCN2018099207-appb-000060
的取值。
可选地,所述
Figure PCTCN2018099207-appb-000061
值的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
应理解,上述列举的用于携带各指示信息的高层信令仅为示例性说明,不应对本申请构成任何限定。
结合第八方面,在第八方面的某些实现方式中,n的取值为4。
通过仿真实验可以知道,当不同终端设备传输SRS使用的频域资源的重叠部分大于或等于n个RB的整数倍的时候,或者,当与不同端口对应的SRS的频域资源的重叠部分大于或等于4个RB的时候,信道测量的精度大大提高,能获得较好的解调性能。因此,希望能够将资源重叠部分控制在4RB以上。
结合第八方面,在第八方面的某些实现方式中,所述方法还包括:
所述终端设备根据所述探测区域的偏移量,确定传输所述SRS的起始子载波的位置。
第九方面,提供了一种接收参考信号的方法,包括:
网络设备根据传输探测参考信号SRS的起始子载波的位置,接收来自所述终端设备的所述SRS;
其中,传输所述SRS的起始子载波的位置由探测区域的偏移量确定,所述探测区域的偏移量为探测区域的起始子载波相对于所述终端设备的带宽部分BWP的传输带宽的起始子载波偏移的资源大小,所述探测区域为可用于传输所述SRS的资源。
因此,本申请实施例通过结合NR中终端设备的BWP确定终端设备传输SRS的起始子载波的位置,并基于起始子载波的位置传输SRS,使得为每个终端设备配置的传输SRS的资源也是UE级别的,从而能够根据每个终端设备的发射或接收能力以及对测量带宽大小的需求配置传输SRS的资源,更加适合NR的场景。并且,本申请实施例所提供的确定传输SRS的起始子载波的位置的方法并不限制时隙类型。
结合第九方面,在第九方面的某些实现方式中,所述探测区域的偏移量满足公式六:
Figure PCTCN2018099207-appb-000062
其中,
Figure PCTCN2018099207-appb-000063
表示所述探测区域的偏移量,
Figure PCTCN2018099207-appb-000064
表示每个资源块RB中包含的子载波的数量,
Figure PCTCN2018099207-appb-000065
用于确定梳齿映射的位置,
Figure PCTCN2018099207-appb-000066
表示所述探测区域的起始子载波所在的RB相对于所述BWP的传输带宽的起始RB所偏移的RB数,
Figure PCTCN2018099207-appb-000067
Figure PCTCN2018099207-appb-000068
为整数,
Figure PCTCN2018099207-appb-000069
表示所述终端设备的BWP的传输带宽所包含的RB数量,
Figure PCTCN2018099207-appb-000070
表示所述探测区域所包含的RB数量,且
Figure PCTCN2018099207-appb-000071
满足
Figure PCTCN2018099207-appb-000072
mod表示取模,
Figure PCTCN2018099207-appb-000073
表示所述BWP的传输带宽的起始RB相对于系统带宽的起始RB偏移的RB数,Δ∈[0,n-1],且Δ为整数。
可选地,所述方法还包括:所述网络设备发送
Figure PCTCN2018099207-appb-000074
值的指示信息,所述
Figure PCTCN2018099207-appb-000075
值的指示信息指示
Figure PCTCN2018099207-appb-000076
的取值。
可选地,所述
Figure PCTCN2018099207-appb-000077
值的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
结合第九方面,在第九方面的某些实现方式中,所述偏移量满足公式七:
Figure PCTCN2018099207-appb-000078
其中,
Figure PCTCN2018099207-appb-000079
表示所述探测区域的偏移量,
Figure PCTCN2018099207-appb-000080
表示每个RB中包含的子载波的数量,
Figure PCTCN2018099207-appb-000081
用于确定梳齿映射的位置,
Figure PCTCN2018099207-appb-000082
表示所述探测区域的起始子载波所在的RB相对于所述BWP的带宽的起始RB所偏移的RB数,K Δ为[0,n-1]中的任意值,
Figure PCTCN2018099207-appb-000083
Figure PCTCN2018099207-appb-000084
Figure PCTCN2018099207-appb-000085
中的任意值,且K Δ
Figure PCTCN2018099207-appb-000086
均为整数。
可选地,所述方法还包括:所述网络设备发送
Figure PCTCN2018099207-appb-000087
值的指示信息,所述
Figure PCTCN2018099207-appb-000088
值的指示信息指示
Figure PCTCN2018099207-appb-000089
的取值;
所述网络设备发送K Δ值的指示信息,所述K Δ值的指示信息指示K Δ的取值。
可选地,所述
Figure PCTCN2018099207-appb-000090
值的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
可选地,所述K Δ值的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
可选地上述承载
Figure PCTCN2018099207-appb-000091
值的指示信息和K Δ值的指示信息可携带在同一个RRC消息或者不同的RRC消息中,本申请对此不做限定。基于上述设计,一方面可以将传输SRS的资源控制在BWP的范围内,从而避免SRS不能完全被映射BWP内而造成的信道测量精度下降的问题,从而有利于提高解调性能。并且,通过给配置不同梳齿参数的终端设备或天线端口配置不同的Δ,可以使配置有不同梳齿参数的终端设备或天线端口能够在系统带宽的不同频带上发送SRS,使得网络设备实现全带宽测量成为可能,从而能够提高整个带宽的数据传输性能,提高资源利用率和资源调度的灵活性。
结合上述可能的实现方式,在某些可能的实现方式中,可选地,所述方法还包括:所述终端设备接收
Figure PCTCN2018099207-appb-000092
值的指示信息,所述
Figure PCTCN2018099207-appb-000093
值的指示信息指示
Figure PCTCN2018099207-appb-000094
的取值。
可选地,所述
Figure PCTCN2018099207-appb-000095
值的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
应理解,上述列举的用于携带各指示信息的信令仅为示例性说明,不应对本申请构成任何限定。
结合第九方面,在第九方面的某些实现方式中,n的取值为4。
通过仿真实验可以知道,当不同终端设备传输SRS使用的频域资源的重叠部分大于或等于n个RB的整数倍的时候,或者,当与不同端口对应的SRS的频域资源的重叠部分大于或等于4个RB的时候,信道测量的精度大大提高,能获得较好的解调性能。因此,希望能够将资源重叠部分控制在4RB以上。
结合第九方面,在第九方面的某些实现方式中,所述方法还包括:
所述网络设备根据所述探测区域的偏移量,确定传输所述SRS的起始子载波的位置。
第十方面,提供了一种发送参考信号的方法,包括:
网络设备根据传输信道状态信息参考信号CSI-RS的资源在频域上的起始位置,发送所述CSI-RS;
其中,传输所述CSI-RS的资源在频域上的起始位置由导频区域的偏移量确定,所述导频区域的偏移量指示所述导频区域的起始资源块RB相对于终端设备的带宽部分BWP的起始RB偏移的资源大小,或者,所述导频区域的偏移量指示所述导频区域的起始RB相对于系统带宽的起始RB偏移的资源大小,所述导频区域为可用于传输所述CSI-RS的资源。
基于上述技术方案,本申请实施例通过结合NR中终端设备的BWP确定终端设备接 收CSI-RS的起始RB,并基于起始RB传输CSI-RS,使得终端设备可以根据自身BWP的位置和大小,接收来自网络设备的CSI-RS,更加适合NR的场景。
结合第十方面,在第十方面的某些实现方式中,所述方法还包括:
所述网络设备发送第一偏移量k c的指示信息,所述第一偏移量k c的指示信息指示k c的取值,其中,第一偏移量k c表示所述导频区域的起始RB相对于BWP的起始RB偏移的RB数。
可选地,所述第一偏移量k c的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
结合第十方面,在第十方面的某些实现方式中,所述方法还包括:
所述网络设备发送第二偏移量T Δ的指示信息,所述第二偏移量T Δ的指示信息指示T Δ的取值;
所述网络设备发送第三偏移量k i的指示信息,所述第三偏移量k i的指示信息指示k i的取值;
其中,所述第二偏移量T Δ表示导频区域的可映射位置的起始RB相对于BWP的起始RB偏移的RB数,第三偏移量k i用于指示所述导频区域实际映射的起始RB相对于所述导频区域的可映射位置的起始RB偏移的RB数。
可选地,所述第二偏移量T Δ的指示信息和第三偏移量k i的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
应理解,上述用于携带第二偏移量T Δ的指示信息和用于携带第三偏移量k i的指示信息的高层信令可以为同一条高层信令,也可以为不同的高层信令,本申请对此不做限定。
在上述两种指示导频区域的偏移量的实现方式中,该导频区域的偏移量可通过相对于BWP的起始RB的偏移量表征。
结合第十方面,在第十方面的某些实现方式中,所述方法还包括:
所述网络设备发送所述导频区域的起始位置的指示信息,所述起始位置的指示信息指示传输所述参考信号的起始RB在系统带宽中对应的RB编号。
可选地,所述导频区域的起始位置的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
在这种指示导频区域的偏移量的实现方式中,该导频区域的偏移量可通过相对于系统带宽的起始RB的偏移量表征。
结合第十方面,在第十方面的某些实现方式中,所述方法还包括:
所述网络设备发送参考信号位置的指示信息,所述参考信号位置的指示信息指示所述导频区域中用于传输所述CSI-RS的RB。
可选地,所述参考信号位置的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
结合第十方面,在第十方面的某些实现方式中,所述方法还包括:
所述网络设备发送导频区域大小的指示信息,该指示信息指示导频区域占用的传输带宽。
可选地,所述导频区域大小的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
应理解,上述列举的用于携带各指示信息的高层信令仅为示例性说明,不应对本申请 构成任何限定。
结合第十方面,在第十方面的某些实现方式中,所述参考信号位置的指示信息为位图,所述位图包括至少一个指示比特,每个指示比特用于指示一个RB组是否用于传输所述CSI-RS,所述RB组包括至少一个RB。
结合第十方面,在第十方面的某些实现方式中,所述方法还包括:
所述网络设备根据所述导频区域的偏移量确定传输所述CSI-RS的起始RB。
第十一方面,提供了一种接收参考信号的方法,包括:
终端设备根据传输信道状态信息参考信号CSI-RS的资源在频域上的起始位置,发送所述CSI-RS;
其中,传输所述CSI-RS的资源在频域上的起始位置由导频区域的偏移量确定,所述导频区域的偏移量指示所述导频区域的起始资源块RB相对于终端设备的带宽部分BWP的起始RB偏移的资源大小,或者,所述导频区域的偏移量指示所述导频区域的起始RB相对于系统带宽的起始RB偏移的资源大小,所述导频区域为配置给所述终端设备的传输所述CSI-RS的资源。
基于上述技术方案,本申请实施例通过结合NR中终端设备的BWP确定终端设备接收CSI-RS的起始RB,并基于起始RB传输CSI-RS,使得终端设备可以根据自身BWP的位置和大小,接收来自网络设备的CSI-RS,更加适合NR的场景。
结合第十一方面,在第十一方面的某些实现方式中,所述方法还包括:
所述终端设备接收第一偏移量k c的指示信息,所述第一偏移量k c的指示信息指示k c的取值,其中,第一偏移量k c表示所述导频区域的起始RB相对于BWP的起始RB偏移的RB数。
可选地,所述第一偏移量k c的指示信息携带在高层信令中。该高层信令例如包括RRC消息或MAC-CE。
结合第十一方面,在第十一方面的某些实现方式中,所述方法还包括:
所述终端设备接收第二偏移量T Δ的指示信息,所述第二偏移量T Δ的指示信息指示T Δ的取值;
所述终端设备接收第三偏移量k i的指示信息,所述第三偏移量k i的指示信息指示k i的取值;
其中,所述第二偏移量T Δ表示导频区域的可映射位置的起始RB相对于BWP的起始RB偏移的RB数,第三偏移量k i用于指示所述导频区域实际映射的起始RB相对于所述导频区域的可映射位置的起始RB偏移的RB数。
可选地,所述第二偏移量T Δ的指示信息和第三偏移量k i的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
应理解,上述用于携带第二偏移量T Δ的指示信息和用于携带第三偏移量k i的指示信息的高层信令可以为同一条高层信令,也可以为不同的高层信令,本申请对此不做限定。
在上述两种指示导频区域的偏移量的实现方式中,该导频区域的偏移量可通过相对于BWP的起始RB的偏移量表征。
结合第十一方面,在第十一方面的某些实现方式中,所述方法还包括:
所述终端设备接收所述导频区域的起始位置的指示信息,所述起始位置的指示信息指示传输所述参考信号的起始RB在系统带宽中对应的RB编号。
可选地,所述导频区域的起始位置的指示信息携带在高层信令中。该高层信令例如包括RRC消息或MAC-CE。
结合第十一方面,在第十一方面的某些实现方式中,其特征在于,所述方法还包括:
所述终端设备接收参考信号位置的指示信息,所述参考信号位置的指示信息指示所述导频区域中用于传输所述CSI-RS的RB。
可选地,所述参考信号位置的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
结合第十一方面,在第十一方面的某些实现方式中,所述参考信号位置的指示信息为位图,所述位图包括至少一个指示比特,每个指示比特用于指示一个RB组是否用于传输所述CSI-RS,每个RB组包括至少一个RB。
可选地,所述导频区域大小的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
应理解,上述列举的用于携带各指示信息的高层信令仅为示例性说明,不应对本申请构成任何限定。
第十二方面,提供了一种终端设备,包括确定模块和收发模块,以执行上述第八方面或第十一方面,以及第八方面或第十一方面中任一种可能实现方式中的方法。所述确定模块用于执行与确定相关的功能,所述收发模块用于执行与收发相关的功能。
第十三方面,提供了一种网络设备,包括确定模块和收发模块,以执行上述第九方面或第十方面,以及第九方面或第十方面中任一种可能实现方式中的方法。所述确定模块用于执行与确定相关的功能,所述收发模块用于执行与收发相关的功能。
第十四方面,提供了一种终端设备,包括:处理器、存储器和收发器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,以控制收发器收发信号,使得该终端设备执行第八方面或第十一方面,以及第八方面或第十一方面中任一种可能实现方式中的方法。
第十五方面,提供了一种网络设备,包括:处理器、存储器和收发器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,以控制收发器收发信号,使得该网络设备执行第九方面或第十方面,以及第九方面或第十方面中任一种可能实现方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
第十六方面,提供了一种系统,所述系统包括上述终端设备和网络设备。第十五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序(也可以称为代码,或指令),当所述计算机程序被运行时,使得计算机执行上述各方面中的方法。
第十七方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述各方面中的方法。
第十八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述各方面的方法。
第十九方面,提供了一种芯片系统,所述芯片系统包括处理器,用于支持终端设备实 现上述方面中所涉及的功能,例如,生成,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。所述芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
第二十方面,提供了一种芯片系统,所述芯片系统包括处理器,用于支持网络设备实现上述方面中所涉及的功能,例如,生成,接收,发送,或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。所述芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1是是适用于本申请实施例的发送和接收参考信号的方法的通信系统的示意图;
图2是本申请一实施例提供的发送和接收参考信号的方法的示意性流程图;
图3是基于不同的映射方式配置的梳齿位置的示意图;
图4是基于不同的资源配置方式配置的探测区域的示意图;
图5是基于不同的资源配置方式配置的探测区域的示意图;
图6是本申请另一实施例提供的发送和接收参考信号的方法的示意性流程图;
图7是本申请又一实施例提供的发送和接收参考信号的方法的示意性流程图;
图8是
Figure PCTCN2018099207-appb-000096
在不同取值的情况下探测区域的示意图;
图9是本申请实施例提供的系统带宽、不同终端设备的BWP的带宽以及探测区域的示意图;
图10是本申请实施例提供的系统带宽、BWP的带宽以及对应不同Δ值时的探测区域的示意图;
图11是本申请实施例提供的系统带宽、BWP的带宽以及对应不同K Δ值和
Figure PCTCN2018099207-appb-000097
值时的探测区域示意图;
图12是本申请再一实施例提供的发送和接收参考信号的方法的示意性流程图;
图13是本申请实施例提供的系统带宽、终端设备的导频区域与BWP的示意图;
图14是本申请实施例提供的系统带宽、终端设备的导频区域与BWP的另一示意图;
图15是本申请实施例提供的系统带宽、终端设备的导频区域、BWP以及位图的示意图;
图16是本申请实施例提供的系统带宽、终端设备的导频区域、BWP以及位图的另一示意图
图17是本申请实施例提供的网络设备的示意性框图;
图18是本申请实施例提供的终端设备的结构示意图;
图19是本申请实施例提供的终端设备的示意性框图;
图20是本申请实施例提供的网络设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请的技术方案可以应用于各种通信系统,例如:全球移动通信(Global System for Mobile communications,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(LTE)系统、先进的长期演进(LTE-A)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、下一代通信系统(例如,第五代(fifth-generation,5G)通信系统)、多种接入系统的融合系统,或演进系统等。其中,5G系统也可以称为新一代无线接入技术(new radio access technology,NR)系统。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1是适用于本申请实施例的发送和接收参考信号的方法的通信系统100的示意图。如图1所示,该通信系统100可以包括网络设备102和终端设备104-114。
应理解,该网络设备102可以是任意一种具有无线收发功能的设备或可设置于该设备的芯片,该设备包括但不限于:基站(例如,基站NodeB、演进型基站eNodeB、第五代(5G)通信系统中的网络设备(如传输点(transmission point,TP)、发送接收点(transmission reception point,TRP)、基站、小基站设备等)、未来通信系统中的网络设备、无线保真(Wireless-Fidelity,WiFi)系统中的接入节点、无线中继节点、无线回传节点等。
网络设备102可以与多个终端设备(例如图中所示的终端设备104-114)通信。
应理解,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。本申请中将前述终端设备及可设置于前述终端设备的芯片统称为终端设备。
此外,该通信系统100也可以是公共陆地移动网络(public land mobile network,PLMN)网络、设备到设备(device to device,D2D)网络、机器到机器(machine to machine,M2M)网络或者其他网络。图1仅为便于理解而示例的简化示意图,该通信系统100中还可以包括其他网络设备和终端设备,图1中未予以画出。
为便于理解本申请实施例,以下结合图1中示出的通信系统简单介绍SRS。
SRS用于对上行信道的质量进行探测。终端设备在上行信道发送SRS,网络设备基于接收到的SRS进行上行信道的测量,由此确定终端设备上行调度分配的资源块的频率位置。
在LTE中,上行系统带宽可以被划分为两部分,位于上行系统带宽两侧的区域用于发送PUCCH,不需要通过发送SRS进行上行信道测量;位于上行系统带宽中间的区域, 也就是除去发送PUCCH的资源之外的区域用于发送PUSCH,需要发送SRS进行上行信道测量以便网络设备进行资源调度。为方便说明,可以将用于传输SRS以进行上行信道测量的带宽称为探测区域(sounding region)。在LTE中,探测区域是小区级别的,可以根据小区级别(cell-specific)的SRS带宽配置参数C SRS确定。而对于一个小区而言,需要进行信道测量的资源区域大小(也就是,探测区域)可以是确定的。同一小区中任意两个终端设备的探测区域可以是相同的。在SRS的探测区域一定的情况下,具体的SRS带宽配置可以进一步通过UE级别(UE-specific)的SRS带宽配置参量B SRS来指示,每个B SRS指示一组参数m SRS,b和N b。其中,m SRS,b表示终端设备传输一次SRS所使用的RB数量,也就是,终端设备传输一次SRS所使用的带宽,即,测量带宽,N b表示终端设备测量上一级测量带宽(即,m SRS,b-1的带宽)所需发送的SRS的次数,b=B SRS
表一示出了LTE中SRS的带宽配置的参数。
表一:
Figure PCTCN2018099207-appb-000098
从表一可以看出,在同一个C SRS的配置中,不同B SRS对应的探测区域是相同的。举例来说,当C SRS为0或1时,对应的探测区域是96RB;当C SRS为2时,对应的探测区域是80RB等等,为了简洁,这里不再一一列举。
其中,不论采用了哪种带宽配置,通过第n b个子带传输SRS的起始子载波的位置都可以通过以下公式来确定:
Figure PCTCN2018099207-appb-000099
其中,
Figure PCTCN2018099207-appb-000100
表示通过第n b个子带传输SRS的起始子载波(即,从低频至高频方向的用于传输SRS的首个子载波,或者说,第一个子载波)。这里,子带可以理解为探测区域中通过一个时隙(slot)的传输机会传输SRS的频域资源。n b则可以理解为是用于传输SRS的子带的索引,其取值可通过高层参数n RRC确定。n b的计算方法可以和现有技术相同,为了简洁,这里不再赘述。在LTE中,
Figure PCTCN2018099207-appb-000101
表示探测区域的起始位置(例如,探测区域的起始子载波)相对于上行系统带宽的低频处(例如,上行系统带宽的起始子载波)偏移的RB数,也就是上行系统带宽中可用于传输SRS的起始子载波相对于上行系统带宽的起始子载波偏移的RB数,B SRS为UE级别(UE-specific)的SRS带宽配置参量,n b为SRS在频域位置的索引,
Figure PCTCN2018099207-appb-000102
为SRS的序列长度,即,一个SRS占用的资源粒子(resource element,RE)数,且
Figure PCTCN2018099207-appb-000103
表示每个RB中包含的子载波的数量, b=B SRS,b取值为整数。
对于普通的上行子帧来说:
Figure PCTCN2018099207-appb-000104
对于上行导频时隙(uplink polit slot,UpPTS)来说:
Figure PCTCN2018099207-appb-000105
或,
Figure PCTCN2018099207-appb-000106
其中,
Figure PCTCN2018099207-appb-000107
表示上行系统带宽所包含的资源块RB数量,
Figure PCTCN2018099207-appb-000108
表示向下取整,m SRS,0表示探测区域包含的RB数,可以通过查表一获得,
Figure PCTCN2018099207-appb-000109
为不同的C SRS下对应的m SRS,0的最大值,
Figure PCTCN2018099207-appb-000110
用于确定梳齿映射的位置,
Figure PCTCN2018099207-appb-000111
K TC表示梳齿的数目。
应理解,根据上述公式确定传输SRS的起始子载波的位置可以参考现有技术,为了避免赘述,这里省略对该具体过程的详细说明。
通过以上描述可以看到,在LTE中,传输SRS的资源的位置与上行系统带宽有关。并且,对于不同类型的子帧,被配置用于传输SRS的资源的位置不同,或者说,用于传输SRS的起始子载波相对于上行系统带宽的起始子载波的偏移量不同。但在同一种类型的子帧上,被配置用于传输SRS的资源是相同的。而UpPTS通常只出现在TDD系统中的用于上下行切换的特殊子帧上,是一种比较特殊的情况。若考虑FDD系统以及TDD系统中的正常上行子帧中对SRS的资源配置方式,通过上面的公式可以看到,用于SRS传输的起始子载波的位置与该SRS被配置的探测区域有关,而在LTE中,同一小区中的终端设备探测区域是相同的,因此,用于传输SRS的资源位置也是相同的,该探测区域始终处于上行系统带宽的中间区域。
这种SRS资源配置方式仅仅是把用于传输SRS的资源配置在上行系统带宽的中间区域,不够灵活。例如,在PUCCH的位置发生变化的情况下,无法对上行系统带宽两侧的资源进行信道测量。
有鉴于此,本申请提供一种发送和接收参考信号的方法,更加适用于NR中对SRS的资源配置。
在介绍本申请实施例之前,首先简单介绍几个NR中的相关概念。
带宽部分(BWP):由于NR中,同一小区中不同终端设备的发射或者接收能力可能是不同的,系统可以为每个终端设备配置相应的带宽,这一部分配置给终端设备的带宽称为BWP,终端设备在自己的BWP上传输。例如,终端设备在自己的BWP上传输SRS,以便网络设备进行信道测量和资源调度,并基于网络设备的调度,在自己的BWP上传输数据。系统针对不同的终端设备可以配置不同的BWP。为了支持不同的业务,不同的BWP可能会支持不同的传输带宽(即,BWP包含的RB数不同),子载波间隔、循环前缀(cyclic prefix,CP)等,调度单位可以是时隙或者微时隙等。
时隙(slot):由于不同的BWP中的帧结构可能不同,对时隙的定义也不相同。在NR中,时隙为最小调度单元概念。一种时隙格式为包含14个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,每个OFDM符号的CP为正常CP;一种时隙的格式为包含12个OFDM符号,每个OFDM符号的CP为扩展CP;一种时隙的格式为包含7个OFDM符号,每个OFDM符号的CP为正常CP。一个时隙中的OFDM符号可能全用于上行传输;可能全用于下行传输;也可能一部分用于下行传输,一部分用于上行传输,一部分预留不进行传输。应理解,以上举例仅为示例性说明,不应对本申请构 成任何限定。出于系统前向兼容性考虑,时隙格式不限于以上示例。
下面结合附图详细说明本申请实施例。
应理解,本申请的技术方案可以应用于无线通信系统中,例如,图1中所示的通信系统100,该通信系统可以包括至少一个网络设备和至少一个终端设备,网络设备和终端设备可以通过无线空口通信。例如,该通信系统中的网络设备可以对应于图1中所示的网络设备102,终端设备可以对应于图1中所示的终端设备104-114。
以下,不失一般性,以一个终端设备与网络设备之间的交互过程为例详细说明本申请实施例,该终端设备可以为处于无线通信系统中与网络设备具有无线连接关系的任意终端设备。可以理解的是,网络设备可以与处于该无线通信系统中的具有无线连接关系的多个终端设备基于相同的技术方案来传输参考信号。本申请对此并不做限定。
图2是从设备交互的角度示出的本申请一实施例提供的发送和接收参考信号的方法200的示意性流程图。如图2所示,该方法200可以包括步骤210至步骤270。
在步骤210中,终端设备根据偏移量,确定传输SRS的起始子载波的位置。这里,应注意,偏移量可以理解探测区域的起始子载波与终端设备的BWP的传输带宽的起始子载波间相对偏移的资源大小,也就是说,该偏移量与终端设备的BWP的传输带宽的位置相关。在本申请实施例中,该偏移量可以通过资源块(resource block,RB)的数量来表征。
需要说明的是,探测区域是指终端设备通过SRS进行信道探测的区域,它可以理解为网络设备需要进行信道测量的资源区域,或者说,终端设备可用来发送SRS的资源区域。在本申请实施例中,探测区域是UE级别的,同一小区中不同的终端设备对应的探测区域的带宽大小可能是不同的。
通过上文中的描述可知,传输SRS的起始子载波
Figure PCTCN2018099207-appb-000112
其中,基于偏移量
Figure PCTCN2018099207-appb-000113
确定传输SRS的起始子载波
Figure PCTCN2018099207-appb-000114
的具体过程可参考现有技术,本申请对此并不做限定。偏移量
Figure PCTCN2018099207-appb-000115
可以基于一个预先定义的资源配置方式确定,后文中会结合具体的实施例对基于预先定义的资源配置方式确定偏移量的具体过程做详细描述。
与此相似地,在步骤220中,网络设备根据偏移量确定传输SRS的起始子载波的位置。
应理解,网络设备在步骤220中基于预定的资源配置方式确定传输SRS的起始子载波的位置的具体方法与终端设备在步骤210中基于预定的资源配置方式确定传输SRS的起始子载波的位置的具体方法相同,为了简洁,这里不再赘述。
在步骤230中,终端设备基于在步骤210中确定的传输SRS的起始子载波的位置,发送SRS。
相对应地,在步骤230中,网络设备基于在步骤220中确定的传输SRS的起始子载波的位置,接收来自该终端设备的SRS。
应理解,步骤230的具体过程可以与现有技术相同,为了简洁,这里省略对该具体过程的详细说明。
因此,本申请实施例通过结合NR中终端设备的BWP确定终端设备传输SRS的起始子载波的位置,并基于起始子载波的位置传输SRS,使得为每个终端设备配置的传输SRS的资源也是UE级别的,从而能够根据每个终端设备的发射或接收能力以及对测量带宽大 小的需求配置传输SRS的资源,更加适合NR的场景。并且,本申请实施例所提供的确定传输SRS的起始子载波的位置的方法并不限制时隙类型。
在一种可能的设计中,为终端设备分配的BWP的传输带宽大小可以为106RB,在以下的实施例中,将以BWP的传输带宽大小为106RB为例进行详细描述。但应理解,这不应对本申请构成任何限定,系统可以根据终端设备的发射和接收能力以及业务需求等因素为不同的终端设备分配不同带宽的BWP。
由于目前的标准中规定SRS的探测区域的带宽为4RB的倍数。在BWP为106RB的情况下,需要对SRS的探测区域重新定义。
考虑到在NR中PUCCH不一定会配置在BWP的带宽的两侧,网络设备可以对BWP内的任意资源进行调度,因此,网络设备希望能够对上行系统带宽内的任意资源进行信道测量。换句话说,网络设备希望终端设备使用SRS进行信道探测的区域能够接近系统的资源调度区域,或者说,网络设备希望能够为终端设备分配尽可能大的带宽用于SRS的传输。
一种可能的设计是,将SRS的最大探测区域定为BWP带宽的范围内4RB的倍数的最大值,也就是104RB。考虑到处于小区不同区域的终端设备向网络设备发送SRS的路损可能不同,例如,处于小区中心区域的终端设备的路损相对于处于小区边缘区域的终端设备的路损较低,可以考虑对处于不同区域的终端设备的功率分配差异化,例如,对处于小区中心区域的终端设备来说,每个RB分配的功率较低,因此,每次发送SRS的带宽可以较大;而对处于小区边缘区域的终端设备来说,每个RB分配的功率较高,因此,每次发送SRS的带宽可以较小,从而可以使能量密度更集中,从而可以弥补路损带来的能量损耗,提高信道测量的质量,使得测量更准确。
表二示出了NR中同一小区中同一C SRS下不同的SRS带宽配置参数。
表二:
Figure PCTCN2018099207-appb-000116
换句话说,同一小区中的SRS带宽配置可以分为多级配置,分别对应处于小区中不同区域的终端设备。举例来说,处于小区中心区域的终端设备每次传输SRS的带宽可配置为104RB,且SRS的探测区域为104RB,可通过1次传输(即,通过一个时隙(slot)中的SRS传输机会传输完成)整个探测区域的SRS传输;处于离小区中心区域较远一些的终端设备每次传输SRS的带宽可配置为48RB或52RB,由于考虑到下一级以及再下一级的终端设备每次传输SRS的带宽也需要为4RB的倍数,因此选择48RB,故SRS的探测区域可以为96RB,可通过2次传输(即,通过2个时隙中的SRS传输机会传输完成)整个探测区域的SRS传输;处于小区中远区域的终端设备每次传输SRS的带宽可配置为24RB,SRS的探测区域仍然可以为96RB,可通过4次传输(即,通过4个时隙中的SRS传输机会传输完成)整个探测区域的SRS传输;处于小区边缘区域的终端设备每次传输SRS的带宽可配置为4RB,SRS的探测区域仍然可以为96RB,可通过24次传输(即,通过24个时隙中的SRS传输机会传输完成)整个探测区域的SRS传输。
因此,在表二中,C SRS是一个UE级别的SRS配置参量,它可以配置给具有相同的发 射能力或接收能力的终端设备,或者说,同一个C SRS对应的BWP的带宽是相同的。并且,为了尽可能的使终端设备进行信道探测的区域接近系统的资源调度区域,同一C SRS下不同的B SRS对应的探测区域可以被配置为相同或者不同的。
另外,由于BWP的带宽不是4RB的整数倍,而SRS的探测区域需为4RB的整数倍,因此无论如何配置,一个终端设备通过一次SRS传输都不能在整个上行系统带宽上传输SRS。
在另一种可能的场景中,在一些具有“信道互易性”特点的系统中,例如,WiMAX系统或者LTE-TDD系统,以及未来可能的具有“信道互易性”特点的系统等,网络设备可以通过上行信道测量获得的上行信道的CSI来估计下行信道的CSI,因此,网络设备希望能够对BWP的带宽内的任意资源进行信道测量。
这里,需要说明的是,在具有“信道互易性”的系统中,上下行信道占用相同的频段,因此可以认为上下行的信道是近似的,或者说,互易的。根据这个特点,终端设备可以通过发送参考信号,例如,SRS,来测量上行信道,网络设备可以通过该参考信号测量上行信道以获得上行信道的CSI。同时,由于“信道互易性”的特点,网络设备可以利用上行信道的CSI估计下行信道的CSI。
因此,网络设备希望能够为SRS分配尽可能大的带宽用于SRS的传输,或者说,网络设备希望能够对尽可能多的资源进行信道测量。
基于上述问题,本申请预先定义了多种资源配置方式,该多种资源配置方式可以对应有多个不同的偏移量。
可选地,该方法200还包括:步骤240,终端设备根据预先定义的资源配置方式确定偏移量。其中,该资源配置方式可以是从多种预先定义的资源配置方式中确定的,且该多种预先定义的资源配置方式与多个不同的偏移量对应。
与此相对应地,该方法200还包括:步骤250,网络设备根据预先定义的资源配置方式确定偏移量。其中,该资源配置方式可以是从多种预先定义的资源配置方式中确定的,且该多种预先定义的资源配置方式与多个不同的偏移量对应。
因此,网络设备和终端设备可以分别为终端设备确定资源配置方式,也就是为终端设备确定传输SRS的起始子载波的位置,即,配置传输SRS的资源。
对于同一个终端设备而言,在不同的时刻,可以通过不同的资源配置方式,为该终端设备配置不同的偏移量;对不同的终端设备而言,在同一时刻,可以通过不同的资源配置方式,为不同的终端设备配置不同的偏移量。
可以理解的是,通信系统中通常包含有与同一网络设备进行无线通信的多个终端设备,若对部分终端设备采用一种资源配置方式(例如,记作资源配置方式一)进行资源配置,而对另一部分终端设备采用另一种资源配置方式(例如,记作资源配置方式二)进行资源配置,便可以实现在同一时刻该小区内的多个终端设备在BWP的全带上发送SRS的效果。
在一种可能的设计中,在不考虑
Figure PCTCN2018099207-appb-000117
的情况下,该多个偏移量包括:零,和,探测区域与BWP的带宽之差。
特别需要说明的是,SRS是可以基于不同的用于确定梳齿映射的位置的参数
Figure PCTCN2018099207-appb-000118
进行资源映射。也就是说,梳齿映射的位置可以理解为SRS映射到频域资源中的子载波的位 置。例如,当K TC为2时,即Comb2,可以将一个终端设备的SRS映射到奇数位的子载波上,而将另一个终端设备的SRS映射到偶数位的子载波上,例如图3中所示。图3是基于不同的映射方式配置的梳齿位置的示意图。如图3中所示,两个终端设备的SRS被映射在同一探测区域中的不同子载波上,例如,若终端设备基于映射方式一来配置资源,则SRS被映射到第奇数位的子载波上,若终端设备基于映射方式二来配置资源,则SRS被映射到第偶数位的子载波上。
应理解,上面列举的Comb2仅为示例性说明,不应对本申请构成任何限定。例如,当K TC为4时,即Comb4,可以将一个终端设备的SRS映射到第n+4m个子载波上,n可以为0、1、2、3中的任意值,m为正整数。本申请对用于确定梳齿映射的位置的参数
Figure PCTCN2018099207-appb-000119
以及梳齿的数目K TC不做限定。
如果将具有相同的探测区域的终端设备在频域上映射的资源放在一起,便可以得出如图4和图5中所示的探测区域的示意图。因此,在本申请中所涉及的偏移量是不考虑
Figure PCTCN2018099207-appb-000120
的情况下的偏移量。为了简洁,后文中省略对相同或相似情况的说明。
应理解,图4和图5中示出的探测区域仅为示例性说明,并不代表每个终端设备在连续的频域资源上发送SRS,而是按照梳齿映射的位置离散地分布在频域资源上。另外,图4和图5中为了便于理解,示出了整个探测区域。事实上,并不是所有的终端设备都可以通过一次SRS的传输就完成整个探测区域的SRS传输的,在某些情况下,探测区域需要通过多个时隙的传输机会才能够传输完成。例如,当测量区域为48RB时,终端设备可以通过两次SRS传输(或者说,两个时隙的SRS传输机会)完成探测区域的SRS传输。
图4是基于不同的资源配置方式配置的探测区域的示意图。如图4所示,在采用资源配置方式一配置时,探测区域的起始子载波可以为BWP的起始子载波,即,在不考虑
Figure PCTCN2018099207-appb-000121
的情况下,偏移量为零;在采用资源配置方式二配置时,探测区域的末个子载波可以为BWP的末个子载波,即,在不考虑
Figure PCTCN2018099207-appb-000122
的情况下,偏移量为探测区域与BWP的带宽之差。
可选地,该预先定义的多种资源配置方式与多个公式一一对应。该公式可以体现探测区域的起始子载波相对于BWP的传输带宽的起始子载波的偏移量,或者说,该公式可用于确定传输SRS的起始子载波。
具体地,该多个公式可以包括:
公式一:
Figure PCTCN2018099207-appb-000123
以及
公式二:
Figure PCTCN2018099207-appb-000124
其中,
Figure PCTCN2018099207-appb-000125
表示偏移量,
Figure PCTCN2018099207-appb-000126
表示该终端设备的BWP的传输带宽所包含的资源块RB数量,
Figure PCTCN2018099207-appb-000127
表示向下取整,m SRS,b表示该终端设备传输一次SRS使用的RB数量,B SRS为用户设备UE级别的SRS带宽配置参量,每个B SRS指示一组参数m SRS,b和N b,b=B SRS,且b为整数,N b表示该终端设备测量上一级测量带宽(即,m SRS,b-1的带宽)所需发送SRS的次数,b'在[0,b]中遍历取值,因此,
Figure PCTCN2018099207-appb-000128
即探测区域。
Figure PCTCN2018099207-appb-000129
表示每个RB中包含的子载波的数量,
Figure PCTCN2018099207-appb-000130
用于确定梳齿映射的位置。
需要说明的是,每个终端设备的SRS在频域上所映射的子载波可能是离散分布的,呈梳齿状图案(comb-like pattern)分布,
Figure PCTCN2018099207-appb-000131
可用于确定梳齿映射的位置,或者说,SRS映射的位置。例如,将SRS映射到第奇数位的子载波上,或者,将SRS映射到第偶数位 的子载波上。根据
Figure PCTCN2018099207-appb-000132
确定梳齿映射的位置的具体方法可以参考现有技术,本申请对此并不做限定。
由此可以看到,在不考虑
Figure PCTCN2018099207-appb-000133
的情况下,公式一对应的偏移量为探测区域与BWP的带宽之差;公式二对应的偏移量为零。
可选地,该方法200还包括:步骤260,终端设备获取预先定义的资源配置方式的索引值,该索引值用于指示该预先定义的资源配置方式。
其中,预先定义的多个资源配置方式与多个索引值具有一一对应关系,终端设备和网络设备可以预先保存该一一对应关系。终端设备和网络设备在分别确定了资源配置方式的索引值后,便可以根据相对应的资源配置方式配置传输SRS的资源。
在步骤260中,终端设备至少可以通过以下两种方式获取预先定义的资源配置方式的索引值:
方法一:步骤2601,终端设备接收第一信息,该第一信息中包含该预先定义的资源配置方式的索引值;
方法二:步骤2602,终端设备根据以下至少一个参数确定该预先定义的资源配置方式的索引值:系统帧号、时隙号和梳齿映射的位置。
以下,分别结合上述两种实现方式说明终端设备获取资源配置方式的索引值的具体过程。
需要说明的是,在NR中,终端设备可以在一个时隙中的多个连续的OFDM符号上传输SRS。对于后文中列举的各种可能的确定资源配置方法的实现方式中,在基于相同的资源配置方式的情况下,同一个终端设备在一个时隙中多个OFDM符号上的SRS传输的偏移量
Figure PCTCN2018099207-appb-000134
是相同的。
在方法一中,该预先定义的资源配置方式的索引号可以由网络设备确定后通过第一信息发送给终端设备。这种方法可以视作是一种显式指示资源配置方式的方法。
可选地,该方法200还包括:步骤270,网络设备根据以下任意一个参数确定预先定义的资源配置参数的索引值:系统帧号、时隙号或者梳齿映射的位置。
并且与步骤2601对应地,网络设备发送第一信息,该第一信息中包含该预先定义的资源配置方式的索引值。
可选地,该第一信息承载于以下任意一项中:无线资源控制(radio resource control,RRC)消息、媒体接入控制(media access control,MAC)控制元素(control element,CE)、下行控制信息(downlink control information,DCI)、系统消息或者广播消息。
可选地,该第一信息也可以通过上述列举的信令的组合来指示。例如,网络设备可以通过RRC消息向终端设备指示一个资源配置方式的候选集合,该资源配置方式的候选集合中可以包括多个资源配置方式与多个索引值的一一对应关系,再通过DCI指示上述资源配置方式的候选集合中的目标资源配置方式的索引值;或者,网络设备可以通过RRC消息向终端设备指示一个资源配置方式的候选集合,该资源配置方式的候选集合中可以包括多个资源配置方式与多个索引值的一一对应关系,再通过MAC CE指示该资源配置方式的候选集合中的一个子集,最后通过DCI指示上述资源配置方式的候选集合中的子集中的目标资源配置方式的索引值。
以上文中列举的公式一和公式二为例,分别对应了索引值K=0和1。即,
公式一:
Figure PCTCN2018099207-appb-000135
对应于K=0;
公式二:
Figure PCTCN2018099207-appb-000136
对应于K=1。
K=0和1的两种资源配置方式可以如图4中的示例所示。
因此,网络设备只需在第一信息中指示K的取值,终端设备便可以确定根据上述公式中的哪一个来确定传输SRS的起始子载波的位置。
在方法二中,该预先定义的资源配置方式的索引号可以由网络设备和终端设备各自根据以上列举的参数确定。这种方法可以视作是一种隐式指示资源配置方式的方法。
可选地,该方法200还包括:步骤270,网络设备根据以下任意一个参数确定预先定义的资源配置方式的索引值:系统帧号、时隙号或者梳齿映射的位置。
下面详细说明根据系统帧号、时隙号以及梳齿映射的位置确定预先定义的资源配置方式的索引值。
一、根据梳齿映射的位置确定预先定义的资源配置方式的索引值。
具体地,梳齿映射的位置根据
Figure PCTCN2018099207-appb-000137
确定,其中,
Figure PCTCN2018099207-appb-000138
或者
Figure PCTCN2018099207-appb-000139
例如,当
Figure PCTCN2018099207-appb-000140
为偶数时,K=0,即采用公式一确定
Figure PCTCN2018099207-appb-000141
Figure PCTCN2018099207-appb-000142
为奇数时,K=1,即采用公式二确定
Figure PCTCN2018099207-appb-000143
或者,当
Figure PCTCN2018099207-appb-000144
为偶数时,K=1,即采用公式二确定;当
Figure PCTCN2018099207-appb-000145
为奇数时,K=0,即采用公式一确定
Figure PCTCN2018099207-appb-000146
应理解,上述列举的
Figure PCTCN2018099207-appb-000147
的取值仅为示例性说明,并不应对本申请构成任何限定。本申请对
Figure PCTCN2018099207-appb-000148
的取值不做限定。
二、根据系统帧号n f确定预先定义的资源配置方式的索引值。
例如,当n f为偶数时,K=0,即采用公式一确定
Figure PCTCN2018099207-appb-000149
当n f为奇数时,K=1,即采用公式二确定
Figure PCTCN2018099207-appb-000150
或者,当n f为偶数时,K=1,即采用公式二确定;当n f为奇数时,K=0,即采用公式一确定
Figure PCTCN2018099207-appb-000151
三、根据时隙号n s确定预先定义的资源配置方式的索引值。
例如,当n s为偶数时,K=0,即采用公式一确定
Figure PCTCN2018099207-appb-000152
当n s为奇数时,K=1,即采用公式二确定
Figure PCTCN2018099207-appb-000153
或者,当n s为偶数时,K=1,即采用公式二确定;当n s为奇数时,K=0,即采用公式一确定
Figure PCTCN2018099207-appb-000154
因此,基于上述技术方案,网络设备可以在整个BWP上接收到来自终端设备发送的SRS,也就是可以在整个BWP上进行信道测量,从而进行资源调度。
另外,在具有“信道互易性”的系统中,网络设备能够实现对BWP的全带测量,更有利于对下行信道的CSI的估计,以便于进行资源调度。
基于上述两点,相比于LET中的SRS的资源配置方式而言,本申请所提供的方法有助于网络设备对更多的资源进行调度,有利于提高资源利用率。
在另一种可能的设计中,在不考虑
Figure PCTCN2018099207-appb-000155
的情况下,该多个偏移量可以包括:零,SRS的探测区域与BWP的带宽之差以及SRS的探测区域与BWP的带宽之差的一半。
可选地,该预先定义的多种资源配置方式与多个公式一一对应。该公式可以体现用于传输SRS的起始子载波相对于上行系统带宽的起始子载波的偏移量,或者说,该公式可用于确定传输SRS的起始子载波。
具体地,该多个公式可以包括:
公式一:
Figure PCTCN2018099207-appb-000156
公式二:
Figure PCTCN2018099207-appb-000157
以及
公式三:
Figure PCTCN2018099207-appb-000158
其中,
Figure PCTCN2018099207-appb-000159
表示偏移量,
Figure PCTCN2018099207-appb-000160
表示该终端设备的BWP的传输带宽所包含的资源块RB数量,
Figure PCTCN2018099207-appb-000161
表示向下取整,m SRS,b表示该终端设备传输一次SRS使用的RB数量,B SRS为用户设备UE级别的SRS带宽配置参量,每个B SRS指示一组参数m SRS,b和N b,b=B SRS,且b为整数,N b表示该终端设备测量m SRS,b-1的带宽所需发送SRS的次数,b'在[0,b]中遍历取值,
Figure PCTCN2018099207-appb-000162
表示每个RB中包含的子载波的数量,
Figure PCTCN2018099207-appb-000163
用于确定梳齿映射的位置。
图5是基于上述三种不同的资源配置方式配置的探测区域的示意图。如图5所示,在采用公式一所对应的资源配置方式配置时,探测区域的起始子载波可以为BWP的起始子载波,即,在不考虑
Figure PCTCN2018099207-appb-000164
的情况下,偏移量为零;在采用公式二所对应的资源配置方式配置时,探测区域的末个子载波可以为BWP的末个子载波,即,在不考虑
Figure PCTCN2018099207-appb-000165
的情况下,偏移量为探测区域与BWP的带宽之差;在采用公式三所对应的资源配置方式配置时,探测区域位于BWP的中间区域,与BWP的两端的偏移量均为探测区域与BWP的带宽之差的一半。
终端设备仍然可以按照上文中所列举的方法一和方法二来获取该预先定义的资源配置方式的索引值。
具体地,在方法一中,以上文中列举的公式一、公式二和公式三为例,分别对应了索引值K=0、1和2。即,
公式一:
Figure PCTCN2018099207-appb-000166
对应于K=0;
公式二:
Figure PCTCN2018099207-appb-000167
对应于K=1;
公式三:
Figure PCTCN2018099207-appb-000168
对应于K=2。
K=0、1和2的三种资源配置方式可以如图5中的示例所示。
因此,网络设备只需在第一信息中指示K的取值,终端设备便可以确定根据上述公式中的哪一个来确定传输SRS的起始子载波的位置。
在方法二中,该预先定义的资源配置方式的索引号可以由网络设备和终端设备根据以下任意一个参数确定:系统帧号或时隙号。
下面详细说明根据系统帧号或时隙号确定预先定义的资源配置方式的索引值。
一、根据系统帧号n f确定预先定义的资源配置方式的索引值。
例如,可以定义该索引值K=mod(n f,3),其中,mod()表示取模。当mod(n f,3)=0时,对应了K=0,即采用公式一确定
Figure PCTCN2018099207-appb-000169
当mod(n f,3)=1时,对应了K=1,即采用公式二确定
Figure PCTCN2018099207-appb-000170
当mod(n f,3)=2时,对应了K=2,即采用公式三确定
Figure PCTCN2018099207-appb-000171
二、根据时隙号n s确定预先定义的资源配置方式的索引值。
例如,可以定义索引值K=mod(n s,3)。当mod(n s,3)=0时,对应了K=0,即采用公式一确定
Figure PCTCN2018099207-appb-000172
当mod(n s,3)=1时,对应了K=1,即采用公式二确定
Figure PCTCN2018099207-appb-000173
当mod(n s,3)=2时,对应了K=2,即采用公式三确定
Figure PCTCN2018099207-appb-000174
因此,基于上述技术方案,网络设备可以在整个BWP上接收来自终端设备发送的 SRS,也就是可以在整个BWP上进行信道测量,从而进行资源调度。并且,该设计还考虑到将PUCCH放在BWP两侧的可能,可以通过公式三来配置SRS资源,使得探测区域位于BWP的中间区域,从而有利于提高资源的利用率。
在又一种可能的设计中,为了减小对现有LTE协议的改动,本申请并不排除仍然沿用LTE中定义的探测区域的带宽大小的可能。即,可以参看表一中不同C SRS不对应的探测区域的带宽大小。例如,探测区域可以为96RB、80RB、72RB、64RB、60RB、48RB等。在同一个C SRS下不同B SRS对应的探测区域可以是相同的。因此,本申请另提供了与多种资源配置方式一一对应的公式。
可选地,该多个公式可以包括:
公式二:
Figure PCTCN2018099207-appb-000175
以及
公式四:
Figure PCTCN2018099207-appb-000176
其中,
Figure PCTCN2018099207-appb-000177
表示偏移量,
Figure PCTCN2018099207-appb-000178
表示该终端设备的BWP的传输带宽所包含的资源块RB数量,
Figure PCTCN2018099207-appb-000179
表示向下取整,
Figure PCTCN2018099207-appb-000180
表示m SRS,0的最大值,m SRS,0表示探测区域的所包含的RB数量,
Figure PCTCN2018099207-appb-000181
表示每个RB中包含的子载波的数量,
Figure PCTCN2018099207-appb-000182
用于确定梳齿映射的位置。
因此,在不考虑
Figure PCTCN2018099207-appb-000183
的情况下,公式二对应的偏移量为零,公式四对应的偏移量为探测区域与BWP的带宽之差。
在这种设计中,终端设备仍然可以按照上文中列举的方法一和方法二来获取用于指示预先定义的资源配置方式的索引值,网络设备也仍然可以按照上文中列举的方法,按照以下至少一个参数来确定预先定义的资源配置方法的索引值:系统帧号、时隙号或梳齿映射的位置。
具体地,上述公式可以与多个索引值一一对应,例如,
公式二:
Figure PCTCN2018099207-appb-000184
对应于K=0;
公式四:
Figure PCTCN2018099207-appb-000185
对应于K=1。
应理解,根据系统帧号、时隙号或梳齿映射的位置确定预先定义的资源配置方式的索引值的具体过程与上文中已经结合公式一、公式二和公式三描述的具体过程相似,为了简洁,这里省略对该具体过程的详细说明。
因此,上述设计延用了LTE中的探测区域的带宽大小,对LTE协议的改动较小,但同时可以通过采用上述公式对不同的终端设备配置不同的偏移量,使得SRS能够在BWP全带传输,从而能够对BWP全带的资源进行上行信道的测量和资源调度的效果。并且,网络设备可以利用信道互易性,对下行信道的CSI进行估计,以便进行资源调度。因此,基于这种设计有助于网络设备对更多的资源进行调度,有利于提高资源利用率。
或者,可选地,该多个公式包括:
公式二:
Figure PCTCN2018099207-appb-000186
公式四:
Figure PCTCN2018099207-appb-000187
以及
公式五:
Figure PCTCN2018099207-appb-000188
其中,
Figure PCTCN2018099207-appb-000189
表示偏移量,
Figure PCTCN2018099207-appb-000190
表示该终端设备的BWP的传输带宽所包含的资源块RB数量,
Figure PCTCN2018099207-appb-000191
表示向下取整,m SRS,0表示探测区域的所包含的RB数量,
Figure PCTCN2018099207-appb-000192
表示每个RB中包含的子载波的数量,
Figure PCTCN2018099207-appb-000193
用于确定梳齿映射的位置。
因此,在不考虑
Figure PCTCN2018099207-appb-000194
的情况下,公式二对应的偏移量为零,公式四对应的偏移量为探测区域与BWP的带宽之差,公式五对应的偏移量为探测区域与BWP的带宽之差的一半。
在这种设计中,终端设备仍然可以按照上文中列举的方法一和方法二来获取用于指示预先定义的资源配置方式的索引值,网络设备也仍然可以按照上文中列举的方法,按照以下至少一个参数来确定预先定义的资源配置方法的索引值:系统帧号、时隙号或梳齿映射的位置。
具体地,上述公式可以与多个索引值一一对应,例如,
公式二:
Figure PCTCN2018099207-appb-000195
对应于K=0;
公式四:
Figure PCTCN2018099207-appb-000196
对应于K=1;
公式五:
Figure PCTCN2018099207-appb-000197
对应于K=2。
应理解,根据系统帧号或时隙号的位置确定预先定义的资源配置方式的索引值的具体过程与上文中已经结合公式一、公式二和公式三描述的具体过程相似,为了简洁,这里省略对该具体过程的详细说明。
因此,基于以上设计,延用了LTE中的探测区域的带宽大小,同时又考虑到了在BWP全带传输SRS以达到能够对BWP全带的资源进行信道测量和调度的效果,以及NR中可能将PUCCH配置在BWP的两侧的可能性,有利于减少闲置的资源,从而达到了提高资源利用率的效果。
以上列举了根据梳齿映射的位置、系统帧号以及时隙号确定预先定义的资源配置方式的索引值的各种可能的实现方式。但应理解,这不应对本申请构成任何限定,本申请也并不排除根据除上述列举之外的其他参数来确定索引值的可能。
应理解,以上列举的各公式与索引值的对应关系仅为示例性说明,不应对本申请构成任何限定,例如,可以将公式一对应于索引值K=1,公式二对应于索引值K=2,公式三对应于索引值K=3,公式四对应于索引值K=4,公式五对应于索引值K=5,本申请对于索引值的取值并未不做限定。
由于在NR中,并不排除将PUCCH配置在BWP两侧的可能,在这种情况下,网络设备希望能够在BWP的中间区域传输SRS。由于在BWP中,如果探测区域偏向BWP的两侧的任意一侧时,例如图4或图5中的K=0或1时的探测区域所处的位置,就有可能造成一部分带宽的资源没有SRS传输而不能进行信道测量和资源调度,这一部分资源就有可能被闲置和浪费。因此,本申请另提供了一种发送和接收参考信号的方法,能够将探测区域控制在BWP的中间区域。
图6是从设备交互的角度示出的本申请另一实施例的发送和接收参考信号的方法300的示意性流程图。如图6所示,该方法300可以包括步骤310至步骤350。
在步骤310中,终端设备根据偏移量,确定传输SRS的起始子载波的位置。
在步骤320中,网络设备根据偏移量,确定传输SRS的起始子载波的位置。
应理解,步骤310和步骤320的具体过程与方法200中步骤210和步骤220的具体过程相似,为了简洁,这里不再赘述。
需要说明的是,在本申请实施例中,该偏移量可以基于预先定义的资源配置方式确定。
在本申请实施例中,偏移量可以根据以下公式确定:
Figure PCTCN2018099207-appb-000198
可以看到,该偏移量为探测区域与BWP的带宽之差的一半。即,探测区域位于BWP的中间区域。
在又一种可能的设计中,为了减小对现有LTE协议的改动,本申请并不排除仍然沿用LTE中定义的探测区域的带宽大小的可能。即,可以参看表一中不同C SRS不对应的探测区域的带宽大小。例如,探测区域可以为96RB、80RB、72RB、64RB、60RB、48RB等。在同一个C SRS下不同B SRS对应的探测区域可以是相同的。因此,本申请另提供了一个用于确定偏移量的公式如下:
Figure PCTCN2018099207-appb-000199
可以看到,该偏移量仍然为探测区域与BWP的带宽之差的一半。即,探测区域位于BWP的中间区域。
可选地,该方法300还包括:步骤330,终端设备基于预先定义的资源配置方式,确定偏移量。
相对应地,该方法还包括:步骤340,网络设备基于预先定义的资源配置方式,确定偏移量。
应理解,步骤330和步骤340的具体过程与方法200中步骤240和步骤250的具体过程相似,只是所使用的资源配置方式可能不同。为了简洁,这里省略对该具体过程的详细说明。
在终端设备和网络设备确定了传输SRS的起始子载波的位置之后,便可以执行步骤350,终端设备基于传输SRS的起始子载波的位置,发送SRS。
相对应地,在步骤350中,网络设备基于传输SRS的起始子载波的位置,接收来自该终端设备的SRS。
应理解,步骤350的具体过程可以与现有技术相同,为了简洁,这里省略对该具体过程的详细说明。
因此,基于上述技术方案,探测区域可以被配置在BWP的中间区域,从而可以减少由于探测区域偏向BWP的任意一侧可能带来的资源闲置,有利于提高资源的利用率;同时可以减少不必要的SRS的发送,从而减少功率消耗。
本申请还提供一种发送和接收参考信号的方法,有利于提高信道测量的精度,提高解调性能。下面结合图7至图11详细说明本申请实施例提供的发送和接收参考信号的方法。
图7是从设备交互的角度示出的本申请又一实施例提供的发送和接收参考信号的方法1000的示意性流程图。具体地,图7示出了发送和接收上行参考信号的具体过程。在图7所示出的方法1000中,终端设备例如可以为图1中所示出的通信系统中终端设备104-114中任意一个,网络设备例如可以为图1中所示出的通信系统中的网络设备102,上行参考信号例如可以为SRS。应理解,该终端设备可以为处于无线通信系统中与网络设备具有无线连接关系的任意终端设备。并且,该网络设备可以与处于该无线通信系统中的具有无线连接关系的多个终端设备基于相同的技术方案来传输参考信号。还应理解,本申请实施例中将SRS作为上行参考信号的一例来说明本申请所提供的技术方案,但这不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他上行参考信号以实现相 同或相似功能的可能。
如图7所示,该方法1000可包括步骤1100至步骤1500。下面对该方法1000中的步骤进行详细说明。
在步骤1100中,终端设备根据传输SRS的起始子载波的位置,发送SRS。
与此对应地,在步骤1100中,网络设备根据传输SRS的起始子载波的位置,接收SRS。
这里,传输SRS的起始子载波可以包括每一次传输SRS的起始子载波,结合上文中的表二可以看到,探测区域的SRS传输可以通过一个或多个SRS传输机会完成,这里所说的一次传输SRS可以理解为通过一个SRS传输机会传输SRS。
其中,探测区域可以为配置给终端设备的用于传输SRS的资源,或者说,探测区域为可用于传输SRS的传输带宽。探测区域可以理解为终端设备通过SRS进行信道探测的区域,终端设备可以在探测区域的资源上传输SRS,以进行信道测量。
可选地,该方法1000还包括:步骤1200,终端设备根据探测区域的偏移量确定传输SRS的起始子载波的位置。
相对应地,该方法1000还包括:步骤1300,网络设备根据探测区域的偏移量确定传输SRS的起始子载波的位置。
在本申请实施例中,上述传输SRS的起始子载波的位置可以是预先定义的,例如,协议定义,也可以是由终端设备和网络设备分别根据预先定义的规则确定。
在一种可能的设计中,网络设备和终端设备可以预先保存一个可用于确定传输SRS的起始子载波位置的映射关系。该映射关系可包括探测区域的偏移量
Figure PCTCN2018099207-appb-000200
Figure PCTCN2018099207-appb-000201
的对应关系,其中,各参数的物理意义在上文中已经做了详细说明,为了简洁,这里不再赘述。终端设备在确定了
Figure PCTCN2018099207-appb-000202
Figure PCTCN2018099207-appb-000203
的情况下,便可以直接根据上述对应关系,确定
Figure PCTCN2018099207-appb-000204
例如,可以在网络设备和终端设备中预先保存一个二维映射表,该二维映射表的横轴例如可以为
Figure PCTCN2018099207-appb-000205
纵轴例如可以为
Figure PCTCN2018099207-appb-000206
一个
Figure PCTCN2018099207-appb-000207
和一个
Figure PCTCN2018099207-appb-000208
在该二维映射表中的交点即为
Figure PCTCN2018099207-appb-000209
换句话说,一个
Figure PCTCN2018099207-appb-000210
和一个
Figure PCTCN2018099207-appb-000211
可用于联合指示一个
Figure PCTCN2018099207-appb-000212
其中,
Figure PCTCN2018099207-appb-000213
B SRS、C SRS以及用于确定n b的高层参数n RRC均可通过网络设备指示,
Figure PCTCN2018099207-appb-000214
的取值可根据上述网络设备所指示的参数确定。因此,网络设备在确定了上述参数后便可根据上述二维映射表确定
Figure PCTCN2018099207-appb-000215
并将上述参数指示给终端设备以便终端设备根据上述二维映射表确定
Figure PCTCN2018099207-appb-000216
应理解,确定
Figure PCTCN2018099207-appb-000217
的具体过程在上文中已经结合公式做了详细说明,为了简洁,这里不再赘述。
在这种设计中,
Figure PCTCN2018099207-appb-000218
可理解为一个索引值,网络设备和终端设备可根据预先保存的映射关系确定
Figure PCTCN2018099207-appb-000219
的取值。换句话说,
Figure PCTCN2018099207-appb-000220
可根据
Figure PCTCN2018099207-appb-000221
确定。
应理解,上述列举的二维映射表仅为一种可能的实现方式,而不应对本申请构成任何 限定,本申请对于预先定义
Figure PCTCN2018099207-appb-000222
的具体方法不做限定。
在本申请实施例中,上述传输SRS的起始子载波的位置也可以是终端设备根据预先定义的公式计算得到,例如,可通过上文中所描述的公式
Figure PCTCN2018099207-appb-000223
计算得到。其中,用于确定的
Figure PCTCN2018099207-appb-000224
的具体参数(例如,
Figure PCTCN2018099207-appb-000225
B SRS、C SRS以及用于确定n b的高层参数n RRC)可以通过网络设备指示。
综上所述,传输SRS的起始子载波的位置
Figure PCTCN2018099207-appb-000226
可以根据
Figure PCTCN2018099207-appb-000227
确定。
可选地,该方法1000还包括:步骤1400,终端设备获取探测区域的偏移量。
相对应地,该方法1000还包括:步骤1500,网络设备获取探测区域的偏移量。
在本申请实施例中,偏移量可以为预先定义的,例如,协议定义,也可以由网络设备和终端设备分别基于预先定义的规则来确定。本申请对于偏移量的获取方式不做限定。
不论该偏移量是由协议定义,还是由网络设备和终端设备分别基于预先定义的规则确定,该偏移量均可满足以下任意一个公式:
公式六:
Figure PCTCN2018099207-appb-000228
公式七:
Figure PCTCN2018099207-appb-000229
其中,上述预先定义的规则可包括上述任意一个公式。
下面结合附图分别对公式六和公式七做详细说明。
需要说明的是,为便于理解,在下文中所描述的附图(包括图8至图11)中,均以RB组(RB group,RBG)的粒度示出了上行系统带宽。其中,每个RB组包括n(n为正整数)个RB,即,n的取值为4、8、16等,可以理解,n=0表示不配置资源。但应理解,系统带宽的大小并不一定为4RB的整数倍,本申请对于系统带宽的大小不做限定。还应理解,终端设备的BWP的带宽也并不一定为4RB的整数倍,并且,终端设备的BWP的起始子载波所在的RB(为方便说明,以下简称BWP的起始RB)与系统带宽的起始RB之间的RB数量也并不一定是4的整数倍。另外,在图8至图11示出的示意图中,假设系统带宽均为31RB,系统带宽中的RB编号自0至30从上而下依次排列,n=4。应理解,图中仅为便于理解示出了系统带宽中的RB编号,但这不应对本申请构成任何限定,本申请对于系统带宽中的RB编号规则以及BWP中的RB编号规则并不做限定,例如,该系统带宽中的RB编号也可以自0至30从下而上依次排列。
在公式六中,
Figure PCTCN2018099207-appb-000230
为探测区域的偏移量,用于指示探测区域的起始子载波相对于BWP的传输带宽的起始子载波偏移的资源大小。
Figure PCTCN2018099207-appb-000231
表示探测区域的起始子载波所在的RB(为方便说明,以下简称探测区域的起始RB)相对于BWP的传输带宽的起始RB所偏移的RB数。可以理解的是,当BWP的传输带宽的起始RB的编号为0时,
Figure PCTCN2018099207-appb-000232
可表示探测区域的起始子载波所在的RB的编号。
在本申请实施例中,
Figure PCTCN2018099207-appb-000233
Figure PCTCN2018099207-appb-000234
中的任意值,且
Figure PCTCN2018099207-appb-000235
为整数。其中,
Figure PCTCN2018099207-appb-000236
表示终端设备的BWP的传输带宽所包含的RB数量,
Figure PCTCN2018099207-appb-000237
表示探测区域所包含的RB数量,可以理解的是,在某些情况下,
Figure PCTCN2018099207-appb-000238
可以为第一级探测区域所包含的RB数量,即,m SRS,0
图8示出了
Figure PCTCN2018099207-appb-000239
在不同取值的情况下探测区域的示意图。如图所示,假设探测区域为16RB,BWP的带宽为26RB。当
Figure PCTCN2018099207-appb-000240
时,该终端设备的探测区域的起始子载波为BWP的起始子载波,也就是BWP对应的频带的下限;当
Figure PCTCN2018099207-appb-000241
时,该终端设备的探 测区域的末个子载波为BWP的末个子载波,也就是BWP对应的频带的上限;当
Figure PCTCN2018099207-appb-000242
时,该终端设备的探测区域已经超出了BWP对应的频带范围。
由于终端设备的BWP是UE级别的,可能仅为系统带宽的部分频带,若终端设备的探测区域超出自身的BWP的带宽范围,就有可能造成信道测量的准确度下降。
因此,可以得到该
Figure PCTCN2018099207-appb-000243
的取值范围为
Figure PCTCN2018099207-appb-000244
中的任意整数值。通过限制
Figure PCTCN2018099207-appb-000245
的取值,可以将终端设备的探测区域控制在该终端设备的BWP的范围内,这样可以避免SRS不能完全被映射在BWP内而造成的信道测量精度下降的问题,从而有利于提高解调性能。
可选地,
Figure PCTCN2018099207-appb-000246
满足
Figure PCTCN2018099207-appb-000247
Δ∈[0,n-1],且Δ为整数。
其中,
Figure PCTCN2018099207-appb-000248
表示终端设备的BWP的起始RB相对于系统带宽的起始RB偏移的RB数。可选地,n的取值为4,则上述
Figure PCTCN2018099207-appb-000249
满足
Figure PCTCN2018099207-appb-000250
其中,Δ=0、1、2或3。
在某些情况下,同一小区中的两个或更多个终端设备或者同一终端设备配置的两个或更多个天线端口传输SRS的物理资源可能是有重叠的,例如,该两个或更多个终端设备或者两个或更多个天线端口的BWP的带宽部分有重叠,且配置有相同的梳齿参数。此时希望具有相同的SRS传输资源的任意两个终端设备或天线端口传输SRS的物理资源的重叠区域大于或等于n个RB。
可选地,同一小区中配置有相同梳齿参数的终端设备中,在至少两个终端设备传输SRS的资源有重叠的情况下,该至少两个终端设备中的任意两个终端设备传输SRS的起始子载波所在的RB(为方便说明,以下简称传输SRS的起始RB)相对于系统带宽的起始RB偏移的RB数对n取模的值相同,n>1,n为整数。
由上文描述可知,
Figure PCTCN2018099207-appb-000251
可根据
Figure PCTCN2018099207-appb-000252
确定,并且由于每次SRS传输的资源为n个RB的整数倍,结合公式六,上文中所述传输SRS的起始RB相对于系统带宽的起始RB偏移的RB数对n取模可表示为探测区域的起始RB相对于系统带宽的起始RB偏移的RB对n取模,即得到计算式:
Figure PCTCN2018099207-appb-000253
其中,
Figure PCTCN2018099207-appb-000254
的值可记作Δ,Δ∈[1,n-1],且Δ为整数。
也就是说,若同一小区中的两个或更多个终端设备满足:条件1)配置有相同的梳齿参数;条件2)传输SRS的资源有重叠,则该两个或更多个终端设备传输SRS的起始子载波映射到系统带宽中所对应的RB与系统带宽的起始RB间的RB数可满足:
Figure PCTCN2018099207-appb-000255
的值相同。
可选地,同一终端设备中配置有相同梳齿参数的任意两个天线端口传输SRS的起始子载波映射到系统带宽中所对应的RB相对于系统带宽的起始RB偏移的RB数满足:
Figure PCTCN2018099207-appb-000256
的值相同,n>1,n为整数。
也就是说,若同一终端设备的两个或更多个天线端口满足:条件1)配置有相同的梳齿参数;条件2)传输SRS的资源有重叠,则该两个或更多个天线端口传输SRS的起始RB与系统带宽的起始RB间的RB数可满足:
Figure PCTCN2018099207-appb-000257
的值相同。
其中,梳齿参数可用于确定梳齿映射的位置,可以由
Figure PCTCN2018099207-appb-000258
表示。关于梳齿参数的具体含义在上文中已经结合图3做了详细说明,为了简洁,这里不再赘述。
Figure PCTCN2018099207-appb-000259
表示探测区域的起始子载波映射到系统带宽中所对应的RB(为方便说明,以下简称探测区域的起始RB)相对于系统带宽的起始RB所偏移的RB数,可用于确定探测区域的起始子载波。
Figure PCTCN2018099207-appb-000260
表 示BWP的起始RB相对于系统带宽的起始RB偏移的RB数。n>1,且n为整数。
换句话说,若两个终端设备或天线端口仅上述条件1)或条件2),则
Figure PCTCN2018099207-appb-000261
的取值是可配置的。例如,对满足上述条件2)的任意两个终端设备或天线端口,可以配置与不同的梳齿参数一一对应的Δ值,与不同梳齿参数所对应的Δ值可以是不同的。
应注意,该终端设备每一次传输SRS使用的起始子载波均可满足上述对
Figure PCTCN2018099207-appb-000262
的限制,或者说,该终端设备通过每一个SRS传输机会传输SRS所使用的起始子载波均可满足上述对
Figure PCTCN2018099207-appb-000263
的限制。
可选地,n的取值为4。则Δ的取值可以包括:0、1、2和3。
也就是说,对于配置有同一个梳齿参数的终端设备或天线端口来说,Δ可以是确定的。在一种可能的设计中,可以预先定义Δ与梳齿参数的对应关系,例如,在协议中定义。以n=4为例,Δ的取值可以包括:0、1、2和3。当同一小区中配置有四种梳齿参数,即,comb4,则可以分别对应于每一种梳齿参数配置一个Δ值,例如,对于第一种梳齿参数,可以配置Δ为0;对于第二种梳齿参数,可以配置Δ为2;对于第三种梳齿参数,可以配置Δ为3;对于第四种梳齿参数,可以配置Δ为4。当同一小区中配置有两种梳齿参数,即,comb2,则可以根据系统帧号、子帧号或者时隙的不同分别给配置同一种梳齿参数的终端设备或天线端口配置不同的Δ值,例如,在第一个时隙,对于第一种梳齿参数,可以配置Δ为0,对于第二种梳齿参数,可以配置Δ为1;在第二个时隙,对于第一种梳齿参数,可以配置Δ为2,对于第二种梳齿参数,可以配置Δ为3。应理解,这里仅为便于理解列举了梳齿参数与Δ的对应关系,而不应对本申请构成任何限定。
通过上文中所描述的对
Figure PCTCN2018099207-appb-000264
的限制,使得配置有相同梳齿参数且传输SRS的资源有重叠(即,满足上述条件1)和条件2))的多个终端设备或天线端口传输SRS的起始RB重合,或者,偏移量为4RB的整数倍,这有利于保证配置相同梳齿参数的终端设备或天线端口在使用相同的物理资源发送SRS时,其资源重叠区域能够大于或等于4RB
当同一小区中的任意两个终端设备同时满足条件1)和条件2)时,或者同一终端设备的任意两个天线端口同时满足条件1)和条件2)时,保证传输SRS的资源重叠区域大于或等于4RB,往往是有利的,例如在某些情况下,可以提高资源调度的灵活性。
举例来说,在某些通信系统中,例如,5G的NR中,若终端设备在BWP的带宽内通过配置有相同梳齿参数的多个天线端口发送参考信号,例如,SRS,则该多个天线端口发送参考信号所使用的时域资源可能是重叠的,可以采用码分复用(code division multiplexing,CDM)的方式来减少干扰;另一方面,在系统带宽内,多个终端设备的BWP的带宽也有可能会有重叠,也就是说,不同的终端设备发送参考信号所使用的时频资源也有可能是重叠的,可以采用CDM的方式来减少干扰,从而达到提高资源的利用率的效果。
接收端设备(例如,网络设备)在接收到来自终端设备的参考信号时,可以将接收到的参考信号按照资源重叠部分和资源未重叠部分分别进行信道测量。通过仿真实验可以知道,当资源重叠部分大于或等于4个RB的时候,信道测量的精度大大提高,能获得较好的解调性能。因此,希望能够将资源重叠部分控制在4RB以上。
需要说明的是,本申请中虽然给出了n的取值为4的示例,但这不应对本申请构成任何限定。本申请对于n的取值并不做限定,只要能够提高信道测量的精度以提高解调性能, 本申请并不排除将n的取值定义为其他值的可能。
考虑到目前的标准中规定SRS的探测区域的带宽为4RB的整数倍,本申请实施例可通过将同一小区中满足上述条件1)和条件2)的任意两个终端设备或同一终端设备中满足上述条件1)和条件2)的任意两个天线端口传输SRS的起始RB控制在相同的RB的位置,或者,偏移量为4RB的整数倍的位置,以使得同一小区中的不同终端设备传输SRS使用的频域资源具有4RB及4RB以上的重叠区域的可能性大大提高,或者,同一终端设备的不同天线端口对应的SRS的频域资源具有4RB及4RB以上的重叠区域的可能性大大提高,因此,有利于提升SRS资源调度的灵活性,使得资源的利用率得以提高。
图9是本申请实施例提供的系统带宽、不同终端设备的BWP的带宽以及探测区域的示意图。如图所示,一个终端设备(例如,记作终端设备#1)的BWP的带宽为26RB,另一终端设备(例如,记作终端设备#2)的BWP的带宽为22RB。终端设备#1和终端设备#2的探测区域均为16RB,且终端设备#1和终端设备#2传输SRS的资源有重叠。
可以看到,该系统带宽以及这两个终端设备的BWP的带宽均不为4的整数倍,如果要保证终端设备的探测区域的资源为4RB的整数倍,同时希望保证两个终端设备传输SRS使用的资源的重叠区域大于或等于4RB,则这两个终端设备传输SRS的起始位置可以是相同的,例如,传输SRS的起始RB与系统带宽的起始RB的偏移为4RB的整数倍,可对应于图中的系统带宽中编号为12的RB的位置,或者系统带宽中编号为8的RB的位置。
同时也可以看到,如果图9中示出的系统带宽的底部与终端设备#1的BWP的带宽底部对齐,那么图中系统带宽最下方的3个RB始终测不到。这是因为,终端设备#1和终端设备#2之间需要保证Δ值相同,而当探测区域的起始RB系统带宽中编号为12的RB时,终端设备#2的探测区域已经到达BWP的底部,不能再往下偏移,也就是不能通过改变Δ值来使终端设备#2的探测区域往下偏移,为了保证与终端设备#2相同的Δ值,终端设备#1的探测区域可以考虑向下偏移4RB,但若终端设备#1探测区域往下偏移4RB,也会超出BWP的范围,因此终端设备#1的探测区域也不能再往下偏移,这就造成系统带宽中的部分资源始终测不到。可以理解,因为要保证探测区域的大小为4RB的整数倍,这种系统带宽终端部分资源始终测不到的情况通常发生在系统带宽不是4RB的整数倍的情况下。由于系统带宽的部分资源不能进行信道测量,无法获得准确的信道状态信息,网络设备就有可能不会调度未进行信道测量的资源,这就可能造成系统资源的使用率达不到最大化。
但是,如果在同一小区中存在配置有其他梳齿参数(即,不同于终端设备#1所配置的梳齿参数)且与终端设备#1的BWP有重叠的终端设备(例如,记作终端设备#3)存在,则可以考虑通过设置终端设备#3的Δ使得终端设备#3传输SRS的资源能够覆盖系统带宽底部的3个RB。也就是说,网络设备可以通过对配置有不同的梳齿参数的终端设备配置不同的Δ值,来实现系统带宽的全带测量。
图10是本申请实施例提供的系统带宽、BWP的带宽以及对应不同Δ值时的探测区域的示意图。如图所示,假设终端设备的BWP的带宽均为26RB,探测区域的大小均为16RB。终端设备的BWP的起始RB相对于系统带宽的起始RB偏移的资源大小可通过
Figure PCTCN2018099207-appb-000265
来表征,
Figure PCTCN2018099207-appb-000266
Figure PCTCN2018099207-appb-000267
之和正好可以组合构成一个连续的区域。该区域占用的RB满足配置有相同的梳齿参数的任意两个终端设备或任意两个天线端口所对应的这个连续的区域占用的RB满足
Figure PCTCN2018099207-appb-000268
图10中的n取值为4。
图中终端设备#1的
Figure PCTCN2018099207-appb-000269
满足
Figure PCTCN2018099207-appb-000270
可以看到,终端设备#1的探测区域的起始RB可以为系统带宽中编号为8的RB或编号为12的RB,图中分别示出了探测区域的起始RB对应系统带宽中编号为8的RB或编号为12的RB的情形。终端设备#3的
Figure PCTCN2018099207-appb-000271
满足
Figure PCTCN2018099207-appb-000272
则终端设备#3的探测区域的起始RB可以为系统带宽中编号为7的RB,也可以为系统带宽中编号为11的RB,还可以为系统带宽中编号为15的RB。可以看到,当终端设备#3的探测区域的起始RB为系统带宽中编号为15的RB时,正好能够测到系统带宽底部的3个RB,此时,该网络设备可以对系统带宽的全带宽进行信道测量。
因此,当配置有不同梳齿参数的终端设备或天线端口所对应的Δ在0、1、2或3中使用不同取值时,极有可能使得不同终端设备或不同天线端口的探测区域能够在编号为8的RB与编号为30的RB的区间内灵活配置。为了实现全带宽的测量,网络设备可以根据多个终端设备或者多个天线端口的探测区域在系统带宽中的相对位置,确定Δ的取值。
对于配置相同梳齿参数的任意两个终端设备或天线端口来说,如果能够将传输SRS的起始位置控制在相同的RB,或者,偏移量为4RB的整数倍的位置,则在很大程度上可以保证这两个终端设备或天线端口传输SRS使用的频域资源具有4RB或者4RB以上的重叠区域。例如,图中K取值为0时,可对应于具有相同梳齿参数的两个终端设备,其中一个终端设备的探测区域的起始RB可以为图中所示的编号为8的RB处,另一个终端设备的探测区域的起始RB可以为编号为12的RB处,也可以为编号为8的RB处,则这两个终端设备探测区域的重叠区域至少包括12个RB,满足重叠区域大于或等于4RB的条件。
应理解,上文中为便于理解,结合图10详细说明了对Δ取值的限制,但这不应对本申请构成任何限定。图中终端设备#1和终端设备#3的BWP的带宽有可能是不同的,终端设备#1和终端设备#3的探测区域的大小也可能是不同的。本申请对于终端设备的BWP的带宽以及探测区域的大小不做限定。
因此,通过对Δ的配置,从另一方面限制了
Figure PCTCN2018099207-appb-000273
的取值,可以使配置有不同梳齿参数的终端设备或天线端口能够在系统带宽的不同频带上发送SRS,使得网络设备实现全带宽测量成为可能,从而能够提高整个带宽的数据传输性能,提高资源利用率和资源调度的灵活性。
可选地,该方法还包括:网络设备发送
Figure PCTCN2018099207-appb-000274
值的指示信息,该指示信息指示
Figure PCTCN2018099207-appb-000275
的取值。
相应地,该方法还包括:终端设备接收
Figure PCTCN2018099207-appb-000276
值的指示信息,该指示信息指示
Figure PCTCN2018099207-appb-000277
的取值。
基于上述对
Figure PCTCN2018099207-appb-000278
取值的限制,网络设备可以确定
Figure PCTCN2018099207-appb-000279
的取值,并向终端设备发送第一指示信息指示的
Figure PCTCN2018099207-appb-000280
的取值。由此,网络设备和终端设备双方可以基于相同的
Figure PCTCN2018099207-appb-000281
的取值,根据上述公式六确定
Figure PCTCN2018099207-appb-000282
从而确定
Figure PCTCN2018099207-appb-000283
可选地,该
Figure PCTCN2018099207-appb-000284
值的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
应理解,这里所示例的用于承载
Figure PCTCN2018099207-appb-000285
值的指示信息的信令仅为示例性说明,不应对本申请构成任何限定。例如,该
Figure PCTCN2018099207-appb-000286
值的指示信息也可承载于MAC-CE中。
需要说明的是,上述
Figure PCTCN2018099207-appb-000287
的取值可以为UE级别的配置,也可以为端口级别的配置, 并可分别通过与配置级别相应的信令来指示终端设备,本申请对此不做限定。
可选地,该方法还包括:网络设备发送
Figure PCTCN2018099207-appb-000288
值的指示信息,该指示信息指示
Figure PCTCN2018099207-appb-000289
的取值。
相应地,该方法还包括:终端设备接收
Figure PCTCN2018099207-appb-000290
值的指示信息,该指示信息指示
Figure PCTCN2018099207-appb-000291
的取值。
通过网络设备向终端设备指示
Figure PCTCN2018099207-appb-000292
的取值,便于终端设备根据
Figure PCTCN2018099207-appb-000293
的取值确定BWP在系统带宽中的位置。
在公式七中,
Figure PCTCN2018099207-appb-000294
表示探测区域的起始子载波映射到系统带宽中所对应的RB相对于所述系统带宽的起始RB所偏移的RB数。其中,
Figure PCTCN2018099207-appb-000295
表示探测区域的起始RB相对于系统带宽的起始RB偏移的RB数。具体地,K Δ∈[0,n-1],且K Δ为整数。
Figure PCTCN2018099207-appb-000296
可指示探测区域可映射位置的起始RB的范围,或者说,探测区域的起始子载波可使用的资源的范围。
可以理解的是,当系统带宽的起始RB的编号为0时,
Figure PCTCN2018099207-appb-000297
可表示探测区域的起始子载波映射到系统带宽中所对应的RB的编号。
可选地,n的取值为4。
可以看到,公式七中的
Figure PCTCN2018099207-appb-000298
与公式六中的
Figure PCTCN2018099207-appb-000299
具有如下关系:
Figure PCTCN2018099207-appb-000300
与公式六所不同的是,公式七中直接对式中的K Δ取值进行了配置。
在公式七中,一方面,为了保证终端设备探测区域不超出终端设备的BWP的带宽范围,以避免探测区域超出BWP的带宽带来的信道测量准确度下降的问题,可以将
Figure PCTCN2018099207-appb-000301
的值控制在
Figure PCTCN2018099207-appb-000302
的范围内,则可以得到
Figure PCTCN2018099207-appb-000303
的取值为
Figure PCTCN2018099207-appb-000304
Figure PCTCN2018099207-appb-000305
中的任意值。
若n的取值为4,则,
Figure PCTCN2018099207-appb-000306
取值的上限为
Figure PCTCN2018099207-appb-000307
通过对
Figure PCTCN2018099207-appb-000308
的取值的限制,限制了在BWP的带宽范围内探测区域的可映射位置,可以保证在BWP的带宽范围内进行信道测量,以得到较高的信道测量精度,提高解调性能。
换句话说,图中
Figure PCTCN2018099207-appb-000309
所对应的区域示出了该终端设备的探测区域的起始子载波可使用的资源的范围。也就是说,当该终端设备的探测区域的起始子载波映射到系统带宽中的RB位于图中
Figure PCTCN2018099207-appb-000310
示出的区域时,可以获得比较好的信道测量精度。
一种可能的情况是,终端设备的BWP的起始RB相对于系统带宽的起始RB的偏移正好为n的整数倍,那么此时K Δ取值为0。在这种情况下,
Figure PCTCN2018099207-appb-000311
可选地,同一小区中配置有相同梳齿参数的终端设备中,在至少两个终端设备传输SRS的资源有重叠的情况下,该至少两个终端设备中的任意两个终端设备传输SRS的起始子载波映射到系统带宽中所对应的RB(即,传输SRS的起始RB)相对于BWP的起始RB偏移的RB数满足:
Figure PCTCN2018099207-appb-000312
的值相同,n>1,n为整数。
由于
Figure PCTCN2018099207-appb-000313
则上式可进一步变形为
Figure PCTCN2018099207-appb-000314
其中,
Figure PCTCN2018099207-appb-000315
的值可记作Δ,Δ∈[1,n-1],且Δ为整数。
也就是说,若同一小区中的两个或更多个终端设备满足:条件1)配置有相同的梳齿参数;条件2)传输SRS的资源有重叠,则探测区域的起始RB相对于BWP的起始RB偏移的RB数满足:
Figure PCTCN2018099207-appb-000316
的值相同。
可选地,同一终端设备中配置有相同梳齿参数的任意两个天线端口传输SRS的起始子载波映射到系统带宽中所对应的RB相对于系统带宽的起始RB偏移的RB数满足:
Figure PCTCN2018099207-appb-000317
的值相同,n>1,n为整数。
也就是说,若同一终端设备的两个或更多个天线端口满足:条件1)配置有相同的梳齿参数;条件2)传输SRS的资源有重叠,则该两个或更多个天线端口传输SRS的起始RB与系统带宽的起始RB间的RB数可满足:
Figure PCTCN2018099207-appb-000318
的值相同。
另一方面,上文中结合图9已经说明,在某些情况下,系统带宽中的部分带宽有可能始终测不到,也就是网络设备不能对系统带宽的全带进行信道测量,从而影响到系统带宽的资源利用率。因此,网络设备可以通过对配置有不同梳齿参数的终端设备或天线端口
Figure PCTCN2018099207-appb-000319
配置不同的Δ值。
可以理解的是,上式中
Figure PCTCN2018099207-appb-000320
是系统配置好的,若K Δ满足的值可配置,则可以达到对配置有不同梳齿参数的终端设备或天线端口
Figure PCTCN2018099207-appb-000321
配置不同的Δ值的效果。其中,K Δ∈[0,n-1],且K Δ为整数。
与公式六所不同的是,公式七中直接对K Δ的取值进行了配置。但可以理解的是,无论
Figure PCTCN2018099207-appb-000322
的取值是多少,只要K Δ可以在[0,n-1]的范围内任意取值,便可以保证
Figure PCTCN2018099207-appb-000323
的值Δ在[0,n-1]的范围内任意取值
可以理解,在K Δ
Figure PCTCN2018099207-appb-000324
一定的情况下,上述Δ的值与K Δ可以是相同或不同的。本申请对于K Δ和Δ的关系不做限定。
网络设备可通过对配置不同梳齿参数的终端设备或天线端口配置不同的K Δ以使得不同的终端设备或天线端口可以在系统带宽的不同频带发送SRS,使得网络设备实现全带宽测量成为可能,从而能够提高整个带宽的数据传输性能,提高资源利用率和资源调度的灵活性。
图11是本申请实施例提供的系统带宽、BWP的带宽以及对应不同K Δ值和
Figure PCTCN2018099207-appb-000325
值时的探测区域的示意图。假设BWP的带宽均为26RB,探测区域的大小均为16RB。其中,终端设备#1和终端设备#2的BWP在系统带宽中的位置相同,所对应的
Figure PCTCN2018099207-appb-000326
终端设备#3的BWP在系统带宽中的位置与终端设备#1或终端设备#2的BWP在系统带宽中的位置不同,与终端设备#3对应的
Figure PCTCN2018099207-appb-000327
由于探测区域的大小为16RB,BWP的带宽为26RB,则
Figure PCTCN2018099207-appb-000328
为10,也就是说,
Figure PCTCN2018099207-appb-000329
可以在[0,10]的范围内取值,
Figure PCTCN2018099207-appb-000330
可以在[0,2]的范围内取值。图中分别示出了终端设备#1对应的K Δ=3、
Figure PCTCN2018099207-appb-000331
时,终端设备#3对应的K Δ=0、
Figure PCTCN2018099207-appb-000332
时,以及终端设备#2对应的K Δ=3、
Figure PCTCN2018099207-appb-000333
时,各终端设备的探测区域在系统带宽中的位置。
另一方面,为了保证配置有相同的梳齿参数的终端设备或天线端口传输SRS的频域资源的重叠区域大于或等于n个RB的整数倍,希望能够将配置相同梳齿参数的终端设备或天线端口传输SRS的频域资源的起始位置控制在相同的RB处,或者,偏移量为n个RB的整数倍的位置。可选地,n的取值为4。
例如,图中终端设备#1和终端设备#2的K Δ值相同,
Figure PCTCN2018099207-appb-000334
值相差1,即,两个终端设备的探测区域的起始RB间相差了4个RB,因图中的n取值为4,即,相差了
Figure PCTCN2018099207-appb-000335
个RB。
再一方面,网络设备希望通过对配置有不同的梳齿参数的终端设备或天线端口配置不同的K Δ的取值,以实现全带宽测量。可以将K Δ的取值控制在[0,n-1]的范围内,且对于配置不同梳齿参数的终端设备或天线端口可以配置不同的K Δ值。当n的取值为4时,K Δ的取值可以为0、1、2或3。
再看图11,如果基于图中K Δ=3的取值,而
Figure PCTCN2018099207-appb-000336
的取2,则探测区域会超出BWP的带宽,造成信道测量精度下降;但如果为保证探测区域不超出BWP的带宽,则位于系统带宽底部的3个RB始终测不到。此时,可以通过调整配置有不同梳齿参数且具有相同的BWP的终端设备的K Δ的取值,例如可以将K Δ值设置为2,便可以保证探测区域不超出BWP的带宽,同时又可以实现系统带宽的全带测量。应理解,这里所列举的实现全带测量的对K Δ的取值仅为示例,而不应对本申请构成任何限定。在通信系统中,终端设备之间的BWP的带宽以及位置都有可能不同,网络设备可以根据各个终端设备的BWP的位置、探测区域以及系统带宽确定每个终端设备对应的K Δ的取值。
因此,通过对K Δ的取值的配置,从另一方面限制了探测区域的可映射位置。可以使配置有不同的梳齿参数的终端设备或天线端口在系统带宽的不同频带上发送SRS,使得网络设备实现全带宽测量成为可能,从而能够提高整个带宽的数据传输性能,提高资源利用率和资源调度的灵活性。可选地,该方法还包括:网络设备发送
Figure PCTCN2018099207-appb-000337
值的指示信息,该指示信息指示
Figure PCTCN2018099207-appb-000338
的取值。
相应地,该方法还包括:终端设备接收
Figure PCTCN2018099207-appb-000339
值的指示信息,该指示信息指示
Figure PCTCN2018099207-appb-000340
的取值。
可选地,该方法还包括:网络设备发送K Δ值的指示信息,该指示信息指示K Δ的取值。
相应地,该方法还包括:终端设备接收K值的指示信息,该指示信息指示
Figure PCTCN2018099207-appb-000341
的取值。
基于上述对
Figure PCTCN2018099207-appb-000342
和K Δ取值的限制,网络设备可以确定
Figure PCTCN2018099207-appb-000343
和K Δ的取值,并向终端设备发送指示信息指示
Figure PCTCN2018099207-appb-000344
和K Δ的取值。由此,网络设备和终端设备双方可以基于相同的
Figure PCTCN2018099207-appb-000345
和K Δ的取值,根据公式七确定
Figure PCTCN2018099207-appb-000346
从而确定
Figure PCTCN2018099207-appb-000347
可选地,该
Figure PCTCN2018099207-appb-000348
值的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
可选地,该K Δ值的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
应理解,这里所示例的用于承载
Figure PCTCN2018099207-appb-000349
值的指示信息和K Δ值的指示信息的信令以及数量仅为示例性说明,不应对本申请构成任何限定。例如,该
Figure PCTCN2018099207-appb-000350
值的指示信息和K Δ值的指示信息可通过一条信令指示,也可以通过一个信令组指示;又例如,该
Figure PCTCN2018099207-appb-000351
值的指示信息也可承载于MAC-CE中,该K Δ值的指示信息也可承载于MAC-CE中。
需要说明的是,上述
Figure PCTCN2018099207-appb-000352
和K Δ的取值可以为UE级别的配置,也可以为端口级别的配置,并可分别通过与配置级别相应的信令来指示终端设备,本申请对此不做限定。
可选地,该方法还包括:网络设备发送
Figure PCTCN2018099207-appb-000353
值的指示信息,该指示信息指示
Figure PCTCN2018099207-appb-000354
的取值。
相应地,该方法还包括:终端设备接收
Figure PCTCN2018099207-appb-000355
值的指示信息,该指示信息指示
Figure PCTCN2018099207-appb-000356
的取值。
通过网络设备向终端设备指示
Figure PCTCN2018099207-appb-000357
的取值,便于终端设备根据
Figure PCTCN2018099207-appb-000358
的取值确定BWP在系统带宽中的位置。
基于上述技术方案,本申请实施例通过结合NR中终端设备的BWP确定终端设备传输SRS的起始子载波的位置,并基于起始子载波的位置传输SRS,使得为每个终端设备配置的传输SRS的资源也是UE级别的,从而能够根据每个终端设备的发射或接收能力以及对测量带宽大小的需求配置传输SRS的资源,更加适合NR的场景。并且,本申请实施 例所提供的确定传输SRS的起始子载波的位置的方法并不限制时隙类型。
并且,通过限制传输SRS的起始子载波的起始位置,可以使得配置有相同的梳齿参数的终端设备或天线端口传输SRS使用的频域资源的重叠部分大于或等于n个RB的整数倍的可能性大大提高,或者与不同端口对应的SRS的频域资源的重叠部分大于或等于n个RB的整数倍的可能性大大提高;有利于提高信道测量的精度,从而获得较好的解调性能;同时,能够使得配置有不同的梳齿参数的终端设备或天线端口在不同的频域资源上传输SRS,有助于网络设备实现系统带宽的全带测量,使得通信系统在整个系统带宽上都能够获得较好的解调性能,从而有利于提高资源利用率。
基于上述技术方案,本申请实施例提供了发送和接收上行参考信号的多种可能的实现方法,均可适用于基于UE级别配置的BWP中,例如,NR中的BWP。然而,在下行信道测量中,同样也存在UE级别配置的BWP,网络设备在某一时段,如果仅需测量某一子带的CSI,便可以与该子带对应的某一个或多个终端设备的BWP上发送CSI-RS,以测量该子带的CSI,而不再需要在全带宽发送CSI-RS。因此,本申请还提供了一种发送和接收参考信号的方法,可用于指示终端设备接收CSI-RS的位置,以适用于NR中下行参考信号的资源配置。
图12是从设备交互的角度示出的本申请再一实施例提供的发送和接收参考信号的方法的示意性流程图。具体地,图12示出了发送和接收下行参考信号的具体过程。在图12所示出的方法2000中,网络设备例如可以为图1中所示出的通信系统中的网络设备102,终端设备例如可以为图1中所示出的通信系统中终端设备104-114中任意一个。应理解,该终端设备可以为处于无线通信系统中与网络设备具有无线连接关系的任意终端设备。并且,该网络设备可以与处于该无线通信系统中的具有无线连接关系的多个终端设备基于相同的技术方案来传输参考信号。
还应理解,本申请实施例中将CSI-RS作为下行参考信号的一例来说明本申请所提供的技术方案,但这不应对本申请构成任何限定,本申请并不排除在未来的协议中定义其他下行参考信号以实现相同或相似功能的可能,例如,解调参考信号(Demodulation reference signal,DMRS),跟踪信号(Tracking reference signal,TRS),相位跟踪参考信号(phase tracking reference signal,PTRS)等。
还需要说明的是,在下文中所描述的方法2000中,终端设备的BWP以及系统带宽分别可以为下行的BWP和下行系统带宽。对于同一个终端设备来说,下行的BWP与上行的BWP可以是相互独立的;对于通信系统来说,下行系统带宽与上行系统带宽也可以是相互独立的。例如在频分双工(Frequency Division Deplux,FDD)系统中,下行的BWP与上行的BWP可以分别占用不同的频带资源,下行系统带宽与上行系统带宽也可以分别占用不同的频带资源。
如图12所示,该方法2000可包括步骤2100至步骤2500。下面对该方法2000中的步骤进行详细说明。
在步骤2100中,网络设备根据传输CSI-RS的资源在频域上的起始位置,发送CSI-RS。
与此对应地,在步骤2100中,终端设备根据传输CSI-RS的资源在频域上的起始位置,接收CSI-RS。
其中,CSI-RS可用于进行下行信道测量。具体地,网络设备可在下行信道发送CSI-RS, 终端设备可以基于接收到的CSI-RS进行下行信道的测量,由此确定信道质量信息(CSI),并反馈给网络设备,以便于网络设备进行资源调度。
具体地,网络设备可以预先配置用于传输CSI-RS的资源,并基于所配置的资源发送CSI-RS。由于每个终端设备的BWP都是基于UE级别配置的,因此,不同的终端设备的BWP的位置以及传输带宽都有可能是不同的。各终端设备可以在各自的BWP的传输带宽上根据传输CSI-RS的资源接收来自网络设备的CSI-RS。
一种可能的情况是,同一小区中的两个或更多个终端设备的BWP对应的资源有重叠,且该两个或更多个终端设备的导频区域也落在该重叠的资源内,则该两个或更多个终端设备可以在相同的资源上接收来自网络设备的同一个CSI-RS。换句话说,同一小区中的多个终端设备可以共享来自网络设备的同一个CSI-RS。
该传输CSI-RS的资源在频域上的起始位置,可以通过RB来表征,即,传输CSI-RS的起始RB。传输CSI-RS的起始RB可以根据导频区域的起始RB确定。这里,导频区域可理解为可用于传输CSI-RS的传输带宽的范围。对于一个终端设备来说,其导频区域的资源可以是网络设备配置给该终端设备的用于接收CSI-RS的区域。导频区域通常是在BWP的传输带宽范围内的,或者说,导频区域的带宽大小小于或等于BWP的传输带宽大小,并且,导频区域的位置通常也是在BWP所对应的资源中的。终端设备可以在导频区域所对应的资源上接收CSI-RS,以进行下行信道测量。
但应理解,该导频区域可用于传输CSI-RS,但并不代表网络设备一定会在该导频区域的全部带宽上传输CSI-RS。在本申请实施例中,传输CSI-RS的资源可以是连续的,也可以是非连续的。具体地,可以将用于传输CSI-RS的资源以RB组为粒度来划分。传输CSI-RS的资源在RB组内可以是连续的,在RB组间可以是连续或者非连续的。因此,这里所说的连续或非连续是以RB组为粒度的。其中,每个RB组可以包括m个RB,m≥1,且m为正整数。可选地,m的取值可以为4的整数倍,例如,4、8、12等。
若传输CSI-RS的资源是连续的,则网络设备可以在整个导频区域的全带宽发送CSI-RS;若传输CSI-RS的资源是非连续的,则网络设备可以在导频区域的部分资源上发送CSI-RS。无论是连续还是非连续,传输CSI-RS的起始RB的均与导频区域的位置相关。例如,若传输CSI-RS的资源是连续的,则传输CSI-RS的起始RB就可以为导频区域的起始RB,若传输CSI-RS的资源是非连续的,则传输CSI-RS的起始RB就可以为导频区域的起始RB,也可以为导频区域中间的某个RB。后文中会结合附图详细说明连续或非连续的情形。由于导频区域的位置可以通过导频区域的偏移量来表征,导频区域的偏移量可以是起始RB相对于BWP的起始RB所偏移的资源大小,或者,也可以是导频区域的起始RB相对于系统带宽的起始RB所偏移的资源大小,则传输CSI-RS的起始RB可根据导频区域的偏移量确定。另外,网络设备可以通过一个或多个传输机会完成导频区域的CSI-RS的传输,本申请对此不做限定。
还需要说明的是,CSI-RS可以包括零功率CSI-RS和非零功率CSI-RS,如果该CSI-RS为零功率CSI-RS,则网络设备可以在用于传输CSI-RS的资源上不承载信号。因此,不论是零功率CSI-RS还是非零功率CSI-RS,被确定为用于传输CSI-RS的资源不用于传输其他信号。
可选地,该方法2000还包括:步骤2200,网络设备确定导频区域的偏移量。
相对应地,该方法2000还包括:步骤2300,终端设备确定导频区域的偏移量。
在本申请实施例中,各终端设备的导频区域可以由网络设备配置。网络设备可根据整个下行系统带宽的大小以及接入该网络设备的终端设备的BWP在系统带宽中的位置和大小,确定各终端设备的导频区域的位置及大小。应理解,网络设备确定各终端设备的导频区域的位置和大小的具体方法可以和现有技术相同,为了简洁,这里省略对该具体过程的详细说明。
可选地,该方法2000还包括:网络设备发送导频区域的偏移量的指示信息。
网络设备在确定导频区域的位置后可以将导频区域的信息(例如包括导频区域的偏移量、导频区域的带宽大小等信息)通过信令通知终端设备。
具体地,网络设备可通过以下任意一种方式通知终端设备导频区域的偏移量:
方式一:网络设备向终端设备发送第一偏移量k c的指示信息(即,导频区域的偏移量的指示信息的一例),该指示信息指示第一偏移量k c的取值,该第一偏移量k c表示导频区域的起始RB相对于BWP的起始RB偏移的RB数。
方式二:网络设备向终端设备发送第二偏移量T Δ的指示信息,该指示信息指示导频区域的第二偏移量T Δ的取值,该第二偏移量T Δ表示导频区域可映射区域的起始RB相对于BWP的起始RB偏移的RB数;
网络设备向终端设备发送第三偏移量k i的指示信息,该指示信息指示k i的取值,该第三偏移量k i表示导频区域的起始RB相对于该导频区域可映射区域的起始RB偏移的RB数所包含的RB组数。
其中,第二偏移量T Δ的指示信息和第三偏移量k i的信息可以理解为探测信息的偏移量的另一例。
方式三:网络设备向终端设备发送导频区域的起始RB的指示信息(即,导频区域的偏移量的指示信息的又一例),该指示信息指示导频区域的起始RB对应于系统带宽中的RB编号。
下面将结合附图详细说明以上三种方式的具体实现过程。
需要说明的是,为便于理解,在下文中所描述的附图(包括图13至图16)中,均以RB组的粒度示出了下行系统带宽。其中,每个RB组包括m(m为正整数)个RB,m的取值例如可以为4、8、16等,可以理解,m=0表示不配置资源。但应理解,系统带宽的大小并不一定为m个RB的整数倍,本申请对于系统带宽的大小不做限定。还应理解,终端设备的BWP的带宽也并不一定为4RB的整数倍,并且,终端设备的BWP的起始RB与系统带宽的起始RB之间的RB数量也并不一定是m的整数倍。另外,在图13至图16示出的示意图中,假设系统带宽均为31RB,系统带宽中的RB编号自0至30自上而下依次排列,m=4。应理解,图中仅为便于理解示出了系统带宽中的RB编号,但这不应对本申请构成任何限定,本申请对于系统带宽中的RB编号规则以及BWP中的RB编号规则并不做限定,例如,该系统带宽中的RB编号也可以自0至30从下而上依次排列。
在方式一中,该第一偏移量k c即导频区域的偏移量,终端设备可以直接根据该第一偏移量k c确定导频区域的起始RB。为了保证导频区域不超出BWP的范围,可进一步限定k c的取值,即,
Figure PCTCN2018099207-appb-000359
且k c为整数。其中,
Figure PCTCN2018099207-appb-000360
可表示BWP的传输带宽所包含的RB数,位于上文中的
Figure PCTCN2018099207-appb-000361
区分,以
Figure PCTCN2018099207-appb-000362
表示。
Figure PCTCN2018099207-appb-000363
可表示导频区域所包含的RB 数。
图13是本申请实施例提供的系统带宽、终端设备的导频区域与BWP的示意图。如图所示,该终端设备的BWP的传输带宽
Figure PCTCN2018099207-appb-000364
为26RB,当k c=0时,该终端设备的导频区域的起始RB为BWP的起始RB,也就是BWP对应的频带的下限;当
Figure PCTCN2018099207-appb-000365
时,该终端设备的导频区域的末个RB为BWP的末个RB,也就是BWP对应的频带的上限;当
Figure PCTCN2018099207-appb-000366
时,该终端设备的导频区域已经超出了BWP对应的频带范围。
由于终端设备的BWP是UE级别的,可能仅为系统带宽的部分频带,若终端设备的导频区域超出自身的BWP的带宽范围,就有可能造成信道测量的准确度下降。
因此,可以得到该k c的取值范围为
Figure PCTCN2018099207-appb-000367
中的任意整数值。通过限制k c的取值,可以将终端设备的导频区域控制在该终端设备的BWP的范围内,这样可以避免CSI-RS不能完全被映射在BWP内而造成的信道测量精度下降的问题,从而有利于提高解调性能。
可选地,该第一偏移量k c的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
应理解,通过RRC消息承载第一偏移量k c的指示信息仅为一种可能的实现方式,而不应对本申请构成任何限定,例如,该第一偏移量k c的指示信息还可以承载于MAC-CE中。
在方式二中,第二偏移量T Δ与第三偏移量k i与公式一中的第一偏移量k c具有如下关系:mk i+T Δ=k c。具体地,mk i可表示导频区域的起始RB相对于该导频区域可映射区域的起始RB偏移的RB数,可以理解,mk i为m的整数倍。
其中,T Δ∈[0,m-1],通过方式一中对第一偏移量k c取值的限制,可以得到k i的取值范围,即,
Figure PCTCN2018099207-appb-000368
且T Δ、k i均为整数。
由于考虑到可能会在未来的协议中限制发送给多个具有重叠区域的BWP的终端设备的CSI-RS的起始RB在同一位置对齐,或者,保证m个RB的偏移量,以降低干扰,从而保证信道测量的精度,提高解调性能。因此,将上述第一偏移量k c分解为T Δ和k i两部分。其中,T Δ可由网络设备配置,例如,给配置有不同BWP带宽大小的终端设备配置不同的T Δ值。
图14是本申请实施例提供的系统带宽、终端设备的导频区域与BWP的另一示意图。如图所示,一个终端设备(例如记作终端设备#1)的BWP的传输带宽
Figure PCTCN2018099207-appb-000369
为26RB,BWP的起始RB相对于系统带宽的起始RB偏移的RB数
Figure PCTCN2018099207-appb-000370
为5;另一个终端设备(例如记作终端设备#2)的BWP的传输带宽
Figure PCTCN2018099207-appb-000371
为22RB,BWP的起始RB相对于系统带宽的起始RB偏移的RB数
Figure PCTCN2018099207-appb-000372
为6。其中,
Figure PCTCN2018099207-appb-000373
表示终端设备的BWP的起始RB相对于系统带宽的起始RB偏移的RB数。
由于该两个终端设备的BWP映射在系统带宽中的区域有重叠区域,则该两个终端设备可以共享网络设备在这一重叠区域中发送的同一CSI-RS,如图中所示。考虑到目前标准中定义的CSI-RS的传输带宽可能为4RB的整数倍,该CSI-RS的起始位置可以为图中所示的系统带宽中编号为8的RB,也可以为系统带宽中编号为12的RB,本申请对此不做限定。换句话说,导频区域可映射位置的起始RB的范围可以为系统带宽中编号为8的RB处至系统带宽中编号为12的RB处。
对于不同的终端设备来说,由于BWP映射在系统带宽中的位置不同,T Δ的取值也可 能不同。例如,图中所示的终端设备#1所对应的T Δ=3,终端设备#2所对应的T Δ=2。
另外,由于系统带宽以及BWP的传输带宽并不一定是m个RB的整数倍,因此,可能会存在一些RB测不到的情况,为了实现系统带宽的全带测量,网络设备可以为不同的终端设备配置不同的T Δ,使得不同CSI-RS的传输资源在系统带宽中的不同位置,从而有利于网络设备实现系统带宽的全带测量。
还需要说明的是,图中仅为示意,示出的T Δ正好满足
Figure PCTCN2018099207-appb-000374
事实上,本申请对于T Δ的取值并不限定满足
Figure PCTCN2018099207-appb-000375
该T Δ的取值可由网络设备根据各CSI-RS的位置确定。
可选地,该第二偏移量T Δ的指示信息携带在高层信令中。该高层信令例如可以包括RRC消息或者MAC-CE中。
可选地,该第三偏移量k i的指示信息携带在高层信令中。该高层信令例如可以包括消息或者MAC-CE中。
应理解,用于承载第二偏移量T Δ的指示信息的高层信令与用于承载第三偏移量k i的指示信息的高层信令可以为两条不同的高层信令,也可以携带在同一条高层信令中,本申请对此不作限定。
还应理解,通过高层信令承载该第二偏移量T Δ的指示信息或第三偏移量k i的指示信息仅为一种可能的实现方式,而不应对本申请构成任何限定。
在方式一和方式二中,导频区域的偏移量可通过导频区域的起始RB相对于BWP的起始RB偏移的RB数来表征。
在方式三中,网络设备可以直接向终端设备指示导频区域的起始RB在系统带宽中所对应的RB编号。终端设备可以根据该导频区域的起始RB编号以及预先获取的
Figure PCTCN2018099207-appb-000376
值,确定导频区域的起始RB在BWP中的位置。
也就是说,在方式三中,导频区域的偏移量可通过导频区域的起始RB相对于系统带宽的起始RB偏移的RB数来表征。
例如,再看图14,终端设备#1的导频区域的起始RB对应于系统带宽中RB编号为12的位置,则网络设备可以向终端设备#1指示导频区域的起始RB在系统带宽中的编号为12。终端设备#1可以根据预先获取的
Figure PCTCN2018099207-appb-000377
值(例如图中所示,
Figure PCTCN2018099207-appb-000378
),确定出该导频区域的起始RB在BWP中的位置,即,该导频区域的起始RB相对于BWP的起始RB偏移的RB数。假设,该BWP的起始RB编号为0,则该导频区域的起始RB在BWP中所对应的RB编号为8。
可选地,该导频区域的起始RB的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
应理解,通过RRC消息承载该导频区域的起始RB的指示信息仅为一种可能的实现方式,而不应对本申请构成任何限定,例如,该导频区域的起始RB的指示信息还可以承载于MAC-CE中。
基于上述三种方式,终端设备可以确定出导频区域的偏移量。
可选地,该方法2000还包括:网络设备发送导频区域大小的指示信息,该指示信息指示导频区域占用的传输带宽。
可选地,该导频区域大小可以通过RB数来表征。
可选地,该导频区域大小的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
需要说明的是,上述导频区域的起始RB和导频区域大小可通过一条指示信息来指示。
应理解,用于承载上述通过方式一至方式三列举的各指示信息的高层信令与用于承载导频区域大小的指示信息的高层信令可以为多条不同的高层信令,也可以承载于同一条高层信令中,本申请对此不做限定。
还应理解,通过高层信令携带导频区域大小的指示信息仅为一种可能的实现方式,而不应对本申请构成任何限定。
可选地,该方法2000还包括:网络设备发送
Figure PCTCN2018099207-appb-000379
值的指示信息,该指示信息指示
Figure PCTCN2018099207-appb-000380
的取值。
可选地,
Figure PCTCN2018099207-appb-000381
值的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
应理解,用于承载上述列举的各指示信息的高层信令与用于承载
Figure PCTCN2018099207-appb-000382
值的指示信息的高层信令可以为多条不同的高层信令,也可以承载于同一条高层信令中,本申请对此不作限定。
还应理解,通过高层信令承载
Figure PCTCN2018099207-appb-000383
值的指示信息仅为一种可能的实现方式,而不应对本申请构成任何限定。
通过步骤2200和步骤2300,网络设备和终端设备可以确定出导频区域的偏移量,继而可以根据该导频区域的偏移量确定传输CSI-RS的起始RB。
应理解,上文中结合附图说明了确定导频区域的偏移量的具体方法,但这不应对本申请构成任何限定,在某些情况下,导频区域也可以是BWP的全带宽,此时导频区域的偏移量可以为0,本申请对于导频区域的带宽大小不做限定。
还应理解,上述所列举的三种方式仅为用于确定导频区域的偏移量的几种可能的实现方式,不应对本申请构成任何限定。
可选地,该方法2000还包括:步骤2400,网络设备根据导频区域的偏移量确定传输CSI-RS的起始RB。
相对应地,该方法2000还包括:步骤2500,终端设备根据导频区域的偏移量确定传输CSI-RS的起始RB。
在本申请实施例中,传输CSI-RS的资源可由网络设备配置。网络设备可以根据整个下行系统带宽的大小、接入该网络设备的终端设备的BWP在系统带宽中的位置和大小,以及各终端设备的导频区域的位置和大小,确定传输CSI-RS的位置。应理解,网络设备确定传输CSI-RS的具体方法可以和现有技术相同,为了简洁,这里省略对该具体过程的详细说明。
网络设备可以在确定了传输CSI-RS的传输资源之后,可将传输CSI-RS的起始位置(例如,起始RB)通过信令通知终端设备,以便终端设备根据该起始位置接收CSI-RS。
应理解,网络设备和终端设备可以根据预先定义的导频图样(pattern)确定RB中用于传输CSI-RS的资源粒(Resource Element,RE)。当网络设备和终端设备分别确定了用于传输CSI-RS的RB之后,便可以根据预定义的导频图样,确定承载CSI-RS的RE。
在步骤2100中已经说明,CSI-RS的传输资源在导频区域内(或者说,在BWP内) 可以是连续的,也可以是非连续的,具体可由网络设备配置。
若CSI-RS的传输资源在导频区域内连续,则终端设备可直接根据在步骤2300中确定的导频区域的偏移量确定传输CSI-RS的起始RB,继而根据确定得到的传输CSI-RS的起始RB接收CSI-RS。
若CSI-RS的传输资源在导频区域内非连续,则网络设备可进一步向终端设备指示传输CSI-RS的位置。
可选地,该方法2000还包括:网络设备发送CSI-RS位置的指示信息,该指示信息指示导频区域中用于传输CSI-RS的RB。
与之对应地,该方法2000还包括:终端设备接收来自网络设备的CSI-RS位置的指示信息,该指示信息指示导频区域中用于传输CSI-RS的RB。
在一种可能的设计中,该CSI-RS位置的指示信息可以为位图(bitmap)。例如,考虑到目前标准中定义的CSI-RS的传输带宽可能为4RB的整数倍,例如,m。将导频区域中的每个RB组(即,包括m个RB)对应一个比特位,例如,当某一RB组用于传输CSI-RS时,所对应的比特位可置“1”;当某一RB组不用于传输CSI-RS时,所对应的比特位可置“0”。应理解,比特位中的值所指示的信息可以由网络设备和终端设备预先定义,这里仅为便于理解,示出了比特位分别置“1”和“0”所分别指示的信息,但这不应对本申请构成任何限定。
还应理解,通过位图指示用于传输CSI-RS的RB的方法仅为一种可能的实现方式,而不应对本申请构成任何限定,本申请也并不排除终端设备通过其他方式确定传输CSI-RS的RB。例如,预先定义,比如网络设备和终端设备双方预先约定在系统带宽中的第奇数个RB组上传输,在第偶数个RB组上不传输,等等。本申请对此不做限定。
图15是本申请实施例提供的系统带宽、终端设备的导频区域、BWP以及位图的示意图。如图所示,终端设备的BWP的传输带宽
Figure PCTCN2018099207-appb-000384
为26RB,BWP的起始RB相对于系统带宽的起始RB偏移的RB数
Figure PCTCN2018099207-appb-000385
为5。该终端设备的导频区域可以根据如上文所描述的方式确定,例如,k c=8,导频区域的资源大小为16RB,则可以确定导频区域在BWP中的位置。若m的取值为4,该导频区域可包括4个RB组,每个RB组对应一个比特位。各比特位与RB组的对应关系在图中示出。根据该位图中各比特位的指示,便可以确定导频区域中用于传输CSI-RS的RB。如图所示,网络设备仅在所对应的比特位置“1”的RB组传输CSI-RS。
由于系统带宽以及BWP的传输带宽并不一定是m个RB的整数倍,因此,可能会存在一些RB测不到的情况,为了实现系统带宽的全带测量,网络设备可以将导频区域配置为整个BWP,以便根据需要可实现在BWP中的任意位置传输CSI-RS。在这种情况下,导频区域的带宽大小并不一定满足为m个RB的整数倍。
图16是本申请实施例提供的系统带宽、终端设备的导频区域、BWP以及位图的另一示意图。如图所示,终端设备的BWP的传输带宽
Figure PCTCN2018099207-appb-000386
为26RB,导频区域的带宽也为26RB,BWP的起始RB相对于系统带宽的起始RB偏移的RB数
Figure PCTCN2018099207-appb-000387
为5。若RB组中的RB数m的取值为4,则该导频区域中可包括5个完整的RB组,分别可通过5个比特位来指示。而导频区域中起始的3个RB和末尾的3个RB不能构成完整的RB组,但仍可将其分别视为两个RB组,分别可通过2个比特位来指示。在这种情况下,可以理解为该导频区域 中配置了两种资源粒度,一种资源粒度为m个RB,另一种资源粒度为小于m的至少一个RB。各比特位于RB组的对应关系在图中示出。根据该位图中各比特位的指示,便可以确定导频区域中用于传输CSI-RS的RB。如图所示,网络设备仅在所对应比特位置“1”的RB组传输CSI-RS。并且,通过配置不同的资源粒度,可以进一步提高资源调度的灵活性。
可选地,该参考信号位置的指示信息携带在高层信令中。该高层信令可以包括例如RRC消息或MAC-CE。
应理解,这里所示例的用于承载该参考信号位置的指示信息的信令仅为示例性说明,不应对本申请构成任何限定。例如,该参考信号位置的指示信息也可承载于MAC-CE中。
基于上述技术方案,本申请实施例通过结合NR中终端设备的BWP确定终端设备接收CSI-RS的起始RB,并基于起始RB传输CSI-RS,使得终端设备可以根据自身BWP的位置和大小,接收来自网络设备的CSI-RS,更加适合NR的场景。
另外,通过指示导频区域的偏移量,以在导频区域的资源范围内指示各个RB组是否承载CSI-RS,可以避免在系统带宽的全带上指示传输CSI-RS的资源位置,从而有利于减小信令开销。并且,通过限制导频区域的偏移量,可以避免CSI-RS的传输资源超出BWP的范围,而导致终端设备信道测量的精度下降,因此有利于提高解调性能。应理解,在上文中所示出的实施例中,均以RB作为资源单元的一例来说明各实施例,RB的定义可参考目前的LTE协议中对RB的定义,也可以参考未来5G的协议中对RB的定义。同时,本申请也不排除在未来的协议中定义其他的资源单元来代替RB的可能。
还应理解,上文中所述的“预先定义”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
还应理解,上文中仅为便于理解结合附图以及不同的带宽大小详细说明了本申请提供的技术方案,但这不应对本申请构成任何限定。本申请对于系统带宽、BWP的带宽以及探测区域、导频区域的大小均不做限定。
在其他的实现方式中,网络设备和终端设备可以基于多天线技术来通信。
在LTE中,支持了一发两收(1T2R)用户的天线切换。下面通过天线分组的方法进一步支持a个Tx(发送)天线b个Rx(接收)天线的用户的天线切换,其中a>1或b>2,且a<b。
步骤一:基站向用户发送SRS配置信息。其中天线端口信息中所指示的天线端口数需要不大于用户同时能进行上行传输的天线数,因此需要用户在消息三(Msg3)或高层信令如RRC信令上报同时能发送的最大天线数。本实施例中端口数为a=2。
步骤二:基站向用户发送信令,该信令用于通知用户以SRS天线切换的方式发送SRS。可选的,基站通知用户所使用天线的总数量,例如本实施例中天线的总数量为b=4,表示用户一次用2个天线发送,总共在4个天线上发送SRS。
步骤三:用户根据基站的配置信息在4个天线上时分的发送SRS。具体的,预定义或基站配置的将所使用的天线分组,分为b/a=2组,每组内包含的天线是预定义的或基站配置的,例如组0包含天线{0,1},组1包含天线{2,3}。预定义的,组内的天线是可以同时用于上行传输的天线。则天线组的标识可以记作
Figure PCTCN2018099207-appb-000388
其中n SRS表示根据所述上行参考信号发送的次数确定,例如n SRS为所述上行参考信号发送的次数或次数减1。当不进行跳频的时候,
Figure PCTCN2018099207-appb-000389
当进行跳频时有:
Figure PCTCN2018099207-appb-000390
Figure PCTCN2018099207-appb-000391
其中K为跳频的总跳数。这里以K=2的跳频场景为例,下表给出了天线端口和传输次数以及传输的带宽的关系:
n SRS 跳频的第一个带宽 跳频的第二个带宽
0 天线组0,天线{0,1}  
1   天线组1,天线{2,3}
2 天线组1,天线{2,3}  
3   天线组0,天线{0,1}
可以看出,第一次传输时,用户在第一个跳频的位置用天线0和1发送SRS,第二次传输,用户在第二个跳频位置用天线2和3发送SRS,第三次传输时,用户在第一个跳频的位置用天线2和3发送SRS,第四次传输,用户在第二个跳频位置用天线0和1发送SRS。
以上,结合图2至图16详细说明了本申请实施例提供的方法,以下,结合图17至图20详细说明本申请实施例提供的网络设备和终端设备。
图17是本申请实施例提供的终端设备400的示意性框图。如图17所示,该终端设备400包括:确定模块410和收发模块420。
其中,该确定模块410用于根据偏移量,确定传输SRS的起始子载波的位置,该偏移量为探测区域的起始子载波相对于该终端设备的带宽部分BWP的传输带宽的起始子载波偏移的资源大小,且该偏移量基于预先定义的资源配置方式确定;
该收发模块420用于根据该确定模块410确定的传输SRS的起始子载波的位置,发送该SRS。
因此,本申请实施例通过结合NR中终端设备的BWP确定终端设备传输SRS的起始子载波的位置,并基于起始子载波的位置传输SRS,使得为每个终端设备配置的传输SRS的资源也是用户设备(user equipment,UE)级别的,从而能够根据每个终端设备的发射或接收能力以及对测量带宽大小的需求配置传输SRS的资源,更加适合NR的场景。并且,本申请实施例所提供的确定传输SRS的起始子载波的位置的方法并不限制时隙类型。
可选地,该预先定义的资源配置方式是从预先定义的多种资源配置方式中确定,该预先定义的多种资源配置方式与多个偏移量对应。
可选地,该终端设备400还包括获取模块,用于获取该预先定义的资源配置方式的索引值,该索引值用于指示该预先定义的资源配置方式,其中,该预先定义的多种资源配置方式与多个索引值一一对应。
可选地,该收发模块420还用于接收第一信息,该第一信息中包含该预先定义的资源配置方式的索引值。
可选地,该确定模块410还用于根据以下任意一个参数确定该预先定义的资源配置方式的索引值:系统帧号、时隙号或者梳齿映射的位置。
可选地,该多种资源配置方式与多个公式一一对应,每个公式用于确定一个偏移量,该多个公式包括:
公式一:
Figure PCTCN2018099207-appb-000392
以及
公式二:
Figure PCTCN2018099207-appb-000393
其中,
Figure PCTCN2018099207-appb-000394
表示偏移量,
Figure PCTCN2018099207-appb-000395
表示该终端设备的BWP的传输带宽所包含的资源块RB数量,
Figure PCTCN2018099207-appb-000396
表示向下取整,m SRS,b表示该终端设备传输一次SRS使用的RB数量,B SRS为用户设备UE级别的SRS带宽配置参量,每个B SRS指示一组参数m SRS,b和N b,b=B SRS,且b为整数,N b表示该终端设备测量m SRS,b-1的带宽所需发送SRS的次数,b'在[0,b]中遍历取值,
Figure PCTCN2018099207-appb-000397
表示每个RB中包含的子载波的数量,
Figure PCTCN2018099207-appb-000398
用于确定梳齿映射的位置。
可选地,该多种资源配置方式与多个公式一一对应,每个公式用于确定一个偏移量,该多个公式包括:
公式一:
Figure PCTCN2018099207-appb-000399
公式二:
Figure PCTCN2018099207-appb-000400
以及
公式三:
Figure PCTCN2018099207-appb-000401
其中,
Figure PCTCN2018099207-appb-000402
表示偏移量,
Figure PCTCN2018099207-appb-000403
表示该终端设备的BWP的传输带宽所包含的资源块RB数量,
Figure PCTCN2018099207-appb-000404
表示向下取整,m SRS,b表示该终端设备传输一次SRS使用的RB数量,B SRS为用户设备UE级别的SRS带宽配置参量,每个B SRS指示一组参数m SRS,b和N b,b=B SRS,且b为整数,N b表示该终端设备测量m SRS,b-1的带宽所需发送SRS的次数,b'在[0,b]中遍历取值,
Figure PCTCN2018099207-appb-000405
表示每个RB中包含的子载波的数量,
Figure PCTCN2018099207-appb-000406
用于确定梳齿映射的位置。
可选地,该偏移量根据以下公式确定:
Figure PCTCN2018099207-appb-000407
应理解,终端设备400可以对应于根据本申请实施例的发送和接收参考信号的方法200中的终端设备,该终端设备400可以包括用于执行图2中发送和接收参考信号的方法200的终端设备执行的方法的模块,并且,该终端设备400中的各模块和上述其他操作和/或功能分别为了实现图3中发送和接收参考信号的方法200的相应流程,具体地,确定模块410用于执行方法200中的步骤210、步骤240以及步骤2602,收发模块420用于执行方法200中的步骤230和步骤2601,各模块执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
或者,终端设备400可以对应于根据本申请实施例的发送和接收参考信号的方法300中的终端设备,该终端设备400可以包括图6中发送和接收参考信号的方法300的终端设备执行的方法的模块,并且,该终端设备400中的各模块和上述其他操作和/或功能分别为了实现图6中发送和接收参考信号的方法300的相应流程。具体地,确定模块410用于执行方法300中的步骤310和步骤330,收发模块420用于执行方法300中的步骤350,各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
或者,终端设备400可以对应于根据本申请实施例的发送和接收参考信号的方法1000中的终端设备,该终端设备400可以包括图7中发送和接收参考信号的方法1000的终端 设备执行的方法的模块,并且,该终端设备400中的各模块和上述其他操作和/或功能分别为了实现图7中发送和接收参考信号的方法1000的相应流程。具体地,确定模块410用于执行方法1000中的步骤1200和步骤1400,收发模块420用于执行方法1000中的步骤1100,各模块执行上述相应步骤的具体过程在方法1000中已经详细说明,为了简洁,在此不再赘述。
或者,终端设备400可以对应于根据本申请实施例的发送和接收参考信号的方法2000中的终端设备,该终端设备400可以包括图12中发送和接收参考信号的方法2000的终端设备执行的方法的模块,并且,该终端设备400中的各模块和上述其他操作和/或功能分别为了实现图12中发送和接收参考信号的方法2000的相应流程。具体地,确定模块410用于执行方法2000中的步骤2200和步骤2400,收发模块420用于执行方法2000中的步骤2100,各模块执行上述相应步骤的具体过程在方法2000中已经详细说明,为了简洁,在此不再赘述。
图18是本申请实施例提供的终端设备500的结构示意图。如图18所示,该终端设备500包括处理器501和收发器502,可选地,该终端设备500还包括存储器503。其中,其中,处理器502、收发器502和存储器503之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器503用于存储计算机程序,该处理器501用于从该存储器503中调用并运行该计算机程序,以控制该收发器502收发信号。
上述处理器501和存储器503可以合成一个处理装置,处理器501用于执行存储器503中存储的程序代码来实现上述功能。具体实现时,该存储器503也可以集成在处理器501中,或者独立于处理器501。上述终端设备500还可以包括天线504,用于将收发器502输出的上行数据或上行控制信令通过无线信号发送出去。
具体地,终端设备500可以对应于根据本申请实施例的发送和接收参考信号的方法200中的终端设备,该终端设备500可以包括用于执行图2中发送和接收参考信号的方法200的终端设备执行的方法的模块,并且,该终端设备500中的各模块和上述其他操作和/或功能分别为了实现图3中发送和接收参考信号的方法200的相应流程。具体地,该存储器503用于存储程序代码,使得处理器501在执行该程序代码时,执行方法200中的步骤210、步骤240以及步骤2602,并控制收发器502执行方法200中的步骤230和步骤2601,各模块执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
或者,终端设备500可以对应于根据本申请实施例的发送和接收参考信号的方法300中的终端设备,该终端设备500可以包括图6中发送和接收参考信号的方法300的终端设备执行的方法的模块,并且,该终端设备500中的各模块和上述其他操作和/或功能分别为了实现图6中发送和接收参考信号的方法300的相应流程。具体地,该存储器503用于存储程序代码,使得处理器501在执行该程序代码时,执行方法300中的步骤310和步骤330,并控制收发器502执行方法300中的步骤350,各模块执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
或者,终端设备500可以对应于根据本申请实施例的发送和接收参考信号的方法1000中的终端设备,该终端设备500可以包括图7中发送和接收参考信号的方法1000的终端设备执行的方法的模块,并且,该终端设备500中的各模块和上述其他操作盒/或功能分 别为了实现图7中发送和接收参考信号的方法1000的相应流程。具体地,该存储器503用于存储程序代码,使得处理器501在执行该程序代码时,执行方法1000中的步骤120和步骤1400,并控制收发器502执行方法1000中的步骤1100,各模块执行上述相应步骤的具体过程在方法1000中已经详细说明,为了简洁,在此不再赘述。
或者,终端设备500可以对应于根据本申请实施例的发送和接收参考信号的方法2000中的终端设备,该终端设备500可以包括图12中发送和接收参考信号的方法2000的终端设备执行的方法的模块,并且,该终端设备500中的各模块和上述其他操作和/或功能分别为了实现图12中发送和接收参考信号的方法2000的相应流程。具体地,具体地,该存储器503用于存储程序代码,使得处理器501在执行该程序代码时,执行方法2000中的步骤2200和步骤2400,并控制收发器501用于执行方法2000中的步骤2100,各模块执行上述相应步骤的具体过程在方法2000中已经详细说明,为了简洁,在此不再赘述。
上述处理器501可以用于执行前面方法实施例中描述的由终端内部实现的动作,而收发器502可以用于执行前面方法实施例中描述的终端向网络设备传输或者发送的动作。具体请见前面方法实施例中的描述,此处不再赘述。
上述处理器501和存储器503可以集成为一个处理装置,处理器501用于执行存储器503中存储的程序代码来实现上述功能。具体实现时,该存储器503也可以集成在处理器501中。
上述终端设备500还可以包括电源505,用于给终端中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备500还可以包括输入单元506,显示单元507,音频电路508,摄像头509和传感器510等中的一个或多个,所述音频电路还可以包括扬声器5082,麦克风5084等。
图19是本申请实施例提供的网络设备600的示意性框图。如图19所示,该网络设备600包括:确定模块610和收发模块620。
其中,该确定模块610用于根据偏移量,确定传输SRS的起始子载波的位置,该偏移量为探测区域的起始子载波相对于终端设备的BWP的传输带宽的起始子载波偏移的资源大小,且该偏移量基于预先定义的资源配置方式确定;
该收发模块620用于根据该确定模块610确定的传输SRS的起始子载波的位置,接收来自该终端设备的SRS。
因此,本申请实施例通过结合NR中终端设备的BWP确定终端设备传输SRS的起始子载波的位置,并基于起始子载波的位置传输SRS,使得为每个终端设备配置的传输SRS的资源也是用户设备(user equipment,UE)级别的,从而能够根据每个终端设备的发射或接收能力以及对测量带宽大小的需求配置传输SRS的资源,更加适合NR的场景。并且,本申请实施例所提供的确定传输SRS的起始子载波的位置的方法并不限制时隙类型。
可选地,该预先定义的资源配置方式是从预先定义的多种资源配置方式中确定,该预先定义的多种资源配置方式与多个不同的偏移量对应。
可选地,该确定模块610还用于根据以下任意一个参数确定该预先定义的资源配置方式的索引值:系统帧号、时隙号或者梳齿映射的位置,该索引值用于指示该预先定义的资源配置方式,其中,该预先定义的多种资源配置方式与多个索引值一一对应。
可选地,该收发模块620还用于发送第一信息,该第一信息中包含该预先定义的资源 配置方式的索引值。
可选地,该多种资源配置方式与多个公式一一对应,每个公式用于确定一个偏移量,该多个公式包括:
公式一:
Figure PCTCN2018099207-appb-000408
以及
公式二:
Figure PCTCN2018099207-appb-000409
其中,
Figure PCTCN2018099207-appb-000410
表示偏移量,
Figure PCTCN2018099207-appb-000411
表示该终端设备的BWP的传输带宽所包含的资源块RB数量,
Figure PCTCN2018099207-appb-000412
表示向下取整,m SRS,b表示该终端设备传输一次SRS使用的RB数量,B SRS为用户设备UE级别的SRS带宽配置参量,每个B SRS指示一组参数m SRS,b和N b,b=B SRS,且b为整数,N b表示该终端设备测量m SRS,b-1的带宽所需发送SRS的次数,b'在[0,b]中遍历取值,
Figure PCTCN2018099207-appb-000413
表示每个RB中包含的子载波的数量,
Figure PCTCN2018099207-appb-000414
用于确定梳齿映射的位置。
可选地,该多种资源配置方式与多个公式一一对应,每个公式用于确定一个偏移量,该多个公式包括:
公式一:
Figure PCTCN2018099207-appb-000415
公式二:
Figure PCTCN2018099207-appb-000416
以及
公式三:
Figure PCTCN2018099207-appb-000417
其中,
Figure PCTCN2018099207-appb-000418
表示偏移量,
Figure PCTCN2018099207-appb-000419
表示该终端设备的BWP的传输带宽所包含的资源块RB数量,
Figure PCTCN2018099207-appb-000420
表示向下取整,m SRS,b表示该终端设备传输一次SRS使用的RB数量,B SRS为用户设备UE级别的SRS带宽配置参量,每个B SRS指示一组参数m SRS,b和N b,b=B SRS,且b为整数,N b表示该终端设备测量m SRS,b-1的带宽所需发送SRS的次数,b'在[0,b]中遍历取值,
Figure PCTCN2018099207-appb-000421
表示每个RB中包含的子载波的数量,
Figure PCTCN2018099207-appb-000422
用于确定梳齿映射的位置。
可选地,该偏移量根据以下公式确定:
Figure PCTCN2018099207-appb-000423
应理解,网络设备600可以对应于根据本申请实施例的发送和接收参考信号的方法200中的网络设备,该网络设备600可以包括用于执行图2中发送和接收参考信号的方法200的网络设备执行的方法的模块。并且,该网络设备600中的各模块和上述其他操作和/或功能分别为了实现图3中发送和接收参考信号的方法200的相应流程,具体地,确定模块610用于执行方法200中的步骤220、步骤250以及步骤270,收发模块620用于执行方法200中的步骤230,各模块执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
或者,网络设备600可以对应于根据本申请实施例的发送和接收参考信号的方法300中的网络设备,该网络设备600可以包括用于执行图6中发送和接收参考信号的方法300的网络设备执行的方法的模块。并且,该网络设备600中的各模块和上述其他操作和/或功能分别为了实现图6中发送和接收参考信号的方法300的相应流程,具体地,确定模块610用于执行方法300中的步骤320和步骤340,收发模块620用于执行方法300中的步骤350,各模块执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
或者,网络设备600可以对应于根据本申请实施例的发送和接收参考信号的方法1000 中的网络设备,该网络设备600可以包括图7中发送和接收参考信号的方法1000的终端设备执行的方法的模块,并且,该网络设备600中的各模块和上述其他操作盒/或功能分别为了实现图7中发送和接收参考信号的方法1000的相应流程。具体地,确定模块610用于执行方法1000中的步骤1300和步骤1500,收发模块620用于执行方法1000中的步骤1100,各模块执行上述相应步骤的具体过程在方法1000中已经详细说明,为了简洁,在此不再赘述。
或者,网络设备600可以对应于根据本申请实施例的发送和接收参考信号的方法1000中的网络设备,该网络设备600可以包括图12中发送和接收参考信号的方法1000的终端设备执行的方法的模块,并且,该网络设备600中的各模块和上述其他操作盒/或功能分别为了实现图12中发送和接收参考信号的方法1000的相应流程。具体地,确定模块610用于执行方法2000中的步骤2300和步骤2500,收发模块620用于执行方法2000中的步骤2100,各模块执行上述相应步骤的具体过程在方法2000中已经详细说明,为了简洁,在此不再赘述。
图20是本申请实施例提供的网络设备700的结构示意图。如图20所示,该网络设备400包括处理器710和收发器720,可选的,该网络设备700还包括存储器730。其中,处理器710、收发器720和存储器730之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器730用于存储计算机程序,该处理器710用于从该存储器730中调用并运行该计算机程序,以控制该收发器720收发信号。
上述处理器710和存储器730可以合成一个处理装置,处理器710用于执行存储器730中存储的程序代码来实现上述功能。具体实现时,该存储器730也可以集成在处理器710中,或者独立于处理器710。
上述网络设备还可以包括天线740,用于将收发器720输出的下行数据或下行控制信令通过无线信号发送出去。
具体地,该网络设备700可对应于根据本申请实施例的发送和接收参考信号的方法200中的网络设备,该网络设备700可以包括用于执行图2中发送和接收参考信号的方法200的网络设备执行的方法的模块。并且,该网络设备700中的各模块和上述其他操作和/或功能分别为了实现图2中发送和接收参考信号的方法200的相应流程。具体地,该存储器730用于存储程序代码,使得处理器710在执行该程序代码时,执行方法200中的步骤220、步骤250以及步骤270,并控制该收发器720通过天线740执行方法200中的步骤230,各模块执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
或者,该网络设备700可对应于根据本申请实施例的发送和接收参考信号的方法300中的网络设备,该网络设备700可以包括用于执行图6中发送和接收参考信号的方法300的网络设备执行的方法的模块。并且,该网络设备700中的各模块和上述其他操作和/或功能分别为了实现图6中发送和接收参考信号的方法300的相应流程。具体地,该存储器730用于存储程序代码,使得处理器710在执行该程序代码时,执行方法300中的步骤320和步骤340,并控制该收发器720通过天线740执行方法300中的步骤350,各模块执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
或者,网络设备700可以对应于根据本申请实施例的发送和接收参考信号的方法1000 中的网络设备,该网络设备700可以包括图7中发送和接收参考信号的方法1000的网络设备执行的方法的模块,并且,该网络设备700中的各模块和上述其他操作盒/或功能分别为了实现图7中发送和接收参考信号的方法1000的相应流程。具体地,该存储器703用于存储程序代码,使得处理器701在执行该程序代码时,执行方法1000中的步骤1300和步骤1500,并控制收发器702执行方法1000中的步骤1100,各模块执行上述相应步骤的具体过程在方法1000中已经详细说明,为了简洁,在此不再赘述。
或者,网络设备700可以对应于根据本申请实施例的发送和接收参考信号的方法1000中的网络设备,该网络设备700可以包括图12中发送和接收参考信号的方法1000的终端设备执行的方法的模块,并且,该网络设备600中的各模块和上述其他操作盒/或功能分别为了实现图12中发送和接收参考信号的方法1000的相应流程。具体地,该存储器703用于存储程序代码,使得处理器701在执行该程序代码时,执行方法2000中的步骤2300和步骤2500,并控制收发器702执行方法2000中的步骤2100,各模块执行上述相应步骤的具体过程在方法2000中已经详细说明,为了简洁,在此不再赘述。
根据本申请实施例提供的方法,本申请实施例还提供一种系统,其包括前述的网络设备和一个或多个终端设备。
应理解,本申请实施例中,该处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行该计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。该计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令 可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (54)

  1. 一种发送参考信号的方法,其特征在于,包括:
    终端设备根据传输探测参考信号SRS的起始子载波的位置,发送所述SRS;
    其中,传输所述SRS的起始子载波的位置由探测区域的偏移量确定,所述探测区域的偏移量指示所述探测区域的起始子载波相对于所述终端设备的带宽部分BWP的起始子载波偏移的资源大小,所述探测区域为可用于传输所述SRS的资源。
  2. 根据权利要求1所述的方法,其特征在于,所述探测区域的偏移量满足公式六:
    Figure PCTCN2018099207-appb-100001
    其中,
    Figure PCTCN2018099207-appb-100002
    表示所述探测区域的偏移量,
    Figure PCTCN2018099207-appb-100003
    表示每个资源块RB中包含的子载波的数量,
    Figure PCTCN2018099207-appb-100004
    用于确定梳齿映射的位置,
    Figure PCTCN2018099207-appb-100005
    表示所述探测区域的起始子载波所在的RB相对于所述BWP的传输带宽的起始RB所偏移的RB数,
    Figure PCTCN2018099207-appb-100006
    Figure PCTCN2018099207-appb-100007
    为整数,
    Figure PCTCN2018099207-appb-100008
    表示所述终端设备的BWP的传输带宽所包含的RB数量,
    Figure PCTCN2018099207-appb-100009
    表示所述探测区域所包含的RB数量,且
    Figure PCTCN2018099207-appb-100010
    满足
    Figure PCTCN2018099207-appb-100011
    mod表示取模,
    Figure PCTCN2018099207-appb-100012
    表示所述BWP的传输带宽的起始RB相对于系统带宽的起始RB偏移的RB数,Δ∈[0,n-1],且Δ为整数。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收
    Figure PCTCN2018099207-appb-100013
    值的指示信息,所述
    Figure PCTCN2018099207-appb-100014
    值的指示信息指示
    Figure PCTCN2018099207-appb-100015
    的取值。
  4. 根据权利要求1所述的方法,其特征在于,所述探测区域的偏移量满足公式七:
    Figure PCTCN2018099207-appb-100016
    其中,
    Figure PCTCN2018099207-appb-100017
    表示所述探测区域的偏移量,
    Figure PCTCN2018099207-appb-100018
    表示每个RB中包含的子载波的数量,
    Figure PCTCN2018099207-appb-100019
    用于确定梳齿映射的位置,
    Figure PCTCN2018099207-appb-100020
    表示所述探测区域的起始子载波所在的RB相对于所述BWP的带宽的起始RB所偏移的RB数,K Δ为[0,n-1]中的任意值,
    Figure PCTCN2018099207-appb-100021
    Figure PCTCN2018099207-appb-100022
    Figure PCTCN2018099207-appb-100023
    中的任意值,且K Δ
    Figure PCTCN2018099207-appb-100024
    均为整数。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收
    Figure PCTCN2018099207-appb-100025
    值的指示信息,所述
    Figure PCTCN2018099207-appb-100026
    值的指示信息指示
    Figure PCTCN2018099207-appb-100027
    的取值;
    所述终端设备接收K Δ值的指示信息,所述K Δ值的指示信息指示K Δ的取值。
  6. 一种接收参考信号的方法,其特征在于,包括:
    网络设备根据传输探测参考信号SRS的起始子载波的位置,接收来自终端设备的所述SRS;
    其中,传输所述SRS的起始子载波的位置由探测区域的偏移量确定,所述探测区域的偏移量指示所述探测区域的起始子载波相对于所述终端设备的带宽部分BWP的起始子载波偏移的资源大小,所述探测区域为可用于传输所述参考信号的资源。
  7. 根据权利要求6所述的方法,其特征在于,所述探测区域的偏移量满足公式六:
    Figure PCTCN2018099207-appb-100028
    其中,
    Figure PCTCN2018099207-appb-100029
    表示所述偏移量,
    Figure PCTCN2018099207-appb-100030
    表示每个RB中包含的子载波的数量,
    Figure PCTCN2018099207-appb-100031
    用于确定梳齿映射的位置,
    Figure PCTCN2018099207-appb-100032
    表示所述探测区域的起始子载波所在的RB相对于所述BWP的传输带宽的起始RB所偏移的RB数,
    Figure PCTCN2018099207-appb-100033
    Figure PCTCN2018099207-appb-100034
    中的任意值,且
    Figure PCTCN2018099207-appb-100035
    为整数,
    Figure PCTCN2018099207-appb-100036
    表示所述终端设备的BWP的传输带宽所包含的RB数量,
    Figure PCTCN2018099207-appb-100037
    表示所述探测区域所包含的RB数量,且
    Figure PCTCN2018099207-appb-100038
    满足
    Figure PCTCN2018099207-appb-100039
    mod表示取模,
    Figure PCTCN2018099207-appb-100040
    表示所述终端设备的BWP的起始RB相对于系统带宽的起始RB偏移的RB数,Δ∈[0,n-1],且Δ为整数。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送
    Figure PCTCN2018099207-appb-100041
    值的指示信息,所述
    Figure PCTCN2018099207-appb-100042
    值的指示信息指示
    Figure PCTCN2018099207-appb-100043
    的取值。
  9. 根据权利要求6所述的方法,其特征在于,所述探测区域的偏移量满足公式七:
    Figure PCTCN2018099207-appb-100044
    其中,
    Figure PCTCN2018099207-appb-100045
    表示所述探测区域的偏移量,
    Figure PCTCN2018099207-appb-100046
    表示每个RB中包含的子载波的数量,
    Figure PCTCN2018099207-appb-100047
    用于确定梳齿映射的位置,
    Figure PCTCN2018099207-appb-100048
    表示所述探测区域的起始子载波所在的RB相对于所述BWP的带宽的起始RB所偏移的RB数,K Δ为[0,n-1]中的任意值,
    Figure PCTCN2018099207-appb-100049
    Figure PCTCN2018099207-appb-100050
    Figure PCTCN2018099207-appb-100051
    中的任意值,且K Δ
    Figure PCTCN2018099207-appb-100052
    均为整数。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送
    Figure PCTCN2018099207-appb-100053
    值的指示信息,所述
    Figure PCTCN2018099207-appb-100054
    值的指示信息指示
    Figure PCTCN2018099207-appb-100055
    的取值;
    所述网络设备发送K Δ值的指示信息,所述K Δ值的指示信息指示K Δ的取值。
  11. 一种发送参考信号的方法,其特征在于,包括:
    网络设备根据传输信道状态信息参考信号CSI-RS的资源在频域上的起始位置,发送所述CSI-RS;
    其中,传输所述CSI-RS的资源在频域上的起始位置由导频区域的偏移量确定,所述导频区域的偏移量指示所述导频区域的起始资源块RB相对于终端设备的带宽部分BWP的起始RB偏移的资源大小,或者,所述导频区域的偏移量指示所述导频区域的起始RB相对于系统带宽的起始RB偏移的资源大小,所述导频区域为可用于传输所述CSI-RS的资源。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第一偏移量k c的指示信息,所述第一偏移量k c的指示信息指示k c的取值,其中,第一偏移量k c表示所述导频区域的起始RB相对于BWP的起始RB偏移的RB数。
  13. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送第二偏移量T Δ的指示信息,所述第二偏移量T Δ的指示信息指示T Δ的取值;
    所述网络设备发送第三偏移量k i的指示信息,所述第三偏移量k i的指示信息指示k i的取值;
    其中,所述第二偏移量T Δ表示导频区域的可映射位置的起始RB相对于BWP的起始RB偏移的RB数,第三偏移量k i用于指示所述导频区域实际映射的起始RB相对于所述导频区域的可映射位置的起始RB偏移的RB数。
  14. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送所述导频区域的起始位置的指示信息,所述起始位置的指示信息指示传输所述参考信号的起始RB在系统带宽中对应的RB编号。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送参考信号位置的指示信息,所述参考信号位置的指示信息指示所述 导频区域中用于传输所述CSI-RS的RB。
  16. 根据权利要求15所述的方法,其特征在于,所述参考信号位置的指示信息为位图,所述位图包括至少一个指示比特,每个指示比特用于指示一个RB组是否用于传输所述CSI-RS,所述RB组包括至少一个RB。
  17. 一种接收参考信号的方法,其特征在于,包括:
    终端设备根据传输信道状态信息参考信号CSI-RS的资源在频域上的起始位置,发送所述CSI-RS;
    其中,传输所述CSI-RS的资源在频域上的起始位置由导频区域的偏移量确定,所述导频区域的偏移量指示所述导频区域的起始资源块RB相对于终端设备的带宽部分BWP的起始RB偏移的资源大小,或者,所述导频区域的偏移量指示所述导频区域的起始RB相对于系统带宽的起始RB偏移的资源大小,所述导频区域为可用于传输所述CSI-RS的资源。
  18. 根据权利要求17所述方法,其特征在于,所述方法还包括:
    所述终端设备接收第一偏移量k c的指示信息,所述第一偏移量k c的指示信息指示k c的取值,其中,第一偏移量k c表示所述导频区域的起始RB相对于BWP的起始RB偏移的RB数。
  19. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二偏移量T Δ的指示信息,所述第二偏移量T Δ的指示信息指示T Δ的取值;
    所述终端设备接收第三偏移量k i的指示信息,所述第三偏移量k i的指示信息指示k i的取值;
    其中,所述第二偏移量T Δ表示导频区域的可映射位置的起始RB相对于BWP的起始RB偏移的RB数,第三偏移量k i用于指示所述导频区域实际映射的起始RB相对于所述导频区域的可映射位置的起始RB偏移的RB数。
  20. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述导频区域的起始位置的指示信息,所述起始位置的指示信息指示传输所述参考信号的起始RB在系统带宽中对应的RB编号。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收参考信号位置的指示信息,所述参考信号位置的指示信息指示所述导频区域中用于传输所述CSI-RS的RB。
  22. 根据权利要求21所述的方法,其特征在于,所述参考信号位置的指示信息为位图,所述位图包括至少一个指示比特,每个指示比特用于指示一个RB组是否用于传输所述CSI-RS,每个RB组包括至少一个RB。
  23. 一种终端设备,其特征在于,包括:
    收发器,用于根据传输探测参考信号SRS的起始子载波的位置,发送所述SRS;
    其中,传输所述SRS的起始子载波的位置由探测区域的偏移量确定,所述探测区域的偏移量为探测区域的起始子载波相对于所述终端设备的带宽部分BWP的起始子载波偏移的资源大小,所述探测区域为可用于传输SRS的资源。
  24. 根据权利要求23所述的终端设备,其特征在于,所述探测区域的偏移量满足公 式六:
    Figure PCTCN2018099207-appb-100056
    其中,
    Figure PCTCN2018099207-appb-100057
    表示所述偏移量,
    Figure PCTCN2018099207-appb-100058
    表示每个RB中包含的子载波的数量,
    Figure PCTCN2018099207-appb-100059
    用于确定梳齿映射的位置,
    Figure PCTCN2018099207-appb-100060
    表示所述探测区域的起始子载波所在的RB相对于所述BWP的传输带宽的起始RB所偏移的RB数,
    Figure PCTCN2018099207-appb-100061
    Figure PCTCN2018099207-appb-100062
    中的任意值,且
    Figure PCTCN2018099207-appb-100063
    为整数,
    Figure PCTCN2018099207-appb-100064
    表示所述终端设备的BWP的传输带宽所包含的RB数量,
    Figure PCTCN2018099207-appb-100065
    表示所述探测区域所包含的RB数量,且
    Figure PCTCN2018099207-appb-100066
    满足
    Figure PCTCN2018099207-appb-100067
    mod表示取模,
    Figure PCTCN2018099207-appb-100068
    表示所述BWP的传输带宽的起始RB相对于系统带宽的起始RB偏移的RB数,Δ∈[0,n-1],且Δ为整数。
  25. 根据权利要求24所述的终端设备,其特征在于,所述收发器还用于接收
    Figure PCTCN2018099207-appb-100069
    值的指示信息,所述
    Figure PCTCN2018099207-appb-100070
    值的指示信息指示
    Figure PCTCN2018099207-appb-100071
    的取值。
  26. 根据权利要求23所述的终端设备,其特征在于,所述探测区域的偏移量满足公式七:
    Figure PCTCN2018099207-appb-100072
    其中,
    Figure PCTCN2018099207-appb-100073
    表示所述偏移量,
    Figure PCTCN2018099207-appb-100074
    表示每个RB中包含的子载波的数量,
    Figure PCTCN2018099207-appb-100075
    用于确定梳齿映射的位置,
    Figure PCTCN2018099207-appb-100076
    表示所述探测区域的起始子载波所在的RB相对于所述BWP的传输带宽的起始RB所偏移的RB数,K Δ为[0,n-1]中的任意值,
    Figure PCTCN2018099207-appb-100077
    Figure PCTCN2018099207-appb-100078
    Figure PCTCN2018099207-appb-100079
    中的任意值,且K Δ
    Figure PCTCN2018099207-appb-100080
    均为整数。
  27. 根据权利要求26所述的终端设备,其特征在于,所述收发器还用于:
    接收
    Figure PCTCN2018099207-appb-100081
    值的指示信息,所述
    Figure PCTCN2018099207-appb-100082
    值的指示信息指示
    Figure PCTCN2018099207-appb-100083
    的取值;
    接收K Δ值的指示信息,所述K Δ值的指示信息指示K Δ的取值。
  28. 一种网络设备,其特征在于,包括:
    收发器,用于根据传输探测参考信号SRS的起始子载波的位置,发送所述SRS;
    其中,传输所述SRS的起始子载波的位置由探测区域的偏移量确定,所述探测区域的偏移量指示探测区域的起始子载波相对于终端设备的带宽部分BWP的起始子载波偏移的资源大小,所述探测区域为可用于传输所述SRS的资源。
  29. 根据权利要求28所述的网络设备,其特征在于,所述探测区域的偏移量满足公式六:
    Figure PCTCN2018099207-appb-100084
    其中,
    Figure PCTCN2018099207-appb-100085
    表示所述偏移量,
    Figure PCTCN2018099207-appb-100086
    表示每个RB中包含的子载波的数量,
    Figure PCTCN2018099207-appb-100087
    用于确定梳齿映射的位置,
    Figure PCTCN2018099207-appb-100088
    表示所述探测区域的起始子载波所在的RB相对于所述BWP的传输带宽的起始RB所偏移的RB数,
    Figure PCTCN2018099207-appb-100089
    Figure PCTCN2018099207-appb-100090
    中的任意值,且
    Figure PCTCN2018099207-appb-100091
    为整数,
    Figure PCTCN2018099207-appb-100092
    表示所述终端设备的BWP的传输带宽所包含的RB数量,
    Figure PCTCN2018099207-appb-100093
    表示所述探测区域所包含的RB数量,且
    Figure PCTCN2018099207-appb-100094
    满足
    Figure PCTCN2018099207-appb-100095
    mod表示取模,
    Figure PCTCN2018099207-appb-100096
    表示所述终端设备的BWP的起始RB相对于系统带宽的起始RB偏移的RB数,Δ∈[0,n-1],且Δ为整数。
  30. 根据权利要求29所述的网络设备,其特征在于,所述收发器还用于发送
    Figure PCTCN2018099207-appb-100097
    值的指示信息,所述
    Figure PCTCN2018099207-appb-100098
    值的指示信息指示
    Figure PCTCN2018099207-appb-100099
    的取值。
  31. 根据权利要求28所述的网络设备,其特征在于,所述探测区域的偏移量满足公式七:
    Figure PCTCN2018099207-appb-100100
    其中,
    Figure PCTCN2018099207-appb-100101
    表示所述偏移量,
    Figure PCTCN2018099207-appb-100102
    表示每个RB中包含的子载波的数量,
    Figure PCTCN2018099207-appb-100103
    用于确 定梳齿映射的位置,
    Figure PCTCN2018099207-appb-100104
    表示所述探测区域的起始子载波所在的RB相对于所述BWP的传输带宽的起始RB所偏移的RB数,K Δ为[0,n-1]中的任意值,
    Figure PCTCN2018099207-appb-100105
    Figure PCTCN2018099207-appb-100106
    Figure PCTCN2018099207-appb-100107
    中的任意值,且K Δ
    Figure PCTCN2018099207-appb-100108
    均为整数。
  32. 根据权利要求31所述的网络设备,其特征在于,所述收发器还用于:
    发送
    Figure PCTCN2018099207-appb-100109
    值的指示信息,所述
    Figure PCTCN2018099207-appb-100110
    值的指示信息指示
    Figure PCTCN2018099207-appb-100111
    的取值;
    发送K Δ值的指示信息,所述K Δ值的指示信息指示K Δ的取值。
  33. 一种网络设备,其特征在于,包括:
    收发器,用于根据传输信道状态信息参考信号CSI-RS的资源在频域上的起始位置,发送所述CSI-RS;
    其中,传输所述CSI-RS的资源在频域上的起始位置由导频区域的偏移量确定,所述导频区域的偏移量指示所述导频区域的起始资源块RB相对于终端设备的带宽部分BWP的起始RB偏移的资源大小,或者,所述导频区域的偏移量指示所述导频区域的起始RB相对于系统带宽的起始RB偏移的资源大小,所述导频区域为可用于传输所述CSI-RS的资源。
  34. 根据权利要求33所述的网络设备,其特征在于,所述收发器还用于发送第一偏移量k c的指示信息,所述第一偏移量k c的指示信息指示k c的取值,其中,第一偏移量k c表示所述导频区域的起始RB相对于BWP的起始RB偏移的RB数。
  35. 根据权利要求33所述的网络设备,其特征在于,所述收发器还用于:
    发送第二偏移量T Δ的指示信息,所述第二偏移量T Δ的指示信息指示T Δ的取值;
    发送第三偏移量k i的指示信息,所述第三偏移量k i的指示信息指示k i的取值;
    其中,所述第二偏移量T Δ表示导频区域的可映射位置的起始RB相对于BWP的起始RB偏移的RB数,第三偏移量k i用于指示所述导频区域实际映射的起始RB相对于所述导频区域的可映射位置的起始RB偏移的RB数。
  36. 根据权利要求33所述的网络设备,其特征在于,所述收发器还用于所述导频区域的起始位置的指示信息,所述起始位置的指示信息指示传输所述参考信号的起始RB在系统带宽中对应的RB编号。
  37. 根据权利要求34至36中任一项所述的网络设备,其特征在于,所述收发器还用于发送参考信号位置的指示信息,所述参考信号位置的指示信息指示所述导频区域中用于传输所述CSI-RS的RB。
  38. 根据权利要求37所述的网络设备,其特征在于,所述参考信号位置的指示信息为位图,所述位图包括至少一个指示比特,每个指示比特用于指示一个RB组是否用于传输所述CSI-RS,所述RB组包括至少一个RB。
  39. 一种终端设备,其特征在于,包括:
    收发器,根据传输信道状态信息参考信号CSI-RS的资源在频域上的起始位置,发送所述CSI-RS;
    其中,传输所述CSI-RS的资源在频域上的起始位置由导频区域的偏移量确定,所述导频区域的偏移量指示所述导频区域的起始资源块RB相对于终端设备的带宽部分BWP的起始RB偏移的资源大小,或者,所述导频区域的偏移量指示所述导频区域的起始RB相对于系统带宽的起始RB偏移的资源大小,所述导频区域为可用于传输所述CSI-RS的 资源。
  40. 根据权利要求39所述的终端设备,其特征在于,所述收发器还用于接收第一偏移量k c的指示信息,所述第一偏移量k c的指示信息指示k c的取值,其中,第一偏移量k c表示所述导频区域的起始RB相对于BWP的起始RB偏移的RB数。
  41. 根据权利要求39所述的终端设备,其特征在于,所述收发器还用于:
    接收第二偏移量T Δ的指示信息,所述第二偏移量T Δ的指示信息指示T Δ的取值;
    接收第三偏移量k i的指示信息,所述第三偏移量k i的指示信息指示k i的取值;
    其中,所述第二偏移量T Δ表示导频区域的可映射位置的起始RB相对于BWP的起始RB偏移的RB数,第三偏移量k i用于指示所述导频区域实际映射的起始RB相对于所述导频区域的可映射位置的起始RB偏移的RB数。
  42. 根据权利要求39所述的终端设备,其特征在于,所述收发器还用于接收所述导频区域的起始位置的指示信息,所述起始位置的指示信息指示传输所述参考信号的起始RB在系统带宽中对应的RB编号。
  43. 根据权利要求40至42中任一项所述的终端设备,其特征在于,所述收发器还用于接收参考信号位置的指示信息,所述参考信号位置的指示信息指示所述导频区域中用于传输所述CSI-RS的RB。
  44. 根据权利要求43所述的终端设备,其特征在于,所述参考信号位置的指示信息为位图,所述位图包括至少一个指示比特,每个指示比特用于指示一个RB组是否用于传输所述CSI-RS,每个RB组包括至少一个RB。
  45. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求1至10中任意一项所述的方法。
  46. 一种计算机可读存储介质,包括计算机程序,当其在计算机上运行时,使得所述计算机执行如权利要求11至22中任意一项所述的方法。
  47. 一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至10中任意一项所述方法。
  48. 一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求11至22中任意一项所述方法。
  49. 一种终端设备,其特征在于,包括存储器和一个或多个处理器,所述存储器与所述一个或多个处理器耦合,所述一个或多个处理器用于执行如权利要求1至10中任意一项所述的方法。
  50. 一种终端设备,其特征在于,包括一个或多个处理器,所述一个或多个处理器与存储器耦合,读取所述存储器中的指令并根据所述指令执行如权利要求1至10中任意一项所述的方法。
  51. 一种网络设备,其特征在于,包括存储器和一个或多个处理器,所述存储器与所述一个或多个处理器耦合,所述一个或多个处理器用于执行如权利要求11至22中任意一项所述的方法。
  52. 一种网络设备,其特征在于,包括一个或多个处理器,所述一个或多个处理器与存储器耦合,读取所述存储器中的指令并根据所述指令执行如权利要求11至22中任意一项所述的方法。
  53. 一种芯片系统,包括处理器,用于执行存储器中的指令,以实现如权利要求1至10中任意一项所述的方法。
  54. 一种芯片系统,包括处理器,用于执行存储器中的指令,以实现如权利要求11至22任意一项所述的方法。
PCT/CN2018/099207 2017-08-11 2018-08-07 发送和接收参考信号的方法、网络设备、终端设备和系统 WO2019029536A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES18844967T ES2923916T3 (es) 2017-08-11 2018-08-07 Procedimiento para enviar y recibir una señal de referencia, dispositivo de red y dispositivo terminal
EP18844967.2A EP3667990B1 (en) 2017-08-11 2018-08-07 Method for sending and receiving reference signal, network device, and terminal device
EP22175315.5A EP4113887A1 (en) 2017-08-11 2018-08-07 Reference signal sending and receiving method, network device, terminal device, and system
BR112020002907-6A BR112020002907A2 (pt) 2017-08-11 2018-08-07 método de envio e recepção de sinal de referência, dispositivo de rede, dispositivo terminal, e sistema
US16/788,031 US11818077B2 (en) 2017-08-11 2020-02-11 Reference signal sending and receiving method, network device, terminal device, and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710687878.0 2017-08-11
CN201710687878 2017-08-11
CN201711066801.8 2017-11-02
CN201711066801.8A CN107911203B (zh) 2017-08-11 2017-11-02 发送和接收参考信号的方法、网络设备、终端设备和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/788,031 Continuation US11818077B2 (en) 2017-08-11 2020-02-11 Reference signal sending and receiving method, network device, terminal device, and system

Publications (1)

Publication Number Publication Date
WO2019029536A1 true WO2019029536A1 (zh) 2019-02-14

Family

ID=61842459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099207 WO2019029536A1 (zh) 2017-08-11 2018-08-07 发送和接收参考信号的方法、网络设备、终端设备和系统

Country Status (6)

Country Link
US (1) US11818077B2 (zh)
EP (2) EP3667990B1 (zh)
CN (3) CN107911203B (zh)
BR (1) BR112020002907A2 (zh)
ES (1) ES2923916T3 (zh)
WO (1) WO2019029536A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164323A1 (zh) * 2019-02-15 2020-08-20 中兴通讯股份有限公司 传输探测参考信号的方法、装置和系统
CN113596880A (zh) * 2019-03-21 2021-11-02 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN113632521A (zh) * 2019-03-28 2021-11-09 上海诺基亚贝尔股份有限公司 用于定位参考信号的接收的带宽部分配置
US11483767B2 (en) 2019-02-15 2022-10-25 Mediatek Inc. Cross-slot scheduling for power saving in mobile communications
EP4152857A4 (en) * 2020-05-15 2023-11-01 Datang Mobile Communications Equipment Co., Ltd. METHOD AND APPARATUS FOR COLLECTING UPLINK CHANNEL STATUS INFORMATION

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107911203B (zh) 2017-08-11 2023-11-14 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统
WO2019074266A1 (ko) * 2017-10-10 2019-04-18 엘지전자 주식회사 Srs를 전송 및 수신하는 방법과 이를 위한 통신 장치
WO2019157726A1 (zh) * 2018-02-14 2019-08-22 Oppo广东移动通信有限公司 资源上报的方法、终端设备和网络设备
CN114826534A (zh) * 2018-04-16 2022-07-29 中兴通讯股份有限公司 Ta信息、对应关系的确定方法,电子装置及存储介质
CN110391886A (zh) * 2018-04-20 2019-10-29 维沃移动通信有限公司 状态确定方法、终端设备及网络设备
CN110391889B (zh) * 2018-04-23 2020-11-17 华为技术有限公司 一种时隙格式的确定方法及装置
EP3780432A4 (en) * 2018-04-28 2021-04-07 Huawei Technologies Co., Ltd. METHOD OF TRANSMISSION OF A DETECTION REFERENCE SIGNAL AND TERMINAL DEVICE
KR20210003256A (ko) * 2018-05-04 2021-01-11 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 시스템 정보를 업데이트하는 방법, 단말기 및 네트워크 기기
CN110445565B (zh) * 2018-05-04 2021-11-19 中国移动通信有限公司研究院 宽带切换方法、用户终端及网络侧设备
WO2019215505A1 (en) * 2018-05-09 2019-11-14 Lenovo (Singapore) Pte. Ltd. Procedures for multiple active bandwidth parts
IL270850B2 (en) * 2018-05-10 2023-12-01 Guangdong Oppo Mobile Telecommunications Corp Ltd Method for diagnosing information, terminal device, and network device
CN110475297B (zh) * 2018-05-10 2022-04-08 中国移动通信有限公司研究院 基于bwp的处理方法、装置、系统、相关设备及存储介质
CN110475352B (zh) * 2018-05-11 2022-06-28 华为技术有限公司 一种参考信号传输方法及通信设备
US20190349060A1 (en) * 2018-05-11 2019-11-14 Mediatek Inc. Methods of Efficient Bandwidth Part Switching in a Wideband Carrier
US10951383B2 (en) * 2018-05-11 2021-03-16 Asustek Computer Inc. Method and apparatus for determining slot configuration in a wireless communication system
CN110504999B (zh) * 2018-05-17 2021-11-30 华为技术有限公司 通信方法、终端设备和网络设备
CN110536422B (zh) * 2018-05-25 2022-05-13 华为技术有限公司 一种通信方法、装置及系统
WO2019227316A1 (en) * 2018-05-29 2019-12-05 Nokia Shanghai Bell Co., Ltd. Sounding reference signal transmission in unlicensed spectrum
CN110557347B (zh) * 2018-05-31 2021-09-03 大唐移动通信设备有限公司 一种信道估计方法及通信设备
CN110635874B (zh) * 2018-06-21 2022-10-21 中国移动通信有限公司研究院 一种触发srs传输的方法及装置
JP7271097B2 (ja) * 2018-07-17 2023-05-11 シャープ株式会社 基地局装置、端末装置、および、通信方法
CN110740024B (zh) * 2018-07-20 2021-09-28 维沃移动通信有限公司 一种csi上报方法、终端及网络设备
CN110768768B (zh) * 2018-07-27 2022-06-10 上海华为技术有限公司 探测参考信号的资源配置方法及通信装置
CN110769508B (zh) 2018-07-27 2023-01-13 华为技术有限公司 信号传输方法、装置、终端设备、网络设备及系统
CN110831177B (zh) * 2018-08-10 2023-10-24 华为技术有限公司 去激活载波或激活载波的方法及装置
CN109156026B (zh) * 2018-08-13 2022-04-15 北京小米移动软件有限公司 上行调度请求的发送方法、装置、设备及存储介质
CN110891291A (zh) * 2018-09-07 2020-03-17 华为技术有限公司 发送和接收控制信息的方法以及装置
EP4185053A1 (en) 2018-09-18 2023-05-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource allocation method and terminal device
WO2020061840A1 (en) * 2018-09-26 2020-04-02 Qualcomm Incorporated Csi reporting without full csi-rs presence introduction
CN110958098B (zh) * 2018-09-27 2021-03-30 华为技术有限公司 配置旁链路资源的方法和装置
WO2020061938A1 (en) * 2018-09-27 2020-04-02 Qualcomm Incorporated Channel state information reporting
CN110958095B (zh) * 2018-09-27 2022-06-14 华为技术有限公司 一种通信方法及装置
US11889473B2 (en) 2018-10-19 2024-01-30 Beijing Xiaomi Mobile Software Co., Ltd. Resource switching method, and resource allocation method, apparatus, device and system
CN111212449B (zh) * 2018-11-22 2023-01-13 中国移动通信有限公司研究院 一种随机接入方法、终端及网络侧设备
CN109639615B (zh) * 2018-12-07 2021-07-20 中国电子科技集团公司第四十一研究所 一种低延时的5g基带信号产生方法
US11310798B2 (en) * 2019-02-15 2022-04-19 Electronics And Telecommunications Research Institute Measurement method and apparatus for supporting mobility in communication system
CN111669804B (zh) * 2019-03-05 2023-05-09 中国移动通信有限公司研究院 一种资源配置的方法及设备
CN111277385B (zh) * 2019-03-22 2021-10-22 维沃移动通信有限公司 定位参考信号配置方法、网络设备及终端
CN111757420B (zh) * 2019-03-29 2021-09-21 华为技术有限公司 一种通信方法及装置
EP3962201A4 (en) 2019-04-29 2022-12-07 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR DOWNLINK DATA TRANSMISSION AND STORAGE MEDIUM
CN111278130B (zh) * 2019-04-30 2022-11-01 维沃移动通信有限公司 Srs资源配置方法、bwp的切换处理方法和相关设备
CN111614390B (zh) * 2019-05-31 2022-07-08 维沃移动通信有限公司 信道状态信息csi报告的传输方法、终端及网络设备
CN112583546B (zh) * 2019-09-27 2022-07-19 维沃移动通信有限公司 资源配置方法、装置、设备及存储介质
CN115242365A (zh) * 2020-01-14 2022-10-25 北京紫光展锐通信技术有限公司 探测参考信号传输方法及相关产品
EP4099783A4 (en) * 2020-03-13 2023-04-12 Huawei Technologies Co., Ltd. MEASUREMENT INDICATION METHOD FOR CHANNEL STATE INFORMATION (CSI) AND COMMUNICATION DEVICE
CN113677004A (zh) * 2020-05-15 2021-11-19 华为技术有限公司 一种广播信号的资源配置方法以及相关装置
US11552735B2 (en) 2020-06-29 2023-01-10 Qualcomm Incorporated Puncturing unit for sounding reference signal (SRS) comb patterns with cyclic shifting
US20220045884A1 (en) * 2020-08-06 2022-02-10 Samsung Electronics Co., Ltd. Methods and apparatuses for uplink channel sounding between bwps
WO2022110236A1 (zh) * 2020-11-30 2022-06-02 华为技术有限公司 一种通信方法及装置
CN115134199A (zh) * 2021-03-29 2022-09-30 维沃移动通信有限公司 Srs的发送方法、接收方法、配置方法及装置
US20220321312A1 (en) * 2021-04-06 2022-10-06 Mediatek Inc. Partial Sounding Method for Sounding Reference Signal in Mobile Communications
EP4320956A1 (en) * 2021-04-06 2024-02-14 Lenovo (Beijing) Limited Partial frequency sounding
CN115208526B (zh) * 2021-04-09 2024-01-30 维沃移动通信有限公司 信号传输方法、装置及终端
CN115276937B (zh) * 2022-07-18 2023-11-28 哲库科技(北京)有限公司 探测参考信号的发送方法、装置、终端及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394263A (zh) * 2008-10-29 2009-03-25 中兴通讯股份有限公司 上行信道测量参考信号及其带宽范围频域位置的映射方法
CN104144504A (zh) * 2013-05-10 2014-11-12 中兴通讯股份有限公司 一种下行参考信号的传输方法、设备及系统
CN104798321A (zh) * 2012-11-25 2015-07-22 Lg电子株式会社 用于在无线通信系统中发送和接收数据的方法和装置
US20170214442A1 (en) * 2014-07-17 2017-07-27 Lg Electronics Inc. Method and device for transmitting downlink signal in wireless communication system
CN107911203A (zh) * 2017-08-11 2018-04-13 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051437B (zh) * 2008-08-01 2015-08-12 中兴通讯股份有限公司 一种时分双工系统上行信道测量参考信号的发送方法
CN101404817B (zh) * 2008-11-24 2010-09-29 华为技术有限公司 Srs带宽配置的方法、系统及装置
US9673945B2 (en) * 2011-02-18 2017-06-06 Qualcomm Incorporated Implicitly linking aperiodic channel state information (A-CSI) reports to CSI-reference signal (CSI-RS) resources
US9509470B2 (en) * 2012-03-21 2016-11-29 Nokia Technologies Oy Cyclic channel state information reference signal configuration for new carrier type with backward compatible segment
US20140335858A1 (en) * 2013-05-08 2014-11-13 Electronics & Telecommunications Research Institute Cell search method for supporting discontinuous transmission and/or reception of base station
WO2014185645A1 (ko) * 2013-05-15 2014-11-20 엘지전자 주식회사 무선 통신 시스템에서 다중 안테나 기반 빔포밍를 위하여 참조 신호를 구성하는 방법 및 이를 위한 장치
CN110545134B (zh) * 2013-12-20 2022-10-21 北京三星通信技术研究有限公司 信道状态信息汇报的方法及装置
CN104767592B (zh) * 2014-01-02 2019-01-01 中国移动通信集团公司 一种csi-rs的端口配置、csi-rs传输的方法和设备
JP2017513260A (ja) * 2014-01-29 2017-05-25 インターデイジタル パテント ホールディングス インコーポレイテッド カバレッジ拡張されたワイヤレス送信のためのアクセスおよびリンクアダプテーションの方法
KR102280021B1 (ko) * 2014-09-11 2021-07-21 삼성전자주식회사 무선 통신 시스템에서 기준 신호를 송수신하는 기법
US20160127936A1 (en) * 2014-11-05 2016-05-05 Debdeep CHATTERJEE User equipment and methods for csi measurements with reduced bandwidth support
CN106211312B (zh) * 2015-04-30 2020-06-26 索尼公司 无线通信系统中的电子设备和无线通信方法
KR102375582B1 (ko) * 2015-10-20 2022-03-17 삼성전자주식회사 통신 디바이스 및 그 제어 방법
US11483842B2 (en) * 2016-02-03 2022-10-25 Apple Inc. CSI (channel state information)-RS (reference signal) overhead reduction for class B FD (full dimensional)-MIMO (multiple input multiple output) systems
PL3455992T3 (pl) * 2016-05-13 2022-09-19 Telefonaktiebolaget Lm Ericsson (Publ) Mechanizmy zmniejszonej gęstości CSI-RS
KR20180013660A (ko) * 2016-07-29 2018-02-07 삼성전자주식회사 이동 통신 시스템에서의 채널 상태 정보 보고 방법 및 장치
WO2018030855A1 (ko) * 2016-08-11 2018-02-15 엘지전자(주) 무선 통신 시스템에서 채널 상태 정보 참조 신호 송수신 방법 및 이를 위한 장치
KR20180035642A (ko) * 2016-09-29 2018-04-06 삼성전자주식회사 무선 셀룰라 통신 시스템에서 상향링크 제어신호 전송 방법 및 장치
WO2018082016A1 (en) * 2016-11-04 2018-05-11 Qualcomm Incorporated Methods and apparatus for setting subband csi-related parameters
WO2018186652A1 (ko) * 2017-04-03 2018-10-11 삼성전자 주식회사 이동 통신 시스템에서의 다이버시티 기반 데이터 전송 방법 및 장치
US20210127367A1 (en) * 2017-04-20 2021-04-29 Lg Electronics Inc. Method and apparatus for allocating resource in wireless communication system
CN108512642B (zh) * 2017-05-05 2021-03-02 华为技术有限公司 确定参考信号序列的方法、终端设备、网络设备
US10979190B2 (en) * 2017-05-26 2021-04-13 Kt Corporation Method for configuring frequency resource about component carrier for new radio and apparatuses thereof
WO2019084570A1 (en) * 2017-10-26 2019-05-02 Hyoungsuk Jeon BANDWIDTH PART INACTIVITY TIMER

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101394263A (zh) * 2008-10-29 2009-03-25 中兴通讯股份有限公司 上行信道测量参考信号及其带宽范围频域位置的映射方法
CN104798321A (zh) * 2012-11-25 2015-07-22 Lg电子株式会社 用于在无线通信系统中发送和接收数据的方法和装置
CN104144504A (zh) * 2013-05-10 2014-11-12 中兴通讯股份有限公司 一种下行参考信号的传输方法、设备及系统
US20170214442A1 (en) * 2014-07-17 2017-07-27 Lg Electronics Inc. Method and device for transmitting downlink signal in wireless communication system
CN107911203A (zh) * 2017-08-11 2018-04-13 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164323A1 (zh) * 2019-02-15 2020-08-20 中兴通讯股份有限公司 传输探测参考信号的方法、装置和系统
CN111586708A (zh) * 2019-02-15 2020-08-25 中兴通讯股份有限公司 一种传输探测参考信号的方法、装置和系统
US11483767B2 (en) 2019-02-15 2022-10-25 Mediatek Inc. Cross-slot scheduling for power saving in mobile communications
TWI786374B (zh) * 2019-02-15 2022-12-11 聯發科技股份有限公司 基於功率配置組態的切換方法
CN113596880A (zh) * 2019-03-21 2021-11-02 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
EP3914008A4 (en) * 2019-03-21 2022-02-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS COMMUNICATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
CN113596880B (zh) * 2019-03-21 2023-08-08 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN113632521A (zh) * 2019-03-28 2021-11-09 上海诺基亚贝尔股份有限公司 用于定位参考信号的接收的带宽部分配置
EP4152857A4 (en) * 2020-05-15 2023-11-01 Datang Mobile Communications Equipment Co., Ltd. METHOD AND APPARATUS FOR COLLECTING UPLINK CHANNEL STATUS INFORMATION

Also Published As

Publication number Publication date
CN109495232B (zh) 2020-04-14
EP3667990A4 (en) 2020-08-05
EP3667990B1 (en) 2022-06-08
CN109495232A (zh) 2019-03-19
ES2923916T3 (es) 2022-10-03
CN107911203B (zh) 2023-11-14
EP4113887A1 (en) 2023-01-04
CN107911203A (zh) 2018-04-13
CN109672514B (zh) 2020-07-14
BR112020002907A2 (pt) 2020-08-04
CN109672514A (zh) 2019-04-23
US11818077B2 (en) 2023-11-14
US20200177353A1 (en) 2020-06-04
EP3667990A1 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2019029536A1 (zh) 发送和接收参考信号的方法、网络设备、终端设备和系统
US10790949B2 (en) SRS in dual connectivity
US10785010B2 (en) Wireless communications method and apparatus
JP7127063B2 (ja) 基準信号シーケンスを決定するための方法および装置、コンピュータプログラム製品、ならびにコンピュータ可読ストレージ媒体
US10959260B2 (en) Time resources for new radio configured uplink (UL)
WO2018188620A1 (zh) 传输方法、终端和网络设备
EP3603225A1 (en) Altitude path-loss based power control for aerial vehicles
JP6494862B2 (ja) 1つ以上の制御信号を第2通信デバイスへ送信するための第1通信デバイス及びそれにおける方法
EP3740008B1 (en) Method for determining location of control channel, and device and processor-readable storage medium
JP7092187B2 (ja) リソース構成方法、決定方法及びその装置、並びに通信システム
JP2022133469A (ja) 端末、無線通信方法、基地局及びシステム
KR102546012B1 (ko) 반송파 호핑 방법, 단말기 및 기지국
US20210385827A1 (en) Method and devices for resource allocation in a wireless communication system
US11234264B2 (en) Method and apparatus for uplink transmission in a wireless communication system
US20220408486A1 (en) Methods, devices and computer readable media for communication on unlicensed band
US11963143B2 (en) Communication method and communications apparatus
WO2017135340A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JPWO2011043393A1 (ja) 基地局装置及び移動通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18844967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020002907

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018844967

Country of ref document: EP

Effective date: 20200311

ENP Entry into the national phase

Ref document number: 112020002907

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200211