WO2019029534A1 - 一种非晶合成与检测装置及应用、一种确定合金材料非晶形成能力的方法及应用 - Google Patents

一种非晶合成与检测装置及应用、一种确定合金材料非晶形成能力的方法及应用 Download PDF

Info

Publication number
WO2019029534A1
WO2019029534A1 PCT/CN2018/099205 CN2018099205W WO2019029534A1 WO 2019029534 A1 WO2019029534 A1 WO 2019029534A1 CN 2018099205 W CN2018099205 W CN 2018099205W WO 2019029534 A1 WO2019029534 A1 WO 2019029534A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous
sample
alloy
pulsed laser
alloy material
Prior art date
Application number
PCT/CN2018/099205
Other languages
English (en)
French (fr)
Inventor
项晓东
汪洪
汪晓平
武跃维
Original Assignee
南方科技大学
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学, 上海交通大学 filed Critical 南方科技大学
Publication of WO2019029534A1 publication Critical patent/WO2019029534A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity

Definitions

  • the present application relates to the field of laser processing technology and amorphous alloy preparation, and particularly relates to an amorphous synthesis and detection device and application, and a method and application for determining the amorphous forming ability of an alloy material.
  • the amorphous alloy is solidified by ultra-quick cooling. When the alloy solidifies, the atoms are less than ordered and crystallized. The obtained solid alloy is a long-range disordered structure, and there are no crystal grains or grain boundaries of the crystalline alloy.
  • This amorphous alloy has many unique properties. Due to its excellent performance and simple process, it has quickly become the research and development focus of the material science community at home and abroad.
  • liquid phase quenching method is the most widely used method which can be used to realize the preparation of bulk amorphous alloy materials.
  • many practical techniques have been developed, including splash cooling, twin-roll ultra-cold rolling, single-roller centrifugal cooling, water quenching, cosolvent encapsulation, metal casting, etc.
  • liquid phase quenching technology can achieve a maximum cooling rate of about 10 6 K / s [PROGRESS IN PHYSICS, 33, 177 (2013)], is also considered to be able to form amorphous alloys in liquid metal inter-melt The boundaries. This means that existing liquid phase cooling techniques cannot be prepared for alloy materials that require faster cooling rates.
  • Bulk amorphous materials have high mechanical properties, strong corrosion resistance, good soft magnetic properties, etc., showing the prospect of important applications.
  • the search for new bulk amorphous materials is the mainstream direction of the amorphous field since the 1980s, and has obtained a series of new amorphous alloys such as Ti-based, Cu-based, Fe-based, and Ni-based [PROGRESS IN PHYSICS, 33, 177 (2013)
  • the formation ability is close to that of conventional oxide glass, the size is up to 8-9 cm in diameter, and the minimum critical cooling rate is less than 1 K/s, which can be easily prepared by the existing liquid phase quenching method.
  • the present application provides an amorphous synthesis and detection device and application, a method and application for determining the amorphous forming ability of an alloy material, and uses a pulsed laser to treat an alloy material having a fixed element composition but a continuous proportion of composition, in different At the cooling rate, the boundary of the amorphous-crystalline component is determined, and the data is statistically analyzed and analyzed to determine the amorphous forming ability of the different component regions of the alloy material, and the bulk amorphous alloy material is used as a basis. Screening of suitable component regions.
  • the present application provides a method of determining the amorphous forming ability of an alloy material, the method comprising the steps of:
  • step (3) repeating the operation of the step (3), stopping the operation after reaching the required alloy cooling rate, and determining the boundary of the amorphous-crystalline component at this time;
  • the laser range of short pulse width can be used to obtain a very high cooling rate of the region, and the material cooling rate can reach up to 10 12 K/s, which is much higher than the present.
  • the highest cooling rate of 10 6 K/s can be obtained by liquid phase quenching technology, and more amorphous materials can be obtained.
  • the invention can efficiently prepare an amorphous alloy which cannot be prepared by the conventional liquid phase extremely cold technology, thereby expanding the amorphous material system.
  • the time domain waveform, energy density and pulse width of the pulsed laser are adjustable, and are used to control the heating temperature and the temperature decreasing speed of the material.
  • the material heating temperature can be gradually increased until the material is completely melted.
  • the temperature of the material slows down significantly due to the heat conduction effect after the material reaches the same temperature.
  • a short pulse width is used.
  • the cooling rate of the alloy material is much higher than the maximum cooling rate of 10 6 K/s which can be obtained by the existing liquid phase quenching technology, so that more amorphous species can be obtained. material.
  • the cooling rate is gradually reduced from 10 12 K/s to 10 2 K/s.
  • the material combination chip is a sample array or a gradient sample composed of small samples of different compositions and different dopings. According to the designed material chip, a large number of material samples are simultaneously synthesized on the same substrate under the same or similar conditions to form a material chip which is densely combined with a plurality of small material samples.
  • material chip By component design, materials that grow and characterize thousands or even tens of thousands of different components can be simultaneously integrated on a single substrate, and samples covering a wide range of components or the entire binary/ternary "phase diagram" component can be synthesized at one time. In turn, the data dispersion caused by multiple experiments can be reduced.
  • FIG. 2 shows the combination of pulsed laser preparation of amorphous alloy technology and material combination chip to achieve the screening of material composition regions for strong amorphous forming ability.
  • a material combination chip is exemplified by a light amorphous alloy system Mg-Al-Ti, and a sample library in which a ratio of three elemental components is continuously distributed is formed in a triangular region in the figure, that is, each point is An ingredient composition.
  • the lowest critical cooling rate region found by the method of Fig. 2(a) is Al x0 Mg y0 Ti z0 , where x 0 , y 0 , z 0 are the composition ratios of the corresponding elements.
  • three new elements A, B, and C (which can be any element in the periodic table) are combined to form a new material gene chip, as shown in Figure 2(b).
  • the three elements of Al, Mg, and Ti are evenly distributed in the chip, and the three elements of A, B, and C are gradually changed.
  • Al x0 Mg y0 Ti z0 A x1 B y1 C z1 containing six elements based on Al-Mg-Ti can be found, and According to the amorphous theory, Al x0 Mg y0 Ti z0 A x1 B y1 C z1 should have a stronger amorphous forming ability than Al x0 Mg y0 Ti z0 . Further, it is possible to repeat the operation of adding more elements on the basis of Al x0 Mg y0 Ti z0 A x1 B y1 C z1 , continuously increasing the elements and finding the region of the lowest critical cooling rate.
  • the composite material chip in the step (1) is a sample library of alloy material thin films in which the composition is continuously changed and the sample region is separated; wherein the type of the element contained in the sample library is not limited, and the number of samples in the sample library is not limited. Not limited, both can be adjusted according to experimental needs.
  • the composite material chip is a sample array or a gradient sample in which a plurality of small material samples with continuously varying compositions are densely composed.
  • the present application performs the preparation of a composite material chip by means commonly used in the art, such as, but not limited to, magnetron sputtering, thermal evaporation, and the like.
  • the pulse width of the pulse laser in step (2) is 1 ps-1 s, for example, 1 ps, 10 ps, 100 ps, 1 ns, 5 ns, 10 ns, 50 ns, 100 ns, 1 ⁇ s, 5 ⁇ s, 10 ⁇ s, 50 ⁇ s, 100 ⁇ s, 1 ms. , 5ms, 10ms, 50ms, 100ms or 1s, and the specific point values between the above values, limited to the length and for the sake of brevity, this application is not exhaustive.
  • the pulse width range of all pulsed lasers is suitable for this application, and is not limited to 1 ps-1 s.
  • the cooling rate of the alloy melting zone will also change, and is not limited to 10 2 K/s- 10 12 K/s.
  • the rapid cooling rate of the molten region of the alloy in the step (2) is 10 2 K/s to 10 12 K/s, and may be, for example, 10 2 K/s, 10 3 K/s, 10 4 K/s. 10 5 K/s, 10 6 K/s, 10 7 K/s, 10 8 K/s, 10 9 K/s, 10 10 K/s, 10 11 K/s or 10 12 K/s, and
  • the specific point values between the above values are limited to the length and for the sake of brevity, the application is not exhaustive.
  • the increase or decrease of the pulse laser pulse width in step (3) is 100 ns-0.1 s, for example, 100 ns, 500 ns, 1 ⁇ s, 5 ⁇ s, 10 ⁇ s, 50 ⁇ s, 100 ⁇ s, 500 ⁇ s, 1 ms, 5 ms, 10ms, 50ms or 0.1s, and the specific point values between the above values, limited by space and for the sake of brevity, this application is not exhaustive.
  • the cooling rate of the desired alloy as described in step (4) is from 10 2 K/s to 10 12 K/s, and may be, for example, 10 2 K/s, 10 3 K/s, 10 4 K/s, 10 5 K/s, 10 6 K/s, 10 7 K/s, 10 8 K/s, 10 9 K/s, 10 10 K/s, 10 11 K/s or 10 12 K/s, and the above values
  • the specific point value between the two is limited to the length and for the sake of brevity, this application is not exhaustive.
  • the operation of repeating the step (3) in the step (4) of the present application means that the operation is repeated at least once, and the operation may be repeated once or repeatedly, for example, 5 times, 10 times, 100 times, 1000 times, etc. This application does not specifically limit this.
  • the amplitude of each increase or decrease of the pulse width may be the same or different, and the same is not particularly limited.
  • the required alloy cooling rate as described in step (4) of this application is the cooling rate of the last time the pulsed laser scanning chip is used.
  • the pulse laser scanning chip is used, and when the selected pulse width is in a small range, the range of the corresponding cooling speed is large, and the step (3) is required. Increasing the pulse width, and the pulse width of the last step using the pulsed laser scanning chip in step (4) should be kept within a large range, and the corresponding cooling rate range will be small. Conversely, when the pulse width selected in step (2) is within a large range, the range of the corresponding cooling rate is small, and in step (3), the pulse width needs to be reduced, and step (4) is finally The pulse width of the pulse laser scanning chip should be kept in a small range at a time, and the corresponding cooling rate range is large.
  • the pulse laser of the step (2) may have a pulse width of 1 ns and a cooling rate of 10 10 K/s.
  • the pulse width of the last scan pulse of the step (4) may be 1 s, and the cooling rate may be It is 10 2 K/s.
  • the pulse width of the pulse laser in step (2) may be 1 s, and the cooling rate is 10 2 K/s.
  • the pulse width of the last scan pulse laser in step (4) may be 1 ns, and the cooling rate is preferably 10 10 K/s.
  • the present application provides the application of the method according to the first aspect, which is determined by the method provided by the first aspect to determine the amorphous forming ability of different component regions of a specific alloy material.
  • the component regions of the capability are screened for suitable component regions for the preparation of bulk amorphous alloy materials.
  • (a) in Fig. 2 shows that the material has a lower critical cooling rate in the composition region surrounded by 10 2 K/s, so that it is easier to obtain a bulk amorphous alloy material in the component region by screening. .
  • the present application provides an amorphous synthesis and detection device, the device comprising a pulsed laser emitting device, a sample control device and an amorphous characterization device; wherein the pulsed laser emitting device comprises a pulsed laser (101), isolated The device (102), the time domain adjuster (103), the spatial domain adjuster (104), and the focusing mirror (105); the isolator (102) is arranged in sequence from top to bottom on the laser light path emitted by the pulsed laser (101).
  • the sample control device includes a vacuum chamber (108) and a stage (109) located in the vacuum chamber (108) and fixed to the stage a sample (106) to be processed (106), a sample micro-region (107) is divided on the sample to be processed (106); the pulsed laser emitting device is located directly above the sample micro-region (107); the amorphous characterization device An incident light emitter (110) and an amorphous measuring device (111) are included, the incident light emitter (110) emitting incident light onto the sample to be processed (106), the reflected light of which is received by the amorphous measuring device (111) And perform amorphous characterization.
  • the amorphous characterization device described in the present application can perform real-time characterization of any region on the sample to be processed (106).
  • the incident light emitter (110) is controlled to emit incident light to the sample to be processed (106).
  • the sample area after rapid cooling is received by the amorphous measuring device (111) for amorphous characterization.
  • the amorphous characterization device described in the present application is a device for characterizing amorphous commonly used in the art. Any means known in the art for detecting amorphous is suitable for the present application. Exemplary, X-ray diffraction and reflectance can be used. Other technologies are characterized, but are not limited to this.
  • the (110) when characterized using X-ray diffraction techniques, is an X-ray emitter and (111) is an X-ray detector, both of which constitute an X-ray diffraction characterization system.
  • the (110) when characterized using reflectivity techniques, is a visible light laser emitter and (111) is a photodetector, both of which constitute a reflectance characterization system.
  • the device further includes a component control and data analysis device;
  • the component control and data analysis device includes a computer connected to the pulsed laser emitting device, the sample control device, and the amorphous detecting device, The above components perform control and data analysis.
  • the sample to be processed (106) is divided into different sample micro-areas (107), and each pulsed laser acts on a sample micro-area. The microdomains are then replaced until the pulsed laser has processed all of the sample domains, i.e., the entire sample to be processed (106) is scanned.
  • the sample to be processed (106) is a composite material chip;
  • the composite material chip is a sample library of alloy material thin films in which the composition is continuously changed and the sample region is separated.
  • the sample micro-region (107) is an alloy material sample region of at least one of the constituent materials in the composite material chip.
  • the next sample micro-region can be processed by moving the stage or moving the incident pulse laser.
  • the application provides an application of the apparatus of the third aspect, the application comprising the steps of:
  • the pulsed laser is emitted by a computer controlled pulsed laser emitter (101), and the laser is sequentially irradiated to the sample micro through the isolator (102), the time domain adjuster (103), the spatial domain adjuster (104), and the focusing mirror (105).
  • the sample micro-zone (107) is heated to melt; the entire sample to be treated (106) is scanned, all the micro-zones on the sample are heated to melt, the pulsed laser is stopped, and the alloy melting zone is rapidly cooled;
  • the incident light emitter (110) is controlled to emit incident light onto the sample to be processed (106), and the reflected light is received by the amorphous measuring device (111) to perform amorphous characterization of the cooled sample.
  • the present application has at least the following beneficial effects:
  • the application of the pulsed laser technology to the preparation of an amorphous alloy can efficiently prepare an amorphous alloy which cannot be prepared by a conventional liquid phase extremely cold technique, and expands the amorphous material system.
  • it is combined with the material combination chip technology, and the material combination chip is processed by pulsed laser.
  • the boundary of the amorphous-crystalline component is determined at different cooling rates, and the amorphous region of the different component regions of the alloy material is determined.
  • the ability to form and use this as a basis for screening the component regions of bulk amorphous alloy materials is a new method for preparing bulk amorphous alloys.
  • FIG. 1 is a schematic structural view of an amorphous synthesis and detection apparatus provided by the present application, wherein a 101-pulse laser, a 102-isolator, a 103-time domain regulator, a 104-space domain regulator, a 105-focusing mirror, and a 106-to-be-processed Sample; 107-sample micro-zone, 108-vacuum chamber; 109-stage; 110-incident light emitter, 111-amorphous measuring device;
  • FIG. 2 is an effect diagram of a combination of a pulsed laser preparation amorphous alloy technology and a material combination chip, wherein FIG. 2(a) is an amorphous forming ability of different component regions of the Mg-Al-Ti alloy material obtained in Example 1 of the present application.
  • Schematic diagram, Fig. 2(b) is a graph showing the composition change of the material gene chip composed of three new elements A, B and C based on Al x0 Mg y0 Ti z0 ratio, wherein A, B and C can be in the periodic table.
  • Fig. 3 is a graph showing the cooling rate and pulse width of a pulsed laser.
  • the abscissa is the pulse width and the ordinate is the cooling rate.
  • the present application provides an amorphous synthesis and detection device in a specific embodiment, as shown in FIG. 1 , the device includes a pulsed laser emitting device, a sample control device, and an amorphous characterization device; wherein the pulsed laser emitting device
  • the pulse laser 101, the isolator 102, the time domain adjuster 103, the spatial domain adjuster 104, and the focusing mirror 105 are included; the isolator 102, the time domain adjuster 103, and the airspace are sequentially disposed from the top to the bottom on the laser light path emitted by the pulse laser 101.
  • the sample control device includes a vacuum chamber 108 and a displacement stage 109 located in the vacuum chamber 108 and a sample 106 to be processed fixed to the stage 109, and the sample micro-area is divided on the sample 106 to be processed.
  • the pulsed laser emitting device is located directly above the sample micro-region 107;
  • the amorphous characterization device includes an incident light emitter 110 and an amorphous measuring device 111, the incident light emitter 110 emitting incident light to the sample to be processed 106 The reflected light is received by the amorphous measuring device 111 for amorphous characterization.
  • the amorphous synthesis and detection device further comprises a computer for controlling and analyzing the components.
  • the sample to be processed 106 is a composite material chip; the composite material chip is a sample library of alloy material thin films whose composition is continuously changed and the sample area is separated.
  • the sample microdomain 107 is an alloy material sample region of any of the constituent components of the composite material chip.
  • the present application also provides, in a specific embodiment section, a method of determining the amorphous forming ability of an alloy material, the method comprising:
  • step (3) continue to increase or decrease the pulse width, repeat the operation of step (3), stop the operation after reaching the required alloy cooling rate, and determine the boundary of the amorphous-crystalline component at this time;
  • the operation of determining the amorphous forming ability of the alloy material is performed using the above amorphous synthesis and detecting device.
  • the embodiment provides an amorphous synthesis and detection device, the device comprising a pulsed laser emitting device, a sample control device and an amorphous characterization device; wherein the pulsed laser emitting device comprises a pulsed laser 101, an isolator 102, and a time a domain adjuster 103, a spatial domain adjuster 104, and a focusing mirror 105; an isolator 102, a time domain adjuster 103, a spatial domain adjuster 104, and a focusing mirror 105 are disposed in order from the top to the bottom of the laser light path emitted by the pulsed laser 101;
  • the sample control device includes a vacuum chamber 108 and a displacement stage 109 located in the vacuum chamber 108 and a sample 106 to be processed fixed to the stage 109, and a sample micro-region 107 is divided on the sample to be processed 106; the pulsed laser emitting device is located in the sample The micro-region 107 is directly above; the amorphous characterization device includes an incident light
  • the amorphous synthesis and detection device also includes a computer for controlling and analyzing the components.
  • the 110 is a visible light laser emitter and 111 is a photodetector, which constitute a reflectivity characterization system.
  • the Mg-Al-Ti alloy is assembled into a composite material chip, and the assembled material chip is fixed as a sample to be processed 106 on the sample stage 109 in the vacuum chamber 108, and the sample stage 109 is adjusted to be in a proper position.
  • the pulsed laser emitting device is located directly above the sample micro-region 107; the sample micro-region 107 is an alloy material sample region of any determined component of the composite material chip;
  • the adjustment pulse energy is 10 mJ
  • the pulse width is 1 ns
  • the pulse laser is emitted by the computer-controlled pulsed laser emitter 101, and the laser light is sequentially irradiated to the sample through the isolator 102, the time domain adjuster 103, the spatial domain adjuster 104, and the focusing mirror 105.
  • the sample micro-region 107 is heated to melt; the entire sample to be processed 106 is scanned, all the micro-domains thereon are heated to melt, the pulsed laser is stopped, and the alloy melting region is rapidly cooled at a rate of 10 10 K/s.
  • step (3) continue to increase the pulse width according to the increase of the same magnification, repeat the operation of step (3) until the cooling rate of the alloy reaches 10 2 K/s, and then stop the operation, and determine the boundary of the amorphous-crystalline component at this time;
  • the component regions of the strong amorphous forming ability are screened to find a suitable component region for preparing the bulk amorphous alloy material.
  • the area surrounded by 10 2 K/s in the figure is the area of the bulk amorphous material to be found, in which large Mg-Al-Ti amorphous is more likely to be found. alloy.
  • step (3) continue to reduce the pulse width according to the increase of the same magnification, repeat the operation of step (3), stop the operation after the cooling rate of the alloy reaches 10 12 K/s, and determine the boundary of the amorphous-crystalline component at this time;
  • the component regions of the strong amorphous forming ability are screened to find suitable component regions for preparing the bulk amorphous alloy material. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本申请涉及一种非晶合成与检测装置及应用、一种确定合金材料非晶形成能力的方法及应用,所述装置包括脉冲激光发射装置、样品控制装置和非晶表征装置;所述脉冲激光发射装置包括脉冲激光器以及光路上依次设置的隔离器、时域调节器、空域调节器和聚焦镜;所述样品控制装置包括真空腔以及位于真空腔内的位移台和固定于位移台的待处理样品,在所待处理样品上划分样品微区;所述非晶表征装置包括入射光发射器以及非晶测量装置,对处理后的样品进行非晶表征。本申请将脉冲激光技术引入非晶合成领域,同时与组合材料芯片技术相结合,能够确定合金材料不同组分区域的非晶形成能力,进而实现了对大块非晶合金材料合适组分区域的筛选。具有良好的应用前景。

Description

一种非晶合成与检测装置及应用、一种确定合金材料非晶形成能力的方法及应用 技术领域
本申请涉及激光加工技术、非晶合金制备领域,具体涉及一种非晶合成与检测装置及应用、一种确定合金材料非晶形成能力的方法及应用。
背景技术
非晶合金是由超急冷凝固,合金凝固时原子来不及有序排列结晶,得到的固态合金是长程无序结构,没有晶态合金的晶粒、晶界存在。这种非晶合金具有许多独特的性能,由于它的性能优异、工艺简单,很快成为国内外材料科学界的研究开发重点。
在50年多年的发展过程中出现了多种用于制备非晶材料的技术,主要包括液相急冷法[Brown L M,Pais A,Pippard S B.Twentieth Cen-tury Physics.Bristol and Philadelphia:Institute of Physics Publishing,1995]、沉积薄膜法[Kramer J.Annln.Phys.1934,19:37]、多层膜界面固相反应法、机械合金化法、反溶化方法、离子束混合和电子辐射法、氢化法以及压致非晶化法等[Johnson W L.Prog.Mater.Sci.,1986,30:81]。其中液相急冷法是现如今使用最为广泛的可用于实现大块非晶合金材料制备的有效手段。基于液相急冷思想也发展出诸多实用技术,包括喷溅冷却、双辊极冷轧制法、单滚筒离心冷却法、水淬法、助溶剂包裹法、金属模浇法等[Pond R.Maddin R.TMS-AIME,1969,245:2475;Chen H S.Miller C E.Rev.Sci.Instru.,1970,41:1237]。然而现有的液相急冷技术能够达到的最大冷却速度约为10 6K/s[PROGRESS IN PHYSICS,33,177(2013)],也被认为液相金属互熔体能否形成非晶态合金的界限。也就意味着,对于需要冷却速度达到更快的合金材料,现有液相冷却技术将无法制备。
大块非晶材料具有高力学特性、强抗腐蚀性、好的软磁性能等,显示出重要的应用的前景。寻找新型大块非晶材料是非晶领域自1980年代后的主流方向,且已获得如Ti基、Cu基、Fe基、Ni基等一系列新型非晶合金[PROGRESS IN PHYSICS,33,177(2013)]形成能力接近传统氧化物玻璃,尺寸最大达8-9厘米直径,最低临界冷却速度低于1K/s,利用现有液相急冷方法可轻松制备。最近柳延辉等采用多靶磁控溅射制备大量薄膜非晶材料样品库,并利用并行吹塑技术[Nature Materials,13,494(2014)],通过各样品吹塑成型能力快速筛选出具有强非晶形成能力的材料成分并获得成功,实现了高通量的强非晶形成能力材料的筛选。然而寻找新型大块非晶材料仍然是非晶领域的难题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供了一种非晶合成与检测装置及应用、一种确定合金材料非晶形成能力的方法及应用,利用脉冲激光对固定元素组成但成分比例连续分布的合金材料进行处理,在不同的冷却速度下,确定其非晶-晶态成分边界,通过数据进行统计和分析,确定所述合金材料不同组分区域的非晶形成能力,并以此为依据来进行大块非晶合金材料的合适组分区域的筛选。
为达此目的,本申请采用以下技术方案:
第一方面,本申请提供一种确定合金材料非晶形成能力的方法,所述方法包括以下步骤:
(1)将合金材料组装为组合材料芯片;
(2)利用脉冲激光扫描整个芯片,将合金材料加热至熔化,合金熔化区域快速冷却,通过非晶表征装置对冷却后的合金进行表征,确定非晶-晶态成分边 界;
(3)增加或减少脉冲激光的脉冲宽度,重复扫描整个芯片,将合金材料加热至熔化,合金熔化区域快速冷却,通过非晶表征装置对冷却后的合金进行表征,重新确定非晶-晶态成分边界;
(4)重复步骤(3)的操作,达到所需合金冷却速度后停止操作,并确定此时的非晶-晶态成分边界;
(5)对上述得到的数据进行统计和分析,确定所述合金材料不同组分区域的非晶形成能力。
本申请通过控制脉冲能量利用脉冲激光对合金材料进熔化处理后,采用短脉冲宽度的激光范围,能够获得极高的区域冷却速度,材料冷却速度最高可达10 12K/s,远高于现有液相急冷技术所能获得的最高冷却速度10 6K/s,进而可以得到更多种非晶材料。本申请可以高效制备传统液相极冷技术无法制备的非晶合金,从而扩大了非晶材料体系。
其中脉冲激光的时域波形、能量密度、脉冲宽度均可调,用于控制材料加热温度和降温速度。通过控制脉冲能量可逐渐提高材料加热温度,直至材料完全融化。随着脉冲宽度的增加,材料达到相同温度后因为热传导效应,其降温速度明显放缓。为了获得更高的冷却速度,采用短脉冲宽度,此时合金材料的冷却速度远高于现有液相急冷技术所能获得的最高冷却速度10 6K/s,从而能够获得更多种非晶材料。如图3所示,随着脉冲宽度由1ps(10 -12s)逐渐增加到1s,冷却速度从10 12K/s逐渐降低到10 2K/s。
材料组合芯片为由不同成分、不同掺杂的微小试样组成的试样阵列或梯度试样。按照所设计的材料芯片,在同一块基片上以相同或相近的条件同时合成大量的材料试样,形成由众多微小材料试样密集组合而成的材料芯片。通过成 分设计,可以在一块基片上同时集成生长和表征上千乃至上万种不同组分的材料,一次性地合成覆盖大范围组分或整个二元/三元“相图”组分的样品,进而能够降低因多次实验所带来的数据离散性。
非晶形成能力与非晶临界冷却速度存在显著关系,通常临界冷却速度越小,非晶形成能力越强,越容易形成大块非晶材料。图2显示了将脉冲激光制备非晶合金技术与材料组合芯片结合,实现对强非晶形成能力的材料成分区域的筛选。图2(a)中是以轻质非晶合金体系Mg-Al-Ti为示例的材料组合芯片,在图中三角形区域内形成三种元素成分比例连续分布的样品库,即每一个点即是一种成分组成。控制脉冲激光的脉冲强度,将合金材料溶化,并将脉宽逐渐由1ns增加至1s,冷却速度从10 10K/s逐渐降低到10 2K/s,最终可获得如图2(a)所示的冷却速度分布图。图中被10 2K/s所围的区域即是所要找寻的大块非晶材料的区域,在该区域将更容易发现大块非晶合金材料。
假设利用图2(a)的方法找到的最低临界冷却速度区域为Al x0Mg y0Ti z0,其中x 0,y 0,z 0为对应元素的成分比例。以Al x0Mg y0Ti z0为基础比例,增加三种新元素A、B、C(可为元素周期表中任意元素)构成一块新的材料基因芯片,见图2(b)。此时,Al、Mg、Ti三种元素在芯片中均匀分布,而A、B、C三种元素则成分渐变。重复图2(a)筛选最低临界冷却速度区域的步骤,即可找到以Al-Mg-Ti为基础的含有六种元素的新非晶合金Al x0Mg y0Ti z0A x1B y1C z1,且根据非晶理论Al x0Mg y0Ti z0A x1B y1C z1应比Al x0Mg y0Ti z0具有更强的非晶形成能力。进一步的,可以在Al x0Mg y0Ti z0A x1B y1C z1基础上重复操作增加更多元素,不断重复增加元素及寻找最低临界冷却速度区域。
根据本申请,步骤(1)所述组合材料芯片为成分连续变化、试样区域分立的合金材料薄膜样品库;其中,所述样品库所含元素的种类不限,样品库中试 样的数目不限,二者均可根据实验需求进行调整。对于某确定的合金材料而言,其组合材料芯片为众多成分连续变化的微小材料试样密集组成的试样阵列或梯度试样。
本申请通过本领域常用的手段进行组合材料芯片的制备,例如磁控溅射、热蒸发等技术,但非仅限于此。
根据本申请,步骤(2)所述脉冲激光的脉冲宽度为1ps-1s,例如可以是1ps、10ps、100ps、1ns、5ns、10ns、50ns、100ns、1μs、5μs、10μs、50μs、100μs、1ms、5ms、10ms、50ms、100ms或1s,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
事实上,所有脉冲激光器可调节的脉冲宽度范围均适用于本申请,并不仅限于1ps-1s,相对应的,合金熔化区域冷却的速度也会随之变化,并不仅限于10 2K/s-10 12K/s。
根据本申请,步骤(2)所述合金熔化区域快速冷却的速度为10 2K/s-10 12K/s,例如可以是10 2K/s、10 3K/s、10 4K/s、10 5K/s、10 6K/s、10 7K/s、10 8K/s、10 9K/s、10 10K/s、10 11K/s或10 12K/s,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(3)所述脉冲激光脉冲宽度的增加或减少的幅度为100ns-0.1s,例如可以是100ns、500ns、1μs、、5μs、10μs、50μs、100μs、500μs、1ms、5ms、10ms、50ms或0.1s,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(4)所述所需合金冷却速度为10 2K/s-10 12K/s,例如可以是10 2K/s、10 3K/s、10 4K/s、10 5K/s、10 6K/s、10 7K/s、10 8K/s、10 9K/s、10 10K/s、10 11K/s或10 12K/s,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑, 本申请不再穷尽列举。
本申请步骤(4)中所述“重复步骤(3)的操作”,指的是至少重复一次,可以重复一次操作,也可以重复多次,例如5次、10次、100次、1000次等,本申请对此不做特殊限定。在重复操作的过程中,脉冲宽度每次增加或减少的幅度可以相同,也可以不同,对此同样不做特殊限定。
本申请中步骤(4)所述所需合金冷却速度为最后一次利用脉冲激光扫描芯片的冷却速度。
本申请步骤(2)中第一次利用脉冲激光扫描芯片,当其选择的脉冲宽度在较小的范围内时,其相应的冷却速度的范围就会较大,此时步骤(3)中需要增加脉冲宽度,而步骤(4)最后一次利用脉冲激光扫描芯片的脉冲宽度应保持在较大的范围内进行,相应的冷却速度的范围就会较小。反之,当步骤(2)中选择的脉冲宽度在较大的范围内时,其相应的冷却速度的范围就会较小,此时步骤(3)中需要减少脉冲宽度,而步骤(4)最后一次利用脉冲激光扫描芯片的脉冲宽度应保持在较小的范围内进行,相应的冷却速度的范围就会较大。
示例性的,步骤(2)所述脉冲激光的脉冲宽度可以为1ns,冷却速度为10 10K/s,相对应的,步骤(4)最后一次扫描脉冲激光的脉冲宽度可以为1s,冷却速度为10 2K/s。反之,步骤(2)所述脉冲激光的脉冲宽度可以为1s,冷却速度为10 2K/s,相对应的,步骤(4)最后一次扫描脉冲激光的脉冲宽度可以为1ns,冷却速度优选为10 10K/s。
第二方面,本申请提供一种如第一方面所述的方法的应用,本申请通过第一方面提供的方法确定特定的合金材料不同组分区域的非晶形成能力后,对强非晶形成能力的组分区域进行筛选,寻找制备大块非晶合金材料的合适组分区域。例如,图2中(a)显示,在10 2K/s所围的成分区域内,材料具有更低的临 界冷却速度,因此通过筛选可知,在该组分区域更易获得大块非晶合金材料。
第三方面,本申请提供一种非晶合成与检测装置,所述装置包括脉冲激光发射装置、样品控制装置和非晶表征装置;其中,所述脉冲激光发射装置包括脉冲激光器(101)、隔离器(102)、时域调节器(103)、空域调节器(104)以及聚焦镜(105);在脉冲激光器(101)发射的激光光路上从上至下依次设置隔离器(102)、时域调节器(103)、空域调节器(104)以及聚焦镜(105);所述样品控制装置包括真空腔(108)以及位于真空腔(108)内的位移台(109)和固定于位移台(109)的待处理样品(106),在所待处理样品(106)上划分样品微区(107);所述脉冲激光发射装置位于样品微区(107)正上方;所述非晶表征装置包括入射光发射器(110)以及非晶测量装置(111),所述入射光发射器(110)发射入射光到待处理样品(106)上,其反射光被非晶测量装置(111)接收,并进行非晶表征。
本申请中所述非晶表征装置可以对所述待处理样品(106)上的任意区域进行实时表征,实际操作过程中,控制入射光发射器(110)发射入射光到待处理样品(106)上快速冷却后的样品区域,其反射光被非晶测量装置(111)接收,进行非晶表征。
本申请所述非晶表征装置为本领域常用的对非晶进行表征的装置,凡是本领域公知的可以检测非晶的手段均适用于本申请,示例性的,可以使用X射线衍射、反射率等技术进行表征,但非仅限于此。
示例性的,当使用X射线衍射技术进行表征时,所述(110)为X射线发射器,(111)为X射线探测器,二者构成X射线衍射表征系统。当使用反射率技术进行表征时,所述(110)为可见光激光发射器,(111)为光电探测器,二者构成反射率表征系统。
根据本申请,所述装置还包括组件控制、数据分析装置;所述组件控制、数据分析装置包括一台计算机,所述计算机与脉冲激光发射装置、样品控制装置以及非晶检测装置相连接,对上述组件进行控制及数据分析。
由于脉冲激光的光斑较小,一次只能对固定大小的区域进行作用,本申请将待处理样品(106)划分为不同的样品微区(107),每一次脉冲激光作用于一个样品微区,然后更替微区进行作用,直至脉冲激光处理完所有的样品微区,即对整个待处理样品(106)完成扫描。
根据本申请,所述待处理样品(106)为组合材料芯片;所述组合材料芯片为成分连续变化、试样区域分立的合金材料薄膜样品库。所述样品微区(107)为所述组合材料芯片中至少一个确定成分的合金材料样品区域。
在完成对一个样品微区的处理后,可以通过移动位移台或移动入射脉冲激光的方式对下一个样品微区进行处理。
第四方面,本申请提供一种如第三方面所述的装置的应用,所述应用包括以下步骤:
(1)将待处理样品(106)固定于真空腔体(108)内的样品台(109)上,在所待处理样品(106)上划分样品微区(107),调整样品台(109)处于合适位置,使所述脉冲激光发射装置位于样品微区(107)正上方;
(2)通过计算机控制脉冲激光发射器(101)发射脉冲激光,激光依次通过隔离器(102)、时域调节器(103)、空域调节器(104)以及聚焦镜(105)照射到样品微区(107)上,将样品微区(107)加热至熔化;扫描整个待处理样品(106),将其上的所有样品微区加热至熔化,停止脉冲激光,合金熔化区域快速冷却;
(3)控制入射光发射器(110)发射入射光到待处理样品(106)上,其反 射光被非晶测量装置(111)接收,进行对冷却后的样品进行非晶表征。
与相关技术方案相比,本申请至少具有以下有益效果:
本申请将脉冲激光技术引用到非晶合金的制备上,能够高效制备传统液相极冷技术无法制备的非晶合金,扩大了非晶材料体系。同时将其与材料组合芯片技术相结合,利用脉冲激光对材料组合芯片进行处理,在不同的冷却速度下,确定其非晶-晶态成分边界,确定所述合金材料不同组分区域的非晶形成能力,并以此为依据来进行大块非晶合金材料的组分区域的筛选,是一种制备寻找大块非晶合金的新方法。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1是本申请提供的非晶合成与检测装置的结构示意图,其中101-脉冲激光器,102-隔离器,103-时域调节器,104-空域调节器,105-聚焦镜,106-待处理样品;107-样品微区,108-真空腔体;109-位移台;110-入射光发射器,111-非晶测量装置;
图2为脉冲激光制备非晶合金技术与材料组合芯片结合的效果图,其中,图2(a)为本申请实施例1得到的Mg-Al-Ti合金材料不同组分区域的非晶形成能力示意图,图2(b)为以Al x0Mg y0Ti z0为基础比例,增加三种新元素A、B、C构成的材料基因芯片成分变化图,其中A、B、C可为元素周期表中任意元素;
图3为脉冲激光的降温速度与脉冲宽度变化曲线,图中横坐标为脉冲宽度,纵坐标为冷却速度。
具体实施方式
为更好地说明本申请,便于理解本申请的技术方案,下面对本申请进一步详细说明。但下述的实施例仅仅是本申请的简易例子,并不代表或限制发明的 权利保护范围,本申请的保护范围以权利要求书为准。
本申请在具体实施例部分提供了一种非晶合成与检测装置,如图1所示,所述装置包括脉冲激光发射装置、样品控制装置和非晶表征装置;其中,所述脉冲激光发射装置包括脉冲激光器101、隔离器102、时域调节器103、空域调节器104以及聚焦镜105;在脉冲激光器101发射的激光光路上从上至下依次设置隔离器102、时域调节器103、空域调节器104以及聚焦镜105;所述样品控制装置包括真空腔108以及位于真空腔108内的位移台109和固定于位移台109的待处理样品106,在所待处理样品106上划分样品微区107;所述脉冲激光发射装置位于样品微区107正上方;所述非晶表征装置包括入射光发射器110以及非晶测量装置111,所述入射光发射器110发射入射光到待处理样品106上,其反射光被非晶测量装置111接收,进行非晶表征。
优选地,所述非晶合成与检测装置还包括一台用于对上述组件进行控制及数据分析的计算机。
优选地,所述待处理样品106为组合材料芯片;所述组合材料芯片为成分连续变化、试样区域分立的合金材料薄膜样品库。
优选地,所述样品微区107为所述组合材料芯片中任一确定成分的合金材料样品区域。
本申请在具体实施例部分还提供了一种确定合金材料非晶形成能力的方法,所述方法包括::
(1)将合金材料组装为组合材料芯片;
(2)利用脉冲激光扫描整个芯片,将合金材料加热至熔化,合金熔化区域快速冷却,通过非晶表征装置对冷却后的合金进行表征,确定非晶-晶态成分边界;
(3)增加或减少脉冲激光的脉冲宽度,重复扫描整个芯片,将合金材料加热至熔化,合金熔化区域快速冷却,通过非晶表征装置对冷却后的合金进行表征,重新确定非晶-晶态成分边界;
(4)继续增加或减少脉冲宽度,重复步骤(3)的操作,达到所需合金冷却速度后停止操作,并确定此时的非晶-晶态成分边界;
(5)对上述得到的数据进行统计和分析,确定所述合金材料不同组分区域的非晶形成能力。
优选地,使用上述非晶合成与检测装置进行确定合金材料非晶形成能力的操作。
以下为本申请典型但非限制性的具体实施例:
实施例1
本实施例提供了一种非晶合成与检测装置,所述装置包括脉冲激光发射装置、样品控制装置和非晶表征装置;其中,所述脉冲激光发射装置包括脉冲激光器101、隔离器102、时域调节器103、空域调节器104以及聚焦镜105;在脉冲激光器101发射的激光光路上从上至下依次设置隔离器102、时域调节器103、空域调节器104以及聚焦镜105;所述样品控制装置包括真空腔108以及位于真空腔108内的位移台109和固定于位移台109的待处理样品106,在所待处理样品106上划分样品微区107;所述脉冲激光发射装置位于样品微区107正上方;所述非晶表征装置包括入射光发射器110以及非晶测量装置111,所述入射光发射器110发射入射光到待处理样品106上,其反射光被非晶测量装置111接收,进行非晶表征。
所述非晶合成与检测装置还包括一台用于对上述组件进行控制及数据分析的计算机。
所述110为可见光激光发射器,111为光电探测器,二者构成反射率表征系统。
使用上述装置确定合金材料非晶形成能力
(1)将Mg-Al-Ti合金组装为组合材料芯片,将所述组装材料芯片作为待处理样品106固定于真空腔体108内的样品台109上,调整样品台109处于合适位置,使所述脉冲激光发射装置位于样品微区107正上方;所述样品微区107为组合材料芯片中任一确定成分的合金材料样品区域;
(2)调节脉冲能量为10mJ,脉冲宽度为1ns,通过计算机控制脉冲激光发射器101发射脉冲激光,激光依次通过隔离器102、时域调节器103、空域调节器104以及聚焦镜105照射到样品微区107上,将样品微区107加热至熔化;扫描整个待处理样品106,将其上的所有样品微区加热至熔化,停止脉冲激光,合金熔化区域以10 10K/s的速度快速冷却;控制可见光激光发射器(110)发射入射光到待处理样品106上,其反射光被光电探测器111接收,进行对冷却后的样品进行非晶表征,确定非晶-晶态成分边界;
(3)增加脉冲激光的脉冲宽度至1us,重复扫描整个芯片,合金熔化区域快速冷却,确定新的非晶态与晶态边界;通过非晶表征装置对冷却后的合金进行表征,重新确定非晶-晶态成分边界;
(4)按照相同倍率的增幅继续增加脉冲宽度,重复步骤(3)的操作,直至合金的冷却速度达到10 2K/s后停止操作,并确定此时的非晶-晶态成分边界;
(5)对上述得到的数据进行统计和分析,确定所述合金材料不同组分区域的非晶形成能力。
依据上述方法确定所述Mg-Al-Ti合金材料不同组分区域的非晶形成能力后,对强非晶形成能力的组分区域进行筛选,寻找制备大块非晶合金材料的合 适组分区域。如图2(a)所示,图中被10 2K/s所围的区域即是所要找寻的大块非晶材料的区域,在该区域将更容易发现大块Mg-Al-Ti非晶合金材料。
实施例2
(1)将Cu-Zr-Al合金组装为组合材料芯片;
(2)调节脉冲能量为10mJ,脉冲宽度为1s,利用脉冲激光扫描整个芯片,将合金材料加热至熔化,合金熔化区域以10 2K/s的速度冷却,通过X射线衍射表征系统对冷却后的合金进行表征,确定非晶-晶态成分边界;
(3)减少脉冲激光的脉冲宽度至10ms,重复扫描整个芯片,将合金材料加热至熔化,合金熔化区域快速冷却,通过非晶表征装置对冷却后的合金进行表征,重新确定非晶-晶态成分边界;
(4)按照相同倍率的增幅继续减少脉冲宽度,重复步骤(3)的操作,至合金的冷却速度达到10 12K/s后停止操作,并确定此时的非晶-晶态成分边界;
(5)对上述得到的数据进行统计和分析,确定所述合金材料不同组分区域的非晶形成能力。
依据上述方法确定所述Cu-Zr-Al合金材料不同组分区域的非晶形成能力后,对强非晶形成能力的组分区域进行筛选,寻找制备大块非晶合金材料的合适组分区域。
申请人声明,本申请通过上述实施例来说明本申请的详细结构特征,但本申请并不局限于上述详细结构特征,即不意味着本申请必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施 方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (11)

  1. 一种确定合金材料非晶形成能力的方法,所述方法包括以下步骤:
    (1)将合金材料组装为组合材料芯片;
    (2)利用脉冲激光扫描整个芯片,将合金材料加热至熔化,合金熔化区域快速冷却,通过非晶表征装置对冷却后的合金进行表征,确定非晶-晶态成分边界;
    (3)增加或减少脉冲激光的脉冲宽度,重复扫描整个芯片,将合金材料加热至熔化,合金熔化区域快速冷却,通过非晶表征装置对冷却后的合金进行表征,重新确定非晶-晶态成分边界;
    (4)重复步骤(3)的操作,达到所需合金冷却速度后停止操作,并确定此时的非晶-晶态成分边界;
    (5)对上述得到的数据进行统计和分析,确定所述合金材料不同组分区域的非晶形成能力。
  2. 如权利要求1所述的方法,其中,步骤(1)所述组合材料芯片为成分连续变化、试样区域分立的合金材料薄膜样品库。
  3. 如权利要求1或2所述的方法,其中,步骤(2)所述脉冲激光的脉冲宽度为1ps-1s。
  4. 如权利要求3所述的方法,步骤(2)所述合金熔化区域快速冷却的速度为10 2K/s-10 12K/s。
  5. 如权利要求1-4任一项所述的方法,其中,步骤(3)所述脉冲激光脉冲宽度增加或减少的幅度为100ns-0.1s。
  6. 如权利要求1-5任一项所述的方法,其中,步骤(4)所述所需合金冷却速度为10 2K/s-10 12K/s。
  7. 如权利要求1-6任一项所述的方法的应用,确定所述合金材料不同组分 区域的非晶形成能力后,对强非晶形成能力的组分区域进行筛选,寻找制备大块非晶合金材料的合适组分区域。
  8. 一种非晶合成与检测装置,所述装置包括脉冲激光发射装置、样品控制装置和非晶表征装置;其中,所述脉冲激光发射装置包括脉冲激光器(101)、隔离器(102)、时域调节器(103)、空域调节器(104)以及聚焦镜(105);在脉冲激光器(101)发射的激光光路上从上至下依次设置隔离器(102)、时域调节器(103)、空域调节器(104)以及聚焦镜(105);所述样品控制装置包括真空腔(108)以及位于真空腔(108)内的位移台(109)和固定于位移台(109)的待处理样品(106),在所待处理样品(106)上划分样品微区(107);所述脉冲激光发射装置位于样品微区(107)正上方;所述非晶表征装置包括入射光发射器(110)以及非晶测量装置(111),所述入射光发射器(110)发射入射光到待处理样品(106)上,其反射光被非晶测量装置(111)接收,进行非晶表征。
  9. 如权利要求8所述的装置,其中,所述装置还包括组件控制、数据分析装置;所述组件控制、数据分析装置包括一台计算机,所述计算机与脉冲激光发射装置、样品控制装置以及非晶检测装置相连接,对上述组件进行控制及数据分析。
  10. 如权利要求8或9所述的装置,其中,所述待处理样品(106)为组合材料芯片;所述组合材料芯片为成分连续变化、试样区域分立的合金材料薄膜样品库;
    优选地,所述样品微区(107)为所述组合材料芯片中任一确定成分的合金材料样品区域。
  11. 如权利要求8-10任一项所述的装置的应用,所述应用包括以下步骤:
    (1)将待处理样品(106)固定于真空腔体(108)内的样品台(109)上,在所待处理样品(106)上划分样品微区(107),调整样品台(109)处于合适位置,使所述脉冲激光发射装置位于样品微区(107)正上方;
    (2)通过计算机控制脉冲激光发射器(101)发射脉冲激光,激光依次通过隔离器(102)、时域调节器(103)、空域调节器(104)以及聚焦镜(105)照射到样品微区(107)上,将样品微区(107)加热至熔化;扫描整个待处理样品(106),将其上的所有样品微区加热至熔化,停止脉冲激光,合金熔化区域快速冷却;
    (3)控制入射光发射器(110)发射入射光到待处理样品(106)上,其反射光被非晶测量装置(111)接收,进行对冷却后的样品进行非晶表征。
PCT/CN2018/099205 2017-08-07 2018-08-07 一种非晶合成与检测装置及应用、一种确定合金材料非晶形成能力的方法及应用 WO2019029534A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710665367.9 2017-08-07
CN201710665367.9A CN107475644B (zh) 2017-08-07 2017-08-07 一种确定合金材料非晶形成能力的方法及使用的装置

Publications (1)

Publication Number Publication Date
WO2019029534A1 true WO2019029534A1 (zh) 2019-02-14

Family

ID=60598209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099205 WO2019029534A1 (zh) 2017-08-07 2018-08-07 一种非晶合成与检测装置及应用、一种确定合金材料非晶形成能力的方法及应用

Country Status (2)

Country Link
CN (1) CN107475644B (zh)
WO (1) WO2019029534A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114512204A (zh) * 2022-01-24 2022-05-17 上海彩石激光科技有限公司 非晶合金材料的确定方法及装置、超高速激光熔覆设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107475644B (zh) * 2017-08-07 2019-09-24 南方科技大学 一种确定合金材料非晶形成能力的方法及使用的装置
CN108405001B (zh) * 2018-02-01 2020-08-28 电子科技大学 一种组合材料芯片及芯片支架
CN112575209A (zh) * 2020-11-11 2021-03-30 西北工业大学 一种基于“晶体相-非晶相”转变的非晶制备方法
CN113358706B (zh) * 2021-05-06 2022-03-08 东南大学 一种高通量表征合金成分的非晶形成能力的方法
CN115452655A (zh) * 2022-09-06 2022-12-09 燕山大学 约化熔化熵在评估分子体系的熔点粘度中的应用及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316074A (en) * 1978-12-20 1982-02-16 Quantronix Corporation Method and apparatus for laser irradiating semiconductor material
CN101423940A (zh) * 2008-12-04 2009-05-06 北京航空航天大学 一种利用激光表面处理制备高硬度Cu基非晶合金涂层的方法
WO2016210010A1 (en) * 2015-06-23 2016-12-29 Ningbo Infinite Materials Technology Co., Ltd. A high-throughput combinatorial materials experimental apparatus for in-situ synthesis and real-time characterization and related methods
CN106283039A (zh) * 2016-08-27 2017-01-04 南昌航空大学 一种铁基非晶‑纳米晶复合涂层及其制备方法
CN107475644A (zh) * 2017-08-07 2017-12-15 南方科技大学 一种非晶合成与检测装置及应用、一种确定合金材料非晶形成能力的方法及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797871A (en) * 1986-09-15 1989-01-10 Eastman Kodak Company Erasable optical recording method
US4812385A (en) * 1987-06-05 1989-03-14 Eastman Kodak Company Recording elements comprising write-once thin film alloy layers
JPH03294486A (ja) * 1990-04-11 1991-12-25 Toyota Motor Corp 非晶質層を有する部材の製造方法
CN103706955A (zh) * 2013-12-19 2014-04-09 北京理工大学 一种利用电子动态调控制备高深径比三维微通道的方法
CN105710334B (zh) * 2014-11-30 2017-11-21 中国科学院金属研究所 一种非晶态合金构件成形方法
CN106216833B (zh) * 2016-08-10 2018-02-09 北京理工大学 基于电子动态调控激光加工半导体双级表面结构的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316074A (en) * 1978-12-20 1982-02-16 Quantronix Corporation Method and apparatus for laser irradiating semiconductor material
CN101423940A (zh) * 2008-12-04 2009-05-06 北京航空航天大学 一种利用激光表面处理制备高硬度Cu基非晶合金涂层的方法
WO2016210010A1 (en) * 2015-06-23 2016-12-29 Ningbo Infinite Materials Technology Co., Ltd. A high-throughput combinatorial materials experimental apparatus for in-situ synthesis and real-time characterization and related methods
CN106283039A (zh) * 2016-08-27 2017-01-04 南昌航空大学 一种铁基非晶‑纳米晶复合涂层及其制备方法
CN107475644A (zh) * 2017-08-07 2017-12-15 南方科技大学 一种非晶合成与检测装置及应用、一种确定合金材料非晶形成能力的方法及应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114512204A (zh) * 2022-01-24 2022-05-17 上海彩石激光科技有限公司 非晶合金材料的确定方法及装置、超高速激光熔覆设备

Also Published As

Publication number Publication date
CN107475644B (zh) 2019-09-24
CN107475644A (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
WO2019029534A1 (zh) 一种非晶合成与检测装置及应用、一种确定合金材料非晶形成能力的方法及应用
Sun et al. Realization of multilevel states in phase‐change thin films by fast laser pulse irradiation
Shelby et al. Crystallization dynamics of nitrogen-doped Ge2Sb2Te5
Siegel et al. Rewritable phase-change optical recording in Ge 2 Sb 2 Te 5 films induced by picosecond laser pulses
Makino et al. Significant volume expansion as a precursor to ablation and micropattern formation in phase change material induced by intense terahertz pulses
Kifune et al. Extremely long period-stacking structure in the Sb–Te binary system
Campbell et al. Time resolved electron microscopy for in situ experiments
Santala et al. Nanosecond in situ transmission electron microscope studies of the reversible Ge2Sb2Te5 crystalline⇔ amorphous phase transformation
Ionin et al. Multilevel reversible laser-induced phase transitions in GeTe thin films
CN107283047B (zh) 一种利用脉冲激光制备非晶合金装置、方法及应用
Kiselev et al. Dynamics of reversible optical properties switching of Ge2Sb2Te5 thin films at laser-induced phase transitions
Zhao et al. Morphology and crystalline phase characteristics of α-GST films irradiated by a picosecond laser
Gaudiuso et al. Ablation of silicon with bursts of femtosecond laser pulses
Sun et al. Nanosecond laser-induced phase transitions in pulsed laser deposition-deposited GeTe films
Gutwirth et al. Thermal and optical properties of AgSbS2 thin films prepared by pulsed laser deposition (PLD)
KR100760600B1 (ko) 레이저 시스템, 이러한 레이저 시스템을 포함하는 레이저 장치, 및 이러한 레이저 장치에서 반도체 필름을 결정화하는 방법
Ahmad et al. Porous structure formation on silicon surface treated by plasma focus device
Cristescu et al. New results in pulsed laser deposition of poly-methyl-methacrylate thin films
Her et al. Crystallization kinetics of ultrathin amorphous Si film induced by Al metal layer under thermal annealing and pulsed laser irradiation
Döring Analysis of the hole shape evolution in ultrashort pulse laser drilling
Costa et al. Boron film laser deposition by ultrashort pulses for use as neutron converter material
Gan Crystallization dynamics of chalcogenide glass films under non-equilibrium conditions
Tomov et al. Ultrafast X-ray determination of transient structures in solids and liquids
Gurevich et al. Experimental and numerical study of surface alloying by femtosecond laser radiation
Levin et al. Comparative study of interfaces of Fe–Al multilayers prepared by direct and crossed-beam pulsed laser deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845205

Country of ref document: EP

Kind code of ref document: A1