WO2019029303A1 - 一种功率转换模块及电源系统 - Google Patents

一种功率转换模块及电源系统 Download PDF

Info

Publication number
WO2019029303A1
WO2019029303A1 PCT/CN2018/094821 CN2018094821W WO2019029303A1 WO 2019029303 A1 WO2019029303 A1 WO 2019029303A1 CN 2018094821 W CN2018094821 W CN 2018094821W WO 2019029303 A1 WO2019029303 A1 WO 2019029303A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
power conversion
output
conversion module
positive
Prior art date
Application number
PCT/CN2018/094821
Other languages
English (en)
French (fr)
Inventor
郭启利
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Publication of WO2019029303A1 publication Critical patent/WO2019029303A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration

Definitions

  • the invention relates to a power conversion module and a power supply system, in particular to a high voltage input and modular application.
  • high-voltage input occasions such as photovoltaic power supply
  • the high voltage can reach 1500V or higher. Therefore, it is necessary to increase the rated voltage of the switch of the latter-stage converter.
  • the high on-resistance of the high-voltage MOSFET leads to large conduction loss and high cost.
  • IGBT can be used as the switching tube. Although the saturation voltage drop of the IGBT is small, there is a current tailing phenomenon, which limits the improvement of the switching frequency. It is not conducive to reducing the volume of transformers and filter components (inductance, capacitance), plus cost factors, obviously not a good choice.
  • the most basic method for building a power system with a standard power module is to use a series-parallel combination of input/output. Taking two identical power modules as an example, the following four power systems can be combined by using the input/output series-parallel method:
  • System 1 Input parallel, output parallel system
  • System 2 input series, output parallel system
  • System 3 input parallel, output series system
  • System 4 Input series, output system in series.
  • the first system has been widely used.
  • Typical products include high-power communication power systems, high-power UPS systems, etc.
  • the other three systems are not widely used.
  • Each module in system 2 is preferably independent of each other, that is, each has its own control and power supply.
  • each module cannot be made into a precise voltage regulation of the output voltage as a single standard power supply, because in that case, the current of each module connected in parallel at the output terminal will cause a very large unevenness due to the factory setting value error of the module voltage. This will also cause the modules to be extremely uneven in their input voltage, which will affect the reliability and even damage of the module. Therefore, it is generally impossible to directly connect the input and the output to the power supply module with precision voltage regulation.
  • the input impedance of the small signal model of the Royer circuit is positive, which is more suitable for series-parallel systems.
  • the Royer circuit is used in the high-voltage system. The selection of the switching tube is difficult, and it is not suitable for the series-parallel system under high voltage. in.
  • the switching power supply has attracted much attention for its volume and flexibility.
  • high-power ultra-thin products the volume of high-voltage devices and the size of the transformer seriously affect the overall product height.
  • One is to use the series-parallel form of the transformer to spread the power in several transformers, reduce the volume of the transformer, thereby reducing the volume of the entire switching power supply; another way is to connect the modules in series and parallel. Power expansion through series and parallel connection of several small power modules.
  • the current parallel connection structure of two modules is required to add an additional current sharing circuit outside the module.
  • the external control of the application is complicated, and there are certain professional restrictions for the customer. Some non-electronic professional Ordinary customers cannot simply implement. Or through some topologies with positive impedance characteristics, the primary side series side parallel is used for its unique natural voltage equalization.
  • FIG. 1 is a schematic diagram of two modules directly inputting serial output in parallel
  • FIG. 2 is a direct input of two modules in parallel and serial output.
  • FIG. 3 is a schematic diagram of a parallel connection structure of a plurality of modules directly inputting a series output
  • FIG. 4 is a schematic structural diagram of a plurality of modules directly inputting a series output parallel and adding a voltage stabilizing module.
  • the first embodiment of the utility model patent No. 201621402396.3 adopts two 60W standard power conversion modules with an input voltage range of 120 VDC to 240 VDC as a 120 W power supply system in series and parallel, and the input connection thereof under open loop control.
  • the output parallel effect was verified experimentally.
  • the accuracy of the input voltage accuracy of the module will decrease.
  • the two extreme deviations of the control parameters can be further deviated from the two extremes of the power level parameters, and then combined according to the size of the module gain.
  • the two modules A and B with the largest gain and the smallest gain correspond to the following parameters:
  • the module with the largest gain L m(min) , L r(min) , C r(min) , D mac , f s(min) ;
  • the module with the smallest gain L m(max) , L r(max) , C r(max) , D min , f s(max) .
  • Combination 1 Input series/output parallel experiment with power level and control as nominal parameters
  • Combination 2 Input series/output parallel experiment with power stage and duty cycle as nominal parameters, but switching frequency is upper and lower deviation respectively
  • Combination 3 Input series/output parallel experiment with power stage and switching frequency as nominal parameters, but the duty ratio is upper and lower deviation respectively
  • Combination 4 The switching frequency and duty cycle are nominal parameters, but the power level parameters are the input series/output parallel experiment of the upper and lower deviations respectively.
  • Combination 5 Input series/output parallel experiment with duty cycle as nominal parameter, but power level parameter and switching frequency are upper and lower deviation respectively
  • Table 1 The experimental data of the input voltage equalization effect and the output current sharing effect of the system are shown in Table 1 and Table 2.
  • the combination 1 is the data with good consistency between the two modules. It can be seen from the data that the consistency is guaranteed.
  • the input equalization accuracy is less than 1%, and the current sharing accuracy is also within ⁇ 1%. Even if the inconsistency of the two modules is considered, the equalization and current sharing accuracy are within ⁇ 10% accuracy.
  • Table 3 shows the output voltage values of various parameter combinations for different input voltages and full output.
  • Vg 400V ⁇ 0.38% ⁇ 1.20% ⁇ 8.2% ⁇ 6.8% ⁇ 5.5%
  • Vg 530V ⁇ 0.15% ⁇ 1.21% ⁇ 8.0% ⁇ 6.9% ⁇ 5.6%
  • the technical problem to be solved by the invention is: a power conversion module, which realizes input voltage equalization, output current sharing requirement in the power supply system of input series connection and output parallel connection, and can ensure high output voltage precision and realize multiple modules
  • Direct series-parallel connection makes the power system more flexible. Compared with the two-stage solution, the efficiency is higher, the output is more stable, and it is not affected by the topology.
  • the input stage uses multiple modules in series, so the voltage stress of each module is greatly reduced.
  • a power conversion module internally comprises: a main power circuit, a control driving circuit, a loop isolation circuit, an original secondary side isolation circuit, an input voltage sampling circuit, an input voltage equalizing ring, an output voltage stabilizing ring, and the terminal of the power conversion module includes at least However, it is not limited to the following: positive input terminal, negative input terminal, positive output terminal, negative output terminal, positive signal output, positive signal input, and output voltage sampling terminal.
  • connection relationship is as follows: two input ends of the main power circuit are respectively connected to the positive input terminal and the negative input terminal, and output to the positive output terminal and the negative output terminal through their own power conversion to form an output voltage;
  • the two input terminals of the input voltage sampling circuit are respectively connected to the positive input terminal and the negative input terminal for sampling the input voltage, and the output end of the input voltage sampling circuit is simultaneously connected to the signal output of the power conversion module and one of the input equalization loops.
  • the other input of the input grading ring is connected to the signal input positive of the power conversion module, and the output of the input grading ring is connected to the control drive circuit through an input of the loop isolation circuit to generate a corresponding input grading ring
  • the driving signal that changes in the road controls the switching tube in the main power circuit to form a voltage equalizing loop of the power conversion module.
  • the output voltage sampling terminal of the power conversion module is connected to the input end of the output voltage stabilizing ring, and the output end of the output voltage stabilizing ring is sequentially connected to the control driving circuit through the original secondary side isolation circuit and the other input end of the loop isolation circuit, and the driving is controlled.
  • the circuit generates a switching signal in the main power circuit that is controlled by a corresponding output voltage regulation loop to form a voltage regulation loop of the power conversion module.
  • the input voltage sampling circuit, the input voltage equalizing loop, and the control driving circuit are common to the primary side of the main power circuit, that is, the signal input positive, the signal output is positively combined with the input voltage, and the output voltage regulator and the main power circuit
  • the secondary side is common, that is, the output voltage sampling terminal and the output voltage of the power conversion module have a common reference voltage.
  • the main power circuit can employ an asymmetric half-bridge flyback topology.
  • the two switching tubes in the asymmetric half-bridge flyback topology are MOS tubes or triodes.
  • the driving pulse signals of the two switching tubes in the asymmetric half-bridge flyback topology are staggered to prevent a dead time of the common short circuit.
  • the dead time between the drive pulse signals of the two switching tubes in the asymmetric half-bridge flyback topology is 300 nS.
  • the output voltage sampling terminal and the negative output terminal can be connected to shield the function of the output voltage regulator ring.
  • the signal input can be connected to the negative input terminal to shield the function of the input voltage equalization ring.
  • a power supply system comprising the above power conversion module, comprising N (N is a natural number greater than 1) of the above power conversion modules, each of the power conversion modules further comprising, but not limited to, the following terminal: signal output positive, signal Input positive, positive input, negative input, positive output, negative output and output voltage sampling terminal;
  • the positive input end of the first power conversion module is used as the positive input end of the power system, the signal output of the first power conversion module is floating, and the negative input end of the first power conversion module is connected to the positive input end of the second power conversion module, The negative input end of the second power conversion module is connected to the positive input end of the third power conversion module, and so on, the negative input end of the N-1 power conversion module is connected to the positive input end of the Nth power conversion module; the first power conversion The signal input of the module is being connected to the signal output of the second power conversion module, the signal input of the second power conversion module is being connected to the signal output of the third power conversion module, and so on, the N-1 power conversion module The signal input is being connected to the signal output of the Nth power conversion module, and the signal input of the Nth power conversion module is connected to the negative input terminal of the Nth power conversion module and serves as a negative input terminal of the power system;
  • the positive output ends of the N power conversion modules are connected as a positive output end of the power system, and the negative output ends of the N power conversion modules are connected as a negative output end of the power system.
  • the output voltage sampling terminal of the Nth power conversion module is connected to the positive output end of the power system, and the output voltage sampling terminals of the remaining N-1 power conversion modules are connected to the negative output end of the power system.
  • the present invention has the following beneficial effects:
  • the invention adopts modular thinking and can split the system into N identical standard modules
  • the user can directly use the standard module to set up the system freely according to the requirements.
  • the use is flexible and the portability is high.
  • the system has low requirements for the customer.
  • the input of the module can be directly connected and the output can be connected in parallel. Professional knowledge;
  • each standard module uses DC voltage small signal, multi-module input series, output parallel system is easy to lay, no mutual interference.
  • Figure 1 is a block diagram of a utility model patent dual module input series output parallel system with application number 201621402396.3;
  • Figure 2 is a block diagram of a dual-module input series output parallel system with a voltage regulator module with a utility model patent of 201621402396.3;
  • Figure 3 is a block diagram of an input series output parallel system of N standard modules of utility model patent of 201621402396.3;
  • Figure 4 is a block diagram of an input series output parallel system of N standard modules with a voltage regulator module of the utility model patent of 201621402396.3;
  • FIG. 5 is a schematic block diagram of a power conversion module of the present invention.
  • FIG. 6 is an external pin diagram of a power conversion module of the present invention.
  • Figure 7 is a connection diagram of a power supply system in which a dual power conversion module inputs a series connection and an output parallel connection;
  • Figure 8 is a connection diagram of the power supply system in which the input power series of the N power conversion modules are connected in parallel;
  • Figure 9 is a schematic diagram of a single power conversion module connected to an output voltage regulation mode
  • Figure 10 is a schematic diagram of a single power conversion module connected to an input voltage equalization mode
  • Figure 11 is a schematic diagram of a single module in an input serial output parallel system of the first embodiment
  • Figure 12 is a schematic diagram of the input grading ring of the first embodiment.
  • the invention provides a novel power conversion module and a power supply system composed of the power conversion module.
  • the power conversion module includes a dual loop control system, that is, two loops exist in one power system, and one loop is used to control The output voltage is stable, and the other loop is used to control the input voltage equalization of each module of the N module input series output parallel system.
  • the output voltage regulator ring and the input voltage equalization ring it will be referred to as the output voltage regulator ring and the input voltage equalization ring.
  • the external voltage connection is required to form the output voltage regulation mode and the input voltage equalization mode.
  • the external terminal connection mode shown in Figure 9 and Figure 10 is shown in Figure 9. Mode connection mode, Figure 10 enters the connection mode of the equalization mode.
  • FIG. 5 is a schematic block diagram of a power conversion module according to the present invention, wherein a main power circuit is used for input and output voltage isolation conversion; a control driving circuit provides a control signal for a main power circuit; and a loop isolation circuit is used to isolate an input voltage equalization loop and The output voltage loop has two loops; the original secondary side isolation circuit isolates the signal; the input voltage equalization loop makes the input voltages of the power conversion modules in the input series output parallel power supply system equal; the output voltage regulator loop is used to stabilize the output voltage
  • the input voltage sampling circuit is used to collect the input voltage of the power conversion module, and the input and output signals are linear.
  • the input voltage equalization loop does not work.
  • the output voltage sampling of the power conversion module is performed.
  • the terminal is connected to the positive output voltage terminal to achieve the function of sampling the output voltage.
  • the power conversion module has only one output voltage regulator ring, and its working process is the same as that of the ordinary switching power supply, and will not be described herein.
  • the output voltage regulator loop does not work.
  • the signal input of the power conversion module is positive.
  • the terminal is connected to the positive terminal of the signal output of another power conversion module (as a loop sampling signal), and the input voltage equalization loop module in the power conversion module compares its own signal output positive terminal (as a loop reference signal) with The signal output of the positive output of the other power conversion module produces a loop signal that controls the duty cycle.
  • the power conversion module has only one input equalization loop.
  • the loop sampling signal is different from the loop reference signal, and other working processes are the same as the ordinary switching power supply, and will not be described herein.
  • FIG. 11 is a circuit schematic diagram of a power conversion module according to the present invention.
  • the power conversion module comprises: a main power circuit, an input voltage sampling circuit, a control driving circuit, a loop isolation circuit, an original secondary side isolation circuit, an input voltage equalizing ring, an output voltage stabilizing ring; at least seven terminals: a positive input terminal Vg+, Negative input terminal Vg-, positive output terminal Vo+, negative output terminal Vo-, signal input positive Vg_s_in+, signal output positive Vg_s_out+, output voltage sampling terminal Vo_s.
  • the two input terminals of the main power circuit are respectively connected to Vg+ and Vg-, and the two output ends of the main power circuit are respectively connected to Vo+ and Vo-, and the two input ends of the input voltage sampling circuit are respectively connected to Vg+ and Vg-, and the input
  • the output of the voltage sampling circuit is simultaneously connected to one input of Vg_s_out+ and the input grading ring, the other input of the input grading ring is connected to Vg_s_in+, and the output of the input grading ring is connected to the control driving circuit through a loop isolation circuit. Controlling the switching transistors in the main power circuit to generate drive signals that vary with the respective loops.
  • the output voltage sampling terminal of the power conversion module is connected to the input end of the output voltage stabilizing ring, and the output end of the output voltage stabilizing ring is sequentially connected to the control driving circuit through the original secondary side isolation circuit and the other input end of the loop isolation circuit, and the driving is controlled.
  • the circuit generates a drive signal that varies with the respective loop to control the switch tube in the main power circuit.
  • the asymmetric half-bridge flyback power stage topology in the prior art can be used, and the capacitor Cin, the switches S1 and S2, the inductor Lr, the capacitor Cr, the transformer T, the transformer primary winding Np, the transformer secondary winding Ns, Diode D1, capacitor C1, inductor L1 and capacitor C2;
  • the positive terminal of capacitor Cin is connected to Vg+, the negative terminal is connected to Vg-, Vg- is connected to the ground of the primary side;
  • the connection point of the drain connection capacitor Cin of switch S1 is connected with the positive input terminal Vg+
  • the source of the switch S1 is connected to one end of the inductor Lr, the source of the switch S1 is also connected to the drain of the switch S2, the source of the switch S2 is connected to the ground terminal of the primary side, and the other end of the inductor Lr is connected to the same name end of the primary winding Np of the transformer;
  • One end of the capacitor Cr is connected to the opposite end of the transformer primary winding Np
  • the control driving circuit adopts a circuit commonly used in the prior art, and is controlled by a control chip UC3843, a driving circuit, a current sampling circuit, a capacitor Cq1, a capacitor Cq2, a capacitor Ct, a capacitor Cv2, a resistor Rt, a resistor Rv1, a resistor Rv2, a resistor Rv3, and a resistor R3.
  • Diode D2 and diode D3 are formed; one end of capacitor Cq1 is connected with the power supply pin Vcc and voltage Vcc_p of the chip UC3843, the Vcc pin of the control chip UC3843 is taken from the power supply Vcc_p, and the other end of the capacitor Cq1 is simultaneously connected with the ground pin GND of the chip UC3843
  • the primary side ground connection is connected; the drive circuit is connected to the output pin OUT of the chip UC3843, and outputs two drive signals Vgs1 and Vgs2 to the gates of the switch S1 and the switch S2, respectively, to provide a switch control signal for the switch S1 and the switch S2.
  • a dead time of two driving signals is required to be staggered, and the value of this embodiment is 300 nS;
  • the first input and the second of the current sampling circuit are The input end is connected in parallel with the two ends of the capacitor Cr of the main power circuit, the output end of the current sampling circuit is connected with the CS pin of the control chip UC3843; one end of the capacitor Cq2 is connected to the ground side of the primary side, and the other end of the capacitor Cq2 is connected to the reference voltage Vref and the resistor at the same time.
  • the capacitor Cv2 is connected in parallel with the resistor Rv3, in parallel
  • One end of the circuit is connected to the Comp pin of the control chip UC3843, the other end is connected to one end of the resistor Rv1, one end of the resistor Rv2 and the Vfb pin of the control chip UC3843, and the Vfb pin is a feedback pin of the chip UC3843;
  • the loop isolation circuit is composed of a resistor Rv1, a diode D2, a resistor Rv2, a diode D3, and a resistor R3.
  • One end of the resistor Rv1 is connected to one end of the resistor Rv2 as an output end of the loop isolation circuit; the other end of the resistor Rv1 is connected to the diode D2.
  • the cathode of the D2 is connected as an input of the loop isolation circuit to the output of the input grading loop circuit; the other end of the resistor Rv2 is connected to the cathode of the diode D3, and the anode of the diode D3 is connected as the other input of the loop isolation circuit.
  • the output of the primary secondary isolation circuit; the anode of D3 is also connected to one end of the resistor R3, and the other end of the resistor R3 is connected to the primary ground terminal.
  • the primary and secondary isolation circuits can be realized by using an optocoupler plus a peripheral circuit; the optocoupler OC1, the resistor R1, and the resistor R2; the first pin of the optocoupler OC1 is connected with the series node of the resistor R1 and the resistor R2, and the resistor R2 is One end is connected to the second pin of the optocoupler OC1 and serves as the input end of the original secondary side isolation circuit, the other end of the R1 is connected to the voltage terminal Vcc_s, and the third pin of the optocoupler OC1 is connected to the reference voltage terminal Vref, and the optocoupler OC1 is The fourth pin acts as the output of the primary secondary isolation circuit.
  • the output voltage regulator ring is composed of a resistor Rf1, a resistor Rf2 and a voltage stabilizing source TL431.
  • the resistor Rf1 and the resistor Rf2 are connected in series.
  • One end of the series circuit is connected to the negative output terminal, and the other end of the series circuit is connected to the ground side of the secondary side;
  • the anode of the TL431 is connected to the ground of the secondary side, the cathode of the TL431 is used as the output of the output voltage regulator, and the adjustable end of the TL431 is connected to the series node of the resistor Rf1 and the resistor Rf2.
  • the input voltage sampling circuit is composed of a resistor R6, a resistor R7, a resistor R8 and a resistor R9. Resistor R6 and resistor R7 are connected in series, one end of the series circuit is connected to the positive input terminal Vg+, the other end is connected to Vg-; the resistor R8 and the resistor R9 are connected in series, one end of the series circuit is connected to the positive input terminal Vg+, and the other end is connected to Vg-; The series node of resistor R8 and resistor R9 is connected to the positive output of the signal, and the series node of R6 and R7 is connected to one input of the input grading loop.
  • the input voltage equalization loop is composed of an operational amplifier LM358, a capacitor Ci1, a resistor Ri1, a resistor R4, a resistor R5, and a resistor R10.
  • One end of the resistor R10 is connected to the signal input positive Vg_s_in+ and serves as the other input terminal of the input voltage equalization loop, and the resistor R10 is additionally One end is connected to one end of the resistor Ril, the negative input terminal of the operational amplifier, and one end of the resistor R4, and the other end of the resistor R4 serves as an input terminal of the input voltage equalizing ring; the other end of the resistor Ril is connected to one end of the capacitor Cil, and the other end of the capacitor Cil is The output of amplifier A2 is connected and serves as the output of the input voltage equalization loop; one end of resistor R5 is connected to the positive input terminal of the operational amplifier, and the other end of the resistor R5 is connected to the ground terminal of the primary side.
  • Two loops are designed in each module: an output voltage regulator loop and an input voltage equalization loop.
  • Modules with different functions can be implemented with simple external wiring.
  • the connection of the input voltage equalization module and the output voltage stabilization module can be implemented by using the pin connection method of FIG. 9 and FIG. 10, and the specific module schematic diagram shown in FIG. 11 is no longer used for drawing.
  • connection of the dual module input series output parallel power supply system can be realized by the pin connection mode of Fig. 7, wherein the lower module is connected into an output voltage regulation closed loop control, called the voltage regulator module; the upper module is connected into an input voltage equalization closed loop. Control, called equalization module; each module has only one closed loop working.
  • the input series and output parallel structure extended to N modules are shown in Fig. 8. Only one module is connected into an output voltage regulation closed loop control, and the remaining modules are connected to form an input voltage equalization loop control.
  • the whole system is composed of a series input and a parallel output of two upper and lower power conversion modules, and the main power stage working principle of the single power conversion module is the same as the asymmetric half bridge flyback circuit, which is known to those skilled in the art. It is a well-known technology and will not be developed here.
  • the control process is as follows:
  • the upper module is the voltage equalization module of the system. It is responsible for adjusting the input size of the upper module and the lower module to make the input voltages of the two equal.
  • the working principle is as follows:
  • the output voltage sampling terminal Vo-s1 of the upper module is connected to the negative output terminal Vo1- of the upper module, that is, the output ground of the upper module, and the phototransistor of the optocoupler is turned off, so the emitter potential of the phototransistor is low, and the diode D3 is turned off.
  • the output voltage regulator loop of the upper module is shielded.
  • the upper module signal input positive Vg_s_in1+ is connected to the lower module's signal output positive Vg_s_out2+.
  • the equalizing ring part is drawn separately. As shown in Fig. 12, the operational amplifier A1 is used to form the addition comparator.
  • Cin1 and Cin2 are the input capacitance of the upper module and the input capacitance of the lower module respectively.
  • R61 and R71 are the input voltage sampling resistors of the upper module
  • the phase input terminal potential is zero; when the input voltage of the upper module is slightly higher than the input voltage of the lower module, the output voltage of the op amp output terminal decreases, the Comp voltage rises, and the duty ratio of the control drive signal becomes larger, and the energy of the upper module at this time More transmission to the secondary side causes the voltage on the input capacitor Cin1 of the upper module to drop; conversely, when the input voltage of the lower module is higher than the input voltage of the upper module, the output voltage of the output of the operational amplifier rises, the voltage of the Comp decreases, and the control is driven.
  • the duty cycle of the signal becomes smaller, at which time the energy delivered to the secondary side by the upper module is reduced, causing the voltage on the input capacitance Cin1 of the upper module to rise.
  • the upper module and the lower module are both 60W switching power supplies, adopting an asymmetric half-bridge flyback topology, the input voltage range is 120VDC to 240VDC, and the two modules form a 120W power supply system, which is under full-closed operation.
  • the input serial output parallel effect was experimentally verified.
  • the tolerance experiment is verified.
  • the two extreme deviations of the control parameters and the two extreme deviations of the power level parameters are combined into a new two extreme deviation modules according to the gain of the power conversion module.
  • the two modules with the largest gain and the smallest gain correspond to the following parameters:
  • excitation inductance minimum excitation inductance minimum
  • leakage inductance minimum resonance capacitance minimum
  • frequency minimum namely: L m(min) , L r(min) , C r(min) , f s(min) ;
  • the module with the smallest gain the maximum value of the magnetizing inductance, the maximum leakage inductance, the maximum value of the resonant capacitor, and the maximum frequency, namely: L m(max) , L r(max) , C r(max) , f s(max) .
  • Combination 1 Input series/output parallel experiment with power level and control as nominal parameters
  • Combination 2 Input series/output parallel experiment with power level as standard parameter but switching frequency is up and down deviation
  • Combination 3 Input series/output parallel test with switching frequency as nominal parameter, but power level is upper and lower deviation respectively
  • Combination 4 Input series/output parallel experiment with switching frequency and power level parameters respectively
  • Combination 5 Input series/output parallel experiment with switching frequency as nominal parameter, but power level is upper and lower deviation respectively
  • Combination 6 Input series/output parallel experiment with switching frequency and power level parameters respectively lower and upper deviation
  • Tables 4 to 7 show the experimental results of various parameter combinations under different input voltages.
  • Table 5 shows the different input voltages.
  • Table 6 is the output voltage of various parameters combined under different input voltages and full load output;
  • Table 7 is the voltage equalization of the actual PCM control closed-loop experiment of the external power supply DC-DC part Loop and voltage regulator loop test results.
  • Table 7 Voltage equalization loop and voltage regulator loop test results of the actual power supply DC-DC part of the actual PCM control closed-loop experiment
  • the input equalization accuracy and output current sharing accuracy of combination 1 to combination 6 are both within 1%, the output voltage accuracy is also within 1%, and the input equalization loop has a bandwidth of about 0.8KHz and has a very high Large phase margin and gain margin. From the perspective of phase margin and gain margin, the loop bandwidth has a large increase, and the loop stability is very good, meeting the requirements of the input voltage equalization system.
  • the invention can be fully proved that not only the input voltage equalization accuracy and the output current sharing precision can be satisfied, but more importantly, the output voltage precision can be controlled at about 1%, realizing the equalizing current and the output voltage. Purpose, a higher level than the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提供一种功率转换模块及由该功率转换模块组成的电源系统,每个功率转换模块内都设计了两个环:一个输出稳压环,一个输入均压环。可以通过简单的外部接线,来实现不同作用的模块工作。使得由该功率转换模块进行输入串联、输出并联组成的电压系统具有输入均压、输出稳压的功能。用户可以按照需求直接使用标准模块自由组建系统,使用灵活,可移植性高,且该系统对客户的要求低,直接将模块的输入串联、输出并联即可,不需要本专业的专业知识。

Description

[根据细则37.2由ISA制定的发明名称] 一种功率转换模块及电源系统 技术领域
本发明专利涉及一种功率转换模块及电源系统,特别涉及用于高压输入、模块化应用的场合。
背景技术
在开关电源的应用系统中,高压输入场合,如光伏电源,一般其输入范围宽且输入电压高,高压可达到1500V甚至更高,因此需要提高后一级变换器开关管的额定电压。而高压MOSFET的通态电阻大,导致导通损耗大,且成本极高;有人说可以采用IGBT作为开关管,IGBT饱和压降虽小,但存在电流拖尾现象,限制了开关频率的提高,不利于减小变压器和滤波器件(电感、电容)的体积,再加上成本因素,明显不是好的选择。
为了解决光伏开关电源的高输入电压问题,有些开关电源厂家就想出了在开关电源内部进行功率器件的串并联,用多个低压功率器件来取代所需要的高压应用场合,但是这样的标准开关电源模块限制了用户的选择,一般的厂家为了减少产品型号的数量,都会做超宽范围的输入,导致产品的成本提高,但是对于客户来说却是冗余设计。也有人想到了组合变换器的设计思路,但是一般都是采用复杂的外部控制电路实现的,系统复杂且应用不够灵活。因此,对于电源模块厂家来说能否用标准电源模块直接组成客户端需要的电源系统是值得考虑的问题。如果可以,则可以大大减少电源生产公司所生产的电源品种,方便用户自行设计其需要的供电系统。
用标准电源模块来搭建电源系统,最基本的方法就是采用输入/输出的串并联组合。拿两个完全相同的电源模块作为例子,通过采用输入/输出的串并联方法,共有下列四种电源系统可以组合得到:
系统1:输入并联,输出并联的系统;
系统2:输入串联,输出并联的系统;
系统3:输入并联,输出串联的系统;
系统4:输入串联,输出串联的系统。
这四种系统中,已得到广泛应用的是第一种系统。典型的产品有大功率通信电源系统,大功率UPS系统等,另外三种系统,应用还不多。
系统2中的每个模块,从冗余性要求出发,最好相互独立,即各自有自己的控制与供电。但各个模块不能按单个标准电源一样,做成输出电压的精密稳压,因为那样 的话,各模块在输出端并联后的电流,会由于模块电压的出厂设置值误差,而导致非常大的不均,这也将导致各模块在其输入电压上的极大不均,从而影响模块的可靠性,甚至损坏。所以,一般不能对具有精密稳压的电源模块进行直接的输入串联、输出并联。
在现有常用的拓扑中,正激、反激均从原理上就否决了输入串联输出并联系统的可行性。在常用的拓扑中Royer电路的小信号模型中的输入阻抗为正,较为适合串并联系统中,但是Royer电路用于高压系统中,开关管的选取较为困难,并不适合高压下的串并联系统中。
开关电源作为其他电子设备的能量转换供给单元,其体积与灵活性也备受关注,比如大功率超薄产品,其高压器件的体积以及变压器的体积严重的影响了整体产品的高度。这里有两种解决方式,一种是利用变压器的串并联形式,将功率分散在几个变压器中,减少变压器的体积,从而达到减少整个开关电源体积的目的;另一种思路就是模块的串并联,通过几个小功率模块的串并联而进行功率拓展。但是目前市面上进行两个模块的输入串联输出并联的结构,都需要在模块外额外的添加均流电路,如此应用的外部控制复杂,对于客户来说有一定的专业限制,一些非电子专业的普通客户无法简单的实现。或者通过一些具有正阻抗特性的拓扑,利用其特有自然均压进行原边串联副边并联。
在申请号为201621402396.3的实用新型专利中提及的串并联结构中,采用的是开环控制的不对称半桥反激变换器开关电源模块进行串并联。
上述专利虽然可以实现两个开关电源模块的简单并联,但是由于负载调整率等原因,整个系统的输出电压范围比输入的电压范围还要大,因此需要添加第二级稳压系统,这对系统的整体效率影响很大。该实用新型专利的电路结构如图1、图2、图3、图4所示,其中图一为两个模块直接输入串联输出并联的结构示意图,图2为两个模块直接输入串联输出并联并添加稳压模块的结构示意图,图3为多个模块直接输入串联输出并联结构示意图,图4为多个模块直接输入串联输出并联并添加稳压模块的结构示意图。
申请号为201621402396.3的实用新型专利中第一实施例采用两个60W,输入电压范围为120VDC~240VDC的标准功率转换模块作为串并联组成一个120W的电源系统,对其在开环控制下的输入串联输出并联效果进行了实验验证。考虑开环控制参数的偏差后,模块的输入电压精度估计会有所下降,此时可将控制参数的两个极端偏差再与功率级参数的两种极端偏差,按模块增益的大小,再组合成一种新的两个极端模块。 从理论上,增益最大和增益最小的这两个模块A和B分别对应下列参数:
增益最大的模块:L m(min),L r(min),C r(min),D mac,f s(min)
增益最小的模块:L m(max),L r(max),C r(max),D min,f s(max)
将上述的五个参数组合成以下五组实验参数:
组合1:功率级和控制均为标称参数的输入串联/输出并联实验
A模块参数:L m=145uH,L r=7uH,C r=0.27uF,D=0.5,f s=100KHz
B模块参数:L m=145uH,L r=7uH,C r=0.27uF,D=0.5,f s=100KHz
组合2:功率级和占空比为标称参数,但开关频率分别为上下偏差的输入串联/输出并联实验
A模块参数:L m=145uH,L r=7uH,C r=0.27uF,D=0.5,f s=90KHz
B模块参数:L m=145uH,L r=7uH,C r=0.27uF,D=0.5,f s=110KHz
组合3:功率级和开关频率为标称参数,但占空比分别为上下偏差的输入串联/输出并联实验
A模块参数:L m=145uH,L r=7uH,C r=0.27uF,D=0.55,f s=100KHz
B模块参数:L m=145uH,L r=7uH,C r=0.27uF,D=0.45,f s=100KHz
组合4:开关频率和占空比为标称参数,但功率级参数分别为上下偏差的输入串联/输出并联实验
A模块参数:L m=130.5uH,L r=6.3uH,C r=0.22uF,D=0.5,f s=100KHz
B模块参数:L m=159.5uH,L r=7.7uH,C r=0.22uF,D=0.5,f s=100KHz
组合5:占空比为标称参数,但功率级参数和开关频率分别为上下偏差的输入串联/输出并联实验
A模块参数:L m=130.5uH,L r=6.3uH,C r=0.22uF,D=0.55,f s=90KHz
B模块参数:L m=159.5uH,L r=7.7uH,C r=0.22uF,D=0.45,f s=110KHz
系统的输入均压效果与输出均流效果的实验数据如表1与表2所示,组合1是两个模块的一致性很好的数据,从该数据可以看出,在保证了一致性的基础上输入均压精度都在1%以内,均流精度也都在±1%以内,即便是考虑到了两个模块的不一致性,其均压与均流精度也都在±10%的精度内。表3为不同输入电压且输出满载情况下,各种参数组合的输出电压值。
表1 不同输入电压下,各种参数组合的最大输入电压均压精度
均压精度 组合1 组合2 组合3 组合4 组合5
Vg=300V ±0.67% ±1.23% ±8.7% ±6.8% ±5.6%
Vg=400V ±0.38% ±1.20% ±8.2% ±6.8% ±5.5%
Vg=530V ±0.15% ±1.21% ±8.0% ±6.9% ±5.6%
表2 不同输入电压下,各种参数组合的满载输出电流均流精度
均流精度 组合1 组合2 组合3 组合4 组合5
Vg=300V ±0.10% ±0.92% ±8.5% ±6.6% ±6.1%
Vg=400V ±0.12% ±1.30% ±7.9% ±7.0% ±7.4%
Vg=530V ±0.25% ±1.63% ±7.6% ±7.3% ±6.9%
表3 不同输入电压且输出满载情况下,各种参数组合的输出电压(V)
输出电压 组合1 组合2 组合3 组合4 组合5
Vg=300V 13.99 13.97 13.95 13.63 14.52
Vg=400V 19.28 19.25 19.24 18.81 19.99
Vg=530V 25.93 25.91 25.89 25.26 26.81
从以上三个表格中可以看出,两个模块输入串联输出并联后可以满足两个模块的输入均压与输出均流精度,但是输出电压范围却大于输入电压范围,目前ACDC的母线电压范围为5:1左右,那么后级的稳压模块的设计难度极大。
发明内容
本发明要解决的技术问题为:一种功率转换模块,实现输入串联和输出并联这种电源系统中的输入均压,输出均流要求,并能保证其具有高输出电压精度,实现多个模块的直接串并联,使电源系统更加灵活,相比两级方案,效率更高,输出更稳定,并且不受拓扑的影响。引入模块化思想,输入级采用多个模块串联方式,如此每个模块的电压应力就会大大降低。
为了达到上述目的,本发明是通过以下技术方案实现的:
一种功率转换模块,内部包含:主功率电路、控制驱动电路、环路隔离电路、原副边隔离电路、输入电压取样电路、输入均压环、输出稳压环,功率转换模块的端子至少包含但不限于以下:正输入端、负输入端、正输出端、负输出端、信号输出正、信号输入正、输出电压采样端子。
其连接关系为:主功率电路的两个输入端分别连接到正输入端和负输入端,通过其本身的功率转换,输出到正输出端和负输出端,形成输出电压;
输入电压取样电路的两个输入端分别连接到正输入端和负输入端,用以采样输入电压,输入电压取样电路的输出端同时连接至功率转换模块的信号输出正与输入均压 环的一个输入端;
输入均压环的另一个输入端连接至功率转换模块的信号输入正,输入均压环的输出端通过环路隔离电路的一个输入端连接到控制驱动电路,以产生随相应的输入均压环路而变化的驱动信号控制主功率电路中的开关管,形成功率转换模块的均压环路。
功率转换模块的输出电压采样端子连接至输出稳压环的输入端,输出稳压环的输出端依次通过原副边隔离电路、环路隔离电路的另一个输入端连接至控制驱动电路,控制驱动电路产生随相应的输出稳压环路而变化的驱动信号控制主功率电路中的开关管,形成功率转换模块的稳压环路。
输入电压取样电路、输入均压环、控制驱动电路三者与主功率电路的原边共地,亦即:信号输入正、信号输出正与输入电压共参考电压;输出稳压环与主功率电路的副边共地,亦即:输出电压采样端子与功率转换模块的输出电压共参考电压。
优选的,主功率电路可采用不对称半桥反激拓扑。
优选地,不对称半桥反激拓扑中的两个开关管为MOS管或三极管。
优选地,不对称半桥反激拓扑中的两个开关管的驱动脉冲信号之间错开一防止共通短路的死区时间。
优选地,不对称半桥反激拓扑中的两个开关管的驱动脉冲信号之间的死区时间为300nS。
作为上述技术方案的应用:可以将输出电压采样端子与负输出端连接,屏蔽输出稳压环的功能。
作为上述技术方案的应用:可以将信号输入正与负输入端连接,屏蔽输入均压环的功能。
一种由上述功率转换模块组成的电源系统,包括N(N为大于1的自然数)个上述功率转换模块,每个功率转换模块均还包含有但不局限于以下引出端子:信号输出正、信号输入正、正输入端、负输入端、正输出端、负输出端和输出电压采样端子;
第一功率转换模块的正输入端作为电源系统的正输入端,第一功率转换模块的信号输出正悬空,第一功率转换模块的负输入端与第二功率转换模块的正输入端相连,第二功率转换模块的负输入端与第三功率转换模块的正输入端相连,依次类推,第N-1功率转换模块的负输入端与第N功率转换模块的正输入端相连;第一功率转换模块的信号输入正与第二功率转换模块的信号输出正相连,第二功率转换模块的信号输入正与第三功率转换模块的信号输出正相连,以此类推,第N-1功率转换模块的信号输入正与第N功率转换模块的信号输出正相连,第N功率转换模块的信号输入正与第N功率 转换模块的负输入端相连并作为电源系统的负输入端;
所述的N个功率转换模块的正输出端连接后作为电源系统的正输出端,所述的N个功率转换模块的负输出端连接后作为电源系统的负输出端。第N功率转换模块的输出电压采样端子与电源系统的正输出端相连,其余N-1个功率转换模块的输出电压采样端子与电源系统的负输出端相连。
与现有技术相比,本发明具有以下有益效果:
(1)、模块内部有两个环路,可以根据不同的需求进行选择使用;
(2)、可方便的组成输入串联输出并联系统,且具有稳定的电压输出,及输入电压均流精度;
(3)、本发明采用了模块化思维,可将系统拆分成N个相同的标准模块;
(4)、单个标准化模块的电压应力及电流应力低,可以降低器件成本;
(5)、用户可以按照需求直接使用标准模块自由组建系统,使用灵活,可移植性高,且该系统对客户的要求低,直接将模块的输入串联、输出并联即可,不需要本专业的专业知识;
(6)、使用标准电源模块组成所需电源系统,减少产品型号、降低产品管理成本;
(7)、每个标准模块之间采用直流电压小信号,多模块输入串联、输出并联系统很容易布板,不会产生相互间的干扰。
附图说明
图1申请号为201621402396.3的实用新型专利双模块输入串联输出并联系统框图;
图2申请号为201621402396.3的实用新型专利带有稳压模块的双模块输入串联输出并联系统框图;
图3申请号为201621402396.3的实用新型专利N个标准模块的输入串联输出并联系统框图;
图4申请号为201621402396.3的实用新型专利带有稳压模块的N个标准模块的输入串联输出并联系统框图;
图5为本发明的功率转换模块的原理框图;
图6为本发明的功率转换模块的外部引脚图;
图7双功率转换模块输入串联、输出并联的电源系统的连接图;
图8N个功率转换模块的输入串联、输出并联的电源系统的连接图;
图9单个功率转换模块被连接成输出稳压工作模式示意图;
图10单个功率转换模块被连接成输入均压工作模式示意图;
图11第一实施例输入串联输出并联系统中单个模块原理图;
图12第一实施例输入均压环原理图。
具体实施方式
本发明提出了一种新型的功率转换模块及由该功率转换模块组成的电源系统,该功率转换模块内含有双环路控制系统,即一个电源系统中存在两个环路,一个环路用来控制输出电压稳定,另一个环路用来控制N个模块输入串联输出并联系统的各模块输入电压均压,下文会简称为输出稳压环和输入均压环,需要说明的是,在同一个模块中这两个环路并没有同时工作,需要靠外部的连接分别构成输出稳压工作模式和输入均压工作模式,如图9及图10所示的外部端子连接方式,图9输出稳压工作模式的连接方式,图10输入均压工作模式的连接方式。
图5为本发明所述的功率转换模块的原理框图,主功率电路用来进行输入输出电压隔离变换;控制驱动电路为主功率电路提供控制信号;环路隔离电路用来隔离输入均压环和输出稳压环两个环路;原副边隔离电路对信号进行隔离传输;输入均压环使得输入串联输出并联电源系统中各功率转换模块的输入电压相等;输出稳压环用来稳定输出电压;输入电压取样电路用来采集功率转换模块的输入电压,其输入输出信号成线性关系。主要工作原理描述如下:
当模块被连接成输出稳压工作模式时,如图9所示,输入均压环不起作用,通过将功率转换模块的信号输入正端连接到负输入端实现,功率转换模块的输出电压采样端子与正输出电压端连接,实现采样输出电压的作用。如此,该功率转换模块只有一个输出稳压环,其工作过程与普通开关电源一样,在此不再赘述。
当模块被连接成输入均压工作模式时,如图10所示,输出稳压环不起作用,通过将功率转换模块的输出电压采样端子与负输出端连接实现,功率转换模块的信号输入正端与另一个功率转换模块的信号输出正端相连(作为环路采样信号),在功率转换模块中的输入均压环模块中,比较其本身的信号输出正端(作为环路基准信号)与另一个功率转换模块的信号输出正端的信号大小,产生控制占空比的环路信号。如此,该功率转换模块只有一个输入均压环,除环路采样信号与环路基准信号不同,其它工作过程与普通开关电源一样,在此不再赘述。
第一实施例
本发明专利第一实施例电源系统的工作原理:
图11所示,为本发明所述的功率转换模块的电路原理图。
该功率转换模块包括:主功率电路、输入电压取样电路、控制驱动电路、环路隔离电路、原副边隔离电路、输入均压环、输出稳压环;至少7个端子:正输入端Vg+、负输入端Vg-、正输出端Vo+、负输出端Vo-、信号输入正Vg_s_in+、信号输出正Vg_s_out+、输出电压采样端子Vo_s。
主功率电路的两个输入端分别连接到Vg+和Vg-,主功率电路的两个输出端分别连接到Vo+和Vo-,输入电压取样电路的两个输入端分别连接到Vg+和Vg-,输入电压取样电路的输出端同时连接至Vg_s_out+与输入均压环的一个输入端,输入均压环的另一个输入端连接至Vg_s_in+,输入均压环的输出端通过环路隔离电路连接到控制驱动电路,以产生随相应环路而变化的驱动信号控制主功率电路中的开关管。功率转换模块的输出电压采样端子连接至输出稳压环的输入端,输出稳压环的输出端依次通过原副边隔离电路、环路隔离电路的另一个输入端连接至控制驱动电路,控制驱动电路产生随相应环路而变化的驱动信号控制主功率电路中的开关管。
各子模块内部元器件及连接关系如下:
主功率电路:可以采用现有技术中不对称半桥反激功率级拓扑,由电容Cin、开关S1和S2、电感Lr、电容Cr、变压器T、变压器原边绕组Np、变压器副边绕组Ns、二极管D1、电容C1、电感L1和电容C2组成;电容Cin的正极连接Vg+,负极连接Vg-,Vg-与原边接地端连接;开关S1的漏极连接电容Cin与正输入端Vg+的连接点,开关S1的源极与电感Lr一端连接,开关S1的源极还与开关S2的漏极连接,开关S2源极连接原边接地端,电感Lr的另一端连接变压器原边绕组Np同名端;电容Cr一端与变压器原边绕组Np异名端连接,电容Cr另一端连接原边接地端,变压器副变绕组Ns的异名端与二极管D1的阳极连接,二极管D1的阴极与电容C1的正极、电感L1的一端连接,电感L1的另一端与电容C2的正极连接,形成正输出端Vo+,变压器副变绕组Ns的同名端与电容C1的负极、电容C2的负极连接,并接入副边接地端,形成负输出端Vo-。
控制驱动电路采用现有技术中常用的电路,由控制芯片UC3843、驱动电路、电流采样电路、电容Cq1、电容Cq2、电容Ct、电容Cv2、电阻Rt、电阻Rv1、电阻Rv2、电阻Rv3、电阻R3、二极管D2和二极管D3组成;电容Cq1一端与芯片UC3843的供电引脚Vcc和电压Vcc_p连接,控制芯片UC3843的Vcc引脚从电源Vcc_p取电,电容Cq1另一端同时与芯片UC3843的接地引脚GND、原边接地端连接;驱动电路与芯片UC3843的输出引脚OUT连接,并输出两路驱动信号Vgs1和Vgs2分别至开关S1和开关S2的栅极,为开关S1 和开关S2提供开关控制信号。为防止不对称半桥反激拓扑中的两个开关管共通短路,两路驱动信号之间需错开一的死区时间,本实施例取值300nS;电流采样电路的第一输入端和第二输入端与主功率电路的电容Cr的两端并联,电流采样电路的输出端与控制芯片UC3843的CS引脚连接;电容Cq2一端连接原边接地端,电容Cq2另一端同时连接基准电压Vref、电阻Rt一端和控制芯片UC3843的参考电压Vref,电阻Rt另一端同时连接控制芯片UC3843的RT/CT引脚和电容Ct一端,电容Ct另一端接入原边接地端;电容Cv2与电阻Rv3并联,并联电路的一端连接控制芯片UC3843的Comp引脚,另一端同时连接电阻Rv1的一端、电阻Rv2的一端和控制芯片UC3843的Vfb引脚,Vfb引脚为芯片UC3843的反馈引脚;
环路隔离电路,由电阻Rv1、二极管D2、电阻Rv2、二极管D3、电阻R3组成,电阻Rv1的一端与电阻Rv2的一端连接,作为环路隔离电路的输出端;电阻Rv1的另一端连接二极管D2的阴极,D2的阳极作为环路隔离电路的一个输入端连接输入均压环电路的输出端;电阻Rv2另一端连接二极管D3的阴极,二极管D3的阳极作为环路隔离电路的另一个输入端连接原副边隔离电路的输出端;D3的阳极还连接到电阻R3的一端,电阻R3另一端与原边接地端连接。
原副边隔离电路,采用光耦加外围电路即可实现;由光耦OC1、电阻R1、电阻R2组成;光耦OC1的第一引脚与电阻R1与电阻R2的串联节点连接,电阻R2另一端与光耦OC1的第二引脚相连并作为原副边隔离电路的输入端,R1另一端与电压端Vcc_s连接,光耦OC1的第三引脚与基准电压端Vref连接,光耦OC1的第四引脚作为原副边隔离电路的输出端。
输出稳压环,由电阻Rf1、电阻Rf2和稳压源TL431组成,电阻Rf1和电阻Rf2串联,串联电路的一端连接到负输出端,串联电路的另一端连接到副边接地端;稳压源TL431的阳极连接副边接地端,TL431的阴极练作为输出稳压环的输出端,TL431的可调端连接到电阻Rf1和电阻Rf2的串联节点。
输入电压取样电路,由电阻R6、电阻R7、电阻R8和电阻R9组成。电阻R6和电阻R7串联,串联电路的一端连接到正输入端Vg+,另一端连接到Vg-;电阻R8和电阻R9串联,串联电路的一端连接到正输入端Vg+,另一端连接到Vg-;电阻R8和电阻R9的串联节点连接到信号输出正,R6和R7的串联节点连接到输入均压环的一个输入端。
输入均压环,由运算放大器LM358、电容Ci1、电阻Ri1、电阻R4、电阻R5、和电阻R10组成;电阻R10一端连接信号输入正Vg_s_in+并作为输入均压环的另一个输入端,电阻R10另一端与电阻Ril的一端、运算放大器的负输入端、电阻R4的一端连接, 电阻R4的另一端作为输入均压环的一个输入端;电阻Ril另一端与电容Cil一端连接,电容Cil另一端与放大器A2的输出端连接并作为输入均压环的输出端;电阻R5的一端连接运算放大器的正输入端,电阻R5另一端与原边接地端连接。
每个模块内都设计了两个环:一个输出稳压环,一个输入均压环。可以通过简单的外部接线,来实现不同作用的模块工作。当需要变成稳压模块时,只要将信号输入正端Vg_s_in+接到负输入端Vg-,输出电压采样端子Vo_s接到正输出端即可;当需要变成均压模块时,只需将输出电压采样端子Vo_s接到负输出端,模块信号输入正端Vg_s_in+接到下一个模块的模块信号输出正端Vg_s_out+即可。本实施例中输入均压模块和输出稳压模块的连接采用图9和图10的引脚接线方法即可实现,不再用图11所示的具体模块原理图进行绘制展示。
双模块输入串联输出并联电源系统的连接采用图7的引脚接线方式即可实现,其中下模块被连接成一个输出稳压闭环控制,称稳压模块;上模块被连接成一个输入均压闭环控制,称均压模块;每一个模块仅有一个闭环在工作。推广到N个模块的输入串联、输出并联结构如图8所示,其中只有一个模块被连接成一个输出稳压闭环控制,其余的模块均被连接成一个输入均压环控制。
工作原理:
在该实施例中,整个系统由上下两个功率转换模块串联输入、并联输出组成,单个功率转换模块的主功率级工作原理同不对称半桥反激电路,这对于本领域的技术人员而言是公知技术,在此不展开。控制过程如下:
如图7所示,上模块为系统的均压模块,负责调整上模块与下模块的输入大小,使二者的输入电压相等,工作原理如下:
上模块的输出电压采样端子Vo-s1接到上模块的负输出端Vo1-,即上模块的输出地,光耦的光敏三极管截止,故光敏三极管的发射极电位低,二极管D3截止,此时上模块的输出稳压环路被屏蔽。上模块信号输入正Vg_s_in1+接到下模块的信号输出正Vg_s_out2+,为了方便理解,将均压环部分单独绘制,如图12所示,采用运放A1构成加法比较器。Cin1、Cin2分别为上模块输入电容与下模块输入电容,R61、R71为上模块的输入电压采样电阻,R82、R92为下模块的输入电压采样电阻,因为加法器位于上模块中,因此对于运放来说,R82与R92中间连接处的电压为负压,可设置R61=R92,R71=R82,如此当上模块的输入电压与下模块的输入电压相等时,即Vg1=Vg2,运放反相输入端电位为零;当上模块的输入电压略高于下模块的输入电压时,运放输出端输出电压下降,Comp电压上升,控制驱动信号占空比变大,此时上模块的能量更多的传 递到副边,导致上模块的输入电容Cin1上的电压下降;反之,当下模块的输入电压高于上模块的输入电压时,运放输出端输出电压上升,Comp电压下降,控制驱动信号占空比变小,此时上模块传递到副边的能量减少,导致上模块的输入电容Cin1上的电压升高。
将下模块的信号输入正Vg_s_in+连接至下模块的负输入端Vg-,则输入均压环中的运算放大器A1的反相端电压高于同相端电压,故运算放大器A1饱和输出低电平,二极管D2截止,下模块的输入均压环被屏蔽。将下模块的输出电压采样端子Vo_s接到下模块的负输出端Vo-,此时下模块就是一个普通的稳压输出的开关电源,其工作原理为现有公知技术,在此不再赘述。
本实施例上模块与下模块均为60W的开关电源,采用不对称半桥反激拓扑,输入电压范围为120VDC~240VDC,两个模块组成一个120W的电源系统,对其在全闭环工作下的输入串联输出并联效果进行了实验验证。为了充分验证本发明在容差下对输入均压精度、输出均流精度以及输出电压精度的影响,对其进行了容差实验验证。考将控制参数的两种极端偏差与功率级参数的两种极端偏差,按功率转换模块增益的大小,再组合成一种新的两种极端偏差的模块。从理论上,增益最大和增益最小的这两个模块分别对应下列参数:
增益最大的模块:励磁电感最小值,漏感最小值,谐振电容最小值,频率最小值,即:L m(min),L r(min),C r(min),f s(min)
增益最小的模块:励磁电感最大值,漏感最大值,谐振电容最大值,频率最大值,即:L m(max),L r(max),C r(max),f s(max)
将上述的四个参数组合成以下六组实验参数:
组合1:功率级和控制均为标称参数的输入串联/输出并联实验
A模块参数:L m=145uH,L r=6.37uH,C r=0.27uF,f s=100KHz
B模块参数:L m=145uH,L r=6.37uH,C r=0.27uF,f s=100KHz
组合2:功率级为标准参数,但开关频率分别为上下偏差的输入串联/输出并联实验
A模块参数:L m=145uH,L r=6.37uH,C r=0.27uF,f s=90KHz
B模块参数:L m=145uH,L r=6.37uH,C r=0.27uF,f s=110KHz
组合3:开关频率为标称参数,但功率级分别为上下偏差的输入串联/输出并联实 验
A模块参数:L m=130.5uH,L r=5.733uH,C r=0.216uF,f s=100KHz
B模块参数:L m=159.5uH,L r=7.007uH,C r=0.324uF,f s=100KHz
组合4:开关频率和功率级参数分别为上下偏差的输入串联/输出并联实验
A模块参数:L m=130.5uH,L r=5.733uH,C r=0.216uF,f s=90KHz
B模块参数:L m=159.5uH,L r=7.007uH,C r=0.324uF,f s=110KHz
组合5:开关频率为标称参数,但功率级分别为上下偏差的输入串联/输出并联实验
A模块参数:L m=159.5uH,L r=7.007uH,C r=0.324uF,f s=100KHz
B模块参数:L m=130.5uH,L r=5.733uH,C r=0.216uF,f s=100KHz
组合6:开关频率和功率级参数均分别为下上偏差的输入串联/输出并联实验
A模块参数:L m=159.5uH,L r=7.007uH,C r=0.324uF,f s=110KHz
B模块参数:L m=130.5uH,L r=5.733uH,C r=0.216uF,f s=90KHz
按照上述的六组组合进行试验,得出的实验结果如表4至表7所示,表4为不同输入电压下,各种参数组合的最大输入电压均压精度;表5为不同输入电压下,各种参数组合的满载输出电流均流精度;表6为不同输入电压且输出满载情况下,各种参数组合的输出电压;表7为外供电DC-DC部分实际PCM控制闭环实验的均压环与稳压环环路测试结果。
表4 不同输入电压下,各种参数组合的最大输入电压均压精度
均压精度 组合1 组合2 组合3 组合4 组合5 组合6
V g=300V 0.25% 0.17% 0.13% 0.00% 1.07% 0.60%
V g=400V 0.2% 0.07% 0.1% 0.00% 0.85% 0.95%
V g=530V 0.3% 0.15% 0.38% 0.75% 0.42% 0.72%
表5 不同输入电压下,各种参数组合的满载输出电流均流精度
均流精度 组合1 组合2 组合3 组合4 组合5 组合6
V g=300V 0.37% 0.09% 0.37% 0.28% 0.37% 0.37%
V g=400V 0.37% 0.37% 0.74% 0.65% 0.28% 0.00%
V g=530V 1.11% 0.46% 0.55% 1.2% 0.09% 0.09%
表6 不同输入电压且输出满载情况下,各种参数组合的输出电压(V)
输出电压 组合1 组合2 组合3 组合4 组合5 组合6
V g=300V 12.02 12.02 12.02 12.02 12.02 12.02
V g=400V 12.02 12.02 12.02 12.01 12.02 12.02
V g=530V 12.02 12.00 12.00 12.01 12.01 12.01
表7:外供电DC-DC部分实际PCM控制闭环实验的均压环与稳压环环路测试结果
Figure PCTCN2018094821-appb-000001
从实验结果可以看出,组合1至组合6的输入均压精度与输出均流精度都在1%以内,输出电压精度也在1%以内,输入均压环的带宽0.8KHz左右,并具有很大的相位裕度与增益裕度,从相位裕度与增益裕度来看,环路带宽还有很大的增长幅度,环路稳定性很好,满足输入均压系统的要求。
通过上述实验可以充分证明本发明方案,不但可以满足输入均压精度以及输出均流精度,更重要的是输出电压精度能控制在1%左右,实现了既均压均流,又稳定输出电压的目的,比现有技术更上一层楼。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围,这里不再用实施例赘述,本发明的保护范围应当以权利要求所限定的范围为准。

Claims (9)

  1. 一种功率转换模块,其特征在于:包括主功率电路、控制驱动电路、环路隔离电路、原副边隔离电路、输入电压取样电路、输入均压环、输出稳压环,所述的功率转换模块的端子至少包含但不限于以下:正输入端、负输入端、正输出端、负输出端、信号输出正、信号输入正、输出电压采样端子;
    输入电压通过正输入端和负输入端输入到主功率电路,通过主功率电路本身的功率转换,输出到正输出端和负输出端,形成输出电压;
    输入电压取样电路的两个输入端分别连接到正输入端和负输入端,用以采样输入电压,输入电压取样电路的输出端同时连接至功率转换模块的信号输出正与输入均压环的一个输入端;
    输入均压环的另一个输入端连接至功率转换模块的信号输入正,输入均压环的输出端通过环路隔离电路的一个输入端连接到控制驱动电路,以产生随相应的输入均压环路而变化的驱动信号控制主功率电路中的开关管,形成功率转换模块的均压环路。
    功率转换模块的输出电压采样端子连接至输出稳压环的输入端,输出稳压环的输出端依次通过原副边隔离电路、环路隔离电路的另一个输入端连接至控制驱动电路,控制驱动电路产生随相应的输出稳压环路而变化的驱动信号控制主功率电路中的开关管,形成功率转换模块的稳压环路。
  2. 根据权利要求1所述的功率转换模块,其特征在于:输入电压取样电路、输入均压环、控制驱动电路三者与主功率电路的原边共地,亦即:信号输入正、信号输出正与输入电压共参考电压;输出稳压环与主功率电路的副边共地,亦即:输出电压采样端子与功率转换模块的输出电压共参考电压。
  3. 根据权利要求2所述的功率转换模块,其特征在于:所述的主功率电路采用不对称半桥反激拓扑。
  4. 根据权利要求3所述的功率转换模块,其特征在于:所述的不对称半桥反激拓扑中的两个开关管为MOS管或三极管。
  5. 根据权利要求4所述的功率转换模块,其特征在于:所述的两个开关管的驱动脉冲信号之间错开一段防止共通短路的死区时间。
  6. 根据权利要求5所述的功率转换模块,其特征在于:所述的死区时间为300nS。
  7. 根据权利要求6所述的功率转换模块,其特征在于:将输出电压采样端子与负输出端连接,屏蔽输出稳压环的功能。
  8. 根据权利要求6所述的功率转换模块,其特征在于:将信号输入正与负输入端连接,屏蔽输入均压环的功能。
  9. 一种电源系统,其特征在于:包括N个权利要求1或2所述的功率转换模块,N为大于1的自然数;每个功率转换模块均包含但不局限于以下引出端子:信号输出正、信号输入正、正输入端、负输入端、正输出端、负输出端和输出电压采样端子;
    第一功率转换模块的正输入端作为电源系统的正输入端,第一功率转换模块的信号输出正悬空,第一功率转换模块的负输入端与第二功率转换模块的正输入端相连,第二功率转换模块的负输入端与第三功率转换模块的正输入端相连,依次类推,第N-1功率转换模块的负输入端与第N功率转换模块的正输入端相连;第一功率转换模块的信号输入正与第二功率转换模块的信号输出正相连,第二功率转换模块的信号输入正与第三功率转换模块的信号输出正相连,以此类推,第N-1功率转换模块的信号输入正与第N功率转换模块的信号输出正相连,第N功率转换模块的信号输入正与第N功率转换模块的负输入端相连并作为电源系统的负输入端;
    所述的N个功率转换模块的正输出端连接后作为电源系统的正输出端,所述的N个功率转换模块的负输出端连接后作为电源系统的负输出端。第N功率转换模块的输出电压采样端子与电源系统的正输出端相连,其余N-1个功率转换模块的输出电压采样端子与电源系统的负输出端相连。
PCT/CN2018/094821 2017-08-09 2018-07-06 一种功率转换模块及电源系统 WO2019029303A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710673576.8A CN107294391B (zh) 2017-08-09 2017-08-09 一种功率转换模块及由该功率转换模块组成的电源系统
CN201710673576.8 2017-08-09

Publications (1)

Publication Number Publication Date
WO2019029303A1 true WO2019029303A1 (zh) 2019-02-14

Family

ID=60105568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094821 WO2019029303A1 (zh) 2017-08-09 2018-07-06 一种功率转换模块及电源系统

Country Status (2)

Country Link
CN (1) CN107294391B (zh)
WO (1) WO2019029303A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115033043A (zh) * 2021-03-03 2022-09-09 圣邦微电子(北京)股份有限公司 低压差线性稳压器的测试装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370387B (zh) * 2017-08-09 2023-10-20 广州金升阳科技有限公司 一种功率转换模块及由该功率转换模块串并联组成的电源系统
CN107294391B (zh) * 2017-08-09 2020-02-14 广州金升阳科技有限公司 一种功率转换模块及由该功率转换模块组成的电源系统
CN108183465A (zh) * 2018-03-05 2018-06-19 广州金升阳科技有限公司 一种电源系统输出短路保护电路及其控制方法
CN108322032A (zh) * 2018-03-15 2018-07-24 广州金升阳科技有限公司 一种电源系统输出过压保护电路及其控制方法
CN108512397B (zh) * 2018-03-29 2023-09-08 广州金升阳科技有限公司 一种电源模块、由其组成的电源系统及该电源系统的控制方法
WO2021111183A1 (en) * 2019-12-05 2021-06-10 Jiangsu Horizon New Energy Technologies Co. Ltd Partial dc/dc boost system and method
CN113612401B (zh) * 2021-07-26 2022-04-05 湖南大学 一种直流变换系统及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103414335A (zh) * 2013-05-31 2013-11-27 东南大学 一种模块化isos组合系统分布式均压控制方法
CN104993694A (zh) * 2015-07-09 2015-10-21 哈尔滨工业大学 模块化组合直流变换器输入均压控制方法
CN107294391A (zh) * 2017-08-09 2017-10-24 广州金升阳科技有限公司 一种功率转换模块及由该功率转换模块组成的电源系统
CN107370387A (zh) * 2017-08-09 2017-11-21 广州金升阳科技有限公司 一种功率转换模块及由该功率转换模块串并联组成的电源系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448147C (zh) * 2006-06-21 2008-12-31 南京航空航天大学 电流型dc-dc变换器均压控制电路
CN101674018B (zh) * 2009-10-09 2011-11-30 南京航空航天大学 一种多模块组合变换器及其软启动控制方法
CN102437739A (zh) * 2011-12-14 2012-05-02 深圳市元正能源系统有限公司 减小变换器串联拓扑原端电容电压差值的方法和控制电路
CN106505865B (zh) * 2016-11-21 2019-05-21 广州金升阳科技有限公司 一种不对称半桥反激变换器及其驱动控制方法
CN207283408U (zh) * 2017-08-09 2018-04-27 广州金升阳科技有限公司 一种功率转换模块及由该功率转换模块组成的电源系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103414335A (zh) * 2013-05-31 2013-11-27 东南大学 一种模块化isos组合系统分布式均压控制方法
CN104993694A (zh) * 2015-07-09 2015-10-21 哈尔滨工业大学 模块化组合直流变换器输入均压控制方法
CN107294391A (zh) * 2017-08-09 2017-10-24 广州金升阳科技有限公司 一种功率转换模块及由该功率转换模块组成的电源系统
CN107370387A (zh) * 2017-08-09 2017-11-21 广州金升阳科技有限公司 一种功率转换模块及由该功率转换模块串并联组成的电源系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115033043A (zh) * 2021-03-03 2022-09-09 圣邦微电子(北京)股份有限公司 低压差线性稳压器的测试装置

Also Published As

Publication number Publication date
CN107294391B (zh) 2020-02-14
CN107294391A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
WO2019029303A1 (zh) 一种功率转换模块及电源系统
WO2019029304A1 (zh) 一种功率转换模块及电源系统
WO2019029250A1 (zh) 一种电源系统
Wu et al. Series–parallel autoregulated charge-balancing rectifier for multioutput light-emitting diode driver
Zhang et al. Use of daisy-chained transformers for current-balancing multiple LED strings
CN107546959B (zh) 一种开关电源、电子设备及开关电源控制方法
US20220255433A1 (en) Charging circuit and charging system
WO2014090044A1 (zh) 一种电压调节方法、预稳压电源电路及系统
CN103857152A (zh) 具有多路输出的电源系统
CN105576645B (zh) 一种多个直流电源系统能量互联网络及互联方法
CN106921293A (zh) 基于数字控制的可实时线性调节输出的dc‑dc变换电路
CN212660109U (zh) 一种lcc谐振变换器
US11296602B2 (en) Dual output configurable polarity universal buck-boost topology and switching sequence
CN103647448B (zh) 集成降压-反激式高功率因数恒流电路及装置
Zhang et al. Modified zero‐voltage‐switching single‐stage LED driver based on Class E converter with constant frequency control method
CN203617902U (zh) 集成降压-反激式高功率因数恒流电路及装置
CN109842301A (zh) 一种电流控制电路及其控制方法
CN207283410U (zh) 一种功率转换模块及由该功率转换模块串并联组成的电源系统
CN207283409U (zh) 一种电源系统
WO2020119407A1 (zh) 一种五电平变换器
CN207283408U (zh) 一种功率转换模块及由该功率转换模块组成的电源系统
WO2023015833A1 (zh) 一种开关电容型模块化高降压比直流电源
WO2023138072A1 (zh) 电源电路以及电源装置
CN213151913U (zh) 一种输出宽范围可调的三电平软开关变化电路
CN210380662U (zh) 一种二级辅助电源电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18842955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18842955

Country of ref document: EP

Kind code of ref document: A1