WO2019029109A1 - 切向电机、切向电机转子及其转子铁芯 - Google Patents

切向电机、切向电机转子及其转子铁芯 Download PDF

Info

Publication number
WO2019029109A1
WO2019029109A1 PCT/CN2017/119434 CN2017119434W WO2019029109A1 WO 2019029109 A1 WO2019029109 A1 WO 2019029109A1 CN 2017119434 W CN2017119434 W CN 2017119434W WO 2019029109 A1 WO2019029109 A1 WO 2019029109A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
hole
magnetic
rotor core
rotor body
Prior art date
Application number
PCT/CN2017/119434
Other languages
English (en)
French (fr)
Other versions
WO2019029109A9 (zh
Inventor
肖勇
胡余生
王晶
陈彬
米泽银
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Priority to US16/636,626 priority Critical patent/US11387695B2/en
Priority to EP17920956.4A priority patent/EP3667869B1/en
Priority to DK17920956.4T priority patent/DK3667869T3/da
Publication of WO2019029109A1 publication Critical patent/WO2019029109A1/zh
Publication of WO2019029109A9 publication Critical patent/WO2019029109A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present application relates to the technical field of electrical equipment, and in particular to a tangential motor, a tangential motor rotor and a rotor core thereof.
  • the tangential permanent magnet synchronous motor Since the tangential permanent magnet synchronous motor has the effect of “concentrating magnetic”, it can produce higher air gap magnetic density than the radial permanent magnet synchronous motor, so that the motor has small volume, light weight, large torque and power density. Large, high motor efficiency and good dynamic performance, etc., more and more used in servo systems, electric traction and other industrial fields and home appliances industry.
  • the air gap magnetic density and back electromotive force of tangential permanent magnet synchronous motor contain various spatial harmonics. Due to the slotting on the stator of the tangential permanent magnet synchronous motor, the magnetic path is not uniform, and the air gap is magnetically dense and reversed. The potential contains various types of spatial harmonics, and the harmonics account for a large proportion. All kinds of harmonic interactions produce low-order force waves and increase the vibration and noise of the motor. The sinusoidal waveform is poor, and the waveform distortion rate is high, which makes the vibration and noise of the motor larger. Since the permanent magnet of the tangential permanent magnet motor is a parallel magnetic circuit structure, it is easy to cause the working point of the permanent magnet to be low, and the permanent magnet under severe working conditions. Easy to demagnetize, limiting the application of the motor. Further, the rotor core is composed of a rotor punch, and the magnetic isolation hole on the rotor core is liable to cause a decrease in mechanical strength.
  • the present application provides a rotor core to improve mechanical strength and reduce vibration noise of the motor.
  • the present application also provides a tangential motor rotor and a tangential motor having the rotor core described above.
  • a rotor core comprising a rotor body and a permanent magnet slot disposed on the rotor body, wherein a rotor hole between two adjacent permanent magnet slots is provided with a fixing hole for fixing the rotor punch and a magnetic separation a hole; the magnetic isolation hole is located outside the fixing hole in a radial direction of the rotor body, and a width of the magnetic separation hole gradually increases toward a center of the rotor along an outer side of the rotor body.
  • the fixing hole and the magnetic isolation hole are both located on a magnetic pole center line of the permanent magnet slot.
  • the outer hole wall of the magnetic isolation hole adjacent to the outer side of the rotor body is an arc surface disposed concentrically with the rotor body;
  • first magnetic bridge Forming a first magnetic bridge between the outer hole wall of the magnetic isolation hole and the outer wall of the rotor, the width of the first magnetic isolation bridge is C, and the length of the air gap of the rotor core for mating with the stator Is D;
  • the magnetic isolation hole is an axisymmetric structure, and an extension line of the axis of symmetry passes through a center of the rotor body.
  • the outer hole wall of the magnetic isolation hole has a width A, and the single magnetic pole of the rotor core occupies an angle B;
  • an angle G between the two end points G of the inner hole wall of the magnetic isolation hole and the center line of the rotor body is E;
  • the length of the magnetic isolation hole along the radial direction of the rotor body is F, the radius of the rotor body is R;
  • the minimum distance between the magnetic separation hole and the solid portion of the fixing hole is greater than 1.5 mm;
  • the minimum distance between the magnetic isolation hole and the solid portion between the permanent magnet slots is greater than 1.5 mm.
  • the inner hole wall of the magnetic isolation hole close to the center of the rotor body has a convex portion that protrudes toward the outer side of the rotor body.
  • an apex of the convex portion intersects a center line of the permanent magnet slot at an intersection point M, and a distance from the intersection point M to an outer hole wall of the magnetic isolation hole is H,
  • the length of the magnetic separation hole along the radial direction of the rotor body is F;
  • the inner hole wall of the magnetic isolation hole close to the center of the rotor body has a concave portion recessed toward the outer side of the rotor body.
  • the groove portion is a pointed groove or a circular groove
  • the apex of the groove portion intersects with the center line of the permanent magnet slot at an intersection point M, and the distance from the intersection point M to the outer hole wall of the magnetic isolation hole away from the center of the rotor body is H, the partition
  • the length of the portion of the magnetic hole to remove the sharp corner groove along the radial direction of the rotor body is F;
  • an inner hole wall of the magnetic isolation hole close to a center of the rotor body is a flat surface.
  • the permanent magnet groove has an opening disposed toward an outer side of the rotor body, and the opening has a width larger than a half of a width of the permanent magnet groove.
  • the maximum width of the magnetic isolation hole is twice or more of its minimum width
  • the maximum width of the magnetic isolation hole is 1.5 times or more of the diameter of the fixing hole.
  • the present application also provides a tangential motor rotor comprising a rotor core and a tangential magnetized permanent magnet disposed in a permanent magnet slot thereof, the rotor core being the rotor core of any of the above.
  • the width of the tangential magnetized permanent magnet near the outer side of the rotor core is greater than the width of the center of the rotor core.
  • the present application also provides a tangential motor comprising a tangential motor rotor and a stator, the tangential motor rotor being a tangential motor rotor according to any of the above.
  • the stator has a stator slot and a slot facing the air gap of the tangential motor rotor and the stator, the slot having a width K, the magnetic isolation hole
  • the width of the outer hole wall is A;
  • the rotor core provided by the present application is provided with a fixing hole and a magnetic separation hole on the magnetic pole of the rotor; the magnetic separation hole is located outside the fixing hole in the radial direction of the rotor body, and the fixing hole is provided through the fixing hole.
  • the present application also provides a tangential motor rotor and a tangential motor having the rotor core described above. Since the rotor core has the above technical effects, the tangential motor rotor and the tangential motor having the rotor core described above should also have the same technical effects, and will not be repeatedly described herein.
  • FIG. 1 is a schematic structural view of a tangential motor according to an embodiment of the present application.
  • FIG. 2 is a first structural schematic view of a tangential motor rotor according to an embodiment of the present application
  • FIG. 3 is a schematic view showing a second structure of a tangential motor rotor according to an embodiment of the present application
  • FIG. 4 is a schematic view showing a third structure of a tangential motor rotor according to an embodiment of the present application.
  • FIG. 5 is a fourth structural schematic diagram of a tangential motor rotor according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a stator according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram showing the relationship between the back potential harmonic ratio of the tangential motor and the C/D according to the embodiment of the present application;
  • FIG. 8 is a diagram showing the relationship between the back potential harmonic ratio and the no-load flux linkage and E of the tangential motor according to the embodiment of the present application;
  • FIG. 9 is a diagram showing a relationship between a torque pulse coefficient and A/K of a tangential motor according to an embodiment of the present application.
  • the present application discloses a rotor core to improve mechanical strength and reduce vibration noise of the motor.
  • the present application also provides a tangential motor rotor and a tangential motor having the rotor core described above.
  • an embodiment of the present application provides a rotor core including a rotor body 1 and a permanent magnet slot 2 disposed on the rotor body 1 , and a rotor magnetic pole between two adjacent permanent magnet slots 2 .
  • a fixing hole 11 for fixing the rotor punching piece and a magnetic blocking hole 12 are disposed thereon; the magnetic separating hole 12 is located outside the fixing hole 11 in the radial direction of the rotor body 1, and the width of the magnetic separating hole 12 is along the outer side of the rotor body 1 The direction of the center of the circle gradually increases.
  • the rotor core provided by the embodiment of the present application is provided with a fixing hole 11 and a magnetic isolation hole 12 on the magnetic pole of the rotor; the magnetic isolation hole 12 is located outside the fixing hole 11 in the radial direction of the rotor body 1, and the fixing hole 11 is provided.
  • the fixing member in the fixing hole 11 the mechanical strength of the rotor is effectively improved; and the width of the magnetic separation hole 12 gradually increases toward the center of the rotor body 1 along the outer side of the rotor body 1, thereby effectively improving the magnetic flux direction of the rotor magnetic pole.
  • the air gap magnetic and back potential waveforms are increased in sinusoidality, the harmonic ratio and harmonic loss are reduced, the vibration noise of the motor is reduced, and the motor efficiency is improved.
  • the width of the magnetic pole solid portion between the two magnetic isolation holes 12 is the distance between the two sides perpendicular to the radial direction of the rotor body 1.
  • the width of the magnetic separation hole 12 is the distance between the wall walls at both ends perpendicular to the radial direction of the rotor body 1.
  • the fixing hole 11 is provided with a fixing member.
  • the fixing hole 11 is a rivet hole
  • the fixing member is a rivet
  • the fixing hole 11 is a screw hole
  • a structural reinforcing rod connecting the rotor punching piece is inserted into the screw hole.
  • the fixing holes 11 as other types of holes, such as screw holes, prism holes or elliptical holes.
  • the fixing hole 11 and the magnetic separation hole 12 are both located on the magnetic pole center line of the permanent magnet slot 2.
  • the motor magnetic circuit structure is more symmetrical.
  • the outer hole wall of the magnetic isolation hole 11 near the outer side of the rotor body 1 is a curved surface concentrically arranged with the rotor body 1; this makes the outer hole wall of the magnetic separation hole and the outer wall of the rotor body parallel to each other.
  • a first magnetic bridge is formed between the outer hole wall of the magnetic isolation hole 12 and the outer wall of the rotor body 1.
  • the width of the first magnetic isolation bridge is C
  • the length of the air gap of the rotor core for mating with the stator is D.
  • the outer hole wall of the magnetic isolation hole 12 is a hole wall of the magnetic isolation hole 12 close to the outer wall of the rotor body 1; the inner hole wall of the magnetic separation hole 12 is a hole wall of the magnetic separation hole 12 close to the center of the rotor body 1.
  • 1.5 ⁇ C / D ⁇ 0.7 Preferably, 1.5 ⁇ C / D ⁇ 0.7.
  • the air gap magnetic field distribution is optimal, the sinusoidality of the air gap magnetic density is the best, the air gap magnetic density harmonic ratio is the lowest, the back potential harmonic ratio is the lowest, and the motor vibration noise is the lowest.
  • the harmonic loss is the smallest and the motor efficiency is the highest.
  • the harmonic ratio of the motor provided in this embodiment is less than 4%.
  • the magnetic isolation hole 12 is an axisymmetric structure whose extension line of the axis of symmetry passes through the center of the rotor body 1. In the present embodiment, the magnetic isolation hole 12 is located at the center line of the magnetic pole.
  • the outer hole wall of the magnetic isolation hole 12 has a width A, and the single magnetic pole of the rotor core occupies an angle B. It has been found through research that when the width A of the magnetic separation hole 12 is larger than 0.02 times the angle B (magnetic pole width) occupied by a single magnetic pole, the effect of the magnetic separation hole 12 to reduce the air gap harmonic is remarkable. However, A/B is not as large as possible. When A/B is larger than 0.15, the width of the magnetic separation hole 12 is too large, the magnetic flux at the center line of the rotor magnetic pole is small, and the magnetic flux on both sides of the rotor magnetic pole is concentrated, resulting in gas.
  • the distribution of the gap magnetic field is uneven, the ratio of air gap and back potential harmonic increases, the iron loss of the rotor core increases, the magnetic pole area is small, the magnetic pole flux is easy to be saturated, the total magnetic flux is reduced, and the motor output torque is reduced. Motor efficiency is degraded. Therefore, preferably, 0.15 ⁇ A / B ⁇ 0.02.
  • the angle between the two end points G of the inner hole wall of the magnetic isolation hole 12 and the center line of the rotor body 1 is E; by simulation, it is found that the angle E has a great influence on the back potential harmonic.
  • the inner hole wall of the magnetic separation hole 12 is wider than the outer hole wall, and the magnetic flux of the rotor magnetic pole can be restricted.
  • E ⁇ 40° the magnetic flux distribution of the air gap magnetic field can be improved, and the air gap magnetic density is improved.
  • the waveform is closer to the sine wave, the anti-potential harmonic ratio is reduced, and the motor vibration noise is reduced.
  • E>60° the magnetic isolation hole 12 will block the magnetic flux of the internal permanent magnet, making the motor empty magnetic The chain is falling. Therefore, 60° ⁇ E ⁇ 40°.
  • the above angle is an electrical angle.
  • the inner hole wall of the magnetic isolation hole 12 near the center of the rotor core is the inner hole wall
  • the inner hole wall extends along the circumferential direction of the rotor core, and is symmetric about the center line of the magnetic pole
  • the inner hole wall has two end points G
  • the inner hole wall has two The distance between the end points G is greater than the distance between the two end points of the outer hole walls of the magnetic isolation holes 12.
  • the length of the magnetic isolation hole 12 along the radial direction of the rotor body 1 is F, and the radius of the rotor body 1 is R; it is found through simulation that when the length F of the magnetic separation hole 12 and the radius of the rotor body 1 are R The influence on the harmonics is large.
  • the length F of the magnetic isolation hole 12 is increased, and the magnetic flux direction of the rotor magnetic pole close to the rotating shaft portion can be restricted, thereby improving the air gap magnetic field distribution and making the air gap magnetically dense,
  • the anti-potential harmonic ratio is reduced, the motor vibration noise is reduced, and the magnetic isolation hole can weaken the demagnetization armature reaction magnetic field when the motor is running, and improve the anti-demagnetization capability of the motor; however, when F/R>0.4,
  • the length of the magnetic separation hole is too large, the area of the magnetic separation hole is too large, the area of the magnetic magnetic pole is too small, and the magnetic pole is easy to be saturated, the output of the motor is decreased, and the efficiency of the motor is lowered. Therefore, preferably, 0.4 ⁇ F / R ⁇ 0.1.
  • the minimum distance between the magnetic portion 12 and the solid portion 11 is greater than 1.5 mm.
  • the minimum distance between the magnetic separation hole 12 and the solid portion between the permanent magnet grooves 2 is greater than 1.5 mm.
  • the inner hole wall of the magnetic isolation hole 12 close to the center of the rotor body 1 has a convex portion 14 which is convex toward the outer side of the rotor body 1.
  • the magnetic separation hole 12 can better adjust the direction of the magnetic field of the inner permanent magnet; and, the magnetic flux can be blocked by the magnetic separation hole 12 to the greatest extent, and the efficiency of the motor can be improved.
  • the convex portion 14 can also facilitate the arrangement of the fixing hole 11 and the magnetic separation hole 12, so that the fixing hole 11 can move toward the outside of the rotor, and reduce the deformation of the outer side of the rotor caused by the centrifugal force and the electromagnetic force when the rotor rotates at a high speed, and the mechanical mechanism for reinforcing the rotor core. strength.
  • the raised portion 14 is a pointed projection.
  • the raised portion 14 can also be provided as a rounded protrusion or a polygonal corner protrusion.
  • the apex of the convex portion 14 intersects the center line of the permanent magnet slot 2 at the intersection point M, the distance from the intersection point M to the outer hole wall of the magnetic isolation hole 12 away from the center of the rotor body 1 is H, and the magnetic separation hole 12 is along the rotor
  • the radial length of the body 1 is F.
  • the distance F between the vertex M of the convex portion 14 and the outer hole wall of the magnetic separation hole 12 cannot be too small, and therefore, 0.5 ⁇ H /F ⁇ 0.3.
  • the above range can make the effect of reducing the air gap harmonic content better, and at the same time ensure the efficiency and mechanical strength of the motor.
  • the boss 14 may not be provided.
  • the inner hole wall of the magnetic separation hole 12 close to the center of the rotor body 1 has a concave portion recessed toward the outer side of the rotor body 1.
  • the groove portion is a sharp groove. As shown in FIG. 5, the groove portion is a circular arc groove.
  • the apex of the groove portion intersects the center line of the permanent magnet slot 2 at the intersection point M, and the distance from the intersection point M to the outer hole wall of the magnetic isolation hole 12 away from the center of the rotor body 1 is H, and the magnetic separation is performed.
  • the length of the portion of the hole 12 from which the sharp groove is removed is along the radial direction of the rotor body 1 as F.
  • the air gap magnetic field distribution is better, the harmonic ratio is smaller, the vibration noise is smaller, and the anti-demagnetization capability of the motor is further improved.
  • the depth of the groove portion cannot be excessively large. Therefore, preferably, 1.4 ⁇ H/F > 1.
  • the apex of the groove portion is the point closest to the center of the rotor body 1.
  • the inner hole wall of the magnetic isolation hole 12 close to the center of the rotor body 1 is a flat surface.
  • the permanent magnet slot 2 has an opening 13 provided toward the outside of the rotor body 1, the width of the opening 13 being greater than half the width of the permanent magnet slot.
  • the width of the opening 13 is the distance of the opening 13 perpendicular to the radial direction of the rotor body 1.
  • the maximum width of the magnetic isolation hole 12 is 2 times or more of its minimum width.
  • the maximum width of the magnetic isolation hole 12 is the width of the magnetic isolation hole 12 on the side close to the center of the rotor core, and the minimum width of the magnetic separation hole 12 is the width of the magnetic separation hole 12 away from the center of the rotor core.
  • the maximum width of the magnetic isolation hole 12 is 1.5 times or more the diameter of the fixing hole 11.
  • the embodiment of the present application further provides a tangential motor rotor, including a rotor core and a tangential magnetized permanent magnet disposed in a permanent magnet slot thereof, the rotor core being any of the rotor cores described above. Since the rotor core has the above technical effects, the tangential motor rotor having the rotor core described above should also have the same technical effect, and will not be repeatedly described herein.
  • the width of the tangentially magnetized permanent magnet near the outer side of the rotor core is greater than the width thereof near the center of the rotor core.
  • the embodiment of the present application further provides a tangential motor, including a tangential motor rotor and a stator, and the tangential motor rotor is any tangential motor rotor as described above. Since the tangential motor rotor has the above technical effects, the tangential motor having the tangential motor rotor should have the same technical effect, and will not be repeatedly described herein.
  • the stator has a stator slot 41 and a slot 42 facing the air gap of the tangential motor rotor and the stator.
  • the width of the slot 42 is K
  • the magnetic flux of the rotor core of the tangential motor rotor is The width of the outer hole wall of the hole 12 is A; as shown in Fig. 9, the ratio between the width A of the outer hole wall of the core hole 12 of the rotor core of the tangential motor rotor and the width K of the notch 42 is shown.
  • Set to 1.2 ⁇ A/K ⁇ 0.8 which can effectively reduce the content of 5th harmonic and 7th harmonic in air gap magnetic density, reduce the 5th harmonic and 7th harmonic of motor and the fundamental magnetic field. Moment pulsation.

Abstract

一种切向电机、切向电机转子及其转子铁芯,转子铁芯包括转子本体(1)及设置于转子本体(1)上的永磁体槽(2),相邻两个永磁体槽(2)之间的转子磁极上设置有用于固定转子冲片的固定孔(11)及隔磁孔(12);隔磁孔(12)位于固定孔(11)沿转子本体(1)径向方向的外侧,隔磁孔(12)的宽度沿转子本体(1)的外侧向其圆心方向逐渐增加。通过该转子铁芯降低了电机的振动噪音,提高了电机效率。

Description

切向电机、切向电机转子及其转子铁芯
相关申请
本申请要求2017年08月09日申请的,申请号为201710676617.9,名称为“切向电机、切向电机转子及其转子铁芯”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及电机设备技术领域,特别涉及一种切向电机、切向电机转子及其转子铁芯。
背景技术
由于切向永磁同步电机具有“聚磁”的效果,与径向永磁同步电机相比,能产生更高的气隙磁密,使得电机具有体积小,重量轻,转矩大,功率密度大,电机效率高及动态性能好等优点,越来越多地被应用于伺服系统、电力牵引等工业领域及家电行业。
目前,切向永磁同步电机的气隙磁密及反电势含有各类空间谐波,由于切向永磁同步电机的定子上开槽,使得磁路磁导不均匀,气隙磁密、反电势含有各类空间谐波,且谐波占比大,各类谐波相互作用产生低阶力波,加大电机的振动噪声。波形正弦度较差,波形畸变率高,使得电机的振动及噪声较大,由于切向永磁电机的永磁体为并联磁路结构,容易导致永磁体工作点较低,恶劣工况下永磁体容易退磁,限制了电机的应用推广。并且,转子铁芯由转子冲片组成,其上的隔磁孔容易导致机械强度不高下降。
因此,如何提高机械强度,降低电机的振动噪音,是本技术领域人员亟待解决的问题。
发明内容
有鉴于此,本申请提供了一种转子铁芯,以提高机械强度,降低电机的振动噪音。本申请还提供了一种具有上述转子铁芯的切向电机转子及切向电机。
为实现上述目的,本申请提供如下技术方案:
一种转子铁芯,包括转子本体及设置于所述转子本体上的永磁体槽,相邻两个所述永磁体槽之间的转子磁极上设置有用于固定转子冲片的固定孔及隔磁孔;所述隔磁孔位于所述固定孔沿所述转子本体径向方向的外侧,所述隔磁孔的宽度沿所述转子本体的外侧向其圆心方向逐渐增加。
优选地,上述转子铁芯中,所述固定孔及所述隔磁孔均位于所述永磁体槽的磁极中心线上。
优选地,上述转子铁芯中,所述隔磁孔靠近所述转子本体外侧的外侧孔壁为与所述转子 本体同心设置的弧形面;
所述隔磁孔的外侧孔壁到所述转子本体外壁之间形成第一隔磁桥,所述第一隔磁桥的宽度为C,所述转子铁芯用于与定子配合的气隙长度为D;
2.4≥C/D≥0.4。
优选地,上述转子铁芯中,1.5≥C/D≥0.7。
优选地,上述转子铁芯中,所述隔磁孔为轴对称结构,其对称轴线的延伸线经过所述转子本体的圆心。
优选地,上述转子铁芯中,所述隔磁孔的外侧孔壁的宽度为A,所述转子铁芯的单个磁极所占角度为B;
0.15≥A/B≥0.02。
优选地,上述转子铁芯中,所述隔磁孔的内侧孔壁的两端点G分别与所述转子本体圆心连线形成的夹角为E;
60°≥E≥40°。
优选地,上述转子铁芯中,所述隔磁孔沿所述转子本体的径向的长度为F,所述转子本体的半径为R;
0.4≥F/R≥0.1。
优选地,上述转子铁芯中,所述隔磁孔与所述固定孔之间实体部分的最小距离大于1.5mm;
和/或,所述隔磁孔与所述永磁体槽之间实体部分的最小距离大于1.5mm。
优选地,上述转子铁芯中,所述隔磁孔的靠近所述转子本体圆心的内侧孔壁上具有朝向所述转子本体的外侧凸起的凸起部。
优选地,上述转子铁芯中,所述凸起部的顶点与所述永磁体槽的中心线相交于交点M,所述交点M到所述隔磁孔的外侧孔壁的距离为H,所述隔磁孔沿所述转子本体的径向的长度为F;
0.5≥H/F≥0.3。
优选地,上述转子铁芯中,所述隔磁孔的靠近所述转子本体圆心的内侧孔壁上具有背向所述转子本体的外侧下凹的凹槽部。
优选地,上述转子铁芯中,所述凹槽部为尖角凹槽或圆弧凹槽;
所述凹槽部的顶点与所述永磁体槽的中心线相交于交点M,所述交点M到所述隔磁孔的远离所述转子本体圆心的外侧孔壁的距离为H,所述隔磁孔去除尖角凹槽的部分沿所述转子本体的径向的长度为F;
1.4≥H/F>1。
优选地,上述转子铁芯中,所述隔磁孔的靠近所述转子本体圆心的内侧孔壁为平面。
优选地,上述转子铁芯中,所述永磁体槽具有朝向所述转子本体外侧设置的开口,所述开口的宽度大于所述永磁体槽的宽度的一半。
优选地,上述转子铁芯中,所述隔磁孔的最大宽度为其最小宽度2倍以上;
和/或,所述隔磁孔的最大宽度为所述固定孔直径的1.5倍以上。
本申请还提供了一种切向电机转子,包括转子铁芯及设置于其永磁体槽内的切向磁化永磁体,所述转子铁芯为如上述任一项所述的转子铁芯。
优选地,上述切向电机转子中,所述切向磁化永磁体靠近所述转子铁芯外侧的宽度大于其靠近所述转子铁芯圆心的宽度。
本申请还提供了一种切向电机,包括切向电机转子及定子,所述切向电机转子为如上述任一项所述的切向电机转子。
优选地,上述切向电机中,所述定子上具有定子槽及朝向所述切向电机转子与所述定子的气隙的槽口,所述槽口的宽度为K,所述隔磁孔的外侧孔壁的宽度为A;
1.2≥A/K≥0.8。
从上述的技术方案可以看出,本申请提供的转子铁芯,通过在转子磁极上设置有固定孔及隔磁孔;隔磁孔位于固定孔沿转子本体径向方向的外侧,通过设置固定孔,通过在固定孔内设置有固定件,有效提高了转子的机械强度;并且,隔磁孔的宽度沿转子本体的外侧向其圆心方向逐渐增加,有效起到了改善转子磁极的磁通走向,使得气隙磁密、反电势波形正弦度提高,降低谐波占比及谐波损耗的作用,降低电机的振动噪音,提高了电机效率。
本申请还提供了一种具有上述转子铁芯的切向电机转子及切向电机。由于上述转子铁芯具有上述技术效果,具有上述转子铁芯的切向电机转子及切向电机也应具有同样的技术效果,在此不再一一累述。
附图说明
为了使本申请的内容更容易被清楚的理解,下面根据本申请的具体实施例并结合附图,对本申请作进一步详细的说明,其中
图1为本申请实施例提供的切向电机的结构示意图;
图2为本申请实施例提供的切向电机转子的第一种结构示意图;
图3为本申请实施例提供的切向电机转子的第二种结构示意图;
图4为本申请实施例提供的切向电机转子的第三种结构示意图;
图5为本申请实施例提供的切向电机转子的第四种结构示意图;
图6为本申请实施例提供的定子的结构示意图;
图7为本申请实施例提供的切向电机的反电势谐波占比与C/D的关系示意图;
图8为本申请实施例提供的切向电机的反电势谐波占比及空载磁链与E的关系图;
图9为本申请实施例提供的切向电机的转矩脉冲系数与A/K的关系图。
具体实施方式
本申请公开了一种转子铁芯,以提高机械强度,降低电机的振动噪音。本申请还提供了一种具有上述转子铁芯的切向电机转子及切向电机。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参考图1和图2,本申请实施例提供了一种转子铁芯,包括转子本体1及设置于转子本体1上的永磁体槽2,相邻两个永磁体槽2之间的转子磁极上设置有用于固定转子冲片的固定孔11及隔磁孔12;隔磁孔12位于固定孔11沿转子本体1径向方向的外侧,隔磁孔12的宽度沿转子本体1的外侧向其圆心方向逐渐增加。
本申请实施例提供的转子铁芯,通过在转子磁极上设置有固定孔11及隔磁孔12;隔磁孔12位于固定孔11沿转子本体1径向方向的外侧,通过设置固定孔11,通过在固定孔11内设置有固定件,有效提高了转子的机械强度;并且,隔磁孔12的宽度沿转子本体1的外侧向其圆心方向逐渐增加,有效起到了改善转子磁极的磁通走向,使得气隙磁密、反电势波形正弦度提高,降低谐波占比及谐波损耗的作用,降低电机的振动噪音,提高了电机效率。
可以理解的是,两个隔磁孔12之间的磁极实体部分的宽度为其沿垂直于转子本体1的径向方向的两侧之间的距离。隔磁孔12的宽度为其沿垂直于转子本体1的径向方向的两端孔壁之间的距离。其中,固定孔11内设置有固定件。当固定孔11为铆钉孔时,固定件即为铆钉;当固定孔11为螺钉孔时,螺钉孔中插入连接转子冲片的结构加强杆。也可以将固定孔11设置为其他类型的孔,如螺纹孔、棱柱孔或椭圆孔等。
优选地,固定孔11及隔磁孔12均位于永磁体槽2的磁极中心线上。通过上述设置,使得电机磁路结构更加对称。
优选地,隔磁孔11靠近转子本体1外侧的外侧孔壁为与转子本体1同心设置的弧形面;这就使得隔磁孔的外侧孔壁与转子本体的外壁相互平行。隔磁孔12的外侧孔壁到转子本体1外壁之间形成第一隔磁桥,第一隔磁桥的宽度为C,转子铁芯用于与定子配合的气隙长度为D。通过仿真研究发现,第一隔磁桥的宽度C与气隙长度D的比值对反电势谐波占比有较大影响。如图7所示,将第一隔磁桥的宽度C与气隙长度D的比值C/D≥0.4时,限制了一小 部分磁通通过该隔磁桥传递,改善了气隙磁场分布,降低气隙磁密谐波占比,降低反电势谐波占比,降低振动噪声。但是,当C/D大于2.4时,第一隔磁桥的宽度太大,沿第一隔磁桥传递的磁通过多,气隙磁密波形畸变,谐波占比增加,电机振动噪声增加。因此,2.4≥C/D≥0.4。
其中,隔磁孔12的外侧孔壁为隔磁孔12靠近转子本体1外壁的孔壁;隔磁孔12的内侧孔壁为隔磁孔12靠近转子本体1圆心的孔壁。
优选地,1.5≥C/D≥0.7。当1.5≥C/D≥0.7时,气隙磁场分布最优,气隙磁密的正弦度最优,气隙磁密谐波占比最低,反电势谐波占比最低,电机振动噪声最低,且此时的谐波损耗最小,电机效率最高。如图7所示,在此条件下,本实施例提供的电机的谐波占比小于4%。
进一步地,隔磁孔12为轴对称结构,其对称轴线的延伸线经过转子本体1的圆心。在本实施例中,隔磁孔12位于磁极中心线处。
优选地,隔磁孔12的外侧孔壁的宽度为A,转子铁芯的单个磁极所占角度为B。经过研究发现,当隔磁孔12的宽度A大于0.02倍单个磁极所占角度B(磁极宽度),隔磁孔12降低气隙谐波的效果才明显。但是,A/B也不是越大越好,当A/B大于0.15时,隔磁孔12的宽度过大,转子磁极中心线处的磁通过少,转子磁极两侧的磁通过度集中,导致气隙磁场分布不均,气隙、反电势谐波占比增大,转子铁芯的铁损增加,磁极面积较小,磁极磁通易饱和,总磁通减小,电机输出转矩减小,电机效率下降。因此,优选地,0.15≥A/B≥0.02。
进一步地,隔磁孔12的内侧孔壁的两端点G分别与转子本体1圆心连线形成的夹角为E;通过仿真研究发现,夹角E的大小对反电势谐波影响较大。隔磁孔12的内侧孔壁较其外侧孔壁孔宽,可以限制转子磁极磁通走向,如图8所示,当E≥40°时,可以改善气隙磁场磁通分布,气隙磁密波形更接近正弦波,反电势谐波占比降低,电机振动噪声降低;而当E>60°时,隔磁孔12会对内部永磁体的磁通产生较多的阻挡,使得电机空载磁链下降。因此,60°≥E≥40°。其中,上述角度为电气角度。
由于隔磁孔12靠近转子铁芯圆心方向的孔壁为内侧孔壁,内侧孔壁沿转子铁芯的圆周方向延伸,关于磁极中心线对称,内侧孔壁有两个端点G,内侧孔壁的两个端点G之间的距离大于隔磁孔12的外侧孔壁的两个端点之间的距离。
进一步地,隔磁孔12沿转子本体1的径向的长度为F,转子本体1的半径为R;通过仿真研究发现,当隔磁孔12的长度F与转子本体1的半径为R的比值对谐波影响较大,当F/R≥0.1时,隔磁孔12的长度F增加,可以限制靠近转轴部分的转子磁极的磁通走向,从而改善气隙磁场分布,使得气隙磁密、反电势谐波占比减小,电机振动噪声减小,同时该隔磁孔可以削弱电机运行时的去磁电枢反应磁场,提高电机的抗退磁能力;但是,当F/R>0.4时,隔磁孔长度过大,隔磁孔面积过大,导磁磁极面积过小,同时磁极易饱和,电机出力下降, 电机效率下降。因此,优选地,0.4≥F/R≥0.1。
优选地,隔磁孔12与固定孔11之间实体部分的最小距离大于1.5mm。通过上述设置,可以提高电机转子结构的机械强度。
进一步地,隔磁孔12与永磁体槽2之间实体部分的最小距离大于1.5mm。通过上述设置,提高了电机转子的机械结构强度。
如图2所示,在第一种实施例中,隔磁孔12的靠近转子本体1圆心的内侧孔壁上具有朝向转子本体1的外侧凸起的凸起部14。通过设置凸起部14,可以使得隔磁孔12可以更好地调节内侧永磁体磁场的走向;并且,可以最大幅度的减少隔磁孔12对磁通的阻挡,提高电机的效率。凸起部14还可以方便固定孔11与隔磁孔12的布置,使得固定孔11能够朝转子外侧移动,减少转子高速旋转时,离心力以及电磁力导致的转子外侧形变,增强转子铁芯的机械强度。
在本实施例中,凸起部14为尖角凸起。当然,也可以将凸起部14设置为圆角凸起或多边形角凸起。
进一步地,凸起部14的顶点与永磁体槽2的中心线相交于交点M,交点M到隔磁孔12的远离转子本体1圆心的外侧孔壁的距离为H,隔磁孔12沿转子本体1的径向的长度为F。为了减少隔磁孔12的凸起部14对减低气隙谐谐波含量的影响,凸起部14的顶点M与隔磁孔12的外侧孔壁的距离F不能过小,因此,0.5≥H/F≥0.3。上述范围可以使得降低气隙谐波含量的效果较好,同时保证了电机的效率和机械强度。
在另外一种实施例中,也可以不设置凸起部14。隔磁孔12的靠近转子本体1圆心的内侧孔壁上具有背向转子本体1的外侧下凹的凹槽部。
如图4所示,凹槽部为尖角凹槽。如图5所示,凹槽部为圆弧凹槽。
在上述两种实施例中,凹槽部的顶点与永磁体槽2的中心线相交于交点M,交点M到隔磁孔12的远离转子本体1圆心的外侧孔壁的距离为H,隔磁孔12去除尖角凹槽的部分沿转子本体1的径向的长度为F。经过研究发现,当隔磁孔12设置凹槽部时,隔磁孔12的面积进一步增大,隔磁效果进一步提升,沿磁极中心线处传递的磁通减少,沿磁极两侧传递的磁通提高,气隙磁场分布更优,谐波占比更小,振动噪声更小,同时电机抗退磁能力进一步提高。为了确保机械强度,凹槽部的深度不能过大。因此,优选地,1.4≥H/F>1。其中,凹槽部的顶点为其距离转子本体1圆心最近的点。
如图3所示,在该实施例中,隔磁孔12的靠近转子本体1圆心的内侧孔壁为平面。其中,隔磁孔12的内侧孔壁为平面,隔磁孔12形似梯形,即,H=F。
优选地,永磁体槽2具有朝向转子本体1外侧设置的开口13,开口13的宽度大于永磁 体槽的宽度的一半。通过上述设置,能够有效减少切向磁化永磁体端部的漏磁,提高了电机的效率。开口13的宽度为开口13垂直于转子本体1径向方向的距离。
优选地,隔磁孔12的最大宽度为其最小宽度2倍以上。其中,隔磁孔12的最大宽度为隔磁孔12靠近转子铁心圆心的一侧的宽度,隔磁孔12的最小宽度为隔磁孔12远离转子铁心圆心的一侧的宽度。通过上述设置,更好地降低气隙磁场谐波含量。
隔磁孔12的最大宽度为固定孔11直径的1.5倍以上。通过将隔磁孔12的宽度设置成从转子外侧朝内侧逐渐变大,并且最大宽度大于1.5倍固定孔11直径的宽度,可以有效引导定子反向磁场的流向,减少了定子反向磁场进入到转子内部,减少了恶劣工况下内部永磁体的退磁风险。
本申请实施例还提供了一种切向电机转子,包括转子铁芯及设置于其永磁体槽内的切向磁化永磁体,转子铁芯为如上述任一种转子铁芯。由于上述转子铁芯具有上述技术效果,具有上述转子铁芯的切向电机转子也应具有同样的技术效果,在此不再一一累述。
进一步地,切向磁化永磁体靠近转子铁芯外侧的宽度大于其靠近转子铁芯圆心的宽度。通过上述设置,可以有效提升电机的抗退磁能力。
本申请实施例还提供了一种切向电机,包括切向电机转子及定子,切向电机转子为如上述任一种切向电机转子。由于上述切向电机转子具有上述技术效果,具有上述切向电机转子的切向电机也应具有同样的技术效果,在此不再一一累述。
如图2及图6所示,定子上具有定子槽41及朝向切向电机转子与定子的气隙的槽口42,槽口42的宽度为K,切向电机转子的转子铁芯的隔磁孔12的外侧孔壁的宽度为A;如图9所示,通过将切向电机转子的转子铁芯的隔磁孔12的外侧孔壁的宽度A与槽口42的宽度K之间的比值设置为1.2≥A/K≥0.8,能够有效减低气隙磁密中的5次谐波和7次谐波的含量,降低电机5次谐波和7次谐波与基波磁场作用产生的转矩脉动。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种转子铁芯,包括转子本体(1)及设置于所述转子本体(1)上的永磁体槽(2),其特征在于,相邻两个所述永磁体槽(2)之间的转子磁极上设置有用于固定转子冲片的固定孔(11)及隔磁孔(12);所述隔磁孔(12)位于所述固定孔(11)沿所述转子本体(1)径向方向的外侧,所述隔磁孔(12)的宽度沿所述转子本体(1)的外侧向其圆心方向逐渐增加。
  2. 如权利要求1所述的转子铁芯,其特征在于,所述固定孔(11)及所述隔磁孔(12)均位于所述永磁体槽(2)的磁极中心线上。
  3. 如权利要求1所述的转子铁芯,其特征在于,所述隔磁孔(12)靠近所述转子本体(1)外侧的外侧孔壁为与所述转子本体(1)同心设置的弧形面;
    所述隔磁孔(12)的外侧孔壁到所述转子本体(1)外壁之间形成第一隔磁桥,所述第一隔磁桥的宽度为C,所述转子铁芯用于与定子配合的气隙长度为D;
    2.4≥C/D≥0.4。
  4. 如权利要求3所述的转子铁芯,其特征在于,1.5≥C/D≥0.7。
  5. 如权利要求1所述的转子铁芯,其特征在于,所述隔磁孔(12)为轴对称结构,其对称轴线的延伸线经过所述转子本体(1)的圆心。
  6. 如权利要求1所述的转子铁芯,其特征在于,所述隔磁孔(12)的外侧孔壁的宽度为A,所述转子铁芯的单个磁极所占角度为B;
    0.15≥A/B≥0.02。
  7. 如权利要求1所述的转子铁芯,其特征在于,所述隔磁孔(12)的内侧孔壁的两端点G分别与所述转子本体(1)圆心连线形成的夹角为E;
    60°≥E≥40°。
  8. 如权利要求1所述的转子铁芯,其特征在于,所述隔磁孔(12)沿所述转子本体(1)的径向的长度为F,所述转子本体(1)的半径为R;
    0.4≥F/R≥0.1。
  9. 如权利要求1所述的转子铁芯,其特征在于,所述隔磁孔(12)与所述固定孔(11)之间实体部分的最小距离大于1.5mm;
    和/或,所述隔磁孔(12)与所述永磁体槽(2)之间实体部分的最小距离大于1.5mm。
  10. 如权利要求1所述的转子铁芯,其特征在于,所述隔磁孔(12)的靠近所述转子本体(1)圆心的内侧孔壁上具有朝向所述转子本体(1)的外侧凸起的凸起部(14)。
  11. 如权利要求10所述的转子铁芯,其特征在于,所述凸起部(14)的顶点与所述永磁体槽(2)的中心线相交于交点M,所述交点M到所述隔磁孔(12)的外侧孔壁的距离为H, 所述隔磁孔(12)沿所述转子本体(1)的径向的长度为F;
    0.5≥H/F≥0.3。
  12. 如权利要求1所述的转子铁芯,其特征在于,所述隔磁孔(12)的靠近所述转子本体(1)圆心的内侧孔壁上具有背向所述转子本体(1)的外侧下凹的凹槽部。
  13. 如权利要求12所述的转子铁芯,其特征在于,所述凹槽部为尖角凹槽或圆弧凹槽;
    所述凹槽部的顶点与所述永磁体槽(2)的中心线相交于交点M,所述交点M到所述隔磁孔(12)的远离所述转子本体(1)圆心的外侧孔壁的距离为H,所述隔磁孔(12)去除尖角凹槽的部分沿所述转子本体(1)的径向的长度为F;
    1.4≥H/F>1。
  14. 如权利要求1所述的转子铁芯,其特征在于,所述隔磁孔(12)的靠近所述转子本体(1)圆心的内侧孔壁为平面。
  15. 如权利要求1所述的转子铁芯,其特征在于,所述永磁体槽(2)具有朝向所述转子本体(1)外侧设置的开口(13),所述开口的宽度大于所述永磁体槽的宽度的一半。
  16. 如权利要求1-15任一项所述的转子铁芯,其特征在于,所述隔磁孔(12)的最大宽度为其最小宽度2倍以上;
    和/或,所述隔磁孔(12)的最大宽度为所述固定孔(11)直径的1.5倍以上。
  17. 一种切向电机转子,包括转子铁芯及设置于其永磁体槽内的切向磁化永磁体,其特征在于,所述转子铁芯为如权利要求1-16任一项所述的转子铁芯。
  18. 如权利要求17所述的切向电机转子,其特征在于,所述切向磁化永磁体靠近所述转子铁芯外侧的宽度大于其靠近所述转子铁芯圆心的宽度。
  19. 一种切向电机,包括切向电机转子及定子,其特征在于,所述切向电机转子为如权利要求17或18所述的切向电机转子。
  20. 如权利要求19所述的切向电机,其特征在于,所述定子上具有定子槽(41)及朝向所述切向电机转子与所述定子的气隙的槽口(42),所述槽口(42)的宽度为K,所述隔磁孔(12)的外侧孔壁的宽度为A;
    1.2≥A/K≥0.8。
PCT/CN2017/119434 2017-08-09 2017-12-28 切向电机、切向电机转子及其转子铁芯 WO2019029109A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/636,626 US11387695B2 (en) 2017-08-09 2017-12-28 Tangential motor, tangential motor rotor and rotor iron core thereof
EP17920956.4A EP3667869B1 (en) 2017-08-09 2017-12-28 Tangential motor, tangential motor rotor and rotor iron core thereof
DK17920956.4T DK3667869T3 (da) 2017-08-09 2017-12-28 Tangentialmotor, rotor til tangentialmotor og rotorjernkerne dertil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710676617.9 2017-08-09
CN201710676617.9A CN107222047B (zh) 2017-08-09 2017-08-09 切向电机、切向电机转子及其转子铁芯

Publications (2)

Publication Number Publication Date
WO2019029109A1 true WO2019029109A1 (zh) 2019-02-14
WO2019029109A9 WO2019029109A9 (zh) 2019-11-14

Family

ID=59953859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119434 WO2019029109A1 (zh) 2017-08-09 2017-12-28 切向电机、切向电机转子及其转子铁芯

Country Status (5)

Country Link
US (1) US11387695B2 (zh)
EP (1) EP3667869B1 (zh)
CN (1) CN107222047B (zh)
DK (1) DK3667869T3 (zh)
WO (1) WO2019029109A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117848A (zh) * 2019-06-19 2020-12-22 本田技研工业株式会社 旋转电机

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107222047B (zh) * 2017-08-09 2023-07-21 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN108321951B (zh) * 2018-03-16 2019-12-27 珠海格力电器股份有限公司 转子结构、永磁辅助同步磁阻电机及电动汽车
CN108736610B (zh) * 2018-08-09 2019-07-16 珠海格力电器股份有限公司 电机转子和永磁电机
CN109412300A (zh) * 2018-12-20 2019-03-01 珠海格力节能环保制冷技术研究中心有限公司 切向电机、电机转子及转子铁芯
CN112436689B (zh) * 2020-12-18 2022-09-13 山东理工大学 自带止退功能的嵌套式驱动电机凸极转子生产方法
CN112865362B (zh) * 2020-12-28 2022-03-18 珠海格力电器股份有限公司 转子铁芯组件、转子和电机
WO2024021887A1 (zh) * 2022-07-25 2024-02-01 安徽威灵汽车部件有限公司 转子冲片、转子铁芯、转子、电机和车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274585A (ja) * 2002-03-18 2003-09-26 Sanyo Electric Co Ltd 集中巻式dcモータ
CN101032067A (zh) * 2004-09-21 2007-09-05 A.O.史密斯公司 辐条永磁体转子
CN203674830U (zh) * 2013-12-19 2014-06-25 新安乃达驱动技术(上海)有限公司 拼块式的内置磁钢切向充磁的无刷电机转子结构及电机
CN107222047A (zh) * 2017-08-09 2017-09-29 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN207234637U (zh) * 2017-08-09 2018-04-13 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2636480B1 (fr) * 1988-08-01 1995-04-14 Alsthom Gec Moteur synchrone a aimants permanents
TW364234B (en) * 1997-04-14 1999-07-11 Sanyo Electric Co Rotor for an electric motor
US6946766B2 (en) * 2002-08-28 2005-09-20 Emerson Electric Co. Permanent magnet machine
FR2958466B1 (fr) * 2010-03-31 2017-09-08 Valeo Equip Electr Moteur Machine electrique tournante synchrone a aimants permanents et concentration de flux
FR2982439B1 (fr) * 2011-11-08 2013-11-22 Valeo Equip Electr Moteur Rotor de machine electrique tournante et machine electrique tournante comprenant un tel rotor
WO2013135258A2 (de) * 2012-03-13 2013-09-19 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft Würzburg Elektrische maschine
CN103872819B (zh) * 2012-12-10 2017-02-15 艾默生环境优化技术(苏州)有限公司 转子组件和包括该转子组件的永磁体电机
FR3022088B1 (fr) * 2014-06-05 2016-06-03 Valeo Equip Electr Moteur Rotor a aimants permanents a concentration de flux pour machine electrique tournante
DE112015007084T5 (de) * 2015-11-02 2018-07-26 Mitsubishi Electric Corporation Motor, Rotor, Kompressor und Kühl- und Klimagerät
WO2017105147A1 (ko) * 2015-12-18 2017-06-22 한온시스템 주식회사 영구자석 매립형 전동기를 위한 로터 및 그를 이용한 전동기
CN106160281A (zh) * 2016-08-26 2016-11-23 广东威灵电机制造有限公司 永磁电机和空调器
CN106451849B (zh) * 2016-10-13 2018-12-28 珠海格力节能环保制冷技术研究中心有限公司 一种转子结构、电机及压缩机
CN106712425A (zh) * 2017-03-09 2017-05-24 广东志高精密机械有限公司 一种用于压缩机的永磁式同步电动机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003274585A (ja) * 2002-03-18 2003-09-26 Sanyo Electric Co Ltd 集中巻式dcモータ
CN101032067A (zh) * 2004-09-21 2007-09-05 A.O.史密斯公司 辐条永磁体转子
CN203674830U (zh) * 2013-12-19 2014-06-25 新安乃达驱动技术(上海)有限公司 拼块式的内置磁钢切向充磁的无刷电机转子结构及电机
CN107222047A (zh) * 2017-08-09 2017-09-29 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯
CN207234637U (zh) * 2017-08-09 2018-04-13 珠海格力节能环保制冷技术研究中心有限公司 切向电机、切向电机转子及其转子铁芯

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3667869A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117848A (zh) * 2019-06-19 2020-12-22 本田技研工业株式会社 旋转电机
CN112117848B (zh) * 2019-06-19 2023-06-20 本田技研工业株式会社 旋转电机

Also Published As

Publication number Publication date
DK3667869T3 (da) 2021-12-20
EP3667869B1 (en) 2021-11-24
EP3667869A1 (en) 2020-06-17
CN107222047A (zh) 2017-09-29
WO2019029109A9 (zh) 2019-11-14
EP3667869A4 (en) 2020-07-29
US11387695B2 (en) 2022-07-12
US20200381965A1 (en) 2020-12-03
CN107222047B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
WO2019029109A9 (zh) 切向电机、切向电机转子及其转子铁芯
US20220329118A1 (en) Tangential Motor, Tangential Motor Rotor and Rotor Core of Tangential Motor Rotor
US9871419B2 (en) Rotor of permanent-magnet embedded motor, and compressor, blower, and refrigerating/air conditioning device using the rotor
WO2020125066A1 (zh) 切向电机、电机转子及转子铁芯
CN108768023A (zh) 转子组件及交替极电机
WO2021082379A1 (zh) 一种应用聚磁型调磁装置的盘式磁力齿轮
WO2018233253A1 (zh) 永磁电机
CN107222045B (zh) 切向电机、切向电机转子及其转子铁芯
CN106300729B (zh) 永磁电机转子及永磁同步电机
WO2021022922A1 (zh) 转子组件和交替极电机
CN207234637U (zh) 切向电机、切向电机转子及其转子铁芯
JP7230185B2 (ja) ロータ及び永久磁石モータ
CN107248793B (zh) 切向电机、切向电机转子及其转子铁芯
CN208939677U (zh) 定子铁芯、定子组件、电机、压缩机
WO2023116057A1 (zh) 一种能降低齿槽转矩脉动的永磁电机
JP2021083223A (ja) 永久磁石式モータの回転子構造
CN107276353B (zh) 切向电机、切向电机转子及其转子铁芯
WO2022227358A1 (zh) 一种盘式永磁电机
CN207234638U (zh) 切向电机、切向电机转子及其转子铁芯
CN211629946U (zh) 内置式转子及电机
CN204231040U (zh) 一种变频电机定子冲片
CN108832737B (zh) 电机定子冲片、电机定子、电机
CN209030000U (zh) 一种永磁无刷直流电机定子冲片
CN207868887U (zh) 一种高速永磁体同步电机转子结构
CN110350691A (zh) 转子结构、电机及家用电器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017920956

Country of ref document: EP

Effective date: 20200309