WO2019028606A1 - 数据传输方法、装置及计算机可读存储介质 - Google Patents

数据传输方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2019028606A1
WO2019028606A1 PCT/CN2017/096266 CN2017096266W WO2019028606A1 WO 2019028606 A1 WO2019028606 A1 WO 2019028606A1 CN 2017096266 W CN2017096266 W CN 2017096266W WO 2019028606 A1 WO2019028606 A1 WO 2019028606A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling
indication information
configuration information
scheduling type
signaling
Prior art date
Application number
PCT/CN2017/096266
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PL17921040.6T priority Critical patent/PL3668171T3/pl
Priority to ES17921040T priority patent/ES2929639T3/es
Priority to PCT/CN2017/096266 priority patent/WO2019028606A1/zh
Priority to CN201780000768.0A priority patent/CN108476520B/zh
Priority to EP17921040.6A priority patent/EP3668171B1/en
Priority to US16/637,225 priority patent/US11382125B2/en
Publication of WO2019028606A1 publication Critical patent/WO2019028606A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/618Details of network addresses
    • H04L2101/622Layer-2 addresses, e.g. medium access control [MAC] addresses

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a data transmission method, apparatus, and computer readable storage medium.
  • communication systems usually need to support multiple service types, but different service types have different requirements for wireless communication technologies.
  • the main requirements of the eMBB (enhanced mobile broadband bandwidth) service type are focused on large bandwidth. , high rate, etc.
  • URLLC Ultra Reliable Low Latency Communication
  • mMTC massive Machine Type Communication, large model Communication
  • the main requirements of the service type focus on the large number of connections.
  • the terminal needs to support multiplexing of multiple services.
  • the uplink and downlink data transmission of the terminal is based on the scheduling of the base station, that is, the base station instructs the terminal to receive or transmit data at the corresponding resource location to pass different scheduling.
  • the way to achieve the transmission of data In order to effectively implement data transmission, how to distinguish different scheduling types becomes a hot topic for the terminal.
  • the present disclosure provides a data transmission method, apparatus, and computer readable storage medium.
  • a data transmission method method including:
  • Resource scheduling is performed based on the scheduling type to implement data transmission.
  • the scheduling type indication information is the length of the scheduling signaling
  • the configuration information includes a correspondence between multiple lengths and multiple scheduling types.
  • the scheduling type indication information is a radio network temporary identifier RNTI in the scheduling signaling
  • the configuration information includes a correspondence between multiple groups of RNTIs and multiple scheduling types, where each group Each RNTI is used to perform scrambling processing on scheduling signaling of different scheduling functions of the corresponding scheduling type.
  • the scheduling type indication information is a scrambling sequence
  • the configuration information includes a correspondence between multiple scrambling sequences and multiple scheduling types, and each scrambling sequence is used to be based on the same group of RNTIs.
  • the scheduling signaling of the corresponding scheduling type obtained after the scrambling process is subjected to scrambling processing.
  • the scheduling type indication information is code indication information whose length corresponding to the specified information field in the scheduling signaling is a specified length
  • the configuration information includes multiple code indication information and multiple scheduling types. Correspondence.
  • the configuration information includes a correspondence between multiple location information and multiple scheduling types, where The location information includes time domain location information, frequency domain location information, and beam location information.
  • the method further includes:
  • the configuration information is sent by the base station by using radio resource control RRC signaling, media access control MAC control unit CE, or physical layer signaling.
  • a data transmission apparatus including:
  • a receiving module configured to receive scheduling signaling sent by the base station, where the scheduling signaling carries scheduling type indication information
  • a determining module configured to determine, according to the scheduling type indication information and pre-stored configuration information, a scheduling type corresponding to the scheduling type indication information, where the configuration information includes multiple scheduling type indication information and multiple scheduling types Correspondence relationship
  • a transmission module configured to perform resource scheduling based on the scheduling type to implement data transmission.
  • the configuration information includes a correspondence between multiple lengths and multiple scheduling types.
  • the scheduling type indication information is a radio network temporary identifier RNTI in the scheduling signaling
  • the configuration information includes a correspondence between multiple groups of RNTIs and multiple scheduling types, where Each RNTI in each group is used to perform scrambling processing on scheduling signaling of different scheduling functions of the corresponding scheduling type.
  • the scheduling type indication information is a scrambling sequence
  • the configuration information includes a correspondence between multiple scrambling sequences and multiple scheduling types, and each scrambling sequence is used to be based on the same group of RNTIs.
  • the scheduling signaling of the corresponding scheduling type obtained after the scrambling process is subjected to scrambling processing.
  • the scheduling type indication information is code indication information whose length corresponding to the specified information field in the scheduling signaling is a specified length
  • the configuration information includes multiple code indication information and multiple scheduling types. Correspondence.
  • the configuration information includes a correspondence between multiple location information and multiple scheduling types, where The location information includes time domain location information, frequency domain location information, and beam location information.
  • the device further includes:
  • a storage module configured to receive and store the configuration information sent by the base station.
  • the configuration information is sent by the base station by radio resource control RRC signaling, media access control MAC control unit CE or physical layer signaling.
  • a data transmission apparatus comprising:
  • a memory for storing processor executable instructions
  • the processor is configured to perform the data transmission method according to any one of the above aspects.
  • a fourth aspect a computer readable storage medium having instructions stored thereon, wherein the instructions are executed by a processor to implement the data of any of the above aspects Transmission method.
  • the terminal in order to implement multiplexing of multiple types of services, needs to support multiple types of scheduling modes for resource scheduling.
  • the terminal receives the scheduling signaling that is sent by the base station and carries the scheduling type indication information, and then, the terminal, based on the scheduling type indication information, and the pre-stored correspondence between the multiple scheduling type indication information and the multiple scheduling types. Relationship configuration information, indeed The scheduling type corresponding to the scheduling type indication information is determined, that is, the classification of the scheduling type is implemented. After that, the terminal can perform resource scheduling based on the scheduling type to implement data transmission.
  • FIG. 1A is a schematic diagram of a system architecture provided according to an exemplary embodiment.
  • FIG. 1B is a flowchart of a data transmission method according to an exemplary embodiment.
  • FIG. 2 is a flowchart of a data transmission method according to another exemplary embodiment.
  • FIG. 3 is a flowchart of a data transmission method according to another exemplary embodiment.
  • FIG. 4 is a flowchart of a data transmission method according to another exemplary embodiment.
  • FIG. 5 is a flowchart of a data transmission method according to another exemplary embodiment.
  • FIG. 6A is a flowchart of a data transmission method according to another exemplary embodiment.
  • FIG. 6B is a schematic diagram of a location of a scheduling signaling in a control resource set according to the embodiment of FIG. 6A.
  • FIG. 7A is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 7B is a block diagram of another data transmission device, according to an exemplary embodiment.
  • FIG. 8 is a block diagram of a data transmission device 800, according to an exemplary embodiment.
  • the new generation communication technology is to support flexible configuration of multiple service types.
  • multiple types of scheduling modes are introduced in the communication system.
  • the multiple types of scheduling modes may include scheduling based on slot (representing time-frequency) and scheduling based on symbol (symbol). .
  • slot representing time-frequency
  • symbol symbol
  • the embodiment of the present disclosure provides a data transmission method, which solves the problem of how the terminal distinguishes different scheduling types.
  • FIG. 1B, FIG. 2, FIG. 3, FIG. 4, and FIG. And the embodiment shown in Figure 6A.
  • FIG. 1A is a schematic diagram of a system architecture according to an exemplary embodiment.
  • the system architecture mainly includes a terminal 110 and a base station 120, and the terminal 110 can access the base station 120 through a wireless communication network.
  • the base station 120 is configured to send scheduling signaling to the terminal 110 to notify the terminal 110 of what type of scheduling mode to use for resource scheduling.
  • the base station 120 is further configured to send configuration information to the terminal 110, where the configuration information includes a correspondence between multiple scheduling type indication information and multiple scheduling types.
  • the terminal 110 is mainly used to implement the data transmission method provided by the embodiment of the present disclosure. That is, the terminal 110 receives and stores the configuration information sent by the base station 120. It should be noted that the configuration information is sent to the terminal 110 by the base station 120 as an example. In another embodiment, the configuration information may also be predefined, and the embodiment of the present disclosure Not limited.
  • the scheduling type indicated by the base station 120 is determined according to the scheduling type indication information carried in the scheduling signaling and the pre-stored configuration information. Further, the terminal 110 performs resource scheduling based on the scheduling type to implement data transmission.
  • the specific implementation process please refer to the embodiments shown in FIG. 1B, FIG. 2, FIG. 3, FIG. 4, FIG. 5 and FIG. 6A.
  • the terminal 110 can be used for wireless purposes.
  • the communication device for example, the terminal 110 may be a mobile phone or the like, which is not limited by the embodiment of the present disclosure.
  • FIG. 1B is a flowchart of a data transmission method, as shown in FIG. 1B, including the following steps, according to an exemplary embodiment.
  • step 101 the scheduling signaling sent by the base station is received, where the scheduling signaling carries scheduling type indication information.
  • step 102 based on the scheduling type indication information and the pre-stored configuration information, the scheduling type corresponding to the scheduling type indication information is determined, and the configuration information includes a correspondence between multiple scheduling type indication information and multiple scheduling types.
  • step 103 resource scheduling is performed based on the scheduling type to implement data transmission.
  • the terminal in order to implement multiplexing of multiple types of services, the terminal needs to support multiple types of scheduling modes for resource scheduling.
  • the terminal receives the scheduling signaling that is sent by the base station and carries the scheduling type indication information, and then, the terminal, based on the scheduling type indication information, and the pre-stored correspondence between the multiple scheduling type indication information and the multiple scheduling types.
  • the configuration information of the relationship determines the scheduling type corresponding to the scheduling type indication information, that is, the classification of the scheduling type is implemented. After that, the terminal can perform resource scheduling based on the scheduling type to implement data transmission.
  • the configuration information includes a correspondence between multiple lengths and multiple scheduling types.
  • the scheduling type indication information is a radio network temporary identifier RNTI in the scheduling signaling
  • the configuration information includes a correspondence between multiple groups of RNTIs and multiple scheduling types, where each RNTI in each group It is used to perform scrambling processing on scheduling signaling of different scheduling functions of the corresponding scheduling type.
  • the scheduling type indication information is a scrambling sequence
  • the configuration information includes a correspondence between multiple scrambling sequences and multiple scheduling types, and each scrambling sequence is used to add the same group of RNTIs.
  • the scheduling signaling of the corresponding scheduling type obtained after the interference processing is subjected to scrambling processing.
  • the scheduling type indication information is code indication information whose length corresponding to the specified information field in the scheduling signaling is a specified length
  • the configuration information includes a correspondence between the plurality of code indication information and the multiple scheduling types.
  • the scheduling type indication information is a bit in a control resource set where the scheduling signaling is located
  • the configuration information includes a correspondence between a plurality of location information and a plurality of scheduling types
  • the location information includes time domain location information, frequency domain location information, and beam location information.
  • the method before the information indicating the scheduling type and the pre-stored configuration information, the method further includes:
  • the configuration information is sent by the base station by using RRC (Radio Resource Control) signaling, a MAC (Media Access Control) (CE), or a physical layer signaling.
  • RRC Radio Resource Control
  • CE Media Access Control
  • the terminal can perform scheduling type differentiation in a plurality of manners to implement data transmission.
  • the embodiment of the present disclosure will introduce the specific implementation process in detail according to the following embodiments of FIG. 2, FIG. 3, FIG. 4, FIG. 5 and FIG. 6A, respectively, based on the content of the scheduling type indication information being different.
  • FIG. 2 is a flowchart of a data transmission method according to an exemplary embodiment. As shown in FIG. 2, the data transmission method may be applied to the system architecture shown in FIG. 1A.
  • the indication information is an example of the length of the scheduling signaling, and the data transmission method may include the following implementation steps:
  • step 201 the configuration information sent by the base station is received and stored, and the configuration information includes a correspondence between multiple lengths and multiple scheduling types.
  • the base station may send the configuration information to the terminal, and correspondingly, after receiving the configuration information, the terminal may locally store the configuration information, so that the terminal may subsequently determine the received information based on the configuration information.
  • the scheduling type indicates the scheduling type corresponding to the information. For details, see the subsequent steps.
  • the configuration information is sent by the base station to the terminal through RRC signaling, MAC CE, or physical layer signaling.
  • the configuration information when the scheduling type indication information is the length of the scheduling signaling, the configuration information includes a correspondence between multiple lengths and multiple scheduling types.
  • the correspondence between multiple lengths included in the configuration information and multiple scheduling types may be as shown in Table 1a.
  • the configuration information may further include a correspondence between multiple length ranges and multiple scheduling types, that is, in an actual implementation, one or more definitions may also be defined.
  • the correspondence between multiple length ranges included in the configuration information and multiple scheduling types may be as shown in Table 1b below:
  • Length of scheduling signaling Scheduling type Less than or equal to L 1 Type 1 Greater than L 1 , less than or equal to L 2 Type 2 ... ... Greater than L m-1 , less than or equal to L m Type m
  • the embodiment of the present disclosure is only described by the example that the base station sends the configuration information to the terminal.
  • the configuration information may also be predefined, which is not limited by the embodiment of the present disclosure. .
  • step 202 the scheduling signaling sent by the base station is received, where the scheduling signaling carries scheduling type indication information.
  • the base station Since a plurality of types of scheduling modes are introduced in the communication system, before the data transmission between the terminal and the base station, the base station needs to indicate which scheduling mode the terminal uses for resource scheduling. To this end, the base station is in the scheduling signaling.
  • the scheduling type indication information is carried in the middle.
  • the scheduling type indication information is the length of the scheduling signaling, for example, the length of the scheduling signaling is L 2 . That is, in the disclosed embodiment, the terminal can distinguish different scheduling types by detecting the length of the scheduling signaling.
  • the scheduling signaling may be implemented by using DCI (Downlink Control Information).
  • DCI Downlink Control Information
  • step 203 based on the scheduling type indication information and the pre-stored configuration information, the scheduling type corresponding to the scheduling type indication information is determined.
  • the terminal pre-stores configuration information including a correspondence between multiple lengths and multiple scheduling types, as shown in Table 1a. Therefore, the terminal indicates information based on the scheduling type and pre-stored configuration information. , the scheduling type indication information corresponding to the scheduling type can be determined.
  • the scheduling type indication information is the length of the scheduling signaling, and the length of the scheduling signaling is L 2 , according to the correspondence between multiple lengths and multiple scheduling types shown in Table 1a above, It is determined that the scheduling type corresponding to the scheduling type indication information is scheduling type 2.
  • configuration information including a correspondence between multiple length ranges and multiple scheduling types is pre-stored in the terminal, as shown in Table 1b. Therefore, the terminal indicates information and pre-stores based on the scheduling type.
  • the configuration information can be used to determine the scheduling type corresponding to the scheduling type indication information.
  • the scheduling type indication information is the length of the scheduling signaling, and the length of the scheduling signaling is L2, according to the correspondence between multiple length ranges and multiple scheduling types shown in Table 1b above, it may be determined.
  • the scheduling type corresponding to the scheduling type indication information is scheduling type 2.
  • step 204 resource scheduling is performed based on the scheduling type to implement data transmission.
  • the terminal may perform resource scheduling based on the scheduling type, for example, if the scheduling type is slot-based scheduling, The scheduling mode of the slot performs resource scheduling for data transmission.
  • the terminal in order to implement multiplexing of multiple types of services, the terminal needs to support multiple types of scheduling modes for resource scheduling.
  • the terminal receives the scheduling signaling that is sent by the base station and carries the scheduling type indication information, and then, the terminal, based on the scheduling type indication information, and the pre-stored correspondence between the multiple scheduling type indication information and the multiple scheduling types.
  • the configuration information of the relationship determines the scheduling type corresponding to the scheduling type indication information, that is, the classification of the scheduling type is implemented. After that, the terminal can perform resource scheduling based on the scheduling type to implement data transmission.
  • FIG. 3 is a flowchart of a data transmission method according to an exemplary embodiment, as shown in FIG.
  • the data transmission method may be applied to the system architecture shown in FIG. 1A.
  • the embodiment of the present disclosure uses the scheduling type indication information as an example of the radio network temporary identifier RNTI in the scheduling signaling, and the data transmission method may be used as an example. Including the following implementation steps:
  • step 301 the configuration information sent by the base station is received and stored, and the configuration information includes a correspondence between multiple groups of RNTIs and multiple scheduling types.
  • the base station may send the configuration information to the terminal, and correspondingly, after receiving the configuration information, the terminal may locally store the configuration information, so that the terminal may subsequently determine the received information based on the configuration information.
  • the scheduling type indicates the scheduling type corresponding to the information. For details, see the subsequent steps.
  • the configuration information is sent by the base station to the terminal through RRC signaling, MAC CE, or physical layer signaling.
  • the configuration information when the scheduling type indication information is an RNTI in the scheduling signaling, includes a correspondence between multiple groups of RNTIs and multiple scheduling types.
  • the correspondence between multiple groups of RNTIs included in the configuration information and multiple scheduling types may be as shown in Table 2.
  • the embodiment of the present disclosure is only described by taking the correspondence between the multiple groups of RNTIs and the multiple scheduling types as shown in Table 2.
  • the multiple groups of RNTIs and the The corresponding relationship between the various types of scheduling may also be other forms, which are not limited by the embodiments of the present disclosure.
  • Each RNTI in each group is used to perform scrambling processing on scheduling signaling of different scheduling functions of the corresponding scheduling type. That is, in the embodiment of the present disclosure, multiple groups of RNTIs may be defined, each group of RNTIs corresponding to one scheduling type, and each RNTI in the same group is used for the scheduling type corresponding to the group.
  • the scheduling signaling with the scheduling function performs scrambling processing.
  • the scheduling type corresponding to the group 1 is scheduling type 1, and the RNTI_11 in group 1 can be used to perform scrambling processing on the scheduling signaling a with the A scheduling function, and the RNTI_12 can be used for scheduling signaling with the B scheduling function.
  • b performs scrambling processing, and so on, RNTI_1N is used to perform scrambling processing on the scheduling signaling n having the N scheduling function, wherein the scheduling type of the scheduling signaling a, the scheduling signaling b, ..., and the scheduling signaling n Both are scheduling type 1.
  • the embodiment of the present disclosure is only described by the example that the base station sends the configuration information to the terminal.
  • the configuration information may also be predefined, which is not limited by the embodiment of the present disclosure. .
  • step 302 the scheduling information sent by the base station is received, where the scheduling information carries scheduling type indication information.
  • the base station Since a plurality of types of scheduling modes are introduced in the communication system, before the data transmission between the terminal and the base station, the base station needs to indicate which scheduling mode the terminal uses for resource scheduling. To this end, the base station carries scheduling type indication information in the scheduling signaling.
  • the scheduling type indication information is an RNTI in the scheduling signaling, for example, the RNTI in the scheduling signaling is RNTI_12. That is, in the embodiment of the present disclosure, the terminal may distinguish different scheduling types according to the group to which the RNTI in the scheduling signaling belongs.
  • the scheduling signaling may pass DCI (Downlink Control Information).
  • step 303 based on the scheduling type indication information and the pre-stored configuration information, the scheduling type corresponding to the scheduling type indication information is determined.
  • configuration information including a correspondence between multiple groups of RNTIs and multiple scheduling types is pre-stored in the terminal, as shown in Table 2. Therefore, the terminal indicates information based on the scheduling type and pre-stored configuration information. , the scheduling type indication information corresponding to the scheduling type can be determined.
  • the scheduling type indication information is the RNTI in the scheduling signaling
  • the RNTI in the scheduling signaling is RNTI_12
  • the scheduling type corresponding to the scheduling type indication information is the scheduling type 1.
  • step 304 resource scheduling is performed based on the scheduling type to implement data transmission.
  • the terminal may perform resource scheduling based on the scheduling type. For example, if the scheduling type is slot-based scheduling, it may be based on The scheduling mode of the slot performs resource scheduling for data processing. transmission.
  • the terminal in order to implement multiplexing of multiple types of services, the terminal needs to support multiple types of scheduling modes for resource scheduling.
  • the terminal receives the scheduling signaling that is sent by the base station and carries the scheduling type indication information, and then, the terminal, based on the scheduling type indication information, and the pre-stored correspondence between the multiple scheduling type indication information and the multiple scheduling types.
  • the configuration information of the relationship determines the scheduling type corresponding to the scheduling type indication information, that is, the classification of the scheduling type is implemented. After that, the terminal can perform resource scheduling based on the scheduling type to implement data transmission.
  • FIG. 4 is a flowchart of a data transmission method according to an exemplary embodiment. As shown in FIG. 4, the data transmission method may be applied to the system architecture shown in FIG. 1A.
  • the indication information is an example of a scrambling sequence, and the data transmission method may include the following implementation steps:
  • step 401 configuration information sent by the base station is received and stored, and the configuration information includes a correspondence between multiple scrambling sequences and multiple scheduling types.
  • the base station may send the configuration information to the terminal, and correspondingly, after receiving the configuration information, the terminal may locally store the configuration information, so that the terminal may subsequently determine the received information based on the configuration information.
  • the scheduling type indicates the scheduling type corresponding to the information. For details, see the subsequent steps.
  • the configuration information is sent by the base station to the terminal through RRC signaling, MAC CE, or physical layer signaling.
  • the configuration information when the scheduling type indication information is a scrambling sequence, the configuration information includes a correspondence between multiple scrambling sequences and multiple scheduling types.
  • the correspondence between multiple scrambling sequences included in the configuration information and multiple scheduling types may be as shown in Table 3.
  • the embodiment of the present disclosure is only described by taking the correspondence between the multiple scrambling sequences and the multiple scheduling types as shown in Table 3.
  • the multiple adding The corresponding relationship between the scrambling sequence and the multiple scheduling types may also be other forms, which is not limited by the embodiment of the present disclosure.
  • Each scrambling sequence is used to perform scrambling processing on scheduling signaling of a corresponding scheduling type obtained by performing scrambling processing on the same group of RNTIs. That is, in the disclosed embodiment, the base station defines only one set of RNTIs. Since the scheduling type cannot be distinguished according to the RNTIs belonging to the same group, in order to distinguish different scheduling types, multiple scrambling sequences are defined here, and each scrambling sequence corresponds to one scheduling type, so that subsequent terminals can detect the scrambling by detecting The sequence can know the corresponding scheduling type.
  • the embodiment of the present disclosure is only described by the example that the base station sends the configuration information to the terminal.
  • the configuration information may also be predefined, which is not limited by the embodiment of the present disclosure. .
  • step 402 the scheduling signaling sent by the base station is received, where the scheduling signaling carries scheduling type indication information.
  • the base station Since a plurality of types of scheduling modes are introduced in the communication system, before the data transmission between the terminal and the base station, the base station needs to indicate which scheduling mode the terminal uses for resource scheduling. To this end, the base station carries scheduling type indication information in the scheduling signaling.
  • the scheduling type indication information is a scrambling sequence, for example, the scrambling sequence is array1. That is, in the embodiment of the present disclosure, the terminal can distinguish different scheduling types by detecting the scrambling sequence.
  • the scheduling signaling may pass DCI (Downlink Control Information).
  • step 403 based on the scheduling type indication information and the pre-stored configuration information, the scheduling type corresponding to the scheduling type indication information is determined.
  • the terminal pre-stores configuration information including a correspondence between multiple scrambling sequences and multiple scheduling types, as shown in Table 3. Therefore, the terminal indicates information based on the scheduling type and pre-stored information.
  • the configuration information determines the scheduling type corresponding to the scheduling type indication information.
  • the scheduling type indication information is a scrambling sequence
  • the scrambling sequence is array1
  • the scheduling type may be determined according to the correspondence between multiple scrambling sequences and multiple scheduling types shown in Table 3 above.
  • the scheduling type corresponding to the indication information is scheduling type 1.
  • step 404 resource scheduling is performed based on the scheduling type to implement data transmission.
  • the terminal performs the above-mentioned implementation process according to the scrambling sequence in the scheduling signaling and the pre-stored configuration information.
  • the resource scheduling may be performed based on the scheduling type. For example, if the scheduling type is slot-based scheduling, resource scheduling may be performed based on the scheduling manner of the slot for data transmission.
  • the terminal in order to implement multiplexing of multiple types of services, the terminal needs to support multiple types of scheduling modes for resource scheduling.
  • the terminal receives the scheduling signaling that is sent by the base station and carries the scheduling type indication information, and then, the terminal, based on the scheduling type indication information, and the pre-stored correspondence between the multiple scheduling type indication information and the multiple scheduling types.
  • the configuration information of the relationship determines the scheduling type corresponding to the scheduling type indication information, that is, the classification of the scheduling type is implemented. After that, the terminal can perform resource scheduling based on the scheduling type to implement data transmission.
  • FIG. 5 is a flowchart of a data transmission method according to an exemplary embodiment. As shown in FIG. 5, the data transmission method may be applied to the system architecture shown in FIG. 1A.
  • the indication information is an example of the code indication information whose length corresponding to the specified information field in the scheduling signaling is a specified length.
  • the data transmission method may include the following implementation steps:
  • step 501 configuration information sent by the base station is received and stored, and the configuration information includes a correspondence between the plurality of code indication information and multiple scheduling types.
  • the base station may send the configuration information to the terminal, and correspondingly, after receiving the configuration information, the terminal may locally store the configuration information, so that the terminal may subsequently determine the received information based on the configuration information.
  • the scheduling type indicates the scheduling type corresponding to the information. For details, see the subsequent steps.
  • the configuration information is sent by the base station to the terminal through RRC signaling, MAC CE, or physical layer signaling.
  • the scheduling type indication information is code indication information whose length corresponding to the specified information field in the scheduling signaling is a specified length
  • the configuration information includes multiple code indication information and multiple schedulings. The correspondence between types.
  • the specified information field may be located at a fixed position of the scheduling signaling, and the specified length may also be preset according to actual requirements. For example, when four different scheduling types are supported in the communication system, the specified length may be 2. Further, the code indication information may specifically be "00", "01", “10", and "11".
  • the correspondence between the multiple code indication information and the multiple scheduling types may be as shown in Table 4.
  • the embodiment of the present disclosure is only described by taking the correspondence between the multiple code indication information and the multiple scheduling types as shown in Table 4.
  • the multiple codes are used.
  • the corresponding relationship between the indication information and the multiple scheduling types may also be in other forms, which is not limited by the embodiments of the present disclosure.
  • the embodiment of the present disclosure is only described by the example that the base station sends the configuration information to the terminal.
  • the configuration information may also be predefined, which is not limited by the embodiment of the present disclosure. .
  • step 502 a scheduling instruction sent by the base station is received, where the scheduling instruction carries scheduling type indication information.
  • the base station Since a plurality of types of scheduling modes are introduced in the communication system, before the data transmission between the terminal and the base station, the base station needs to indicate which scheduling mode the terminal uses for resource scheduling. To this end, the base station carries scheduling type indication information in the scheduling signaling.
  • the scheduling type indication information is code indication information whose length corresponding to the specified information field in the scheduling signaling is a specified length, for example, the code indication information is “10”. That is, in the embodiment of the present disclosure, the terminal may distinguish different scheduling types by detecting code indication information whose length corresponding to the specified information field in the scheduling signaling is a specified length.
  • the scheduling signaling may pass DCI (Downlink Control Information).
  • step 503 based on the scheduling type indication information and the pre-stored configuration information, the scheduling type corresponding to the scheduling type indication information is determined.
  • configuration information including a correspondence between a plurality of code indication information and a plurality of scheduling types is pre-stored in the terminal, as shown in Table 4, and therefore, the terminal indicates information and pre-stored based on the scheduling type.
  • the configuration information determines the scheduling type corresponding to the scheduling type indication information.
  • the scheduling type indication information is the length corresponding to the specified information field in the scheduling signaling
  • the code indicates the information, and the code indicates that the information is "10”
  • the scheduling type indication information may be determined.
  • the scheduling type is scheduling type 3.
  • step 504 resource scheduling is performed based on the scheduling type to implement data transmission.
  • the terminal may perform resource scheduling based on the scheduling type, for example, if If the scheduling type is slot-based scheduling, resource scheduling may be performed based on the scheduling manner of the slot for data transmission.
  • the terminal in order to implement multiplexing of multiple types of services, the terminal needs to support multiple types of scheduling modes for resource scheduling.
  • the terminal receives the scheduling signaling that is sent by the base station and carries the scheduling type indication information, and then, the terminal, based on the scheduling type indication information, and the pre-stored correspondence between the multiple scheduling type indication information and the multiple scheduling types.
  • the configuration information of the relationship determines the scheduling type corresponding to the scheduling type indication information, that is, the classification of the scheduling type is implemented. After that, the terminal can perform resource scheduling based on the scheduling type to implement data transmission.
  • FIG. 6A is a flowchart of a data transmission method according to an exemplary embodiment. As shown in FIG. 6A, the data transmission method may be applied to the system architecture shown in FIG. 1A.
  • the indication information is the location information in the control resource set in which the scheduling signaling is located.
  • the data transmission method may include the following implementation steps:
  • step 601 configuration information sent by the base station is received and stored, and the configuration information includes a correspondence between multiple location information and multiple scheduling types.
  • the base station may send the configuration information to the terminal, and correspondingly, after receiving the configuration information, the terminal may locally store the configuration information, so that the terminal may subsequently determine the received information based on the configuration information.
  • the scheduling type indicates the scheduling type corresponding to the information. For details, see the subsequent steps.
  • the configuration information is sent by the base station to the terminal through RRC signaling, MAC CE, or physical layer signaling.
  • the scheduling type indication information is the location information in the CORESET (Control Resoure Set) where the scheduling signaling is located
  • the configuration information includes multiple location information and multiple The correspondence between scheduling types.
  • the location information includes time domain location information, frequency domain location information, and beam location information. End Based on the time domain location information, the frequency domain location information, and the beam location information, the terminal can uniquely determine which symbol of the slot the scheduling signaling is located on a transmission unit.
  • the location information is used.
  • the corresponding scheduling type is scheduling type 1.
  • the scheduling type corresponding to the location information is a scheduling type. 2.
  • the scheduling type corresponding to the location information is scheduling type 3.
  • the embodiment of the present disclosure is only described by the example that the base station sends the configuration information to the terminal.
  • the configuration information may also be predefined, which is not limited by the embodiment of the present disclosure. .
  • step 602 the scheduling signaling sent by the base station is received, where the scheduling signaling carries scheduling type indication information.
  • the base station Since a plurality of types of scheduling modes are introduced in the communication system, before the data transmission between the terminal and the base station, the base station needs to indicate which scheduling mode the terminal uses for resource scheduling. To this end, the base station carries scheduling type indication information in the scheduling signaling.
  • the scheduling type indication information is location information in the CORESET where the scheduling signaling is located, for example, the location information in the CORESET where the scheduling signaling is located is the third symbol on a slot. That is, in the embodiment of the present disclosure, the terminal may distinguish different scheduling types by detecting location information in the CORESET where the scheduling signaling is located.
  • the scheduling signaling may pass DCI (Downlink Control Information).
  • step 603 based on the scheduling type indication information and the pre-stored configuration information, the scheduling type corresponding to the scheduling type indication information is determined.
  • configuration information including a correspondence between a plurality of location information and a plurality of scheduling types is pre-stored in the terminal, as shown in FIG. 6B. Therefore, the terminal indicates information based on the scheduling type and a pre-stored configuration. The information can be used to determine the scheduling type corresponding to the scheduling type indication information.
  • FIG. 6B shows that the scheduling type corresponding to the scheduling type indication information
  • the type is scheduling type 2.
  • step 604 resource scheduling is performed based on the scheduling type to implement data transmission.
  • the terminal may perform resource scheduling based on the scheduling type, for example, if the scheduling type is slot-based scheduling. Then, resource scheduling can be performed based on the scheduling manner of the slot for data transmission.
  • the terminal in order to implement multiplexing of multiple types of services, the terminal needs to support multiple types of scheduling modes for resource scheduling.
  • the terminal receives the scheduling signaling that is sent by the base station and carries the scheduling type indication information, and then, the terminal, based on the scheduling type indication information, and the pre-stored correspondence between the multiple scheduling type indication information and the multiple scheduling types.
  • the configuration information of the relationship determines the scheduling type corresponding to the scheduling type indication information, that is, the classification of the scheduling type is implemented. After that, the terminal can perform resource scheduling based on the scheduling type to implement data transmission.
  • FIG. 7A is a block diagram of a data transmission device according to an exemplary embodiment. As shown in FIG. 7A, the device includes:
  • the receiving module 701 is configured to receive scheduling signaling sent by the base station, where the scheduling signaling carries scheduling type indication information.
  • the determining module 702 is configured to determine, according to the scheduling type indication information and the pre-stored configuration information, a scheduling type corresponding to the scheduling type indication information, where the configuration information includes multiple scheduling type indication information and multiple scheduling types Correspondence.
  • the transmission module 703 is configured to perform resource scheduling based on the scheduling type to implement data transmission.
  • the configuration information includes a correspondence between multiple lengths and multiple scheduling types.
  • the scheduling type indication information is a radio network temporary identifier RNTI in the scheduling signaling
  • the configuration information includes a correspondence between multiple groups of RNTIs and multiple scheduling types, where each RNTI in each group It is used to perform scrambling processing on scheduling signaling of different scheduling functions of the corresponding scheduling type.
  • the scheduling type indication information is a scrambling sequence
  • the configuration information includes a correspondence between multiple scrambling sequences and multiple scheduling types, and each scrambling sequence is used to add the same group of RNTIs.
  • the scheduling signaling of the corresponding scheduling type obtained after the interference processing is subjected to scrambling processing.
  • the scheduling type indication information is a length corresponding to the specified information field in the scheduling signaling
  • the length code indicates the information
  • the configuration information includes a correspondence between the plurality of code indication information and the plurality of scheduling types.
  • the configuration information includes a correspondence between multiple location information and multiple scheduling types, where the location information includes Domain location information, frequency domain location information, and beam location information.
  • the apparatus further includes:
  • the storage module 704 is configured to receive and store the configuration information sent by the base station.
  • the configuration information is sent by the base station by using RRC signaling, MAC CE, or physical layer signaling.
  • the terminal in order to implement multiplexing of multiple types of services, the terminal needs to support multiple types of scheduling modes for resource scheduling.
  • the terminal receives the scheduling signaling that is sent by the base station and carries the scheduling type indication information, and then, the terminal, based on the scheduling type indication information, and the pre-stored correspondence between the multiple scheduling type indication information and the multiple scheduling types.
  • the configuration information of the relationship determines the scheduling type corresponding to the scheduling type indication information, that is, the classification of the scheduling type is implemented. After that, the terminal can perform resource scheduling based on the scheduling type to implement data transmission.
  • FIG. 8 is a block diagram of a data transmission device 800, according to an exemplary embodiment.
  • device 800 can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a gaming console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 800 can include one or more of the following components: processing component 802, memory 804, power component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814, And a communication component 816.
  • Processing component 802 typically controls the overall operation of device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 802 can include one or more processors 820 to execute instructions to perform all or part of the steps of the above described methods.
  • processing component 802 can include one or more modules to facilitate interaction between component 802 and other components.
  • processing component 802 can include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at device 800. These ones Examples of data include instructions for any application or method operating on device 800, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 806 provides power to various components of device 800.
  • Power component 806 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power to device 800.
  • the multimedia component 808 includes a screen between the device 800 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input an audio signal.
  • the audio component 810 includes a microphone (MIC) that is configured to receive an external audio signal when the device 800 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816.
  • the audio component 810 also includes a speaker for outputting an audio signal.
  • the I/O interface 812 provides an interface between the processing component 802 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 814 includes one or more sensors for providing device 800 with a status assessment of various aspects.
  • sensor assembly 814 can detect an open/closed state of device 800, relative positioning of components, such as the display and keypad of device 800, and sensor component 814 can also detect a change in position of one component of device 800 or device 800. , the user is in contact with the device 800 At or not present, device 800 orientation or acceleration/deceleration and temperature changes of device 800.
  • Sensor assembly 814 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between device 800 and other devices.
  • the device 800 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 816 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the data transfer method described in 1B, 2, 3, 4, 5 or 6A above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the data transfer method described in 1B, 2, 3, 4, 5 or 6A above.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 804 comprising instructions executable by processor 820 of apparatus 800 to perform the above method.
  • the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • a non-transitory computer readable storage medium that, when executed by a processor of a mobile terminal, enables the mobile terminal to perform the above-described 1B, FIG. 2, FIG. 3, FIG. 4, FIG. 5, or FIG. The data transmission method described.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the data transfer method described above with respect to 1B, 2, 3, 4, 5 or 6A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种数据传输方法、装置及计算机可读存储介质,涉及通信技术领域,该方法包括:接收基站发送的调度信令,该调度信令中携带调度类型指示信息;基于该调度类型指示信息和预先存储的配置信息,确定该调度类型指示信息对应的调度类型,该配置信息包括多种调度类型指示信息与多种调度类型之间的对应关系;基于该调度类型进行资源调度,以实现数据传输。本公开实施例中,当终端支持多种类型的调度方式时,实现了对调度类型的区分。

Description

数据传输方法、装置及计算机可读存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种数据传输方法、装置及计算机可读存储介质。
背景技术
在实际应用中,通信系统通常需要支持多种业务类型,但不同的业务类型对于无线通信技术有不同的要求,如eMBB(enhanced Mobile Broad Band,增强移动宽带)业务类型主要的要求侧重在大带宽、高速率等方面;URLLC(Ultra Reliable Low Latency Communication,超可靠的低延迟通信)业务类型主要的要求侧重在较高的可靠性以及低的时延方面;mMTC(massive Machine Type Communication,大型机型通信)业务类型主要的要求侧重在大的连接数方面。
为了满足不同的业务需求,终端需要支持多种业务的复用。在LTE(Long Term,长期演进)的系统设计中,终端的上下行数据传输均是基于基站的调度,即由基站指示终端在相应的资源位置上进行数据的接收或发送,以通过不同的调度方式实现数据的传输。为了有效地实现数据传输,对于终端来说,如何区分不同的调度类型成为研究的热点。
发明内容
为克服相关技术中存在的问题,本公开提供一种数据传输方法、装置及计算机可读存储介质。
第一方面,提供了一种数据传输方法方法,包括:
接收基站发送的调度信令,所述调度信令中携带调度类型指示信息;
基于所述调度类型指示信息和预先存储的配置信息,确定所述调度类型指示信息对应的调度类型,所述配置信息包括多种调度类型指示信息与多种调度类型之间的对应关系;
基于所述调度类型进行资源调度,以实现数据传输。
可选地,当所述调度类型指示信息为所述调度信令的长度时,所述配置信 息包括多个长度与多种调度类型之间的对应关系。
可选地,当所述调度类型指示信息为所述调度信令中的无线网络临时标识RNTI时,所述配置信息包括多组RNTI与多种调度类型之间的对应关系,其中,每组中的各个RNTI用于对对应调度类型的不同调度功能的调度信令进行加扰处理。
可选地,当所述调度类型指示信息为加扰序列时,所述配置信息包括多个加扰序列与多种调度类型之间的对应关系,每个加扰序列用于对基于同一组RNTI进行加扰处理后得到的对应调度类型的调度信令进行加扰处理。
可选地,当所述调度类型指示信息为所述调度信令中指定信息域对应的长度为指定长度的代码指示信息时,所述配置信息包括多个代码指示信息与多种调度类型之间的对应关系。
可选地,当所述调度类型指示信息为所述调度信令所在的控制资源集合中的位置信息时,所述配置信息包括多个位置信息与多种调度类型之间的对应关系,所述位置信息包括时域位置信息、频域位置信息和波束位置信息。
可选地,所述基于所述调度类型指示信息和预先存储的配置信息之前,还包括:
接收并存储所述基站发送的所述配置信息。
可选地,所述配置信息是由所述基站通过无线资源控制RRC信令、媒体访问控制MAC控制单元CE或物理层信令发送。
第二方面,提供了一种数据传输装置,包括:
接收模块,用于接收基站发送的调度信令,所述调度信令中携带调度类型指示信息;
确定模块,用于基于所述调度类型指示信息和预先存储的配置信息,确定所述调度类型指示信息对应的调度类型,所述配置信息包括多种调度类型指示信息与多种调度类型之间的对应关系;
传输模块,用于基于所述调度类型进行资源调度,以实现数据传输。
可选地,当所述调度类型指示信息为所述调度信令的长度时,所述配置信息包括多个长度与多种调度类型之间的对应关系。
可选地,当所述调度类型指示信息为所述调度信令中的无线网络临时标识RNTI时,所述配置信息包括多组RNTI与多种调度类型之间的对应关系,其 中,每组中的各个RNTI用于对对应调度类型的不同调度功能的调度信令进行加扰处理。
可选地,当所述调度类型指示信息为加扰序列时,所述配置信息包括多个加扰序列与多种调度类型之间的对应关系,每个加扰序列用于对基于同一组RNTI进行加扰处理后得到的对应调度类型的调度信令进行加扰处理。
可选地,当所述调度类型指示信息为所述调度信令中指定信息域对应的长度为指定长度的代码指示信息时,所述配置信息包括多个代码指示信息与多种调度类型之间的对应关系。
可选地,当所述调度类型指示信息为所述调度信令所在的控制资源集合中的位置信息时,所述配置信息包括多个位置信息与多种调度类型之间的对应关系,所述位置信息包括时域位置信息、频域位置信息和波束位置信息。
可选地,所述装置还包括:
存储模块,用于接收并存储所述基站发送的所述配置信息。
所述配置信息是由所述基站通过无线资源控制RRC信令、媒体访问控制MAC控制单元CE或物理层信令发送。
第三方面,提供了一种数据传输装置,所述装置包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行上述第一方面任一项所述的数据传输方法。
第四方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,其特征在于,所述指令被处理器执行时实现上述第一方面任一项所述的数据传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
在本公开实施例中,为了实现多种类型业务的复用,终端需要支持多种类型的调度方式进行资源调度。在实际实现中,终端接收基站发送的携带调度类型指示信息的调度信令,之后,终端基于该调度类型指示信息,以及预先存储的包括多种调度类型指示信息与多种调度类型之间的对应关系的配置信息,确 定该调度类型指示信息对应的调度类型,即实现了对调度类型的区分。之后,终端即可基于该调度类型进行资源调度,以实现数据传输。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1A是根据一示例性实施例提供的一种系统架构的示意图。
图1B是根据一示例性实施例示出的一种数据传输方法的流程图。
图2是根据另一示例性实施例示出的一种数据传输方法的流程图。
图3是根据另一示例性实施例示出的一种数据传输方法的流程图。
图4是根据另一示例性实施例示出的一种数据传输方法的流程图。
图5是根据另一示例性实施例示出的一种数据传输方法的流程图。
图6A是根据另一示例性实施例示出的一种数据传输方法的流程图。
图6B是图6A实施例所涉及的一种调度信令在控制资源集合中的位置示意图。
图7A是根据一示例性实施例示出的一种数据传输装置的框图。
图7B是根据一示例性实施例示出的另一种数据传输装置的框图。
图8是根据一示例性实施例示出的一种数据传输装置800的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在对本公开实施例进行详细的解释说明之前,先对本公开实施例涉及的应用场景和系统架构进行简单介绍。
首先,对本公开实施例涉及的应用场景进行简单介绍。
目前,随着诸如AR(Augmented Reality,增强现实)/VR(Virtual Reality, 虚拟现实)之类的新型互联网应用的不断涌现,驱使无线通信技术得到快速的发展和演进以满足应用需求。在实际应用场景中,不同业务类型对无线通信技术有不同的需求,新一代通信技术的一个重要特点是要支持多种业务类型的灵活配置。为了有效地实现不同类型的业务,通信系统中引入了多种类型的调度方式,例如,该多种类型的调度方式可以包括基于slot(表示时频)的调度和基于symbol(符号)的调度等。通常情况下,在业务实现过程中,使用何种调度类型是由基站指示给终端,因此,对于终端来说,为了能够有效地实现数据传输,如何区分不同的调度类型成为研究的热点。为此,本公开实施例提供了一种数据传输方法,该数据传输方法解决了终端如何区分不同调度类型的问题,其具体实现请参见如下图1B、图2、图3、图4、图5和图6A所示的实施例。
在对本公开实施例涉及的应用场景介绍完后,接下来,对本公开实施例涉及的系统架构进行简单介绍。
请参考图1A,该图1A是根据一示例性实施例提供的一种系统架构的示意图。该系统架构中主要包括终端110和基站120,该终端110可以通过无线通信网络接入该基站120中。
其中,该基站120主要用于向终端110发送调度信令,以通知该终端110采用何种类型的调度方式进行资源调度。另外,该基站120还用于向该终端110发送配置信息,该配置信息中包括了多种调度类型指示信息与多种调度类型之间的对应关系。
其中,该终端110主要用于实现本公开实施例提供的数据传输方法,也即是,该终端110接收并存储基站120发送的配置信息。需要说明的是,这里仅是以该配置信息是由该基站120发送给该终端110为例进行说明,在另一实施例中,该配置信息还可以是预先定义的,本公开实施例对此不做限定。
进一步地,当终端110接收到基站120发送的调度信令时,根据该调度信令中携带的调度类型指示信息和预先存储的配置信息,确定该基站120所指示的调度类型。进一步地,该终端110基于该调度类型进行资源调度,以实现数据传输。其具体实现过程请参见如下图1B、图2、图3、图4、图5和图6A所示的实施例。
需要说明的是,在实际实现中,该终端110可以为一切能够用于进行无线 通信的设备,例如,该终端110可以为手机等,本公开实施例对此不做限定。
在介绍完本公开实施例涉及的应用场景和系统架构后,下面将对本公开实施例进行详细的解释说明。
图1B是根据一示例性实施例示出的一种数据传输方法的流程图,如图1B所示,包括以下步骤。
在步骤101中,接收基站发送的调度信令,该调度信令中携带调度类型指示信息。
在步骤102中,基于该调度类型指示信息和预先存储的配置信息,确定该调度类型指示信息对应的调度类型,该配置信息包括多种调度类型指示信息与多种调度类型之间的对应关系。
在步骤103中,基于该调度类型进行资源调度,以实现数据传输。
在本公开实施例中,为了实现多种类型业务的复用,终端需要支持多种类型的调度方式进行资源调度。在实际实现中,终端接收基站发送的携带调度类型指示信息的调度信令,之后,终端基于该调度类型指示信息,以及预先存储的包括多种调度类型指示信息与多种调度类型之间的对应关系的配置信息,确定该调度类型指示信息对应的调度类型,即实现了对调度类型的区分。之后,终端即可基于该调度类型进行资源调度,以实现数据传输。
可选地,当该调度类型指示信息为调度信令的长度时,该配置信息包括多个长度与多种调度类型之间的对应关系。
可选地,当该调度类型指示信息为该调度信令中的无线网络临时标识RNTI时,该配置信息包括多组RNTI与多种调度类型之间的对应关系,其中,每组中的各个RNTI用于对对应调度类型的不同调度功能的调度信令进行加扰处理。
可选地,当该调度类型指示信息为加扰序列时,该配置信息包括多个加扰序列与多种调度类型之间的对应关系,每个加扰序列用于对基于同一组RNTI进行加扰处理后得到的对应调度类型的调度信令进行加扰处理。
可选地,当该调度类型指示信息为调度信令中指定信息域对应的长度为指定长度的代码指示信息时,该配置信息包括多个代码指示信息与多种调度类型之间的对应关系。
可选地,当该调度类型指示信息为该调度信令所在的控制资源集合中的位 置信息时,该配置信息包括多个位置信息与多种调度类型之间的对应关系,该位置信息包括时域位置信息、频域位置信息和波束位置信息。
可选地,基于该调度类型指示信息和预先存储的配置信息之前,还包括:
接收并存储该基站发送的该配置信息。
可选地,该配置信息是由该基站通过RRC(Radio Resource Control,无线资源控制)信令、MAC(Media Access Control,媒体访问控制)CE(Control Element,控制单元)或物理层信令发送。
上述所有可选技术方案,均可按照任意结合形成本公开的可选实施例,本公开实施例对此不再一一赘述。
在实际实现中,当该调度类型指示信息包括的内容不同时,上述配置信息包括的对应关系也不同。也即是,可以通过多种方式使得终端进行调度类型区分,以实现数据传输。接下来,本公开实施例将基于该调度类型指示信息包括的内容不同,分别通过如下图2、图3、图4、图5和图6A实施例对具体实现过程进行详细介绍。
图2是根据一示例性实施例示出的一种数据传输方法的流程图,如图2所示,该数据传输方法可以应用于图1A所示的系统架构中,本公开实施例以该调度类型指示信息为调度信令的长度为例进行说明,该数据传输方法可以包括以下几个实现步骤:
在步骤201中,接收并存储基站发送的配置信息,该配置信息中包括多个长度与多种调度类型之间的对应关系。
在实现本公开实施例之前,基站可以向终端发送该配置信息,相应地,终端接收该配置信息后,可以在本地存储该配置信息,以便于该终端后续可以基于该配置信息,确定接收到的调度类型指示信息对应的调度类型,具体请参见后续步骤。
在实际实现中,该配置信息是由该基站通过RRC信令、MAC CE或物理层信令发送给终端。
在本公开实施例中,当该调度类型指示信息为调度信令的长度时,该配置信息中包括的是多个长度与多种调度类型之间的对应关系。
例如,在一种可能的实现方式中,该配置信息中包括的多个长度与多种调度类型之间的对应关系可以如表1a所示。
表1a
调度信令的长度 调度类型
L1 类型1
L2 类型2
Lm 类型m
需要说明的是,本公开实施例仅是以该多个长度与该多种调度类型之间的对应关系如表1所示为例进行说明,在另一实施例中,该多个长度与该多种调度类型之间的对应关系还可以为其它形式,本公开实施例对此不做限定。
或者,在另一种可能的实现方式中,该配置信息中还可以包括多个长度范围与多种调度类型之间的对应关系,也即是,在实际实现中,还可以定义一个或多个调度信令的长度范围,则该配置信息中包括的多个长度范围与多种调度类型之间的对应关系可以如下表1b所示:
表1b
调度信令的长度 调度类型
小于或等于L1 类型1
大于L1,小于或等于L2 类型2
大于Lm-1,小于或等于Lm 类型m
还需要说明的是,本公开实施例仅是以该基站向终端发送该配置信息为例进行说明,在实际实现中,该配置信息还可以是预先定义的,本公开实施例对此不做限定。
在步骤202中,接收基站发送的调度信令,该调度信令中携带调度类型指示信息。
由于通信系统中引入了多种类型的调度方式,因此,终端与基站之间进行数据传输之前,需要由该基站指示该终端采用何种调度方式进行资源调度,为此,基站在该调度信令中携带调度类型指示信息。在这里,该调度类型指示信息为该调度信令的长度,例如,该调度信令的长度为L2。也即是,在本公开实 施例中,终端可以通过检测调度信令的长度来区分不同的调度类型。
另外,在实际实现中,该调度信令可以通过DCI(Downlink Control Information,下行链路控制信息)来实现。
在步骤203中,基于该调度类型指示信息和预先存储的配置信息,确定该调度类型指示信息对应的调度类型。
如前文所述,该终端中预先存储有包括多个长度与多种调度类型之间的对应关系的配置信息,如表1a所示,因此,终端基于该调度类型指示信息和预先存储的配置信息,即可确定该调度类型指示信息对应调度类型。
例如,当该调度类型指示信息为该调度信令的长度,且该调度信令的长度为L2时,根据上述表1a所示的多个长度与多种调度类型之间的对应关系,可以确定该调度类型指示信息对应的调度类型为调度类型2。
或者,如前文所述,该终端中预先存储有包括多个长度范围与多种调度类型之间的对应关系的配置信息,如表1b所示,因此,终端基于该调度类型指示信息和预先存储的配置信息,即可确定该调度类型指示信息对应的调度类型。
例如,当该调度类型指示信息为调度信令的长度,且该调度信令的长度为L2时,根据上述表1b所示的多个长度范围与多种调度类型之间的对应关系,可以确定该调度类型指示信息对应的调度类型为调度类型2。
在步骤204中,基于该调度类型进行资源调度,以实现数据传输。
终端通过上述实现过程根据该调度信令的长度和预先存储的配置信息确定该调度类型后,即可基于该调度类型进行资源调度,例如,若该调度类型为基于slot的调度,则可以基于该slot的调度方式进行资源调度,以进行数据传输。
在本公开实施例中,为了实现多种类型业务的复用,终端需要支持多种类型的调度方式进行资源调度。在实际实现中,终端接收基站发送的携带调度类型指示信息的调度信令,之后,终端基于该调度类型指示信息,以及预先存储的包括多种调度类型指示信息与多种调度类型之间的对应关系的配置信息,确定该调度类型指示信息对应的调度类型,即实现了对调度类型的区分。之后,终端即可基于该调度类型进行资源调度,以实现数据传输。
图3是根据一示例性实施例示出的一种数据传输方法的流程图,如图3所 示,该数据传输方法可以应用于图1A所示的系统架构中,本公开实施例以该调度类型指示信息为该调度信令中的无线网络临时标识RNTI为例进行说明,该数据传输方法可以包括以下几个实现步骤:
在步骤301中,接收并存储基站发送的配置信息,该配置信息中包括多组RNTI与多种调度类型之间的对应关系。
在实现本公开实施例之前,基站可以向终端发送该配置信息,相应地,终端接收该配置信息后,可以在本地存储该配置信息,以便于该终端后续可以基于该配置信息,确定接收到的调度类型指示信息对应的调度类型,具体请参见后续步骤。
在实际实现中,该配置信息是由该基站通过RRC信令、MAC CE或物理层信令发送给终端。
在本公开实施例中,当该调度类型指示信息为调度信令中的RNTI时,该配置信息中包括的是多组RNTI与多种调度类型之间的对应关系。
例如,在一种可能的实现方式中,该配置信息中包括的多组RNTI与多种调度类型之间的对应关系可以如表2所示。
表2
Figure PCTCN2017096266-appb-000001
需要说明的是,本公开实施例仅是以该多组RNTI与该多种调度类型之间的对应关系如表2所示为例进行说明,在另一实施例中,该多组RNTI与该多种调度类型之间的对应关系还可以为其它形式,本公开实施例对此不做限定。
其中,每组中的各个RNTI用于对对应调度类型的不同调度功能的调度信令进行加扰处理。也即是,在本公开实施例中,可以定义多组RNTI,每组RNTI对应一种调度类型,且同一组中的各个RNTI用于对该组对应的调度类型的不 同调度功能的调度信令进行加扰处理。
例如,上述组1对应的调度类型为调度类型1,组1中的RNTI_11可以用于对具有A调度功能的调度信令a进行加扰处理,RNTI_12可以用于对具有B调度功能的调度信令b进行加扰处理,以此类推,RNTI_1N用于对具有N调度功能的调度信令n进行加扰处理,其中,该调度信令a、调度信令b、…以及调度信令n的调度类型均为调度类型1。
还需要说明的是,本公开实施例仅是以该基站向终端发送该配置信息为例进行说明,在实际实现中,该配置信息还可以是预先定义的,本公开实施例对此不做限定。
在步骤302中,接收基站发送给的调度信息,该调度信息中携带调度类型指示信息。
由于通信系统中引入了多种类型的调度方式,因此,终端与基站之间进行数据传输之前,需要由该基站指示该终端采用何种调度方式进行资源调度。为此,基站在该调度信令中携带调度类型指示信息。在这里,该调度类型指示信息为该调度信令中的RNTI,例如,该调度信令中的RNTI为RNTI_12。也即是,在本公开实施例中,终端可以根据该调度信令中的RNTI所属的组来区分不同的调度类型。
另外,在实际实现中,该调度信令可以通过DCI(Downlink Control Information,下行链路控制信息)。
在步骤303中,基于该调度类型指示信息和预先存储的配置信息,确定该调度类型指示信息对应的调度类型。
如前文所述,该终端中预先存储有包括多组RNTI与多种调度类型之间的对应关系的配置信息,如表2所示,因此,终端基于该调度类型指示信息和预先存储的配置信息,即可确定该调度类型指示信息对应调度类型。
例如,当该调度类型指示信息为该调度信令中的RNTI,且该调度信令中的RNTI为RNTI_12时,根据上述表2所示的多组RNTI与多种调度类型之间的对应关系,可以确定该调度类型指示信息对应的调度类型为调度类型1。
在步骤304中,基于该调度类型进行资源调度,以实现数据传输。
终端通过上述实现过程根据该调度信令中的RNTI和预先存储的配置信息确定该调度类型后,即可基于该调度类型进行资源调度,例如,若该调度类型为基于slot的调度,则可以基于该slot的调度方式进行资源调度,以进行数据 传输。
在本公开实施例中,为了实现多种类型业务的复用,终端需要支持多种类型的调度方式进行资源调度。在实际实现中,终端接收基站发送的携带调度类型指示信息的调度信令,之后,终端基于该调度类型指示信息,以及预先存储的包括多种调度类型指示信息与多种调度类型之间的对应关系的配置信息,确定该调度类型指示信息对应的调度类型,即实现了对调度类型的区分。之后,终端即可基于该调度类型进行资源调度,以实现数据传输。
图4是根据一示例性实施例示出的一种数据传输方法的流程图,如图4所示,该数据传输方法可以应用于图1A所示的系统架构中,本公开实施例以该调度类型指示信息为加扰序列为例进行说明,该数据传输方法可以包括以下几个实现步骤:
在步骤401中,接收并存储基站发送的配置信息,该配置信息包括多个加扰序列与多种调度类型之间的对应关系。
在实现本公开实施例之前,基站可以向终端发送该配置信息,相应地,终端接收该配置信息后,可以在本地存储该配置信息,以便于该终端后续可以基于该配置信息,确定接收到的调度类型指示信息对应的调度类型,具体请参见后续步骤。
在实际实现中,该配置信息是由该基站通过RRC信令、MAC CE或物理层信令发送给终端。
在本公开实施例中,当该调度类型指示信息为加扰序列时,该配置信息中包括的是多个加扰序列与多种调度类型之间的对应关系。
例如,在一种可能的实现方式中,该配置信息中包括的多个加扰序列与多种调度类型之间的对应关系可以如表3所示。
表3
加扰序列 调度类型
array1 类型1
array2 类型2
arraym 类型m
需要说明的是,本公开实施例仅是以该多个加扰序列与该多种调度类型之间的对应关系如表3所示为例进行说明,在另一实施例中,该多个加扰序列与该多种调度类型之间的对应关系还可以为其它形式,本公开实施例对此不做限定。
其中,每个加扰序列用于对基于同一组RNTI进行加扰处理后得到的对应调度类型的调度信令进行加扰处理。也即是,在本公开实施例中,基站仅定义一组RNTI。由于根据属于同一组的RNTI无法区分调度类型,因此,为了区分不同的调度类型,这里还定义多个加扰序列,每个加扰序列对应一种调度类型,以便于后续终端通过检测该加扰序列即可获知对应的调度类型。
还需要说明的是,本公开实施例仅是以该基站向终端发送该配置信息为例进行说明,在实际实现中,该配置信息还可以是预先定义的,本公开实施例对此不做限定。
在步骤402中,接收基站发送的调度信令,该调度信令中携带调度类型指示信息。
由于通信系统中引入了多种类型的调度方式,因此,终端与基站之间进行数据传输之前,需要由该基站指示该终端采用何种调度方式进行资源调度。为此,基站在该调度信令中携带调度类型指示信息。在这里,该调度类型指示信息为加扰序列,例如,该加扰序列为array1。也即是,在本公开实施例中,终端可以通过检测加扰序列区分不同的调度类型。
另外,在实际实现中,该调度信令可以通过DCI(Downlink Control Information,下行链路控制信息)。
在步骤403中,基于该调度类型指示信息和预先存储的配置信息,确定该调度类型指示信息对应的调度类型。
如前文所述,该终端中预先存储有包括多个加扰序列与多种调度类型之间的对应关系的配置信息,如表3所示,因此,终端基于该调度类型指示信息和预先存储的配置信息,即可确定该调度类型指示信息对应调度类型。
例如,当该调度类型指示信息为加扰序列,且该加扰序列为array1时,根据上述表3所示的多个加扰序列与多种调度类型之间的对应关系,可以确定该调度类型指示信息对应的调度类型为调度类型1。
在步骤404中,基于该调度类型进行资源调度,以实现数据传输。
终端通过上述实现过程根据调度信令中的加扰序列和预先存储的配置信 息确定该调度类型后,即可基于该调度类型进行资源调度,例如,若该调度类型为基于slot的调度,则可以基于该slot的调度方式进行资源调度,以进行数据传输。
在本公开实施例中,为了实现多种类型业务的复用,终端需要支持多种类型的调度方式进行资源调度。在实际实现中,终端接收基站发送的携带调度类型指示信息的调度信令,之后,终端基于该调度类型指示信息,以及预先存储的包括多种调度类型指示信息与多种调度类型之间的对应关系的配置信息,确定该调度类型指示信息对应的调度类型,即实现了对调度类型的区分。之后,终端即可基于该调度类型进行资源调度,以实现数据传输。
图5是根据一示例性实施例示出的一种数据传输方法的流程图,如图5所示,该数据传输方法可以应用于图1A所示的系统架构中,本公开实施例以该调度类型指示信息为该调度信令中指定信息域对应的长度为指定长度的代码指示信息为例进行说明,该数据传输方法可以包括以下几个实现步骤:
在步骤501中,接收并存储基站发送的配置信息,该配置信息包括多个代码指示信息与多种调度类型之间的对应关系。
在实现本公开实施例之前,基站可以向终端发送该配置信息,相应地,终端接收该配置信息后,可以在本地存储该配置信息,以便于该终端后续可以基于该配置信息,确定接收到的调度类型指示信息对应的调度类型,具体请参见后续步骤。
在实际实现中,该配置信息是由该基站通过RRC信令、MAC CE或物理层信令发送给终端。
在本公开实施例中,当该调度类型指示信息为该调度信令中指定信息域对应的长度为指定长度的代码指示信息时,该配置信息中包括的是多个代码指示信息与多种调度类型之间的对应关系。
其中,该指定信息域可以位于该调度信令的固定位置上,该指定长度也可以根据实际需求预先进行设置,例如,当通信系统中支持4种不同的调度类型时,则该指定长度可以为2,进一步地,该代码指示信息具体可以为“00”、“01”、“10”和“11”。
进一步地,在一种可能的实现方式中,该多个代码指示信息与多种调度类型之间的对应关系可以如表4所示。
表4
代码指示信息 调度类型
00 类型1
01 类型2
10 类型3
11 类型4
需要说明的是,本公开实施例仅是以该多个代码指示信息与该多种调度类型之间的对应关系如表4所示为例进行说明,在另一实施例中,该多个代码指示信息与该多种调度类型之间的对应关系还可以为其它形式,本公开实施例对此不做限定。
还需要说明的是,本公开实施例仅是以该基站向终端发送该配置信息为例进行说明,在实际实现中,该配置信息还可以是预先定义的,本公开实施例对此不做限定。
在步骤502中,接收基站发送的调度指令,该调度指令中携带调度类型指示信息。
由于通信系统中引入了多种类型的调度方式,因此,终端与基站之间进行数据传输之前,需要由该基站指示该终端采用何种调度方式进行资源调度。为此,基站在该调度信令中携带调度类型指示信息。在这里,该调度类型指示信息为该调度信令中指定信息域对应的长度为指定长度的代码指示信息,例如,该代码指示信息为“10”。也即是,在本公开实施例中,终端可以通过检测该调度信令中指定信息域对应的长度为指定长度的代码指示信息来区分不同的调度类型。
另外,在实际实现中,该调度信令可以通过DCI(Downlink Control Information,下行链路控制信息)。
在步骤503中,基于该调度类型指示信息和预先存储的配置信息,确定该调度类型指示信息对应的调度类型。
如前文所述,该终端中预先存储有包括多个代码指示信息与多种调度类型之间的对应关系的配置信息,如表4所示,因此,终端基于该调度类型指示信息和预先存储的配置信息,即可确定该调度类型指示信息对应调度类型。
例如,当该调度类型指示信息为该调度信令中指定信息域对应的长度为指 定长度的代码指示信息,且该代码指示信息为“10”时,根据上述表4所示的多个代码指示信息与多种调度类型之间的对应关系,可以确定该调度类型指示信息对应的调度类型为调度类型3。
在步骤504中,基于该调度类型进行资源调度,以实现数据传输。
终端通过上述实现过程根据该调度信令中指定信息域对应的长度为指定长度的代码指示信息和预先存储的配置信息确定该调度类型后,即可基于该调度类型进行资源调度,例如,若该调度类型为基于slot的调度,则可以基于该slot的调度方式进行资源调度,以进行数据传输。
在本公开实施例中,为了实现多种类型业务的复用,终端需要支持多种类型的调度方式进行资源调度。在实际实现中,终端接收基站发送的携带调度类型指示信息的调度信令,之后,终端基于该调度类型指示信息,以及预先存储的包括多种调度类型指示信息与多种调度类型之间的对应关系的配置信息,确定该调度类型指示信息对应的调度类型,即实现了对调度类型的区分。之后,终端即可基于该调度类型进行资源调度,以实现数据传输。
图6A是根据一示例性实施例示出的一种数据传输方法的流程图,如图6A所示,该数据传输方法可以应用于图1A所示的系统架构中,本公开实施例以该调度类型指示信息为该调度信令所在的控制资源集合中的位置信息为例进行说明,该数据传输方法可以包括以下几个实现步骤:
在步骤601中,接收并存储基站发送的配置信息,该配置信息包括多个位置信息与多种调度类型之间的对应关系。
在实现本公开实施例之前,基站可以向终端发送该配置信息,相应地,终端接收该配置信息后,可以在本地存储该配置信息,以便于该终端后续可以基于该配置信息,确定接收到的调度类型指示信息对应的调度类型,具体请参见后续步骤。
在实际实现中,该配置信息是由该基站通过RRC信令、MAC CE或物理层信令发送给终端。
在本公开实施例中,当该调度类型指示信息为该调度信令所在的CORESET(Control Resoure Set,控制资源集合)中的位置信息时,该配置信息中包括的是多个位置信息与多种调度类型之间的对应关系。
其中,该位置信息包括时域位置信息、频域位置信息和波束位置信息。终 端基于时域位置信息、频域位置信息和波束位置信息三者可以在一个传输单元上唯一确定该调度信令位于slot的哪个symbols上。
例如,在一种可能的实现方式中,请参考图6B,当基于时域位置信息、频域位置信息和波束位置信息确定该调度信令位于一个slot的前两个symbols上时,该位置信息对应的调度类型为调度类型1,当基于时域位置信息、频域位置信息和波束位置信息确定该调度信令位于一个slot的第三个symbols上时,该位置信息对应的调度类型为调度类型2,当基于时域位置信息、频域位置信息和波束位置信息确定该调度信令位于其它位置时,该位置信息对应的调度类型为调度类型3。
还需要说明的是,本公开实施例仅是以该基站向终端发送该配置信息为例进行说明,在实际实现中,该配置信息还可以是预先定义的,本公开实施例对此不做限定。
在步骤602中,接收基站发送的调度信令,该调度信令中携带调度类型指示信息。
由于通信系统中引入了多种类型的调度方式,因此,终端与基站之间进行数据传输之前,需要由该基站指示该终端采用何种调度方式进行资源调度。为此,基站在该调度信令中携带调度类型指示信息。在这里,该调度类型指示信息为该调度信令所在的CORESET中的位置信息,例如,该该调度信令所在的CORESET中的位置信息为在一个slot上的第三个symbols上。也即是,在本公开实施例中,终端可以通过检测该调度信令所在的CORESET中的位置信息来区分不同的调度类型。
另外,在实际实现中,该调度信令可以通过DCI(Downlink Control Information,下行链路控制信息)。
在步骤603中,基于该调度类型指示信息和预先存储的配置信息,确定该调度类型指示信息对应的调度类型。
如前文所述,该终端中预先存储有包括多个位置信息与多种调度类型之间的对应关系的配置信息,如图6B所示,因此,终端基于该调度类型指示信息和预先存储的配置信息,即可确定该调度类型指示信息对应调度类型。
例如,当该调度类型指示信息为该调度信令所在的CORESET中的位置信息,且该调度信令所在的CORESET中的位置信息指示该调度信令位于slot的第三个symbols上时,根据上述图6B可知该调度类型指示信息对应的调度类 型为调度类型2。
在步骤604中,基于该调度类型进行资源调度,以实现数据传输。
终端通过上述实现过程根据该调度信令所在的CORESET中的位置信息和预先存储的配置信息确定该调度类型后,即可基于该调度类型进行资源调度,例如,若该调度类型为基于slot的调度,则可以基于该slot的调度方式进行资源调度,以进行数据传输。
在本公开实施例中,为了实现多种类型业务的复用,终端需要支持多种类型的调度方式进行资源调度。在实际实现中,终端接收基站发送的携带调度类型指示信息的调度信令,之后,终端基于该调度类型指示信息,以及预先存储的包括多种调度类型指示信息与多种调度类型之间的对应关系的配置信息,确定该调度类型指示信息对应的调度类型,即实现了对调度类型的区分。之后,终端即可基于该调度类型进行资源调度,以实现数据传输。
图7A是根据一示例性实施例示出的一种数据传输装置框图。如图7A所示,该装置包括:
接收模块701,用于接收基站发送的调度信令,所述调度信令中携带调度类型指示信息。
确定模块702,用于基于所述调度类型指示信息和预先存储的配置信息,确定所述调度类型指示信息对应的调度类型,所述配置信息包括多种调度类型指示信息与多种调度类型之间的对应关系。
传输模块703,用于基于所述调度类型进行资源调度,以实现数据传输。
可选地,当该调度类型指示信息为调度信令的长度时,该配置信息包括多个长度与多种调度类型之间的对应关系。
可选地,当该调度类型指示信息为该调度信令中的无线网络临时标识RNTI时,该配置信息包括多组RNTI与多种调度类型之间的对应关系,其中,每组中的各个RNTI用于对对应调度类型的不同调度功能的调度信令进行加扰处理。
可选地,当该调度类型指示信息为加扰序列时,该配置信息包括多个加扰序列与多种调度类型之间的对应关系,每个加扰序列用于对基于同一组RNTI进行加扰处理后得到的对应调度类型的调度信令进行加扰处理。
可选地,当该调度类型指示信息为调度信令中指定信息域对应的长度为指 定长度的代码指示信息时,该配置信息包括多个代码指示信息与多种调度类型之间的对应关系。
可选地,当该调度类型指示信息为该调度信令所在的控制资源集合中的位置信息时,该配置信息包括多个位置信息与多种调度类型之间的对应关系,该位置信息包括时域位置信息、频域位置信息和波束位置信息。
可选地,参见图7B,该装置还包括:
存储模块704被配置为接收并存储该基站发送的该配置信息。
可选地,该配置信息是由该基站通过RRC信令、MAC CE或物理层信令发送。
在本公开实施例中,为了实现多种类型业务的复用,终端需要支持多种类型的调度方式进行资源调度。在实际实现中,终端接收基站发送的携带调度类型指示信息的调度信令,之后,终端基于该调度类型指示信息,以及预先存储的包括多种调度类型指示信息与多种调度类型之间的对应关系的配置信息,确定该调度类型指示信息对应的调度类型,即实现了对调度类型的区分。之后,终端即可基于该调度类型进行资源调度,以实现数据传输。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图8是根据一示例性实施例示出的一种数据传输装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些 数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电源。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电源相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存 在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述1B、图2、图3、图4、图5或图6A所述的数据传输方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行上述1B、图2、图3、图4、图5或图6A所述的数据传输方法。
一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述1B、图2、图3、图4、图5或图6A所述的数据传输方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性 的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (18)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    接收基站发送的调度信令,所述调度信令中携带调度类型指示信息;
    基于所述调度类型指示信息和预先存储的配置信息,确定所述调度类型指示信息对应的调度类型,所述配置信息包括多种调度类型指示信息与多种调度类型之间的对应关系;
    基于所述调度类型进行资源调度,以实现数据传输。
  2. 如权利要求1所述的方法,其特征在于,当所述调度类型指示信息为所述调度信令的长度时,所述配置信息包括多个长度与多种调度类型之间的对应关系。
  3. 如权利要求1所述的方法,其特征在于,当所述调度类型指示信息为所述调度信令中的无线网络临时标识RNTI时,所述配置信息包括多组RNTI与多种调度类型之间的对应关系,其中,每组中的各个RNTI用于对对应调度类型的不同调度功能的调度信令进行加扰处理。
  4. 如权利要求1所述的方法,其特征在于,当所述调度类型指示信息为加扰序列时,所述配置信息包括多个加扰序列与多种调度类型之间的对应关系,每个加扰序列用于对基于同一组RNTI进行加扰处理后得到的对应调度类型的调度信令进行加扰处理。
  5. 如权利要求1所述的方法,其特征在于,当所述调度类型指示信息为所述调度信令中指定信息域对应的长度为指定长度的代码指示信息时,所述配置信息包括多个代码指示信息与多种调度类型之间的对应关系。
  6. 如权利要求1所述的方法,其特征在于,当所述调度类型指示信息为所述调度信令所在的控制资源集合中的位置信息时,所述配置信息包括多个位置信息与多种调度类型之间的对应关系,所述位置信息包括时域位置信息、频域位置信息和波束位置信息。
  7. 如权利要求1-6任一所述的方法,其特征在于,所述基于所述调度类型指示信息和预先存储的配置信息之前,还包括:
    接收并存储所述基站发送的所述配置信息。
  8. 如权利要求7所述的方法,其特征在于,所述配置信息是由所述基站通过无线资源控制RRC信令、媒体访问控制MAC控制单元CE或物理层信令发送。
  9. 一种数据传输装置,其特征在于,所述装置包括:
    接收模块,用于接收基站发送的调度信令,所述调度信令中携带调度类型指示信息;
    确定模块,用于基于所述调度类型指示信息和预先存储的配置信息,确定所述调度类型指示信息对应的调度类型,所述配置信息包括多种调度类型指示信息与多种调度类型之间的对应关系;
    传输模块,用于基于所述调度类型进行资源调度,以实现数据传输。
  10. 如权利要求9所述的装置,其特征在于,当所述调度类型指示信息为所述调度信令的长度时,所述配置信息包括多个长度与多种调度类型之间的对应关系。
  11. 如权利要求9所述的装置,其特征在于,当所述调度类型指示信息为所述调度信令中的无线网络临时标识RNTI时,所述配置信息包括多组RNTI与多种调度类型之间的对应关系,其中,每组中的各个RNTI用于对对应调度类型的不同调度功能的调度信令进行加扰处理。
  12. 如权利要求9所述的装置,其特征在于,当所述调度类型指示信息为加扰序列时,所述配置信息包括多个加扰序列与多种调度类型之间的对应关系,每个加扰序列用于对基于同一组RNTI进行加扰处理后得到的对应调度类型的调度信令进行加扰处理。
  13. 如权利要求9所述的装置,其特征在于,当所述调度类型指示信息为 所述调度信令中指定信息域对应的长度为指定长度的代码指示信息时,所述配置信息包括多个代码指示信息与多种调度类型之间的对应关系。
  14. 如权利要求9所述的装置,其特征在于,当所述调度类型指示信息为所述调度信令所在的控制资源集合中的位置信息时,所述配置信息包括多个位置信息与多种调度类型之间的对应关系,所述位置信息包括时域位置信息、频域位置信息和波束位置信息。
  15. 如权利要求9-14任一所述的装置,其特征在于,所述装置还包括:
    存储模块,用于接收并存储所述基站发送的所述配置信息。
  16. 如权利要求15所述的装置,其特征在于,所述配置信息是由所述基站通过无线资源控制RRC信令、媒体访问控制MAC控制单元CE或物理层信令发送。
  17. 一种数据传输装置,其特征在于,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行权利要求1-8所述的任一项方法的步骤。
  18. 一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,其特征在于,所述指令被处理器执行时实现权利要求1-8所述的任一项方法的步骤。
PCT/CN2017/096266 2017-08-07 2017-08-07 数据传输方法、装置及计算机可读存储介质 WO2019028606A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL17921040.6T PL3668171T3 (pl) 2017-08-07 2017-08-07 Sposób nadawania danych, urządzenie i nośnik danych odczytywany komputerowo
ES17921040T ES2929639T3 (es) 2017-08-07 2017-08-07 Procedimiento de transmisión de datos, dispositivo y medio de almacenamiento legible por ordenador
PCT/CN2017/096266 WO2019028606A1 (zh) 2017-08-07 2017-08-07 数据传输方法、装置及计算机可读存储介质
CN201780000768.0A CN108476520B (zh) 2017-08-07 2017-08-07 数据传输方法、装置及计算机可读存储介质
EP17921040.6A EP3668171B1 (en) 2017-08-07 2017-08-07 Data transmission method, device and computer readable storage medium
US16/637,225 US11382125B2 (en) 2017-08-07 2017-08-07 Data transmission method, device and computer readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/096266 WO2019028606A1 (zh) 2017-08-07 2017-08-07 数据传输方法、装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2019028606A1 true WO2019028606A1 (zh) 2019-02-14

Family

ID=63266973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096266 WO2019028606A1 (zh) 2017-08-07 2017-08-07 数据传输方法、装置及计算机可读存储介质

Country Status (6)

Country Link
US (1) US11382125B2 (zh)
EP (1) EP3668171B1 (zh)
CN (1) CN108476520B (zh)
ES (1) ES2929639T3 (zh)
PL (1) PL3668171T3 (zh)
WO (1) WO2019028606A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11121808B2 (en) 2017-09-08 2021-09-14 Apple Inc. Method and apparatus for channel coding in the fifth generation new radio system
CN110637490A (zh) * 2017-09-30 2019-12-31 Oppo广东移动通信有限公司 一种信道资源集的指示方法、终端设备及网络设备
CN111867014B (zh) * 2019-04-30 2022-06-17 大唐移动通信设备有限公司 调度指示方法、终端及网络侧设备
WO2023155153A1 (zh) * 2022-02-18 2023-08-24 北京小米移动软件有限公司 数据传输方法及装置、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605356A (zh) * 2008-06-12 2009-12-16 大唐移动通信设备有限公司 一种指示资源的方法、装置及系统
CN101742626A (zh) * 2010-01-14 2010-06-16 华为技术有限公司 功率调整方法及系统、基站和用户设备
CN106231677A (zh) * 2016-07-29 2016-12-14 宇龙计算机通信科技(深圳)有限公司 一种通信的方法及基站
US20170215188A1 (en) * 2016-01-22 2017-07-27 Electronics And Telecommunications Research Institute Method and apparatus for receiving or transmitting data

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841603B (zh) * 2012-11-20 2019-05-31 北京三星通信技术研究有限公司 上行分组调度的方法及设备
CN106031283B (zh) * 2014-03-20 2020-02-18 夏普株式会社 终端装置以及基站装置
CN106937400B (zh) * 2015-12-29 2020-02-18 中国移动通信集团江苏有限公司 一种随机接入方法、基站及用户设备
JP7032443B2 (ja) * 2017-07-24 2022-03-08 オッポ広東移動通信有限公司 データ伝送方法、端末デバイス及びネットワークデバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101605356A (zh) * 2008-06-12 2009-12-16 大唐移动通信设备有限公司 一种指示资源的方法、装置及系统
CN101742626A (zh) * 2010-01-14 2010-06-16 华为技术有限公司 功率调整方法及系统、基站和用户设备
US20170215188A1 (en) * 2016-01-22 2017-07-27 Electronics And Telecommunications Research Institute Method and apparatus for receiving or transmitting data
CN106231677A (zh) * 2016-07-29 2016-12-14 宇龙计算机通信科技(深圳)有限公司 一种通信的方法及基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ETRI: "Discussion on Control Resource Set and DMRS for DL Control Channel", 3GPP TSG RAN WG1 NR AD-HOC MEETING R1-1700581, 20 January 2017 (2017-01-20), pages 1 - 5, XP051208110 *
See also references of EP3668171A4 *

Also Published As

Publication number Publication date
EP3668171B1 (en) 2022-10-05
US11382125B2 (en) 2022-07-05
EP3668171A1 (en) 2020-06-17
CN108476520A (zh) 2018-08-31
US20200205185A1 (en) 2020-06-25
ES2929639T3 (es) 2022-11-30
PL3668171T3 (pl) 2022-12-05
CN108476520B (zh) 2021-06-29
EP3668171A4 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
US11483819B2 (en) Data transmission method and apparatus and user equipment
WO2019024087A1 (zh) 获取剩余关键系统信息的公共控制资源集时频资源位置的方法
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
WO2019095304A1 (zh) 混合自动重传请求反馈指示、反馈方法及装置和基站
WO2020143707A1 (zh) 一种上行传输资源选择方法、终端和存储介质
WO2019095296A1 (zh) 混合自动重传请求反馈指示、反馈方法及装置和基站
US11382055B2 (en) Paging synchronization method and apparatus
WO2019024039A1 (zh) 指示多业务数据复用传输的方法及装置、终端和基站
US20220022243A1 (en) Data transmission method and device and computer-readable storage medium
WO2019028606A1 (zh) 数据传输方法、装置及计算机可读存储介质
US11722283B2 (en) Information transmission method, device, system, and storage medium
WO2019061306A1 (zh) 信号传输方法及装置
US20210212006A1 (en) Method and device for transmitting synchronization indication information
WO2019024037A1 (zh) 指示多业务数据复用传输的方法及装置、终端和基站
WO2019148465A1 (zh) 控制信令的传输方法、终端及基站
WO2019127109A1 (zh) 调度方法、基站、终端及存储介质
US11533728B2 (en) Data transmission method and apparatus on unlicensed frequency band
WO2019028756A1 (zh) 一种下行控制信息的配置方法及装置
US11190298B2 (en) Methods and apparatuses for determining number of times of blind decoding schedule signaling, user equipment and base station
CN111294842B (zh) 一种多传输点的加扰序列确定方法、终端和存储介质
CN109792748B (zh) 资源占用指示方法、装置以及资源占用确定方法、装置
WO2019218359A1 (zh) 上行数据传输方法、装置及计算机可读存储介质
WO2019183939A1 (zh) 数据传输方法及装置
WO2019148385A1 (zh) 配置参数发送、读取方法及装置、基站和用户设备
WO2018227615A1 (zh) 一种数据调度方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017921040

Country of ref document: EP

Effective date: 20200309