WO2023155153A1 - 数据传输方法及装置、存储介质 - Google Patents

数据传输方法及装置、存储介质 Download PDF

Info

Publication number
WO2023155153A1
WO2023155153A1 PCT/CN2022/076886 CN2022076886W WO2023155153A1 WO 2023155153 A1 WO2023155153 A1 WO 2023155153A1 CN 2022076886 W CN2022076886 W CN 2022076886W WO 2023155153 A1 WO2023155153 A1 WO 2023155153A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
bwp
data transmission
specified
base station
Prior art date
Application number
PCT/CN2022/076886
Other languages
English (en)
French (fr)
Inventor
赵群
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280000457.5A priority Critical patent/CN116918425A/zh
Priority to PCT/CN2022/076886 priority patent/WO2023155153A1/zh
Publication of WO2023155153A1 publication Critical patent/WO2023155153A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the communication field, and in particular, to a data transmission method and device, and a storage medium.
  • a longer CP (Cyclic Prefix, cyclic prefix) is required to scramble or descramble the transmitted data in order to protect the data.
  • NR New Radio, new air interface
  • SCS Sub-Carrier Spacing, sub-carrier spacing
  • eCP extended Cyclic Prefix, extended cyclic prefix
  • the MBS Multicast Broadcast service, multicast broadcast service
  • the terminal needs to detect and receive broadcast PDCCH (Physical Downlink Control Channel, physical downlink control channel) and broadcast PDSCH (Physical Downlink Shared Channel, physical downlink Shared channel), unicast PDCCH, unicast PDSCH or Rel-17 (Release-17, version 17) MBS-related channels, etc.
  • the terminal must switch between different BWPs, resulting in scheduling restrictions and transmission delays.
  • the network side and the terminal side cannot send and receive data, which also causes transmission delay and reduces system performance.
  • embodiments of the present disclosure provide a data transmission method and device, and a storage medium.
  • a data transmission method the method is executed by a terminal, including:
  • the indication information is used to configure CP types corresponding to different resources in the specified bandwidth part BWP, and the specified BWP is a BWP that needs to support multiple types of CPs at the same time;
  • the indication information is used to configure a CP type corresponding to one or more specific frequency domain resources in the specified BWP.
  • the indication information is used to configure the frequency domain resource range using the extended cyclic prefix eCP in the specified BWP.
  • the indication information includes at least one of the following:
  • using a corresponding type of CP to perform data transmission with the base station on different resources of the specified BWP includes at least one of the following:
  • the normal cyclic prefix NCP is used to transmit data with the base station on other RBs in the specified BWP.
  • the indication information is used to configure the anchor RB corresponding to the eCP in the specified BWP.
  • the indication information includes the RB index of the anchor RB;
  • using a corresponding type of CP to perform data transmission with the base station on different resources of the specified BWP includes at least one of the following:
  • the preset RB is the first RB or the last RB on the specified BWP.
  • the indication information is used to configure multiple common frequency resources CFRs using different types of CPs.
  • the indication information includes at least one of the following:
  • the performing data transmission with the base station using a corresponding type of CP on different resources of the specified BWP based on the indication information includes:
  • the indication information is used to configure CP types corresponding to different frequency domain resource granularities in the specified BWP.
  • the indication information is bitmap bitmap information
  • using a corresponding type of CP to perform data transmission with the base station on different resources of the specified BWP includes at least one of the following:
  • each frequency-domain resource granularity includes one or more RBs; wherein, the multiple RBs are multiple continuous RBs or multiple discrete RBs.
  • the method also includes:
  • the indication information is used to configure the CP type corresponding to one or more specific time domain resources in the specified BWP; wherein, the size of the one or more specific time domain resources is in the form of OFDM Use OFDM symbols, time slots or predefined time lengths as units.
  • the indication information is bitmap information
  • using a corresponding type of CP to perform data transmission with the base station on different resources of the specified BWP includes at least one of the following:
  • the instruction information includes:
  • using a corresponding type of CP to perform data transmission with the base station on different resources of the specified BWP includes at least one of the following:
  • the indication information includes at least one of the following:
  • the receiving the indication information sent by the base station includes:
  • Radio resource control RRC signal including the indication information sent by the base station
  • Multicast Broadcast Service Multimedia Broadcast Multicast Control Channel MBS-MCCH including the indication information sent by the base station.
  • the indication information is configured based on each specified BWP, or the indication information is configured based on each cell.
  • a data transmission method the method being executed by a base station, including:
  • the indication information is used to configure CP types corresponding to different resources in the specified bandwidth part BWP, and the specified BWP is a BWP that needs to support multiple types of CPs at the same time;
  • the indication information is used to configure a CP type corresponding to one or more specific frequency domain resources in the specified BWP.
  • the indication information is used to configure the frequency domain resource range using the extended cyclic prefix eCP in the specified BWP.
  • the indication information includes at least one of the following:
  • using a corresponding type of CP to perform data transmission with the terminal on different resources of the specified BWP includes at least one of the following:
  • the indication information is used to configure the anchor RB corresponding to the eCP in the specified BWP.
  • the indication information includes the RB index of the anchor RB;
  • using a corresponding type of CP to perform data transmission with the terminal on different resources of the specified BWP includes at least one of the following:
  • the indication information is used to configure multiple common frequency resources CFRs using different types of CPs.
  • the indication information includes at least one of the following:
  • the performing data transmission with the terminal using a corresponding type of CP on different resources of the specified BWP based on the indication information includes:
  • the indication information is used to configure CP types corresponding to different frequency domain resource granularities in the specified BWP.
  • the indication information is bitmap bitmap information
  • using a corresponding type of CP to perform data transmission with the terminal on different resources of the specified BWP includes at least one of the following:
  • each frequency-domain resource granularity includes one or more RBs; wherein, the multiple RBs are multiple continuous RBs or multiple discrete RBs.
  • the method also includes:
  • the indication information is used to configure the CP type corresponding to one or more specific time domain resources in the specified BWP; wherein, the size of the one or more specific time domain resources is in the form of OFDM Use OFDM symbols, time slots or predefined time lengths as units.
  • the indication information is bitmap information
  • using a corresponding type of CP to perform data transmission with the terminal on different resources of the specified BWP includes at least one of the following:
  • the indication information includes at least one of the following:
  • using a corresponding type of CP to perform data transmission with the terminal on different resources of the specified BWP includes at least one of the following:
  • the indication information includes at least one of the following:
  • the sending the indication information to the terminal includes:
  • the indication information is configured based on each specified BWP, or the indication information is configured based on each cell.
  • a data transmission device the device is applied to a terminal, including:
  • the receiving module is configured to receive indication information sent by the base station; wherein the indication information is used to configure CP types corresponding to different resources in the specified bandwidth part BWP, and the specified BWP is a BWP that needs to support multiple types of CPs at the same time;
  • the first data transmission module is configured to use a corresponding type of CP to perform data transmission with the base station on different resources of the specified BWP based on the indication information.
  • a data transmission device the device is applied to a base station, including:
  • the sending module is configured to send indication information to the terminal; wherein, the indication information is used to configure CP types corresponding to different resources in the specified bandwidth part BWP, and the specified BWP is a BWP that needs to support multiple types of CPs at the same time;
  • the second data transmission module is configured to, based on the indication information, use a corresponding type of CP to perform data transmission with the terminal on different resources of the specified BWP.
  • a computer-readable storage medium stores a computer program, and the computer program is used to execute any one of the data transmission methods described above on the terminal side.
  • a computer-readable storage medium where the storage medium stores a computer program, and the computer program is used to execute any one of the data transmission methods described above on the base station side.
  • a data transmission device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the data transmission methods described above on the terminal side.
  • a data transmission device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the data transmission methods described above on the base station side.
  • the base station may configure CP types corresponding to different resources in a specified BWP, where the specified BWP is a BWP that needs to support multiple types of CPs simultaneously.
  • the terminal side can use multiple types of CPs for data transmission on the same BWP without BWP switching, avoiding frequent BWP switching of the terminal, reducing scheduling restrictions on the network side, reducing data transmission delay, and improving system transmission performance.
  • Fig. 1 is a schematic diagram of using different types of CPs on different BWPs according to an exemplary embodiment.
  • Fig. 2 is a schematic flowchart of a data transmission method according to an exemplary embodiment.
  • Fig. 3 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 4 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 5 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 6 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 7 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 8 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 9 is a schematic flowchart of another data transmission method according to an exemplary embodiment.
  • Fig. 10 is a schematic diagram of using multiple types of CPs on the same BWP according to an exemplary embodiment.
  • Fig. 11A to Fig. 11B are schematic diagrams of using multiple types of CPs on the same BWP according to an exemplary embodiment.
  • Fig. 12 is another schematic diagram of using multiple types of CPs on the same BWP according to an exemplary embodiment.
  • Fig. 13 is another schematic diagram of using multiple types of CPs on the same BWP according to an exemplary embodiment.
  • Fig. 14A to Fig. 14B are schematic diagrams of using multiple types of CPs on the same BWP according to an exemplary embodiment.
  • Fig. 15A to Fig. 15B are schematic diagrams of using multiple types of CPs on the same BWP according to an exemplary embodiment.
  • Fig. 16 is a block diagram of a data transmission device according to an exemplary embodiment.
  • Fig. 17 is a block diagram of another data transmission device according to an exemplary embodiment.
  • Fig. 18 is a schematic structural diagram of a data transmission device according to an exemplary embodiment of the present disclosure.
  • Fig. 19 is a schematic structural diagram of another data transmission device according to an exemplary embodiment of the present disclosure.
  • first, second, third, etc. may be used in the present disclosure to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information. Depending on the context, the word “if” as used herein may be interpreted as “at” or “when” or “in response to a determination.”
  • Table 1 Shown with reference to Table 1, what Table 1 shows is for the conventional cyclic prefix, the OFDM (Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing) symbol (symbol) number of each slot (time slot), each frame (frame) ) and the number of time slots per subframe (subframe).
  • OFDM Orthogonal Frequency Division Multiplexing, Orthogonal Frequency Division Multiplexing
  • Table 2 shows the number of OFDM symbols per slot, the number of slots per frame, and the number of slots per subframe of the extended cyclic prefix.
  • each BWP can only be configured with one type of CP, and the configuration signaling is as follows:
  • BWP#1 supports NCP
  • BWP#2 supports eCP
  • the present disclosure provides the following data transmission method, which can effectively avoid the problem of system performance degradation caused by frequent BWP switching of the terminal.
  • the data transmission method provided by the present disclosure will be introduced first from the terminal side.
  • FIG. 2 is a flowchart of a data transmission method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 201 indication information sent by a base station is received.
  • the indication information is used to configure CP types corresponding to different resources in the specified BWP.
  • the designated BWP may be a BWP that needs to support multiple types of CPs at the same time.
  • multiple types of CPs include but not limited to NCPs and eCPs, which is not limited in the present disclosure.
  • the terminal side may determine that a certain BWP belongs to the specified BWP based on the following reasons:
  • the terminal needs to send and receive wide-coverage services on this BWP, such as Rel-18 MBS, so it needs to use eCP to receive; at the same time, the terminal needs to send and receive legacy (traditional) services on this BWP, such as Rel-15/16/ 17 service, the service is sent and received by NCP; at the same time, the terminal needs to receive the broadcast (broadcast) PDCCH and PDSCH of Rel-15/16/17 on the BWP, and the broadcast channel is sent by NCP.
  • legacy traditional services on this BWP
  • NCP legacy (traditional) services on this BWP
  • the terminal needs to receive the broadcast (broadcast) PDCCH and PDSCH of Rel-15/16/17 on the BWP, and the broadcast channel is sent by NCP.
  • step 202 based on the indication information, use a corresponding type of CP to perform data transmission with the base station on different resources of the specified BWP.
  • the terminal side can use multiple types of CPs for data transmission on the same BWP without performing BWP switching, which avoids frequent BWP switching of the terminal, reduces scheduling restrictions on the network side, reduces data transmission delay, and improves system transmission performance.
  • the indication information sent by the base station may be used to configure a CP type corresponding to one or more specific frequency domain resources in the specified BWP. That is, the CP type is determined based on FDM (Frequency Division Multiplexing, Frequency Division Multiplexing) in the specified BWP.
  • the indication information may be used to configure the range of frequency domain resources using the extended cyclic prefix eCP in the specified BWP.
  • FIG. 3 is a flow chart of a data transmission method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 301 indication information sent by a base station is received.
  • the indication information may use SILV (Start Indication Length Value, start indication and length value) to configure the range of frequency domain resources using the extended cyclic prefix eCP in the specified BWP.
  • SILV Start Indication Length Value, start indication and length value
  • the indication information may include but not limited to at least one of the following: the RB index of the starting RB (Resource Block, resource block) using eCP in the specified BWP; the number of RBs using eCP in the specified BWP.
  • step 302 use eCP to perform data transmission with the base station on the RBs starting from the starting RB in the specified BWP and use the eCP to perform data transmission with the base station; and use a regular cycle on other RBs in the specified BWP
  • the prefix NCP performs data transmission with the base station.
  • At least one of the RB index of the starting RB using eCP in the specified BWP and the number of RBs using eCP can be configured in SILV mode, so as to determine the frequency domain range of using eCP for data transmission in the specified BWP, Other RBs belong to the frequency domain range using NCP for data transmission.
  • the indication information may be used to configure an anchor (anchor) RB corresponding to the eCP in the specified BWP.
  • FIG. 4 is a flow chart of a data transmission method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 401 indication information sent by a base station is received.
  • the indication information may include the RB index of the anchor RB.
  • step 402 use eCP on the RB between the preset RB in the specified BWP and the anchor RB to perform data transmission with the base station; and use NCP on other RBs in the specified BWP to communicate with the base station for data transmission.
  • the preset RB may be an RB in a specified BWP pre-agreed in the protocol, or the preset RB may be an RB in a specified BWP configured by the base station through signaling (or signal).
  • the preset RB may be the first RB or the last RB on the specified BWP.
  • the terminal uses the RBs between the preset RB and the anchor RB as the frequency domain range using the eCP for data transmission, and other RBs as the frequency domain range using the NCP.
  • the purpose of using multiple types of CPs for data transmission on the same BWP is also achieved, avoiding frequent BWP switching by the terminal, reducing scheduling restrictions on the network side, reducing data transmission delay, and improving system transmission. performance.
  • the indication information may be used to configure multiple CFRs (Common Frequency Resources, common frequency resources) using different types of CPs.
  • FIG. 5 is a flow chart of a data transmission method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 501 indication information sent by a base station is received.
  • the indication information may include but not limited to at least one of the following: CFR configuration information; CP type indication information corresponding to the CFR.
  • CFR may be used for transmission of multicast or broadcast-related channels, for example, may be used for transmission of MBS services.
  • the present disclosure does not limit the configuration of the CFR.
  • step 502 the CP indicated by the CP type indication information is used to perform data transmission with the base station on different CFRs of the specified BWP.
  • the base station configures CFR#1 and CFR#2 through the indication information, and the corresponding CP type indication information indicates eCP and NCP respectively, then the terminal uses eCP to transmit data with the base station on CFR#1 in the specified BWP, and the specified CFR#2 in the BWP uses NCP to transmit data with the base station.
  • the purpose of using multiple types of CPs for data transmission on the same BWP is achieved, frequent BWP switching by terminals is avoided, scheduling restrictions on the network side are reduced, data transmission delays are reduced, and system transmission performance is improved.
  • the indication information may be used to configure CP types corresponding to different frequency domain resource granularities in the specified BWP.
  • the terminal may determine the RBs included in each frequency-domain resource granularity based on the agreement, or the terminal may determine the RBs included in each frequency-domain resource granularity based on specified signaling sent by the base station.
  • the specified signaling may include but not limited to RRC (Radio Resource Control, radio resource control) signal, system message, MBS-MCCH (MBMS Control Channel, multimedia broadcast multicast control channel), etc.
  • the system message may be SIB1 or SIBx, which is not limited in the present disclosure.
  • the specified signaling may directly indicate the RBs included in each frequency domain resource granularity in an explicit manner.
  • an implicit manner may be used in the specified signaling to indicate the RBs included in each frequency domain resource granularity, which is not limited in the present disclosure.
  • each frequency-domain resource granularity may include one RB, or may include multiple RBs, and the multiple RBs may be multiple continuous RBs or multiple discrete RBs.
  • FIG. 6 is a flow chart of a data transmission method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 601 indication information sent by a base station is received.
  • the indication information may be bitmap (bitmap) information.
  • the bitmap information can be configured based on the BWP level or based on the CFR level, that is, the base station configures corresponding bitmap information for each specified BWP, or the base station configures corresponding bitmap information for each CFR in each specified BWP, This disclosure does not limit it.
  • step 602 use the eCP to perform data transmission with the base station at the frequency domain resource granularity corresponding to the first bit value in the specified BWP; and use the frequency domain resource corresponding to the second bit value in the specified BWP In granularity, the NCP is used for data transmission with the base station.
  • the first bit value may be 1, and correspondingly, the second bit value may be 0.
  • the first bit has a value of 0 and the second bit has a value of 1.
  • the terminal can use the eCP to transmit data with the base station at the first and fourth frequency domain resource granularities of the specified BWP.
  • the first and third frequency domain resource granularities use NCP to transmit data with the base station.
  • the purpose of using multiple types of CPs for data transmission on the same BWP is achieved, frequent BWP switching by terminals is avoided, scheduling restrictions on the network side are reduced, data transmission delays are reduced, and system transmission performance is improved.
  • eCP can also be replaced by NCP, and the manner in which the terminal performs data transmission with the base station based on the indication information is similar to the specific process of the above embodiment, and will not be repeated here.
  • the indication information may be used to configure a CP type corresponding to one or more specific time domain resources in the specified BWP. That is, the CP type is determined based on TDM (Time Division Multiplexing) in the specified BWP.
  • TDM Time Division Multiplexing
  • the size of one or more specific time-domain resources takes OFDM symbol, slot (time slot) or a predefined time length as a unit.
  • the predefined time length may be configured by the base station or agreed upon by a protocol, which is not limited in the present disclosure.
  • FIG. 7 is a flowchart of a data transmission method according to an embodiment, which can be used in a terminal.
  • the method may include the following steps:
  • step 701 indication information sent by a base station is received.
  • the indication information may be bitmap information.
  • the bitmap information can be configured based on each time domain resource.
  • step 702 the time domain resource corresponding to the first bit value in the specified BWP uses eCP to perform data transmission with the base station; and the time domain resource corresponding to the second bit value in the specified BWP The domain resource uses the NCP to perform data transmission with the base station.
  • the first bit value may be 1, and correspondingly, the second bit value may be 0.
  • the first bit has a value of 0 and the second bit has a value of 1.
  • the terminal can use the eCP to transmit data with the base station on the first and fourth time domain resources of the specified BWP. 1.
  • the NCP to transmit data with the base station on the third time domain resource.
  • the size of the time-domain resource may take OFDM symbol, slot (time slot) or a predefined time length as a unit, which is not limited in the present disclosure.
  • the purpose of using multiple types of CPs for data transmission on the same BWP is achieved, frequent BWP switching by terminals is avoided, scheduling restrictions on the network side are reduced, data transmission delays are reduced, and system transmission performance is improved.
  • the indication information may be configured in a SILV manner.
  • FIG. 8 is a flowchart of a data transmission method according to an embodiment, which can be used in a terminal. The method may include the following steps:
  • step 801 indication information sent by a base station is received.
  • the indication information may include but not limited to at least one of the following: the time domain resource index of the initial time domain resource using eCP in the specified BWP; the number of time domain resources using eCP in the specified BWP .
  • step 802 use the eCP to perform data transmission with the base station on the time domain resources starting from the initial time domain resource in the specified BWP and continuing the number of time domain resources; and in the specified BWP Use the NCP to perform data transmission with the base station on the other time domain resources within the time domain.
  • the size of the time-domain resource may take an OFDM symbol, a time slot, or a predefined time length as a unit.
  • the purpose of using multiple types of CPs for data transmission on the same BWP is achieved, frequent BWP switching by terminals is avoided, scheduling restrictions on the network side are reduced, data transmission delays are reduced, and system transmission performance is improved.
  • the indication information may include but not limited to at least one of the following: period information ; CP type indication information corresponding to each time domain resource in each period.
  • the terminal may periodically determine the CP indicated by the CP type indication information on each time domain resource, so as to perform data transmission with the base station based on the CP.
  • the purpose of using multiple types of CPs for data transmission on the same BWP is also achieved, avoiding frequent BWP switching of the terminal, reducing scheduling restrictions on the network side, reducing data transmission delay, and improving system transmission. performance.
  • the terminal may receive a radio resource control RRC signal including the indication information sent by the base station, or the terminal may receive a system message including the indication information sent by the base station, where the system message may be SIB1 or SIBx, which is not limited in the present disclosure.
  • the terminal may receive the MBS-MCCH sent by the base station and including the indication information.
  • the terminal can receive the indication information sent by the base station in the above way, thereby supporting multiple types of CPs on the same BWP, avoiding the frequent switching of BWPs by the terminal, and avoiding the transmission delay caused by switching BWPs, improving the system transmission performance .
  • the above indication information may be configured based on each specified BWP, or the indication information may be configured based on each cell.
  • the indication information is configured based on each cell, that is, when the indication information is a cell-specific configuration, the CP types corresponding to different resources indicated by the indication information can be applied to all specified BWPs in the cell.
  • the configuration of the indication information may be based on each designated BWP or each cell, which is easy to implement and has high usability.
  • FIG. 9 is a flowchart of a data transmission method according to an embodiment, which can be used in a base station. The method may include the following steps:
  • step 901 indication information is sent to the terminal.
  • the indication information is used to configure CP types corresponding to different resources in the specified BWP.
  • the designated BWP may be a BWP that needs to support multiple types of CPs at the same time.
  • multiple types of CPs include but not limited to NCPs and eCPs, which is not limited in the present disclosure.
  • step 902 based on the indication information, use a corresponding type of CP to perform data transmission with the terminal on different resources of the specified BWP.
  • the base station may configure the CP types corresponding to different resources in the specified bandwidth part BWP through the indication information. Furthermore, based on the indication information, the base station side can use the corresponding type of CP to perform data transmission with the terminal on different resources of the specified BWP, which improves system performance.
  • the indication information sent by the base station may be used to configure a CP type corresponding to one or more specific frequency domain resources in the specified BWP. That is, the CP type is determined based on the FDM method in the specified BWP.
  • the indication information may be used to configure the range of frequency domain resources using the extended cyclic prefix eCP in the specified BWP.
  • the base station uses the corresponding type of CP to perform data transmission with the terminal on different resources of the specified BWP, which is similar to the implementation of the embodiment shown in Figure 3 above, I won't repeat them here.
  • the indication information may be used to configure the anchor RB corresponding to the eCP in the specified BWP.
  • the specific information content included in the indication information, and the manner in which the base station uses the corresponding type of CP to perform data transmission with the terminal on different resources of the specified BWP based on the indication information are similar to the implementation of the embodiment shown in Figure 4 above, I won't repeat them here.
  • the indication information may be used to configure multiple CFRs using different types of CPs.
  • the base station uses the corresponding type of CP to perform data transmission with the terminal on different resources of the specified BWP, which is similar to the implementation of the embodiment shown in FIG. 5 above, and will not be repeated here.
  • the indication information may be used to configure CP types corresponding to different frequency domain resource granularities in the specified BWP.
  • the base station uses the corresponding type of CP to perform data transmission with the terminal on different resources of the specified BWP, which is similar to the implementation of the embodiment shown in Figure 6 above, I won't repeat them here.
  • the indication information may be used to configure a CP type corresponding to one or more specific time domain resources in the specified BWP. That is, the CP type is determined based on the TDM method in the specified BWP.
  • the size of one or more specific time-domain resources takes an OFDM symbol, a time slot, or a predefined time length as a unit.
  • the predefined time length may be configured by the base station, or stipulated in a protocol, and this step is defined in the present disclosure.
  • the specific information content included in the indication information, and the manner in which the base station uses the corresponding type of CP to perform data transmission with the terminal on different resources of the specified BWP based on the indication information is similar to the implementation of the above-mentioned embodiment shown in FIG. 7 , I won't repeat them here.
  • the indication information may be configured in a SILV manner.
  • the base station uses the corresponding type of CP to perform data transmission with the terminal on different resources of the specified BWP, which is similar to the implementation of the embodiment shown in Figure 8 above, I won't repeat them here.
  • the indication information may include but not limited to at least one of the following: period information; CP type indication information corresponding to each time domain resource in each period.
  • the base station may determine the CP indicated by the CP type indication information on each time domain resource based on the indication information, so as to perform data transmission with the base station based on the CP.
  • the base station may configure the CP types corresponding to different resources in the specified BWP, wherein the specified BWP is a BWP that needs to support multiple types of CPs at the same time.
  • the scheduling restriction on the network side is reduced, the data transmission delay is reduced, and the system transmission performance is improved.
  • the base station may send a radio resource control RRC signal including the indication information to the terminal, or the base station may send a system message including the indication information to the terminal, where the system message may be SIB1 or SIBx , which is not limited in the present disclosure.
  • the base station may send the MBS-MCCH including the indication information to the terminal.
  • the above indication information may be configured by the base station based on each specified BWP, or the indication information may be configured by the base station based on each cell.
  • the indication information is configured based on each cell, that is, when the indication information is a cell-specific configuration, the CP types corresponding to different resources indicated by the indication information can be applied to all specified BWPs in the cell.
  • Embodiment 1 assumes that the terminal needs to support both NCP and eCP in the same frequency band. As an example, the terminal determines to specify the BWP for the following reasons:
  • the terminal needs to send and receive wide-coverage services on this BWP, such as Rel-18 MBS, so it needs to use eCP to receive; at the same time, the terminal needs to send and receive legacy services on this BWP, such as Rel-15/16/17 services.
  • the service is sent and received using the NCP; at the same time, the terminal needs to receive the broadcast PDCCH and PDSCH of Rel-15/16/17 on the BWP, and the broadcast channel is sent using the NCP.
  • the base station configures multiple types of CPs for the specified BWP of the terminal through indication information.
  • the base station may send an RRC signal including indication information, SIB1, SIBx, and MBS-MCCH to the terminal.
  • the indication information is at the BWP level or the cell level, which is not limited in this disclosure.
  • the terminal side receives the indication information sent by the network side, and determines the CP type correspondingly used by different frequency domain resources in the specified BWP.
  • the indication information sent by the base station is configured to specify the range of frequency domain resources using the extended cyclic prefix eCP in the specified BWP.
  • the indication information sent by the base station includes the RB index of the starting resource block RB using the eCP in the specified BWP and the number of RBs using the eCP in the specified BWP. That is, the frequency domain range corresponding to the eCP is configured in a SLIV manner.
  • the terminal uses the eCP to perform data transmission with the base station on the RBs starting from the starting RB in the specified BWP, and uses the eCP to communicate with the base station on other RBs in the specified BWP.
  • the base station performs data transmission.
  • Embodiment 2 assumes that the terminal needs to support both NCP and eCP in the same frequency band. As an example, the terminal determines to specify the BWP for the following reasons:
  • the terminal needs to send and receive wide-coverage services on this BWP, such as Rel-18 MBS, so it needs to use eCP to receive; at the same time, the terminal needs to send and receive legacy services on this BWP, such as Rel-15/16/17 services.
  • the service is sent and received using the NCP; at the same time, the terminal needs to receive the broadcast PDCCH and PDSCH of Rel-15/16/17 on the BWP, and the broadcast channel is sent using the NCP.
  • the base station configures multiple types of CPs for the specified BWP of the terminal through indication information.
  • the base station may send an RRC signal including indication information, SIB1, SIBx, and MBS-MCCH to the terminal.
  • the indication information is at the BWP level or the cell level, which is not limited in this disclosure.
  • the terminal side receives the indication information sent by the network side, and determines the CP type correspondingly used by different frequency domain resources in the specified BWP.
  • the indication information sent by the base station is configured to specify the RB index of the anchor RB corresponding to the eCP in the BWP.
  • the terminal uses eCP to transmit data with the base station on the RB between the first RB in the specified BWP and the anchor RB in the specified BWP, and other RBs in the specified BWP
  • the RB uses the NCP to perform data transmission with the base station.
  • the terminal uses eCP to transmit data with the base station on the RB between the anchor RB and the last RB in the specified BWP in the specified BWP, and the RB in the specified BWP
  • the other RBs use the NCP to perform data transmission with the base station.
  • Embodiment 3 assumes that the terminal needs to support both NCP and eCP in the same frequency band. As an example, the terminal determines to specify the BWP for the following reasons:
  • the terminal needs to send and receive wide-coverage services on this BWP, such as Rel-18 MBS, so it needs to use eCP to receive; at the same time, the terminal needs to send and receive legacy services on this BWP, such as Rel-15/16/17 services.
  • the service is sent and received using the NCP; at the same time, the terminal needs to receive the broadcast PDCCH and PDSCH of Rel-15/16/17 on the BWP, and the broadcast channel is sent using the NCP.
  • the base station configures multiple types of CPs for the specified BWP of the terminal through indication information.
  • the base station may send an RRC signal including indication information, SIB1, SIBx, and MBS-MCCH to the terminal.
  • the indication information is at the BWP level or the cell level, which is not limited in this disclosure.
  • the terminal side receives the indication information sent by the network side, and the indication information is used to configure multiple common frequency resources CFR using different types of CPs.
  • the indication information includes but is not limited to at least one of the following: CFR configuration information; CP type indication information corresponding to the CFR.
  • the CFR is used for transmission of multicast or broadcast related channels, for example, it can be used for transmission of MBS services.
  • the terminal uses the CP indicated by the CP type indication information to perform data transmission with the base station on different CFRs of the specified BWP.
  • the base station configures CFR#1 and CFR#2 in a specified BWP for the terminal, wherein CFR#1 uses NCP for data transmission, and CFR#2 uses eCP for data transmission.
  • the terminal needs to support both NCP and eCP in the same frequency band.
  • the terminal determines to specify the BWP for the following reasons:
  • the terminal needs to send and receive wide-coverage services on this BWP, such as Rel-18 MBS, so it needs to use eCP to receive; at the same time, the terminal needs to send and receive legacy services on this BWP, such as Rel-15/16/17 services.
  • the service is sent and received using the NCP; at the same time, the terminal needs to receive the broadcast PDCCH and PDSCH of Rel-15/16/17 on the BWP, and the broadcast channel is sent using the NCP.
  • the base station configures multiple types of CPs for the specified BWP of the terminal through indication information.
  • the indication information is used to configure CP types corresponding to different frequency domain resource granularities in the specified BWP.
  • the indication information may be bitmap information.
  • the CP type corresponding to the frequency domain resource granularity is NCP; when the bit value of the bit in the bitmap is 1, the CP type corresponding to the frequency domain resource granularity for eCP.
  • the frequency-domain resource granularity corresponding to each bit in the bitmap is 1 RB or N RBs, where N is a positive integer greater than 1.
  • the N RBs may be continuous RBs or discrete RBs.
  • the value of N may be indicated through explicit signaling sent by the base station, or determined in a manner predefined by the protocol.
  • the length of the bitmap corresponding to the indication information is 4 bits, that is, the bitmap can indicate the CP type corresponding to the 4 frequency domain resource granularities in the BWP, assuming that the bitmap is 1010, where the first and third frequency
  • the CP type corresponding to the domain resource granularity is eCP
  • the CP type corresponding to the second and fourth frequency domain resource granularities is NCP.
  • the terminal needs to support both NCP and eCP in the same frequency band.
  • the terminal determines to specify the BWP for the following reasons:
  • the terminal needs to send and receive wide-coverage services on this BWP, such as Rel-18 MBS, so it needs to use eCP to receive; at the same time, the terminal needs to send and receive legacy services on this BWP, such as Rel-15/16/17 services.
  • the service is sent and received using the NCP; at the same time, the terminal needs to receive the broadcast PDCCH and PDSCH of Rel-15/16/17 on the BWP, and the broadcast channel is sent using the NCP.
  • the base station configures multiple types of CPs for the specified BWP of the terminal through indication information.
  • the indication information is used to configure the CP type corresponding to one or more specific time domain resources in the specified BWP.
  • the indication information is used to configure the CP type corresponding to each time domain resource in the specified BWP.
  • the size of the one or more specific time-domain resources takes an OFDM symbol, a time slot, or a predefined time length as a unit.
  • each specific time-domain resource takes OFDM symbols as a unit, and the indication information is bitmap information.
  • the bit value of the bit in the bitmap is 0, the corresponding CP type on the OFDM symbol is NCP, and when the bit value of the bit in the bitmap is 1, the corresponding CP type on the OFDM symbol is eCP .
  • bitmap indicated by the base station is 00011000001100, and the corresponding CP type used is shown in FIG. 14A .
  • the indication information includes at least one of the following items: the time domain resource index of the initial time domain resource using the eCP in the specified BWP; the number of time domain resources using the eCP in the specified BWP.
  • the symbol index of the initial OFDM symbol is 3, and the number of symbols is 4.
  • eCP is used for data transmission with the base station , use the NCP to transmit data with the base station on other OFDM symbols.
  • the terminal receives the CP type indication information sent by the base station, and determines the CP type of the specified BWP on one or more specific time domain resources.
  • the indication information may include at least one of the following: period information; CP type indication information corresponding to each time domain resource in each period.
  • the size of one or more specific time-domain resources is taken as a unit of Orthogonal Frequency Division Multiplexing OFDM symbol, time slot or predefined time length.
  • the number of time domain resources included in the predefined time length may be indicated by any signaling as described in Embodiment 5.
  • the indication information is used to indicate a slot or time length using the eCP, and other slots or time lengths not indicated use the NCP.
  • the base station indicates the period of the eCP time domain pattern, and indicates the eCP slot or time length within the period.
  • Figure 15A to Figure 15B for the method of indicating the time-domain resources occupied by the eCP within a pattern period, which are respectively indicated based on the bitmap method within one period T, and based on the SILV method within one period T, here No longer.
  • the base station may configure multiple types of CPs for the designated BWP of the terminal, where the designated BWP is a BWP that needs to support multiple types of CPs at the same time.
  • the terminal side can use multiple types of CPs for data transmission on the same BWP without BWP switching, avoiding frequent BWP switching of the terminal, reducing scheduling restrictions on the network side, reducing data transmission delay, and improving system transmission performance.
  • the present disclosure also provides embodiments of apparatuses for implementing application functions.
  • FIG. 16 is a block diagram of a data transmission device according to an exemplary embodiment.
  • the device is applied to a terminal, including:
  • the receiving module 1601 is configured to receive indication information sent by the base station; wherein, the indication information is used to configure CP types corresponding to different resources in a specified bandwidth part BWP, and the specified BWP is a BWP that needs to support multiple types of CPs at the same time ;
  • the first data transmission module 1602 is configured to, based on the indication information, use a corresponding type of CP to perform data transmission with the base station on different resources of the specified BWP.
  • Figure 17 is a block diagram of a data transmission device according to an exemplary embodiment, the device is applied to a base station, including:
  • the sending module 1701 is configured to send indication information to the terminal; wherein, the indication information is used to configure CP types corresponding to different resources in a specified bandwidth part BWP, and the specified BWP is a BWP that needs to support multiple types of CPs at the same time;
  • the second data transmission module 1702 is configured to, based on the indication information, use a corresponding type of CP to perform data transmission with the terminal on different resources of the specified BWP.
  • the device embodiment since it basically corresponds to the method embodiment, for related parts, please refer to the part description of the method embodiment.
  • the device embodiments described above are only illustrative, and the above-mentioned units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in a place, or can also be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the disclosed solution. It can be understood and implemented by those skilled in the art without creative effort.
  • the present disclosure also provides a computer-readable storage medium, where the storage medium stores a computer program, and the computer program is used to execute any one of the above data transmission methods for the terminal side.
  • the present disclosure also provides a computer-readable storage medium, where the storage medium stores a computer program, and the computer program is used to execute any one of the above data transmission methods on the base station side.
  • a data transmission device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the above data transmission methods on the terminal side.
  • Fig. 18 is a block diagram of an electronic device 1800 according to an exemplary embodiment.
  • the electronic device 1800 may be a terminal such as a mobile phone, a tablet computer, an e-book reader, a multimedia playback device, a wearable device, a vehicle terminal, an ipad, and a smart TV.
  • electronic device 1800 may include one or more of the following components: processing component 1802, memory 1804, power supply component 1806, multimedia component 1808, audio component 1810, input/output (I/O) interface 1812, sensor component 1816, and communication component 1818.
  • processing component 1802 memory 1804, power supply component 1806, multimedia component 1808, audio component 1810, input/output (I/O) interface 1812, sensor component 1816, and communication component 1818.
  • memory 1804 may include one or more of the following components: processing component 1802, memory 1804, power supply component 1806, multimedia component 1808, audio component 1810, input/output (I/O) interface 1812, sensor component 1816, and communication component 1818.
  • I/O input/output
  • the processing component 1802 generally controls the overall operations of the electronic device 1800, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1802 may include one or more processors 1820 to execute instructions to complete all or part of the steps of the above data transmission method.
  • processing component 1802 may include one or more modules that facilitate interaction between processing component 1802 and other components.
  • processing component 1802 may include a multimedia module to facilitate interaction between multimedia component 1808 and processing component 1802 .
  • the processing component 1802 may read executable instructions from the memory, so as to implement the steps of a data transmission method provided in the foregoing embodiments.
  • the memory 1804 is configured to store various types of data to support operations at the electronic device 1800 . Examples of such data include instructions for any application or method operating on the electronic device 1800, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 1804 can be implemented by any type of volatile or non-volatile memory device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1806 provides power to various components of the electronic device 1800 .
  • Power supply components 1806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for electronic device 1800 .
  • the multimedia component 1808 includes a display screen providing an output interface between the electronic device 1800 and the user.
  • the multimedia component 1808 includes a front camera and/or a rear camera.
  • the front camera and/or the rear camera can receive external multimedia data.
  • Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1810 is configured to output and/or input audio signals.
  • the audio component 1810 includes a microphone (MIC), which is configured to receive an external audio signal when the electronic device 1800 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode. Received audio signals may be further stored in memory 1804 or sent via communication component 1818 .
  • the audio component 1810 also includes a speaker for outputting audio signals.
  • the I/O interface 1812 provides an interface between the processing component 1802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 1816 includes one or more sensors for providing various aspects of status assessment for electronic device 1800 .
  • the sensor component 1816 can detect the open/closed state of the electronic device 1800, the relative positioning of components, such as the display and the keypad of the electronic device 1800, the sensor component 1816 can also detect the electronic device 1800 or a Changes in position of components, presence or absence of user contact with electronic device 1800 , electronic device 1800 orientation or acceleration/deceleration and temperature changes in electronic device 1800 .
  • Sensor assembly 1816 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 1816 may also include optical sensors, such as CMOS or CCD image sensors, for use in imaging applications.
  • the sensor assembly 1816 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 1818 is configured to facilitate wired or wireless communication between the electronic device 1800 and other devices.
  • the electronic device 1800 can access wireless networks based on communication standards, such as Wi-Fi, 2G, 3G, 4G, 5G or 6G, or a combination thereof.
  • the communication component 1818 receives a broadcast signal or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1818 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • electronic device 1800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A programmable gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the data transfer method described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A programmable gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the data transfer method described above.
  • non-transitory machine-readable storage medium including instructions, such as the memory 1804 including instructions, which can be executed by the processor 1820 of the electronic device 1800 to complete the above data transmission method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • a data transmission device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute any one of the above data transmission methods on the base station side.
  • FIG. 19 is a schematic structural diagram of a data transmission device 1900 according to an exemplary embodiment.
  • the apparatus 1900 may be provided as a base station.
  • the device 1900 includes a processing component 1922 , a wireless transmitting/receiving component 1924 , an antenna component 1926 , and a signal processing part specific to the wireless interface.
  • the processing component 1922 may further include at least one processor.
  • One of the processors in the processing component 1922 may be configured to execute any one of the data transmission methods described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种数据传输方法及装置、存储介质,其中,所述数据传输方法包括:接收基站发送的指示信息;其中,所述指示信息用于配置指定带宽部分BWP内不同资源所对应的CP类型,所述指定BWP是需要同时支持多种类型CP的BWP;基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输。本公开可以避免终端频繁进行BWP切换,减少了网络侧的调度限制,减少了数据传输时延,且提高了系统传输性能。

Description

数据传输方法及装置、存储介质 技术领域
本公开涉及通信领域,尤其涉及数据传输方法及装置、存储介质。
背景技术
对于广覆盖等业务场景,需要较长的CP(Cyclic Prefix,循环前缀)对传输的数据进行加扰或解扰,以便达到保护数据的作用。但是在目前5G(5th Generation Mobile Communication Technology,第5代移动通信技术)NR(New Radio,新空口)系统中,仅60kHz(千赫兹)SCS(Sub-Carrier Spacing,子载波间隔)支持eCP(extended Cyclic Prefix,扩展循环前缀)。且基于协议约定中,CP按照BWP(Bandwith Part,带宽部分)进行配置的,也即BWP只能使用预先配置的一个类型CP进行数据传输。
当MBS(Multicast Broadcast service,组播广播服务)业务或者其他业务需要采用扩展CP进行传输时,仅能在60kHz的BWP上进行传输。与此同时,考虑到该终端需要在具有NCP(Normal Cyclic Prefix,常规循环前缀)的BWP上检测接收广播PDCCH(Physical Downlink Control Channel,物理下行控制信道),广播PDSCH(Physical Downlink Shared Channel,物理下行共享信道),单播PDCCH,单播PDSCH或者Rel-17(Release-17,版本17)MBS相关信道等,终端必须在不同的BWP之间进行切换,从而造成调度的限制和传输的时延。另外,在BWP切换期间,网络侧和终端侧不能进行数据的收发,同样造成了传输时延,降低了系统性能。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种数据传输方法及装置、存储介质。
根据本公开实施例的第一方面,提供一种数据传输方法,所述方法由终端执行,包括:
接收基站发送的指示信息;其中,所述指示信息用于配置指定带宽部分BWP内不同资源所对应的CP类型,所述指定BWP是需要同时支持多种类型CP的BWP;
基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输。
可选地,所述指示信息用于配置所述指定BWP内一个或多个特定频域资源所对应的CP类型。
可选地,所述指示信息用于配置所述指定BWP内使用扩展循环前缀eCP的频域资源范围。
可选地,所述指示信息包括以下至少一项:
所述指定BWP内使用eCP的起始资源块RB的RB索引;
所述指定BWP内使用eCP的RB数目;
所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输,包括以下至少一项:
在所述指定BWP内从所述起始RB开始连续所述RB数目的RB上使用eCP与所述基站进行数据传输;以及
在所述指定BWP内的其他RB上使用常规循环前缀NCP与所述基站进行数据传输。
可选地,所述指示信息用于配置所述指定BWP内与eCP对应的锚RB。
可选地,所述指示信息包括所述锚RB的RB索引;
所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输,包括以下至少一项:
在所述指定BWP内预设RB与所述锚RB之间的RB上使用eCP与所述基站进行数据传输;以及
在所述指定BWP内的其他RB上使用NCP与所述基站进行数据传输。
可选地,所述预设RB为所述指定BWP上的第一个RB或最后一个RB。
可选地,所述指示信息用于配置使用不同类型CP的多个公共频率资源CFR。
可选地,所述指示信息包括以下至少一项:
CFR配置信息;
与所述CFR对应的CP类型指示信息;
所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输,包括:
在所述指定BWP的不同CFR上,使用所述CP类型指示信息所指示的CP与所述基站进行数据传输。
可选地,所述指示信息用于配置所述指定BWP内不同频域资源粒度所对应的CP类型。
可选地,所述指示信息为比特图bitmap信息;
所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输,包括以下至少一项:
在所述指定BWP内与第一比特值对应的频域资源粒度上使用eCP与所述基站进行数据传输;以及
在所述指定BWP内与第二比特值对应的频域资源粒度上使用NCP与所述基站进行数据传输。
可选地,每个所述频域资源粒度包括一个或多个RB;其中,所述多个RB为多个连续RB或多个离散RB。
可选地,所述方法还包括:
基于协议约定,确定每个所述频域资源粒度包含的RB;或,
基于所述基站发送的指定信令,确定每个所述频域资源粒度包含的RB。
可选地,所述指示信息用于配置所述指定BWP内一个或多个特定时域资源所对应的CP类型;其中,所述一个或多个特定时域资源的大小以 正交频分复用OFDM符号、时隙或预定义的时间长度作为单位。
可选地,所述指示信息为bitmap信息;
所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输,包括以下至少一项:
在所述指定BWP内与第一比特值对应的所述时域资源上使用eCP与所述基站进行数据传输;以及
在所述指定BWP内与第二比特值对应的所述时域资源上使用NCP与所述基站进行数据传输。
可选地,所述指示信息包括:
所述指定BWP内使用eCP的起始时域资源的时域资源索引;
所述指定BWP内使用eCP的时域资源数目;
所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输,包括以下至少一项:
在所述指定BWP内从所述起始时域资源开始连续所述时域资源数目的所述时域资源上使用eCP与所述基站进行数据传输;以及
在所述指定BWP内的其他所述时域资源上使用NCP与所述基站进行数据传输。
可选地,所述一个或多个特定时域资源的大小以时隙或预定义的时间长度作为单位时,所述指示信息包括以下至少一项:
周期信息;
每个周期内每个所述时域资源所对应的CP类型指示信息。
可选地,所述接收基站发送的指示信息,包括:
接收所述基站发送的包括所述指示信息的无线资源控制RRC信号;或者,
接收所述基站发送的包括所述指示信息的系统消息;或者,
接收所述基站发送的包括所述指示信息的组播广播服务多媒体广播组播控制信道MBS-MCCH。
可选地,所述指示信息是基于每个所述指定BWP配置的,或所述指示信息是基于每个小区配置的。
根据本公开实施例的第二方面,提供一种数据传输方法,所述方法由基站执行,包括:
向终端发送指示信息;其中,所述指示信息用于配置指定带宽部分BWP内不同资源所对应的CP类型,所述指定BWP是需要同时支持多种类型CP的BWP;
基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输。
可选地,所述指示信息用于配置所述指定BWP内一个或多个特定频域资源所对应的CP类型。
可选地,所述指示信息用于配置所述指定BWP内使用扩展循环前缀eCP的频域资源范围。
可选地,所述指示信息包括以下至少一项:
所述指定BWP内使用eCP的起始资源块RB的RB索引;
所述指定BWP内使用eCP的RB数目;
所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输,包括以下至少一项:
在所述指定BWP内从所述起始RB开始连续所述RB数目的RB上使用eCP与所述终端进行数据传输;以及
在所述指定BWP内的其他RB上使用常规循环前缀NCP与所述终端进行数据传输。
可选地,所述指示信息用于配置所述指定BWP内与eCP对应的锚RB。
可选地,所述指示信息包括所述锚RB的RB索引;
所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输,包括以下至少一项:
在所述指定BWP内预设RB与所述锚RB之间的RB上使用eCP与所 述终端进行数据传输;以及
在所述指定BWP内的其他RB上使用NCP与所述终端进行数据传输。
可选地,所述指示信息用于配置使用不同类型CP的多个公共频率资源CFR。
可选地,所述指示信息包括以下至少一项:
CFR配置信息;
与所述CFR对应的CP类型指示信息;
所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输,包括:
在所述指定BWP的不同CFR上,使用所述CP类型指示信息所指示的CP与所述终端进行数据传输。
可选地,所述指示信息用于配置所述指定BWP内不同频域资源粒度所对应的CP类型。
可选地,所述指示信息为比特图bitmap信息;
所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输,包括以下至少一项:
在所述指定BWP内与第一比特值对应的频域资源粒度上使用eCP与所述终端进行数据传输;以及
在所述指定BWP内与第二比特值对应的频域资源粒度上使用NCP与所述终端进行数据传输。
可选地,每个所述频域资源粒度包括一个或多个RB;其中,所述多个RB为多个连续RB或多个离散RB。
可选地,所述方法还包括:
向所述终端发送用于配置每个所述频域资源粒度包含的RB的指定信令。
可选地,所述指示信息用于配置所述指定BWP内一个或多个特定时域资源所对应的CP类型;其中,所述一个或多个特定时域资源的大小以 正交频分复用OFDM符号、时隙或预定义的时间长度作为单位。
可选地,所述指示信息为bitmap信息;
所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输,包括以下至少一项:
在所述指定BWP内与第一比特值对应的所述时域资源上使用eCP与所述终端进行数据传输;以及
在所述指定BWP内与第二比特值对应的所述时域资源上使用NCP与所述终端进行数据传输。
可选地,所述指示信息包括以下至少一项:
所述指定BWP内使用eCP的起始时域资源的时域资源索引;
所述指定BWP内使用eCP的时域资源数目;
所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输,包括以下至少一项:
在所述指定BWP内从所述起始时域资源开始连续所述时域资源数目的所述时域资源上使用eCP与所述终端进行数据传输;以及
在所述指定BWP内的其他所述时域资源上使用NCP与所述终端进行数据传输。
可选地,时域资源,所述指示信息包括以下至少一项:
周期信息;
每个周期内每个所述时域资源所对应的CP类型指示信息。
可选地,所述向终端发送指示信息,包括:
向所述终端发送包括所述指示信息的无线资源控制RRC信号;或者,
向所述终端发送包括所述指示信息的系统消息;或者,
向所述终端发送包括所述指示信息的组播广播服务多媒体广播组播控制信道MBS-MCCH。
可选地,所述指示信息是基于每个所述指定BWP配置的,或所述指示信息是基于每个小区配置的。
根据本公开实施例的第三方面,提供一种数据传输装置,所述装置应用于终端,包括:
接收模块,被配置为接收基站发送的指示信息;其中,所述指示信息用于配置指定带宽部分BWP内不同资源所对应的CP类型,所述指定BWP是需要同时支持多种类型CP的BWP;
第一数据传输模块,被配置为基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输。
根据本公开实施例的第四方面,提供一种数据传输装置,所述装置应用于基站,包括:
发送模块,被配置为向终端发送指示信息;其中,所述指示信息用于配置指定带宽部分BWP内不同资源所对应的CP类型,所述指定BWP是需要同时支持多种类型CP的BWP;
第二数据传输模块,被配置为基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输。
根据本公开实施例的第五方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述终端侧任一项所述的数据传输方法。
根据本公开实施例的第六方面,提供一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述基站侧任一项所述的数据传输方法。
根据本公开实施例的第七方面,提供一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述终端侧任一项所述的数据传输方法。
根据本公开实施例的第八方面,提供一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述基站侧任一项所述的数据传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
在本公开中,可以由基站配置指定BWP内不同资源所对应的CP类型,其中,指定BWP是需要同时支持多种类型CP的BWP。终端侧无需进行BWP切换即可在同一BWP上使用多种类型CP进行数据传输,避免终端频繁进行BWP切换,减少了网络侧的调度限制,减少了数据传输时延,且提高了系统传输性能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种在不同BWP上使用不同类型CP的示意图。
图2是根据一示例性实施例示出的一种数据传输方法流程示意图。
图3是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图4是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图5是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图6是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图7是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图8是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图9是根据一示例性实施例示出的另一种数据传输方法流程示意图。
图10是根据一示例性实施例示出的一种在同一BWP上使用多种类型CP的示意图。
图11A至图11B是根据一示例性实施例示出的在同一BWP上使用多种类型CP的示意图。
图12是根据一示例性实施例示出的另一种在同一BWP上使用多种类型CP的示意图。
图13是根据一示例性实施例示出的另一种在同一BWP上使用多种类型CP的示意图。
图14A至图14B是根据一示例性实施例示出的在同一BWP上使用多种类型CP的示意图。
图15A至图15B是根据一示例性实施例示出的在同一BWP上使用多种类型CP的示意图。
图16是根据一示例性实施例示出的一种数据传输装置框图。
图17是根据一示例性实施例示出的另一种数据传输装置框图。
图18是本公开根据一示例性实施例示出的一种数据传输装置的一结构示意图。
图19是本公开根据一示例性实施例示出的另一种数据传输装置的一结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含至少一个相关联的列出 项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
目前协议约定只有SCS为60kHz时能够支持eCP。当SCS为其他数值时,只支持NCP。
参照表1所示,表1示出的是对于常规循环前缀,每个slot(时隙)的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)symbol(符号)数、每个frame(帧)的时隙数和每个subframe(子帧)的时隙数。
表1
Figure PCTCN2022076886-appb-000001
参照表2所示,表2示出的是扩展循环前缀的每个时隙的OFDM符号数、每个帧的时隙数和每个子帧的时隙数。
表2
Figure PCTCN2022076886-appb-000002
另外,目前的协议中还约定,每个BWP只能配置一种CP,配置信令如下:
Figure PCTCN2022076886-appb-000003
对于终端而言,广覆盖业务长袖,需要通过配置eCP来支持更大的覆盖半径,如果终端需要同时接收广域覆盖类型业务和传统类型业务,则需要在不同的BWP之间进行切换,例如图1所示,BWP#1支持NCP,BWP#2支持eCP。终端在BWP切换期间,网络侧和终端侧不能进行数据的收发,从而造成了传输时延,降低了系统性能。
考虑到未来移动通信系统中,终端需要同时支持NCP和eCP,本公开提供了以下数据传输方法,可以有效避免终端频繁进行BWP切换所导致的系统性能下降的问题。
下面先从终端侧介绍一下本公开提供的数据传输方法。
本公开实施例提供了一种数据传输方法,参照图2所示,图2是根据一实施例示出的一种数据传输方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤201中,接收基站发送的指示信息。
在本公开实施例中,该指示信息用于配置指定BWP内不同资源所对应的CP类型。其中,指定BWP可以是需要同时支持多种类型CP的BWP。
在一个可能的实现方式中,多种类型CP包括但不限于NCP和eCP,本公开对此不作限定。
在一个可能的实现方式中,终端侧可以基于以下原因确定某BWP属于指定BWP:
终端需要在该BWP上发送接收广覆盖的业务,例如Rel-18 MBS,因此需要采用eCP进行接收;同时,终端在该BWP上需要发送接收legacy(传统)类型业务,例如Rel-15/16/17的业务,所述业务采用NCP进行发送接收;同时,终端在该BWP上需要接收Rel-15/16/17的broadcast(广播)PDCCH和PDSCH,所述broadcast信道采用NCP进行发送。
在步骤202中,基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输。
上述实施例中,终端侧无需进行BWP切换即可在同一BWP上使用多种类型CP进行数据传输,避免终端频繁进行BWP切换,减少了网络侧的调度限制,减少了数据传输时延,且提高了系统传输性能。
在一些可选实施例中,基站发送的指示信息可以用于配置所述指定BWP内一个或多个特定频域资源所对应的CP类型。即在指定BWP内基于FDM(Frequency Division Multiplexing,频分复用)方式确定CP类型。在一个可能的实现方式中,该指示信息可以用于配置指定BWP内使用扩展循环前缀eCP的频域资源范围。
参照图3所示,图3是根据一实施例示出的一种数据传输方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤301中,接收基站发送的指示信息。
在本公开实施例中,指示信息可以采用SILV(Start Indication Length Value,起始指示和长度值)的方式配置指定BWP内使用扩展循环前缀eCP的频域资源范围。
具体地,该指示信息可以包括但不限于以下至少一项:所述指定BWP内使用eCP的起始RB(Resource Block,资源块)的RB索引;所述指定 BWP内使用eCP的RB数目。
在步骤302中,在所述指定BWP内从所述起始RB开始连续所述RB数目的RB上使用eCP与所述基站进行数据传输;以及在所述指定BWP内的其他RB上使用常规循环前缀NCP与所述基站进行数据传输。
上述实施例中,可以采用SILV的方式配置指定BWP内使用eCP的起始RB的RB索引以及使用eCP的RB数目中的至少一项,从而确定指定BWP内使用eCP进行数据传输的频域范围,其他RB属于使用NCP进行数据传输的频域范围。实现了在同一BWP上使用多种类型CP进行数据传输的目的,避免终端频繁进行BWP切换,减少了网络侧的调度限制,减少了数据传输时延,且提高了系统传输性能。
在一个可能的实现方式中,该指示信息可以用于配置指定BWP内与eCP对应的anchor(锚)RB。
参照图4所示,图4是根据一实施例示出的一种数据传输方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤401中,接收基站发送的指示信息。
在本公开实施例中,指示信息可以包括所述锚RB的RB索引。
在步骤402中,在所述指定BWP内预设RB与所述锚RB之间的RB上使用eCP与所述基站进行数据传输;以及在所述指定BWP内的其他RB上使用NCP与所述基站进行数据传输。
在本公开实施例中,预设RB可以是协议预先约定好的指定BWP中的一个RB,或预设RB可以是基站通过信令(或信号)等方式配置的指定BWP中的一个RB。可选地,该预设RB可以为所述指定BWP上的第一个RB或最后一个RB。
终端将预设RB与所述锚RB之间的RB作为使用eCP进行数据传输的频域范围,其他RB作为使用NCP的频域范围。
上述实施例中,同样实现了在同一BWP上使用多种类型CP进行数据传输的目的,避免终端频繁进行BWP切换,减少了网络侧的调度限制, 减少了数据传输时延,且提高了系统传输性能。
在一个可能的实现方式中,指示信息可以用于配置使用不同类型CP的多个CFR(Common Frequency Resources,公共频率资源)。
参照图5所示,图5是根据一实施例示出的一种数据传输方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤501中,接收基站发送的指示信息。
在本公开实施例中,该指示信息可以包括但不限于以下至少一项:CFR配置信息;与所述CFR对应的CP类型指示信息。
需要说明的是,在本公开实施例中,CFR可以用于组播或广播相关信道的传输,例如可以用于传输MBS业务。本公开对于CFR的配置不作限制。
在步骤502中,在所述指定BWP的不同CFR上,使用所述CP类型指示信息所指示的CP与所述基站进行数据传输。
例如,基站通过指示信息配置了CFR#1和CFR#2,对应的CP类型指示信息分别指示了eCP、NCP,则终端在指定BWP内的CFR#1上使用eCP与基站进行数据传输,在指定BWP内的CFR#2上使用NCP与基站进行数据传输。
上述实施例中,实现了在同一BWP上使用多种类型CP进行数据传输的目的,避免终端频繁进行BWP切换,减少了网络侧的调度限制,减少了数据传输时延,且提高了系统传输性能。
在另一个可能的实现方式中,指示信息可以用于配置所述指定BWP内不同频域资源粒度所对应的CP类型。
需要说明的是,终端可以基于协议约定,确定每个频域资源粒度包含的RB,或者,终端可以基于基站发送的指定信令确定每个频域资源粒度包含的RB。
指定信令可以包括但不限于RRC(Radio Resource Control,无线资源控制)信号、系统消息、MBS-MCCH(MBMS Control Channel,多媒体广 播组播控制信道)等。其中,系统消息可以为SIB1或SIBx,本公开对此不作限定。
其中,指定信令中可以采用显式方式直接指示每个频域资源粒度包含的RB。或者,指定信令中可以采用隐式方式指示每个频域资源粒度包含的RB,本公开对此不作限定。
进一步地,每个频域资源粒度可以包括一个RB,或者可以包括多个RB,多个RB可以为多个连续RB或多个离散RB。
参照图6所示,图6是根据一实施例示出的一种数据传输方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤601中,接收基站发送的指示信息。
在本公开实施例中,指示信息可以为bitmap(比特图)信息。其中,bitmap信息可以为基于BWP级别配置的,或者基于CFR级别配置的,即基站针对每个指定BWP配置对应的bitmap信息,或者基站针对每个指定BWP内的每个CFR配置对应的bitmap信息,本公开对此不作限定。
在步骤602中,在所述指定BWP内与第一比特值对应的频域资源粒度上使用eCP与所述基站进行数据传输;以及在所述指定BWP内与第二比特值对应的频域资源粒度上使用NCP与所述基站进行数据传输。
在本公开实施例中,第一比特值可以为1,相应地,第二比特值可以为0。或者,第一比特值为0,第二比特值为1。
例如,指示信息为1001,第一比特值为1,第二比特值为0,终端可以在指定BWP的第一个、第四个频域资源粒度上使用eCP与基站进行数据传输,在第二个、第三个频域资源粒度上使用NCP与基站进行数据传输。
上述实施例中,实现了在同一BWP上使用多种类型CP进行数据传输的目的,避免终端频繁进行BWP切换,减少了网络侧的调度限制,减少了数据传输时延,且提高了系统传输性能。
需要说明的是,上述实施例中,eCP也可以替换为NCP,终端基于该指示信息与基站进行数据传输的方式与上述实施例的具体过程类似,在此 不再赘述。
在一些可选实施例中,该指示信息可以用于配置所述指定BWP内一个或多个特定时域资源所对应的CP类型。即在指定BWP内基于TDM(Time Division Multiplexing,时分复用)方式确定CP类型。
在一个可能的实现方式中,
具体地,一个或多个特定时域资源的大小以OFDM符号、slot(时隙)或预定义的时间长度作为单位。
该预定义的时间长度可以由基站进行配置,或协议进行约定,本公开对此不作限定。
参照图7所示,图7是根据一实施例示出的一种数据传输方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤701中,接收基站发送的指示信息。
在本公开实施例中,指示信息可以为bitmap信息。其中,bitmap信息可以基于每个时域资源进行配置。
在步骤702中,在所述指定BWP内与第一比特值对应的所述时域资源使用eCP与所述基站进行数据传输;以及在所述指定BWP内与第二比特值对应的所述时域资源上使用NCP与所述基站进行数据传输。
在本公开实施例中,第一比特值可以为1,相应地,第二比特值可以为0。或者,第一比特值为0,第二比特值为1。
例如,指示信息为1001,第一比特值为1,第二比特值为0,终端可以在指定BWP的第一个、第四个时域资源上使用eCP与基站进行数据传输,在第二个、第三个时域资源上使用NCP与基站进行数据传输。时域资源的大小可以以OFDM符号、slot(时隙)或预定义的时间长度作为单位,本公开对此不作限定。
上述实施例中,实现了在同一BWP上使用多种类型CP进行数据传输的目的,避免终端频繁进行BWP切换,减少了网络侧的调度限制,减少了数据传输时延,且提高了系统传输性能。
在另一个可能的实现方式中,指示信息可以采用SILV的方式进行配置。
参照图8所示,图8是根据一实施例示出的一种数据传输方法流程图,可以用于终端,该方法可以包括以下步骤:
在步骤801中,接收基站发送的指示信息。
在本公开实施例中,指示信息可以包括但不限于以下至少一项:所述指定BWP内使用eCP的起始时域资源的时域资源索引;所述指定BWP内使用eCP的时域资源数目。
在步骤802中,在所述指定BWP内从所述起始时域资源开始连续所述时域资源数目的所述时域资源上使用eCP与所述基站进行数据传输;以及在所述指定BWP内的其他所述时域资源上使用NCP与所述基站进行数据传输。
在本公开实施例中,时域资源的大小可以以正交频分复用OFDM符号、时隙或预定义的时间长度作为单位。
上述实施例中,实现了在同一BWP上使用多种类型CP进行数据传输的目的,避免终端频繁进行BWP切换,减少了网络侧的调度限制,减少了数据传输时延,且提高了系统传输性能。
在另一个可能的实现方式中,所述一个或多个特定时域资源的大小以时隙或预定义的时间长度作为单位时,所述指示信息可以包括但不限于以下至少一项:周期信息;每个周期内每个所述时域资源所对应的CP类型指示信息。
终端可以基于指示信息,周期性的确定每个时域资源上CP类型指示信息所指示的CP,从而基于该CP与基站进行数据传输。
上述实施例中,同样实现了在同一BWP上使用多种类型CP进行数据传输的目的,避免终端频繁进行BWP切换,减少了网络侧的调度限制,减少了数据传输时延,且提高了系统传输性能。
在一些可选实施例中,终端可以接收基站发送的包括所述指示信息的 无线资源控制RRC信号,或者,终端可以接收基站发送的包括所述指示信息的系统消息,其中,系统消息可以为SIB1或SIBx,本公开对此不作限定。或者,终端可以接收基站发送的包括所述指示信息的MBS-MCCH。
上述实施例中,终端可以接收基站通过上述方式发送的指示信息,从而在同一BWP上支持多种类型CP,避免终端频繁切换BWP,且可以避免切换BWP造成的传输时延,提高了系统传输性能。
在一些可选实施例中,上述指示信息可以是基于每个所述指定BWP配置的,或所述指示信息是基于每个小区配置的。
其中,指示信息基于每个小区配置,即指示信息是小区专用配置的情况下,该指示信息指示的不同资源所对应的CP类型可以应用在该小区内的所有指定BWP上。
上述实施例中,指示信息的配置可以基于每个所述指定BWP或基于每个小区,实现简便,可用性高。
下面再从基站侧介绍一下本公开提供的数据传输方法。
本公开实施例提供了一种数据传输方法,参照图9所示,图9是根据一实施例示出的一种数据传输方法流程图,可以用于基站,该方法可以包括以下步骤:
在步骤901中,向终端发送指示信息。
在本公开实施例中,该指示信息用于配置指定BWP内不同资源所对应的CP类型。其中,指定BWP可以是需要同时支持多种类型CP的BWP。
在一个可能的实现方式中,多种类型CP包括但不限于NCP和eCP,本公开对此不作限定。
在步骤902中,基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输。
上述实施例中,基站可以通过指示信息配置指定带宽部分BWP内不同资源所对应的CP类型。进一步地,基站侧可以基于该指示信息,在指定BWP的不同资源上使用对应类型CP与终端进行数据传输,提高了系统 性能。
在一些可选实施例中,基站发送的指示信息可以用于配置所述指定BWP内一个或多个特定频域资源所对应的CP类型。即在指定BWP内基于FDM方式确定CP类型。
在一个可能的实现方式中,该指示信息可以用于配置指定BWP内使用扩展循环前缀eCP的频域资源范围。
指示信息包括的具体信息内容,以及基站基于该指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输的方式与上述图3所示实施例的实现方式类似,在此不再赘述。
在一个可能的实现方式中,该指示信息可以用于配置指定BWP内与eCP对应的anchor RB。
指示信息包括的具体信息内容,以及基站基于该指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输的方式与上述图4所示实施例的实现方式类似,在此不再赘述。
在一个可能的实现方式中,指示信息可以用于配置使用不同类型CP的多个CFR。
基站基于该指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输的方式与上述图5所示实施例的实现方式类似,在此不再赘述。
在另一个可能的实现方式中,指示信息可以用于配置所述指定BWP内不同频域资源粒度所对应的CP类型。
指示信息包括的具体信息内容,以及基站基于该指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输的方式与上述图6所示实施例的实现方式类似,在此不再赘述。
在一些可选实施例中,该指示信息可以用于配置所述指定BWP内一个或多个特定时域资源所对应的CP类型。即在指定BWP内基于TDM方式确定CP类型。
在一个可能的实现方式中,一个或多个特定时域资源的大小以正交频分复用OFDM符号、时隙或预定义的时间长度作为单位。该预定义的时间长度可以由基站进行配置,或协议进行约定,本公开对此步骤限定。
指示信息包括的具体信息内容,以及基站基于该指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输的方式与上述图7所示实施例的实现方式类似,在此不再赘述。
在一个可能的实现方式中,指示信息可以采用SILV的方式进行配置。
指示信息包括的具体信息内容,以及基站基于该指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输的方式与上述图8所示实施例的实现方式类似,在此不再赘述。
在一个可能的实现方式中,所述一个或多个特定时域资源的大小以时隙或预定义的时间长度作为单位时,所述指示信息可以包括但不限于以下至少一项:周期信息;每个周期内每个所述时域资源所对应的CP类型指示信息。
基站可以基于指示信息,确定每个时域资源上CP类型指示信息所指示的CP,从而基于该CP与基站进行数据传输。
上述实施例中,可以由基站配置指定BWP内不同资源所对应的CP类型,其中,指定BWP是需要同时支持多种类型CP的BWP。减少了网络侧的调度限制,减少了数据传输时延,且提高了系统传输性能。
在一些可选实施例中,基站可以向终端发送包括所述指示信息的无线资源控制RRC信号,或者,基站可以向终端发送包括所述指示信息的系统消息,其中,系统消息可以为SIB1或SIBx,本公开对此不作限定。或者,基站可以向终端发送包括所述指示信息的MBS-MCCH。
在一些可选实施例中,上述指示信息可以是基站基于每个所述指定BWP配置的,或所述指示信息是基站基于每个小区配置的。
其中,指示信息基于每个小区配置,即指示信息是小区专用配置的情况下,该指示信息指示的不同资源所对应的CP类型可以应用在该小区内 的所有指定BWP上。
为了便于理解,对上述数据传输方法进一步举例说明如下。
实施例1,假设终端需要在同一个频段内同时支持NCP和eCP。作为一个例子,终端出于如下原因确定指定BWP:
终端在该BWP上需要发送接收广覆盖的业务,例如Rel-18 MBS,因此需要采用eCP进行接收;同时,终端在该BWP上需要发送接收legacy业务,例如Rel-15/16/17的业务,所述业务采用NCP进行发送接收;同时,终端在该BWP上需要接收Rel-15/16/17的broadcast PDCCH和PDSCH,所述broadcast信道采用NCP进行发送。
在本公开实施例中,基站通过指示信息为终端的指定BWP配置多种类型CP。具体地,基站可以向终端发送包括指示信息的RRC信号、SIB1、SIBx、MBS-MCCH。该指示信息为BWP级别或者cell级别,本公开对此不做限定。
终端侧接收网络侧发送的指示信息,确定在指定BWP内不同频域资源对应使用的CP类型。具体地,所述基站发送的指示信息配置的是指定BWP内使用扩展循环前缀eCP的频域资源范围。
基站发送的指示信息包括指定BWP内使用eCP的起始资源块RB的RB索引和指定BWP内使用eCP的RB数目。也即所述eCP对应的频域范围以SLIV的方式进行配置。
参照图10所示,终端在指定BWP内从所述起始RB开始连续所述RB数目的RB上使用eCP与所述基站进行数据传输,以及在所述指定BWP内的其他RB上使用NCP与所述基站进行数据传输。
实施例2,假设终端需要在同一个频段内同时支持NCP和eCP。作为一个例子,终端出于如下原因确定指定BWP:
终端在该BWP上需要发送接收广覆盖的业务,例如Rel-18 MBS,因此需要采用eCP进行接收;同时,终端在该BWP上需要发送接收legacy业务,例如Rel-15/16/17的业务,所述业务采用NCP进行发送接收;同时, 终端在该BWP上需要接收Rel-15/16/17的broadcast PDCCH和PDSCH,所述broadcast信道采用NCP进行发送。
在本公开实施例中,基站通过指示信息为终端的指定BWP配置多种类型CP。具体地,基站可以向终端发送包括指示信息的RRC信号、SIB1、SIBx、MBS-MCCH。该指示信息为BWP级别或者cell级别,本公开对此不做限定。
终端侧接收网络侧发送的指示信息,确定在指定BWP内不同频域资源对应使用的CP类型。具体地,所述基站发送的指示信息配置的是指定BWP内与eCP对应的锚RB的RB索引。
参照图11A所示,终端在所述指定BWP内将指定BWP内第一个RB到所述锚RB之间的RB上使用eCP与所述基站进行数据传输,以及在所述指定BWP内的其他RB上使用NCP与所述基站进行数据传输。
或者,参照图11B所示,终端在所述指定BWP内将所述锚RB到指定BWP内最后一个RB之间的RB上使用eCP与所述基站进行数据传输,以及在所述指定BWP内的其他RB上使用NCP与所述基站进行数据传输。
实施例3,假设终端需要在同一个频段内同时支持NCP和eCP。作为一个例子,终端出于如下原因确定指定BWP:
终端在该BWP上需要发送接收广覆盖的业务,例如Rel-18 MBS,因此需要采用eCP进行接收;同时,终端在该BWP上需要发送接收legacy业务,例如Rel-15/16/17的业务,所述业务采用NCP进行发送接收;同时,终端在该BWP上需要接收Rel-15/16/17的broadcast PDCCH和PDSCH,所述broadcast信道采用NCP进行发送。
在本公开实施例中,基站通过指示信息为终端的指定BWP配置多种类型CP。具体地,基站可以向终端发送包括指示信息的RRC信号、SIB1、SIBx、MBS-MCCH。该指示信息为BWP级别或者cell级别,本公开对此不做限定。
终端侧接收网络侧发送的指示信息,指示信息用于配置使用不同类型 CP的多个公共频率资源CFR。具体地,指示信息包括但不限于以下至少一项:CFR配置信息;与所述CFR对应的CP类型指示信息。
需要说明的是,CFR用于组播或广播相关信道的传输,例如可以用于传输MBS业务。终端在所述指定BWP的不同CFR上,使用所述CP类型指示信息所指示的CP与所述基站进行数据传输。
参照图12所示,基站为终端在指定BWP内配置了CFR#1和CFR#2,其中CFR#1采用NCP进行数据传输,CFR#2采用eCP进行数据传输。
需要注意的是,本公开对于CFR的配置没有任何限制。
实施例4,假设终端需要在同一个频段内同时支持NCP和eCP。作为一个例子,终端出于如下原因确定指定BWP:
终端在该BWP上需要发送接收广覆盖的业务,例如Rel-18 MBS,因此需要采用eCP进行接收;同时,终端在该BWP上需要发送接收legacy业务,例如Rel-15/16/17的业务,所述业务采用NCP进行发送接收;同时,终端在该BWP上需要接收Rel-15/16/17的broadcast PDCCH和PDSCH,所述broadcast信道采用NCP进行发送。
在本公开实施例中,基站通过指示信息为终端的指定BWP配置多种类型CP。具体地,指示信息用于配置所述指定BWP内不同频域资源粒度所对应的CP类型。指示信息可以为比特图bitmap信息。
所述bitmap中的比特位的比特值为0时,其频域资源粒度对应的CP类型为NCP,当所述bitmap中的比特位的比特值为1时,其频域资源粒度对应的CP类型为eCP。所述bitmap中的每个bit位对应的频域资源粒度为1个RB或N个RB,其中N为大于1的正整数。N个RB可以为连续RB或离散RB。N的取值可以通过基站发送的显式信令进行指示,或者通过协议预定义的方式确定。
参照图13所示,假设指示信息对应的bitmap长度为4bit,也即所述bitmap可指示BWP内4个频域资源粒度对应的CP类型,假设bitmap为1010,其中第一个、第三个频域资源粒度对应的CP类型为eCP,第二个、 第四个频域资源粒度对应的CP类型为NCP。
实施例5,假设终端需要在同一个频段内同时支持NCP和eCP。作为一个例子,终端出于如下原因确定指定BWP:
终端在该BWP上需要发送接收广覆盖的业务,例如Rel-18 MBS,因此需要采用eCP进行接收;同时,终端在该BWP上需要发送接收legacy业务,例如Rel-15/16/17的业务,所述业务采用NCP进行发送接收;同时,终端在该BWP上需要接收Rel-15/16/17的broadcast PDCCH和PDSCH,所述broadcast信道采用NCP进行发送。
在本公开实施例中,基站通过指示信息为终端的指定BWP配置多种类型CP。具体地,指示信息用于配置所述指定BWP内一个或多个特定时域资源所对应的CP类型。
其中,指示信息用于配置所述指定BWP内每个时域资源所对应的CP类型。所述一个或多个特定时域资源的大小以正交频分复用OFDM符号、时隙或预定义的时间长度作为单位。
假设每个特定时域资源以OFDM符号为单位,指示信息为bitmap信息。所述bitmap中的比特位的比特值为0时,其OFDM符号上对应的CP类型为NCP,当所述bitmap中的比特位的比特值为1时,其OFDM符号上对应的CP类型为eCP。
假设基站指示的bitmap为00011000001100,其对应使用的CP类型参照图14A所示。
或者指示信息包括以下至少一项:所述指定BWP内使用eCP的起始时域资源的时域资源索引;所述指定BWP内使用eCP的时域资源数目。
假设时域资源以为OFDM符号为单位,则起始OFDM符号的符号索引为3,符号数目为4,参照图14B所示,从OFDM符号#3到OFDM符号#6上使用eCP与基站进行数据传输,其他OFDM符号上使用NCP与基站进行数据传输。
实施例6,如实施例5所述,终端接收基站发送的CP类型指示信息, 确定指定BWP在一个或多个特定时域资源上的CP类型。具体地,指示信息可以包括以下至少一项:周期信息;每个周期内每个所述时域资源所对应的CP类型指示信息。其中,一个或多个特定时域资源的大小以正交频分复用OFDM符号、时隙或预定义的时间长度作为单位。
预定义的时间长度所包含的时域资源数目可以通过如实施例5中所述的任一信令进行指示。
在本公开实施例中,假设所述指示信息用于指示采用eCP的slot或者时间长度,其余没有指示的slot或者时间长度采用NCP。具体地,基站指示所述eCP时域图样的周期,并指示周期内采用eCP的slot或者时间长度。在一个图样周期内指示eCP所占时域资源的方法参照图15A至图15B所示,分别为在一个周期T内基于bitmap方式进行指示,以及在一个周期T内基于SILV方式进行指示,此处不再赘述。
上述实施例中,可以由基站为终端的指定BWP配置多种类型CP,其中,指定BWP是需要同时支持多种类型CP的BWP。终端侧无需进行BWP切换即可在同一BWP上使用多种类型CP进行数据传输,避免终端频繁进行BWP切换,减少了网络侧的调度限制,减少了数据传输时延,且提高了系统传输性能。
与前述应用功能实现方法实施例相对应,本公开还提供了应用功能实现装置的实施例。
参照图16,图16是根据一示例性实施例示出的一种数据传输装置框图,所述装置应用于终端,包括:
接收模块1601,被配置为接收基站发送的指示信息;其中,所述指示信息用于配置指定带宽部分BWP内不同资源所对应的CP类型,所述指定BWP是需要同时支持多种类型CP的BWP;
第一数据传输模块1602,被配置为基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输。
参照图17,图17是根据一示例性实施例示出的一种数据传输装置框 图,所述装置应用于基站,包括:
发送模块1701,被配置为向终端发送指示信息;其中,所述指示信息用于配置指定带宽部分BWP内不同资源所对应的CP类型,所述指定BWP是需要同时支持多种类型CP的BWP;
第二数据传输模块1702,被配置为基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本公开方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于终端侧任一所述的数据传输方法。
相应地,本公开还提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行上述用于基站侧任一所述的数据传输方法。
相应地,本公开还提供了一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述终端侧任一所述的数据传输方法。
图18是根据一示例性实施例示出的一种电子设备1800的框图。例如电子设备1800可以是手机、平板电脑、电子书阅读器、多媒体播放设备、可穿戴设备、车载终端、ipad、智能电视等终端。
参照图18,电子设备1800可以包括以下一个或多个组件:处理组件1802,存储器1804,电源组件1806,多媒体组件1808,音频组件1810,输入/输出(I/O)接口1812,传感器组件1816,以及通信组件1818。
处理组件1802通常控制电子设备1800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1802可以包括一个或多个处理器1820来执行指令,以完成上述的数据传输方法的全部或部分步骤。此外,处理组件1802可以包括一个或多个模块,便于处理组件1802和其他组件之间的交互。例如,处理组件1802可以包括多媒体模块,以方便多媒体组件1808和处理组件1802之间的交互。又如,处理组件1802可以从存储器读取可执行指令,以实现上述各实施例提供的一种数据传输方法的步骤。
存储器1804被配置为存储各种类型的数据以支持在电子设备1800的操作。这些数据的示例包括用于在电子设备1800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1806为电子设备1800的各种组件提供电力。电源组件1806可以包括电源管理系统,一个或多个电源,及其他与为电子设备1800生成、管理和分配电力相关联的组件。
多媒体组件1808包括在所述电子设备1800和用户之间的提供一个输出接口的显示屏。在一些实施例中,多媒体组件1808包括一个前置摄像头和/或后置摄像头。当电子设备1800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1810被配置为输出和/或输入音频信号。例如,音频组件1810包括一个麦克风(MIC),当电子设备1800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1804或经由通信组件1818发送。在一些实施例中,音频组件1810还包括一个扬声器,用于输出音频信号。
I/O接口1812为处理组件1802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1816包括一个或多个传感器,用于为电子设备1800提供各个方面的状态评估。例如,传感器组件1816可以检测到电子设备1800的打开/关闭状态,组件的相对定位,例如所述组件为电子设备1800的显示器和小键盘,传感器组件1816还可以检测电子设备1800或电子设备1800一个组件的位置改变,用户与电子设备1800接触的存在或不存在,电子设备1800方位或加速/减速和电子设备1800的温度变化。传感器组件1816可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1816还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1816还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1818被配置为便于电子设备1800和其他设备之间有线或无线方式的通信。电子设备1800可以接入基于通信标准的无线网络,如Wi-Fi,2G,3G,4G,5G或6G,或它们的组合。在一个示例性实施例中,通信组件1818经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1818还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,电子设备1800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述数据传输方法。
在示例性实施例中,还提供了一种包括指令的非临时性机器可读存储介质,例如包括指令的存储器1804,上述指令可由电子设备1800的处理器1820执行以完成上述数据传输方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
相应地,本公开还提供了一种数据传输装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为用于执行上述基站侧任一所述的数据传输方法。
如图19所示,图19是根据一示例性实施例示出的一种数据传输装置1900的一结构示意图。装置1900可以被提供为基站。参照图19,装置1900包括处理组件1922、无线发射/接收组件1924、天线组件1926、以及无线接口特有的信号处理部分,处理组件1922可进一步包括至少一个处理器。
处理组件1922中的其中一个处理器可以被配置为用于执行上述任一所述的数据传输方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或者惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精 确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (43)

  1. 一种数据传输方法,其特征在于,所述方法由终端执行,包括:
    接收基站发送的指示信息;其中,所述指示信息用于配置指定带宽部分BWP内不同资源所对应的CP类型,所述指定BWP是需要同时支持多种类型CP的BWP;
    基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息用于配置所述指定BWP内一个或多个特定频域资源所对应的CP类型。
  3. 根据权利要求2所述的方法,其特征在于,所述指示信息用于配置所述指定BWP内使用扩展循环前缀eCP的频域资源范围。
  4. 根据权利要求3所述的方法,其特征在于,所述指示信息包括以下至少一项:
    所述指定BWP内使用eCP的起始资源块RB的RB索引;
    所述指定BWP内使用eCP的RB数目;
    所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输,包括以下至少一项:
    在所述指定BWP内从所述起始RB开始连续所述RB数目的RB上使用eCP与所述基站进行数据传输;以及
    在所述指定BWP内的其他RB上使用常规循环前缀NCP与所述基站进行数据传输。
  5. 根据权利要求2所述的方法,其特征在于,所述指示信息用于配置所述指定BWP内与eCP对应的锚RB。
  6. 根据权利要求5所述的方法,其特征在于,所述指示信息包括所述锚RB的RB索引;
    所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类 型CP与所述基站进行数据传输,包括以下至少一项:
    在所述指定BWP内预设RB与所述锚RB之间的RB上使用eCP与所述基站进行数据传输;以及
    在所述指定BWP内的其他RB上使用NCP与所述基站进行数据传输。
  7. 根据权利要求6所述的方法,其特征在于,所述预设RB为所述指定BWP上的第一个RB或最后一个RB。
  8. 根据权利要求2所述的方法,其特征在于,所述指示信息用于配置使用不同类型CP的多个公共频率资源CFR。
  9. 根据权利要求8所述的方法,其特征在于,所述指示信息包括以下至少一项:
    CFR配置信息;
    与所述CFR对应的CP类型指示信息;
    所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输,包括:
    在所述指定BWP的不同CFR上,使用所述CP类型指示信息所指示的CP与所述基站进行数据传输。
  10. 根据权利要求2所述的方法,其特征在于,所述指示信息用于配置所述指定BWP内不同频域资源粒度所对应的CP类型。
  11. 根据权利要求10所述的方法,其特征在于,所述指示信息为比特图bitmap信息;
    所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输,包括以下至少一项:
    在所述指定BWP内与第一比特值对应的频域资源粒度上使用eCP与所述基站进行数据传输;以及
    在所述指定BWP内与第二比特值对应的频域资源粒度上使用NCP与所述基站进行数据传输。
  12. 根据权利要求10所述的方法,其特征在于,每个所述频域资源粒 度包括一个或多个RB;其中,所述多个RB为多个连续RB或多个离散RB。
  13. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    基于协议约定,确定每个所述频域资源粒度包含的RB;或,
    基于所述基站发送的指定信令,确定每个所述频域资源粒度包含的RB。
  14. 根据权利要求1所述的方法,其特征在于,所述指示信息用于配置所述指定BWP内一个或多个特定时域资源所对应的CP类型;其中,所述一个或多个特定时域资源的大小以正交频分复用OFDM符号、时隙或预定义的时间长度作为单位。
  15. 根据权利要求14所述的方法,其特征在于,所述指示信息为bitmap信息;
    所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输,包括以下至少一项:
    在所述指定BWP内与第一比特值对应的所述时域资源上使用eCP与所述基站进行数据传输;以及
    在所述指定BWP内与第二比特值对应的所述时域资源上使用NCP与所述基站进行数据传输。
  16. 根据权利要求14所述的方法,其特征在于,所述指示信息包括以下至少一项:
    所述指定BWP内使用eCP的起始时域资源的时域资源索引;
    所述指定BWP内使用eCP的时域资源数目;
    所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输,包括以下至少一项:
    在所述指定BWP内从所述起始时域资源开始连续所述时域资源数目的所述时域资源上使用eCP与所述基站进行数据传输;以及
    在所述指定BWP内的其他所述时域资源上使用NCP与所述基站进行数据传输。
  17. 根据权利要求14所述的方法,其特征在于,所述一个或多个特定时域资源的大小以时隙或预定义的时间长度作为单位时,所述指示信息包括以下至少一项:
    周期信息;
    每个周期内每个所述时域资源所对应的CP类型指示信息。
  18. 根据权利要求1-17任一项所述的方法,其特征在于,所述接收基站发送的指示信息,包括:
    接收所述基站发送的包括所述指示信息的无线资源控制RRC信号;或者,
    接收所述基站发送的包括所述指示信息的系统消息;或者,
    接收所述基站发送的包括所述指示信息的组播广播服务多媒体广播组播控制信道MBS-MCCH。
  19. 根据权利要求1-17任一项所述的方法,其特征在于,所述指示信息是基于每个所述指定BWP配置的,或所述指示信息是基于每个小区配置的。
  20. 一种数据传输方法,其特征在于,所述方法由基站执行,包括:
    向终端发送指示信息;其中,所述指示信息用于配置指定带宽部分BWP内不同资源所对应的CP类型,所述指定BWP是需要同时支持多种类型CP的BWP;
    基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输。
  21. 根据权利要求20所述的方法,其特征在于,所述指示信息用于配置所述指定BWP内一个或多个特定频域资源所对应的CP类型。
  22. 根据权利要求21所述的方法,其特征在于,所述指示信息用于配置所述指定BWP内使用扩展循环前缀eCP的频域资源范围。
  23. 根据权利要求22所述的方法,其特征在于,所述指示信息包括以下至少一项:
    所述指定BWP内使用eCP的起始资源块RB的RB索引;
    所述指定BWP内使用eCP的RB数目;
    所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输,包括以下至少一项:
    在所述指定BWP内从所述起始RB开始连续所述RB数目的RB上使用eCP与所述终端进行数据传输;以及
    在所述指定BWP内的其他RB上使用常规循环前缀NCP与所述终端进行数据传输。
  24. 根据权利要求21所述的方法,其特征在于,所述指示信息用于配置所述指定BWP内与eCP对应的锚RB。
  25. 根据权利要求24所述的方法,其特征在于,所述指示信息包括所述锚RB的RB索引;
    所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输,包括以下至少一项:
    在所述指定BWP内预设RB与所述锚RB之间的RB上使用eCP与所述终端进行数据传输;以及
    在所述指定BWP内的其他RB上使用NCP与所述终端进行数据传输。
  26. 根据权利要求21所述的方法,其特征在于,所述指示信息用于配置使用不同类型CP的多个公共频率资源CFR。
  27. 根据权利要求26所述的方法,其特征在于,所述指示信息包括以下至少一项:
    CFR配置信息;
    与所述CFR对应的CP类型指示信息;
    所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输,包括:
    在所述指定BWP的不同CFR上,使用所述CP类型指示信息所指示的CP与所述终端进行数据传输。
  28. 根据权利要求21所述的方法,其特征在于,所述指示信息用于配置所述指定BWP内不同频域资源粒度所对应的CP类型。
  29. 根据权利要求28所述的方法,其特征在于,所述指示信息为比特图bitmap信息;
    所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输,包括以下至少一项:
    在所述指定BWP内与第一比特值对应的频域资源粒度上使用eCP与所述终端进行数据传输;以及
    在所述指定BWP内与第二比特值对应的频域资源粒度上使用NCP与所述终端进行数据传输。
  30. 根据权利要求28所述的方法,其特征在于,每个所述频域资源粒度包括一个或多个RB;其中,所述多个RB为多个连续RB或多个离散RB。
  31. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    向所述终端发送用于配置每个所述频域资源粒度包含的RB的指定信令。
  32. 根据权利要求20所述的方法,其特征在于,所述指示信息用于配置所述指定BWP内一个或多个特定时域资源所对应的CP类型;其中,所述一个或多个特定时域资源的大小以正交频分复用OFDM符号、时隙或预定义的时间长度作为单位。
  33. 根据权利要求32所述的方法,其特征在于,所述指示信息为bitmap信息;
    所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输,包括以下至少一项:
    在所述指定BWP内与第一比特值对应的所述时域资源上使用eCP与所述终端进行数据传输;以及
    在所述指定BWP内与第二比特值对应的所述时域资源上使用NCP与 所述终端进行数据传输。
  34. 根据权利要求32所述的方法,其特征在于,所述指示信息包括以下至少一项:
    所述指定BWP内使用eCP的起始时域资源的时域资源索引;
    所述指定BWP内使用eCP的时域资源数目;
    所述基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输,包括以下至少一项:
    在所述指定BWP内从所述起始时域资源开始连续所述时域资源数目的所述时域资源上使用eCP与所述终端进行数据传输;以及
    在所述指定BWP内的其他所述时域资源上使用NCP与所述终端进行数据传输。
  35. 根据权利要求32所述的方法,其特征在于,所述一个或多个特定时域资源的大小以时隙或预定义的时间长度作为单位时,所述指示信息包括以下至少一项:
    周期信息;
    每个周期内每个所述时域资源所对应的CP类型指示信息。
  36. 根据权利要求20-35任一项所述的方法,其特征在于,所述向终端发送指示信息,包括:
    向所述终端发送包括所述指示信息的无线资源控制RRC信号;或者,
    向所述终端发送包括所述指示信息的系统消息;或者,
    向所述终端发送包括所述指示信息的组播广播服务多媒体广播组播控制信道MBS-MCCH。
  37. 根据权利要求20-35任一项所述的方法,其特征在于,所述指示信息是基于每个所述指定BWP配置的,或所述指示信息是基于每个小区配置的。
  38. 一种数据传输装置,其特征在于,所述装置应用于终端,包括:
    接收模块,被配置为接收基站发送的指示信息;其中,所述指示信息 用于配置指定带宽部分BWP内不同资源所对应的CP类型,所述指定BWP是需要同时支持多种类型CP的BWP;
    第一数据传输模块,被配置为基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述基站进行数据传输。
  39. 一种数据传输装置,其特征在于,所述装置应用于基站,包括:
    发送模块,被配置为向终端发送指示信息;其中,所述指示信息用于配置指定带宽部分BWP内不同资源所对应的CP类型,所述指定BWP是需要同时支持多种类型CP的BWP;
    第二数据传输模块,被配置为基于所述指示信息,在所述指定BWP的不同资源上使用对应类型CP与所述终端进行数据传输。
  40. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求1-19任一项所述的数据传输方法。
  41. 一种计算机可读存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序用于执行上述权利要求20-37任一项所述的数据传输方法。
  42. 一种数据传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求1-19任一项所述的数据传输方法。
  43. 一种数据传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为用于执行上述权利要求20-37任一项所述的数据传输方法。
PCT/CN2022/076886 2022-02-18 2022-02-18 数据传输方法及装置、存储介质 WO2023155153A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000457.5A CN116918425A (zh) 2022-02-18 2022-02-18 数据传输方法及装置、存储介质
PCT/CN2022/076886 WO2023155153A1 (zh) 2022-02-18 2022-02-18 数据传输方法及装置、存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076886 WO2023155153A1 (zh) 2022-02-18 2022-02-18 数据传输方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2023155153A1 true WO2023155153A1 (zh) 2023-08-24

Family

ID=87577382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076886 WO2023155153A1 (zh) 2022-02-18 2022-02-18 数据传输方法及装置、存储介质

Country Status (2)

Country Link
CN (1) CN116918425A (zh)
WO (1) WO2023155153A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108476520A (zh) * 2017-08-07 2018-08-31 北京小米移动软件有限公司 数据传输方法、装置及计算机可读存储介质
CN109151846A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种cp类型的确定方法及终端设备、基站
CN109788563A (zh) * 2017-11-15 2019-05-21 维沃移动通信有限公司 Bwp指示方法、获取方法、网络侧设备及用户终端
CN110731113A (zh) * 2019-08-30 2020-01-24 北京小米移动软件有限公司 数据传输方法、装置及存储介质
US20210211241A1 (en) * 2018-09-28 2021-07-08 Intel Corporation Physical uplink control channel resource determination and multiplexing of multiple hybrid automatic repeat request acknowledgement feedbacks and other uplink control information on physical uplink control channel and physical uplink shared channel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151846A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种cp类型的确定方法及终端设备、基站
CN108476520A (zh) * 2017-08-07 2018-08-31 北京小米移动软件有限公司 数据传输方法、装置及计算机可读存储介质
CN109788563A (zh) * 2017-11-15 2019-05-21 维沃移动通信有限公司 Bwp指示方法、获取方法、网络侧设备及用户终端
US20210211241A1 (en) * 2018-09-28 2021-07-08 Intel Corporation Physical uplink control channel resource determination and multiplexing of multiple hybrid automatic repeat request acknowledgement feedbacks and other uplink control information on physical uplink control channel and physical uplink shared channel
CN110731113A (zh) * 2019-08-30 2020-01-24 北京小米移动软件有限公司 数据传输方法、装置及存储介质

Also Published As

Publication number Publication date
CN116918425A (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2019169634A1 (zh) 信息传输方法、装置、系统及存储介质
WO2019222877A1 (zh) 唤醒信号的发送方法及装置、寻呼解调方法及装置
WO2020029090A1 (zh) 资源配置方法及装置
WO2018195970A1 (zh) 公共下行控制信息的传输、获取方法及装置
WO2018195904A1 (zh) 用于信道载波配置的方法、装置、用户设备及基站
WO2024021122A1 (zh) 下行控制信息dci接收、发送方法及装置、存储介质
WO2024000551A1 (zh) 资源确定、多载波调度方法及装置、存储介质
WO2023206540A1 (zh) 上行传输方法及装置、存储介质
CN113615238A (zh) 配置信息确定方法、装置及计算机可读存储介质
WO2023240646A1 (zh) 小区确定、下行控制信息发送方法和装置
WO2023240647A1 (zh) 调度确定、下行控制信息发送方法和装置
WO2019024037A1 (zh) 指示多业务数据复用传输的方法及装置、终端和基站
JP2024512080A (ja) デフォルトビームの決定方法、装置及び通信デバイス
WO2023097875A1 (zh) 下行控制信息检测、发送方法及装置、存储介质
JP2022544621A (ja) 基準時間領域ユニットを決定する方法及び装置
US12108436B2 (en) PUSCH receiving method and device, PUSCH sending method and device
WO2024020886A1 (zh) 信息监听、信息发送方法及装置、存储介质
WO2023155153A1 (zh) 数据传输方法及装置、存储介质
WO2023151092A1 (zh) 下行控制信息传输方法及装置、存储介质
CN115398843B (zh) 降低干扰的方法及装置、通信设备和存储介质
WO2020143609A1 (zh) 端口配置方法及装置
CN110945828B (zh) 解调参考信号处理方法及其装置、通信设备及存储介质
JP2023525863A (ja) 初期アクセス帯域幅部分の決定及び構成方法、装置及び記憶媒体
WO2024152341A1 (zh) 确定传输行为的方法及装置、存储介质
WO2023159466A1 (zh) 映射关系的确定方法及装置、存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000457.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926481

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022926481

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022926481

Country of ref document: EP

Effective date: 20240918