WO2019024888A1 - 反射映射的启动方法、通信设备及存储介质 - Google Patents

反射映射的启动方法、通信设备及存储介质 Download PDF

Info

Publication number
WO2019024888A1
WO2019024888A1 PCT/CN2018/098267 CN2018098267W WO2019024888A1 WO 2019024888 A1 WO2019024888 A1 WO 2019024888A1 CN 2018098267 W CN2018098267 W CN 2018098267W WO 2019024888 A1 WO2019024888 A1 WO 2019024888A1
Authority
WO
WIPO (PCT)
Prior art keywords
data packet
lower layer
communication device
layer bearer
identifier
Prior art date
Application number
PCT/CN2018/098267
Other languages
English (en)
French (fr)
Inventor
孙军帅
王莹莹
黄学艳
陈卓
韩星宇
易芝玲
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Priority to US16/636,189 priority Critical patent/US11277233B2/en
Priority to EP18841414.8A priority patent/EP3664569A4/en
Publication of WO2019024888A1 publication Critical patent/WO2019024888A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel

Definitions

  • the present disclosure relates to the field of wireless technologies, and in particular, to a method for starting a reflection mapping, a communication device, and a storage medium.
  • Reflective Mapping (Reference) is introduced in the Service Data Adaptation Protocol (SDAP).
  • SDAP Service Data Adaptation Protocol
  • embodiments of the present disclosure are expected to provide a method for starting a reflection map, a communication device, and a storage medium, at least partially solving the above problems.
  • an embodiment of the present disclosure provides a method for starting a reflection mapping.
  • the first identifier is added to the second data packet, where the first identifier is used to indicate the second identifier.
  • the communication device initiates a reflection mapping, the first data packet is a data packet sent by the second communication device to the first communication device, and the second data packet is data that the first communication device originally needs to send package;
  • the method further includes:
  • the second data packet is sent by using the first lower layer bearer, and the first data packet is received from the first lower layer bearer, the second data packet to be sent is added as a second value. And starting, by the first lower layer bearer, the second data packet carrying the startup identifier that is the second value is sent;
  • the method further includes:
  • the first low layer bearer transmission is continued to be carried as the first A second data packet of the start identifier of the value.
  • the method further includes:
  • the second communication terminal When it is determined that the first data packet needs to be transmitted in the first lower layer bearer, adding, in the second data packet, identification information of the first data packet that needs to be transmitted on the first lower layer bearer; The identification information is used by the second communication terminal to determine a data packet for performing reflection mapping transmission.
  • adding, as the first identifier, the startup identifier in the second data packet including:
  • the activation identifier that is the first value is carried in the header of the second data packet.
  • the method further includes:
  • the first lower layer bearer is a lower layer bearer having a target QoS attribute after the first data packet change.
  • the method further includes:
  • the first low layer bearer is established by using RRC signaling, RLC signaling, or MAC signaling indication;
  • the first low layer bearer is requested to be established by using uplink control information.
  • the sending, by using the first lower layer bearer, the second data packet carrying the startup identifier that is the first value includes:
  • the second data packet originally transmitted in the second lower layer bearer is pre-determined to be switched to use the first lower layer bearer transmission.
  • the embodiment of the present disclosure further provides a method for starting a reflection mapping, which is applied to a second communication device, and includes:
  • the reflection mapping is started to send the first data packet to the first communications device by using the first low-layer bearer transmission.
  • the method further includes:
  • the first data packet further carries identification information
  • the mapping is started to send the first data packet to the first communications device by using the first low-layer bearer sending, including:
  • the reflection mapping is started to send the first data packet corresponding to the identifier information by using the first lower layer bearer.
  • the mapping is started to send the first data packet to the first communications device by using the first low-layer bearer sending, including:
  • the first lower layer bearer that is determined to be transmitted in the third lower layer bearer is switched to be transmitted using the first lower layer bearer.
  • the embodiment of the present disclosure further provides a reverse communication device, where the communication device is a first communication device, including:
  • a adding unit configured to add, as the first value, a startup identifier in the second data packet, when the first data packet needs to be sent in the first lower layer bearer, where the first identifier is used for the startup identifier Instructing the second communications device to initiate a reflection mapping, the first data packet being a data packet sent by the second communications device to the first communications device, and the second data packet being the first communications device The data packets that need to be sent;
  • the first sending unit is configured to send, by using the first lower layer bearer, a second data packet carrying the startup identifier that is the first value.
  • the embodiment of the present disclosure further provides a communication device, where the communication device is a second communication device, including:
  • a receiving unit configured to receive a second data packet that is sent by the first communications device by using the first low-layer bearer and that carries the startup identifier
  • a second sending unit configured to: when the value of the activation identifier is a first value, initiate a reflection mapping to send the first data packet to the first communications device by using the first low-layer bearer transmission.
  • the embodiment of the present disclosure further provides another communication device, where the communication device is a first communication device, including: a first transceiver, a first memory, and a first processor;
  • the first processor is respectively connected to the first transceiver and the first memory, and is configured to implement at least the following steps by execution of a computer program:
  • the first identifier is added to the second data packet, where the first identifier is used to indicate the second identifier.
  • the communication device initiates a reflection mapping, the first data packet is a data packet sent by the second communication device to the first communication device, and the second data packet is data that the first communication device originally needs to send package;
  • step that the first processor can perform further includes:
  • the second data packet is sent by using the first lower layer bearer, and the first data packet is received from the first lower layer bearer, the second data packet to be sent is added as a second value. And starting, by the first lower layer bearer, the second data packet carrying the startup identifier that is the second value is sent;
  • the first processor is further configured to perform the following steps:
  • the first low layer bearer transmission is continued to be carried as the first A second data packet of the start identifier of the value.
  • the first processor is further configured to perform the following steps;
  • the second communication terminal When it is determined that the first data packet needs to be transmitted in the first lower layer bearer, adding, in the second data packet, identification information of the first data packet that needs to be transmitted on the first lower layer bearer; The identification information is used by the second communication terminal to determine a data packet for performing reflection mapping transmission.
  • the embodiment of the present disclosure further provides another communication device, where the communication device is a second communication device, including: a second transceiver, a second memory, and a second processor;
  • the second processor is respectively connected to the second transceiver and the second memory, and is configured to implement at least the following steps by execution of a computer program:
  • the reflection mapping is started to send the first data packet to the first communications device by using the first low-layer bearer transmission.
  • the first data packet further carries identifier information
  • the second processor is specifically configured to perform the following steps:
  • the reflection mapping is started to send the first data packet corresponding to the identifier information by using the first lower layer bearer.
  • the embodiment of the present disclosure further provides a communication device, including: a third transceiver, a third memory, a third processor, and a computer stored on the third memory and processed by the third processor program;
  • the third processor is respectively connected to the third transceiver and the third memory, for controlling information exchange of the transceiver, storing information of the memory by executing the computer program, and performing the foregoing One or more activation methods applied to the reflection map of the first communication device. Or, performing the aforementioned one or more activation methods applied to the reflection mapping of the second communication device.
  • an embodiment of the present disclosure further provides a computer storage medium, wherein the computer storage medium stores a computer program, the computer program is executed by a processor, and executes one or more of the foregoing to apply to the first communication.
  • the method for starting the reflection mapping provided by the embodiment of the present disclosure, the communication device, and the storage medium, when the first communication device triggers the second communication device to initiate the reflection mapping, the second data packet that needs to be transmitted to the second communication device is carried by the second data packet.
  • the startup identifier that triggers the reflection mapping is triggered, and the second data packet carrying the startup identifier that is the first value is transmitted on the first lower layer bearer that performs the reflection mapping transmission.
  • the second communication device After the second communication device receives the second data packet carrying the first value, the second communication device starts the reflection mapping, and uses the first lower layer bearer to transmit the first data packet.
  • the solution provided by the present application not only provides a specific implementation scheme for the first communication device to initiate a reflection mapping on the second communication device, but also uses the second data packet originally sent to the second communication device to be carried as the first
  • the startup identifier of the value does not need to be specially constructed to transmit a dedicated data packet of the startup identifier of the first value, which has the characteristics of simple implementation and low overhead.
  • FIG. 1 is a schematic flowchart diagram of a method for starting a first reflection mapping according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a startup identifier field according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for starting a second reflection mapping according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a first communications device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a second communications device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another first communication device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another second communication device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a method for starting a reflection mapping of a SDAP based on a path packet according to an embodiment of the present disclosure.
  • the reflection map provided by the embodiment of the present disclosure is defined in the SDAP protocol.
  • the SDAP protocol is layered on two communication communication devices, which may include: a physical (Physcal, PHY) layer, a media access control layer (MAC), and a radio link control located on the upper layer of the MAC layer (Radio).
  • Link Control (RLC) layer a Packet Data Convergence Protocol (PDCP) layer located above the RLC layer and a new Access Stratum (AS) sublayer located above the PDCP.
  • the new AS sublayer here is also known as the SDAP layer.
  • the SDAP layer is configured to map data to a lower layer bearer of the SDAP layer, and mark a flow identifier of the corresponding data.
  • the functional entity located at the SDAP layer here is called a SDAP entity.
  • the lower layer bearer of the SDAP layer includes: a bearer that communicates between the functional layers below the peer SDAP layer by both communicating parties.
  • the PHY layer is an L1 layer; the MAC layer, the RLC layer, and the PDCP layer are L2 layers.
  • the bottom layer of the SDAP may include an L2 layer and an L1 layer. Therefore, the underlying bearer of the SDAP in this embodiment may include one or more of all the bearers of the L1 layer and the L2 layer.
  • the lower layer bearer of the SDAP includes: a radio access bearer; the radio access bearer may be based on data and signaling distinction, including: a data radio access bearer (DRB) and a signaling radio access bearer (SRB)
  • the lower layer bearer of the SDAP may further include: at least one of a logical channel, a transport channel, and a physical channel.
  • the embodiment provides a method for launching a reflection mapping based on a path data packet to be applied to a first communications device, including:
  • Step S110 When it is determined that the first data packet needs to be sent in the first data radio bearer lower layer bearer, the first identifier is added to the second data packet, where the first data packet is the first data packet. a data packet sent by the communications device to the first communications device, the first identifier of the first identifier is used to indicate that the second communications device initiates a reflection mapping, and the second data packet is the first communications device The data packet originally sent to the second communication device is required;
  • Step S120 Send, by using the first lower layer bearer, a second data packet carrying the startup identifier that is the first value.
  • the reflection mapping provided by this embodiment is a data transmission mechanism specified by the SDAP, and can be used for transmission of uplink and downlink data between the base station and the terminal.
  • the second communication device may be a terminal; if the second communication device is a base station, the first communication device is a terminal.
  • the present embodiment provides a method of initiating a reflection map applied to a first communication device.
  • step S110 when it is determined that the second data packet sent by the second communications device to the first communications device needs to be transmitted on the first lower layer bearer, in order to indicate that the second communications device is directly based on the first lower layer bearer next time
  • the reflection mapping mechanism performs the transmission of the second data packet.
  • the first identifier that is the first value is carried in the second data packet that needs to be transmitted to the second communication device. If the startup identifier is the first value, the second communication device is instructed to initiate a transmission mechanism of the reflection map. In this case, after receiving the startup identifier carrying the first value, the second communication device starts the transmission mechanism of the reflection mapping, and performs the transmission of the first data packet based on the reflection mapping. This ensures that the first communication device subsequently receives data packets transmitted to it by the second communication device from the first lower layer bearer.
  • the activation identifier may be one or more bits, and the value of the activation identifier may include at least: a first value and a second value; the first value is different from the first Two values. For example, when the start identifier is 1 bit, if the first value is “0”, the second value is “1”; if the first value is “1”, then The second value is “0”.
  • the second data packet may be a data packet originally provided with a startup identifier bit or a startup identifier field, or may be a data packet that is not originally provided with a startup identifier bit or a startup identifier field.
  • the second data packet here is the associated data packet of the first value of the startup identifier.
  • the startup identifier of the first value may be directly written into the startup identifier field in step S110.
  • the second communication device may obtain the startup identifier of the first value by decoding the startup identifier field according to a communication protocol or a pre-negotiation.
  • the startup identifier field needs to be added at a predetermined location of the second data packet, for example, adding a startup identifier in front of the second data packet. a field; or, the start identifier field is appended at the end of the second data packet.
  • the second communications device may determine, according to the length of the second data packet, whether the startup identifier field is currently carried, and if the startup identifier field is carried, the startup identifier is decoded. Field, obtaining the startup identifier that is the first value.
  • the startup identifier field includes at least: an activation identifier bit, and the startup identifier bit is at least 1 bit.
  • the second data packet that needs to be sent to the first communication device may be used. Adding the startup identifier to the first value simply completes the activation of the reflection mechanism.
  • the second data packet that is originally required to be sent to the first communication device is used to carry the startup identifier, so that the startup identifier is not specifically carried by a control signaling data packet, and the second data packet is used as a
  • the road packet sending start identifier obviously has a smaller amount of data generated than the special construction of one data packet, thereby having the characteristics of low overhead, and the second data packet has the characteristics of being simple and convenient to implement.
  • the second data packet may be a data packet originally transmitted on the second lower layer bearer.
  • the first data packet based on the reflection mapping transmits the corresponding target.
  • the lower layer bearer switches the second data packet originally scheduled to be transmitted by using the second lower layer bearer to be transmitted by using the first lower layer bearer, and because the second data packet carries the start identifier of the first value, the second The communication device starts the reflection mapping based on the startup identifier for the first value, and sends the first data packet by using the first lower layer bearer.
  • the second data packet carrying the start identifier of the first value needs to be switched. Switching from utilizing the second lower layer bearer transmission to utilizing the first lower layer bearer transmission.
  • the transmission of the second data packet carrying the first value is directly transmitted by using the first lower layer bearer.
  • the method further includes:
  • determining, according to a current data transmission status between the first communication device and the second communication device, the second added as a startup identifier of the first value Packets including:
  • the base station and the terminal use three different low-layer bearers to transmit the data packet A, the data packet B, and the data packet C; if the three data packets are transmitted by using the first lower layer bearer, the data packet C is used to reduce The lower layer bearer switching during the data packet transmission reduces the low layer bearer establishment, and the data packet C can be directly used as the second data packet added as the first identifier of the first identifier to the second communication device.
  • the determining, according to a current data transmission status between the first communication device and the second communication device, determining the second added as a startup identifier of the first value Packets including:
  • the data packet with the smallest transmission delay is selected as the second data packet.
  • the base station and the terminal use three different low-layer bearers to transmit the data packet A, the data packet B, and the data packet C.
  • the data packet A, the data packet B, and the data packet C are respectively transmitted.
  • the reach delay to the terminal for example, if the packet B reaches the minimum delay of the terminal B, the packet B is directly used as the second data packet carrying the start identifier of the first value, and the first lower layer bearer is utilized.
  • the packet B is sent.
  • the data packet B is transmitted along the first lower layer bearer; if the data packet B is originally transmitted by using the second lower layer bearer, the data packet B is switched to use.
  • the first lower layer carries the transmission.
  • the second communication device can be notified of the transmission mechanism based on the reflection mapping as early as possible, and the first data packet is transmitted, and the utilization of the first data packet is reduced to correspond to the lower layer bearer. The delay of transmission.
  • the method may further include: switching the second data packet to utilize the second lower layer bearer transmission.
  • different low-level bearers provide different QoS attributes, while different data require different QoS attributes.
  • the higher the general QoS attribute the higher the transmission reliability and the transmission quality, and the communication resources and/or transmission delays that may be consumed may be transmitted.
  • the QoS attribute corresponding to the second lower layer bearer originally used by the selected second data packet is required. Not higher than the corresponding QoS attribute of the first lower layer bearer, otherwise the transmission of the second data packet itself may not satisfy the required QoS attribute.
  • the method further includes:
  • the second data packet to be sent is added as a second value.
  • the reflection mapping may be considered to be successfully initiated in the second communication device, and the startup identifier may be set to the second value. .
  • the transmission mechanism of the reflection map that has been started after the second communication device receives the startup identifier is received, and the corresponding startup identifier indicating the startup is also received, thereby reducing the problem of logical processing confusion inside the second communication device, ensuring the first The normal operation of the two communication devices.
  • the method further includes:
  • the first low layer bearer transmission is continued to be carried as the first A second data packet of the start identifier of the value.
  • the second communication device may be The first data packet is sent to the first communication device along with the third lower layer bearer.
  • the first low layer bearer transmission and carrying will continue to be carried.
  • the second packet of the boot identifier for the first value may be an initial data packet or a retransmitted data packet.
  • the second second data packet carries a startup identifier that is the first value
  • the first communication device is in the second
  • the transmission sequence of the data packets is transmitted by using the first lower layer bearer transmission to sequentially transmit the second data packet. If the first data packet received by the first communications device is received from the third lower layer bearer when the fifth second data packet is sent, the sixth communications device sent by the first communications device to the second communications device
  • the data packet also carries the startup identifier as the first value.
  • the first communication device is the first communication device, and the value of the activation identifier of the sixth second data packet sent by the first communication device to the second communication device is the second value.
  • one or more second data packets are used to trigger the activation of the reflection mapping of the second communication device by carrying the first identifier, and after the activation of the reflection mapping is successful, the second data packet is used.
  • the carried startup identifier is set to the second value.
  • the second data packet no longer carries the startup identifier, which may reduce unnecessary transmission of the startup identifier, and reduce signaling overhead and transmission. The amount of data.
  • the method further includes:
  • the second communication terminal When it is determined that the first data packet needs to be transmitted in the first lower layer bearer, adding, in the second data packet, identification information of the first data packet that needs to be transmitted on the first lower layer bearer; The identification information is used by the second communication terminal to determine a data packet for performing reflection mapping transmission.
  • the identifier information may be: a stream identifier of a data stream (Flow) to which the first data packet belongs, or may be a service identifier of a service corresponding to the first data packet.
  • the identifier information may be used by the first communications device to determine identity information of a data packet that needs to be transmitted by using the first lower layer bearer.
  • the foregoing startup identifier field may include: an activation identifier bit of at least one bit, and further includes: an identifier subfield of a plurality of bits in the embodiment; the identifier field may be used to carry the identifier information.
  • FIG. 2 is a schematic structural diagram of a startup identifier field.
  • the start identification field shown in FIG. 2 is provided as 8 bits, including: a start identifier bit (RQF) of one bit and an identifier subfield of 4 bits.
  • the identifier field carries a SDAP-based flow identifier.
  • the "R" identified in Figure 2 is the reserved bits in the Startup Identification field, which can be used for subsequent various indications related to initiating the reflection mapping. For example, the reserved bits can be used to indicate the starting data packet in the corresponding data stream for which the reflection mapping is to be performed.
  • a data stream includes a plurality of data packets
  • the first communication device such as a base station
  • FIG. 2 is only an optional schematic diagram of a startup identifier field. In specific implementation, it is not limited to the structure of the startup identifier field shown in FIG. 2.
  • the step S110 may include:
  • the activation identifier that is the first value is carried in the header of the second data packet.
  • the data packet transmitted based on the SDAP may not have a packet header.
  • the second data packet may be a data packet that distinguishes the packet header and the body portion.
  • the packet may be the first.
  • the start identifier of the value is carried in the header of the second data packet.
  • the header of the second data packet here may be a specially set header for carrying the startup identifier as the first value.
  • the method further includes:
  • the first lower layer bearer is a lower layer bearer having a target QoS attribute after the first data packet change.
  • the first data packet is originally defined to be transmitted in the third lower layer bearer.
  • the transmission change of the QoS attribute of the first data packet needs to be switched, and the low layer bearer of the transmission needs to be changed.
  • the step of determining may include one or more of the following alternative manners.
  • the determining step may include:
  • the determining step may include:
  • An instruction to switch the QoS attribute of the first data packet is received from a device, for example, a base station, from a device such as a core network element or a gateway.
  • the mobility management entity indicates to the base station that the QoS attribute of the first data packet has changed, or provides the QoS attribute of the first data packet change.
  • the determining step may include:
  • the QoS attribute of the service data carried in the first data packet is changed.
  • the QoS attributes of different service data of the application A are different, although the first data packet is Applying the service data of A, but different types of service data, the first communication device may determine whether a change of the QoS attribute has occurred based on the currently received service data in the first data packet.
  • the determining step may include:
  • the first communication device sends the service data to the first communication device, and the second communication device may need to return a control instruction or return corresponding service data to the second communication device based on the reception status of the service data; in general, the QoS of the control instruction
  • the attribute is higher than the QoS attribute of the corresponding service data.
  • the first communication device is a base station and the second communication device is a terminal.
  • the base station sends downlink data to the terminal, and the terminal needs to return an acknowledgement character (ACK) indicating successful reception or a non-acknowledged character (NACK) that is not successfully received to the base station according to the reception status of the downlink data.
  • ACK acknowledgement character
  • NACK non-acknowledged character
  • the method further includes:
  • the first low layer bearer is established by using RRC signaling, RLC signaling, or MAC signaling indication;
  • the first low layer bearer is requested to be established by using uplink control information.
  • the base station may establish the first lower layer bearer by using various signalings of the related art, for example, using RRC signaling, MAC layer signaling, or the like to instruct the terminal to participate in the establishment of the first lower layer bearer.
  • the first low layer bearer is used to send the second data packet carrying the start identifier that is the first value.
  • the uplink control information request establishes the first lower layer bearer with the base station. After receiving the uplink control information carrying the first lower layer bearer, the base station establishes the first lower layer bearer under the condition that the first lower layer bearer is established.
  • this embodiment provides a method for starting a reflection mapping, which is applied to a second communication device, and includes:
  • Step S210 Receive a second data packet carrying the startup identifier sent by the first communications device by using the first lower layer bearer.
  • Step S220 When the value of the startup identifier is the first value, the reflection mapping is started to send the first data packet to the first communication device by using the first low-layer bearer transmission.
  • the first communication device may be a base station, and if the second communication device is a base station, the first communication device is a terminal.
  • the second communication device may be the receiving end of the second data packet.
  • the second communication device receives the second data packet carrying the startup identifier that is the first value.
  • the second communication device After receiving the second data packet of the first identifier, the second communication device starts the transmission mechanism of the reflection mapping, and the first data packet is transmitted by using the first lower layer carrying the second data packet. send.
  • the first communication device uses the second data packet that is originally required to be sent to the second communication device to carry the first identifier as the first identifier, so that only a small signaling overhead and as few packets as possible can be completed.
  • the method further includes:
  • the first data packet further carries identification information
  • the step S220 may include: when the value of the activation identifier is a first value, initiating a reflection mapping to send the first data packet corresponding to the identifier information by using the first lower layer bearer.
  • the second data packet further carries identification information of the first data packet.
  • the identification information herein may be a service identifier of the first data packet and/or a flow identifier of the data flow, etc., and the indication identifier of the first data packet may be uniquely determined.
  • the second communication device can know, by using the identification information, which type of data packet the currently activated reflection mapping is applied to, that is, determine the first data packet transmitted by using the first lower layer bearer.
  • the step S220 may include: switching the first lower layer bearer originally determined to be transmitted by the third lower layer bearer to be transmitted by using the first lower layer bearer.
  • the embodiment provides a reverse communication device, where the communication device is a first communication device, and includes:
  • the adding unit 110 is configured to: when it is determined that the first data packet needs to be sent in the first lower layer bearer, add a start identifier that is the first value in the second data packet; where the first identifier is used for the startup identifier. Instructing the second communication device to initiate a reflection mapping, the first data packet is a data packet sent by the second communication device to the first communication device, and the second data packet is the first communication device The data packet that needs to be sent originally;
  • the first sending unit 120 is configured to send, by using the first lower layer bearer, a second data packet carrying the startup identifier that is the first value.
  • the communication device provided in this embodiment is the sending device of the second data packet and the receiving device of the first data packet.
  • the first communications device may be a base station or a terminal
  • the second communications device may be a terminal or a base station.
  • the adding unit 110 may correspond to a processor; the processor may be a central processing unit, a microprocessor, a digital signal processor, an application processor, a programmable array or an application specific integrated circuit or the like.
  • the processor may add a startup identifier of the first value to the second data packet that is originally required to be sent to the second communication device by executing the executable program such as a computer program.
  • the first sending unit 120 may be configured to correspond to the sending antenna of the first communications device, and may be configured to send, by the second communications device, the second data packet carrying the startup identifier that is the first value, triggering the After receiving the second data packet from the first lower layer bearer, the second communication device sends the first data packet to the first communication device.
  • the adding unit 110 is further configured to: after the second data packet is sent by using the first lower layer bearer, and after receiving the first data packet from the first lower layer bearer, And sending, by the first lower layer bearer, the second data packet carrying the startup identifier that is the second value is sent by using the second data packet.
  • the adding unit 110 is further configured to: after sending the second data packet by using the first lower layer bearer, and sending the first data packet from the first lower layer bearer, sending A second data packet carrying the activation identifier.
  • the sending unit 120 is configured to: after sending the second data packet by using the first lower layer bearer, and after receiving the first data packet from the first lower layer bearer, And continuing to use the first lower layer bearer to send a second data packet carrying the startup identifier that is the first value.
  • the adding unit 110 may be further configured to: when it is determined that the first data packet needs to be sent in the first data radio bearer low layer bearer, add the second data packet to be transmitted on the first lower layer bearer.
  • the adding unit 110 is specifically configured to carry the startup identifier that is the first value in the header of the second data packet.
  • the first communications device further includes:
  • the determining unit is configured to determine whether the QoS attribute of the first data packet changes, where the first lower layer bearer is a lower layer bearer having a target QoS attribute after the first data packet change.
  • the determining unit may also correspond to the processor, and may determine whether the QoS attribute of the first data packet originally scheduled to be transmitted by using the third lower layer bearer changes. If the change occurs, it is required to use the reflection applied to the first lower layer bearer.
  • the transport mechanism of the map may also correspond to the processor, and may determine whether the QoS attribute of the first data packet originally scheduled to be transmitted by using the third lower layer bearer changes. If the change occurs, it is required to use the reflection applied to the first lower layer bearer.
  • the transport mechanism of the map may also correspond to the processor, and may determine whether the QoS attribute of the first data packet originally scheduled to be transmitted by using the third lower layer bearer changes. If the change occurs, it is required to use the reflection applied to the first lower layer bearer.
  • the determining unit is specifically configured to determine whether the first low layer bearer has been established.
  • the first communication device may further include:
  • the establishing unit of the processor configured to establish the first low-level bearer by using RRC signaling, RLC signaling, or MAC signaling when the first lower layer bearer is not established and the first communications device is a base station Or, when the first lower layer bearer is not established and the first communication device is a terminal, requesting to establish the first lower layer bearer by using uplink control information.
  • the first sending unit 120 may be configured to switch, by using the first lower layer bearer transmission, the second data packet that is originally determined to be sent by the second lower layer bearer.
  • the embodiment provides a communication device, where the communication device is a second communication device, and includes:
  • the receiving unit 210 is configured to receive, by the first communications device, the second data packet that carries the startup identifier that is sent by using the first data radio bearer lower layer bearer;
  • the second sending unit 220 is configured to: when the value of the startup identifier is the first value, initiate a reflection mapping to send the first data packet to the first communications device by using the first low-layer bearer transmission.
  • the first communication device may be a base station.
  • the receiving unit 210 and the second sending unit 220 may each correspond to a transceiver antenna, and may be used for transmitting a wireless signal with the first communication device, implementing activation of the reflection mapping, and the second The transmission of the data packet and the first data packet.
  • the first data packet further carries identifier information
  • the second sending unit 220 is configured to: when the value of the activation identifier is the first value, initiate a reflection mapping to send the first data packet corresponding to the identifier information by using the first lower layer bearer.
  • the second sending unit 220 is specifically configured to switch the first low layer bearer that is originally determined to be transmitted by the third lower layer bearer to be sent by using the first lower layer bearer.
  • the embodiment provides a communication device, which is a first communication device, including: a first transceiver 310, a first memory 320, and a first processor 330;
  • the first processor 330 is connected to the first transceiver 310 and the first memory 320, respectively, for performing at least the following steps by execution of a computer program:
  • the start identifier of the first value is added to the second data packet, where the start identifier of the first value is used to indicate
  • the second communication device initiates a reflection mapping, the first data packet is a data packet sent by the second communication device to the first communication device, and the second data packet is originally required by the first communication device Transmitted data packet;
  • the first transceiver 310 in this embodiment may correspond to a transceiver antenna.
  • the first memory 320 can include various types of storage media that can be used for data storage.
  • the storage medium included in the first memory 320 is at least partially a non-volatile storage medium, and can be used to store the computer program.
  • the first processor 330 may include a central processing unit, a microprocessor, a digital signal processor, an application processor, an application specific integrated circuit or a programmable array, etc., and may be used to implement PNF packet formation by execution of a computer program. .
  • the first processor 330 can be connected to the first transceiver 310 and the first memory 320 through an in-device bus such as an integrated circuit bus, and can be used to control data transmission and reception of the first transceiver 310. And storing the data of the first memory 320 and performing the above operations by execution of executable instructions such as a computer program.
  • the steps that the first processor 330 can perform further include:
  • the second data packet to be sent is added as a second value. Transmitting, by the first lower layer bearer, a second data packet carrying the startup identifier that is a second value, or transmitting the second data by using the first lower layer bearer And after receiving the first data packet from the first lower layer bearer, sending a second data packet that does not carry the startup identifier.
  • the first processor 330 can also be configured to perform the following steps:
  • the first low layer bearer transmission is continued to be carried as the first A second data packet of the start identifier of the value.
  • the first processor 330 can also be configured to perform the following steps;
  • the second communication terminal When it is determined that the first data packet needs to be sent in the first data radio bearer low layer bearer, adding, in the second data packet, identification information of the first data packet that needs to be transmitted on the first lower layer bearer; And the identifier information is used by the second communication terminal to determine a data packet for performing reflection mapping transmission.
  • the first processor 330 is specifically configured to perform, in the header of the second data packet, the startup identifier that is to be the first value.
  • the first processor 330 is further configured to perform the following steps:
  • the first lower layer bearer is a lower layer bearer having a target QoS attribute after the first data packet change.
  • the first processor 330 may be specifically configured to determine whether the first lower layer bearer has been established; when the first low layer bearer is not established and the first communications device is a base station, use The RRC signaling, the data link layer signaling, or the medium access control signaling indicates that the first lower layer bearer is established; or, when the first lower layer bearer is not established and the first communications device is a terminal And using the uplink control information to request to establish the first lower layer bearer.
  • the first transceiver 310 is configured to, under the control of the first processor 330, switch the second data packet that is originally determined to be sent by the second lower layer bearer to be transmitted by using the first lower layer bearer. .
  • the embodiment provides a communication device, which is a second communication device, including: a second transceiver 410, a second memory 420, and a second processor 430;
  • the second processor 430 is connected to the second transceiver 410 and the second memory 420, respectively, for performing at least the following steps by execution of a computer program:
  • the reflection mapping is started to send the first data packet to the first communications device by using the first low-layer bearer transmission.
  • the second transceiver 410 in this embodiment may correspond to a transceiver antenna.
  • the second memory 420 can include various types of storage media that can be used for data storage.
  • the storage medium included in the second memory 420 is at least partially a non-volatile storage medium, and can be used to store the computer program.
  • the second processor 430 may include: a central processing unit, a microprocessor, a digital signal processor, an application processor, an application specific integrated circuit or a programmable array, etc., and may be used to implement PNF packet formation by execution of a computer program. .
  • the second processor 430 can be connected to the second transceiver 410 and the second memory 420 through an in-device bus such as an integrated circuit bus.
  • the first data packet further carries identifier information
  • the second processor 430 is specifically configured to: when the value of the startup identifier is the first value, initiate a reflection mapping to send the identifier corresponding to the identifier information by using the first lower layer bearer A packet of data.
  • the second processor 430 is specifically configured to switch, by using the first lower layer bearer, the first lower layer bearer that is determined to be transmitted by the third lower layer bearer.
  • the embodiment of the present disclosure further provides a communication device, including: a third transceiver, a third memory, a third processor, and a computer program stored on the third memory and processed by the third processor;
  • the third processor is respectively connected to the third transceiver and the third memory, for controlling information exchange of the transceiver, storing information of the memory by executing the computer program, and performing the foregoing One or more activation methods applied to the reflection map in the first communication device. Or, performing the aforementioned one or more activation methods applied to the reflection map in the second communication device.
  • the third transceiver can send and receive antennas to the first communication device or the second communication device.
  • the third memory may include: various types of storage media that may be used for data storage.
  • the second memory includes a storage medium that is at least partially a non-volatile storage medium and can be used to store the computer program.
  • the third processor may comprise a central processing unit, a microprocessor, a digital signal processor, an application processor, an application specific integrated circuit or a programmable array, etc., and may be used to implement the formation of PNF packets by execution of a computer program.
  • the third processor may be connected to the third transceiver and the third memory through an in-device bus such as an integrated circuit bus.
  • Embodiments of the present disclosure also provide a computer storage medium storing a computer program, the computer program being executed by a processor, and performing one or more of the aforementioned ones or more of a reflection map applied to the first communication device Start method. Or, performing the aforementioned one or more activation methods applied to the reflection map in the second communication device.
  • the computer storage medium includes: a mobile storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. Medium.
  • the computer storage medium can be a non-transitory storage medium.
  • the non-transitory storage medium herein may also be referred to as a non-volatile storage medium.
  • the DRB is used as the lower layer bearer as an example.
  • the specific implementation is not limited to the DRB.
  • the example provides a method for mapping mapping of SDAP based on path-related data, including:
  • Step S1 The uplink and downlink data of the QoS data stream (Flow#i) of the network side base station (gNB) and the terminal side are transmitted and received in the DRB#j.
  • Step S2 The RRC or SDAP function entity on the network side determines that the QoS level of the uplink Flow#i of the user needs to be modified.
  • Step S3 If the DRB#k with the target QoS capability has not been established, the RRC connection reconfiguration complete signaling (RCC Connection Reconfiguration), the RCC connection reconfiguration complete signaling, etc. Let the process establish the DRB, or establish the target DRB through other fast ways of L3/L2.
  • Step S4 The SDAP entity or the base station sends the downlink data packet of the Flow#i on the DRB#k, and carries the active reflection identifier, and stops transmitting any downlink data packet of the Flow#i on the DRB#j.
  • the active reflection identifier here is the aforementioned startup identifier which is the first value.
  • Step S5 After receiving the data packet of Flow#i on the DRB#k, the SDAP entity of the terminal determines whether the network side indicates to start the reflection mapping.
  • Step S6 The SDAP entity of the terminal sends the uplink data packet of the subsequent Flow#i on the DRB#k, and stops transmitting on the DRB#j.
  • Step S7 The SDAP on the network side receives the uplink data of the Flow#i on the DRB#k, and then determines that the reflection mapping is successful, and then deactivates the Reflective identifier.
  • Step S8 The uplink and downlink data of Flow#i simultaneously perform data transmission on DRB#k.
  • This example provides a method of en-alloying and deactivating a reflective identifier, including:
  • a path indication including a reflection identifier is introduced in a header of a protocol data unit (PDU) of the SDAP, and is denoted as a RQF (Reflective Flow Flag).
  • a protocol data unit here can be considered as a data packet.
  • the header of the PDU may be the header of a data packet.
  • RQF The value of RQF is:
  • the RQF can be an identifier with multiple meanings.
  • the reflection map is only two of them; it can also be an identifier for only the reflection mapping. In this case, the RQF can occupy only 1 bit. as follows:
  • RQF The value of RQF is:
  • the disclosure is not defined, and may or may not be carried, but the flow mapping operation is not performed on the Flow.
  • the Flow ID needs to be carried to indicate the Flow for performing the reflection mapping operation.
  • the RQF is set to 1.
  • the data packet that is, confirming that the reflective mapping operation is successful, sets RQF to 0 in the subsequent PDU until the next time the reflective mapping operation needs to be activated.
  • Figure 2 shows an example of a SDAP PDU scheme in which a PDU header carries a 1-bit length RQF and a SDAP Flow ID of no more than 7 bits in length.
  • FIG. 2 is a schematic diagram of a location scheme of RQF and SDAP Flow ID in a PDU.
  • the length of the SDAP Flow ID is n bits, and the value of n is not defined in this example, and may be a reserved bit.
  • the length of the RQF is m bits, and the value of m is not defined in the disclosure, and may be reserved bits, according to the definition of the 3GPP successor. However, no matter the value of m, there are two values, one identifier reflection map is not started, and one identifies the emission map movement.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing module, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing storage device includes the following steps: the foregoing storage medium includes: a mobile storage device, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • ROM read-only memory
  • RAM random access memory
  • magnetic disk or an optical disk.
  • optical disk A medium that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开公开了一种反射映射的启动方法、通信设备及存储介质。应用第一通信设备中的所述反射映射的启动方法包括:当确定出第一数据包需要在第一低层承载发送时,在第二数据包中添加为第一取值的启动标识;其中,所述第一取值的启动标识用于指示所述第二通信设备启动反射映射,所述第一数据包为所述第二通信设备发送给所述第一通信设备的数据包,所述第二数据包为所述第一通信设备原本就需要发送的数据包;利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。

Description

反射映射的启动方法、通信设备及存储介质
相关申请的交叉引用
本申请主张在2017年8月4日在中国提交的中国专利申请号No.201710661763.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线技术领域,尤其涉及一种反射映射的启动方法、通信设备及存储介质。
背景技术
在业务数据适配协议(Service Data Adaption Protocol,SDAP)中引入了反射映射(Reflective Mapping)概念。基于反射映射的数据传输,若发送端在第i层向接收端发送数据,则接收端接收到该数据之后,会基于反射映射的传输机制,也会在第i层上向发送端返回数据。
但是在相关技术中,仅给出了反射映射的概念,但是在具体如何在两通信端之间交互当前需要启动或使用反射映射的具体实现方式,暂未提出。故如何将反射映射的启动结合到具体的应用场景,或以较小的信令开销结合到应用场景,是相关技术亟待解决的问题。
发明内容
有鉴于此,本公开实施例期望提供一种反射映射的启动方法、通信设备及存储介质,至少部分解决上述问题。
为达到上述目的,本公开的技术方案是这样实现的:
第一方面,本公开实施例提供一种反射映射的启动方法,应用第一通信设备中,包括:
当确定出第一数据包需要在第一低层承载发送时,在第二数据包中添加为第一取值的启动标识;其中,所述第一取值的启动标识用于指示所述第二通信设备启动反射映射,所述第一数据包为所述第二通信设备发送给所述第 一通信设备的数据包,所述第二数据包为所述第一通信设备原本就需要发送的数据包;
利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
可选的,所述方法还包括:
在利用所述第一低层承载发送所述第二数据包,且从所述第一低层承载上接收到所述第一数据包后,在待发送的第二数据包添加为第二取值的启动标识的第二数据包;利用所述第一低层承载发送携带有为第二取值的所述启动标识的第二数据包;
或者,
在利用所述第一低层承载发送所述第二数据包,且从所述第一低层承载上接收到所述第一数据包后,发送不携带有启动标识的第二数据包。
可选的,所述方法还包括:
在利用所述第一低层承载发送所述第二数据包,且尚未从所述第一低层承载上接收到所述第一数据包后,继续利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
可选的,所述方法还包括:
当确定出第一数据包需要在第一低层承载发送时,在所述第二数据包中添加需要在所述第一低层承载上传输的所述第一数据包的标识信息;其中,所述标识信息,用于所述第二通信终端确定进行反射映射传输的数据包。
可选的,所述当确定出第一数据包需要在第一低层承载发送时,在第二数据包中添加为第一取值的启动标识,包括:
将为第一取值的所述启动标识携带在所述第二数据包的包头中。
可选的,所述方法还包括:
判断所述第一数据包的服务质量QoS属性是否发生变化,其中,所述第一低层承载为具有所述第一数据包变化后的目标QoS属性的低层承载。
可选的,所述方法还包括:
判断所述第一低层承载是否已建立;
当未建立所述第一低层承载且所述第一通信设备为基站时,利用RRC信 令、RLC信令或MAC信令指示建立所述第一低层承载;
或者,
当未建立所述第一低层承载且所述第一通信设备为终端时,利用上行链路控制信息请求建立所述第一低层承载。
可选的,所述利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包,包括:
将原本预先确定以第二低层承载发送的所述第二数据包,切换到利用所述第一低层承载传输。
第二方面,本公开实施例还提供一种反射映射的启动方法,应用于第二通信设备中,包括:
接收第一通信设备利用第一低层承载发送的携带有启动标识的第二数据包;
当所述启动标识的取值为第一取值时,启动反射映射以利用所述第一低层承载发送向所述第一通信设备发送第一数据包。
可选的,所述方法还包括:
所述第一数据包还携带有标识信息;
所述当所述启动标识的取值为第一取值时,启动反射映射以利用所述第一低层承载发送向所述第一通信设备发送第一数据包,包括:
当所述启动标识的取值为第一取值时,启动反射映射以通过所述第一低层承载发送所述标识信息对应的所述第一数据包。
可选的,当所述启动标识的取值为第一取值时,启动反射映射以利用所述第一低层承载发送向所述第一通信设备发送第一数据包,包括:
将原本确定以第三低层承载传输的所述第一低层承载切换到利用所述第一低层承载发送。
第三方面,本公开实施例还提供一种反通信设备,所述通信设备为第一通信设备,包括:
添加单元,用于当确定出第一数据包需要在第一低层承载发送时,在第二数据包中添加为第一取值的启动标识;其中,所述第一取值的启动标识用于指示所述第二通信设备启动反射映射,所述第一数据包为所述第二通信设 备发送给所述第一通信设备的数据包,所述第二数据包为所述第一通信设备原本就需要发送的数据包;
第一发送单元,用于利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
第四方面,本公开实施例还提供一种通信设备,所述通信设备为第二通信设备,包括:
接收单元,用于接收第一通信设备利用第一低层承载发送的携带有启动标识的第二数据包;
第二发送单元,用于当所述启动标识的取值为第一取值时,启动反射映射以利用所述第一低层承载发送向所述第一通信设备发送第一数据包。
第五方面,本公开实施例还提供另一种通信设备,所述通信设备为第一通信设备,包括:第一收发器、第一存储器及第一处理器;
所述第一处理器,分别与所述第一收发器及所述第一存储器连接,用于通过计算机程序的执行至少能够实现以下步骤:
当确定出第一数据包需要在第一低层承载发送时,在第二数据包中添加为第一取值的启动标识;其中,所述第一取值的启动标识用于指示所述第二通信设备启动反射映射,所述第一数据包为所述第二通信设备发送给所述第一通信设备的数据包,所述第二数据包为所述第一通信设备原本就需要发送的数据包;
利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
可选的,所述第一处理器能够执行的步骤还包括:
在利用所述第一低层承载发送所述第二数据包,且从所述第一低层承载上接收到所述第一数据包后,在待发送的第二数据包添加为第二取值的启动标识的第二数据包;利用所述第一低层承载发送携带有为第二取值的所述启动标识的第二数据包;
或者,
在利用所述第一低层承载发送所述第二数据包,且从所述第一低层承载上接收到所述第一数据包后,发送不携带有启动标识的第二数据包。
可选的,所述第一处理器,还能用于执行以下步骤:
在利用所述第一低层承载发送所述第二数据包,且尚未从所述第一低层承载上接收到所述第一数据包后,继续利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
可选的,所述第一处理器,还能够用于执行以下步骤;
当确定出第一数据包需要在第一低层承载发送时,在所述第二数据包中添加需要在所述第一低层承载上传输的所述第一数据包的标识信息;其中,所述标识信息,用于所述第二通信终端确定进行反射映射传输的数据包。
第六方面,本公开实施例还提供另一种通信设备,所述通信设备为第二通信设备,包括:第二收发器、第二存储器及第二处理器;
所述第二处理器,分别与所述第二收发器及所述第二存储器连接,用于通过计算机程序的执行至少能够实现以下步骤:
接收第一通信设备利用第一低层承载发送的携带有启动标识的第二数据包;
当所述启动标识的取值为第一取值时,启动反射映射以利用所述第一低层承载发送向所述第一通信设备发送第一数据包。
可选的,所述第一数据包还携带有标识信息;
所述第二处理器具体用于执行以下步骤:
当所述启动标识的取值为第一取值时,启动反射映射以通过所述第一低层承载发送所述标识信息对应的所述第一数据包。
第七方面,本公开实施例还提供一种通信设备,包括:第三收发器、第三存储器、第三处理器及存储在所述第三存储器上并由所述第三处理器处理的计算机程序;
所述第三处理器,分别与所述第三收发器及所述第三存储器连接,用于通过执行所述计算机程序控制所述收发器的信息交互、所述存储器的信息存储,并执行前述一个或多个应用于第一通信设备的反射映射的启动方法。或,执行前述一个或多个应用于第二通信设备的反射映射的启动方法。
第八方面,本公开实施例还提供一种计算机存储介质,其中,所述计算机存储介质存储有计算机程序,所述计算机程序被处理器执行后,并执行前 述一个或多个应用于第一通信设备的反射映射的启动方法。或,执行前述一个或多个应用于第二通信设备的反射映射的启动方法。
本公开实施例提供的反射映射的启动方法、通信设备及存储介质,第一通信设备触发器第二通信设备启动反射映射时,利用原本就需要传输给第二通信设备的第二数据包携带有触发反射映射启动的启动标识,并将携带有为第一取值的启动标识的第二数据包利用进行反射映射传输的第一低层承载上传输。这样第二通信设备在接收到利用第一低层承载传输的携带有为第一取值的第二数据包后,就会启动反射映射,利用第一低层承载传输第一数据包。首先,本申请提供的方案,不仅给出第一通信设备对第二通信设备启动反射映射的具体实现方案,而且利用原本就要发送给第二通信设备的第二数据包来携带为第一取值的启动标识,就不用专门构建传输为第一取值的启动标识的专用数据包,具有实现简便及开销小的特点。
附图说明
图1为本公开实施例提供的第一种反射映射的启动方法的流程示意图;
图2为本公开实施例提供的一种启动标识字段的示意图;
图3为本公开实施例提供的第二种反射映射的启动方法的流程示意图;
图4为本公开实施例提供的第一通信设备的结构示意图;
图5为本公开实施例提供的第二通信设备的结构示意图;
图6为本公开实施例提供的另一种第一通信设备的结构示意图;
图7为本公开实施例提供的另一种第二通信设备的结构示意图;
图8为本公开实施例提供的一种SDAP基于随路数据包的反射映射的启动方法的流程示意图。
具体实施方式
以下结合说明书附图及具体实施例对本公开的技术方案做进一步的详细阐述。
本公开实施例提供的反射映射是在SDAP协议中定义的。SDAP协议在两个通信的通信设备进行了分层,具体可包括:物理(Physcal,PHY)层媒体 访问控制层(Media Access Control,MAC)、位于MAC层上一层的无线链路控制(Radio Link Control,RLC)层;位于RLC层之上的分组数据汇聚(Packet Data Convergence Protocol,PDCP)层以及位于PDCP之上的新的接入(Access Stratum,AS)子层。这里的新的AS子层又称为SDAP层。所述SDAP层,用于将数据映射到SDAP层的低层承载上,并标记对应数据的流标识。这里的位于所述SDAP层的功能实体,称为SDAP实体。所述SDAP层的低层承载包括:通信双方使用对等的SDAP层以下的功能层之间通信的承载。在本实施例中,所述PHY层为L1层;所述MAC层、RLC层及PDCP层为L2层。SDAP的底层可包括L2层和L1层。故本实施例中的SDAP的底层承载可包括所有L1层和L2层的承载中的一种或多种。例如,所述SDAP的低层承载包括:无线接入承载;所述无线接入承载可基于数据和信令的区分,包括:数据无线接入承载(DRB)和信令无线接入承载(SRB);所述SDAP的低层承载还可包括:逻辑信道、传输信道及物理信道的至少其中之一。
如图1所示,本实施例提供一种基于随路数据包的反射映射的启动方法应用第一通信设备中,包括:
步骤S110:当确定出第一数据包需要在第一数据无线承载低层承载发送时,在第二数据包中添加为第一取值的启动标识;其中,所述第一数据包为所述第二通信设备发送给所述第一通信设备的数据包,所述第一取值的启动标识用于指示所述第二通信设备启动反射映射,所述第二数据包为所述第一通信设备原本就需要发送给所述第二通信设备的数据包;
步骤S120:利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
本实施例提供的反射映射是SDAP规定的一种数据传输机制,可用于基站和终端之间的上下行数据的传输。
在本实施例中,若所述第一通信设备为基站,则所述第二通信设备可为终端;若所述第二通信设备为基站,则所述第一通信设备为终端。总之,本实施例提供是应用于第一通信设备中的反射映射的启动方法。
在步骤S110中,当确定出第二通信设备发送给第一通信设备的第二数据包,需要在第一低层承载上传输时,为了指示第二通信设备下一次直接在第 一低层承载上基于反射映射机制进行第二数据包的传输。首先会在当前需要传输给第二通信设备的第二数据包中携带取值为第一取值的启动标识。若该启动标识为第一取值,则向第二通信设备指示启动反射映射的传输机制。这样的话,第二通信设备接收到携带为第一取值的启动标识之后,就会启动反射映射的传输机制,基于反射映射进行所述第一数据包的传输。这样就可以确保所述第一通信设备后续是从第一低层承载上接收所述第二通信设备传输给其的数据包。
在本实施例中,所述启动标识可为一个或多个比特,所述启动标识的取值可至少包括:第一取值和第二取值;所述第一取值不同于所述第二取值。例如,当所述启动标识为1个比特时,若所述第一取值为“0”,则所述第二取值为“1”;若所述第一取值为“1”,则所述第二取值为“0”。
所述第二数据包可为原本就设置有启动标识位或启动标识字段的数据包,也可以是原本没有设置有启动标识位或启动标识字段的数据包。这里的第二数据包为第一取值的启动标识的随路数据包。
若第二数据包原本就设置启动标识字段的数据包,则在步骤S110中可以直接向该启动标识字段中写入所述第一取值的启动标识即可。这样的话,第二通信设备在接收到所述第二数据包之后,根据通信协议或预先协商,可以通过解码所述启动标识字段,就可以得到为所述第一取值的启动标识。
若所述第二数据包原本没有设置启动标识字段的数据包,则需要在所述第二数据包的预定位置增加所述启动标识字段,例如,在所述第二数据包的前面添加启动标识字段;或者,在所述第二数据包的尾部追加所述启动标识字段。这样的话,第二通信设备在接收到所述第二数据包之后,可以根据第二数据包的长度,确定出当前是否携带有启动标识字段,若携带有启动标识字段,则解码所述启动标识字段,获得为第一取值的所述启动标识。
在本实施例中该,所述启动标识字段,至少包括:启动标识位,该启动标识位至少为1个比特。
总之,不管怎样若第一通信设备想要触发第二通信设备基于反射映射的传输机制,向其传输所述第一数据包,则可以通过原本就需要发送给第一通信设备的第二数据包中增加为第一取值的启动标识,就简便的完成了反射机 制的启动。采用这种原本就需要发送给第一通信设备的第二数据包来携带所述启动标识,就不用专门通过一个控制信令数据包来专门携带所述启动标识,显然通过第二数据包作为随路数据包发送启动标识,显然会比专门构建一个数据包所产生的数据量小,从而具有开销小的特点,且通过第二数据包的具有实现简便的特点。
在一些实施例中,所述第二数据包可为原本利用第二低层承载上传输的数据包,在本实施例中为了告知第二通信设备,基于反射映射的第一数据包传输对应的目标低层承载,会将原本预定利用第二低层承载传输的第二数据包,切换到利用所述第一低层承载发送,且由于第二数据包中携带为第一取值的启动标识,则第二通信设备,会基于为第一取值的启动标识启动反射映射,并利用第一低层承载发送所述第一数据包。这样的话,若第二数据包原定确定为利用第二低层承载发送,则在所述步骤S120中,需要将携带有为第一取值的启动标识的第二数据包进行低层承载的切换,从利用第二低层承载传输切换到利用第一低层承载传输。
在另一些实施例中,若所述第二数据包自身就位于所述第一低层承载上,则直接继续利用第一低层承载发送携带有为第一取值的第二数据包的发送。
在一些实施例中,所述方法还包括:
根据所述第一通信设备和所述第二通信设备之间的当前数据传输状况,确定出添加为所述第一取值的启动标识的所述第二数据包。
例如,在一些实施例中,所述根据所述第一通信设备和所述第二通信设备之间的当前数据传输状况,确定出添加为所述第一取值的启动标识的所述第二数据包,包括:
判断当前所述第一通信设备和所述第二通信设备之间是否有利用所述第一低层承载进行数据传输,若有则优先选择利用所述第一低层承载传输的数据包作为所述第二数据包。
例如,基站和终端之间利用3个不同的低层承载发送数据包A、数据包B及数据包C;若这三种数据包中,若数据包C时利用第一低层承载发送的,为了减少数据包传输时的低层承载切换,减少低层承载建立,则可以直接利用数据包C作为添加为第一取值的启动标识的第二数据包发送给第二通信 设备。
在另一些实施例中,,所述根据所述第一通信设备和所述第二通信设备之间的当前数据传输状况,确定出添加为所述第一取值的启动标识的所述第二数据包,包括:
判断当前所述第一通信设备和所述第二通信设备之间利用不同低层承载传输的数据包发送给所述第二通信设备的达到时延;
选择发送时延最小的数据包作为所述第二数据包。
例如,基站和终端之间利用3个不同的低层承载发送数据包A、数据包B及数据包C;当前基于资源调度等传输状况,比较出数据包A、数据包B及数据包C分别传输到终端的达到延时,例如,若数据包B达到终端B的达到延时最小,则直接利用数据包B作为携带为第一取值的启动标识的第二数据包,并利用第一低层承载发送所述数据包B。若此时,数据包B原本就利用第一低层承载发送,则沿用第一低层承载发送所述数据包;若数据包B原本时利用第二低层承载发送的,则将数据包B切换到利用第一低层承载发送。采用这种基于发送延时的选择第二数据包,可以尽可能早的通知到第二通信设备基于反射映射的传输机制,传输所述第一数据包,减少第一数据包的利用对应低层承载传输的时延。
在一些实施例中,若第二数据包原本是利用第二低层承载传输的,若确定出反射的传输机制在第二通信设备中启动成功,即从第一低层承载上接收到所述第一数据包,则所述方法还可包括:将所述第二数据包切换会利用所述第二低层承载传输。
一般情况下,不同的低层承载提供的QoS属性不同,而不同的数据所需的QoS属性不同。但是一般QoS属性越高,则传输可靠性和传输质量越高,则可能传输消耗的通信资源和/或传输时延越到。在本实施例中,在进行第二数据包的低层承载切换时,为了确保第二数据包的QoS属性自身的满足,则选择的第二数据包原本利用的第二低层承载对应的QoS属性需要不高于第一低层承载对应的QoS属性,否则会导致第二数据包自身的传输不满足其所要求的QoS属性。
若当前第一通信设备和第二通信设备之间没有利用第一低层承载传输数 据包。
可选地,所述方法还包括:
在利用所述第一低层承载发送所述第二数据包,且从所述第一低层承载上接收到所述第一数据包后,在待发送的第二数据包添加为第二取值的启动标识的第二数据包;
利用所述第一低层承载发送携带有为第二取值的所述启动标识的第二数据包。
若第一通信设备接收到的第一数据包已经切换到第一低层承载来传输,则可认为反射映射在第二通信设备中启动成功,则可以将所述启动标识置为第二取值了。这样避免第二通信设备在接收到了启动标识之后,已经启动的了反射映射的传输机制,还一直接收到对应的指示启动的启动标识,减少第二通信设备内部的逻辑处理混乱的问题,确保第二通信设备的正常运行。
在还有些实施例中,所述方法还包括:
在利用所述第一低层承载发送所述第二数据包,且尚未从所述第一低层承载上接收到所述第一数据包后,继续利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
在无线传输的过程中,可能会出现丢包现象或者解码错误的现象。若第二通信设备未成功接收携带为第一取值的启动标识的第二数据包,或未正确解码出所述第二数据包中为第一取值的启动标识,则可能第二通信设备会继续沿用第三低层承载向第一通信设备发送所述第一数据包,则在本实施例中为了实现成功触发第二通信设备启动反射映射的传输机制,会继续利用第一低层承载发送携带为第一取值的启动标识的第二数据包。值得注意的这里的发送的第二数据包可以是初传数据包,也可以是重传数据包。例如,当前第一通信设备和第二通信设备之间的第二数据包有10个;从第2个第二数据包开始携带有为第一取值的启动标识,第一通信设备按照第二数据包的传输顺序,利用第一低层承载发送依次发送第二数据包。若发送到第5个第二数据包时,第一通信设备接收到的第一数据包还是从第三低层承载上接收的,则第一通信设备向第二通信设备发送的第6个第二数据包还会携带为第一取值的启动标识。若第一通信设备接收到的第一数据包已经从第三低层承载切换 到第一低层承载上,或者,原本未确定对应的低层承载的第一数据包已经利用第一低层承载的传输达到了第一通信设备,则第一通信设备,则第一通信设备向第二通信设备发送的第6个第二数据包的启动标识的取值则为第二取值。
总之,本实施例中会利用一个或多个第二数据包通过携带第一取值的启动标识,触发第二通信设备的反射映射的启动,同时在反射映射的启动成功之后,第二数据包携带的启动标识被置为第二取值。
在还有一些实施例中,若第二通信设备的反射映射启动成功,则所述第二数据包不再携带所述启动标识,这样可以减少启动标识的不必要传输,减少信令开销和传输的数据量。
可选地,所述方法还包括:
当确定出第一数据包需要在第一低层承载发送时,在所述第二数据包中添加需要在所述第一低层承载上传输的所述第一数据包的标识信息;其中,所述标识信息,用于所述第二通信终端确定进行反射映射传输的数据包。
例如,所述标识信息可为:所述第一数据包所归属的数据流(Flow)的流标识;也可以是所述第一数据包所对应的业务的业务标识。总之,所述标识信息可以用于所述第一通信设备确定出需要利用第一低层承载发送的数据包的标识信息。
前述的启动标识字段可包括:至少一个比特的启动标识位,在本实施例中还包括:多个比特的标识子字段;该标识字段可用于承载所述标识信息。
如图2所示为一种启动标识字段的结构示意图。在图2所示的启动标识字段供为8个比特,其中包括:一个比特的启动标识位(RQF)和4个比特的标识子字段。该标识字段携带的是基于SDAP的流标识。在图2中“R”标识的为启动标识字段中的保留比特,该保留比特可用于后续与启动反射映射相关的各种指示。例如,保留比特可以用于指示进行反射映射的对应数据流中的起始数据包。一个数据流中包括多个数据包,基站等第一通信设备可以根据自身的负载状况或第一低层承载的当前占用状况等参考因素,确定该个数据流中哪一个数据包开始利用反射映射开始传输。
当然,图2仅是一个启动标识字段的一种可选示意图,具体实现时,不 限于图2所示的启动标识字段的结构。
所述步骤S110可包括:
将为第一取值的所述启动标识携带在所述第二数据包的包头中。
在本实施例中基于SDAP传输的数据包可能没有包头,在本实施例中所述第二数据包可为区分了包头和正文部分的数据包,在本实施例中可将所述为第一取值的启动标识携带在第二数据包的包头中。这里的第二数据包的包头可为专门设置的用于携带为第一取值的启动标识的包头。
在一些实施例中,所述方法还包括:
判断所述第一数据包的服务质量QoS属性是否发生变化,其中,所述第一低层承载为具有所述第一数据包变化后的目标QoS属性的低层承载。
例如第一数据包原本定义在第三低层承载中传输,第一通信设备在进行数据传输时,发现需要切换第一数据包的QoS属性等发送变化,需要变化其传输的低层承载。
例如,当所述第一通信设备为基站时,所述判断的步骤可包括以下几种可选方式中的一种或多种。
可选方式一:
所述判断步骤可包括:
利用所述第三低层承载传输的数据包的种类过多或传输的数据包的数量过多,需要在不同的低层承载之间进行负载均衡;若需要进行负载均衡,则可以通过修改对应的第一数据包的QoS属性,若QoS属性改变了,则需要使用具有该改变后的QoS属性的第一低层承载来承载。
可选方式二:
所述判断步骤可包括:
从上由设备,例如,基站从核心网网元或网关等设备接收到切换第一数据包的QoS属性的指令。例如,移动管理实体向基站指示第一数据包的QoS属性变化了,或提供了第一数据包改变后的QoS属性。
可选方式三:
所述判断步骤可包括:
第一通信设备和第二通信设备通信时,发现第一数据包中携带的业务数 据的QoS属性发生了变化,例如,应用A的不同业务数据对应的QoS属性不同,虽然第一数据包都是应用A的业务数据,但是是不同类型的业务数据,则所述第一通信设备可以基于当前接收的所述第一数据包中的业务数据确定出是否发生了QoS属性的变化。
可选方式三:
所述判断步骤可包括:
第一通信设备向第一通信设备发送的业务数据,而第二通信设备可能需要基于该业务数据的接收状况向第二通信设备返回控制指令或返回对应的业务数据;一般情况下控制指令的QoS属性是高于对应的业务数据的QoS属性的。例如,第一通信设备为基站,第二通信设备为终端。基站向终端发送了下行数据,终端需要根据下行数据的接收状况,需要向基站返回指示成功接收的确认字符(ACK)或未成功接收的非确认字符(NACK)。
在一些实施例中,所述方法还包括:
判断所述第一低层承载是否已建立;
当未建立所述第一低层承载且所述第一通信设备为基站时,利用RRC信令、RLC信令或MAC信令指示建立所述第一低层承载;
或者,
当未建立所述第一低层承载且所述第一通信设备为终端时,利用上行链路控制信息请求建立所述第一低层承载。
若第一通信设备为基站,则基站可以利用相关技术的的各种信令建立所述第一低层承载,例如,利用RRC信令、MAC层信令等指示终端参与第一低层承载的建立,方便第一低层承载建立之后,利用第一低层承载发送携带有为第一取值的启动标识的第二数据包的发送。
若当前第一通信设备为终端,则所述上行链路控制信息请求与基站建立所述第一低层承载。基站接收到携带有建立第一低层承载的上行链路控制信息之后,在满足第一低层承载建立的条件下会建立所述第一低层承载。
如图3所示,本实施例提供一种反射映射的启动方法,应用于第二通信设备中,包括:
步骤S210:接收第一通信设备利用第一低层承载发送的携带有启动标 识的第二数据包;
步骤S220:当所述启动标识的取值为第一取值时,启动反射映射以利用所述第一低层承载发送向所述第一通信设备发送第一数据包。
在本实施例中所述第二通信设备若为终端,则所述第一通信设备可为基站,若第二通信设备为基站,则所述第一通信设备为终端。
在本实施例中第二通信设备可为第二数据包的接收端。在步骤S210第二通信设备会接收携带为第一取值的启动标识的第二数据包。
若接收到为第一取值的启动标识的第二数据包之后,所述第二通信设备会启动反射映射的传输机制,会将第一数据包利用传输第二数据包的第一低层承载来发送。
第一通信设备利用原本就需要发送给第二通信设备的第二数据包来携带为第一取值的启动标识,以仅可能小的信令开销及尽可能少的数据包个数,完成了启动标识的传输和第二通信设备的反射映射的简便启动。
可选地,所述方法还包括:
所述第一数据包还携带有标识信息;
所述步骤S220可包括:当所述启动标识的取值为第一取值时,启动反射映射以通过所述第一低层承载发送所述标识信息对应的所述第一数据包。
在本实施例中所述第二数据包还携带有第一数据包的标识信息。这里的标识信息可为第一数据包的业务标识和/或数据流的流标识等可以唯一确定出所述第一数据包的指示标识。
这样的话,通过所述标识信息,所述第二通信设备就可以知道当前启动的反射映射是作用于哪一种数据包的,即确定出利用第一低层承载传输的第一数据包的。
在一些实施例中,所述步骤S220可包括:将原本确定以第三低层承载传输的所述第一低层承载切换到利用所述第一低层承载发送。
如图4所示,本实施例提供一种反通信设备,所述通信设备为第一通信设备,包括:
添加单元110,用于当确定出第一数据包需要在第一低层承载发送时,在第二数据包中添加为第一取值的启动标识;其中,所述第一取值的启动标 识用于指示所述第二通信设备启动反射映射,所述第一数据包为所述第二通信设备发送给所述第一通信设备的数据包,所述第二数据包为所述第一通信设备原本就需要发送的数据包;
第一发送单元120,用于利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
本实施例提供的通信设备为所述第二数据包的发送设备和所述第一数据包的接收设备。
在本实施例中所述第一通信设备可为基站或终端,则所述第二通信设备可为终端或基站。
在本实施例中所述添加单元110可对应于处理器;所述处理器可为中央处理器、微处理器、数字信号处理器、应用处理器、可编程阵列或专用集成电路等。所述处理器可以通过计算机程序等可执行指令的执行,在原本就需要发送给第二通信设备的第二数据包中增加为第一取值的启动标识,
所述第一发送单元120可对应于所述第一通信设备的发送天线,可以用于先第二通信设备发送所述携带有为第一取值的启动标识的第二数据包,触发所述第二通信设备的从第一低层承载上接收到第二数据包之后,将第一数据包发送给第一通信设备。
可选地,所述添加单元110,还可用于在利用所述第一低层承载发送所述第二数据包,且从所述第一低层承载上接收到所述第一数据包后,在待发送的第二数据包添加为第二取值的启动标识的第二数据包;利用所述第一低层承载发送携带有为第二取值的所述启动标识的第二数据包。
可选地,所述添加单元110,还可用于在利用所述第一低层承载发送所述第二数据包,且从所述第一低层承载上接收到所述第一数据包后,发送不携带有启动标识的第二数据包。
在一些实施例中,所述发送单元120,可用于在利用所述第一低层承载发送所述第二数据包,且尚未从所述第一低层承载上接收到所述第一数据包后,继续利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
进一步地,所述添加单元110,还可用于当确定出第一数据包需要在第 一数据无线承载低层承载发送时,在所述第二数据包中添加需要在所述第一低层承载上传输的所述第一数据包的标识信息;其中,所述标识信息,用于所述第二通信终端确定进行反射映射传输的数据包。
进一步地,所述添加单元110,具体可用于将为第一取值的所述启动标识携带在所述第二数据包的包头中。
在一些情况下,所述第一通信设备还包括:
判断单元,用于判断所述第一数据包的QoS属性是否发生变化,其中,所述第一低层承载为具有所述第一数据包变化后的目标QoS属性的低层承载。
所述判断单元可同样对应于处理器,可判断出原定利用第三低层承载发送的第一数据包的QoS属性是否发生变化,若发生变化,则需要利用启动应用于第一低层承载的反射映射的传输机制。
所述判断单元,具体可用于判断所述第一低层承载是否已建立。所述第一通信设备还可包括:
对应于处理器的建立单元,用于当未建立所述第一低层承载且所述第一通信设备为基站时,利用RRC信令、RLC信令或MAC信令指示建立所述第一低层承载;或者,当未建立所述第一低层承载且所述第一通信设备为终端时,利用上行链路控制信息请求建立所述第一低层承载。
进一步地,所述第一发送单元120,可用于将原本预先确定以第二低层承载发送的所述第二数据包,切换到利用所述第一低层承载传输。
如图5所示,本实施例提供一种通信设备,所述通信设备为第二通信设备,包括:
接收单元210,用于接收第一通信设备利用第一数据无线承载低层承载发送的携带有启动标识的第二数据包;
第二发送单元220,用于当所述启动标识的取值为第一取值时,启动反射映射以利用所述第一低层承载发送向所述第一通信设备发送第一数据包。
若本实施例的第二通信设备为终端,则第一通信设备可为基站。
在本实施例中所述接收单元210及所述第二发送单元220均可对应于收发天线,可以用于与第一通信设备之间无线信号的传输,实现反射映射的启动及所述第二数据包及第一数据包的传输。
可选地,所述第一数据包还携带有标识信息;
所述第二发送单元220可用于当所述启动标识的取值为第一取值时,启动反射映射以通过所述第一低层承载发送所述标识信息对应的所述第一数据包。
在一些实施例中,所述第二发送单元220具体用于将原本确定以第三低层承载传输的所述第一低层承载切换到利用所述第一低层承载发送。
如图6所示,本实施例提供一种通信设备,所述通信设备为第一通信设备,包括:第一收发器310、第一存储器320及第一处理器330;
所述第一处理器330,分别与所述第一收发器310及所述第一存储器320连接,用于通过计算机程序的执行至少能够实现以下步骤:
当确定出第一数据包需要在第一数据无线承载低层承载发送时,在第二数据包中添加为第一取值的启动标识;其中,所述第一取值的启动标识用于指示所述第二通信设备启动反射映射,所述第一数据包为所述第二通信设备发送给所述第一通信设备的数据包,所述第二数据包为所述第一通信设备原本就需要发送的数据包;
利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
本实施例中所述第一收发器310可对应于收发天线。
所述第一存储器320可包括:各种类型的存储介质,可以用于数据存储。在本实施例中,所述第一存储器320包括的存储介质至少部分为非易失性存储介质,可以用于存储所述计算机程序。
所述第一处理器330可包括:中央处理器、微处理器、数字信号处理器、应用处理器、专用集成电路或可编程阵列等,可以用于通过计算机程序的执行实现PNF信息包的形成。
在本实施例中,所述第一处理器330可通过集成电路总线等设备内总线,与所述第一收发器310及第一存储器320连接,可以用于控制第一收发器310的数据收发及第一存储器320的数据存储,并通过计算机程序等可执行指令的执行,实现上述操作。
例如,所述第一处理器330能够执行的步骤还包括:
在利用所述第一低层承载发送所述第二数据包,且从所述第一低层承载上接收到所述第一数据包后,在待发送的第二数据包添加为第二取值的启动标识的第二数据包;利用所述第一低层承载发送携带有为第二取值的所述启动标识的第二数据包;或者,在利用所述第一低层承载发送所述第二数据包,且从所述第一低层承载上接收到所述第一数据包后,发送不携带有启动标识的第二数据包。
在一些实施例中,所述第一处理器330,还能用于执行以下步骤:
在利用所述第一低层承载发送所述第二数据包,且尚未从所述第一低层承载上接收到所述第一数据包后,继续利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
在另一些实施例中,所述第一处理器330,还能够用于执行以下步骤;
当确定出第一数据包需要在第一数据无线承载低层承载发送时,在所述第二数据包中添加需要在所述第一低层承载上传输的所述第一数据包的标识信息;其中,所述标识信息,用于所述第二通信终端确定进行反射映射传输的数据包。
此外,所述第一处理器330具体用于执行将为第一取值的所述启动标识携带在所述第二数据包的包头中。
此外,所述第一处理器330还用于执行以下步骤:
判断所述第一数据包的服务质量QoS属性是否发生变化,其中,所述第一低层承载为具有所述第一数据包变化后的目标QoS属性的低层承载。
在执行判断操作时,所述第一处理器330,可具体用于判断所述第一低层承载是否已建立;当未建立所述第一低层承载且所述第一通信设备为基站时,利用无线资源控制RRC信令、数据链路层信令或媒体接入控制信令指示建立所述第一低层承载;或者,当未建立所述第一低层承载且所述第一通信设备为终端时,利用上行链路控制信息请求建立所述第一低层承载。
所述第一收发器310,可用于在所述第一处理器330的控制下,将原本预先确定以第二低层承载发送的所述第二数据包,切换到利用所述第一低层承载传输。
如图7所示,本实施例提供一种通信设备,所述通信设备为第二通信设 备,包括:第二收发器410、第二存储器420及第二处理器430;
所述第二处理器430,分别与所述第二收发器410及所述第二存储器420连接,用于通过计算机程序的执行至少能够实现以下步骤:
接收第一通信设备利用第一低层承载发送的携带有启动标识的第二数据包;
当所述启动标识的取值为第一取值时,启动反射映射以利用所述第一低层承载发送向所述第一通信设备发送第一数据包。
本实施例中所述第二收发器410可对应于收发天线。
所述第二存储器420可包括:各种类型的存储介质,可以用于数据存储。在本实施例中,所述第二存储器420包括的存储介质至少部分为非易失性存储介质,可以用于存储所述计算机程序。
所述第二处理器430可包括:中央处理器、微处理器、数字信号处理器、应用处理器、专用集成电路或可编程阵列等,可以用于通过计算机程序的执行实现PNF信息包的形成。
在本实施例中,所述第二处理器430可通过集成电路总线等设备内总线,与所述第二收发器410及第二存储器420连接。
可选地,所述第一数据包还携带有标识信息;
所述第二处理器430具体用于执行以下步骤:当所述启动标识的取值为第一取值时,启动反射映射以通过所述第一低层承载发送所述标识信息对应的所述第一数据包。
可选地,所述第二处理器430,具体用于将原本确定以第三低层承载传输的所述第一低层承载切换到利用所述第一低层承载发送。
本公开实施例还提供一种通信设备,其中,包括:第三收发器、第三存储器、第三处理器及存储在所述第三存储器上并由所述第三处理器处理的计算机程序;所述第三处理器,分别与所述第三收发器及所述第三存储器连接,用于通过执行所述计算机程序控制所述收发器的信息交互、所述存储器的信息存储,并执行前述一个或多个应用于第一通信设备中的反射映射的启动方法。或,执行前述一个或多个应用于第二通信设备中的反射映射的启动方法。
本实施例中所述第三收发器可对第一通信设备或第二通信设备的收发天 线。
所述第三存储器可包括:各种类型的存储介质,可以用于数据存储。在本实施例中,所述第二存储器包括的存储介质至少部分为非易失性存储介质,可以用于存储所述计算机程序。
所述第三处理器可包括:中央处理器、微处理器、数字信号处理器、应用处理器、专用集成电路或可编程阵列等,可以用于通过计算机程序的执行实现PNF信息包的形成。
在本实施例中,所述第三处理器可通过集成电路总线等设备内总线,与所述第三收发器及第三存储器连接。
本公开实施例还提供一种计算机存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序被处理器执行后,并执行前述一个或多个应用于第一通信设备中的反射映射的启动方法。或,执行前述一个或多个应用于第二通信设备中的反射映射的启动方法。
本公开实施例提供的计算机存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。可选为,所述计算机存储介质可为非瞬间存储介质。这里的非瞬间存储介质又可以称为非易失性存储介质。
以下结合上述实施例提供几个具体示例,在以下示例中以DRB作为低层承载为例进行说明,具体实现时不局限于DRB:
示例1:
如图8所示,本示例提供一种SDAP基于随路数据的反射映射的方法,包括:
步骤S1:网络侧基站(gNB)和终端侧的QoS数据流(Flow#i)的上下行数据都在DRB#j进行收发传输。
步骤S2:网络侧的RRC或者SDAP功能实体判决用户的上行Flow#i的QoS等级需要修改。
步骤S3:如果具有目标QoS能力的DRB#k还没有建立,通过RRC连接重配置信令(RCC Connection Reconfiguration)、RCC连接重配置完成信令等 交互RRC重配置信令完成(Connection Reconfiguration complete)信令过程建立该DRB,或者通L3/L2其他快速方式建立该目标DRB。
步骤S4:SDAP实体或基站等把Flow#i的下行数据包在DRB#k上发送,并携带激活反射标识,同时停止在DRB#j上发送Flow#i的任何下行数据包。这里的激活的反射标识为前述的为第一取值的启动标识。
步骤S5:终端的SDAP实体在DRB#k上收到Flow#i的数据包后,判断网络侧是否指示启动反射映射。
步骤S6:终端的SDAP实体把后继的Flow#i的上行数据包在DRB#k上发送,同时停止在DRB#j上发送。
步骤S7:网络侧的SDAP在DRB#k上收到Flow#i的上行数据,则判决反射映射成功,则去激活Reflective标识。
步骤S8:Flow#i的上下行数据同时在DRB#k上进行数据传送。
示例2:
本示例提供一种激活和去激活反射标识的随路携带的方法,包括:
在SDAP的协议数据单元(PDU)的头部(header)中引入包含反射标识的随路指示,记为RQF(Reflective Flow Flag)。这里的一个协议数据单元可视为一个数据包。所述PDU的头部可为一个数据包的包头。
RQF取值为:
0:其他含意;
……
i:反射映射未启动;
j:反射映射启动;
……
n:其他含意;
RQF可以是一个具有多种含意的标识,反射映射只是其中的两个取值;也可以是只针对反射映射的标识符,此时RQF可以只占用1比特。如下:
RQF取值为:
0:反射映射未启动;
1:反射映射启动;
RQF和流标识(Flow ID)的关系(为了方便说明,以1bit RQF取值进行使用):
当RQF=0时,是否需要在SDAP PDU header中携带Flow ID,本公开不进行定义,可以携带也可以不携带,但是无论是否携带,都不会对该Flow进行反射映射操作。
当RQF=1时,需要携带Flow ID用以指示进行反射映射操作的Flow。
网络侧只有启动反射映射时,才把RQF置成1,为了确保该随路配置信息能被对端收到,网络侧要一直发送RQF=1的PDU,直到收到终端侧指定的上行Flow的数据包,即确认本次reflective映射操作成功,则在后继的PDU中把RQF置成0,直到下次再需要激活reflective映射操作时。
终端侧每收到一个SDAP PDU,解析SDAP PDU的头部,从头中读出该RQF,如果RQF为1,说明网络侧启动了反射映射。根据反射映射定义的要求,可能需要读出PDU头部中的Flow ID,然后把该Flow ID指示的Flow上的上行数据在该DRB上发送。在收到第一个RQF=1的SDAP PDU后,终端侧还会连续接收若干个,如果与第一个收到的Flow PDU同属一个DRB发送来的,则认为已经启动了reflective映射,忽略该RQF;也可以每次收到RQF=1,都把作一次reflective映射操作,这不影响实际的效果,因为第一次收到后已经在该DRB上发送上行Flow数据包了。
如果终端侧收到的RQF为0,无论是否存在Flow ID,都不对该ID指示的Flow进行反射映射操作。
图2给出了一种SDAP PDU方案举例,其中在PDU头部中携带了1bit长度的RQF和不超过7比特长度的SDAP Flow ID。
图2一种RQF和SDAP Flow ID在PDU中的位置方案示意图。
a)SDAP Flow ID的长度为n比特,n的取值本示例不作定义,可为保留比特。
b)RQF长度为的长度为m比特,m的取值本公开不作定义,可为保留比特,根据3GPP后继的定义而定。但是无论m取值多少,都存在两个取值,一个标识反射映射未启动,一个标识发射映射移动。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法, 可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本公开各实施例中的各功能单元可以全部集成在一个处理模块中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种反射映射的启动方法,应用第一通信设备中,包括:
    当确定出第一数据包需要在第一低层承载发送时,在第二数据包中添加为第一取值的启动标识;其中,所述第一取值的启动标识用于指示所述第二通信设备启动反射映射,所述第一数据包为所述第二通信设备发送给所述第一通信设备的数据包,所述第二数据包为所述第一通信设备原本就需要发送的数据包;
    利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
  2. 根据权利要求1所述的方法,还包括:
    在利用所述第一低层承载发送所述第二数据包,且从所述第一低层承载上接收到所述第一数据包后,在待发送的第二数据包添加为第二取值的启动标识的第二数据包;利用所述第一低层承载发送携带有为第二取值的所述启动标识的第二数据包;
    或者,
    在利用所述第一低层承载发送所述第二数据包,且从所述第一低层承载上接收到所述第一数据包后,发送不携带有启动标识的第二数据包。
  3. 根据权利要求1或2所述的方法,还包括:
    在利用所述第一低层承载发送所述第二数据包,且尚未从所述第一低层承载上接收到所述第一数据包后,继续利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
  4. 根据权利要求1或2所述的方法,还包括:
    当确定出第一数据包需要在第一数据无线承载低层承载发送时,在所述第二数据包中添加需要在所述第一低层承载上传输的所述第一数据包的标识信息;其中,所述标识信息,用于所述第二通信终端确定进行反射映射传输的数据包。
  5. 根据权利要求1或2所述的方法,其中,
    所述当确定出第一数据包需要在第一数据无线承载低层承载发送时,在第二数据包中添加为第一取值的启动标识,包括:
    将为第一取值的所述启动标识携带在所述第二数据包的包头中。
  6. 根据权利要求1或2所述的方法,还包括:
    判断所述第一数据包的服务质量QoS属性是否发生变化,其中,所述第一低层承载为具有所述第一数据包变化后的目标QoS属性的低层承载。
  7. 根据权利要求6所述的方法,还包括:
    判断所述第一低层承载是否已建立;
    当未建立所述第一低层承载且所述第一通信设备为基站时,利用无线资源控制RRC信令、数据链路层信令或媒体接入控制MAC信令指示建立所述第一低层承载;
    或者,
    当未建立所述第一低层承载且所述第一通信设备为终端时,利用上行链路控制信息请求建立所述第一低层承载。
  8. 根据权利要求1或2所述的方法,其中,
    所述利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包,包括:
    将原本预先确定以第二低层承载发送的所述第二数据包,切换到利用所述第一低层承载传输。
  9. 一种反射映射的启动方法,应用于第二通信设备中,包括:
    接收第一通信设备利用第一低层承载发送的携带有启动标识的第二数据包;
    当所述启动标识的取值为第一取值时,启动反射映射以利用所述第一低层承载发送向所述第一通信设备发送第一数据包。
  10. 根据权利要求9所述的方法,还包括:
    所述第一数据包还携带有标识信息;
    所述当所述启动标识的取值为第一取值时,启动反射映射以利用所述第一低层承载发送向所述第一通信设备发送第一数据包,包括:
    当所述启动标识的取值为第一取值时,启动反射映射以通过所述第一低层承载发送所述标识信息对应的所述第一数据包。
  11. 根据权利要求9或10所述的启动方法,其中,当所述启动标识的取 值为第一取值时,启动反射映射以利用所述第一低层承载发送向所述第一通信设备发送第一数据包,包括:
    将原本确定以第三低层承载传输的所述第一低层承载切换到利用所述第一低层承载发送。
  12. 一种反通信设备,其中,所述通信设备为第一通信设备,包括:
    添加单元,用于当确定出第一数据包需要在第一低层承载发送时,在第二数据包中添加为第一取值的启动标识;其中,所述第一取值的启动标识用于指示所述第二通信设备启动反射映射,所述第一数据包为所述第二通信设备发送给所述第一通信设备的数据包,所述第二数据包为所述第一通信设备原本就需要发送的数据包;
    第一发送单元,用于利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
  13. 一种通信设备,其中,所述通信设备为第二通信设备,包括:
    接收单元,用于接收第一通信设备利用第一低层承载发送的携带有启动标识的第二数据包;
    第二发送单元,用于当所述启动标识的取值为第一取值时,启动反射映射以利用所述第一低层承载发送向所述第一通信设备发送第一数据包。
  14. 一种通信设备,其中,所述通信设备为第一通信设备,包括:第一收发器、第一存储器及第一处理器;
    所述第一处理器,分别与所述第一收发器及所述第一存储器连接,用于通过计算机程序的执行至少能够实现以下步骤:
    当确定出第一数据包需要在第一低层承载发送时,在第二数据包中添加为第一取值的启动标识;其中,所述第一取值的启动标识用于指示所述第二通信设备启动反射映射,所述第一数据包为所述第二通信设备发送给所述第一通信设备的数据包,所述第二数据包为所述第一通信设备原本就需要发送的数据包;
    利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
  15. 根据权利要求14所述的通信设备,其中,所述第一处理器能够执 行的步骤还包括:
    在利用所述第一低层承载发送所述第二数据包,且从所述第一低层承载上接收到所述第一数据包后,在待发送的第二数据包添加为第二取值的启动标识的第二数据包;利用所述第一低层承载发送携带有为第二取值的所述启动标识的第二数据包;
    或者,
    在利用所述第一低层承载发送所述第二数据包,且从所述第一低层承载上接收到所述第一数据包后,发送不携带有启动标识的第二数据包。
  16. 根据权利要求14或15所述的通信设备,其中,所述第一处理器,还能用于执行以下步骤:
    在利用所述第一低层承载发送所述第二数据包,且尚未从所述第一低层承载上接收到所述第一数据包后,继续利用所述第一低层承载发送携带有为第一取值的所述启动标识的第二数据包。
  17. 根据权利要求14或15所述的通信设备,其中,所述第一处理器,还能够用于执行以下步骤;
    当确定出第一数据包需要在第一低层承载发送时,在所述第二数据包中添加需要在所述第一低层承载上传输的所述第一数据包的标识信息;其中,所述标识信息,用于所述第二通信终端确定进行反射映射传输的数据包。
  18. 一种通信设备,其中,所述通信设备为第二通信设备,包括:第二收发器、第二存储器及第二处理器;
    所述第二处理器,分别与所述第二收发器及所述第二存储器连接,用于通过计算机程序的执行至少能够实现以下步骤:
    接收第一通信设备利用第一低层承载发送的携带有启动标识的第二数据包;
    当所述启动标识的取值为第一取值时,启动反射映射以利用所述第一低层承载发送向所述第一通信设备发送第一数据包。
  19. 根据权利要求18所述的通信设备,其中,所述第一数据包还携带有标识信息;
    所述第二处理器具体用于执行以下步骤:
    当所述启动标识的取值为第一取值时,启动反射映射以通过所述第一低层承载发送所述标识信息对应的所述第一数据包。
  20. 一种通信设备,包括:第三收发器、第三存储器、第三处理器及存储在所述第三存储器上并由所述第三处理器处理的计算机程序;
    所述第三处理器,分别与所述第三收发器及所述第三存储器连接,用于通过执行所述计算机程序控制所述收发器的信息交互、所述存储器的信息存储,并执行权利要求1至8任一项提供的方法。或,执行权利要求9至11任一项提供给的方法。
  21. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机程序,所述计算机程序被处理器执行后,并执行权利要求1至8任一项提供的方法。或,执行权利要求9至11任一项提供给的方法。
PCT/CN2018/098267 2017-08-04 2018-08-02 反射映射的启动方法、通信设备及存储介质 WO2019024888A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/636,189 US11277233B2 (en) 2017-08-04 2018-08-02 Method for starting reflective mapping, communication device, and storage medium
EP18841414.8A EP3664569A4 (en) 2017-08-04 2018-08-02 REFLECTION MAPPING INITIATION PROCESS, COMMUNICATION DEVICE AND STORAGE MEDIA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710661763.4A CN109391375B (zh) 2017-08-04 2017-08-04 反射映射的启动方法、通信设备及存储介质
CN201710661763.4 2017-08-04

Publications (1)

Publication Number Publication Date
WO2019024888A1 true WO2019024888A1 (zh) 2019-02-07

Family

ID=65232260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098267 WO2019024888A1 (zh) 2017-08-04 2018-08-02 反射映射的启动方法、通信设备及存储介质

Country Status (4)

Country Link
US (1) US11277233B2 (zh)
EP (1) EP3664569A4 (zh)
CN (1) CN109391375B (zh)
WO (1) WO2019024888A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417146B (zh) * 2019-01-07 2023-01-13 中国移动通信有限公司研究院 一种控制方法及设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018689A1 (en) * 2015-07-26 2017-02-02 Lg Electronics Inc. Method for transmitting information on priority for d2d link with relay ue in wireless communication system and apparatus therefor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296020A (zh) * 2007-04-27 2008-10-29 北京三星通信技术研究有限公司 部分功能ofdma中继系统直接消息转发的实现方法
CN106413120B (zh) * 2015-07-31 2021-09-21 华为技术有限公司 数据发送方法、装置及系统
CN109923891B (zh) * 2016-10-11 2022-05-31 Lg 电子株式会社 在无线通信系统中应用反映型服务质量的方法及其设备
WO2018084795A1 (en) * 2016-11-04 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Reflective mapping of flows to radio bearers
EP3536016B1 (en) * 2016-11-04 2020-04-08 Telefonaktiebolaget LM Ericsson (PUBL) Ue, network node and methods for handling data packets
EP3550876A4 (en) * 2016-12-29 2019-11-20 LG Electronics Inc. -1- METHOD AND APPARATUS FOR DRB ESTABLISHMENT
US20180324631A1 (en) * 2017-05-05 2018-11-08 Mediatek Inc. Using sdap headers for handling of as/nas reflective qos and to ensure in-sequence packet delivery during remapping in 5g communication systems
CN108809596B (zh) * 2017-05-05 2023-07-21 Oppo广东移动通信有限公司 一种基于反转服务流特性的通信方法及装置
CN109005527B (zh) * 2017-06-06 2022-07-12 华为技术有限公司 一种数据传输方法和终端
CN109246852B (zh) * 2017-06-13 2023-08-11 夏普株式会社 无线协议层实体处理方法以及相应的用户设备
CN109151915B (zh) * 2017-06-16 2023-11-17 夏普株式会社 用于数据分组递送的方法、用户设备和基站
CN110892749A (zh) * 2018-02-14 2020-03-17 Lg电子株式会社 用于修改映射规则的方法和设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018689A1 (en) * 2015-07-26 2017-02-02 Lg Electronics Inc. Method for transmitting information on priority for d2d link with relay ue in wireless communication system and apparatus therefor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NG Radio Access Network; Overall Description; Stage 2 (Release 15)", 3GPP TS 38.300 V0.2.0, 31 May 2017 (2017-05-31), pages 1 - 33, XP055572109 *
HUAWEI ET AL.: "Reflective Mapping in AS", 3GPP TSG-RAN WG2 MEETING ADHOC#2 R2-1706786, 29 June 2017 (2017-06-29), XP051301285 *
See also references of EP3664569A4 *

Also Published As

Publication number Publication date
CN109391375B (zh) 2020-10-09
CN109391375A (zh) 2019-02-26
EP3664569A1 (en) 2020-06-10
EP3664569A4 (en) 2021-04-28
US20200177327A1 (en) 2020-06-04
US11277233B2 (en) 2022-03-15
US20210135799A9 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
US11917450B2 (en) Data transmission method and data transmission apparatus
KR102308641B1 (ko) 정보 처리 방법 및 관련 장치
CN106470439B (zh) 用户设备的pdcp控制pdu传输的方法
JP7396768B2 (ja) グラントフリー伝送のためのアップリンクデータスケジューリングのためのシステムおよび方法
US11683818B2 (en) Operation method of communication node in millimeter wave based communication system
CN108990101B (zh) 处理双连接中次要节点改变的装置及方法
US20220022224A1 (en) Communications method and apparatus
US20230098258A1 (en) Relay bearer establishing method and communication apparatus
CN114175726B (zh) 用于移动性控制的无线通信方法
WO2013166670A1 (zh) 上行信道资源配置方法和设备
US20240089978A1 (en) Methods and Apparatuses for Handling Configured and Dynamic Downlink Transmissions in a Wireless Communication Network
JP6608528B2 (ja) 無線通信の方法、ネットワーク装置及び端末機器
WO2018082055A1 (zh) 无线网络中的数据传输方法、装置和系统
CN114902745A (zh) 一种上下文管理方法及装置
WO2020143374A1 (zh) 传输处理方法、装置、设备及存储介质
CN114339714B (zh) 传输配置的方法、装置和设备
CN115119311A (zh) 传输小数据的方法和通信装置
WO2019024888A1 (zh) 反射映射的启动方法、通信设备及存储介质
CN112291037B (zh) 无线通信系统中执行编解码速率调配的装置及方法
CN111867063B (zh) 上行传输方法和通信装置
JP2023546247A (ja) 小規模データ伝送の指示
JP7089592B2 (ja) 情報フィードバック方法及び装置、コンピュータ記憶媒体
WO2019174017A1 (zh) 车联网中载波选择的方法和终端设备
CN111417147A (zh) 一种数据处理方法、装置、相关设备及存储介质
WO2021057902A1 (zh) 资源使用方法及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018841414

Country of ref document: EP

Effective date: 20200304