WO2019024839A1 - 一种混联步行机器人的构建方法及其混联步行机器人 - Google Patents

一种混联步行机器人的构建方法及其混联步行机器人 Download PDF

Info

Publication number
WO2019024839A1
WO2019024839A1 PCT/CN2018/097761 CN2018097761W WO2019024839A1 WO 2019024839 A1 WO2019024839 A1 WO 2019024839A1 CN 2018097761 W CN2018097761 W CN 2018097761W WO 2019024839 A1 WO2019024839 A1 WO 2019024839A1
Authority
WO
WIPO (PCT)
Prior art keywords
leg
freedom
hybrid
thigh
degrees
Prior art date
Application number
PCT/CN2018/097761
Other languages
English (en)
French (fr)
Inventor
韩方元
Original Assignee
韩方元
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韩方元 filed Critical 韩方元
Priority to US16/633,955 priority Critical patent/US11453117B2/en
Priority to JP2020505370A priority patent/JP7204234B2/ja
Publication of WO2019024839A1 publication Critical patent/WO2019024839A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • B25J9/0072Programme-controlled manipulators having parallel kinematics of the hybrid type, i.e. having different kinematics chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0004Braking devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics

Definitions

  • the invention discloses a method for constructing a hybrid walking robot and a hybrid walking robot thereof, relating to the improvement of the structure of the existing two-legged walking robot, and belongs to the technical field of walking robots.
  • the existing two-legged walking robots mainly include two kinds of bionic walking robots and non-bionic walking robots.
  • the non-bionic walking robot mainly has a scheme disclosed in Chinese Patent No. 201010292424.1 (hereinafter referred to as Document 1).
  • Document 1 a part has a structure in which a generalized moving pair is connected in series below the parallel mechanism (in the document 1, the scheme given in claim 10), and the common feature is that each of the two leg mechanisms
  • a leg mechanism consists of a parallel mechanism and three generalized moving pairs (called calves).
  • the parallel mechanism itself includes Rx degrees of freedom and Ry degrees of freedom, and the three generalized moving pairs can also form Rx degrees of freedom and Ry degrees of freedom, the Rx degrees of freedom and Ry degrees of freedom on the thigh mechanism are redundantly free. degree.
  • the parallel mechanism itself contains Tz degrees of freedom, and the three generalized moving pairs also have Z-direction degrees of freedom, so the Z-direction degrees of freedom on the leg mechanism are also redundant degrees of freedom. Due to the existence of these redundant degrees of freedom, the walking robot given in the literature 1, 1, more movement pairs, the fuselage height is larger, the passability is poor.
  • the above non-bionic walking robots also have a common shortcoming, and relying solely on walking movement, the moving speed on the structured road surface is low and the efficiency is not high.
  • This non-bionic walking robot also has a double-sided symmetric walking robot scheme disclosed in Chinese Patent No. 201510275161.6 (hereinafter referred to as Document 2) (claims 13-17 of Document 2). Since its leg mechanism is the solution disclosed in Document 1. Therefore, the above problem also exists in the double-sided symmetric walking robot scheme disclosed in Document 2.
  • the parallel mechanism is a spatial parallel mechanism, the Z-direction degrees of freedom are also redundant degrees of freedom. Therefore, the volume is large, the height of the fuselage is large, and the passability is poor.
  • the moving mode is single, the moving speed on the structural road surface is low, and the efficiency is low.
  • the two-way mobile walking robot solution also needs more sports pairs, and the height of the fuselage is larger, the structure is more complicated, and the passability is poor.
  • the present invention provides a robot having the following features, thereby solving the problems of the prior art.
  • the invention can achieve the following objectives:
  • the present invention provides a new method for constructing a hybrid walking robot, which solves the problems caused by Rx, Ry redundancy degrees of freedom and Z-direction degree of freedom redundancy, thereby achieving the same with less freedom. Walk and get better performance.
  • the present invention also provides a hybrid walking robot that implements the above method, which can achieve the same walking motion with fewer moving pairs and achieve better performance.
  • a method for constructing a hybrid walking robot is as follows:
  • Each foot parallel mechanism includes a foot arch platform, three phalanges and three toes, three phalanges are fixedly attached to the arch platform, and the joint is located at three vertices of a triangle; three phalanxes The lower end of the branch is connected to the toe, the three toes form a toe triangle; the foot parallel mechanism is a lifting standing leg; the phalanges are formed by a combination of the following degrees of freedom: Tz, TzTx, TzTy, TzTxTy, RxTz, RyTz, RxTzTx, RyTzTy or RxRyTz;
  • the thigh mechanism includes an upper platform, a lower platform, and one or more thigh branches connecting the upper platform and the lower platform, the thigh branch is a motion pair, one or more series mechanisms, or a hybrid mechanism; the thigh mechanism is a One to five degrees of freedom; one to five degrees of freedom, any combination of degrees of freedom in Tx, Ty, Tz, Rz, Rx or Tx, Ty, Tz, Rz, Rx, Ry; including single degrees of freedom , two, three, four, five degrees of freedom;
  • the hybrid leg mechanism includes a thigh mechanism and a foot parallel mechanism, and the foot parallel mechanism is below the thigh mechanism, and the two are connected in series to form a hybrid leg mechanism; the foot arch platform of the foot parallel mechanism or the lower platform of the thigh mechanism is selected as a shared arch platform;
  • a hybrid leg mechanism is selected as the leg mechanism A,
  • leg mechanism B a hybrid leg mechanism or a foot parallel mechanism is selected as the leg mechanism B;
  • the two leg mechanisms must have at least one Rz degree of freedom, one Tx (or Ty) degree of freedom, or at least one leg mechanism of the hybrid leg mechanism with both Rz degrees of freedom and Tx (or Ty) degrees of freedom; or two The thigh mechanism has Rz degrees of freedom and Tx, Ty degrees of freedom;
  • the two leg mechanisms A and B are two hybrid leg mechanisms, the upper platforms of the thigh mechanisms of the two leg mechanisms A and B are fixed together, and the two upper platforms connected together form a pelvis, two connections The leg mechanisms together form a hybrid walking robot;
  • the two leg mechanisms are a hybrid leg mechanism and the other is a foot parallel mechanism
  • the upper platform of the thigh mechanism of the hybrid leg mechanism is fixedly connected with the foot arch platform of the foot parallel mechanism, and the two are connected together.
  • the platform forms a pelvis
  • the two leg mechanisms connected together form a hybrid walking robot; when connected, the requirements for the arrangement of the thigh branch, the arch platform, the humeral branch, the toe and the toe triangle are:
  • Each leg of the two leg mechanisms has its own independent living space and does not interfere with each other;
  • the two arch platforms are either one high or one low, or one inside and one outside, or one after the other, without mutual interference;
  • the sacral branches of the two leg mechanisms have their own independent working spaces and do not interfere with each other;
  • the distance between the centers of gravity of the toe triangles of the two leg mechanisms connected together is less than the sum of the radii of the circumscribed circles of the two toe triangles, and the projections of the two toe triangles on the horizontal plane coincide.
  • a hybrid walking robot constructed by a method for constructing a hybrid walking robot, comprising two leg mechanisms A and B, one leg mechanism A is a hybrid leg mechanism, and the other leg mechanism B is a hybrid leg mechanism or a foot parallel mechanism;
  • the upper portions of the leg mechanisms are connected together, and the hybrid leg mechanism includes a foot parallel mechanism and a thigh mechanism;
  • the foot parallel mechanism includes a foot arch platform, three phalanges and three toes, three phalanges are fixedly attached to the arch platform, and the joint is located at three vertices of a triangle; three phalanx branches The lower end is connected to the toe, the three toes form a toe triangle; the foot parallel mechanism is a lifting standing leg; the humeral branch is a branch with one or more degrees of freedom; the combination of degrees of freedom of the phalanges is: Tz , one or more of TzTx, TzTy, TzTxTy, RxTz, RyTz, RxTzTx, RyTzTy, RxRyTz degrees of freedom combination; three tibia branches may be the same branch or different branches;
  • the thigh mechanism includes an upper platform, a lower platform, and one or more thigh branches connecting the upper platform and the lower platform, and the lower platform of the thigh mechanism is a arch platform type platform;
  • the thigh branch can be a motion pair, one or more a tandem mechanism, or a hybrid mechanism;
  • a thigh mechanism is a mechanism with one to five degrees of freedom; one to five degrees of freedom of a thigh mechanism is Tx, Ty, Tz, Rz, Rx or Tx, Ty, Tz, Any combination of degrees of freedom in Rz, Ry;
  • the hybrid leg mechanism includes a thigh mechanism and a foot parallel mechanism, and the foot parallel mechanism is below the thigh mechanism, and the two are connected in series to form a hybrid leg mechanism; the foot parallel mechanism and the thigh mechanism share a platform, and the two pass through a arch The platforms are connected together;
  • A, B two leg mechanism
  • One leg mechanism A is a hybrid leg mechanism
  • the other leg mechanism B is a hybrid leg mechanism or a foot parallel mechanism
  • the thigh mechanism of the two leg mechanisms must have at least one Rz degree of freedom, one Tx (or Ty) degree of freedom, or at least one leg mechanism of the hybrid leg mechanism having both Rz degrees of freedom and Tx (or Ty) degrees of freedom; Or both thigh mechanisms have Rz degrees of freedom and Tx, Ty degrees of freedom;
  • the two leg mechanisms are hybrid leg mechanisms
  • the upper platforms of the thigh mechanisms of the two leg mechanisms A and B are fixed together, and the two upper platforms connected together form a pelvis, two legs connected together.
  • the organization forms a hybrid walking robot
  • one leg mechanism is a hybrid leg mechanism and the other leg mechanism is a foot parallel mechanism
  • the upper platform of the thigh mechanism of the hybrid leg mechanism is fixedly connected with the foot arch platform of the foot parallel mechanism, and the two are connected together.
  • the upper platform forms a pelvis, and the two leg mechanisms connected together form a hybrid walking robot;
  • Each leg of the two leg mechanisms has its own independent living space and does not interfere with each other;
  • the two arch platforms are either one high or one low, or one inside and one outside, or one after the other, without mutual interference;
  • the sacral branches of the two leg mechanisms have their own independent working spaces and do not interfere with each other;
  • the distance between the centers of gravity of the toe triangles of the two leg mechanisms connected together is less than the sum of the radii of the circumscribed circles of the two toe triangles, and the projections of the two toe triangles on the horizontal plane coincide.
  • the invention proposes a new hybrid mechanism as the leg mechanism, the main advantages of the parallel mechanism are basically retained, so the structure rigidity is large, the structure is compact and stable, the power performance is good, the bearing capacity is strong, and the error accumulation is small. High control precision; flexible steering, strong uphill capability and better energy consumption. Easy to control and trajectory planning.
  • the toe spacing can be changed, each foot can be selected independently, the adaptability to the road surface is improved, and the passability is also improved.
  • the hybrid walking robot Since the wheel (wheel-type rotating pair) is designed at the end of the humeral branch, the hybrid walking robot has two movement modes, and the movement speed and efficiency are greatly improved by using the wheel to move on the structural road surface.
  • the present invention also provides a mobile robot having both a double-sided walking function, a wheeling function, and a scrolling movement function.
  • the double-sided hybrid walking robot solution has fewer motion pairs and the structure is simpler.
  • the fuselage height is small and the passability is good. When moving on one side, there are no extra moving parts.
  • the operation is more stable, can get more accurate images. Since the invention can be in various states (including on the slope) during the movement, the body is substantially maintained in a horizontal state, thereby avoiding serious jitter of the captured video image and obtaining a more accurate image. It also provides a good basis for autonomous control.
  • Figure 1-4 is a perspective view of four different foot parallel mechanisms.
  • Figure 5 is a simplified diagram of a humeral branch with redundant degrees of freedom.
  • Figure 6 is a schematic diagram of two interconnected tibial branching drives.
  • Figure 7-16 is a top view of ten different thigh mechanisms.
  • Figure 17 is a cross-sectional view of one of the branches of the thigh mechanism of Figure 16;
  • Figure 18-20 is a three-dimensional schematic diagram of three hybrid legs with less degrees of freedom.
  • Figure 21 is a perspective view of a hybrid leg mechanism with full degree of freedom.
  • 22 and 23 are perspective schematic views of a hybrid leg mechanism in which the toe spacing of the two wheels can be adjusted.
  • Figures 24 and 25 are perspective views of two types of hybrid leg mechanisms with wheels that can be walked on both sides.
  • Figure 26 is a perspective view of a full-degree-of-freedom internal and external hybrid walking robot.
  • Figure 27 is a top plan view of another full-degree-of-freedom internal and external hybrid walking robot.
  • Figure 30 is a perspective view of a full-degree-of-freedom double-sided hybrid walking robot with wheels.
  • 31 and 32 are three-dimensional diagrams of two cross-type full-degree-of-freedom hybrid walking robots.
  • Figure 33 is a cross-sectional view of the leg mechanism of the two full-degree-of-freedom hybrid walking robots of Figures 31 and 32.
  • Figures 34 and 35 are two variants of the arch 1.1.
  • Figures 36-39 are four arch combinations.
  • Embodiment 40 is a front view of Embodiment 10 (double-sided crawling and walking hybrid robot).
  • Embodiment 41 is a plan view of Embodiment 10.
  • Figure 42 is a single degree of freedom double acting tibial branch diagram.
  • Figure 43 is a two degree of freedom double acting tibia branching diagram.
  • foot parallel mechanism is marked: foot parallel mechanism 1, foot parallel mechanism upper platform (foot arch platform) 1.1, humeral branch 1.2, toe 1.3, wheel rotary pair (wheel) 1.4, gearbox 1.5, input 1.6 Output 1.7;
  • thigh mechanism labeling thigh mechanism 2, thigh platform 2.1, thigh branch 2.2, thigh lower platform (thigh arch link platform) 2.3;
  • hybrid leg mechanism labeling hybrid leg mechanism 3, foot parallel mechanism 3.1 , thigh mechanism 3.2, arch platform 3.3;
  • hybrid walking robot label hybrid walking robot 4, A leg 4.1, B leg 4.2, pelvis 4.3; large ring 5.1.
  • 1.1a is the A-leg arch and 1.1b is the B-leg arch.
  • 1.2a is the branch of the A leg tibia and 1.2b is the branch of the B leg tibia.
  • 3.1a is the A leg hip joint (hip bone), and 3.1b is the B leg hip joint.
  • 1.8 is a double-acting tibial branch chain transmission box, 4.4 is an outer ring, and 4.5 is a hole closing device.
  • a method for constructing a hybrid walking robot in particular, a method for constructing a walking robot comprising two leg mechanisms A and B, the construction method of which is as follows:
  • Each foot parallel mechanism includes a foot arch platform, three tibial branches and three toes, three tibial branches fixedly attached to the arch platform, and the connection points are located at three vertices of a triangle.
  • the lower ends of the three tibial branches connect the toes and the three toes form a toe triangle.
  • the tibial branch is a mechanism formed by the combination of the following degrees of freedom: Tz, TzTx, TzTy, TzTxTy, TzRx, TzRy, TzTxRx, TzTyRy, TzRxRy;
  • Each of the three humeral branches occupies an independent living space and does not interfere with each other; the three tibia branches can be the same branch or different branches.
  • the Y-shaped, O-shaped, C-shaped (U, V)-shaped, T-shaped, triangular, butterfly-shaped arches and arches are all available in the configuration of the arch and arch platform. These structures are just an approximate expression. At the same time, it is not limited to these structural shapes.
  • the Cartesian coordinate system is established as follows: the coordinate system XY plane is the horizontal plane, the Z axis is perpendicular to the horizontal plane, the X direction is the forward direction of the walking robot, and the Y direction is the lateral movement direction.
  • T indicates the degree of freedom of movement
  • Tx, Ty, Tz indicate the degree of freedom of movement in the X-axis direction, the Y-axis direction, and the Z-axis direction
  • R indicates the degree of freedom of rotation, or the rotation of the pair
  • Rx, Ry, Rz represent the degree of freedom of rotation about the X axis, around the Y axis, and around the Z axis, respectively.
  • the foot parallel mechanism is a semi-closed loop parallel mechanism, which mainly has the basic functions of lifting and standing. Therefore, the foot parallel mechanism is also called the lifting standing leg, and the foot parallel mechanism can be applied separately as a lifting standing leg.
  • the semi-closed-loop parallel mechanism refers to a closed-loop mechanism when the foot phase is established, and a special parallel mechanism of the open-loop mechanism when the foot phase is used.
  • the thigh mechanism includes an upper platform, a lower platform, and one or more thigh branches (including a branch of a sports pair) that connect the upper platform and the lower platform, and the lower platform of the thigh mechanism is also referred to as a thigh arch platform.
  • the upper platform of the thigh mechanism is also called the hip bone.
  • the thigh branch can be a motion pair, one or more series mechanisms, or a hybrid mechanism.
  • the thigh mechanism is an institution with one to five degrees of freedom.
  • One to five degrees of freedom are any combination of degrees of freedom in Tx, Ty, Tz, Rz, Rx or Ry; including single degrees of freedom, two, three, four, five degrees of freedom.
  • the thigh mechanism has several types of space mechanisms, plane mechanisms, hybrid mechanisms, or single motion pairs.
  • Y-shaped, O-shaped, C (U, V), T-shaped, triangular, butterfly-shaped thigh arch platforms are all selectable shapes when the thigh arch platform is configured. At the same time, it is not limited to these structural shapes.
  • the main function of the thigh mechanism is to provide horizontal movement and rotation about the Z axis.
  • the degree of freedom of movement in the Z direction may or may not be.
  • both leg mechanisms do not contain Rx degrees of freedom or Ry degrees of freedom.
  • the foot parallel mechanism (lifting standing leg mechanism) and the thigh mechanism are constructed in no particular order.
  • the hybrid leg mechanism includes a thigh mechanism and a foot parallel mechanism, and the foot parallel mechanism is below the thigh mechanism, and the two are connected in series to form a hybrid leg mechanism.
  • the foot arch platform of the foot parallel mechanism shares a platform with the thigh arch platform of the thigh mechanism.
  • the shared platform is called the arch platform.
  • a hybrid leg mechanism is selected as the leg mechanism A,
  • leg mechanism B a hybrid leg mechanism or a foot parallel mechanism is selected as the leg mechanism B.
  • the two leg mechanisms must have at least one Rz degree of freedom, one Tx (or Ty) degree of freedom, or at least one of the leg mechanisms of the hybrid leg mechanism with both Rz degrees of freedom and Tx (or Ty) degrees of freedom.
  • both thigh mechanisms have Rz degrees of freedom and Tx, Ty degrees of freedom. Tz degrees of freedom are optional.
  • leg parallel mechanism of each leg mechanism has Rx, Ry, and Tz degrees of freedom, the two leg mechanisms cooperate to complete the normal step and turn.
  • hybrid leg mechanism + hybrid leg mechanism hybrid leg mechanism + foot parallel mechanism
  • A, B two leg mechanism connection:
  • the two leg mechanisms A and B are two hybrid leg mechanisms, the upper platforms of the thigh mechanisms of the two leg mechanisms of A and B are fixed together, and the two upper platforms connected together form a pelvis, and the two are connected.
  • the leg mechanism together forms a hybrid walking robot;
  • one leg mechanism of the two leg mechanisms A and B is a hybrid leg mechanism and the other leg mechanism is a foot parallel mechanism
  • the upper platform of the thigh mechanism of the hybrid leg mechanism is fixedly connected with the foot arch platform of the foot parallel mechanism.
  • the two connected platforms form a pelvis, and the two leg mechanisms connected together form a hybrid walking robot.
  • Each leg of the two leg mechanisms has its own independent living space and does not interfere with each other.
  • the two arch platforms are either one high or one low, or one inside and one outside, or one after the other, without mutual interference.
  • the tibia branches of the two leg mechanisms have their own independent living space and do not interfere with each other.
  • the distance between the centers of gravity of the toe triangles of the two leg mechanisms connected together is less than the sum of the radii of the circumscribed circles of the two toe triangles, and the projections of the two toe triangles on the horizontal plane coincide.
  • the main purpose of the choice and configuration of the arch platform is to ensure that each of the two arch platforms has an independent living space, thereby ensuring that the sacral branches installed thereon also have independent living spaces.
  • the purpose of connecting the two leg mechanisms is to connect the two structurally complex leg mechanisms to each other and to each other to ensure that each moving part has its own movable space, thereby rationally arranging the movement of the two leg mechanisms. Achieve a variety of walking moves.
  • the center of gravity of the robot is generally located at the midpoint of the center line of the upper platform of the two legs. This center of gravity is generally placed directly above the midpoint of the line connecting the center of gravity of the two toe triangles.
  • connection of the two leg mechanisms can be found in the section "Connections and pelvis of the two leg mechanisms".
  • the hybrid walking robot implementing the above construction method includes two leg mechanisms A and B, one leg mechanism A is a hybrid leg mechanism, and the other leg mechanism B is a hybrid leg mechanism or a foot parallel mechanism; A and B legs The upper parts of the mechanism are connected together.
  • the hybrid leg mechanism includes a foot parallel mechanism and a thigh mechanism.
  • Foot parallel mechanism (lifting standing leg mechanism)
  • the foot parallel mechanism includes a foot arch platform, three tibial branches, and three toes.
  • the three tibial branches are fixedly attached to the arch platform, and the connection points are located at three vertices of a triangle.
  • the lower ends of the three tibial branches connect the toes and the three toes form a toe triangle.
  • the foot parallel mechanism is a semi-closed loop parallel mechanism, and the semi-closed loop parallel mechanism is a special parallel mechanism.
  • the foot parallel mechanism is a lifting standing leg. Therefore, the foot parallel mechanism is also called the lifting standing leg.
  • a tibial branch is a branch with one or more degrees of freedom.
  • the combination of degrees of freedom of the phalanx branches is one or more of Tz, TzTx, TzTy, TzTxTy, RxTz, RyTz, RxTzTx, RyTzTy, RxRyTz degrees of freedom combinations.
  • the typical tibial branches correspond to the above degrees of freedom combination: P, PP, PP, RP, RP, PPP, RPP, RPP, UP.
  • Y-shaped, O-shaped, C-shaped (U, V), T-shaped, triangular, butterfly-shaped arch platforms are all shapes that can be selected when the arch structure is configured. At the same time, it is not limited to these structural shapes.
  • the shape and configuration of the arch can be found in Document 1.
  • Each of the three humeral branches occupies an independent workspace and does not interfere with each other.
  • the three branches can be the same branch or different branches.
  • each of the tibial branches has a degree of freedom of movement in the Z direction.
  • a single degree of freedom of the tibial branch made up of a rotating pair can change the toe spacing. Because of the rotation of an axis on the plane of the arch plane, there is a vertical component of motion and a horizontal component of motion. The horizontal component of motion can be used to change the toe spacing.
  • the sacral branch of the foot parallel mechanism has at least one patella branch, in addition to having a movement degree of freedom in the Z-axis direction, There is also one or two degrees of freedom of movement in the horizontal direction. That is, there is a horizontal movement degree of freedom including Tz degrees of freedom and one or two directions.
  • the main function of the foot parallel mechanism is a lifting standing leg. Therefore, the foot parallel mechanism can be applied separately as a lifting stand leg.
  • a sacral branch with horizontal degrees of freedom not only adjusts the toe spacing, but also provides freedom of movement in the horizontal direction.
  • a foot parallel mechanism that cannot change the toe pitch (for example, the walking robot given in Document 1) can only walk on two parallel boards having a certain width. After changing the toe spacing, you can walk on parallel planks of various widths. You can even walk on the wooden bridge. Improve the adaptability to the road surface.
  • the thigh mechanism includes an upper platform, a lower platform, and one or more thigh branches (including a branch of a sports pair) that connect the upper platform and the lower platform, and the lower platform of the thigh mechanism is called a thigh arch platform.
  • the thigh branch can be a motion pair, one or more series mechanisms, or a hybrid mechanism.
  • the thigh mechanism is a body with one to five degrees of freedom.
  • One to five degrees of freedom of the thigh mechanism any combination of degrees of freedom in Tx, Ty, Tz, Rz, Rx or Tx, Ty, Tz, Rz, Ry; including single degrees of freedom, 2, 3, 4, 5 degrees of freedom, a total of 36 kinds.
  • Y-shaped, O-shaped, C (U, V), T-shaped, triangular, butterfly-shaped thigh arch platforms are all selectable shapes when the thigh arch platform is configured. At the same time, it is not limited to these structural shapes.
  • the combination of the freedom of the space mechanism and the hybrid mechanism is 3TRz, 3T0R, (3T0R)Rz, (3TRz)Rz, (TxTy)Rz; the best freedom in the space mechanism
  • the degree combination is 3TRz, and the best solution in the hybrid mechanism is (3T0R)Rz, and (TxTy)Rz, (RzTxTy)Rz.
  • the Rz in the hybrid mechanism can be continuously steered.
  • the degree of freedom combination is one of 3TRz and (3T0R)Rz, (TxTy)Rz, and (TxTyRz)Rz.
  • the thigh mechanism of the two leg mechanisms is the simplest structure when there is a flat mechanism, and there is no redundant degree of freedom. Therefore, the planar mechanism is the best solution in the thigh mechanism.
  • the combination of degrees of freedom is one of TxTyRz, TxTy, TxRz, and TyRz.
  • the three-degree-of-freedom planar mechanism is among the best.
  • the main function of the thigh mechanism is to provide horizontal movement and rotation about the Z axis.
  • the horizontal movement and the rotation about the Z axis can be distributed over the two legs. It can also be concentrated on one leg. Or on both legs.
  • the thigh mechanism allows for redundant degrees of freedom with Tz, Rx, Ry. However, Rx and Ry degrees of freedom cannot occur on one leg mechanism at the same time.
  • the upper platform of the thigh mechanism is also called the hip bone.
  • the hybrid leg mechanism includes a thigh mechanism and a foot parallel mechanism, and the foot parallel mechanism is below the thigh mechanism, and the two are connected in series to form a hybrid leg mechanism.
  • the foot parallel mechanism shares a single arch platform with the thigh mechanism, and the two are connected by this common platform.
  • the shared platform is called the arch platform.
  • the main purpose of constructing the hybrid leg mechanism is to enable the foot parallel mechanism to obtain functions such as stepping and steering.
  • the hybrid leg mechanism allows for redundant degrees of freedom.
  • one leg mechanism is a hybrid leg mechanism
  • the other leg mechanism is a hybrid leg mechanism or a foot parallel mechanism.
  • the combination of degrees of freedom requires that the thigh mechanism of the two leg mechanisms must have at least one Rz degree of freedom, one Tx (or Ty) degree of freedom, or at least one leg mechanism with a mixed leg mechanism that has both Rz degrees of freedom and Tx (or Ty) degrees of freedom.
  • the best solution is that both thigh mechanisms have Rz degrees of freedom and Tx, Ty degrees of freedom.
  • the Tz freedom of the thigh mechanism is optional. Since the leg parallel mechanism of each leg mechanism has Rx, Ry, and Tz degrees of freedom, the two leg mechanisms can perform normal steps and steering.
  • a leg mechanism is a hybrid leg mechanism + B leg mechanism is a hybrid leg mechanism
  • combination two A leg mechanism is a hybrid leg mechanism + B leg mechanism is a foot parallel mechanism.
  • Two full-degree-of-freedom hybrid leg mechanisms can be combined into one hybrid walking robot.
  • a full-degree-of-freedom hybrid leg mechanism and a less-degree-of-freedom leg mechanism or foot parallel mechanism can also be combined into a hybrid walking robot.
  • a two-degree-of-freedom leg mechanism can only form a hybrid walking robot if it meets certain degrees of freedom.
  • A, B two leg mechanism connection
  • the two leg mechanisms are hybrid leg mechanisms
  • the upper platforms of the thigh mechanisms of the two leg mechanisms A and B are fixed together, and the two upper platforms connected together form a pelvis, two legs connected together.
  • the organization forms a hybrid walking robot
  • one leg mechanism is a hybrid leg mechanism and the other leg mechanism is a foot parallel mechanism
  • the upper platform of the thigh mechanism of the hybrid leg mechanism is fixedly connected with the foot arch platform of the foot parallel mechanism, and the two are connected together.
  • the platform forms a pelvis, and the two leg mechanisms connected together form a hybrid walking robot.
  • Each leg of the two leg mechanisms has its own independent living space and does not interfere with each other;
  • the two arch platforms are either one high or one low, or one inside and one outside, or one after the other, without mutual interference;
  • the sacral branches of the two leg mechanisms have their own independent living space and do not interfere with each other;
  • the distance between the centers of gravity of the toe triangles of the two leg mechanisms connected together is less than the sum of the radii of the circumscribed circles of the two toe triangles, and the projections of the two toe triangles on the horizontal plane coincide.
  • Y-shaped, O-shaped, C (U, V)-shaped, T-shaped, triangular, butterfly-shaped arch platforms are all selectable shapes when the arch structure is configured. These structures are just an approximate expression. At the same time, it is not limited to these structures.
  • the configuration of the two arch arch platforms is based on mutual non-interference as the highest criterion.
  • the general requirement for the thigh branch, the arch platform, the toe and the toe triangle is that each component has its own independent range of motion and does not interfere with each other.
  • the work space is allowed to partially overlap (for example, at the junction of two active spaces), and through control, the purpose of non-interference can also be achieved, just like the two legs of a person. Such a configuration, through control, can achieve better performance.
  • the center of gravity of the robot is generally located at the midpoint of the center line of the upper platform of the two legs. This midpoint is generally placed directly above the midpoint of the line of gravity of the two toe triangles.
  • connection The purpose of the connection is to connect two structurally complex leg mechanisms to each other and to each other to ensure that each moving part has its own movable space, thereby realizing various walks by rationally arranging the movement of the two leg mechanisms.
  • mobile When connected together, the thigh branches of the two leg mechanisms must have their own active space; after joining together, the two tibial branches also have their own active space.
  • the upper platforms of the two leg mechanisms of A and B are fixed together, and the distance between the centers of gravity of the toe triangles of the two leg mechanisms is one of the following two cases:
  • Ra is the radius of the circumscribed circle of the toe triangle of the A leg mechanism.
  • Rb is the radius of the circumscribed circle of the toe triangle of the B leg mechanism
  • the first is an isotropic connection scheme, called the internal and external structure scheme (see Examples 1, 2); the second is a non-isotropic scheme called the cross-structure scheme (see Example 3). 4).
  • the internal and external structure scheme if it is two identical leg mechanisms, has a phase difference of about 60 degrees when the two upper platforms are connected.
  • the cross-structure scheme generally has a leg mechanism with the toe falling in the center of the other toe triangle.
  • the tibial branch of the two leg mechanisms of the hybrid walking robot is one of the following tibial branches. Or a combination of the two:
  • the first motion pair of the humeral branch is a double-acting pair, and the axis of the moving pair is perpendicular to the plane of the arch platform;
  • the first movement pair of the humeral branch is the rotation pair, and the humeral branch is PHRHP, wherein the axis of the rotation pair is perpendicular to the plane of the arch platform;
  • the first movement pair of the humeral branch is the rotation pair, and the axis of the rotation pair is parallel to the plane of the arch platform.
  • the double-acting mobile pair or PHRHP branch has two outputs, one on top and one on the bottom, both sides working.
  • the rotating pair transfers the output end of the tibial branch to the other side by rotation, and both sides can be moved on foot.
  • the sequence number of the sacral branch movement pair is the first number, and the number of the movement pair connected to the first number is the second number, and so on.
  • a large ring is connected to the pelvis of the hybrid double-sided walking robot.
  • This large ring and the pelvis are in a plane, this large circle
  • the center of the ring is in the same position as the center of the pelvis.
  • the diameter of the large ring is larger than the diameter of the circumcircle of the toe triangle.
  • a robot that can not stand sideways and can be converted into a walking state when the body is turned over is provided.
  • Large rings include rings, elliptical rings, convex polygons, and partially interrupted rings.
  • the ring forms three support points with the two toes.
  • the three supporting points forming a ring foot triangle or a polygon
  • the projection on the horizontal plane falls outside the ring triangle or polygon.
  • the body will fall.
  • Three or six toes are re-landed to restore walking.
  • a non-circular large ring, the radius is the distance from the edge of the ring to the center of the pelvis.
  • Polygons or intermittent rings can only be used for sideless purposes.
  • the ring has an anti-side function and a scrolling function.
  • the ring scheme is superior to the polygon scheme and better than the discontinuous scheme.
  • the role of the ring the robot body can not stand sideways, can fall in two directions, restore the walking function. If, in extreme cases, the robot body can only stand sideways (for example, on a slope of six or seventy degrees or steeper and cannot fall down), the robot can move in a rolling motion. Rolling movements removes steep slopes and restores walking. Thus, a robot that can walk on both sides and can be moved by scrolling is provided.
  • the large ring is a retractable ring. Any expandable mechanism that makes the large ring smaller and smaller can be applied to the retractable ring.
  • Reference 1 has a solution for reference.
  • the toes of at least one of the leg mechanisms are all toes of a wheeled pair, and the axis of the wheeled pair is parallel to the plane of the base platform.
  • the wheeled rotating pair may be a steering wheel and an directional wheel, the axis of the directional wheel being perpendicular to the direction of advancement.
  • a gearbox is designed and mounted on the arch platform.
  • the gearbox has an input end with two or three output ends, and one output end is connected to a tibial branch.
  • the two or three outputs have opposite or opposite directions of movement or direction of rotation.
  • the shape of the gearbox conforms to the overall or partial shape of the arch.
  • the top of the humeral branch is connected to the output.
  • the arch platform on which the gearbox is mounted does not affect the independent movement of the other arch platform.
  • Opposite or opposite movement or rotation means that the distance between the toes connected to the tibial branches of the two or three outputs becomes smaller after the input has a defined input (referred to as the opposite movement). . After the input has another determined input, the distance between the toes becomes larger (called the opposite movement). For example, the movement of the centripetal is a relative movement.
  • the gearbox has the same or similar shape as the partial or integral portion of the arch platform. At the two output ends, the shape of the gearbox conforms to the shape of the portion of the arch; at the three output ends, the shape of the gearbox conforms to the overall shape of the arch.
  • the patella branch is driven by a PHRHP drive chain.
  • the R pair of the PHRHP transmission chain is the active pair.
  • the spiral directions of the two H pairs are opposite.
  • the rotating pair is active in one direction, the output ends of the two moving pairs are either close to each other or away from each other.
  • a rotation pair is used to adjust the two toes.
  • An example of a drive for three output gearboxes Take the Y-shaped arch platform as an example.
  • the gearbox is in the shape of a Y.
  • One input is in the middle, the input is meshed with two gears, the input is the drive gear, and the other two are the driven gears.
  • the middle drive gear drives one end gear and the other two passive gears in the middle drive the other two end gears.
  • the axes of the six gears are on a horizontal plane.
  • Each of the three end gears is connected to a tibial branch. When the active end has an input, the three toes are either close or away.
  • a rotation counter is used to adjust the pitch of the three toes.
  • the role of the gearbox is to synchronize the movement of two or three toes, changing the relative position of the toes, the triangle makes some symmetrical changes, and the position of the center of gravity changes little, which is convenient for control.
  • the design of the gearbox is well known in the art and has a variety of options. No longer.
  • the foot parallel mechanism is both an independent leg mechanism and an important part of the hybrid leg mechanism.
  • the main function of the foot parallel mechanism is to provide rotational freedom about the X axis, providing rotational freedom about the Y axis and freedom of movement in the Z direction.
  • Multi-degree-of-freedom branching also changes the toe spacing and provides freedom of movement in the horizontal direction.
  • the chain with wheels has two functions: round and walk. Therefore, the main function of the foot parallel mechanism: 1, on various uneven surfaces, can maintain the body level or a fixed posture to walk, 2, to achieve stepping motion.
  • the foot parallel mechanism is classified according to its degree of freedom, and has two degrees of freedom, three degrees of freedom, and a nine-degree-of-freedom foot parallel mechanism. If you add redundant degrees of freedom, there will be more types.
  • the humeral branch is a branch attached to the arch of the arch, which is the support between the arch platform and the ground. It is a branch with a specific combination of degrees of freedom. It is equivalent to the humerus between the toes and the ankles of the animal. Unlike the humerus, the sacral branches can vary in length and angle.
  • the humeral branch is divided into five cases: 0 degrees of freedom tibia branch (up to one foot parallel mechanism), single degree of freedom tibia branch (Tz degrees of freedom), double degree of freedom tibia branch (TzTx, TzTy,, TzRx, TzRy degree of freedom combination), three degrees of freedom tibia branch (TzTxTy, TzTxRx, TzTyRy, TzRxRy degrees of freedom combination), humeral branch with wheels (including steering wheel, directional wheel, pulley tibia branch chain up to 5 degrees of freedom ).
  • the three tibial branches can be the same branch or different branches.
  • Each of the three humeral branches occupies an independent workspace and does not interfere with each other.
  • a 0 degree of freedom tibia branch is a rod.
  • a 0 degree of freedom tibia branch with two single degree of freedom tibia branches can form a foot parallel mechanism to form a standing leg mechanism.
  • This leg mechanism has no Z-direction movement freedom and no lifting function.
  • a walking robot with such a leg mechanism can only move up and down in a wave motion.
  • a single degree of freedom of the humeral branch only one Z direction of movement.
  • Three single-degree-of-freedom tibia branches form a foot-parallel mechanism, and each patella branch has a Z-direction freedom of movement (including degrees of freedom with Z-direction degrees of freedom).
  • a sacral branch composed of a moving pair P has a moving secondary axis perpendicular to a horizontal plane; for example, a sacral branch composed of a rotating pair R or a parallelogram moving pair Pa, whose rotational secondary axis is parallel to the horizontal plane, R, Pa movement
  • the sub-rotation contains a motion component in the Z direction.
  • the foot parallel mechanism formed by the single-degree-of-freedom tibial branch of the mobile pair is a lifting leg that can't adjust the toe spacing.
  • the foot parallel mechanism formed by the single-degree-of-freedom tibial branch formed by the rotating pair is an elevating standing leg with adjustable toe spacing.
  • a two-degree-of-freedom tibia branch composed of a single motion pair for example, a two-translation parallelogram-like complex motion pair (including a 2-RPR parallelogram-like complex motion pair and a 3-UU parallelogram-like complex motion pair, also known as two-dimensional pure Translating the universal hinge).
  • a double-degree-of-freedom tibia branch composed of two motion pairs for example: PP (two P minor axes are perpendicular to each other), RP, RR, PaP, PC, PaPP, PaR, RC.
  • a double-degree-of-freedom tibia branch consisting of three motion pairs, for example, PPP (the first two P minor axes are perpendicular to each other, the latter two P minor axes coincide), PCC, PaPP.
  • the last exercise pair is a negative deputy for vibration reduction.
  • the foot parallel mechanism formed by the double-degree-of-freedom tibial branch is a lifting leg that can change the toe spacing.
  • the degree of freedom of movement of the humeral branch in addition to increasing the selection of the point of the toe, can also increase the stride, increasing the Tx degrees of freedom of the foot parallel mechanism. It can speed up the walking speed in the forward direction and improve the ability to cross the sulcus.
  • Tx degrees of freedom are a redundant degree of freedom.
  • the three-degree-of-freedom tibial branch composed of a single motion pair has three translational universal joints M; the three-degree-of-freedom tibial branches composed of double motion pairs have UP branches, PI branches, CP branches or U*P branches;
  • the parallel mechanism has 3-UPU; the series mechanism has RRR, PPaP.
  • the foot parallel mechanism formed by the three-degree-of-freedom tibial branch is a lifting leg that can change the toe spacing.
  • Three movement degrees of freedom of the humeral branch you can choose the toe point in a larger range (two dimensions), can increase the stride, three degrees of freedom of the humeral branch, in addition to the larger point of the toe Outside the selection range. Speed up the direction of travel and lateral walking speed, and improve the ability to cross the sulcus.
  • the tibial branch is mainly used in series. Sometimes parallel mechanisms can also be applied, but the structure is complicated and the working process has a large disturbance space. Three translational degrees of freedom, the humeral branch, if used in parallel, will be more complicated and will increase the weight of the leg. However, it has a higher carrying capacity.
  • the humeral branch also has an associated tibia branch.
  • Interrelated tibia branches can achieve some symmetrical movement of the toes with less freedom, which not only changes the toe spacing, but also does not change the position of the center of gravity.
  • a wheel is mounted on the toe, that is, the wheel type rotating pair Rw is installed, the wheel axis is parallel to the base platform plane, and the directional wheel axis is perpendicular to the advancing direction.
  • Wheels include, with or without steering freedom.
  • tibial branches with wheels PRw, PPRw, PPPRw, RPRw, RPPRw, RRw, RRRw, RRPRw, RPRw, PaRw, PaRRw, PaPRw, PaPPRw, PPRw.
  • the arch platform is connected to the three humeral branches to form a complete arch.
  • the arch is variable in height; some sacral branches and toes are also variable in spacing.
  • the two P secondary axes coincide, there is a negative pair for vibration reduction. If the two P secondary axes are perpendicular, they are two active pairs that form a branch of two degrees of freedom.
  • U means Hooke hinge
  • P means generalized movement pair
  • R means rotation pair
  • Rw wheel rotation pair
  • C means cylinder pair
  • H means spiral pair
  • Pa parallelogram movement pair
  • U * and I represent two translational parallelogram complex motion pairs, also known as two pure translational universal joints
  • M represents a three-translation parallelogram-like complex motion pair.
  • the toe triangle should be as large as possible to achieve a larger stability range.
  • the humeral branch should increase the amount of movement. For example, use a multi-section moving pair to increase the amount of movement.
  • connection between the humeral branch and the arch of the arch should pay attention to the relationship between the axis of the first movement pair and the plane of the arch of the arch.
  • P or RHP acts as a tibial branch, the first axis of motion is perpendicular to the plane of the base plate; PP (P is perpendicular to P) or PR as the branch of the tibia, and the first axis of motion is parallel to the plane of the base platform; RR , RP or RPP as the tibial branch, the axis of the first motion pair is parallel to the plane of the base platform.
  • the three toes are not collinear, usually at the three vertices of an equilateral triangle or an isosceles triangle. Naturally, the junction points of the three humeral branches and the arch platform are not collinear.
  • the toes come in a variety of configurations. In order to work on special surfaces such as ceilings and walls, suction cups, electromagnets, etc. can be installed on the toes. In order to reduce the impact at the time of landing and improve the stability of the walking robot, an elastic vibration damping device is installed at the lower part of the toe.
  • a toe pad is mounted with a resilient pad; or a negative moving pair is mounted at the end of the tibial branch to install a shock absorber of the type of motion pair.
  • the shape of the lower end of the toe is preferably hemispherical or ellipsoidal. This can be adapted to a variety of road surfaces.
  • the wheel is also a special toe.
  • a distance measuring sensor and a pressure sensor can also be mounted on the lower part of the toe.
  • the thigh mechanism is a mechanism with a defined combination of degrees of freedom and freedom.
  • the thigh mechanisms of various degrees of freedom there are 14 thigh mechanisms with no Rx or Ry degrees of freedom; there are 22 thigh mechanisms that contain Rx or Ry degrees of freedom.
  • the one-degree-of-freedom thigh mechanism is removed, and there are 10 thigh mechanisms.
  • These 10 thigh mechanisms can be parallel or series.
  • the thigh mechanism containing Tz degrees of freedom is removed, and four mechanisms are flat thigh mechanisms.
  • a thigh mechanism that includes Rx or Ry degrees of freedom has advantages in special applications. For example, most workplaces are inclined roads, and the body also requires a horizontal attitude.
  • the thigh mechanism can be a tandem mechanism, a parallel mechanism, a hybrid mechanism or a single motion pair. Multiple branched thigh mechanisms, the same branch or different branches can be used.
  • a leg mechanism may have no or only one degree of freedom of rotation about a horizontal axis. Rx degrees of freedom and Ry degrees of freedom cannot occur simultaneously in a thigh mechanism.
  • each branch should not interfere with each other. This is also a condition that an institution must meet.
  • the thigh mechanism has a space mechanism, a hybrid mechanism, a plane mechanism, or a single motion pair. Discussed separately below.
  • Space agency its combination of degrees of freedom includes: 3TRz, 3T0R. 3TRzRx, 3TRzRy, 3TRx, 3TRy.
  • Space parallel mechanism 3T0R mechanism, such as (3-UPU), (3-PUU), (3-CPP) mechanism.
  • 3TRz mechanism such as 4-UPU parallel mechanism.
  • Hybrid mechanism for example, a combination of degrees of freedom (3T0R) Rz, (3TRz) Rz, Rz (3TRz), (3TRz) Rx, (3TRz) Ry, (3T) Rx, (3T) Ry, (TxTy) Rz; TxTyRz) Rz et al.
  • the space mechanism described above or the plane mechanism described below may be connected in series with one rotation pair Rz.
  • the degree of freedom of rotation about the Z axis allows for redundant degrees of freedom.
  • the degree of freedom of the planar mechanism is combined with TxTyRz, TxTzRz, TyTzRz, TxTy, TxTz, TyTz, TxRz, TyRz, TzRz; the mechanism consists of a parallel mechanism and a series mechanism.
  • parallel mechanisms 3-RRR, 3-RPS, 3-RPR, 3-RPR, 3-PRP, 3-PaPaRz mechanism, etc.
  • tandem mechanisms RRR, RPR, PaPaRz, and: PRz, RzU*, (CC) Rz, etc.
  • Tx is formed of P pairs
  • Ty is formed of P pairs
  • Rz is formed of R pairs
  • TzRz is formed of C pairs.
  • Single motion pairs I, M, U* are also possible.
  • the thigh mechanism with three degrees of freedom of Tx, Ty, and Rz is called a full-degree-of-freedom thigh mechanism; in addition to the Tx, Ty, and Rz degrees of freedom, there are other degrees of freedom of the thigh mechanism called redundant degrees of freedom thigh mechanism;
  • a thigh mechanism of any degree of freedom of Tx, Ty, and Rz degrees of freedom is referred to as a less-degree-of-freedom thigh mechanism.
  • a thigh mechanism having Tx, Ty, and Tz degrees of freedom is referred to as a less-degree-of-freedom thigh mechanism.
  • the thigh mechanism is classified into a steering thigh mechanism, a one-way moving thigh mechanism, a two-way moving thigh mechanism, a one-way moving steering thigh mechanism, a two-way moving steering thigh mechanism, and a redundant degree of freedom thigh mechanism.
  • the principle of selecting the thigh mechanism is: the parallel mechanism is better than the tandem mechanism; the mechanism without Rx, Ry is better than the mechanism containing one Rx or Ry; in some cases, the mechanism without Tz In the case of a mechanism containing Tz; in some cases, the hybrid mechanism is superior to the parallel mechanism; in some cases, the planar parallel mechanism is superior to the spatial parallel mechanism; in some cases, the redundant branch parallel mechanism is superior to full Branch-chain parallel mechanism (parallel mechanism with the same number of degrees of freedom and number of branches).
  • the construction of the hybrid leg mechanism is to connect a foot parallel mechanism and a thigh mechanism. Any one of the foot parallel mechanism and any one of the thigh mechanisms can form a hybrid leg mechanism as long as one arch platform is shared.
  • the purpose of constructing the hybrid leg mechanism is to enable the foot parallel mechanism to obtain the step and steering function.
  • the connecting part of the thigh mechanism and the foot parallel mechanism is the arch platform, and the two share a single arch platform. Simply put, the thigh mechanism and the foot parallel mechanism that are connected together and share a arch platform are a hybrid leg mechanism.
  • the thigh mechanism In addition to the Rx, Ry, and Tz degrees of freedom of the foot parallel mechanism, the thigh mechanism also has at least one degree of freedom in the following three degrees of freedom: 1. The freedom of movement Tx in the forward direction, 2. The freedom of lateral motion Degree Ty, 3, the degree of freedom Rz about the rotation of the Z axis.
  • the standing and lifting function of the foot parallel mechanism cooperates with the freedom of movement of the thigh mechanism in the forward direction to complete the stepping function of the forward direction; the standing and lifting function of the foot parallel mechanism cooperates with the lateral motion degree of the thigh mechanism to complete the lateral direction
  • the step function of the foot parallel mechanism, the standing and lifting function of the foot parallel mechanism, and the steering movement degree of the thigh mechanism complete the steering function.
  • the best hybrid leg mechanism has six or more degrees of freedom.
  • the main functions of the hybrid leg mechanism include standing, stepping and steering.
  • the hybrid leg mechanism has a one-way stepping leg, a two-way stepping leg, a steering leg, a one-way stepping steering leg, an all-round leg, and an adjustable toe spacing leg.
  • the hybrid leg mechanism allows for other redundant degrees of freedom.
  • the invention eliminates the case where Rx and Ry degrees of freedom are simultaneously redundant. A single Rx, Ry degree of freedom redundancy is allowed. Redundancy of other degrees of freedom is also allowed.
  • Redundant degrees of freedom for hybrid walking robots include two situations.
  • the thigh mechanism has redundant degrees of freedom and is divided into two cases. 1. There is Tz, Rx or Ry degree of freedom in the thigh mechanism, and the degree of freedom with the foot parallel mechanism overlaps to form redundant degrees of freedom. For example, if the thigh mechanism uses 3TRz, or TxRx, then 3TRz has Tz degrees of freedom redundancy, and TxRx has Rx degrees of freedom redundancy. 2.
  • the thigh mechanism itself has degree of freedom redundancy. For example, if the thigh mechanism is connected in series with a Rz with a 3-DOF plane mechanism, then Rz exhibits redundant degrees of freedom.
  • a hybrid leg mechanism with redundant degrees of freedom thigh mechanism must be a redundant degree of freedom hybrid leg mechanism.
  • the foot parallel mechanism exhibits degree of freedom redundancy, which is divided into two cases. 1. In the foot parallel mechanism, if the humeral branches are two degrees of freedom or three degrees of freedom, the foot parallel mechanism has Ty or Tx degrees of freedom. If the thigh mechanism with which it is fitted also has Ty or Tx degrees of freedom, Ty or Tx degrees of freedom redundancy may occur. 2.
  • the tibia branch has its own degree of freedom redundancy. For example, in the humeral branch, there are two moving pairs (or cylindrical pairs) with axes that coincide, one of which acts as a shock absorber (negative pair), and the shock absorber is a redundant degree of freedom.
  • a rotating pair of three axes parallel as a sacral branch, the lowermost rotating pair is a negative pair, and as a shock absorber, there is also a redundant degree of freedom (see Figure 5).
  • a hybrid leg mechanism with a redundant degree of freedom foot parallel mechanism must be a redundant degree of freedom hybrid leg mechanism.
  • the redundant degree of freedom hybrid leg mechanism does not affect the application of the leg mechanism. In some cases it is still a good thing.
  • a hybrid walking robot can be formed.
  • the two leg mechanisms of Figure 18 cannot form a walking hybrid robot. Because this robot has no steering ability.
  • the structure In addition to meeting the freedom requirements of the two leg mechanisms, the structure must also meet certain requirements.
  • a full-degree-of-freedom hybrid leg mechanism and a less-degree-of-freedom leg mechanism or foot parallel mechanism can also be combined into a hybrid walking robot.
  • a two-degree-of-freedom leg mechanism can only form a hybrid walking robot if it meets certain degrees of freedom.
  • the horizontal degree of freedom of the foot parallel mechanism cooperates with the thigh mechanism to achieve walking movement. But this is not the best option.
  • a steering thigh mechanism with a one-way toe pitch adjustable foot parallel mechanism constitutes a hybrid leg mechanism. Two such hybrid leg mechanisms can form a hybrid walking robot. Obviously, this is not a good solution.
  • the walking robot can also rely on this redundant degree of freedom to walk, which is a potential benefit.
  • the pelvis formed by connecting the two leg mechanisms is also used to mount the body (body) and the operator.
  • the two thigh mechanisms after the connection form a one-, two-, or multi-layer mechanism: mainly divided into several cases.
  • One layer structure the pelvis, the A leg thigh branch and the B leg thigh branch, the A leg arch platform and the B leg arch platform are all on the same layer.
  • Two-layer structure one layer of pelvis, A leg thigh branch and B leg thigh branch are in the same layer as the pelvis, and the A leg arch platform and the B leg arch platform are on the same layer.
  • RPR branches, RRR branches are used for leg mechanisms (see Examples 2, 3, 4).
  • the two-layer structure also includes a hybrid walking robot formed by a combination of a hybrid leg mechanism and a foot parallel mechanism. There is a leg mechanism without a thigh branch. The arch platform of the foot parallel mechanism and the upper platform of the hybrid leg mechanism form a layer. The arch platform of the hybrid leg mechanism forms a layer with two layers.
  • Three-layer structure one layer of pelvis, A leg thigh branch and B leg thigh branch and pelvis in the same layer, A leg arch platform in the second layer, B leg arch platform in the third layer.
  • Example 1 Three-layer structure: one layer of pelvis, A leg thigh branch and B leg thigh branch and pelvis in the same layer, A leg arch platform in the second layer, B leg arch platform in the third layer.
  • the A-leg thigh branch (including the pelvis) occupies a single layer.
  • the B-leg thigh branch (including the pelvis) also occupies a separate layer.
  • the thigh branches of the two leg mechanisms allow for a relatively large disturbance space, with the A-leg arch platform on the third floor and the B-leg arch platform on the fourth floor. In this structure, the two pelvis are connected one at a time.
  • a hybrid walking robot may have six layers.
  • the arch structure of the arch convex, flat, concave can be.
  • the shape of the arch platform has various structural forms such as Y, T, O, C, V, U, triangle, and butterfly. These structures are only an approximate expression. At the same time, it is not limited to these several structural forms.
  • the goal of configuring the two arch platforms is to prevent interference between the two arch platforms, providing the respective activity space for the two arch platforms and providing the respective activity spaces for the two humeral branches.
  • Various shapes that meet the design goals of the arch frame can be used to make the arch platform. Refer to Document 1 for the structure and configuration of the arch.
  • the hybrid leg mechanism of the present invention is characterized in that the step-up function of the leg is separated from the step-shifting function, and the two are not coupled and are easy to control.
  • the degree of freedom of movement of the humeral branch refers to the degree of freedom of movement of the point of the toe. Therefore, the toes mounted on the rotating pair have freedom of movement.
  • the order of the letters does not indicate the order of degrees of freedom.
  • Rz(3T0R) is the same as Rz(3TRz), regardless of the order.
  • the exterior of the hybrid walking robot of the present invention can adopt a closed structure for fireproof, waterproof or radiation-proof applications.
  • the drive of the present invention suggests the use of remote drives (e.g., fixed motor gears for remote transmission) to reduce the inertia of moving parts.
  • the various mechanisms of the present invention should avoid singular configurations.
  • the leg mechanism disclosed in Document 1 can be configured with a common bionic leg mechanism to constitute a walking robot.
  • the invention is a non-bionic walking robot. It is embodied in three aspects: First, the stepping function and the step-up function of the hybrid leg mechanism are decoupled, and the steering function and the step-up function are also decoupled. This is not seen in the animal kingdom. Second, the two legs can be mutually tolerated and interspersed with each other. The animal's legs are all solid, can't be interspersed with each other, and can't be tolerated each other. Third, animals have front and rear legs or left and right legs or both front and rear legs.
  • the walking robot of the present invention has no front, rear, left and right legs, only inner and outer legs. Therefore, the present invention is a non-bionic walking robot.
  • the working process of the hybrid walking robot given by the present invention is basically the same as that of the walking robot of Document 1.
  • a brief description of the working process of several typical hybrid walking robots is given.
  • the less freedom of a hybrid walking robot the worse its ability to move. Seven degrees of freedom, only wave-type intermittent movement, intermittent steering (at large angles), can not move laterally. Eight degrees of freedom, according to the combination of degrees of freedom, 1, can only do horizontal intermittent movement, intermittent steering, can not move laterally, 2, or can only do wave-type intermittent movement, continuous steering, can not move laterally. 3, can only do wave-type intermittent movement, intermittent steering and lateral movement. Adding a degree of freedom will improve the walking function of the robot. Twelve degrees of freedom, you can make a variety of moves. If the toe pitch can be adjusted, more than twelve degrees of freedom are required, and at this time, various road surfaces can be accommodated.
  • Static stability straight walking In a step cycle, when stopping, it is assumed that the A leg is in the foot phase and the B leg is in the foot phase. During the walking process, the pelvis remains horizontal.
  • the platform of the A-leg thigh mechanism is horizontally moved to drive the B-leg movement, and the B-leg toe triangle is also horizontally moved to achieve the stepping.
  • the B-legs of the B-leg are put down, three toes. According to the ground height, it touches the ground and the B leg bears the load.
  • the B leg becomes a standing leg.
  • the sacral branches of the A leg are lifted (shortened), and the A leg becomes the foot phase.
  • the platform of the B-leg thigh mechanism is horizontally moved to drive the A-leg movement, and the A-leg toe triangle is also horizontally moved in the same direction to achieve the stepping.
  • the A-leg humeral branch is lowered. Long), the three toes depend on the ground height, touch the ground, the A leg bears the load, and the A leg changes to the foot phase. Complete a loop. Repeat the above process to achieve a straight horizontal walking movement.
  • the actual working process shows that the adaptation of the invention to the uneven road surface is completely completed by the foot parallel mechanism; the task of lifting the leg is mainly completed by the foot parallel mechanism, and only when the thigh mechanism has the Tz degree of freedom, the task of lifting the leg is paralleled by the foot.
  • the institution and the thigh mechanism work together, but the thigh mechanism is only a secondary function; the step and steering functions are mainly done by the thigh mechanism. Only when there are two or three degrees of freedom in the branch of the foot parallel mechanism, the task of stepping and steering is performed by the foot parallel mechanism and the thigh mechanism, but the stepping function of the foot parallel mechanism is only a secondary function.
  • Static stability steering When stopping, assume that the A leg is in the foot phase and the B leg is in the foot phase.
  • the B-leg toe triangle in the foot phase rotates relative to the upper platform. If the requirement is not met, the upper platform rotates in the same direction under the driving of the leg A phase.
  • the legs and legs of the legs are lowered, the toes touch the ground according to the ground height, the B legs become the foot phase, and the A legs become the foot phase.
  • the leg of the leg is rotated by an angle, and the leg of the leg is rotated by an angle to achieve the required steering angle. If the angle is insufficient, the above process can be repeated and the steering is continuously performed.
  • the center of gravity of the robot does not change, and it is always in the stable triangle formed by the three toes of the leg-leg mechanism.
  • Static stability Simultaneous steering while walking: Since the center of gravity of the robot does not change during the steering process, the walking robot can walk straight while walking, and can complete the steering during walking.
  • the robot When moving forward, even if the center of gravity of the robot instantaneously exceeds the stable triangle range of the leg of the leg, the robot does not need to adjust the position of the center of gravity left and right. For example, if the A leg is in the foot phase and the B leg is in the foot phase, as long as the B leg is forced to the ground, the upper platform obtains a large forward and slightly upward speed, the center of gravity rapidly shifts forward, and the A leg quickly touches the ground. Gravity falls completely on the A leg, the A leg becomes the standing leg phase, the B leg rises, and the B leg becomes the foot phase, which enables dynamic walking.
  • the robot should not adjust its center of gravity in the horizontal direction.
  • Example 3 the working process of the cross walking robot will be described.
  • the B leg toes are extended forward, and the A leg drives the platform on the thigh to move in the same direction, so the upper platform moves forward, the center of gravity moves forward, the B leg toes move forward, and finally reaches the required step size.
  • the maximum step size B leg toe landing, bearing, center of gravity from A leg to B leg, B leg in the foot phase, A leg lifted back and retracted, A leg is in the foot phase.
  • the upper platform continues to move forward, the center of gravity continues to move forward, and the center of gravity moves to the center of the B leg.
  • B leg is in the foot phase, start the next step movement, start the next cycle.
  • Static stability steering The B leg in the phase of the foot is rotated relative to the upper platform. If the requirement is not met, the upper platform rotates in the same direction under the driving of the leg A. When the required steering angle or the maximum steering angle is reached, the leg of the leg is lowered and becomes the standing leg phase, the leg A of the leg is changed to the leg phase, and the leg leg is rotated by an angle to achieve the required steering. If the angle is insufficient, the above process can be repeated and the connection is turned. During the steering process, the center of gravity of the robot does not change, and it is always in the stable triangle formed by the three toes of the leg-leg mechanism.
  • This hybrid walking robot can only be used for intermittent walking.
  • the B leg is used for one-way walking and steering, and the A leg can perform the standing and lifting functions. When the B leg moves, it can be turned at the same time, and the steering can also take a step.
  • the walking process is described as follows: A leg is in the standing position, the weight of the machine is basically not moving, the B leg is lifted and moved, and the B leg is subjected to the body load, the upper platform is lifted, the B leg becomes the standing leg phase, and the A leg is raised, the body is lifted.
  • the steering process of this less-degree-of-freedom walking robot is also intermittent.
  • the process refers to the steering work process of the internal and external full (full) degree of freedom hybrid walking robot, and will not be described again.
  • the invention has a number of excellent embodiments.
  • various schemes of the foot parallel mechanism are explained, and various schemes of the hybrid leg mechanism are explained.
  • several typical hybrid walking robot embodiments are introduced.
  • Foot parallel mechanism lifting standing legs
  • the foot parallel mechanism is both an essential mechanism for the hybrid leg mechanism and one of the optional leg mechanisms for the hybrid walking robot leg mechanism. So it is a very important institution.
  • the foot parallel mechanism is divided according to the degree of freedom of the humeral branch, the standing leg, the lifting standing leg, the one-way toe spacing adjustable lifting standing leg, the toe spacing in two directions adjustable lifting leg mechanism, the wheel leg, the rolling leg Wait.
  • a height of the toe triangle can be defined as the length of the foot and the bottom edge is defined as the width of the foot.
  • Figures 1-4 are perspective views of four different foot parallel mechanisms.
  • the foot parallel mechanism is independently applied as a leg mechanism. In most cases, it can only be combined with a hybrid leg mechanism having both a step and a steering function to form a hybrid walking robot.
  • Figure 1 is a perspective view of a first type of foot parallel mechanism 1, the arch 1.1 being a circular arch, the humeral branch 1.2 being a moving pair, the secondary axis of the movement being perpendicular to the plane of the arch of the arch, and the lower end of the humeral branch being the toe 1.3.
  • the toe 1.3 spacing cannot be adjusted. This is a lifting standing leg with three degrees of freedom. If the humeral branch in the lower right corner is replaced by a rotating pair, the axis of the rotating pair is perpendicular to the advancing direction, and the toe spacing can be changed.
  • FIG. 2 is a perspective view of a second foot parallel mechanism 1 in which the arch 1.1 is a T-shaped arch and three humeral branches 1.2 are two pairs of rotating pairs in series, two degrees of freedom.
  • the three humeral branches have six degrees of freedom.
  • the axes of the first rotating pair are parallel to each other.
  • the lower end of the humeral branch is the toe 1.3, and the toe 1.3 spacing can be adjusted.
  • the patella foot parallel mechanism has a degree of freedom in the forward direction.
  • Figure 3 is a perspective view of a third type of foot parallel mechanism 1, the arch 1.1 being a C-shaped arch, the tibial branch 1.2 being two twirls in series, each tibial branch having two degrees of freedom, toe 1.3
  • the pitch can be adjusted independently; the toe is equipped with a wheeled rotating pair (wheel) 1.4, the axes of the wheels are parallel to each other, and the three wheels have at least one steering wheel.
  • This is a lifting leg that can be adjusted independently of the toe spacing and can be rotated.
  • the humeral branch of this foot parallel mechanism can also be flipped over the arch platform, and when the robot flips 180 degrees, it still has walking and wheeling capabilities.
  • Figure 4 is a perspective view of a fourth foot parallel mechanism 1, wherein the arch 1.1 is a T-shaped arch, the humeral branch 1.2 is an RP branch, the two axes of motion are perpendicular to each other, and the tibia branch has two degrees of freedom.
  • the toe spacing can be adjusted independently; the toes are fitted with wheels 1.4, the axes of the directional wheels are parallel to each other, and the three wheels have at least one steering wheel.
  • This is a lifting leg that can be adjusted independently of the toe spacing and can be rotated.
  • This humeral branch can also be flipped over the arch platform. Thus, when the robot flips 180 degrees, the robot can still walk or turn.
  • Figure 5 is a humeral branch with a negative rotational pair consisting of three rotational pairs with the three rotational secondary axes parallel to each other. There are two degrees of freedom and one redundant degree of freedom. The lowermost turning pair is a negative pair for damping. Mark the same as Figure 1.
  • FIG. 6 is an example of a transmission with two output gearboxes.
  • the T-shaped arch platform 1, 1 is the installation platform.
  • the gearbox 1.5 is elongated and mounted on the "horizontal" of the T-foot platform.
  • the middle two gears one is the drive gear, is the input end 1.6, the gear that meshes with it, is the driven gear, and the two gears rotate in opposite directions.
  • the axes of the four gears are on a horizontal plane and are parallel to each other. The direction of rotation of the two end gears is reversed.
  • the two end gears are each connected to a tibial branch 1.2 (RR).
  • the gear shafts at both ends are the first rotating pairs of the two tibial branches, which are related.
  • the two toes 1.3 are either close or away.
  • a rotation pair is used to adjust the two toes 1.3.
  • the transmission chain of this gearbox can also be changed to PHRHP, the middle rotating pair is the active pair, and the two moving pairs are the output terminals.
  • the two spiral pairs have opposite threads.
  • the spacing of the three toes 1.3 can be independently adjusted.
  • the hybrid leg mechanism is composed of a thigh mechanism and a foot parallel mechanism, the thigh mechanism will be described here first.
  • the thigh mechanism is divided into: single-degree-of-freedom thigh mechanism, double-degree-of-freedom thigh mechanism, three-degree-of-freedom thigh mechanism, redundant degree of freedom thigh mechanism (thighage mechanism containing Rx, Ry, Tz degrees of freedom is called Redundant degrees of freedom thigh mechanism).
  • Figures 7-17 are schematic views of several different thigh mechanisms.
  • Figure 7 is a simplified diagram of a two-degree-of-freedom (1TxRz) thigh mechanism 2 with a thigh arch platform 2.3 (lower platform) being a circular arch platform, an upper platform 2.1 being a triangular platform, and three thigh branches 2.2, two Degree of freedom (1Tx1Rz), one branch is a redundant branch, and the three thigh branches 2.2 are a PR branch and two RRR branches.
  • 1TxRz two-degree-of-freedom
  • Figure 8 is a simplified diagram of another double degree of freedom (TxTy0R) thigh mechanism 2, the thigh arch platform 2.3 (lower platform) is a butterfly arch platform, the upper platform 2.1 is a triangular platform; three thigh branches 2.2, Two degrees of freedom (TxTy0R), one branch is a negative branch, and the three thigh branches 2.2 are one PaPa branch and two RPR (or RPS) branches.
  • TxTy0R double degree of freedom
  • Figures 9, 10, 11, and 12 are simplified diagrams of three types of thigh mechanisms 2, three thigh mechanisms 2 being full-degree-of-freedom planar parallel mechanisms, three degrees of freedom (TxTyRz), and the thigh branches of Figure 10 It is an RPR branch, and the remaining thigh branches 2.2 are RR branches.
  • the upper platform 2.1 is a hexagonal platform and a triangle, respectively, and the thigh arch platform 2.3 (lower platform) is a circular arch platform, a T-shaped arch platform, a triangular arch platform and a C-shaped arch platform.
  • Figures 13 and 14 are simplified diagrams of two other thigh mechanisms, which are full-degree-of-freedom planar parallel mechanisms, three degrees of freedom (TxTyRz), and three thigh branches 2.2 are RR or RPR branches, respectively.
  • the thigh arch platform 2.3 is a ring type and a convex triangle, respectively, and the type of the upper platform 2.1 is as shown in the drawing, and will not be described again.
  • Figure 15 is a simplified diagram of another thigh mechanism 2, also a full degree of freedom planar parallel mechanism, with three thigh branches 2.2 being PRP branches.
  • the upper platform 2.1 and the thigh arch platform 2.3 (lower platform) are both circular platforms.
  • Figure 16 is a schematic view of a thigh mechanism 2 of a hybrid mechanism consisting of a planar parallel mechanism and a rotating pair 2.4 in series, three degrees of freedom (TxTyRz).
  • the three thigh branches 2.2 are all RRR branches, one of which is a redundant branch, forming a two-degree-of-freedom parallel mechanism.
  • the upper platform 2.1 is Y-shaped, and the thigh arch platform 2.3 (lower platform) is a ring type.
  • Figure 17 is a cross-sectional view of a branch of the thigh mechanism of the hybrid mechanism of Figure 10, a planar two-degree-of-freedom parallel mechanism with negative branches in series with a rotating pair 2.4. The center of rotation of the center is perpendicular to the horizontal plane, providing freedom of steering.
  • the remaining labels are the same as in Figure 16.
  • hybrid leg mechanisms There are many types of hybrid leg mechanisms. For example, standing legs, lifting standing legs, steering legs, turning to step legs, one-way stepping legs, two-way stepping legs, all-round legs, one-way toe spacing adjustable lifting standing legs, two-way toe spacing adjustable lifting standing leg mechanism , wheel legs, rolling legs, etc. The following are some typical scenarios for a hybrid leg mechanism.
  • Figures 18-25 are several different hybrid leg mechanisms with the arch platform 3.3 being a Y-shaped arch platform.
  • Figures 18-20 are three less-degree-of-freedom hybrid leg mechanisms.
  • the humeral branches of the foot parallel mechanism 3.2 are all moving pairs.
  • Figure 18 is a simplified diagram of a steering hybrid leg mechanism 3 consisting of a rotating pair whose axis of rotation is perpendicular to the horizontal plane, the upper platform 3.1 being triangular, and the arch platform 3.3 being Y-shaped.
  • the thigh mechanism is a single degree of freedom mechanism.
  • the foot parallel mechanism 3.2 is a lifting standing leg having a Y arch platform.
  • the steering hybrid leg mechanism has four degrees of freedom with steering and lifting standing. This steering leg mechanism can only be combined with a hybrid leg mechanism that includes a step or more to form a walking robot.
  • Figure 19 is a schematic view of a one-way stepping hybrid leg mechanism 3, the thigh mechanism 3.1 is composed of a prism pair, the prism secondary axis is horizontal, and the foot parallel mechanism 3.2 is a lifting standing leg with a Y arch platform 3.3, this one-way
  • the step-by-step hybrid leg mechanism has four degrees of freedom and has two functions: step and stand.
  • the prism pair can also be replaced by a pair C, with a redundant degree of freedom Rx.
  • This one-way step leg mechanism can only be combined with a hybrid leg mechanism that includes steering or more functions to form a walking robot.
  • FIG 20 is a schematic illustration of a one-way step-turning hybrid leg mechanism 3 in which the thigh branches of the thigh mechanism 3.1 are constructed by connecting two parallel cylindrical pairs and one rotating pair in series.
  • the cylindrical secondary axis is horizontal, and then a rotating pair is connected in series.
  • the rotating secondary axis is perpendicular to the horizontal plane.
  • the thigh mechanism has two degrees of freedom (TxRz), and the foot parallel mechanism 3.2 is a lifting standing leg with a Y arch platform 3.3, and the one-way step is turned to mix.
  • the leg mechanism has five degrees of freedom and has three functions: step, turn and stand. This one-way step-turning leg mechanism can be combined with various leg mechanisms to form a walking robot.
  • Figure 21 is a full degree of freedom hybrid leg mechanism 3.
  • Their thigh mechanism 3.1 is a full-degree-of-freedom planar parallel mechanism
  • the thigh branch is an RRR branch
  • the foot parallel mechanism 3.2 is a lifting leg that is a mobile pair.
  • the arch platform 3.3 is a Y-shaped arch platform.
  • the height of the body of Fig. 21, when the moving pair is retracted, the abdomen of the body (the lowermost arch platform) can contact the ground.
  • the robot can crawl.
  • This leg mechanism can be combined with any leg mechanism to form a walking robot.
  • Any full-degree-of-freedom leg mechanism can be combined with any one leg mechanism to form a walking robot.
  • Figure 22 is a perspective view of a hybrid leg mechanism 3.
  • the thigh mechanism 3.1 is the same as the thigh mechanism of FIG.
  • the arch platform 3.3 is a Y-shaped platform.
  • the humeral branch of the foot parallel mechanism 3.2 has two degrees of freedom.
  • the branch is an RR branch.
  • the two axes of rotation are parallel, the toe spacing can be adjusted, and the output of the humeral branch has a wheel.
  • At least one wheel is a steering wheel.
  • the humeral humeral branch can be flipped over the pelvic plane. When the body is turned 180 degrees, you can still walk or turn.
  • Figure 23 is a perspective view of another hybrid leg mechanism 3 that differs slightly from Figure 22.
  • the thigh mechanism 3.1 is connected to the foot parallel mechanism 3.2 via the arch platform 3.3.
  • the difference from Fig. 22 is that the two degrees of freedom of the humeral branch are completed by the PP branch, the two moving secondary axes are perpendicular to each other, the toe spacing can be adjusted, and the output end of the humeral branch has a wheel.
  • the tibial tibial branch cannot be flipped over the pelvic plane. Mark the same as Figure 22.
  • Figure 24 is a double-sided walking hybrid leg mechanism 3.
  • the thigh mechanism 3.1 is connected to the foot parallel mechanism 3.2 via the arch platform 3.3.
  • the basic mechanism is the same as that of Fig. 21.
  • the main difference is that the single output mobile pair of Figure 21 is replaced by the dual output mobile pair of Figure 24. It can be seen that when the body is turned 180 degrees, it can still walk.
  • the difference between this scheme and Figure 25 is that double-sided walking does not require conversion.
  • Two such leg mechanisms are combined to form a two-sided walking robot. If a large ring is installed in the plane of the pelvis, it can be lowered to restore the walking state when standing sideways, to achieve double-sided walking, or to keep the robot sideways, and to move.
  • Figure 25 is a leg mechanism with a large ring.
  • the leg mechanism 3 has six degrees of freedom, with two-way step function and steering and standing functions.
  • the thigh mechanism 3.1 is a planar parallel mechanism, three degrees of freedom, the thigh branch is the RRR branch, the foot parallel mechanism 3.2 is a three-degree-of-freedom semi-closed-loop parallel mechanism, the tibial branch is the RP branch, and the toe is the wheeled rotary pair. .
  • the foot parallel mechanism is a lifting standing leg with a Y arch 3.3.
  • this hybrid walking robot is symmetrical about the pelvis plane.
  • the large ring 5.1 and the pelvis are in one plane.
  • the diameter of the large ring is larger than the diameter of the circumcircle of the toe triangle, ensuring that the body can be lowered when the side is standing and the walking state is restored.
  • leg mechanisms can constitute a two-sided walking robot with three movement modes: walking, wheeling and rolling.
  • a robot with a large ring can be moved by changing the position of the center of gravity if it cannot be lowered or walked when standing sideways.
  • Figures 26-33 are simplified diagrams of various different hybrid walking robots.
  • RR branches are applied to the thigh branches of most thigh mechanisms. This is just for the convenience of expression.
  • the branching of the thigh mechanism in the embodiment is completely feasible to replace with other branches. For example, replacement with RPR branches and PRP branches is possible.
  • a thigh mechanism it is also feasible to apply different types of branches.
  • the tibia branches of most foot-parallel mechanisms employ one degree of freedom or two degrees of freedom. This is just for the convenience of expression.
  • the branching of the tibial mechanism in the embodiment is replaced with other branches of multiple degrees of freedom or more of the motor pair, including tibial branches with redundant degrees of freedom.
  • RR branching RPP branching
  • a humeral branch is also feasible with different types of tibial branches.
  • a five-degree-of-freedom foot parallel mechanism can not only meet the requirements of lifting and standing, but also change the spacing of the toes.
  • the two leg mechanisms connected together, the two thigh branches, the two arch platforms, and the two sets of humeral branches have separate working spaces without mutual interference.
  • the working space of two adjacent toes also allows partial overlap, which can be prevented from interfering with each other by control.
  • Embodiment 1 is a hybrid walking robot 4 composed of two hybrid leg mechanisms (Fig. 21), and the upper platform of the A leg mechanism 4.1 and the B leg mechanism 4.2 (the hip planes are shifted by 60 degrees from each other) are connected. Together, form a pelvis 4.3.
  • the branches of the two thigh mechanisms are on the same level (and can also be on different levels).
  • the thigh branches of the two leg mechanisms each occupy a fan-shaped space of about 60 degrees without mutual interference.
  • the two Y-shaped arch platforms are at different heights and do not interfere with each other.
  • Each sacral branch occupies a fan-shaped space of about 60 degrees, and does not interfere with each other.
  • the toes on the two leg mechanisms each occupy a fan-shaped space of approximately 60 degrees. Each toe has an independent free working space.
  • This is an internal and external hybrid walking robot.
  • the center of gravity of the two toe triangles is substantially equal to zero.
  • the projection of the two toe triangles on the horizontal plane is mostly overlapping, and the centers of the two upper platforms are substantially coincident. This is an isotropic hybrid walking robot.
  • the robot's drive motor can be mounted on the pelvis.
  • the drive of the humeral branch can be used to mount the motor on the pelvis, and through the two parallel rotating secondary axes of the thigh branch, the two branches are used to drive the patella branch indirectly.
  • Embodiment 2 (Fig. 27) is a hybrid walking robot 4 composed of one large and one small two-legged leg mechanism.
  • the larger hybrid leg mechanism 4.1 refers to Fig. 13, and the smaller leg mechanism 4.2 refers to Fig. 11.
  • the upper platforms of the two leg mechanisms are joined together to form a pelvis 4.3 with the branches of the two thigh mechanisms on the same level and the pelvis on the other level (also on the same level).
  • the thigh branch 2.2 has its own space for movement and does not interfere with each other.
  • the two arch platforms are at the same height, one is a convex triangle, and the other is a Y-shaped, smaller, and the two do not interfere with each other.
  • Each humeral branch 1.2 has its own activity space.
  • Figure 28 is a cross-sectional view of one of the larger leg mechanisms (including the thigh branch and the tibial branch);
  • Figure 29 is a section of a branch of the smaller leg mechanism (including the thigh branch and the tibial branch) Figure. Mark the same as Figure 27.
  • Embodiment 3 is a double-sided walking, wheeled hybrid walking robot 4.
  • the hybrid leg mechanism is the same as the leg mechanism of Figure 25 (no large ring).
  • Both the A leg mechanism 4.1 and the B leg mechanism 4.2 have six degrees of freedom, with a two-way step function and a steering and standing function.
  • the thigh mechanism is a planar parallel mechanism, three degrees of freedom, the thigh branch is the RRR branch, and the foot parallel mechanism is a three-degree-of-freedom semi-closed-loop parallel mechanism.
  • the tibial branch is an RPRw branch.
  • the foot parallel mechanism is a one-way adjustable toe spacing lifting leg of the Y arch platform.
  • the upper platform (hip bone) planes of the two leg mechanisms are connected to each other by 60 degrees to form a pelvis 4.3.
  • the distance between the center of gravity of the two toe triangles is zero.
  • the branches of the two thigh mechanisms are on the same level (and can also be on different levels).
  • the branches of the two leg mechanisms each occupy a fan-shaped space of about 60 degrees without mutual interference.
  • the two Y-shaped arch platforms are at different heights and do not interfere with each other.
  • Each sacral branch occupies a fan-shaped space of about 60 degrees, and does not interfere with each other.
  • the end of the humeral branch has a wheel that can be flipped over the pelvis to form a double-sided walking robot.
  • the large ring can be designed as a retractable large ring, and the large ring is not limited to the expandable mechanism given in Document 2. Then, this robot has three modes of motion: walking, wheeling and scrolling. This is a wheel-legged walking robot.
  • Embodiment 4 (Fig. 31) is a hybrid walking robot 4 composed of a left-right and two right-mixing leg mechanisms.
  • the upper platforms of the two leg mechanisms are connected one left and one right to form a pelvis 4.3, two thighs.
  • the branch of the mechanism is on the same level
  • the pelvis 4.3 is on a different level
  • the arch platform of the left leg mechanism 4.1 is the C-foot arch platform
  • the arch platform of the right leg mechanism 4.2 is the T-foot arch Platform
  • the two arch platforms are at the same height and do not interfere with each other.
  • the two toe triangles are in phase, and one toe of the right foot parallel mechanism is located at the center of the toe triangle of the left leg mechanism.
  • FIG. 33 is a cross-sectional view of a branch (including a thigh branch and a tibial branch).
  • Embodiment 5 is another hybrid walking robot 4 composed of a left-right and two-mixed leg mechanism.
  • the upper platforms of the two leg mechanisms are connected together, and the two upper platforms form a rectangular pelvis.
  • the branches of the two thigh mechanisms are on the same level, the thigh branches have their own independent activity space, the pelvis is on a different level (also on the same level), the left leg mechanism 4.1
  • the arch platform is a curved convex triangle type arch arch platform
  • the arch platform of the right leg mechanism 4.2 is also a curved convex triangle type arch arch platform, and the two arch arch platforms are located at different heights without mutual interference.
  • One toe of the right foot parallel mechanism is located at the center of the toe triangle of the left leg mechanism.
  • FIG. 33 is a cross-sectional view of a branch (including a thigh branch and a tibial branch).
  • Embodiment 6 is a less-degree-of-freedom hybrid walking walking robot (eight degrees of freedom) constructed by combining FIG. 18 and FIG. Figure 18 is a steering lift leg and Figure 19 is a one-way step leg mechanism.
  • the tibia branches of the two leg mechanisms each occupy a 60 degree fan-shaped space.
  • One leg mechanism completes the steering lift standing function, and one leg mechanism completes the step function.
  • This robot can only perform movements of intermittent straight and intermittent steering (continuous steering when turning at small angles).
  • Embodiment 7 is an eight-degree-of-freedom walking robot constructed by combining FIG. 20 with FIG.
  • This is a hybrid walking robot composed of a hybrid leg mechanism and a foot parallel mechanism.
  • Figure 1 is a lifting leg and
  • Figure 20 is a one-way stepping leg mechanism. When assembled, the tibia branches of the two leg mechanisms each occupy a 60 degree fan-shaped space.
  • One leg mechanism completes the lifting and lowering function, and the other leg mechanism completes the steering and stepping function.
  • This robot can only perform movements of intermittent straight and intermittent steering (continuous steering when turning at small angles).
  • hybrid walking robot solutions are given above.
  • a two-row toe hybrid walking robot scheme is designed.
  • several hybrid walking robot schemes with both crawling and walking functions are given below.
  • a new method of roller skating is also given.
  • Embodiment 8 described below is a double-row toe hybrid walking robot.
  • Embodiment 9 is a single-sided crawlable hybrid walking robot.
  • Embodiment 10 is a double-sided hybrid walking robot that can crawl and roll. This is a double-sided hybrid walking robot with an elastic structure or a closed structure.
  • the platform connected to the tibial branch in the thigh mechanism is also called the arch platform, and the other platform of the thigh mechanism is also called the hip platform (hip bone).
  • the upper and lower sequences of the upper and lower platforms of the thigh mechanism can be freely configured.
  • the hip platform is at the bottom, it is still called the upper platform, or to avoid confusion, it is called the hip platform.
  • the upper and lower order of the upper and lower platforms of the thigh mechanism, the upper and lower order of the thigh branches, and the upper and lower order of the arch platform can be freely configured.
  • a two-row toe hybrid walking robot in which the six toes on the two hybrid leg mechanisms are located on two parallel straight lines with three toes in a straight line. This refers to the state when the robot is in a neutral position or slightly deviated from the neutral position. In practice, the three toes are not always in a straight line.
  • the toes of both embodiments of Figures 26 and 32 are not two rows of toes. In order to arrange the toes on two parallel straight lines, it is necessary to change the shape of the arch, or to adjust the relevant mounting method, or to simultaneously change the shape of the arch and the relative mounting position of the thigh branches.
  • Changes in the shape of the arch are not the same.
  • the three branches of the Y arch are not all straight (see figure), and the center of the Y arch is a ring (see Figure 34).
  • the deformation of the hollow arch an ellipse connects the three inward arms (see Figure 35), and the ends of the arms are fitted with an ankle joint or the like.
  • the humeral branch is mounted on the outside or inside of the lower leg joint platform.
  • the shape of the mutated arch can be a variety of shapes.
  • Another method is to change the position of the tibial branch to change the position of the toe.
  • the tibial branch is installed on the outer side of the knee joint.
  • the third method is to change the position of the tibial branch without changing the position of the toe, for example, applying the RR tibial branch with the toe on the outside of the ankle.
  • the position of the toes is changed by the skew of the tibial branches.
  • the working space can be determined like the tandem leg mechanism of the ordinary bionic walking robot. It can also be selected such that the working space of the first rotating pair selects about 60 degrees above and below the horizontal plane; the working space of the second rotating pair selects about 50 degrees on both sides of the vertical line. It is also feasible to apply this humeral branch to a double-sided robot. Of course, it is also a feasible method to change the installation position of the humeral branch and change the position of the toe.
  • Another method is to adjust the relative positions of the two arch triangles so that the two toes are arranged on two parallel straight lines.
  • the end of the toe moves the ball pair or the universal joint in series.
  • This tandem ball pair or universal joint structure is suitable for all hybrid walking robots.
  • the smaller circle indicates the position of the toe or the position of the arch of the arch (ankle position); the larger circle indicates the position of the knee or the mounting position of the thigh branch.
  • a larger ellipse indicates the knee joint of one leg, a smaller ellipse indicates a toe or tibia mounting point, and a double row toe hybrid walking robot.
  • Figure 36 is an arch assembly of a hybrid walking robot of a fully inclusive configuration.
  • the connection point between the thigh branch and the arch type platform is called the knee joint, and the three or more knee joints usually form a triangle or a polygon, which is generally called a knee joint triangle; the connection point between the thigh branch and the other platform is called The hip joint, three or more hip joints usually form a triangle or polygon, usually called a hip triangle, and the two hip joints connected together are called pelvis.
  • the junction of the humeral branch and the arch-type platform is called the ankle joint, and the three ankle joints form an ankle triangle.
  • the three toes form a toe triangle. If the tibial branch is an RR branch, the second rotational pair is called the tibial joint.
  • the three metatarsal joints form a triangle called the sacral joint triangle.
  • the three toes form a toe triangle, which is the stable triangle of the leg.
  • the common area of the two triangles of the two legs is the
  • the fully inclusive structure of the hybrid walking robot has one large and one small two-legged mechanism, one is the outer leg, and its knee joint triangle is larger, corresponding to the Y-foot arch 1.1a.
  • the three patella branches of the outer leg are mounted near the ankle (knee) joint, and the knee joint triangle (if polygonal, simplified to a triangle) substantially coincides with the toe triangle.
  • One is the inner leg and the knee joint has a smaller triangle.
  • the corresponding arch is a variant Y-shaped arch 1.1b.
  • the two branches of the Y-shaped arch are lengthened.
  • the humeral branches are installed at the extended end point, and the toe triangle (three smaller circles in the figure) becomes larger.
  • the upper three toes are in a straight line, and the other three toes are on the other straight line, and the two straight lines are parallel.
  • Figure 37 is an arch configuration of a mutually inclusive configuration in which the two knee joints are of comparable size with the center of the two triangles on a vertical line.
  • the Y-shaped arch corresponding to the two knee triangles is appropriately mutated to form the variant arches 1.1a and 1.1b.
  • the left and right arch branches of each leg are extended upwards or downwards.
  • the top three toes in the figure are on a straight line, and the other three toes on the bottom are on the other line, and the two lines are parallel.
  • a hybrid walking robot that forms two rows of toes.
  • Figure 38 is another hybrid walking robot with a mutually inclusive structure.
  • the two knee joints are of similar size, with the toes below the knee joint and the centers of the two triangles not on a vertical line. There is a distance between the two centers, just so that the two toes are on two parallel lines.
  • the A leg arch is 1.1a
  • the B leg arch is 1.1b.
  • Figure 39 is an arch configuration of a partially inclusive configuration with two knee joints in opposite phase.
  • the center of one knee triangle is one toe of the other leg.
  • the humeral branch RR is installed at the end of the arch. With RR branches, the toes are in the front lower or lower back of the knee joint.
  • the upper three toes in Fig. 38 are in a straight line, and the other three toes are on the other straight line, and the two straight lines are parallel.
  • This arch configuration is applied to the embodiment of Fig. 32, instead of the arch of Fig. 32, to form a two-row toe hybrid walking robot. See Figure 43 for a sacral humeral branch.
  • the A leg arch is 1.1a
  • the B leg arch is 1.1b.
  • Two rows of toes facilitate walking movements on certain special roads. For example, going up and down. Two rows of toes can easily adjust the distance between the two rows of toes to adapt to the width of the step. The distance between the toes is an integral multiple of the width of the step. Another advantage of the two rows of toes is that the overlap of the two toe triangles is large and the range of stability is wide. Especially in the forward direction, the stable intervals of the two triangles overlap by 100% (Fig. 36, the diamond formed by the broken line in Fig. 37 is a common stable region). Public stability areas are not isotropic. The public stability range in one direction is large. This creates favorable conditions for high-speed walking under steady-state conditions. The two-row toe scheme has only two rows of footprints when walking sideways. The following single-sided, double-sided crawling walking robot solution can also be designed as a two-row toe scheme.
  • the knee triangle is different from the toe triangle. In this way, a smaller knee triangle can be configured with a larger toe triangle for greater stability.
  • Embodiment 9 Single-sided crawling walking robot
  • the hip platform of the two thigh mechanisms in the hip platform of the two thigh mechanisms, at least one hip joint plane is located at the bottom.
  • the other hip platform is in the middle or top, or shares a frame plane with the lowermost hip joint.
  • the hip platform forms the abdomen of the robot.
  • the three tibial branches contract, the three toes and the abdomen are on one plane or higher than the abdomen plane.
  • the abdomen can be close to the ground.
  • This robot can be moved by crawling.
  • Fig. 26 in Fig. 26, the two thigh portions are turned 180 degrees, and the humerus branches are unchanged, and a hip joint platform of a thigh mechanism is obtained at the lowermost hybrid walking robot of the body.
  • This double-sided crawling (walking) hybrid walking robot has one hip platform at the bottom and the other hip platform at the top, and the two hip platform frames are connected at the periphery or center.
  • the two hip platform frames are disc-shaped, the upper disc is convex, the lower disc is concave, and the two discs are fastened together to form a discus-type pelvis.
  • the thigh mechanism and device are mounted between the two hip joint planes. Both leg mechanisms are equipped with double-acting tibial branches, which share a (set) drive that is driven by the transmission or by clutch switching. Forms a two-sided walking (or crawling) hybrid walking robot.
  • Double acting talus branch There are two major categories. One type is a single iliac bone branch type, and the other type is a double tibia branch type.
  • Single degree of freedom humeral branch single degree of freedom
  • the tibia branch has two outputs, and the two outputs can work on both sides.
  • R branches, P branches have a large working space and can work on both sides.
  • the working space of the rotating R branch is selected to be about 90 degrees above and below the horizontal plane; it is suitable for normal work and post-flip work. See the humeral branch on the right side of Figure 40.
  • Double-degree-of-freedom tibial branches such as RP branches, RC branches, RR branches.
  • P and C are a motion pair, but have two outputs, one on the top and one on the bottom (see 3.2 in Figure 24). Achieve two side work.
  • the working space of the first rotating pair selects about 60 degrees above and below the horizontal plane; the working space of the second rotating pair selects about 45 degrees on both sides of the vertical line.
  • the second rotating pair is rotated by a large angle to move the toe to the other side.
  • a talus text chain composed of a curved rod (refer to Figure 42). It is convex when working normally. At this time, the toes are below. If the toe is transferred to the other side, the convex and concave characteristics of the curved rod need to be changed: 180 degrees around the axis at the end of the curved rod. Turn your toes over to the other side. This requires a boost.
  • Double humeral branch type Double humeral branch type.
  • Two humeral branches the next one, responsible for normal work, the upper one, responsible for walking after 180 degrees of flipping.
  • the two tibial branches are driven by a drive or driven separately or by a clutch.
  • Figure 42 is a bi-branched tibial branch.
  • One rotating pair two curved rod outputs, one on top (1.2b) and one (1.2a) on the bottom.
  • a drive that drives the two cranks to rotate.
  • the two curved rods rotate in the same direction.
  • Figure 43 is a second double acting tibial branch.
  • the tibial branches (1.2a, 1.2b) are RR branches. Two outputs, one on top and one on the bottom.
  • a gearbox a drive.
  • the gearbox 1.8 is mounted on the arch 1.1.
  • the gearbox 1.8 has a clutch or transmission that drives different cranks in different states.
  • Two curved rods can be retracted into the discus.
  • the two outputs of the humeral branch are relatively large and suitable for thickened robot bodies. Another feature of this humeral branch is that the toes are not directly below the ankle joint.
  • a hybrid robot for two rows of toes is also possible.
  • the periphery of the discus-type pelvis is made of an elastic material.
  • the body When falling from a high altitude, the body is elastically deformed, reducing the impact force and protecting the equipment inside the body.
  • the center of the upper and lower hip platform is connected by an elastic buffer material. Have better impact resistance.
  • Various sensors are installed outside the discus.
  • the humeral branch and the edge of the hole are connected by a material having a stretchable property (including a material such as fireproof, waterproof, bulletproof, anticorrosive, etc.) or a structure to form a closed structure.
  • a material having a stretchable property including a material such as fireproof, waterproof, bulletproof, anticorrosive, etc.
  • a structure to form a closed structure Such as retractable fabrics, organ covers, etc.
  • the closed structure has the functions of dustproof, waterproof, anti-radiation, bulletproof and anti-corrosion.
  • Figure 40 and Figure 41 are front and top views of a double-sided circular walking robot.
  • the thigh branches (2.2a, 2.2b) are RR branches, discus pelvis 4.3, double-acting humeral branches (1.2a, 1.2b). ).
  • On the left side is a double-branched double-acting single-degree-of-freedom tibial branch, and the two tibial branches are connected and driven by the transmission case 1.8.
  • On the right is a single-branched double-acting single-degree-of-freedom tibia branch 1.2.
  • the hip joints 3.1a, 3.1b constitute a discus-type pelvis 4.3, 4.4 is the outer ring, and the outer ring and the rod between the two holes are made of an elastic material.
  • 4.5 is a closed device.
  • the work of the double-sided hybrid walking robot includes walking, crawling, and rolling.
  • the robot body When the robot body is relatively flat, such as a discus-type housing, the robot has the characteristics of a tumbler. In this way, the normal movement of the robot and the movement of the robot when it is turned 180 degrees can be moved normally (described above).
  • the robot can crawl.
  • the outer surface of the pelvis is grounded.
  • the outer surface of the pelvis is the abdomen of the robot.
  • the sacral branch extends for a long time, the abdomen of the robot leaves the ground and the leg pushes the robot to move.
  • the robot abdomen touched the ground when it stopped.
  • This structure lays out the middle portion of the two leg mechanisms as a mounting space for various devices. For example, batteries, motors, control equipment engines, etc.
  • the robot stands sideways (can't fall down), which is equivalent to an erected ring, which has an intersection with the ground. At this time, by driving the leg mechanism, the position of the center of gravity of the robot is changed to make the ring roll. One can move the body, and secondly, it may get rid of the side state and restore walking ability.
  • the pelvis is used as a closed structure. Suitable for application in battlefield environments. If the surface is properly armored, equipped with various sensors and information transmission equipment, it can be used for battlefield reconnaissance and other tasks.
  • the up-and-down symmetrical hybrid walking robot also has a structural form: two hybrid leg mechanisms share a hip platform to form a pelvis. One leg mechanism above the hip platform and one leg mechanism below. This is a vertically symmetrical hybrid walking robot. It is also possible to form a double-sided hybrid walking robot.
  • the following describes a method of roller-skating motion of a wheel-leg combined hybrid walking robot.
  • the structure and method of the roller skating are also designed.
  • the roller skating structure is basically the same as the wheeling scheme.
  • the hybrid walking robot adopts the wheel-leg mixing method and adopts the ordinary roller skating method to realize the roller-skating movement.
  • the trajectory of ordinary skating is an S-shaped curve with low efficiency. Since the wheeling scheme has brakes, there is also a simple and efficient new roller skating method.
  • the first time to apply force at least one of the three wheels on the leg of the leg is fully braked, one or more braked wheels, quickly landed, quickly slammed, pushed the first leg to move, then lifted And move forward.
  • the direction of the steering wheel by the leg of the foot is changed.
  • the driving leg is driven by a single toe drive, or a two-toe drive, or three toes simultaneously.
  • the waist (pelvis) can be properly moved (six degrees of freedom) within its stable range, driven by the foot and leg.
  • F1, 2 There are two methods (F1, 2).
  • Method 1 At least one of the three wheels on the leg of the leg is fully braked, one or more fully braked wheels, quickly landed again, quickly slamming, pushing the first leg to continue moving, then lifting (not canceling Brake) or does not lift but cancel the brake (at least cancel the brake in the forward direction, and keep moving in the same direction as the leg of the leg when not lifting). And move forward.
  • the direction is controlled by the steering wheel of the leg leg.
  • the legs are quickly grounded, bearing, and becoming leg-legged legs, while the original leg-legs become the driving legs, at least one of the three wheels on the leg is fully braked (brake), one or more fully-wheeled wheels , quickly squat, push the other leg to move, then lift and move forward.
  • the direction is controlled by the steering wheel of the leg leg.
  • the direction of movement can also be changed during the period in which the two legs alternate.
  • the legs are on the ground, the brakes,
  • the driving (urging force) direction is the same as the moving direction, and the force is directly applied to the rear, and the driving efficiency is high. There is also no need to change the position of the center of gravity to facilitate control.
  • this skating scheme has the advantage that the wheels do not need to be equipped with electric motors during exercise. Reduced structural complexity and reduced total drive power.
  • the skating scheme and the two-legged scheme can be applied to the hybrid walking robot of various structural schemes, and can also be used in the structure of Document 1.
  • the tibial branches of the embodiments can be designed with negative pairs, such as the U, S movement pair.
  • the leg mechanism proposed by the invention can also be arranged in a bionic manner to form a bionic walking robot having front, rear, left and right legs, including legs, four legs, six legs and eight legs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manipulator (AREA)

Abstract

一种混联步行机器人及其构建方法,其中混联步行机器人主要包括A、B两个腿机构,一个腿机构A是混联腿机构(3),另一个腿机构B是混联腿机构(3)或脚并联机构(1)。混联腿机构(3)由大腿机构(3.2)和脚并联机构(3.1)串联构成。两个腿机构具有特定的自由度组合,两个腿机构的上部固连在一起,各个部件互相包含,互相交叉,且保持各自的独立活动空间,两个腿机构的脚趾三角形在水平面上的投影有重合。该机器人在前进过程中,重心不用作左右调整就可以进行任意方向的稳态步行;且运动副较少、机身高度较低,具有承载能力强、转向灵活、越障能力和上下坡能力强等优点。

Description

一种混联步行机器人的构建方法及其混联步行机器人 技术领域
本发明公开了一种混联步行机器人的构建方法及其混联步行机器人,涉及现有双腿步行机器人结构的改进,属于步行机器人技术领域。
背景技术
现有的双腿步行机器人主要有仿生步行机器人和非仿生步行机器人两种。非仿生步行机器人主要有中国专利201010292424.1(以下简称文献1)公开的方案。在这一类步行机器人的方案中,有一部分具有在并联机构的下方串联广义移动副的结构(文献1中,权利要求10给出的方案),其共同特点是,两个腿机构中,每一个腿机构都由一个并联机构和三个广义移动副(称为小腿)组成。由于所述的并联机构本身包含有Rx自由度和Ry自由度,而三个广义移动副也可形成Rx自由度和Ry自由度,所以大腿机构上的Rx自由度和Ry自由度是冗余自由度。同时,所述的并联机构本身包含有Tz自由度,三个广义移动副也有Z向自由度,所以腿机构上的Z向自由度也是冗余自由度。由于这几个冗余自由度的存在,文献1给出的步行机器人,1、运动副较多,机身高度较大,通过性较差。2,机体发生Rx,Ry方向的倾斜时,小腿会出现不与地面垂直的情况,小腿受力状况变差,爬坡能力受到限制。由此带来的问题是,实现同样的步行功能,需要更多的运动副,且性能不能充分发挥。
同时,由于上述文献1给出的步行机器人的小腿只有一个Z向自由度(P副),脚趾间距不可以变化(调节),三个着地点不可独立调节,故落脚点的选择受到限制。所以对路面的适应性较差。越障能力不能充分发挥。
上述非仿生步行机器人还有一个共同的缺点,仅仅依靠步行移动,在结构化路面上移动速度低,效率不高。
这种非仿生步行机器人,还有中国专利201510275161.6(以下简称文献2)公开的双面对称步行机器人方案(文献2的权利要求13-17)。由于其腿机构是文献1公开的方案。所以上述问题同样存在于文献2公开的双面对称步行机器人方案中。
所以,这一类步行机器人,其共有的缺点是:
1、由于并联机构上的Rx自由度和Ry自由度是冗余自由度,所以,并联机构运动副较多,结构较复杂。
2、由于并联机构是空间并联机构,同时Z向自由度也是冗余自由度。所以体积较大,机身高度较大,通过性较差。
3、由于脚并联机构的支链只有一个自由度,脚趾间距不可以变化,落脚点的选择受到限制,对路面的适应性差,越障能力差,在某些情况下,也会影响通过性。
4、移动方式单一,在结构路面上的移动速度低,效率低。
5、双面运动的步行机器人方案也需要较多的运动副,且机身高度较大,结构也较复杂,通过性较差。
发明内容
为了解决现有技术中存在的问题,本发明提供了一种具有下列特点的机器人,从而解决了现有技术存在的问题。本发明可以达到如下目的:
1、本发明提供了构建一种混联步行机器人的新方法,解决了Rx、Ry冗余自由度和Z向自由度冗余自由度带来的问题,从而以较少的自由度实现同样的步行运动,同时可达到更好的性能。
2、本发明还提供一种实现上述方法的混联步行机器人,这种步行机器人可以较少运 动副实现同样的步行运动,同时可达到更好的性能。
本发明解决技术问题所采用的技术方案如下:
一种混联步行机器人的构建方法,该构建方法如下:
(1)、构建脚并联机构和大腿机构
构建脚并联机构
每一个脚并联机构包括一个脚足弓平台、三个趾骨支链和三个脚趾,三个趾骨支链固定连接在脚足弓平台上,连接点位于一个三角形的三个顶点上;三个趾骨支链的下端连接脚趾,三个脚趾形成一个足趾三角形;脚并联机构是一个升降站立腿;趾骨支链是由下列自由度组合形成的机构:Tz,TzTx,TzTy,TzTxTy,RxTz,RyTz,RxTzTx,RyTzTy或RxRyTz;
构建大腿机构
大腿机构包括上平台、下平台以及联接上平台和下平台的一个或一个以上的大腿支链,大腿支链是一个运动副,一个或多个串联机构,或一个混联机构;大腿机构是一个有一到五个自由度的机构;一到五个自由度,是Tx,Ty,Tz,Rz,Rx或Tx,Ty,Tz,Rz,Rx,Ry中的自由度的任意组合;包括单自由度,二、三、四、五自由度;
(2)、构建混联腿机构
混联腿机构包括一个大腿机构和一个脚并联机构,脚并联机构在大腿机构的下方,二者串联连接成为一个混联腿机构;选择脚并联机构的脚足弓平台或大腿机构的下平台作为共用的一个足弓平台;
(3)、选择两个合适的腿机构A、B
在上述的混联腿机构中,选取一个混联腿机构作为腿机构A,
在上述的混联腿机构和脚并联机构中,选取一个混联腿机构或脚并联机构作为腿机构B;
对两个腿机构的自由度组合要求是:
两个腿机构必须至少有一个Rz自由度,一个Tx(或Ty)的自由度,或者至少有一个混联腿机构的大腿机构同时拥有Rz自由度及Tx(或Ty)自由度;或者两个大腿机构都拥有Rz自由度和Tx、Ty自由度;
(4)、连接A、B两个腿机构,构建一个混联步行机器人
如果A、B两个腿机构是两个混联腿机构,则A、B两个腿机构的大腿机构的上平台固连在一起,两个连接在一起的上平台形成一个骨盆,两个连接在一起的腿机构形成一个混联步行机器人;
如果两个腿机构一个是混联腿机构,另一个是脚并联机构,则混联腿机构的大腿机构的上平台与脚并联机构的脚足弓平台固连在一起,两个连接在一起的平台形成一个骨盆,两个连接在一起的腿机构形成一个混联步行机器人;连接时,对大腿支链、足弓平台、跖骨支链、脚趾及脚趾三角形的布置要求是:
两个腿机构的各个大腿支链都有其独立的活动空间,互不干涉;
两个足弓平台或一高一低,或一内一外,或一前一后,互不干涉;
两个腿机构的跖骨支链都有其独立的工作空间,互不干涉;
两个腿机构的脚趾在水平面上的投影不重合;
连接在一起的两个腿机构的脚趾三角形的重心之间的距离小于两个脚趾三角形外接圆的半径之和,且两个脚趾三角形在水平面上的投影有重合。
一种混联步行机器人构建方法构建的混联步行机器人,包括A、B两个腿机构,一个腿机构A是混联腿机构,另一个腿机构B是混联腿机构或脚并联机构;两个腿机构的上部连接在一起,混联腿机构包括脚并联机构和大腿机构;
脚并联机构
脚并联机构包括一个脚足弓平台、三个趾骨支链和三个脚趾,三个趾骨支链固定连接在脚足弓平台上,连接点位于一个三角形的三个顶点上;三个趾骨支链的下端连接脚趾,三个脚趾形成一个足趾三角形;脚并联机构是一个升降站立腿;跖骨支链是一种具有一到多个自由度的支链;趾骨支链的自由度组合是:Tz,TzTx,TzTy,TzTxTy,RxTz,RyTz,RxTzTx,RyTzTy,RxRyTz自由度组合中的一种或多种;三个跖骨支链可以是相同的支链或不同的支链;
大腿机构
大腿机构包括上平台、下平台以及联接上平台和下平台的一个或一个以上的大腿支链,大腿机构的下平台是足弓平台型平台;大腿支链可以是一个运动副,一个或多个串联机构,或一个混联机构;大腿机构是一个具有一到五个自由度的机构;大腿机构的一到五个自由度,是Tx,Ty,Tz,Rz,Rx或Tx,Ty,Tz,Rz,Ry中的各个自由度的任意组合;
混联腿机构
混联腿机构包括一个大腿机构和一个脚并联机构,脚并联机构在大腿机构的下方,二者串联连接成为一个混联腿机构;脚并联机构与大腿机构公用一个平台,二者通过一个足弓平台连接在一起;
A、B两个腿机构
一个腿机构A是混联腿机构,另一个腿机构B是混联腿机构或脚并联机构;
对两个腿机构的自由度组合要求是:
两个腿机构的大腿机构必须至少有一个Rz自由度,一个Tx(或Ty)的自由度,或者至少有一个混联腿机构的大腿机构同时拥有Rz自由度及Tx(或Ty)自由度;或者两个大腿机构都拥有Rz自由度和Tx、Ty自由度;
如果两个腿机构都是混联腿机构,则A、B两个腿机构的大腿机构的上平台固连在一起,两个连接在一起的上平台形成一个骨盆,两个连接在一起的腿机构形成一个混联步行机器人,
如果一个腿机构是混联腿机构,另一个腿机构是脚并联机构,则混联腿机构的大腿机构的上平台与脚并联机构的脚足弓平台固连在一起,两个连接在一起的上平台形成一个骨盆,两个连接在一起的腿机构形成一个混联步行机器人;
两个腿机构的各个大腿支链都有其独立的活动空间,互不干涉;
两个足弓平台或一高一低,或一内一外,或一前一后,互不干涉;
两个腿机构的跖骨支链都有其独立的工作空间,互不干涉;
两个腿机构的脚趾在水平面上的投影不重合;
连接在一起的两个腿机构的脚趾三角形的重心之间的距离小于两个脚趾三角形外接圆的半径之和,且两个脚趾三角形在水平面上的投影有重合。
本发明的有益效果是:
1、由于本发明提出了一种新的混联机构作为腿机构,基本保留了并联机构的主要优点,所以,结构刚度大,结构紧凑、稳定;动力性能好,承载能力强;误差积累小,控制精度高;转向灵活,上坡能力强,能耗特性较佳。易于控制和轨迹规划。
2、完成同样的步行运动,比文献中的机器人少六个自由度。例如,能够爬较大斜坡的步行机器人,本发明需要12个自由度,文献1需要18个自由度,而传统的仿生机器人需要更多的自由度。本发明以更少的运动副,更低的机身高度,实现同样的步行运动,通过性更好,爬坡能力更强,受力状态更佳。
3、对于跖骨支链有二个以上的移动自由度的混联步行机器人,脚趾间距可以变化,可以独立的选择每一个落脚点,提高了对路面的适应性,通过性也有提高。
4、由于在跖骨支链的末端设计了车轮(轮式转动副),混联步行机器人有两种移动方 式,在结构路面上用车轮移动,移动速度和效率会大幅提高。
5、本发明还提供一种同时具有双面步行功能、轮行功能和滚动移动功能的移动机器人。双面运动的混联步行机器人方案具有较少的运动副,结构也会较简单。且机身高度较小,通过性较好。单面移动时,没有多余的运动部件。
6、运行较平稳,能够获得较为精准的图像。由于本发明在运动过程中,可以在各种状态下(包括在斜坡上),机体基本保持水平状态,从而避免了采集视频图像的严重抖动,能够获得较为精准的图像。也为自主控制提供了良好的依据。
附图说明
图1-4是四种不同的脚并联机构立体示意图。
图5是一个具有冗余自由度的跖骨支链简图。
图6是两个相互关联的跖骨支链传动简图。
图7-16是十种不同的大腿机构俯视图。
图17是图16的大腿机构的一个支链的剖面图。
图18-20是三种少自由度的混联腿机构立体简图。
图21是一种满自由度的混联腿机构立体简图。
图22、23是两种有轮的脚趾间距可以调节的混联腿机构立体简图。
图24、25是两种有轮的可以双面步行的混联腿机构立体简图。
图26是一种满自由度内外式混联步行机器人立体简图。
图27是另一种满自由度内外式混联步行机器人俯视图。
图28、29是图27的两个腿机构的支链剖面图。
图30是一种有轮的满自由度双面混联步行机器人立体简图。
图31、32是两种交叉式满自由度混联步行机器人立体简图。
图33是图31、32两种满自由度混联步行机器人的腿机构支链剖面图。
图34、35是两种变异的足弓1.1。
图36-39是四种足弓组合方案。
图40是实施例10(双面爬行步行混联机器人)的主视图。
图41是实施例10的俯视图。
图42是一种单自由度双作用跖骨支链图。
图43是一种二自由度双作用跖骨支链图。
图中:脚并联机构标注:脚并联机构1,脚并联机构上平台(脚足弓平台)1.1,跖骨支链1.2,脚趾1.3,轮式转动副(车轮)1.4,传动箱1.5,输入端1.6,输出端1.7;大腿机构标注:大腿机构2,大腿上平台2.1,大腿支链2.2,大腿下平台(大腿足弓平台)2.3;混联腿机构标注:混联腿机构3,脚并联机构3.1,大腿机构3.2,足弓平台3.3;混联步行机器人标注:混联步行机器人4,A腿4.1,B腿4.2,骨盆4.3;大圆环5.1。
在图34-43中,1.1a是A腿足弓,1.1b是B腿足弓。1.2a是A腿跖骨支链,1.2b是B腿跖骨支链。3.1a是A腿髋关节(髋骨),3.1b是B腿髋关节。1.8是双作用跖骨支链传动箱,4.4是外环,4.5是孔封闭装置。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
一种混联步行机器人的构建方法,特别是包括A、B两个腿机构构成的步行机器人的构建方法,其构建方法如下:
(1)构建脚并联机构(升降站立腿机构)和大腿机构
构建脚并联机构(升降站立腿机构)
每一个脚并联机构包括一个脚足弓平台、三个跖骨支链和三个脚趾,三个跖骨支链固定连接在脚足弓平台上,连接点位于一个三角形的三个顶点上。三个跖骨支链的下端连接脚趾,三个脚趾形成一个脚趾三角形。跖骨支链是由下列自由度组合形成的机构:Tz,TzTx,TzTy,TzTxTy,TzRx,TzRy,TzTxRx,TzTyRy,TzRxRy;
三个跖骨支链各自占据独立的活动空间,互不干涉;三个跖骨支链可以是相同的支链或不同的支链。
Y形、O形、C(U、V)形、T形、三角形、蝶形等脚足弓平台都是脚足弓平台配置时可供选择的形状。这几种结构只是一个近似的表达。同时也不限于这几种结构形状。
关于坐标系和符号意义
直角坐标系是这样建立的:坐标系XY平面为水平面,Z轴垂直于水平面,X方向是步行机器人前进方向,Y方向是横向运动方向。
关于符号(下同):
T:表示移动自由度,
Tx,Ty,Tz,分别表示X轴方向、Y轴方向、Z轴方向的移动自由度,
R:表示转动自由度,或转动副,
Rx,Ry,Rz,分别表示绕X轴、绕Y轴、绕Z轴的转动自由度。
脚并联机构是一个半闭环并联机构,主要具有升降和站立的基本功能,故脚并联机构也称为升降站立腿,脚并联机构可以作为一个升降站立腿单独应用。半闭环并联机构是指立脚相时是闭环机构,游脚相时是开环机构的一种特殊并联机构。
关于跖骨支链和脚趾的详细说明见后面“关于脚并联机构”、“关于跖骨支链”和“关于脚趾”。
构建大腿机构
大腿机构包括上平台、下平台以及联接上平台、下平台的一个或一个以上的大腿支链(包括一个运动副构成的支链),大腿机构的下平台也称为大腿足弓平台。大腿机构的上平台也称为髋骨。大腿支链可以是一个运动副,一个或多个串联机构,或一个混联机构。大腿机构是一个由一到五个自由度的机构。一到五个自由度,是Tx,Ty,Tz,Rz,Rx或Ry中的自由度的任意组合;包括单自由度,二、三、四、五自由度。大腿机构有空间机构,平面机构,混联机构,或单个运动副几种类型。
Y形、O形、C(U、V)形、T形、三角形、蝶形等大腿足弓平台都是大腿足弓平台配置时可选择的形状。同时也不限于这几种结构形状。
大腿机构,其主要的功能是提供水平方向的运动和绕Z轴线的转动。Z方向的移动自由度可以有,也可以没有。最好两个腿机构都不包含Rx自由度或Ry自由度。
多个支链的大腿机构,相同支链或不同的支链都可以应用。不含有Rx自由度或Ry自由度的大腿机构,最少一个自由度,最多四个自由度。含有Rx自由度或Ry自由度的大腿机构,最多五个自由度。
构建脚并联机构(升降站立腿机构)和大腿机构不分先后。
关于大腿机构的详细说明见下面的“关于大腿机构”一节。
(2)、构建混联腿机构
混联腿机构包括一个大腿机构和一个脚并联机构,脚并联机构在大腿机构的下方,二者串联连接成为一个混联腿机构。脚并联机构的脚足弓平台与大腿机构的大腿足弓平台共用一个平台。共用的平台称为足弓平台。
(3)、选择两个合适的腿机构A、B
在上述的混联腿机构中,选取一个混联腿机构作为腿机构A,
在上述的混联腿机构和脚并联机构中,选取一个混联腿机构或脚并联机构作为腿机构B。
对两个腿机构的要求是:
两个腿机构必须至少有一个Rz自由度,一个Tx(或Ty)的自由度,或者至少有一个混联腿机构的大腿机构同时拥有Rz自由度及Tx(或Ty)自由度。最好的方案是两个大腿机构都拥有Rz自由度和Tx、Ty自由度。Tz自由度可有可无。
由于每一个腿机构的脚并联机构都有Rx、Ry、Tz自由度,所以两个腿机构相互配合,可以完成正常的迈步和转向。
有两种组合:混联腿机构+混联腿机构;混联腿机构+脚并联机构。
(4)、连接A、B两个腿机构,构建一个混联步行机器人
A、B两个腿机构的连接:
如果A、B两个腿机构是两个混联腿机构,A、B两个腿机构的大腿机构的上平台固连在一起,两个连接在一起的上平台形成一个骨盆,两个连接在一起的腿机构形成一个混联步行机器人;
如果A、B两个腿机构一个腿机构是混联腿机构,另一个腿机构是脚并联机构,则混联腿机构的大腿机构的上平台与脚并联机构的脚足弓平台固连在一起,两个连接在一起的平台形成一个骨盆,两个连接在一起的腿机构形成一个混联步行机器人。
连接时,对大腿支链、足弓平台、跖骨支链、脚趾及脚趾三角形的布置要求是:
两个腿机构的各个大腿支链都有其独立的活动空间,互不干涉。
两个足弓平台或一高一低,或一内一外,或一前一后,互不干涉。
两个腿机构的跖骨支链都有其独立的活动空间,互不干涉。
两个腿机构的脚趾在水平面上的投影不重合。
连接在一起的两个腿机构的脚趾三角形的重心之间的距离小于两个脚趾三角形外接圆的半径之和,且两个脚趾三角形在水平面上的投影有重合。
足弓平台的选择和配置,主要目的是保证两个足弓平台各自有独立的活动空间,从而保证安装在上面的跖骨支链也有独立的活动空间。
连接两个腿机构的目的是把两个结构复杂的腿机构,互相包含,互相穿插的连接在一起,保证各个运动部件都有自己的活动空间,从而通过合理的安排两个腿机构的运动,实现各种步行移动。
机器人的重心一般位于两个腿的上平台中心连线的中点。而这个重心一般布置在两个脚趾三角形重心连线的中点的正上方。
关于两个腿机构的连接的详细说明见后面“关于两个腿机构的连接和骨盆”一节。
实现上述构建方法的混联步行机器人,包括A、B两个腿机构,一个腿机构A是混联腿机构,另一个腿机构B是混联腿机构或脚并联机构;A、B两个腿机构的上部连接在一起。
混联腿机构包括脚并联机构和大腿机构。
脚并联机构(升降站立腿机构)
脚并联机构包括一个脚足弓平台、三个跖骨支链和三个脚趾,三个跖骨支链固定连接在脚足弓平台上,连接点位于一个三角形的三个顶点上。三个跖骨支链的下端连接脚趾,三个脚趾形成一个脚趾三角形。脚并联机构是一个半闭环并联机构,半闭环并联机构是一种特殊的并联机构。脚并联机构是一个升降站立腿。故脚并联机构也称为升降站立腿。
跖骨支链是一种具有一到多个自由度的支链。趾骨支链的自由度组合是Tz,TzTx,TzTy,TzTxTy,RxTz,RyTz,RxTzTx,RyTzTy,RxRyTz自由度组合中的一种或多种。
比较典型的跖骨支链,对应上面的自由度组合,分别是:P、PP、PP、RP、RP、PPP、RPP、RPP、UP。
Y形、O形、C(U、V)形、T形、三角形、蝶形等足弓平台都是足弓平台配置时可选 择的形状。同时也不限于这几种结构形状。足弓形状与配置可参见文献1。
三个跖骨支链各自占据独立的工作空间,互不干涉。三个支链可以是相同的支链或不同的支链。
只有Rx、Ry自由度的腿机构,是一个站立腿,没有其它功能。
为了提供一个具有升降站立功能的腿机构,所述的每一个跖骨支链都具有一个Z方向的移动自由度。由转动副构成的单自由度的跖骨支链,能够改变脚趾间距。因为一个轴线在足弓平台平面上的转动副,有垂直方向的移动分量,也有水平方向的移动分量。水平方向的移动分量,可以用来改变脚趾间距。
为了提供一个更好地可以独立改变脚趾间距的腿机构,所述的混联步行机器人,脚并联机构的跖骨支链,至少有一个跖骨支链,除具有一个Z轴方向的移动自由度外,还有水平方向的一个或两个移动自由度。即具有包括Tz自由度和一个或两个方向的水平移动自由度。
实际上,脚并联机构主要功能是一个升降站立腿。所以,脚并联机构可以作为一个升降站立腿单独应用。有水平方向自由度的跖骨支链,不仅可以调节脚趾间距,还可以提供水平方向的移动自由度。
不能改变脚趾间距的脚并联机构(例如文献1给出的步行机器人),只能在两个具有确定宽度的平行木板上行走。改变脚趾间距后,则可以在各种宽度的平行木板上行走。甚至可以在独木桥上小步行走。提高了对路面的适应能力。
关于脚并联机构的详细说明见下面“关于脚并联机构”、“关于跖骨支链”和“关于脚趾”三节内容。
大腿机构
大腿机构包括上平台、下平台以及联接上平台、下平台的一个或一个以上的大腿支链(包括一个运动副构成的支链),大腿机构的下平台称为大腿足弓平台。大腿支链可以是一个运动副,一个或多个串联机构,或一个混联机构。
大腿机构是一个具有一到五个自由度的机构。大腿机构的一到五个自由度,是Tx,Ty,Tz,Rz,Rx或Tx,Ty,Tz,Rz,Ry中的各个自由度的任意组合;包括单自由度,2、3、4、5自由度,共36种。其中,有14种机构,没有Rx或Ry自由度;其中,有4种结构是平面机构。
Y形、O形、C(U、V)形、T形、三角形、蝶形等大腿足弓平台都是大腿足弓平台配置时可选择的形状。同时也不限于这几种结构形状。
上述包含Rx或Ry自由度的机构,不是最佳的大腿机构。两个腿机构都不包含Rx自由度或Ry自由度是比较好的方案。
大腿机构是空间并联机构或混联机构时,其空间机构和混联机构的自由度组合是3TRz,3T0R,(3T0R)Rz,(3TRz)Rz,(TxTy)Rz;空间机构中最好的自由度组合是3TRz,混联机构中最好的方案是(3T0R)Rz,和(TxTy)Rz,(RzTxTy)Rz。混联机构中的Rz可以连续转向。
所以,其大腿机构是空间并联机构或混联机构时,较好的方案是,其自由度组合是3TRz和(3T0R)Rz、(TxTy)Rz、(TxTyRz)Rz中的一种。
而两个腿机构的大腿机构都是平面机构时结构最简单,没有任何冗余自由度。所以平面机构是大腿机构中最好的方案。其自由度组合是TxTyRz、TxTy、TxRz、TyRz中的一种。三自由度平面机构又是其中最好的方案。
大腿机构,其主要的功能是提供水平方向的运动和绕Z轴线的转动。水平方向的运动和绕Z轴线的转动可以分布在两个腿上。也可以集中在一个腿上。或两个腿上都有。大腿机构允许具有Tz、Rx、Ry的冗余自由度。但是,Rx、Ry自由度不能同时出现在一个腿机构上。
大腿机构的上平台也称为髋骨。
关于大腿机构的详细说明见下面“关于大腿机构”一节
混联腿机构
混联腿机构包括一个大腿机构和一个脚并联机构,脚并联机构在大腿机构的下方,二者串联连接成为一个混联腿机构。脚并联机构与大腿机构共用一个足弓平台,二者通过这个共用平台连接在一起。共用的平台称为足弓平台。
构建混联腿机构的主要目的是使脚并联机构获得迈步和转向等功能。混联腿机构允许有冗余自由度。
对两个腿机构的要求是:
结构要求:一个腿机构是混联腿机构,另一个腿机构是混联腿机构或脚并联机构。
自由度组合要求:两个腿机构的大腿机构必须至少有一个Rz自由度,一个Tx(或Ty)的自由度,或者至少有一个混联腿机构的大腿机构同时拥有Rz自由度及Tx(或Ty)自由度。最好的方案是两个大腿机构都拥有Rz自由度和Tx、Ty自由度。大腿机构的Tz自由度可有可无。由于每一个腿机构的脚并联机构都有Rx、Ry、Tz自由度,所以两个腿机构可以完成正常的迈步和转向。
有两种组合:组合一,A腿机构是混联腿机构+B腿机构是混联腿机构;组合二:A腿机构是混联腿机构+B腿机构是脚并联机构。
两个满自由度的混联腿机构能够组合成为一个混联步行机器人。一个满自由度的混联腿机构与一个少自由度的腿机构或脚并联机构也能够组合成为一个混联步行机器人。两个少自由度的腿机构只有满足一定的自由度条件时,才能组成混联步行机器人。
A、B两个腿机构的连接
如果两个腿机构都是混联腿机构,则A、B两个腿机构的大腿机构的上平台固连在一起,两个连接在一起的上平台形成一个骨盆,两个连接在一起的腿机构形成一个混联步行机器人;
如果一个腿机构是混联腿机构,另一个腿机构是脚并联机构,则混联腿机构的大腿机构的上平台与脚并联机构的脚足弓平台固连在一起,两个连接在一起的平台形成一个骨盆,两个连接在一起的腿机构形成一个混联步行机器人。
连接时,对大腿支链、足弓平台、跖骨支链、脚趾和脚趾三角形的布置要求是:
两个腿机构的各个大腿支链都有其独立的活动空间,互不干涉;
两个足弓平台或一高一低,或一内一外,或一前一后,互不干涉;
两个腿机构的跖骨支链都有其独立的活动空间,互不干涉;
两个腿机构的脚趾在水平面上的投影不重合。
连接在一起的两个腿机构的脚趾三角形的重心之间的距离小于两个脚趾三角形外接圆的半径之和,且两个脚趾三角形在水平面上的投影有重合。
Y形、O形、C(U、V)形、T形、三角形、蝶形等足弓平台都是足弓平台配置时可选择的形状。这几种结构只是一个近似的表达。同时也不限于这几种结构。两个足弓平台的配置,以互不干涉为最高准则。
实际上对大腿支链、足弓平台、脚趾及脚趾三角形的总要求是,各部件都有自己的独立活动范围,互不干涉。在某些特殊空间,允许工作空间有部分重叠(例如,在两个活动空间的交界处),通过控制,也能够达到互不干涉的目的,就像人的两条腿一样。这样的配置,通过控制,可以获得更好的性能。
机器人的重心一般位于两个腿的上平台中心连线的中点。而这个中点一般布置在两个脚趾三角形重心连线的中点的正上方。
连接的目的是把两个结构复杂的腿机构,互相包含,互相穿插的连接在一起,保证各个运动部件都有自己的活动空间,从而通过合理的安排两个腿机构的运动,实现各种 步行移动。连接在一起后,两个腿机构的大腿支链要有各自的活动空间;连接在一起后,两个跖骨支链也要有各自的活动空间。
两个脚趾三角形的重心之间的距离,存在两个比较好的结构方案:
A、B两个腿机构的上平台固连在一起,两个腿机构的脚趾三角形的重心之间的距离是下列两种情况中的一种:
a、两个腿机构的脚趾三角形的中心之间的距离为0或小于0.20(Ra+Rb),参见实施例1
b、两个腿机构的脚趾三角形的中心自己的距离大于等于0.30(Ra+Rb)小于等于0.70(Ra+Rb),参见实施例3。
其中
Ra是A腿机构脚趾三角形外接圆的半径,
Rb是B腿机构脚趾三角形外接圆的半径;
第一种是一个各向同性的连接方案,称为内外式结构方案(参见实施例1、2);第二种是一个非各向同性的方案,称为交叉式结构方案(参见实施例3、4)。
内外式结构方案,如果是两个相同的腿机构,两个上平台连接时有约60度的相位差。
交叉式结构方案,一般的要有一个腿机构的脚趾落在另一个脚趾三角形的中心。
为了提供一个在机体翻转的情况下仍然可以步行的混联步行机器人,包括A腿机构、B腿机构和骨盆,混联步行机器人的两个腿机构的跖骨支链是下列跖骨支链之一种或两种的组合:
A、跖骨支链的第一个运动副是双作用移动副,移动副的轴线垂直于足弓平台平面;
B、跖骨支链的第一个运动副是转动副,跖骨支链是PHRHP,其中转动副的轴线垂直于足弓平台平面;
C、跖骨支链的第一个运动副是转动副,转动副的轴线与足弓平台平面平行
这样,就形成一个可以双面步行的机器人。双作用移动副或PHRHP支链,都有两个输出端,一个在上,一个在下,两面都可工作。转动副通过转动把跖骨支链的输出端转移到另一面,两面都可以做步行移动。
跖骨支链运动副的顺序编号:与足弓连接的运动副编号为第一号,与第一号连接的运动副编号为第二号,余类推。
为了防止混联步行机器人在侧立状态下不能移动或不能转换为步行状态,在混联双面步行机器人的骨盆上连接一个大圆环,这个大圆环与骨盆在一个平面上,这个大圆环的中心与骨盆的中心在同一个位置。大圆环的直径大于脚趾三角形的外接圆直径。
于是,提供了一个在机体翻转的情况不可以侧立且可以转换为步行状态的机器人。
大圆环包括圆环,椭圆环,凸多边形和有部分间断的环。发生侧立状况时,环与两个脚趾形成三个支撑点。在用这三个支撑点(形成一个环脚三角形或多边形)接触水平地面时,机器人机体的重心,在水平面上的投影,落在这个环脚三角形或多边形的外面。机体会倒下。三个或六个脚趾重新着地,恢复步行功能。非圆的大环,半径是指环边沿到骨盆中心的距离。
多边形或间断的圆环只可以实现不能侧立的目的。圆环有防侧立的功能和滚动移动的功能。圆环的方案优于多边形方案,也优于间断的方案。
圆环的作用:机器人机体不能侧立,可以向两个方向倒下,恢复步行功能。如果极端情况下,机器人机体只能侧立(例如立在一个六七十度或更陡峭的斜面上,不能倒下),则这个机器人可以滚动移动。滚动移动,可以脱离陡峭斜面,恢复步行功能。于是,提供了一种可以双面步行、可以滚动移动的机器人。
为了提高带大圆环的双面步行机器人的通过性,减小正常步行时的横向尺寸,所述的大圆环是可伸缩环。任何使大圆环变大变小的可展机构,都可应用于可伸缩环。参考 文献1有可供参考的方案。
为了提供一个即可以步行又可以轮行的腿机构,至少有一个腿机构的脚趾全部是轮式转动副构成的脚趾,轮式转动副的轴线平行于基础平台平面。车轮上有锁定或刹车装置。轮式转动副可以是转向轮和定向轮,定向轮的轴线与前进方向垂直。
当三个跖骨支链的自由度不相同时,或只有一个或两个支链用来改变脚趾间距时,会出现脚趾三角形重心位置(相对于原来的脚趾三角形)发生较大变化的情况。这给控制增加了困难。如果三个跖骨支链上的脚趾都独立的移动,则自由度(主动副)又会较多。
为了解决这个问题,在足弓平台上设计安装一个传动箱,这个传动箱有一个输入端,有两个或三个输出端,一个输出端连接一个跖骨支链。
两个或三个输出端具有相向的或相背的移动方向或转动方向。传动箱的形状与足弓的整体或部分形状相一致。跖骨支链的上方连接在输出端上。安装传动箱的足弓平台不影响另一个足弓平台的独立运动。
相向的或相背的移动或转动是指,输入端有一个确定的输入后,连接在两个或三个输出端的跖骨支链上的脚趾之间的距离会变小(称为相向的移动)。输入端有另一个确定的输入后,脚趾之间的距离会变大(称为相背的移动)。例如向心的移动是相向的移动。
传动箱具有与足弓平台的局部或整体相同或相近的形状。两个输出端时,传动箱的形状与足弓的部分形状相一致;三个输出端时,传动箱的形状与足弓的整体形状相一致。
两个输出端传动箱的传动例子:以PHRHP传动链驱动跖骨支链。PHRHP传动链的R副是主动副,两个H副的螺旋方向相反,转动副一个方向主动时,两个移动副的输出端,要么相互靠近,要么相互远离。实现了一个转动副调节两个脚趾的目的。
三个输出端传动箱的传动例子。以Y型足弓平台为例。传动箱为Y形状。一个输入端在中间,输入端分别与两个齿轮啮合,输入端是主动齿轮,另外两个齿轮是被动齿轮。还有三个端部齿轮安装在Y型传动箱的最外端,中间的主动齿轮驱动一个端部齿轮,中间的另外两个被动齿轮,分别驱动另外两个端部齿轮。六个齿轮的轴线在水平面上。三个端部齿轮各连接一个跖骨支链。主动端有一个输入时,三个脚趾要么靠近,要么远离。实现了一个转动副调节三个脚趾间距的目的。
传动箱的作用是两个或三个脚趾同步运动,改变脚趾相对位置,三角形作某种对称变化,重心位置变化较小,便于控制。传动箱的设计属于公知技术,有多种方案。不再赘述。
下面详细说明有关名词和相关结构。
关于脚并联机构
脚并联机构既是一种独立的腿机构,也是混联腿机构的一个重要组成部分。
脚并联机构的主要功能是提供绕X轴线的转动自由度,提供绕Y轴线的转动自由度和Z方向的移动自由度。多自由度支链还可以改变脚趾间距,提供水平方向的移动自由度。带轮的支链有轮行和步行两个功能。所以,脚并联机构的主要作用:1、在各种不平表面上,能够保持机体水平或某一个固定的姿态行走,2、实现抬步运动。
脚并联机构按照其自由度分类,有二自由度、三自由度,一直到九自由度的脚并联机构。如果加上冗余自由度的情况,种类还会更多。
关于跖骨支链
跖骨支链是连接在足弓平台上的支链,是足弓平台与地面之间的支撑。它是有特定的自由度组合的支链。相当于动物的脚趾与脚踝之间的跖骨,与跖骨不同的是,跖骨支链可以变化长度、角度等。
跖骨支链分为五种情况:0自由度跖骨支链(一个脚并联机构最多一个),单自由度跖骨支链(Tz自由度),双自由度跖骨支链(TzTx,TzTy,,TzRx,TzRy自由度组合),三自由度跖骨支链(TzTxTy,TzTxRx,TzTyRy,TzRxRy自由度组合),带轮子的跖骨支链(包 括转向轮,定向轮,带轮的跖骨支链最多5个自由度)。
三个跖骨支链可以是相同的支链或不同的支链。三个跖骨支链各占据独立的工作空间,互不干涉。
一个0自由度跖骨支链,就是一个杆件。一个0自由度跖骨支链与两个单自由度跖骨支链配合,可以形成一个脚并联机构,形成一个站立腿机构。这个腿机构没有Z方向移动自由度,无升降功能。有一个这样的腿机构的步行机器人只能上下波动式间歇运动。
单自由度跖骨支链,只有一个Z方向移动自由度。三个单自由度跖骨支链,形成一个脚并联机构,每一个跖骨支链都有Z方向的移动自由度(包括含有Z向自由度分量的自由度)。例如一个移动副P构成的跖骨支链,其移动副轴线垂直于水平面;再如,一个转动副R或平行四边形运动副Pa构成的跖骨支链,其转动副轴线平行于水平面,R,Pa运动副转动时含有Z方向的运动分量。需要说明的是,应用R或Pa时,R或Pa的转动角度接近90度时,Z方向的分量几乎为零,且抬步时扰动空间大。但是,这时也有优点:水平方向的分量比较大,可以用来改变脚趾间距。
还有两个运动副组成的单自由度跖骨支链:PP(P副轴线重合),第二个P副是消极副,作减振用。还有三个运动副组成的支链:RHP,(三个运动副轴线重合),形成上下移动的自由度,动力输入是转动副。
移动副构成的单自由度跖骨支链形成的脚并联机构是一个不可调节脚趾间距的升降站立腿。转动副构成的单自由度跖骨支链形成的脚并联机构是一个可调节脚趾间距的升降站立腿。
二移动自由度跖骨支链
单运动副构成的二自由度跖骨支链,例如,二平移平行四边形类复杂运动副(包括2-RPR平行四边形类复杂运动副和3-UU平行四边形类复杂运动副,也称为二维纯平移万向铰)。两个运动副构成的双自由度跖骨支链,例如:PP(两个P副轴线相互垂直),RP,RR,PaP,PC,PaPP,PaR,RC。三个运动副组成的双自由度跖骨支链,例如,PPP(前两个P副轴线相互垂直,后两个P副轴线重合),PCC,PaPP。最后一个运动副是消极副,作减振用。
双自由度跖骨支链形成的脚并联机构是一个可以改变脚趾间距的升降站立腿。二移动自由度跖骨支链,除了增大落趾点的选择范围外,还可以增大步幅,增加脚并联机构的一个Tx自由度。可加快前进方向的步行速度,提高越过壕沟的能力。对于具有Tx自由度的大腿机构,Tx自由度是一个冗余自由度。
三个移动自由度的跖骨支链,移动自由度组合为TxTyTz,RxTzTx,RyTzTy,RxRyTz。
单运动副构成的三自由度跖骨支链有三平移万向铰M;双运动副构成的三自由度跖骨支链有UP支链、PI支链、CP支链或U*P支链;三平移并联机构有3-UPU;串联机构有RRR,PPaP。三自由度跖骨支链形成的脚并联机构是一个可变换脚趾间距的升降站立腿。
三个移动自由度的跖骨支链,可以在更大的范围内(两个维度)选择落趾点,可以增大步幅,三个自由度的跖骨支链,除了更大的落趾点的选择范围外。加快前进方向和横向的步行速度,提高越过壕沟的能力。
跖骨支链主要应用串联机构。有时并联机构也可以应用,但结构复杂,工作过程扰动空间较大。三个平移自由度跖骨支链,如果用并联机构,就会比较复杂,会增加腿的重量。但是,它有更高的承载能力。
两个或三个自由度的跖骨支链,不论机体是水平状态或倾斜状态,其轴线经过控制都可与地面垂直,优化了受力状态。同时,在同样的结构尺寸下,上坡能力有提高(提高5-10度)。
跖骨支链除了上述具有独立自由度的支链外,还有一种相互关联的跖骨支链。相互关联的跖骨支链,可以用较少的自由度,实现脚趾的某种对称移动,既改变了脚趾间距,又不使重心的位置发生较大的变化。
为了提高在结构路面上的移动速度,在趾部安装一个车轮,即安装轮式转动副Rw,车轮轴线平行于基础平台平面,定向轮轴线与前进方向垂直。轮子包括,带转向自由度的和不带转向自由度的两种。带轮子的跖骨支链的例子:PRw,PPRw,PPPRw,RPRw,RPPRw,RRw,RRRw,RRPRw,RPRw,PaRw,PaRRw,PaPRw,PaPPRw,PPRw。有转向轮的跖骨支链最多5个自由度。
足弓平台与三个跖骨支链连接,形成一个完整的足弓。足弓高低可变;某些跖骨支链,脚趾的间距也是可变的。
跖骨支链中,如果两个P副轴线重合,则有一个消极副,作减振用。如果两个P副轴线垂直,则是两个主动副,构成两个自由度的支链。
以上符号的意义:U表示虎克铰、P表示广义移动副,R表示转动副,Rw表示轮式转动副,即车轮,C表示圆柱副,H表示螺旋副,Pa表示平行四边形运动副,U*和I表示二平移平行四边形复杂运动副,也称为二纯平移万向铰,M表示三平移平行四边形类复杂运动副。
不论应用哪一种跖骨支链,脚趾三角形都要尽可能大,以得到较大的稳定范围。
跖骨支链的长度变化量越大,则爬坡能力越强。为提供爬坡的能力,跖骨支链应当增加移动变化量。例如,用多节移动副,增加移动量。
跖骨支链与足弓平台的连接,应当注意第一个运动副的轴线与足弓平台平面的关系。例如,P副或RHP作为跖骨支链,第一个运动副轴线垂直于基础平台平面;PP(P垂直于P)或PR作为跖骨支链,第一个运动副轴线平行于基础平台平面;RR、RP或RPP作为跖骨支链,第一个运动副的轴线平行于基础平台平面。
关于脚趾
三个脚趾不共线,通常是在一个正三角形或等腰三角形的三个顶点上。自然地,三个跖骨支链与足弓平台的连接点也不共线。
脚趾有多种结构形式。为了在天棚,墙面等特殊表面上工作,在趾部可以装有吸盘,电磁铁等。为了减少落地时的冲击,提高步行机器人的稳定性,在脚趾下部安装有弹性减振装置。例如脚趾安装有一弹性垫;或在跖骨支链的末端安装有消极移动副,安装一个运动副类型的减震器。趾部下端形状最好为半球状或椭球状。这可以适应各种路面。轮子也是一种特殊的脚趾。脚趾下部还可以安装有测距传感器和压力传感器等。
关于大腿机构
大腿机构是具有确定的自由度和自由度组合的机构。单自由度的大腿机构有6种,其中4种大腿机构中没有Rx或Ry自由度;双自由度组合的大腿机构有14种,其中6种大腿机构中没有Rx或Ry自由度;三自由度组合的大腿机构有9种,其中3种大腿机构中没有Rx或Ry自由度;四自由度组合的大腿机构有5种,其中1种大腿机构中没有Rx或Ry自由度;五自由度组合的大腿机构有2种,其中0种大腿机构中没有Rx或Ry自由度。
在各种自由度组合(包括单自由度)的大腿机构中,有14种大腿机构,没有Rx或Ry自由度;有22种大腿机构,包含有Rx或Ry自由度。在14种没有Rx、没有Ry自由度的大腿机构中,除去单自由度的大腿机构,还有10大腿机构。这10种大腿机构可以是并联机构或串联机构。3自由度和4自由度的大腿机构有4种,这四种还可以是混联机构。在10种没有Rx、没有Ry自由度的大腿机构中,除去含有Tz自由度的大腿机构,还有4种机构都是平面大腿机构。
包含有Rx或Ry自由度的大腿机构,在特殊场合应用有优势。例如,多数工作场合 是倾斜路面,机体还要求水平姿态的情况。
大腿机构可以是串联机构,并联机构,混联机构或单个运动副。多个支链的大腿机构,相同支链或不同的支链都可以应用。一个腿机构可以没有或只能有一个绕水平轴线转动的自由度。Rx自由度和Ry自由度不能同时出现在一个大腿机构中。
大腿机构如果有两个或多个支链,各支链应当互不干涉。这也是一个机构必须满足的条件。
大腿机构有空间机构,混联机构,平面机构,或单个运动副。下面分别讨论。
空间机构:其自由度组合包括:3TRz,3T0R。3TRzRx,3TRzRy,3TRx,3TRy。
空间机构有很多种结构形式。空间并联机构:3T0R机构,例如(3-UPU)、(3-PUU)、(3-CPP)机构等。3TRz机构,例如4-UPU并联机构。
混联机构,例如,自由度组合(3T0R)Rz,(3TRz)Rz,Rz(3TRz),(3TRz)Rx,(3TRz)Ry,(3T)Rx,(3T)Ry,(TxTy)Rz;(TxTyRz)Rz等。上述的空间机构或下述的平面机构串联一个转动副Rz即可。绕Z轴转动的自由度允许有冗余自由度。
平面机构的自由度组合有TxTyRz,TxTzRz,TyTzRz,TxTy,TxTz,TyTz,TxRz,TyRz,TzRz多种;构成的机构包括并联机构和串联机构。例如并联机构:3-RRR,3-RPS,3-RPR,3-RPR,3-PRP,3-PaPaRz机构等。例如串联机构:RRR,RPR,PaPaRz机构,还有:PRz,RzU*,(CC)Rz机构等。这些平面并联机构都可以应用到本发明中。
单个运动副形成的机构比较简单。例如Tx由P副形成,Ty由P副形成,Rz由R副形成,TzRz由C副形成。单运动副I,M,U*也是可行的。
同时具有Tx、Ty、Rz三个自由度的大腿机构称为满自由度大腿机构;除Tx、Ty、Rz自由度外,还有其它自由度的大腿机构称为冗余自由度大腿机构;缺少Tx、Ty、Rz自由度中任一个自由度的大腿机构称为少自由度大腿机构,例如,具有Tx、Ty、Tz自由度的大腿机构称为少自由度大腿机构。
大腿机构按照功能分类有转向大腿机构,单向移步大腿机构,双向移步大腿机构,单向移步转向大腿机构,双向移步转向大腿机构,冗余自由度大腿机构。
在众多的大腿机构中,选择大腿机构的原则是:并联机构优于串联机构;不含Rx,Ry的机构优于包含一个Rx或Ry的机构;在某些情况下,不含Tz的机构优于包含Tz的机构;在某些情况下,混联机构优于并联机构;在某些情况下,平面并联机构优于空间并联机构;在某些情况下,冗余支链并联机构优于满(恰)支链并联机构(自由度数与支链数相等的并联机构)。
关于混联腿机构
构建混联腿机构就是连接一个脚并联机构和一个大腿机构。任意一个脚并联机构和任意一个大腿机构,只要共用一个足弓平台,都可以构成一个混联腿机构。
构建混联腿机构的目的是使脚并联机构获得迈步、转向功能。大腿机构与脚并联机构的连接部件就是足弓平台,二者共用一个足弓平台。简单说,连接在一起且共用了一个足弓平台的大腿机构和脚并联机构就是一个混联腿机构。
混联腿机构除脚并联机构的Rx、Ry、Tz自由度外,大腿机构同时还至少具有下述三个自由度的一个自由度:1、前进方向的运动自由度Tx,2、横向运动自由度Ty,3、绕Z轴线转动的自由度Rz。
脚并联机构的站立、抬步功能,与大腿机构的前进方向的运动自由度配合完成前进方向的迈步功能;脚并联机构的站立、抬步功能,与大腿机构的横向运动自由度配合完成横向方向的迈步功能;脚并联机构的站立、抬步功能,与大腿机构的转向运动自由度配合完成转向功能。
最好的混联腿机构有六个或更多的自由度。混联腿机构的主要功能包括站立、迈步和转向功能。混联腿机构有单向迈步腿,双向迈步腿,转向腿,单向迈步转向腿,全能 腿,可调脚趾间距腿等。
混联腿机构允许有其它冗余自由度。本发明消除了Rx,Ry自由度同时冗余的情况。单个Rx,Ry自由度冗余是允许的。其它自由度的冗余也是允许的。
冗余自由度混联步行机器人包括两种情况。
大腿机构出现冗余自由度,分为两种情况。1、大腿机构中有Tz、Rx或Ry自由度,则与脚并联机构的自由度出现重合,形成冗余自由度。例如,大腿机构应用了3TRz,或TxRx,则3TRz出现了Tz自由度冗余,TxRx出现了Rx自由度冗余。2、大腿机构自身出现自由度冗余。例如,大腿机构用3自由度平面机构再串联一个Rz,则Rz出现冗余自由度。具有冗余自由度大腿机构的混联腿机构必是一个冗余自由度混联腿机构。
脚并联机构出现自由度冗余,分为两种情况。1、在脚并联机构中,如果跖骨支链都是两个自由度或三个自由度,则脚并联机构具有Ty或Tx自由度。如果与之配合的大腿机构也有Ty或Tx自由度,则会出现Ty或Tx自由度冗余。2、跖骨支链自身有自由度冗余。例如,跖骨支链中有两个轴线重合的移动副(或圆柱副),其中一个作为减震器(消极副),减震器就是一个冗余自由度。再如,三个轴线平行的转动副,作为跖骨支链,最下面的转动副是消极副,作为减震器使用,则也有一个冗余自由度(参见图5)。具有冗余自由度脚并联机构的混联腿机构必是一个冗余自由度混联腿机构。
冗余自由度混联腿机构不影响腿机构的应用。某些情况下还是好事情。
关于两个腿机构的连接和骨盆
并不是任意两个混联腿机构或一个混联腿机构与一个脚并联机构连接就可以形成一个混联步行机器人。例如两个图18中的腿机构不能形成步行混联机器人。因为这个机器人没有转向能力。两个腿机构除满足自由度要求外,结构还必须满足一定的要求。
两个满自由度的混联腿机构能够组合成为一个混联步行机器人。一个满自由度的混联腿机构与一个少自由度的腿机构或脚并联机构也能够组合成为一个混联步行机器人。两个少自由度的腿机构只有满足一定的自由度条件时,才能组成混联步行机器人。有时,脚并联机构的水平方向的自由度与大腿机构配合,也可以实现步行移动。但是这不是最好的选择。例如。一个转向大腿机构配一个单向脚趾间距可调脚并联机构构成一个混联腿机构。两个这样的混联腿机构可以构成一个混联步行机器人。显然,这不是一个好方案。但是,有了这样一个冗余自由度,当大腿机构的移步自由度出现故障时,步行机器人还可以依靠这个冗余自由度步行,这是潜在的好处。
连接两个腿机构后形成的骨盆,还用于安装机体(机身)和操作手等。
自然地,连接两个混联腿机构时,两个腿机构的脚趾都应当在下面,两个腿机构的尺度应大致相当。
连接后的两个大腿机构形成一层、二层或多层机构:主要分为几种情况。
一层结构:骨盆、A腿大腿支链和B腿大腿支链、A腿足弓平台和B腿足弓平台都在同一层。
二层结构:骨盆一层,A腿大腿支链和B腿大腿支链与骨盆在同一层,A腿足弓平台和B腿足弓平台在同一层。例如RPR支链,RRR支链用于腿机构(参见实施例2,3,4)。两层结构还包括一个混联腿机构与一个脚并联机构组合形成的混联步行机器人。有一个腿机构没有大腿支链。脚并联机构的足弓平台与混联腿机构的上平台组成一层。混联腿机构的足弓平台形成一层,共两层。
三层结构:骨盆一层,A腿大腿支链和B腿大腿支链与骨盆在同一层,A腿足弓平台在第二层,B腿足弓平台在第三层。例如实施例1。
四层结构:为了加大活动空间,A腿大腿支链(包括骨盆)单独占据一层。B腿大腿支链(包括骨盆)也单独占据一层。两个腿机构的大腿支链允许有比较大的扰动空间,A腿足弓平台在第三层,B腿足弓平台在第四层。这种结构,两个骨盆一上一下连接为一体。
如果一个大腿机构的上平台和它的支链各占一层,则一个混联步行机器人可能会有六层。
对两个足弓平台或一高一低,或一内一外,或一前一后,互不干涉的要求,通常只要满足一条即可。足弓平台结构,凸的、平面的、凹的都可以。足弓平台的形状有Y、T、O、C、V、U、三角形、蝶形等多种结构形式,这几种结构只是一个近似的表达。同时也不限于这几种结构形式。配置两个足弓平台的目标是防止两个足弓平台的干涉,为两个足弓平台提供各自的活动空间,为两个跖骨支链提供各自的活动空间。满足足弓平台设计目的的各种形状都可以用来做足弓平台。有关足弓的结构与配置参阅文献1。
本发明的混联腿机构的特点是腿的抬步功能与移步功能分离,二者不相耦合,易于控制。
几点说明:
关于跖骨支链的移动自由度,是指脚趾这个点的移动自由度。所以安装在转动副上的脚趾,是具有移动自由度的。在符号串表达的自由度组合中,字母的顺序并不表示自由度的顺序。例如Rz(3T0R)与Rz(3TRz)是一样的,与顺序无关。本发明的混联步行机器人的外部,可采用封闭式结构,用于防火,防水或防辐射的场合。本发明的驱动建议应用远程驱动(例如固定的电机用齿带实现远程传动),以减小运动部件的惯量。本发明中的各种机构应避开奇异位形。本发明的混联腿机构配置普通腿机构也是可行方案。包括文献1公开的腿机构,都可以配置普通的仿生腿机构,构成步行机器人。本发明是一个非仿生步行机器人。体现在三个方面:一是混联腿机构的移步功能和抬步功能是解耦的,转向功能和抬步功能也是解耦的。这是动物界没有见到的。二是两个腿可以互相包容,互相穿插。而动物的腿都是一个实心体,不能互相穿插,也不能互相包容。三是动物都有前后腿或左右腿或者前后左右腿都有。本发明给出的步行机器人没有前后左右腿,只有内外腿。所以本发明是非仿生步行机器人。
本发明给出的混联步行机器人的工作过程与文献1的步行机器人工作过程基本相同。这儿,对几个典型混联步行机器人的工作过程作简单说明。
混联步行机器人的自由度越少,其移动的功能越差。七个自由度,只能做波动式间歇移动,间歇转向(大角度时),不能横向移动。八个自由度,依据自由度组合,1、只能做水平式间歇移动,间歇转向,不能横向移动,2、或只能做波动式间歇移动,连续转向,不能横向移动。3、只能做波动式间歇移动,间歇转向和横向移动。增加一个自由度,会改善机器人的步行功能。十二个自由度,可以作各种移动。如果脚趾间距可以调节,则需要十二个以上的自由度,这时,可以适应各种路面。
下面介绍三类混联步行机器人的步行工作过程。
以实施例1为例,说明内外式全(满)自由度混联步行机器人的工作过程。
1、静态稳定性直线行走:在一个步容周期内,停止时,假设A腿处于立脚相,B腿处于游脚相,步行过程中,骨盆保持水平。
A腿大腿机构上平台作水平运动,带动B腿移动,B腿脚趾三角形也作水平运动,实现移步,到达预定位置或达到最大步幅后,B腿各个跖骨支链放下来,三个脚趾依据地面高度,接触地面,B腿承受载荷。B腿变为立脚相。而后,A腿各个跖骨支链抬起来(缩短),A腿变为游脚相。B腿大腿机构上平台作水平运动,带动A腿移动,同时A腿脚趾三角形也同方向作水平运动,实现移步,到达预定位置或达到最大步幅后,A腿跖骨支链放下来(伸长),三个脚趾依据地面高度,接触地面,A腿承受载荷,A腿重新变为立脚相。完成一个循环。重复上述过程,实现直线水平步行移动。
实际的工作过程看出,本发明对不平路面的适应完全由脚并联机构完成;抬腿的任务主要由脚并联机构完成,只有在大腿机构存在Tz自由度时,抬腿的任务才由脚并联机构和大腿机构共同完成,但是大腿机构只是次要的作用;移步和转向功能主要由大腿机 构完成。只有在脚并联机构的支链存在两个或三个自由度时,移步和转向的任务才由脚并联机构和大腿机构共同完成,但是脚并联机构的移步功能只是次要的作用。
2、静态稳定性转向:停止时,假设A腿处于立脚相,B腿处于游脚相。
处于游脚相的B腿脚趾三角形相对上平台转动,若达不到要求,上平台在立脚相A腿的带动下同方向转动。到达所要求转向角度或最大转向角度时,游脚相B腿脚趾放下,各个脚趾依据地面高度接触地面,B腿变为立脚相,A腿变为游脚相。立脚相B腿再转动一个角度,游脚相A腿也再转动一个角度,达到所要求转向角度。若角度不足,可重复上述过程,连续转向。转向过程中,机器人的重心不发生变化,始终处在立脚相腿机构三个脚趾形成的稳定三角形内。
3、静态稳定性直线行走的同时转向:由于转向过程中,机器人的重心不发生变化,所以步行机器人直线行走的同时,伴随转向,可以完成行走中的转向。
在这种步态下,一个步态的最大转向角和最大步幅都会适当减小。
4、动态步行
当向前运动时,即使机器人的重心瞬间超出了立脚相腿的稳定三角形范围,机器人仍然不需要左右调整重心位置。例如,如果A腿处于游脚相,B腿处于立脚相,只要B腿施力蹬地,上平台获得一个较大的向前和略向上的速度,重心迅速向前转移,A腿快速着地,重力完全落在A腿上,A腿变为立脚相,B腿抬起,B腿变为游脚相,就可以实现动态步行。
因此,不论是稳态步行,还是动态步行,机器人都不要在横向上调整其重心。
内外式步行机器人具有各向同性性。不转向的情况下,向各个方向的步行,其运动方式与上述过程基本相同,不在赘述。
以实施例3为例,说明交叉式步行机器人的工作过程。
1、静态稳定性直线行走
停止时,假设内A腿处于立脚相,外B腿处于游脚相。以两个脚趾三角形的中心连线为前进方向。
前进方向步行,B腿脚趾向前伸出,同时A腿驱动大腿上平台也向同一方向移动,于是上平台向前移动,重心随之前移,B腿脚趾随之前移,最后达到所需步长或最大步长时,B腿脚趾落地,承力,重心由A腿转向B腿,B腿处于立脚相,A腿抬起缩回,A腿处于游脚相。上平台继续向前移动,重心继续随之前移,重心移到B腿的中心上。B腿处于立脚相,开始下一个迈步运动,开始下一个循环。
2、静态稳定性转向:处于游脚相的B腿相对上平台转动,若达不到要求,上平台在立脚相A腿的带动下同方向转动。到达所要求转向角度或最大转向角度时,游脚相B腿放下,变为立脚相,立脚相A腿变为游脚相,立脚相腿再转动一个角度,达到所要求转向。若角度不足可重复上述过程,连接转向。转向过程中,机器人的重心不发生变化,始终处在立脚相腿机构三个脚趾形成的稳定三角形内。
以实施例7为例说明内外式八自由度混联步行机器人的工作过程。
这是一种自由度最少的混联步行机器人之一。这个混联步行机器人只能作间歇式步行运动。B腿用于单向迈步和转向,A腿可以完成站立和升降功能。B腿移步的同时可以转向,转向的同时也可以迈步。步行过程描述如下:A腿处于立脚相,机体重心基本不动,B腿抬起移步,放下;B腿承受机体载荷,顶起上平台,B腿变为立脚相,A腿抬起,机体在B腿的驱动下向前移动,到达新位置后内,A腿伸出,着地,承受载荷,A腿又处于立脚相,,B腿缩回,B腿变为游脚相,开始下一个循环,实现连续步行。
这个少自由度步行机器人转向过程也是间断进行。过程参考内外式全(满)自由度混联步行机器人的转向工作过程,不再赘述。
本发明有多种优秀的实施方案。为了比较清楚、全面的介绍各种方案,首先说明脚 并联机构的多种结构方案,再说明混联腿机构的多种方案,最后介绍几种典型的混联步行机器人实施例。
脚并联机构(升降站立腿)
脚并联机构既是混联腿机构的必备机构,也是混联步行机器人腿机构的可选腿机构之一。所以是一种十分重要的机构。脚并联机构,按照跖骨支链的自由度分为,站立腿,升降站立腿,单方向脚趾间距可调升降站立腿,两个方向的脚趾间距可调升降站立腿机构,轮行腿,滚动腿等。脚趾三角形的一个高可定义为脚长,其底边定义为脚宽。
下面是脚并联机构的几种典型方案。
图1-4是四种不同的脚并联机构立体图。脚并联机构作为腿机构独立应用,多数情况下,只能与同时具有迈步和转向功能的混联腿机构配合,才能构成混联步行机器人。
图1是第一种脚并联机构1的立体图,其足弓1.1是环形足弓,其跖骨支链1.2是移动副,移动副轴线垂直于足弓平台平面,跖骨支链的下端是脚趾1.3,脚趾1.3间距不可以调节。这是一个升降站立腿,有三个自由度。如果右下角的跖骨支链换为转动副,转动副的轴线垂直于前进方向,则脚趾间距可以改变。
图2是第二种脚并联机构1的立体图,其足弓1.1是T形足弓,三个跖骨支链1.2,都是两个串联的转动副,两个自由度。三个跖骨支链有六个自由度。第一个转动副的轴线相互平行。跖骨支链的下端是脚趾1.3,脚趾1.3间距可以调节。跖骨脚并联机构有一个前进方向的自由度。
图3是第三种脚并联机构1的立体图,其足弓1.1是C形足弓,其跖骨支链1.2是两个串联的转动副,每个跖骨支链都有两个自由度,脚趾1.3间距可以独立调节;脚趾安装有轮式转动副(车轮)1.4,车轮的轴线互相平行,三个车轮至少有一个转向轮。这是一个脚趾间距可以独立调节的且可以轮行的升降站立腿。这个脚并联机构的跖骨支链也可以翻转到足弓平台的上面,当机器人翻转180度时,仍然具有步行和轮行能力。
图4是第四种脚并联机构1的立体图,其足弓1.1是T形足弓,其跖骨支链1.2是RP支链,两个运动副轴线互相垂直,跖骨支链有两个自由度,脚趾间距可以独立调节;脚趾安装有车轮1.4,定向轮的轴线互相平行,三个车轮至少有一个转向轮。这是一个脚趾间距可以独立调节的且可以轮行的升降站立腿。这个跖骨支链也可以翻转到足弓平台的上方。这样,当机器人翻转180度时,机器人仍然可以变步行或轮行。
图5是一个具有消极转动副的跖骨支链,它由三个转动副组成,三个转动副轴线互相平行。有两个自由度和一个冗余自由度。最下面的转动副是消极副,作减振用。标注同图1。
图6是一个有两个输出端传动箱的传动例子。以T型足弓平台1、1为安装平台。传动箱1.5为长条形状,安装在T足弓平台的“横”上。中间的两个齿轮,一个是主动齿轮,是输入端1.6,与它啮合的齿轮,是被动齿轮,两个齿轮转动方向相反。还有两个齿轮安装在传动箱的两端,是两个输出端1.7,中间的主动齿轮驱动一个端部齿轮,中间的被动齿轮驱动另一个端部齿轮。四个齿轮的轴线在水平面上,且相互平行。两个端部齿轮的转动方向是相反的。两个端部齿轮各连接一个跖骨支链1.2(RR)。两端的齿轮轴就是两个跖骨支链的第一个转动副,这两个转动副是相关的。有一个转动副驱动。主动端有一个输入时,两个脚趾1.3要么靠近,要么远离。实现了一个转动副调节两个脚趾1.3的目的。有了这个传动箱,只要4个或5个自由度,就可以实现改变脚趾间距和脚的大小的目的。
这个传动箱的传动链也可以改为PHRHP,中间的转动副是主动副,两个移动副是输出端。两个螺旋副的螺纹方向相反。三个脚趾1.3的间距可以独立调节。
混联腿机构
由于混联腿机构由大腿机构和脚并联机构组成,这儿先说明大腿机构。
按照大腿机构的自由度,大腿机构分为:单自由度大腿机构,双自由度大腿机构, 三自由度大腿机构,冗余自由度大腿机构(含有Rx、Ry、Tz自由度的大腿机构称为冗余自由度大腿机构)。
图7-图17是几种不同的大腿机构的示意图。
图7是一种双自由度(1TxRz)大腿机构2的简图,其大腿足弓平台2.3(下平台)是环形足弓平台,上平台2.1是三角形平台;三个大腿支链2.2,两个自由度(1Tx1Rz),一个支链是冗余支链,三个大腿支链2.2分别是一个PR支链,两个RRR支链。
图8是另一种双自由度(TxTy0R)大腿机构2的简图,其大腿足弓平台2.3(下平台)是蝶形足弓平台,上平台2.1是三角形平台;三个大腿支链2.2,两个自由度(TxTy0R),一个支链是消极支链,三个大腿支链2.2分别是一个PaPa支链,两个RPR(或RPS)支链。
图9、图10、图11、图12是三种大腿机构2的简图,三个大腿机构2都是满自由度平面并联机构,三个自由度(TxTyRz),图10的大腿支链2.2是RPR支链,其余几个大腿支链2.2是RRR支链。其上平台2.1分别是六边形平台和三角形,大腿足弓平台2.3(下平台)分别是环形足弓平台,T型足弓平台、三角形足弓平台和C形足弓平台。
图13、图14是另外两种大腿机构的简图,都是满自由度平面并联机构,三个自由度(TxTyRz),三种大腿支链2.2分别是RRR或RPR支链。大腿足弓平台2.3分别是环型和凸边三角形,其上平台2.1的类型如图示,不再赘述。
图15是另外一种大腿机构2的简图,也是满自由度平面并联机构,三个大腿支链2.2都是PRP支链。其上平台2.1和大腿足弓平台2.3(下平台)都是圆形平台。
图16是一种混联机构的大腿机构2的简图,混联机构由一个平面并联机构和一个转动副2.4串联构成,三个自由度(TxTyRz)。三个大腿支链2.2都是RRR支链,其中一个支链是冗余支链,构成一个二自由度并联机构。其上平台2.1是Y型,大腿足弓平台2.3(下平台)是环型。图17是图10混联机构大腿机构一个支链的剖面图,一个具有消极支链的平面二自由度并联机构串联一个转动副2.4。中心的转动副轴线垂直于水平面,提供转向自由度。其余标注同图16
混联腿机构
混联腿机构有多种类型。例如,站立腿,升降站立腿,转向腿,转向迈步腿,单向迈步腿,双向迈步腿,全能腿,单方向脚趾间距可调升降站立腿,两个方向的脚趾间距可调升降站立腿机构,轮行腿,滚动腿等。下面是混联腿机构的几种典型方案。
图18-图25是几种不同的混联腿机构,其足弓平台3.3都是Y型足弓平台。
图18-图20是三种少自由度混联腿机构。其脚并联机构3.2的跖骨支链都是移动副。
图18是一种转向混联腿机构3的简图,大腿机构3.1由一个转动副构成,转动副轴线垂直于水平面,上平台3.1是三角形,足弓平台3.3是Y型。大腿机构是一个单自由度机构。脚并联机构3.2是具有Y足弓平台的升降站立腿。转向混联腿机构有四个自由度,具有转向和升降站立功能。这个转向腿机构,只能与具有包括迈步或更多功能的混联腿机构配合,才能构成步行机器人。
图19是一种单向迈步混联腿机构3的简图,大腿机构3.1由一个棱柱副构成,棱柱副轴线水平,脚并联机构3.2是具有Y足弓平台3.3的升降站立腿,这个单向迈步混联腿机构有四个自由度,具有迈步和站立两个功能。棱柱副也可以换位C副,多出一个冗余自由度Rx。这个单向迈步腿机构,只能与具有包括转向或更多功能的混联腿机构配合,才能构成步行机器人。
图20是一种单向迈步转向混联腿机构3的简图,大腿机构3.1的大腿支链由两个平行的圆柱副和一个转动副串联构成。圆柱副轴线水平,再串联一个转动副,转动副轴线垂直于水平面,大腿机构有两个自由度(TxRz),脚并联机构3.2是具有Y足弓平台3.3的升降站立腿,单向迈步转向混联腿机构有五个自由度,具有迈步、转向和站立三个功能。这个单向迈步转向腿机构,可以与各种腿机构配合,构成步行机器人。
图21是一种满自由度混联腿机构3。它们的大腿机构3.1是满自由度平面并联机构,大腿支链是RRR支链,脚并联机构3.2是跖骨支链为移动副的升降站立腿。足弓平台3.3是Y型足弓平台。图21的机体高度,在移动副缩回时,机体腹部(最下面的足弓平台)可以接触地面。机器人可以爬行。这个腿机构,能与任何一个腿机构配合,构成步行机器人。任何一种满自由度腿机构,都能与任何一个腿机构配合,构成步行机器人。
图22是一种混联腿机构3的立体图。大腿机构3.1与图21的大腿机构相同。足弓平台3.3是Y型平台,脚并联机构3.2的跖骨支链有两个自由度,支链是RR支链,两个转动副轴线平行,脚趾间距可以调节,跖骨支链的输出端有轮,至少一个轮是转向轮。跖骨跖骨支链可以翻转到骨盆平面的上方。当机体翻转180度时,仍然可以步行或轮行。
图23是另一种与图22略有不同的混联腿机构3的立体图。大腿机构3.1通过足弓平台3.3连接脚并联机构3.2。与图22的区别是,跖骨支链的两个自由度,由PP支链完成,两个移动副轴线相互垂直,脚趾间距可以调节,跖骨支链的输出端有轮。跖骨跖骨支链不能翻转到骨盆平面的上方。标注同图22。
图24是一种双面步行的混联腿机构3。大腿机构3.1通过足弓平台3.3连接脚并联机构3.2。基本机构与图21相同。主要差别是图21的单输出移动副换为图24的双输出移动副。可以看出,机体翻转180度时,仍然可以步行。这个方案与图25的差别是双面步行不需要转换。两个这样的腿机构组合,可以构成双面步行机器人。如果在骨盆平面内,安装一个大圆环,则侧立时或可以倒下恢复步行状态,实现双面步行,或保持机器人侧立,可以滚动移动。
图25是一个具有大圆环的腿机构。腿机构3有六个自由度,具有两个方向迈步功能和转向、站立功能。大腿机构3.1是一个平面并联机构,三个自由度,大腿支链是RRR支链,脚并联机构3.2是一个三自由度半闭环并联机构,跖骨支链是RP支链,脚趾是轮式转动副。脚并联机构是有Y足弓3.3的升降站立腿。除具有双向迈步、转向和站立三个功能外,还可以轮行代替步行。就其工作状态而言,这个混联步行机器人是关于骨盆平面对称的。大圆环5.1与骨盆在一个平面内。大圆环直径大于脚趾三角形外接圆直径,保证侧立时机体可以倒下,恢复步行状态。
两个这样的腿机构组合,可以构成双面步行机器人,具有步行、轮行和滚动三种运动方式。一个腿机构上有大圆环即可,不用两个大圆环。带有大圆环的机器人,在侧立时如果不能倒下也不能步行,则可以通过改变重心位置实现滚动移动。
下面描述本发明的十个代表性实施例。
图26-33是多种不同的混联步行机器人的简图。在下述的实施例中,多数大腿机构的大腿支链都应用了RRR支链。这只是为了表达的方便。实际上,实施例中的大腿机构的支链,更换为其它支链都是完全可行的。例如,更换为RPR支链,PRP支链,都是可行的。一个大腿机构,应用不同类型的支链也是可行的。
在下述的实施例中,多数脚并联机构的跖骨支链都应用了一个自由度或两个自由度的支链。这也只是为了表达的方便。实际上,实施例中的跖骨机构的支链,更换为其它多自由度或更多运动副的支链,包括具有冗余自由度的跖骨支链都是完全可行的。例如,应用RRR支链,RPP支链,都是可行的。一个跖骨支链,应用不同类型的跖骨支链也是可行的。例如,五个自由度的脚并联机构,不但能够满足抬步、站立的要求,还能够改变脚趾的间距。
在下述的各个实施例中,连接在一起的两个腿机构,其两个大腿支链,两个足弓平台、两组跖骨支链都有各自独立的工作空间,互不干涉。两个相邻的脚趾的工作空间也允许有部分重合,可以通过控制的方法防止互相干涉。
实施例1(图26)是由两个混联腿机构(图21)构成的混联步行机器人4,A腿机构4.1 和B腿机构4.2的上平台(髋骨平面相互错开60度)连接在一起,形成一个骨盆4.3。两个大腿机构的支链在同一个层面上(也可以在不同的层面上)。两个腿机构的大腿支链各占据约60度的扇形空间,互不干涉。两个Y型足弓平台位于不同的高度,互不干涉。每个跖骨支链各占据60度左右的扇形空间,互不干涉。其两个腿机构上的脚趾,各占据大约60度的扇形空间。每一个脚趾都有独立的自由工作空间。这是内外式的混联步行机器人。两个脚趾三角形的重心间距基本上等于0。两个脚趾三角形在水平面上的投影是大部分重叠的,两个上平台的中心是基本重合的。这是一个具有各向同性的混联步行机器人。
如果这个机器人的跖骨支链的移动副由RHP支链完成,则机器人的驱动电机都可以安装在骨盆上。跖骨支链的驱动,可以把电机安装在骨盆上,通过大腿支链的两个平行的转动副轴线,用两个齿带间接传动驱动跖骨支链。
实施例2(图27)是由一大一小两个混联腿机构构成的混联步行机器人4,较大的混联腿机构4.1参考图13,较小的腿机构4.2参考图11。两个腿机构的上平台连接在一起,形成一个骨盆4.3,两个大腿机构的支链在同一个层面上,骨盆在另一个层面上(也可以在同一个的层面上)。大腿支链2.2都有自己的活动空间,互不干涉。两个足弓平台位于同一个高度,一个是凸边三角形,较大,一个是Y型,较小,二者互不干涉。每个跖骨支链1.2都有自己的活动空间。如果较大的腿机构脚趾三角形较大,则脚趾工作空间可以比较大。两个脚趾三角形重心之间的距离为0,足弓平台结构也适于双面机器人。图28是较大的腿机构的一个支链(包括大腿支链和跖骨支链)的剖面图;图29是较小的腿机构的一个支链(包括大腿支链和跖骨支链)的剖面图。标注同图27。
实施例3(图30)是一种双面步行、轮行的混联步行机器人4。混联腿机构与图25的腿机构相同(没有大圆环)。A腿机构4.1和B腿机构4.2都有有六个自由度,具有两个方向的迈步功能和转向、站立功能。大腿机构是一个平面并联机构,三个自由度,大腿支链是RRR支链,脚并联机构是一个三自由度半闭环并联机构。跖骨支链是RPRw支链。脚并联机构是Y足弓平台的单向可调节脚趾间距的升降站立腿。
两个腿机构的上平台(髋骨)平面相互错开60度连接在一起,形成一个骨盆4.3。两个脚趾三角形重心之间的距离为0。两个大腿机构的支链在同一个层面上(也可以在不同的层面上)。两个腿机构的支链各占据约60度的扇形空间,互不干涉。两个Y型足弓平台位于不同的高度,互不干涉。每个跖骨支链各占据60度左右的扇形空间,互不干涉。跖骨支链的端部有轮,跖骨支链可以翻转到骨盆的上方,形成双面步行机器人。
如果在骨盆平面内安装一个大圆环(参考图25),可以变为一个在侧立时可以滚动的机器人。为了减少正常步行时的横向尺寸,大圆环可以设计成可伸缩的大圆环,大圆环不限于文献2给出的可展机构。那么,这个机器人有三种运动方式:步行、轮行和滚动。这是一个轮腿结合式步行机器人。
实施例4(图31)是由一左一右两个混联腿机构构成的混联步行机器人4,两个腿机构的上平台一左一右连接在一起,形成一个骨盆4.3,两个大腿机构的支链在同一个层面上,骨盆4.3在另一个不同的层面上,左侧腿机构4.1的足弓平台是C型足弓平台,右侧腿机构4.2的足弓平台是T型足弓平台,两个足弓平台位于同一个高度上,互不干涉。两个脚趾三角形同相位,右侧脚并联机构的一个脚趾位于左侧腿机构的脚趾三角形的中心。两个脚趾三角形的重心之间的距离是0.5(Ra+Rb)。这是一个仅有一个对称轴线的混联步行机器人,这是一个非各向同性的混联步行机器人。前进方向的运动速度会快些,侧向运动会慢些。图33是一个支链(包括大腿支链和跖骨支链)的剖面图。
实施例5(图32)是另一种由一左一右两个混联腿机构构成的混联步行机器人4,两个腿机构的上平台连接在一起,两个上平台形成一个长方形的骨盆4.3,两个大腿机构的支链在同一个层面上,大腿支链都有各自的独立活动空间,骨盆在另一个不同的层面上(也可以在同一个层面上),左侧腿机构4.1的足弓平台是曲线凸边三角形型足弓平台,右侧腿机构4.2的足弓平台也是曲线凸边三角形型足弓平台,两个足弓平台位于不同高度上,互不干涉。右侧脚并联机构的一个脚趾位于左侧腿机构的脚趾三角形的中心。左侧脚并联机构的一个脚趾位于右侧腿机构的脚趾三角形的中心。两个脚趾三角形的重心之间的距离是0.5(Ra+Rb)。这是一个有两个对称轴线的混联步行机器人,也是一个非各向同性的混联步行机器人。前进方向的运动速度会快些,侧向运动会慢些。图33是一个支链(包括大腿支链和跖骨支链)的剖面图。
实施例6是由图18与图19结合构成的一个少自由度混联步行步行机器人(八个自由度)。图18是一个转向升降站立腿,图19是一个单向迈步腿机构。装配时,两个腿机构的跖骨支链各占据60度扇形空间。一个腿机构完成转向升降站立功能,一个腿机构完成迈步功能。这个机器人只能进行间断式直行和间断转向(小角度转向时,可以连续转向)的运动。
实施例7是由图20与图1结合构成的一个八自由度步行机器人。这是一个混联腿机构与一个脚并联机构组合构成的混联步行机器人。图1是一个升降站立腿,图20是一个单向迈步转向腿机构。装配时,两个腿机构的跖骨支链各占据60度扇形空间。一个腿机构完成升降站立功能,另一个腿机构完成转向和迈步功能。这个机器人只能进行间断式直行和间断转向(小角度转向时,可以连续转向)的运动。
前面给出了多种结构形式的混联步行机器人方案。为了增大稳态步行的稳定区间,和方便调整脚趾间距,下面设计了两排脚趾的混联步行机器人方案。为了实现爬行和双面步行或爬行,下面又给出几种兼具爬行和步行功能的混联步行机器人方案。还给出了轮滑的新方法。下述的实施例8是双排脚趾的混联步行机器人。实施例9是单面的可以爬行的混联步行机器人。实施例10是双面的可以爬行、滚动的混联步行机器人。这是一个外环具有弹性结构的或具有封闭结构的双面混联步行机器人。
在上述的多种方案中,在构建混联腿机构时,大腿机构中与跖骨支链连接的平台也称为足弓平台,而大腿机构的另一个平台也称为髋关节平台(髋骨)。在构建混联腿机构时,大腿机构的上,下平台的上下顺序可以随意配置。当髋关节平台位于最下面时,仍然称为上平台,或为了避免混淆,统一称为髋关节平台。大腿机构的上,下平台的上下顺序,大腿支链的上下顺序,足弓平台的上下顺序,都可以随意配置。
实施例8
两排脚趾的混联步行机器人,其所述的两个混联腿机构上的六个脚趾位于两条平行直线上,一条直线上有三个脚趾。这是指机器人中立位置时的状态,或略为偏离中立位置的状态。实际工作时,三个脚趾并不总是在一条直线上。
图26和图32的两个实施例的脚趾都不是两排脚趾。为了把脚趾安排在两条平行的直线上,需要改变足弓的形状,或调整相关的安装方式,或同时改变足弓形状和大腿支链的相对安装位置。
足弓形状的变化,例如Y足弓的三个分支长度不相同,Y足弓的三个分支不全是直线(参见图),Y足弓的中心是一个圆环(参见图34)。再例如,空心足弓的变形:一个椭圆连接三个向内的支臂(参见图35),支臂的端点安装踝关节等。跖骨支链安装在主腿下平台 关节的外侧或内侧。变异的足弓的形状可以是多种形状。
另一个方法是改变跖骨支链的安装位置,从而改变脚趾的位置,例如移动副作为跖骨支链时,跖骨支链安装在膝关节的外侧。
第三个方法是不改变跖骨支链的安装位置,仅改变脚趾的位置,例如,应用RR跖骨支链,脚趾在踝关节的外侧。通过跖骨支链的偏斜,改变脚趾的位置。跖骨支链选择RR支链时,可以象普通仿生步行机器人的串联腿机构一样,确定各自的工作空间。也可这样选择:第一个转动副的工作空间选择水平面的上下60度左右;第二个转动副的工作空间选择垂线的两侧50度左右。这种跖骨支链运用于双面机器人也是可行的。当然既改变跖骨支链的安装位置,又改变脚趾的位置,也是一个可行的方法。
还有一个方法是调整两个足弓三角形的相对位置,使得两个脚趾排列在两条平行的直线上。
这几个方法或几个方法的组合都可以达到三个脚趾共线的目的。
为了更好的适应落脚点的地形,脚趾末端串联移动球副或万向节。这个串联球副或万向节的结构适用于所有混联步行机器人。
两排(三列)脚趾布局,比较好的配置方案如图36,37,38,39所示。
在图34-39中,较小的圆表示脚趾位置或足弓支链的安装位置(踝关节位置);较大的圆表示膝关节位置或大腿支链的安装位置。较大的椭圆形表示一个腿的膝关节,较小的椭圆形表示脚趾或跖骨安装点;用于双排脚趾混联步行机器人。
图36是完全包容式结构的混联步行机器人的足弓组合。大腿支链与足弓型平台的连接点称为膝关节,三个或多个膝关节通常形成一个三角形或多边形,通常统一称为膝关节三角形;大腿支链与另一个平台的连接点称为髋关节,三个或多个髋关节通常形成一个三角形或多边形,通常统一称为髋关节三角形,连接在一起的两个髋关节称为骨盆。跖骨支链与足弓型平台的连接点称为踝关节,三个踝关节形成一个踝关节三角形。三个脚趾形成一个脚趾三角形。如果跖骨支链是RR支链,则第二个转动副称为跖骨关节。三个跖骨关节形成一个三角形,称为跖骨关节三角形。三个脚趾形成一个脚趾三角形,这个三角形是这条腿的稳定三角形。两条腿的两个三角形的公共区域是混联步行机器人的公共稳定区域。
完全包容式结构的混联步行机器人有一大一小两个腿机构,一个是外腿,其膝关节三角形较大,对应的是Y足弓1.1a。外腿的三个跖骨支链安装在踝(膝)关节的附近,膝关节三角形(如果是多边形,简化为三角形)与脚趾三角形基本重合。一个是内腿,其膝关节三角形较小。其对应的足弓是变异的Y型足弓1.1b,Y型足弓的两个分支加长,在加长后的端点安装跖骨支链,脚趾三角形(图中三个较小的圆)变大。图36中靠上面的三个脚趾在一条直线上,另外三个脚趾在另一条直线上,两条直线平行。
图37是相互包容式结构的足弓配置,两个膝关节三角形大小相当,其两个三角形的中心在一条垂线上。两个膝关节三角形对应的Y型足弓做适当变异,形成变异足弓1.1a、1.1b。每一条腿的左右两个足弓分支都向上或向下延长。在加长后的端点安装跖骨支链。图中上面的三个脚趾在一条直线上,图中下面的另外三个脚趾在另一条直线上,两条直线平行。构成两排脚趾的混联步行机器人。
图38是另一种相互包容式结构的混联步行机器人,两个膝关节三角形大小相当,脚趾在膝关节的下方,两个三角形的中心不在一条垂线上。两个中心之间有一段距离,刚好使得两个脚趾在两条平行直线上。图中A腿足弓是1.1a,B腿足弓是1.1b。
图39是部分包容式结构的足弓配置,两个膝关节三角形反相位。一个膝关节三角形的中心部位是另一条腿的一个脚趾。足弓端点安装跖骨支链RR。用RR支链,脚趾在膝关节的前下方或后下方。图38中上部的三个脚趾在一条直线上,另外三个脚趾在另一条直线上,两条直线平行。这个足弓配置应用在图32的实施例上,代替图32的足弓,构 成两排脚趾的混联步行机器人。倾斜的跖骨支链参见图43。图39中,A腿足弓是1.1a,B腿足弓是1.1b。
两排脚趾的优点
两排脚趾有利于某些特殊路面下的步行运动。例如上下楼。两排脚趾,能够比较方便的调整两排脚趾之间的距离,以适应踏步的宽度。脚趾之间的距离是踏步的宽度的整数倍。两排脚趾的另一个优势是两个脚趾三角形的重叠量大,稳定范围宽。特别是在前进方向上,两个三角形的稳定区间百分之百重叠(图36,图37中虚线形成的菱形是公共稳定区域)。公共稳定区域不是各向同性的。一个方向的公共稳定范围大。这为稳态条件下的高速步行创造了有利条件。两排脚趾的方案,在侧向步行时,仅有两排足迹。下述的单面、双面爬行步行机器人的方案,也可设计为两排脚趾方案。
膝关节三角形与脚趾三角形不同。这样,比较小的膝关节三角形可以配置较大的脚趾三角形,获得较大的稳定性。
实施例9单面爬行步行机器人
所述的混联步行机器人,两个大腿机构的髋关节平台中,至少一个髋关节平面位于最下面。另一个髋关节平台位于中间或者最上面,或者与最下面的髋关节共用一个框架平面。髋关节平台形成机器人的腹部。当三个跖骨支链收缩后,三个脚趾与腹部在一个平面上或高于腹部平面。腹部可以贴近地面。构成一个单面步行机器人。这个机器人就可以用爬行的方式移动。
参考图26,图26中两个大腿部分翻转180度,跖骨支链不变,就得到一个大腿机构的髋关节平台位于机体的最下面的混联步行机器人。
实施例10
这种双面爬行(步行)的混联步行机器人,一个髋关节平台位于最下面,另一个髋关节平台位于最上面,两个髋关节平台框架在周边或中心连接在一起。两个髋关节平台框架为盘型,上面的盘型是凸的,下面的盘型是凹的,两个盘型扣在一起形成一个铁饼型骨盆。铁饼的周围有孔(3-6个),孔内有跖骨支链。有六个孔时,一个孔内有一个跖骨支链。大腿机构和设备安装在两个髋关节平面之间。两个腿机构都配置双作用跖骨支链,双作用跖骨支链共用一个(套)驱动,由传动装置一起驱动或由离合器转换驱动。构成双面步行(或爬行)混联步行机器人。
双作用距骨支链。有两大类。一类是单跖骨支链型,一类是双跖骨支链型。
单跖骨支链型
单自由度跖骨支链:单自由度跖骨支链有两个输出端,两个输出端可以在两个侧面工作。如R支链,P支链。R支链,P支链的工作空间比较大,可以在两个侧面工作。转动副R支链的工作空间选择水平面的上下90度左右;适应正常工作和翻转后的工作。参见图40右侧的跖骨支链。
双自由度跖骨支链:如RP支链,RC支链,RR支链。P副、C副是一个运动副,但有两个输出端,上面一个输出端,下面一个输出端(参见图24中的3.2)。实现两个侧面工作。再如,RR支链,第一个转动副的工作空间选择水平面的上下60度左右;第二个转动副的工作空间选择垂线的两侧45度左右。在工作状态转换时,第二个转动副要转动较大角度,把脚趾移动到另一侧。
一个距骨支链的双作用距骨支链,还有其它的结构解决方案。如曲杆(参考图42)构成的距骨文链。正常工作时是凸的。这时,脚趾在下面。如果把脚趾转移到另一面,需要改变曲杆的凸凹特性:绕曲杆杆端处的轴线转动180度。把脚趾翻转到另一面。这要求加一个动力。
双跖骨支链型。
两个跖骨支链,下面一个,负责正常工作,上面一个,负责翻转180度后的步行。两个跖骨支链用一个驱动装置驱动或单独驱动或用离合器转换驱动。
图42是一种双支链跖骨支链。一个转动副,两个曲杆输出端,一个在上(1.2b),一个(1.2a)在下。一个驱动,带动两个曲杆转动。两个曲杆转动方向相同。图43是第二种双作用跖骨支链。跖骨支链(1.2a,1.2b)是RR支链。两个输出端,一个在上,一个在下。一个传动箱,一个驱动。传动箱1.8安装在足弓1.1上,传动箱1.8内有离合器或传动装置,不同的状态驱动不同的曲杆。两个曲杆可缩到铁饼内。跖骨支链的两个输出端距离较大,适合加厚的机器人机体。这个跖骨支链的另一个特点是脚趾不在踝关节的正下方。用于两排脚趾的混联机器人也是可行的。
还有多自由度双作用跖骨支链,结构与上述跖骨支链类似,不再赘述。
在上面描述的双面混联步行机器人中,所述的铁饼型骨盆的外围由弹性材料做成。在从高空落下时,机体弹性变形,减小冲击力,保护机体内设备。上下髋关节平台的中心用弹性缓存材料连接。有更好的抗冲击能力。铁饼外安装各种传感器。
在上面描述的双面混联步行机器人中,所述的跖骨支链与孔边沿用具有可伸缩性能的材料(包括防火防水防弹防腐等材料)或结构连接,形成一个封闭的结构。如可伸缩布料,风琴罩等。封闭的结构,有防尘,防水,防辐射,防弹,防腐等作用。
图40、图41是双面环形步行机器人的主视图和俯视图,图中大腿支链(2.2a,2.2b)是RRR支链,铁饼型骨盆4.3,双作用跖骨支链(1.2a,1.2b)。左侧是双支链双作用单自由度跖骨支链,两个跖骨支链由传动箱1.8连接、传动。右侧是单支链双作用单自由度跖骨支链1.2。髋关节3.1a,3.1b构成铁饼型骨盆4.3,4.4是外环,外环及两个孔之间的杆由弹性材料做成。4.5是封闭装置。
双面混联步行机器人的工作方式包括步行,爬行,滚动。
当机器人机体比较扁平时,例如铁饼型外壳,机器人具有不倒翁的特性。这样,机器人正常运动和机器人在翻转180度时的运动,都可以正常步行移动(前面已有描述)。
下面给出爬行和滚动的工作方式。
爬行:适当的布置跖骨支链的工作空间,机器人可以爬行。例如,跖骨支链缩回到最短时,骨盆外表面着地,这时骨盆外表面就是机器人腹部,跖骨支链伸到较长时,机器人腹部离开地面,腿推动机器人移动。停下时机器人腹部着地。这种结构布局两个腿机构的中间部分作为各种设备的安装空间。例如电池,电动机,控制设备发动机等。
滚动:某种特殊情况下,机器人侧立(不能倒下),相当于一个竖立的圆环,与地面有一个交点,这时,通过驱动腿机构,改变机器人的重心位置,使圆环滚动。一来可以移动机体,二来可能摆脱侧立状态,恢复步行能力。
双面混联步行机器人的优点。
1、几乎在任何状态下都有移动能力。双面可以步行或爬行、侧立时可以滚动或转化为步行方式。
2、爬行,不用承载机器人的全部重量负载,且机体高度降低,隐蔽性较好。腹部着地,除降低能量消耗外,还有一个优点,就是电池等安装在腹部的下面,可降低重心。
3、便于做成封闭式结构。骨盆作为腹部,做成封闭式结构。适于在战场环境下应用。如果表面适当装甲,配备各种传感器和信息传输设备,可用于战场侦察等任务。
上下对称的混联步行机器人还有一个结构形式:两个混联腿机构共用一个髋关节平台,形成一个骨盆。髋关节平台的上面一个腿机构,下面一个腿机构。这是一个上下对称的混联步行机器人。也可以构成双面混联步行机器人。
下面描述轮腿结合混联步行机器人的轮滑运动方法。
为了提高机器人在结构路面的速度,除轮行的方法外,还设计出了轮滑的结构与方 法。
轮滑结构与轮行方案基本相同。
轮滑方法和工作过程。混联步行机器人,采用轮腿混合方式后,采用普通轮滑的方式,可以实现轮滑运动。但是,普通轮滑的轨迹是一条S型曲线,效率低。由于轮行方案有刹车装置,故还有一个简单高效的新的轮滑方法。
1、准备状态,一条腿是立脚相,轮子自由转动,是滑行腿,另一条腿是游脚相(或虚步,即略抬起脚趾或腿的各个支链是消极副,不承力),是驱动腿。
2、运动过程:
2.1第一次蹬地施力:游脚相腿上的三个轮子至少一个完全制动,一个或多个制动的车轮,迅速着地,快速蹬地,推动第一个腿运动,然后抬起并前移。由立脚相腿的转向轮改变方向。
驱动腿驱动的方式是单脚趾驱动,或双脚趾驱动,或三个脚趾同时驱动。在运动的过程中。腰部(骨盆)可以立脚相腿的驱动下,在其稳定的范围内作适当运动(六个自由度)。2.2第二次蹬地施力:有两个方法(法一、法二)任选其一。
法一:游脚相腿上的三个轮子至少一个完全制动,一个或多个完全制动的车轮,再次迅速着地,快速蹬地,推动第一个腿继续运动,然后抬起(不取消制动)或不抬起但取消制动(至少是取消前进方向的制动,不抬起时保持与立脚相腿同向运动)。并前移。方向由立脚相腿的转向轮控制。
法二:
游脚相腿迅速着地,承力,变为立脚相腿,同时原立脚相腿变为驱动腿,腿上的三个轮子至少一个完全制动(刹车),一个或多个完全制动的车轮,快速蹬地,推动另一个腿运动,然后抬起并前移。方向由立脚相腿的转向轮控制。
转向,除了由转向轮完成外,两条腿交替更迭的期间,也可改变运动方向。
3、重复上述运动过程,实现远距离运动或下列三个操作,至少实行一个,机器人停止:
a、立脚相腿刹车,
b、游脚相腿着地、刹车,
c、立脚相腿刹车,同时游脚相腿着地、刹车。
其实,作为施力腿(驱动腿),只有单向刹车功能就可以(不能后退)。作为施力腿,单脚趾驱动比较简单,另外两个脚趾悬空。路面较滑时,用两个或三个脚趾驱动。
新的轮滑方法优点:
驱动(施力)方向与运动方向相同,直接向后方施力,驱动效率较高。也不需要改变重心位置,方便控制。轮滑时,用转向轮转弯,转弯更灵活。这个轮滑方案与轮行方案比较,其优点是运动时,轮子不用配电动机。减小了结构复杂性,降低了总驱动功率。轮腿结合式步行机器人有五种移动方式:步行,爬行,轮行,滑行,滚动。几乎在任何状态下都有移动能力。
轮滑方案和两排腿的方案可以应用各种结构方案的混联步行机器人,也可以用于文献1的结构中。
混联步行机器人的优势,步长、步高解耦。便于控制,而且有最大的步长,和较大的越障能力。
为适应各种复杂的路面,脚趾端部有弹性垫或串联一个万向铰(球副也可以),万向铰或球副的下面有弹性垫。实施例的跖骨支链可以设计有消极副,例如U,S运动副。本发明提出的腿机构,也可以仿生布置,形成具有前后左右腿的仿生步行机器人,包括双腿,四腿六腿八腿等。

Claims (17)

  1. 一种混联步行机器人的构建方法,其中,该构建方法如下:
    (1)、构建脚并联机构和大腿机构
    构建脚并联机构
    每一个脚并联机构包括一个脚足弓平台、三个趾骨支链和三个脚趾,三个趾骨支链固定连接在脚足弓平台上,连接点位于一个三角形的三个顶点上;三个趾骨支链的下端连接脚趾,三个脚趾形成一个足趾三角形;脚并联机构是一个升降站立腿;趾骨支链是由下列自由度组合形成的机构:Tz,TzTx,TzTy,TzTxTy,RxTz,RyTz,RxTzTx,RyTzTy或RxRyTz;
    构建大腿机构
    大腿机构包括上平台、下平台以及联接上平台和下平台的一个或一个以上的大腿支链,大腿支链是一个运动副,一个或多个串联机构,或一个混联机构;大腿机构是一个有一到五个自由度的机构;一到五个自由度,是Tx,Ty,Tz,Rz,Rx或Tx,Ty,Tz,Rz,Rx,Ry中的自由度的任意组合;包括单自由度,二、三、四、五自由度;
    (2)、构建混联腿机构
    混联腿机构包括一个大腿机构和一个脚并联机构,脚并联机构在大腿机构的下方,二者串联连接成为一个混联腿机构;选择脚并联机构的脚足弓平台或大腿机构的下平台作为共用的一个足弓平台;
    (3)、选择两个合适的腿机构A、B
    在上述的混联腿机构中,选取一个混联腿机构作为腿机构A,
    在上述的混联腿机构和脚并联机构中,选取一个混联腿机构或脚并联机构作为腿机构B;
    对两个腿机构的自由度组合要求是:
    两个腿机构必须至少有一个Rz自由度,一个Tx或Ty的自由度,或者至少有一个混联腿机构的大腿机构同时拥有Rz自由度及Tx或Ty自由度;或者两个大腿机构都拥有Rz自由度和Tx、Ty自由度;
    (4)、连接A、B两个腿机构,构建一个混联步行机器人
    如果A、B两个腿机构是两个混联腿机构,则A、B两个腿机构的大腿机构的上平台固连在一起,两个连接在一起的上平台形成一个骨盆,两个连接在一起的腿机构形成一个混联步行机器人;
    如果两个腿机构一个是混联腿机构,另一个是脚并联机构,则混联腿机构的大腿机构的上平台与脚并联机构的脚足弓平台固连在一起,两个连接在一起的平台形成一个骨盆,两个连接在一起的腿机构形成一个混联步行机器人;连接时,对大腿支链、足弓平台、跖骨支链、脚趾及脚趾三角形的布置要求是:
    两个腿机构的各个大腿支链都有其独立的活动空间,互不干涉;
    两个足弓平台或一高一低,或一内一外,或一前一后,互不干涉;
    两个腿机构的跖骨支链都有其独立的工作空间,互不干涉;
    两个腿机构的脚趾在水平面上的投影不重合;
    连接在一起的两个腿机构的脚趾三角形的重心之间的距离小于两个脚趾三角形外接圆的半径之和,且两个脚趾三角形在水平面上的投影有重合。
  2. 一种由权利要求1所述的混联步行机器人构建方法构建的混联步行机器人,其中,包括A、B两个腿机构,一个腿机构A是混联腿机构,另一个腿机构B是混联腿机构或脚并联机构;两个腿机构的上部连接在一起,混联腿机构包括脚并联机构和大腿机构;
    脚并联机构
    脚并联机构包括一个脚足弓平台、三个趾骨支链和三个脚趾,三个趾骨支链固定连接在脚足弓平台上,连接点位于一个三角形的三个顶点上;三个趾骨支链的下端连接脚趾,三个脚趾形成一个足趾三角形;脚并联机构是一个升降站立腿;跖骨支链是一种具有一到多个自由度的支链;趾骨支链的自由度组合是:Tz,TzTx,TzTy,TzTxTy,RxTz,RyTz,RxTzTx,RyTzTy,RxRyTz自由度组合中的一种或多种;三个跖骨支链是相同的支链或不同的支链;
    大腿机构
    大腿机构包括上平台、下平台以及联接上平台和下平台的一个或一个以上的大腿支链,大腿机构的下平台是足弓平台型平台;大腿支链是一个运动副,一个或多个串联机构,或一个混联机构;大腿机构是一个具有一到五个自由度的机构;大腿机构的一到五个自由度,是Tx,Ty,Tz,Rz,Rx或Tx,Ty,Tz,Rz,Ry中的各个自由度的任意组合;
    混联腿机构
    混联腿机构包括一个大腿机构和一个脚并联机构,脚并联机构在大腿机构的下方,二者串联连接成为一个混联腿机构;脚并联机构与大腿机构公用一个平台,二者通过一个足弓平台连接在一起;
    A、B两个腿机构
    一个腿机构A是混联腿机构,另一个腿机构B是混联腿机构或脚并联机构;
    对两个腿机构的自由度组合要求是:
    两个腿机构的大腿机构必须至少有一个Rz自由度,一个Tx或Ty的自由度,或者至少有一个混联腿机构的大腿机构同时拥有Rz自由度及Tx或Ty自由度;或者两个大腿机构都拥有Rz自由度和Tx、Ty自由度;
    如果两个腿机构都是混联腿机构,则A、B两个腿机构的大腿机构的上平台固连在一起,两个连接在一起的上平台形成一个骨盆,两个连接在一起的腿机构形成一个混联步行机器人,如果一个腿机构是混联腿机构,另一个腿机构是脚并联机构,则混联腿机构的大腿机构的上平台与脚并联机构的脚足弓平台固连在一起,两个连接在一起的上平台形成一个骨盆,两个连接在一起的腿机构形成一个混联步行机器人;
    两个腿机构的各个大腿支链都有其独立的活动空间,互不干涉;
    两个足弓平台或一高一低,或一内一外,或一前一后,互不干涉;
    两个腿机构的跖骨支链都有其独立的工作空间,互不干涉;
    两个腿机构的脚趾在水平面上的投影不重合;
    连接在一起的两个腿机构的脚趾三角形的重心之间的距离小于两个脚趾三角形外接圆的半径之和,且两个脚趾三角形在水平面上的投影有重合。
  3. 由权利要求2所述的混联步行机器人,其中,所述的趾骨支链,至少有一个跖骨支链,除具有一个Z轴方向的移动自由度外,还有水平方向的一个或两个移动自由度。
  4. 由权利要求2所述的混联步行机器人,其中,其大腿机构是空间并联机构或混联机构:其自由度组合是3TRz,(3T0R)Rz,(3TRz)Rz,(TxTy)Rz中的一种。
  5. 由权利要求2所述的混联步行机器人,其中,所述的大腿机构是平面并联机构;其自由度组合是TxTyRz,TxTy,TxRz,TyRz中的一种。
  6. 由权利要求2所述的混联步行机器人,其中,所述的A、B两个腿机构的脚趾三角形的重心之间的距离是下列两种情况中的一种:
    a、两个腿机构的脚趾三角形的中心之间的距离为0或小于0.20(Ra+Rb),
    b、两个腿机构的脚趾三角形的中心之间的距离大于等于0.30(Ra+Rb)小于等于0.70(Ra+Rb),
    其中
    Ra是A腿机构脚趾三角形外接圆的半径,
    Rb是B腿机构脚趾三角形外接圆的半径。
  7. 由权利要求2所述的混联步行机器人,其中,包括A腿机构、B腿机构和骨盆,所述的腿机构的跖骨支链的第一个运动副是下列3种运动副之一种:
    A、跖骨支链的第一个运动副是双作用移动副,移动副的轴线垂直于足弓平台平面;
    B、跖骨支链的第一个运动副是转动副,跖骨支链是PHRHP,其中转动副的轴线垂直于足弓平台平面;
    C、跖骨支链的第一个运动副是转动副,转动副的轴线与足弓平台平面平行。
  8. 由权利要求7所述的混联步行机器人,其中,所述的骨盆上连接一个大圆环,所述大圆环与骨盆平面在一个平面上,大圆环的中心与骨盆的中心在同一个位置;大圆环的直径大于脚趾三角形的外接圆直径。
  9. 由权利要求8所述的混联步行机器人,其中,所述大圆环是可伸缩圆环。
  10. 由权利要求2、7、8、9中任一权项所述的混联步行机器人,其中,其所述的腿机构,至少有一个腿机构上的脚趾全部是轮式转动副构成的脚趾,轮式转动副的轴线平行于基础平台平面,至少与一个轮式转动副是转向轮,车轮上有锁定或制动装置。
  11. 如权利要求2-6中任一权项所述的混联步行机器人,其中,所述的脚并联机构,其足弓平台上安装一个传动箱;这个传动箱有一个输入端,有两个或三个输出端,一个输出端连接一个跖骨支链;两个或三个输出端具有相向的或相背的移动方向或转动方向;传动箱的形状与足弓的整体或部分形状相一致。
  12. 如权利要求2所述的混联步行机器人,其中,所述的两个混联腿机构上的六个脚趾位于两条平行直线上,一条直线上有三个脚趾。
  13. 如权利要求2所述的混联步行机器人,其中,所述的两个大腿机构的髋关节平台中,至少一个大腿机构的髋关节平台位于最下面。
  14. 如权利要求2所述的混联步行机器人,其中,所述的一个大腿机构的髋关节平台位于最下面,另一个大腿机构的髋关节位于最上面,最上最下两个平台框架在周边或中心连接在一起,最上最下两个平台框架各自为盘型,上面的平台是凸的盘型,下面的平台是凹的盘型,两个盘型平台扣在一起形成一个铁饼型骨盆;大腿的足弓型平台、支链和设备位于最上最下两个髋关节平台之间,铁饼型骨盆的周围有孔,孔内有跖骨支链;两个混联腿机构都配置双作用跖骨支链,双作用跖骨支链共用一个或一套驱动,由传动装置一起驱动或由离合器转换驱动;这样就构成一个双面混联步行或爬行机器人。
  15. 如权利要求14所述的混联步行机器人,其中,所述的铁饼型骨盆的外围由弹性材料做成,包括铁饼型骨盆的外环,两个相邻的孔的连接部分。
  16. 如权利要求14、15中任一项所述的混联步行机器人,其中,所述的铁饼型骨盆周围的孔边沿与其跖骨支链之间用具有可伸缩性能的材料或结构连接,形成一个封闭的结构。
  17. 如权利要求10所述的混联步行机器人,其中,通过下述移动方法移动:
    (1)、准备状态,一条腿是立脚相,轮子自由转动,为滑行腿,另一条腿是游脚相,是驱动腿;
    (2)、运动过程:
    2.1第一次蹬地施力:游脚相腿上的三个轮子至少一个完全制动,一个或多个单向止动或完全制动的车轮,迅速着地,快速蹬地,推动第一个腿运动,然后抬起并前移;由立脚相腿的转向轮改变方向;
    2.2第二次蹬地施力:在下列法一、法二中任选其一;
    法一:游脚相腿上的三个轮子至少一个完全制动,一个或多个完全制动的车轮,再次迅速着地,快速蹬地,推动第一个腿继续运动,然后抬起并前移;方向由立脚相腿 的转向轮控制;同时腰前移;
    法二:游脚相腿迅速着地,转化为立脚相滑行腿,同时立脚相腿上的三个轮子至少一个完全制动,一个或多个完全制动的车轮,转化为驱动腿,快速蹬地,推动另一个腿运动,然后抬起并前移;方向由立脚相腿的转向轮控制;
    (3)、重复上述这个运动过程,实现远距离运动或下列三个操作,至少实行一个,机器人停止:
    a、立脚相腿制动,
    b、游脚相腿着地、制动,
    c、立脚相腿制动,同时游脚相腿着地、制动。
PCT/CN2018/097761 2017-08-01 2018-07-31 一种混联步行机器人的构建方法及其混联步行机器人 WO2019024839A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/633,955 US11453117B2 (en) 2017-08-01 2018-07-31 Parallel-series connection walking robot and construction method thereof
JP2020505370A JP7204234B2 (ja) 2017-08-01 2018-07-31 並直列接続歩行ロボットの構築方法及びその並直列接続歩行ロボット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710644487.0 2017-08-01
CN201710644487.0A CN107414793B (zh) 2017-08-01 2017-08-01 一种混联步行机器人的构建方法及其混联步行机器人

Publications (1)

Publication Number Publication Date
WO2019024839A1 true WO2019024839A1 (zh) 2019-02-07

Family

ID=60431686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097761 WO2019024839A1 (zh) 2017-08-01 2018-07-31 一种混联步行机器人的构建方法及其混联步行机器人

Country Status (4)

Country Link
US (1) US11453117B2 (zh)
JP (1) JP7204234B2 (zh)
CN (1) CN107414793B (zh)
WO (1) WO2019024839A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109895114A (zh) * 2019-03-12 2019-06-18 广东机电职业技术学院 一种气动肌肉驱动的多边形结构的攀爬机器人
CN110170979A (zh) * 2019-05-30 2019-08-27 南方科技大学 一种适用于非结构化环境下进行物理交互的轮式机器人
CN111113425A (zh) * 2019-12-31 2020-05-08 上海大学 一种有寄生运动的五自由度串并联机器人运动学逆解求解方法
CN112936311A (zh) * 2021-03-25 2021-06-11 双子星机甲动力(肇庆)科技有限公司 仿生蚂蚁机器人
CN114434424A (zh) * 2022-01-25 2022-05-06 南京信息工程大学 一种仿生脊柱机构
CN114603538A (zh) * 2022-05-16 2022-06-10 西安德普赛科计量设备有限责任公司 一种完全解耦的球面3r转动并联机构
CN114604335A (zh) * 2020-12-08 2022-06-10 天津理工大学 一种仿人双足行走的混联下肢机构
CN114633825A (zh) * 2022-05-16 2022-06-17 深圳鹏行智能研究有限公司 移动控制方法、足式机器人和计算机可读存储介质
CN114802518A (zh) * 2022-04-21 2022-07-29 北京工业大学 一种仿生可变形六足机器人
CN115257996A (zh) * 2022-07-19 2022-11-01 长沙理工大学 一种可动态重构躯体的八足特种机器人

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11458579B2 (en) * 2013-12-06 2022-10-04 Huber Diffraktionstechnik Gmbh & Co. Kg Redundant parallel positioning table device
CN107414793B (zh) 2017-08-01 2020-07-31 韩方元 一种混联步行机器人的构建方法及其混联步行机器人
CN107856758A (zh) * 2017-12-26 2018-03-30 燕山大学 一种基于多级耦合并联机构的四足机器人腿
CN108340986A (zh) * 2018-04-18 2018-07-31 辽宁工业大学 一种具有并联结构的轮腿仿生机器人
CN110745194B (zh) * 2019-12-04 2024-05-24 安徽工业大学 一种爬墙机器人及其串联机器人组
CN111390870B (zh) * 2020-02-26 2022-07-01 中国民航大学 一种具有弧形轨道和复合支链的五自由度并联机构
CN112092939B (zh) * 2020-07-30 2021-12-07 北京理工大学 轮腿驱动结合、多运动模态复合操作臂的四足机器人
CN112123351B (zh) * 2020-09-28 2022-02-11 河海大学常州校区 一种仿生蚂蚁探测机器人
CN114764241A (zh) * 2021-01-14 2022-07-19 腾讯科技(深圳)有限公司 运动状态的控制方法、装置、设备及可读存储介质
CN113147949A (zh) * 2021-04-22 2021-07-23 上海扩博智能技术有限公司 用于机器人的行走关节
CN116749210A (zh) * 2021-04-27 2023-09-15 苏州邦弘智能科技有限公司 一种货运机器人
CN113766121B (zh) * 2021-08-10 2023-08-08 国网河北省电力有限公司保定供电分公司 基于四足机器人的保持图像稳定的装置和方法
CN114396542A (zh) * 2021-12-31 2022-04-26 德清县浙工大莫干山研究院 一种多方位四足摄影平台
CN114434420B (zh) * 2021-12-31 2023-07-04 德清县浙工大莫干山研究院 一种可定姿四足式移动作业平台
CN114603541B (zh) * 2022-01-19 2024-05-17 南京理工大学 一种模块化可移动机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041486A1 (en) * 2002-11-06 2004-05-21 Mcgill University Four-degree-of-freedom parallel manipulator for producing schönflies motions
CN101973027A (zh) * 2010-09-27 2011-02-16 韩方元 一种并联步行机器人的连接方法及其并联步行机器人
CN104972453A (zh) * 2015-05-26 2015-10-14 韩方元 一种多运动平台并联机器人构建方法及其并联机器人
WO2015168799A1 (en) * 2014-05-08 2015-11-12 UNIVERSITé LAVAL Parallel mechanism with kinematically redundant actuation
CN107414793A (zh) * 2017-08-01 2017-12-01 韩方元 一种混联步行机器人的构建方法及其混联步行机器人

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656905A (en) * 1995-04-03 1997-08-12 Tsai; Lung-Wen Multi-degree-of-freedom mechanisms for machine tools and the like
US20110048159A1 (en) * 2008-01-18 2011-03-03 Fundacion Fatronik Two degree-of-freedom parallel manipulator
CN102285390B (zh) * 2011-06-03 2012-09-26 哈尔滨工程大学 一种步行机器人的混联弹性驱动步行腿
CN102935639B (zh) * 2012-10-17 2015-04-08 燕山大学 一种三手爪3spr+3rps型串并联机器人
CN204296909U (zh) * 2014-12-25 2015-04-29 中国矿业大学 一种类人型机器人混联式机械腿
CN105196283B (zh) * 2015-10-30 2017-03-22 武汉大学 一种混联双足铁塔攀爬机器人
CN105798890A (zh) * 2016-05-25 2016-07-27 刘明月 一种新能源汽车零部件仓库作业智能机械手
CN106741284B (zh) * 2016-12-29 2018-05-04 张可然 一种基于并联机构的六足机器人及其工作方法
US10766202B2 (en) * 2017-05-18 2020-09-08 Nike, Inc. System and method for welding a chamber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004041486A1 (en) * 2002-11-06 2004-05-21 Mcgill University Four-degree-of-freedom parallel manipulator for producing schönflies motions
CN101973027A (zh) * 2010-09-27 2011-02-16 韩方元 一种并联步行机器人的连接方法及其并联步行机器人
WO2015168799A1 (en) * 2014-05-08 2015-11-12 UNIVERSITé LAVAL Parallel mechanism with kinematically redundant actuation
CN104972453A (zh) * 2015-05-26 2015-10-14 韩方元 一种多运动平台并联机器人构建方法及其并联机器人
CN107414793A (zh) * 2017-08-01 2017-12-01 韩方元 一种混联步行机器人的构建方法及其混联步行机器人

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109895114A (zh) * 2019-03-12 2019-06-18 广东机电职业技术学院 一种气动肌肉驱动的多边形结构的攀爬机器人
CN109895114B (zh) * 2019-03-12 2024-02-27 广东机电职业技术学院 一种气动肌肉驱动的多边形结构的攀爬机器人
CN110170979A (zh) * 2019-05-30 2019-08-27 南方科技大学 一种适用于非结构化环境下进行物理交互的轮式机器人
CN111113425A (zh) * 2019-12-31 2020-05-08 上海大学 一种有寄生运动的五自由度串并联机器人运动学逆解求解方法
CN114604335A (zh) * 2020-12-08 2022-06-10 天津理工大学 一种仿人双足行走的混联下肢机构
CN114604335B (zh) * 2020-12-08 2023-10-20 天津理工大学 一种仿人双足行走的混联下肢机构
CN112936311A (zh) * 2021-03-25 2021-06-11 双子星机甲动力(肇庆)科技有限公司 仿生蚂蚁机器人
CN114434424B (zh) * 2022-01-25 2024-01-09 南京信息工程大学 一种仿生脊柱机构
CN114434424A (zh) * 2022-01-25 2022-05-06 南京信息工程大学 一种仿生脊柱机构
CN114802518A (zh) * 2022-04-21 2022-07-29 北京工业大学 一种仿生可变形六足机器人
CN114802518B (zh) * 2022-04-21 2023-01-13 北京工业大学 一种仿生可变形六足机器人
CN114633825A (zh) * 2022-05-16 2022-06-17 深圳鹏行智能研究有限公司 移动控制方法、足式机器人和计算机可读存储介质
CN114603538A (zh) * 2022-05-16 2022-06-10 西安德普赛科计量设备有限责任公司 一种完全解耦的球面3r转动并联机构
CN115257996A (zh) * 2022-07-19 2022-11-01 长沙理工大学 一种可动态重构躯体的八足特种机器人
CN115257996B (zh) * 2022-07-19 2023-07-25 长沙理工大学 一种可动态重构躯体的八足特种机器人

Also Published As

Publication number Publication date
US11453117B2 (en) 2022-09-27
CN107414793A (zh) 2017-12-01
US20200206905A1 (en) 2020-07-02
JP2020528832A (ja) 2020-10-01
CN107414793B (zh) 2020-07-31
JP7204234B2 (ja) 2023-01-16

Similar Documents

Publication Publication Date Title
WO2019024839A1 (zh) 一种混联步行机器人的构建方法及其混联步行机器人
US10532782B2 (en) Multi-legged independent mobile carrier
CN103287523B (zh) 一种弹性足与轮式运动机构结合的复合变形移动机器人
Morrey et al. Highly mobile and robust small quadruped robots
CN105172933B (zh) 一种仿蜘蛛的多足机器人平台
Ding et al. Locomotion analysis of hexapod robot
CN102107688B (zh) 一种可调关节长度的双腿行走机构
CN203237312U (zh) 一种弹性足与轮式运动机构结合的复合变形移动机器人
CN109986579A (zh) 多模式运动仿灵长类机器人
CN101157372A (zh) 一种步轮履复合式移动机器人
Jeans et al. IMPASS: Intelligent mobility platform with active spoke system
CN112278106B (zh) 一种轮足复合行走机构
CN105583808A (zh) 一种轮-腿复合球面并联机构
CN208760751U (zh) 一种多自由度多功能机器人
CN111513982A (zh) 一种并联式脚踝康复机器人
JP2005103725A (ja) 脚型ロボットの安定歩行法、歩幅制御法、操舵法、およびその装置
CN104058014B (zh) 一种半轮足式机器人
CN209535274U (zh) 一种步态前进与轮式前进转换的多足机器人
CN105480320A (zh) 一种基于stm32控制的六足十八自由度的探险机器人
CN206704340U (zh) 一种轮腿切换式仿生越障机器人
CN210027663U (zh) 基于并联机构的双足行走机器人
Yang et al. A multi-locomotion clustered tensegrity mobile robot with fewer actuators
CN203888923U (zh) 一种新型越障机器人
CN201961405U (zh) 一种履带式越障机器人的行走及调姿系统
CN108820067A (zh) 一种多模式步滚移动机构及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18841480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020505370

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18841480

Country of ref document: EP

Kind code of ref document: A1