WO2019024366A1 - Écran de projection et système de projection - Google Patents

Écran de projection et système de projection Download PDF

Info

Publication number
WO2019024366A1
WO2019024366A1 PCT/CN2017/114725 CN2017114725W WO2019024366A1 WO 2019024366 A1 WO2019024366 A1 WO 2019024366A1 CN 2017114725 W CN2017114725 W CN 2017114725W WO 2019024366 A1 WO2019024366 A1 WO 2019024366A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
layer
projection screen
light
microstructure
Prior art date
Application number
PCT/CN2017/114725
Other languages
English (en)
Chinese (zh)
Inventor
王霖
胡飞
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2019024366A1 publication Critical patent/WO2019024366A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface

Definitions

  • FIG. 8 is a schematic diagram showing an optical path when ambient stray light is irradiated on a projection screen according to an embodiment of the present invention.
  • the microstructure elements of the total reflection layer 12 have a rotationally symmetric array arrangement on the screen plane.
  • the center of rotation (optical center) of the rotationally symmetric array arrangement is perpendicular to the plane of the screen and below the screen.
  • the projector 20 is disposed on the central axis of rotation.
  • the interface between the microstructure layer 121 and the inner layer 122 includes two sets of planes, and one set (1241 and 1242) is used to totally reflect the incident light from the ultra short throw projector. Within the viewer's field of view, another set (1243 and 1244) is used to cause total reflection from the telephoto projector to enter the viewer's field of view.
  • the ambient stray light 127 is mainly from the ceiling lights in the room. In most cases, The top light is away from the axis of rotation of the rotationally symmetric structure of the microstructure unit of the screen. Therefore, the incident angle of the ambient stray light 127 is smaller than the incident angle of the projected light from the ultra-short-focus projector, but much larger than the incident angle of the projected light from the telephoto projector. Therefore, the ambient stray light 127 cannot satisfy the condition of two consecutive total reflections on the plane 1241 and the plane 1242 or on the planes 1243 and 1244, and most of the transmitted through the microstructure unit is absorbed by the light absorbing layer 11.
  • the refractive index of the microstructure layer 121 is n 1 and the refractive index of the inner layer 122 is n 2 , and the inclination of the four oblique intersection planes 1241, 1242, 1243, and 1244 of the microstructure unit with respect to the plane of the screen.
  • the angles are ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 (the unit is degree, the same below).
  • the angle between the incident ray and the reflected ray and the vertical direction are ⁇ and ⁇ (in degrees, the same below).
  • the intermediate light rays from the total reflection of the incident light ray 123 from the ultra-short-throw projector through the inclined plane 1241 of the microstructure unit are traveling in the microstructure layer 121 in a direction parallel to the plane of the screen. .
  • a set of inclined planes 1241 and 1242 of the microstructure unit have the optical structure as described above, as shown in FIG. 6, a portion of the incident light ray 123 from the ultra-short-throw projector 20 is in the micro Two sets of total reflections at the set of inclined planes 1241 and 1242 of the structural unit are reflected into the field of view of the viewer; and another portion of the incident light 123 from the ultra short throw projector 20 is illuminated on the other of the microstructured units.
  • FIG. 7 illustrates an example of an optical path when the projection screen 10 is used for a telephoto projector.
  • a portion of the incident ray 123 is twice totally reflected at a set of inclined planes 1243 and 1244 of the microstructure unit, and is reflected to the viewer's field of view.
  • the incident ray of the telephoto projector can be considered to be incident at an angle approximately perpendicular to the plane of the vertical screen, in order to reflect the incident ray into the field of view of the viewer, the tilt angle of the inclined planes 1243 and 1244 with respect to the plane of the screen is required. Meet the following relationship:
  • the incident light ray 123 is incident on the other set of inclined planes 1241 and 1242 of the microstructure unit. Since the tilt angles of the inclined planes 1241 and 1242 do not satisfy the relationship (6), the incident light ray 123 from the telephoto projector is provided. The total reflection condition is not satisfied at at least one of the inclined planes 1241 and 1242, and thus the portion of the light passes through the total reflection layer and is absorbed by the inner light absorbing layer 11.
  • the planes 1241 and 1242 for totally reflecting the projected rays from the ultra-short-focus projector and the plane for totally reflecting the projected rays from the telephoto projector The relationship between the extension lengths of the two sets of planes 1243 and 1244 also has a large effect on the optical performance of the screen.
  • the ratio of the extended length of the planes 1243 and 1244 to the total length of the planes 1241, 1242, 1243, and 1244 ie, in the main cross-sectional views of FIGS. 6-8), the length of the line segment 1243 and the line segment 1244
  • the ratio of the total length of the line segment 1241, the line segment 1243, and the line segment 1244 should be greater than 0.2 and less than 0.8.
  • FIG. 8 illustrates an example of an optical path when ambient stray light is incident on the projection screen 10.
  • the ambient stray light is generally mainly derived from the ceiling or the light above the wall.
  • the incident angle of the ambient stray light on the projection screen is much smaller than the incident angle of the projected light emitted from the ultra-short-focus projector located at a close distance below the screen. Therefore, when the ambient stray light 127 is incident on the projection screen from the ceiling side, the ambient stray light cannot satisfy the conditions of two consecutive total reflections on the planes 1241 and 1242 or on the planes 1243 and 1244, but through the full
  • the reflective layer is completely absorbed by the inner light absorbing layer 11.
  • the order of arrangement of the four planes is not limited thereto.
  • a set of planes ie, 1243 and 1244 for totally reflecting the projected light from the telephoto projector may be disposed on the outer side, in other words, in order from bottom to top, 1243.
  • the four planes are arranged in the order of 1241, 1242, and 1244.
  • the angle between the plane 1243 and the plane 1244 is 90 degrees
  • the angle between the plane 1241 and the plane 1241 is an obtuse angle.
  • the projection screen 10 has a rotationally symmetrical structure and includes a plurality of microstructure units.
  • the angular design of each microstructure unit can be the same or different.
  • ⁇ 1 of the microstructure unit gradually decreases as it approaches the upper side of the screen, and ⁇ 1 ⁇ 2 , thus satisfying the above formula (6).
  • the value of ⁇ 1 of the microstructure unit of the projection screen is continuously decreased along the direction from the center of the screen to the edge of the screen, and the value of ⁇ 2 is taken.
  • the value is constantly increasing.
  • the components (V x , V y ) of the incident ray satisfying the total reflection condition can be obtained according to the above formulas (2) and (3).
  • the range of values varies with the refractive index n 2 of the inner layer 122.
  • n 2 increases, the area of incident light that satisfies total reflection at both bevels of the microstructured unit is decreasing.
  • n 2 increases, the probability that light emitted from the projector will not be totally reflected twice on the two slopes of the microstructure unit increases. Therefore, in order to ensure a certain screen reflection efficiency, it is necessary to make n 1 and n 2 satisfy:
  • the inner layer 122 may be an air layer if the above conditions are satisfied.
  • the tip end of the reflective prism of the microstructure layer 121 may be directly bonded to the light absorbing layer 11.
  • the divergence angle of the emitted light is generally small, and a light diffusion layer may be disposed outside the total reflection layer 12 in order to increase the visible range of the projected image.
  • the outer diffusion layer 12 is provided with a bulk diffusion layer 13 and a surface microstructure layer 14 as light diffusion layers in this order.
  • a to c of Fig. 10 respectively show three commercial optical scattering film structures which can be used as a light diffusion layer: a bulk scattering film, an irregular surface scattering film, and a regular surface microlens array film.
  • the bulk diffusion layer 13 and the surface microstructure layer 14 in FIG. 3 can be formed by superposing a bulk scattering film and a regular surface microlens array film.
  • the number and type of cascading are not limited to this.
  • a total reflection layer and a light diffusion layer are separately formed, and then optically bonded.
  • the light scattering layer and the total reflection layer may be separately formed by performing different surface processes on both surfaces of the same substrate (for example, PET).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Projection Apparatus (AREA)

Abstract

L'invention concerne un écran de projection (10) et un système de projection. Le système de projection comprend un écran de projection (10) et un projecteur (20). L'écran de projection (10) peut réfléchir une lumière projetée (123) dans la plage d'un champ de vision d'un spectateur. L'écran de projection (10) comprend des couches de diffusion de lumière (13, 14), une couche de réflexion totale (12) et une couche d'absorption de lumière (11) agencées de manière séquentielle à partir d'un côté d'incidence de la lumière projetée (123). La couche d'absorption de lumière (11) peut absorber une lumière incidente. Les couches de diffusion de lumière (13, 14) sont utilisées pour augmenter un angle de divergence d'une lumière émergente. La couche de réflexion totale (12) comprend au moins une couche à microstructure (121) disposée sur le côté des couches de diffusion de lumière (13, 14) et une couche interne (122) disposée sur le côté de la couche d'absorption de lumière (11). La couche à microstructure (121) possède un indice de réfraction supérieur à celui de la couche interne (122). Une pluralité d'unités de microstructures est disposée sur la couche à microstructure (121), s'étend en continu dans le plan de l'écran de projection (10) et est symétrique en rotation. L'agencement spécial de microstructures d'une couche de réflexion totale (12) permet à une lumière projetée (123) à partir d'un projecteur à portée ultra-courte (20) et à une lumière projetée (123) à partir d'un projecteur à longue portée (20) d'être soumises à une réflexion totale deux fois en continu dans les microstructures avant de sortir de celles-ci, de telle sorte que le même écran de projection (10) peut être utilisé à la fois pour un projecteur à portée ultra-courte (20) et un projecteur à longue portée (20).
PCT/CN2017/114725 2017-08-04 2017-12-06 Écran de projection et système de projection WO2019024366A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710663024.9A CN109388014B (zh) 2017-08-04 2017-08-04 投影屏幕和投影系统
CN201710663024.9 2017-08-04

Publications (1)

Publication Number Publication Date
WO2019024366A1 true WO2019024366A1 (fr) 2019-02-07

Family

ID=65232229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114725 WO2019024366A1 (fr) 2017-08-04 2017-12-06 Écran de projection et système de projection

Country Status (2)

Country Link
CN (1) CN109388014B (fr)
WO (1) WO2019024366A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220221780A1 (en) * 2019-05-30 2022-07-14 Appotronics Corporation Limited Projection screen
US20220291579A1 (en) * 2019-07-05 2022-09-15 Appotronics Corporation Limited Projection screen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112782929B (zh) 2019-11-04 2024-07-26 深圳光峰科技股份有限公司 一种投影屏幕以及投影系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214547A (ja) * 1990-03-13 1992-08-05 Dainippon Printing Co Ltd 反射形スクリーンとその製造方法
JPH1026803A (ja) * 1996-07-12 1998-01-27 Dainippon Printing Co Ltd 反射型スクリーン
CN1693989A (zh) * 2004-05-07 2005-11-09 株式会社有泽制作所 反射式屏幕
CN101697058A (zh) * 2005-02-02 2010-04-21 大日本印刷株式会社 反射屏、反射屏的制造方法和反射型投影系统
TW201017312A (en) * 2008-10-24 2010-05-01 Coretronic Corp Reflective front projection screen
CN104317153A (zh) * 2014-09-09 2015-01-28 深圳市亿思达科技集团有限公司 用于投影机的屏幕及投影系统
US20150077849A1 (en) * 2012-09-28 2015-03-19 Dai Nippon Printing Co., Ltd. Reflection screen and image display system
CN105408777A (zh) * 2014-02-14 2016-03-16 大日本印刷株式会社 反射屏、反射屏的制造方法、屏幕框体和影像显示系统
CN106125492A (zh) * 2016-08-31 2016-11-16 海信集团有限公司 投影屏幕和具有该投影屏幕的超短焦投影系统
CN106443839A (zh) * 2016-11-18 2017-02-22 四川长虹电器股份有限公司 柔性超短焦投影光学膜及其屏幕

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001271074A1 (en) * 2000-09-29 2002-04-15 Dainippon Printing Co. Ltd. Fresnel lens, screen, image display device, lens mold manufacturing method, and lens manufacturing method
US7095558B2 (en) * 2003-09-01 2006-08-22 Hitachi, Ltd. Image display device, rear projection type screen used in image display device, Fresnel lens sheet, and method of making Fresnel lens sheet
JP4561204B2 (ja) * 2004-07-01 2010-10-13 株式会社日立製作所 スクリーン及びそれに用いられるフレネルレンズシート、並びにそれを用いた画像表示装置
CN205910490U (zh) * 2016-07-19 2017-01-25 深圳市光峰光电技术有限公司 一种反光微结构、投影屏幕和投影系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214547A (ja) * 1990-03-13 1992-08-05 Dainippon Printing Co Ltd 反射形スクリーンとその製造方法
JPH1026803A (ja) * 1996-07-12 1998-01-27 Dainippon Printing Co Ltd 反射型スクリーン
CN1693989A (zh) * 2004-05-07 2005-11-09 株式会社有泽制作所 反射式屏幕
CN101697058A (zh) * 2005-02-02 2010-04-21 大日本印刷株式会社 反射屏、反射屏的制造方法和反射型投影系统
TW201017312A (en) * 2008-10-24 2010-05-01 Coretronic Corp Reflective front projection screen
US20150077849A1 (en) * 2012-09-28 2015-03-19 Dai Nippon Printing Co., Ltd. Reflection screen and image display system
CN105408777A (zh) * 2014-02-14 2016-03-16 大日本印刷株式会社 反射屏、反射屏的制造方法、屏幕框体和影像显示系统
CN104317153A (zh) * 2014-09-09 2015-01-28 深圳市亿思达科技集团有限公司 用于投影机的屏幕及投影系统
CN106125492A (zh) * 2016-08-31 2016-11-16 海信集团有限公司 投影屏幕和具有该投影屏幕的超短焦投影系统
CN106443839A (zh) * 2016-11-18 2017-02-22 四川长虹电器股份有限公司 柔性超短焦投影光学膜及其屏幕

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220221780A1 (en) * 2019-05-30 2022-07-14 Appotronics Corporation Limited Projection screen
US11892765B2 (en) * 2019-05-30 2024-02-06 Appotronics Corporation Limited Projection screen
US20220291579A1 (en) * 2019-07-05 2022-09-15 Appotronics Corporation Limited Projection screen
US11892766B2 (en) * 2019-07-05 2024-02-06 Appotronics Corporation Limited Projection screen

Also Published As

Publication number Publication date
CN109388014A (zh) 2019-02-26
CN109388014B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN109388013B (zh) 投影屏幕和投影系统
CN109388015B (zh) 全反射屏幕和投影系统
CN207216263U (zh) 全反射屏幕和投影系统
WO2019024369A1 (fr) Écran de projection et système de projection
US11448952B2 (en) Screen and projection system
CN110297386B (zh) 曲面屏幕及其微结构设置方法和投影系统
WO2019114121A1 (fr) Écran et procédé de fabrication d'un film d'absorption de lumière
WO2019169870A1 (fr) Écran et système de projection
WO2019179124A1 (fr) Écran et système de projection
WO2021004301A1 (fr) Écran de projection
US20140153090A1 (en) Projection system
US11762275B2 (en) Projection screen and projection system
WO2019024366A1 (fr) Écran de projection et système de projection
WO2021004303A1 (fr) Écran de projection
TW201932971A (zh) 背投影幕

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920168

Country of ref document: EP

Kind code of ref document: A1