WO2019024054A1 - 圆极化双频天线 - Google Patents

圆极化双频天线 Download PDF

Info

Publication number
WO2019024054A1
WO2019024054A1 PCT/CN2017/095870 CN2017095870W WO2019024054A1 WO 2019024054 A1 WO2019024054 A1 WO 2019024054A1 CN 2017095870 W CN2017095870 W CN 2017095870W WO 2019024054 A1 WO2019024054 A1 WO 2019024054A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical portion
antenna according
lateral
lateral portion
cylinder
Prior art date
Application number
PCT/CN2017/095870
Other languages
English (en)
French (fr)
Inventor
李栋
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780027102.4A priority Critical patent/CN109075438B/zh
Priority to PCT/CN2017/095870 priority patent/WO2019024054A1/zh
Publication of WO2019024054A1 publication Critical patent/WO2019024054A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines

Definitions

  • Embodiments of the present invention relate to the field of antenna technologies, and in particular, to a circularly polarized dual-band antenna.
  • the anti-interference ability of circularly polarized antennas is generally better than that of linearly polarized antennas.
  • the existing circularly polarized antenna is difficult to achieve a wide beam width, and the performance of the circularly polarized antenna is significantly deteriorated when the attitude of the antenna changes.
  • a circular polarization design with one frequency left-handed and another frequency right-handed is more difficult.
  • the technical problem to be solved by the present invention is how to improve the circular polarization performance of the antenna and improve the radiation characteristics of the antenna.
  • an embodiment of the present invention provides a circularly polarized dual-frequency antenna, including a plurality of dipoles and a feed network, wherein
  • the dipole is disposed on a cylinder surface, the dipole includes a first vibrator unit and a second vibrator unit, each vibrator unit includes a first vibrator and a second vibrator; wherein the first vibrator includes the first a vertical portion and a first lateral portion, the second vibrator including a second vertical portion and a second lateral portion;
  • the first vertical portion and the second vertical portion are parallel to a central axis of the cylinder;
  • the feed network is connected to each of the vibrator units.
  • first vertical portion and the second vertical portion extend from the connection portion with the feeding network toward the end of the cylindrical surface.
  • the first vertical portion comprises a second vertical portion.
  • the first lateral portion extends from a connection with the first vertical portion in a direction perpendicular to the first vertical portion.
  • the first lateral portion is disposed near an end of the cylinder.
  • the first lateral portion is disposed at an end of the cylinder.
  • the second lateral portion extends from a connection with the second vertical portion in a direction perpendicular to the second vertical portion.
  • the direction in which the first lateral portion extends is the same as the direction in which the second lateral portion extends.
  • the direction in which the first lateral portion extends is opposite to the direction in which the second lateral portion extends.
  • the first vibrator unit is disposed at one end of the cylinder, and the second vibrator unit is disposed at the other end of the cylinder.
  • the first lateral portion of the plurality of first vibrators disposed at one end of the cylinder extends in the same direction; the first lateral portions of the plurality of first vibrators disposed at the other end of the cylinder extend in the same direction;
  • the direction of extension is a direction in which the first lateral portion is away from the first vertical portion from the connection portion with the first vertical portion.
  • the plurality of second lateral portions disposed at one end of the cylindrical surface extend in the same direction; the plurality of second lateral portions disposed at the other end of the cylindrical surface extend in the same direction; wherein the extending direction It is a direction in which the second lateral portion is away from the second vertical portion from the connection portion with the second vertical portion.
  • the first vibrator unit is centrally symmetric with the second vibrator unit.
  • a sum of lengths of the first lateral portion and the first vertical portion is greater than a sum of lengths of the second lateral portion and the second vertical portion.
  • the length of the first lateral portion is greater than the second lateral portion.
  • the feed network includes a first feed branch and a second feed branch; wherein the first feed branch is connected to a first vibrator unit disposed at one end of the cylinder, the second feed The electric branch is connected to the second transducer unit disposed at the other end of the cylinder.
  • the feed network is located within the cylinder.
  • the distance between the first feeding branch and the second feeding branch is 1-2 mm.
  • the carrier is received in the cylinder.
  • the carrier is a non-conductive material.
  • the plurality of dipoles are printed on a cylindrical surface of a cylindrical substrate.
  • the cylinder surface is at least one of a cylindrical surface and a prism surface.
  • the omnidirectional dual-frequency antenna provided by the embodiment of the invention has a better omnidirectionality by arranging a plurality of dipoles on the cylinder surface. At the same time, the omnidirectional dual-frequency antenna utilizes the design of each dipole comprising two vibrator units, giving the antenna the ability to operate at two frequencies.
  • FIG. 1 is a schematic perspective structural view of a circularly polarized dual-frequency antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic side view showing a circular polarization dual-frequency antenna according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a vibrator unit of a circularly polarized dual-frequency antenna according to an embodiment of the present invention
  • FIG. 4 is a schematic front view of a circularly polarized dual-frequency antenna according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing return loss of a circularly polarized dual-frequency antenna according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a circularly polarized dual-frequency antenna according to an embodiment of the present invention at 3.23 GHz;
  • FIG. 7 is a schematic diagram of a circularly polarized dual-frequency antenna according to an embodiment of the present invention at 6.26 GHz;
  • FIG. 8 is a diagram showing a pitch-to-axis ratio of a circularly polarized dual-frequency antenna according to an embodiment of the present invention at 3.23 GHz;
  • FIG. 9 is a diagram showing a pitch-to-axis ratio of a circularly polarized dual-frequency antenna according to an embodiment of the present invention at 6.26 GHz;
  • FIG. 10 is a horizontal axis ratio diagram of a circularly polarized dual-frequency antenna according to an embodiment of the present invention at 3.23 GHz;
  • FIG. 11 is a horizontal axis ratio diagram of a circularly polarized dual-frequency antenna according to an embodiment of the present invention at 6.26 GHz.
  • the first vibrator unit
  • the circularly polarized dual-frequency antenna provided by the embodiment of the present invention includes a feed network 1 and a plurality of dipoles 2, wherein the number of the dipoles
  • the number of the plurality of dipoles may be 4, 8, 16, etc., which is not specifically limited herein.
  • the plurality of dipoles are schematically illustrated as four dipoles.
  • the plurality of dipoles are disposed on the cylindrical surface 3, wherein the cylindrical surface 3 may be at least one of a cylindrical surface and a prism surface, and further, the prism surface may be a 4 prism surface, 5 prism face, 6 prism face, 7 prism face, 8 prism face, etc., are not specifically limited herein.
  • the embodiment of the present invention schematically illustrates the cylindrical surface as a cylindrical surface, and the place where the cylindrical surface is referred to herein may be equivalently replaced with a cylindrical surface.
  • the antenna further includes a cylindrical substrate 4, wherein the plurality of dipoles 2 are printed on a cylindrical surface on the cylindrical substrate 4, and at this time, the cylindrical portion 3 of the aforementioned portion is The cylindrical surface of the substrate, wherein the cylindrical substrate may be a cylindrical or prismatic substrate, as described above, and details are not described herein. It should be noted that printing the plurality of dipoles 2 on the cylindrical substrate 3 is only a feasible implementation. In some embodiments, the plurality of dipoles 2 can be bent from a metallic material and are not directly printed on the substrate. For convenience of description, the embodiment of the present invention is schematically illustrated by printing the plurality of dipoles 2 on the substrate 4.
  • the carrier 3 can be accommodated in the cylinder 3, wherein the carrier 5 can be a non-metallic material, and the carrier 5 can be used for the dipole 2, the substrate 4, and the feed network 1.
  • the carrier 5 can be housed in the inner cavity of the cylindrical substrate 3.
  • each of the dipoles 2 includes two transducer units, which are a first transducer unit 20 and a second transducer unit 21, respectively.
  • Each vibrator unit includes two The vibrators are the first vibrator 22 and the second vibrator 23, respectively.
  • the design of the two vibrators enables the antenna provided by the embodiments of the present invention to have the ability to work at two frequencies.
  • the specific structure of the first vibrator 22 and the second vibrator 23 is as shown in FIGS. 2 and 3.
  • each of the first vibrators 22 includes a first vertical portion 221 and a first lateral portion 222.
  • the first vertical portion 221 is parallel to the central axis of the cylindrical surface 3
  • the first lateral portion 222 extends from the connecting portion with the first vertical portion 221 away from the first vertical portion, and further, the first lateral direction
  • the portion 222 extends from a connection portion with the first vertical portion 221 in a direction perpendicular to the first vertical portion 221 .
  • each of the second vibrators 23 includes a second vertical portion 231 and a second lateral portion 232.
  • the second vertical portion 231 is parallel to the central axis of the cylindrical surface 3
  • the second lateral portion 232 extends from the connecting portion with the second vertical portion 231 in a direction away from the second vertical portion, and further, the second lateral direction
  • the portion 232 extends from a connection portion with the second vertical portion 231 in a direction perpendicular to the second vertical portion 232.
  • the first vertical portion 221 includes a second vertical portion 231. That is, the second vertical portion 231 coincides with at least a portion of the first vertical portion 221 .
  • the vibrator unit is not limited to a design in which the first vibrator at least partially coincides with the vertical portion of the second vibrator, and those skilled in the art may also set the vertical portion of the first vibrator and the second vibrator. In a structure that does not coincide with each other.
  • the first vertical portion 221 includes the second vertical portion 231 as an example for illustration.
  • the first vertical portion 221 extends from the connection portion with the feed network 1 toward the end of the cylindrical surface 3
  • the second vertical portion 231 extends from the connection portion with the feed network 1 toward the end of the cylindrical surface 3.
  • the first lateral portion 221 is disposed near the end of the cylindrical surface 3, and further, the first lateral portion 221 is disposed at the end of the cylindrical surface 3. In some embodiments, the first lateral portion 221 can also be disposed at other locations near the end of the cylinder 3.
  • the direction in which the first lateral portion 221 belonging to the same transducer unit extends is opposite to the direction in which the second lateral portion 232 extends.
  • the direction in which the first lateral portion 222 belonging to the same transducer unit extends may also be the same as the direction in which the second lateral portion 232 extends, and is not limited to the embodiment.
  • the first transducer unit 201 of each dipole is centrally symmetric with its corresponding second transducer unit 202. That is, for the first transducer unit 20 and the second transducer unit 21 which belong to the same one dipole, the direction in which the first lateral portion of the first transducer unit 20 extends and the first lateral portion in the second transducer unit 21 extend In the opposite direction, the direction in which the second lateral portion of the first transducer unit 20 extends is opposite to the direction in which the second lateral portion in the second transducer unit 21 extends.
  • the direction in which the first lateral portion of the first transducer unit 20 extends may be the same as that in the second transducer unit 21.
  • the first lateral portion extends in the same direction
  • the direction in which the second lateral portion of the first transducer unit 20 extends may be the second in the second transducer unit 21
  • the transverse direction extends in the same direction.
  • the first transducer units 20 of the dipoles are all disposed at one end of the cylindrical surface 3, and the second transducer units 21 of the respective dipoles are disposed at the other end of the cylindrical surface 3.
  • the directions of the extensions of the first lateral portions 221 disposed at one end of the cylindrical surface 3 are at least partially identical, and preferably, the directions of the extensions of the first lateral portions 221 disposed at one end of the cylindrical surface 3 are the same;
  • the directions in which the respective first lateral portions 221 at the other end extend are at least partially identical, and preferably, the directions in which the respective first lateral portions 221 provided at the other end of the cylindrical surface 3 extend are the same.
  • the direction of extension of each of the second lateral portions 232 disposed at one end of the cylindrical surface 3 is at least partially the same, preferably, the direction of extension of each of the second lateral portions 232 disposed at one end of the cylindrical surface 3 is the same;
  • the direction in which each of the second lateral portions 232 at one end extends is at least partially identical, and preferably the second lateral portions 232 disposed at the other end of the cylindrical surface 3 extend in the same direction.
  • the current flow direction (the current phase will change from 0° to 360° back to the starting point and then again)
  • the current In a half cycle of 0° to 180°, the current first flows to the left along the first lateral portion 222 at the bottom end of the cylindrical surface 3, and then along the first vertical portion of the lower portion and the upper portion of the cylindrical surface 3 (ie, the vertical portion 221) ) flows upwards and then flows to the left along the first lateral portion 221 at the top end of the cylindrical surface 3.
  • the current In a half cycle of 180° to 360°, the current first flows from the upper left corner to the right along the first lateral portion 221 of the top end of the cylindrical surface 3, and then flows down the vertical portion 221 of the upper and lower portions of the cylindrical surface 3 in turn, and then The first lateral portion 221 at the bottom end of the cylindrical surface 3 flows to the right. Accordingly, the current in the entire period of 0° to 360° is similar to the rotation in the counterclockwise direction, thereby radiating the left-hand circularly polarized electromagnetic wave.
  • the current flows in a substantially half cycle of 0° to 180°, and the current first flows to the right along the second lateral portion 232 of the lower portion of the cylindrical surface 3, and then The second vertical portion (i.e., the portion of the vertical portion 231) along the lower and upper portions of the cylindrical surface 3 flows upward, and then flows to the right along the second lateral portion 232 of the upper portion of the cylindrical surface 3.
  • the current In a half cycle of 180° to 360°, the current first flows from the right side to the left along the second lateral portion 232 of the upper portion of the cylindrical surface 3, and then along the second vertical portion of the upper and lower portions of the cylindrical surface 3 (ie, the portion)
  • the vertical portion 231) flows downward and then flows to the left along the second lateral portion 232 of the lower portion of the cylindrical surface 101. Accordingly, the current in the entire period of 0 to 360 degrees is similar to the rotation in the clockwise direction, thereby radiating a right-handed circularly polarized electromagnetic wave.
  • the direction in which the first lateral portion 212 and the second lateral portion 222 extend determines whether the circular polarization of the first vibrator and the second vibrator is right-handed or left-handed circularly polarized.
  • the first vibrator 22 is right-handed circularly polarized
  • the second vibrator 23 is left-handed circularly polarized. Based on the same principle, in some embodiments, if other circular polarization functions are desired, this can be achieved by adjusting the direction in which the first lateral portion 221 and the second lateral portion 231 extend.
  • the sum of the lengths of the first lateral portion 222 and the first vertical portion 221 is greater than the sum of the lengths of the second lateral portion 232 and the second vertical portion 231.
  • the sum of the lengths of the first lateral portion 222 and the first vertical portion 221 is equal to a quarter wavelength of the first resonant frequency corresponding to the first vibrator 22, and the length of the second lateral portion 232 and the second vertical portion 231.
  • the sum is equal to a quarter wavelength of the second resonant frequency corresponding to the second vibrator 23. It can be seen that the frequency of the electromagnetic wave radiated by the first vibrator 22 is lower than the electromagnetic wave frequency of the second vibrator 23.
  • the length of the first lateral portion 222 is greater than the length of the second lateral portion 232. In some embodiments, the length of the first lateral portion 222 can be less than or equal to the length of the second lateral portion 232. When the length of the first lateral portion 222 is less than or equal to the length of the second lateral portion 232, the lengths of the first vertical portion 221 and the second vertical portion 231 need to be adjusted correspondingly to ensure the first lateral portion 222 and the first vertical portion The sum of the lengths of the direction portions 221 is greater than the sum of the lengths of the first lateral portion 232 and the first vertical portion 232.
  • the feed network 1 is disposed in the cylindrical surface 3 and is connected to each of the first transducer unit 20 and each of the second transducer units 21, respectively.
  • the feed network 1 mainly includes a first feed branch 11 and a second feed branch 12 .
  • the first feed branch 11 is connected to each of the first transducer units 20 disposed at one end of the cylindrical surface 3
  • the second feed branch 12 is connected to each of the second transducer units 21 disposed at the other end of the cylindrical surface 3.
  • the first feeding branch 11 and the second feeding branch 12 have the same structure.
  • each of the feed branches may be a cross structure having four terminals.
  • Each of the connecting ends of the first feeding branch 11 is respectively connected to the first vertical portion 221 of the first vibrating unit 20, and the second connecting portion of the second feeding branch 12 is respectively connected to the first vertical portion 231.
  • the first vertical portion 221 of the second vibrator unit 21 is connected to the second vertical portion 231.
  • first feeding branch 11 and the second feeding branch 12 are designed with a cross structure, and the distance from the center of each feeding branch to the connecting portion connected to each vertical portion 211 can be equal. This ensures a balanced feed effect of the feed network for each of the first vibrator unit and each of the second vibrator units.
  • other configurations of feed branches may be employed for different numbers of dipoles and feed requirements, and are not limited to this embodiment.
  • the distance between the first feeding branch 11 and the second feeding branch 12 may be 1 mm to 2 mm.
  • the first feed branch 11 further includes a feed point A.
  • the second feed branch 12 further includes a feed point B.
  • the antenna provided by the embodiment of the present invention can be connected to an external circuit through a feed point. Further, Feed point A can be fed The inner core (outer core) of the wire is connected, and the feed point B can be connected to the outer core (core) of the feed line, and the feed line is connected to an external circuit.
  • FIG. 5 shows a return loss diagram of an omnidirectional dual-frequency antenna.
  • the omnidirectional dual-frequency antenna generates a resonance at 3.23 GHz and 6.26 GHz, and the bandwidth is greater than 100MHz.
  • the first resonant frequency is 3.23 GHz
  • the second resonant frequency is 6.26 GHz.
  • the antenna is at the left-handed polarization and the right-handed polarization at 3.2 GHz. It can be seen that at 3.2 GHz, the omnidirectional dual-frequency antenna radiates mainly left-handed circularly polarized waves, which is consistent with the above-mentioned antenna.
  • the analysis of the radiation principle, while the cross polarization is less than 10dB.
  • the antenna has a left-handed and right-handed polarization at 6.26 GHz. It can be seen that at 6.26 GHz, the omnidirectional dual-frequency antenna radiates mainly right-hand circularly polarized waves, which is consistent with the above. The analysis of the antenna radiation principle, while the cross polarization is less than 10dB.
  • FIGS. 8 and 9 it shows the pitch-to-axis ratio of the circularly polarized dual-frequency antenna at 3.2 GHz and 6.26 GHz, respectively.
  • the omnidirectional dual-frequency antenna proposed by the embodiment of the present invention has omnidirectional circular polarization at 3.2 GHz and 6.26 GHz, and has excellent circular polarization performance.
  • the omnidirectional dual frequency antenna shown in the figures and described in this specification is but one example of many circularly polarized dual frequency antennas that can employ the principles of the present invention. It should be clearly understood that the principles of the present invention are in no way limited to any detail of the circularly polarized dual frequency antenna shown in the figures or described in this specification or any component of a circularly polarized dual frequency antenna.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例公开一种圆极化双频天线,包括馈电网络以及多个偶极子,多个偶极子设置在柱面上,偶极子包括第一振子单元和第二振子单元,第一振子单元和第二振子单元均包括第一振子和第二振子,第一振子包括第一竖向部和第一横向部,第二振子包括第二竖向部和第二横向部;第一竖向部和第二竖向部与柱面的中心轴线平行;馈电网络分别连接于各第一振子单元和各第二振子单元。本发明实施例通过将多个偶极子设置在柱面上,使天线具备较佳的圆极化性能。同时,振子单元包括第一振子和第二振子的设计,使天线具备在两个频率上工作的能力。

Description

圆极化双频天线 技术领域
本发明实施例涉及天线技术领域,尤其涉及一种圆极化双频天线。
背景技术
对天线而言,圆极化天线的抗干扰能力通常要优于线极化天线。然而,现有圆极化天线较难做到较宽的波束宽度,而且,在天线姿态发生变化时,圆极化天线的性能会明显恶化。而且,在双频都能实现圆极化设计也是比较困难,另外,一个频率左旋、另一个频率右旋的圆极化设计更为困难。
发明内容
本发明所要解决的技术问题是如何提高天线的圆极化性能,改善天线的辐射特性。
本发明的额外方面和优点将部分地在下面的描述中阐述,并且部分地将从描述中变得显然,或者可以通过本发明的实践而习得。
为实现上述目的,本发明实施例提供一种圆极化双频天线,包括多个偶极子、馈电网络,其特征在于,
所述偶极子设置在柱面上,所述偶极子包括第一振子单元和第二振子单元,每一个振子单元包括第一振子和第二振子;其中,所述第一振子包括第一竖向部和第一横向部,第二振子包括第二竖向部和第二横向部;
所述第一竖向部和第二竖向部与柱面的中心轴线平行;
所述馈电网络与每一个振子单元连接。
可选地,所述第一竖向部与第二竖向部从与馈电网络的连接部向柱面的端部延伸。
可选地,第一竖向部包括第二竖向部。
可选地,第一横向部从与第一竖向部的连接部向垂直于第一竖向部的方向延伸。
可选地,所述第一横向部靠近柱面的端部设置。
可选地,所述第一横向部设置在柱面的端部。
可选地,第二横向部从与第二竖向部的连接部向垂直于第二竖向部的方向延伸。
可选地,第一横向部延伸的方向与第二横向部的延伸的方向相同。
可选地,第一横向部延伸的方向与第二横向部的延伸方向相反。
可选地,第一振子单元设置在柱面的一端,第二振子单元设置在柱面的另外一端。
可选地,设置在柱面一端的多个第一振子的第一横向部延伸的方向相同;设置在柱面另一端的多个第一振子的第一横向部延伸的方向相同;其中,所述延伸的方向为第一横向部从与第一竖向部的连接部远离第一竖向部的方向。
可选地,设置在所述柱面一端的多个第二横向部延伸的方向相同;设置在所述柱面另一端的多个第二横向部延伸的方向相同;其中,所述延伸的方向为第二横向部从与第二竖向部的连接部远离第二竖向部的方向。
可选地,所述第一振子单元与第二振子单元中心对称。
可选地,所述第一横向部与第一竖向部的长度之和大于所述第二横向部与第二竖向部的长度之和。
可选地,所述第一横向部的长度大于第二横向部。
可选地,所述馈电网络包括第一馈电枝节和第二馈电枝节;其中,所述第一馈电枝节与设置在柱面的一端的第一振子单元连接,所述第二馈电枝节与设置在柱面的另一端的第二振子单元连接。
可选地,所述馈电网络位于所述柱面内。
可选地,所述第一馈电枝节与第二馈电枝节之间的距离为1-2mm。
可选地,所述柱面内收容载体。
可选地,所述载体为非导体材料。
可选地,所述多个偶极子印刷在圆柱形基板的柱面上。
可选地,所述柱面为圆柱面、棱柱面中的至少一种。
由上述技术方案可知,本发明的有益效果是:
本发明实施例提供的全向双频天线,通过将多个偶极子设置在柱面上,使天线具备较佳的全向性。同时,该全向双频天线利用每个偶极子包括两个振子单元的设计,使天线具备在两个频率上工作的能力。
本发明中通过以下参照附图对优选实施例的说明,本发明的上述以及其它目的、特征和优点将更加明显。
附图说明
通过结合附图考虑以下对本发明的实施例的详细说明,本发明的各种目标、特征和优点将变得更加显而易见。附图仅为本发明的示范性图解,并非一定是按比例绘制。在附图 中,同样的附图标记始终表示相同或类似的部件。其中:
图1是本发明实施例提供的一种圆极化双频天线的透视结构示意图;
图2是本发明实施例提供的圆极化双频天线的侧视结构示意图;
图3是本发明实施例提供的圆极化双频天线的振子单元的结构示意图;
图4是本发明实施例提供的一种圆极化双频天线的正视结构示意图;
图5是本发明实施例提供的圆极化双频天线的回波损耗图;
图6是本发明实施例提供的圆极化双频天线在3.23GHZ时的方向图;
图7是本发明实施例提供的圆极化双频天线在6.26GHZ时的方向图;
图8是本发明实施例提供的圆极化双频天线在3.23GHZ时的俯仰面轴比图;
图9是本发明实施例提供的圆极化双频天线在6.26GHZ时的俯仰面轴比图;
图10是本发明实施例提供的圆极化双频天线在3.23GHZ时的水平面轴比图;
图11是本发明实施例提供的圆极化双频天线在6.26GHZ时的水平面轴比图。
其中,附图标记说明如下:
1.馈电网络;
2.偶极子;
3.柱面;
4.基板;
5.载体;
11.第一馈电枝节;
12.第二馈电枝节
20.第一振子单元;
21.第二振子单元;
22.第一振子;
23.第二振子;
221.第一竖向部;
222.第一横向部;
231.第二竖向部;
232.第二横向部。
具体实施方式
在对本发明的不同示例性实施例的下面描述中,参照附图进行,所述附图形成本发明的一部分,并且其中以示例方式显示了可实现本发明的多个方面的不同示例性结构、系统和步骤。应理解,可以使用部件、结构、示例性装置、系统和步骤的其他特定方案,并且可在不偏离本发明范围的情况下进行结构和功能性修改。而且,虽然本说明书中可使用术语“端”、“之间”等来描述本发明的不同示例性特征和元件,但是这些术语用于本文中仅出于方便,例如根据附图中所述的示例的方向。本说明书中的任何内容都不应理解为需要结构的特定三维方向才落入本发明的范围内。
下面结合附图,对本发明的一些实施例作详细说明,在不冲突的情况下,下述的实施例中的特征可以相互结合。
请同时参阅图1至图4,在本实施例中,本发明实施例提供的圆极化双频天线包括馈电网络1以及多个偶极子2,其中,所述偶极子的个数本领域技术人员可以根据设计需求选定,例如所述多个偶极子的个数可以为4、8、16等等,在此不作具体地限定。为了方便说明,以所述多个偶极子为4个偶极子来进行示意性说明。
进一步地,所述多个偶极子设置在柱面3上,其中,所述柱面3可以为圆柱面、棱柱面中的至少一种,进一步地,所述棱柱面可以为4棱柱面、5棱柱面、6棱柱面、7棱柱面、8棱柱面等等,在此不作具体的限定。为了方便说明,本发明实施例以所述柱面为圆柱面来进行示意性说明,其中本文后面涉及圆柱面的地方可以等同地被替换成柱面。
如图4所示,所述天线还包括柱形的基板4,其中,所述多个偶极子2印刷在柱形基板4上的柱面上,此时,前述部分的柱面3即为基板的柱面,其中,所述柱形的基板可以圆柱形或者棱柱形的基板,具体如前所述,在此不再赘述。需要说明的是,将所述多个偶极子2印刷在柱形的基板3上只是一种可行的实现方式。在某些实施例中,所述多个偶极子2可以由金属材料弯折而成,并不是直接印刷在基板上。为了方便说明,本发明实施例以所述多个偶极子2印刷在基板4上来进行示意性说明。
如图1所示,所述柱面3内可以收容载体5,其中,所述载体5可以为非金属材料,所述载体5可用于对偶极子2、基板4、馈电网络1、用于与馈电网络1连接的馈电线中的一种或多种支撑或者固定。进一步地,当所述多个偶极子2印刷在基板3上时,所述载体5可以收容在柱形基板3的内腔中。
下面将对设置在柱面上的偶极子的结构和分布进行详细地说明。
如图1-3所示,四个偶极子2印刷在基板4的圆柱面3上。其中,每个偶极子2均包括两个振子单元,分别为第一振子单元20和第二振子单元21。每个振子单元均包括两个 振子,分别为第一振子22和第二振子23。其中,两个振子的设计使得本发明实施例提供的天线具备在两个频率工作的能力。其中,第一振子22和第二振子23的具体地结构如图2和3所示。
具体而言,每个第一振子22包括第一竖向部221和第一横向部222。其中,第一竖向部221与圆柱面3的中心轴线平行,第一横向部222从与第一竖向部221的连接部向远离第一竖向部的方向延伸,进一步地,第一横向部222从与第一竖向部221的连接部向垂直于第一竖向部221的方向延伸。
具体而言,每个第二振子23包括第二竖向部231和第二横向部232。其中,第二竖向部231与圆柱面3的中心轴线平行,第二横向部232从与第二竖向部231的连接部向远离第二竖向部的方向延伸,进一步地,第二横向部232从与第二竖向部231的连接部向垂直于第二竖向部232的方向延伸。
在某些实施例中,参考图1、2和4,第一竖向部221包含第二竖向部231。即第二竖向部231至少与部分的第一竖向部221重合。在某些实施例中,振子单元并不限于第一振子与第二振子中的竖向部至少部分重合的设计,本领域技术人员也可以将第一振子和第二振子中的竖向部设置成互相不重合的结构。为了方便说明,本文以第一竖向部221包含第二竖向部231为例来进行示意性说明。
第一竖向部221从与馈电网络1的连接部向柱面3的端部延伸,且第二竖向部231为从与馈电网络1的连接部向柱面3的端部延伸。
第一横向部221靠近柱面3的端部设置,进一步地,第一横向部221设置在柱面3的端部。在某些实施例中,第一横向部221亦可设置在靠近柱面3的端部的其他位置。
在本实施例中,属于同一振子单元的第一横向部221延伸的方向与第二横向部232的延伸的方向相反。在某些实施例中,属于同一振子单元的第一横向部222延伸的方向亦可与第二横向部232的延伸方向相同,并不以本实施例为限。
每个偶极子的第一振子单元201与其对应的第二振子单元202呈中心对称。即,对于同属一个偶极子的第一振子单元20和第二振子单元21而言,第一振子单元20中的第一横向部延伸的方向与第二振子单元21中的第一横向部延伸方向相反,第一振子单元20中的第二横向部延伸的方向与第二振子单元21中的第二横向部延伸方向相反。
在某些实施例中,对于同属一个偶极子的第一振子单元20和第二振子单元21而言,第一振子单元20中的第一横向部延伸的方向可以与第二振子单元21中的第一横向部延伸方向相同,第一振子单元20中的第二横向部延伸的方向可以与第二振子单元21中的第二 横向部延伸方向相同。
各偶极子的第一振子单元20均设置在圆柱面3的一端,各偶极子的第二振子单元21均设置在圆柱面3的另外一端。其中,设置在圆柱面3一端的各第一横向部221的延伸的方向至少部分地相同,优选地,设置在圆柱面3一端的各第一横向部221的延伸的方向相同;设置在圆柱面3另一端的各第一横向部221延伸的方向至少部分地相同,优选地,设置在圆柱面3另一端的各第一横向部221延伸的方向相同。
设置在圆柱面3一端的各第二横向部232的延伸的方向至少部分地相同,优选地,设置在圆柱面3一端的各第二横向部232的延伸的方向相同;设置在圆柱面3另一端的各第二横向部232延伸的方向至少部分地相同,优选地,设置在圆柱面3另一端的各第二横向部232延伸的方向相同。
基于上述关于偶极子的各振子延伸的方向的设计,参见图2,对于第一振子20而言,电流的流向(电流相位会从0°变化到360°回到起点再周而复始)大致为,在0°到180°的半个周期内,电流先沿圆柱面3底端的第一横向部222向左流,再依次沿圆柱面3下部和上部的第一竖向部(即竖向部221)向上流,然后再沿圆柱面3顶端的第一横向部221向左流。在180°到360°半个周期内,电流先沿圆柱面3顶端的第一横向部221从左上角开始向右流,再依次沿圆柱面3上部和下部的竖向部221向下流,然后再沿圆柱面3底端的第一横向部221向右流。据此,整个0°到360°的周期内电流类似于做逆时针方向的旋转,从而辐射出左旋圆极化的电磁波。
基于相同的原理,对于第二振子21而言,电流的流向大致为,在0°到180°的半个周期内,电流先沿圆柱面3下部的第二横向部232向右流,再依次沿圆柱面3下部和上部的第二竖向部(即部分竖向部231)向上流,然后再沿圆柱面3上部的第二横向部232向右流。在180°到360°半个周期内,电流先沿圆柱面3上部的第二横向部232从右侧开始向左流,再依次沿圆柱面3上部和下部的第二竖向部(即部分竖向部231)向下流,然后再沿圆柱面101下部的第二横向部232向左流。据此,整个0到360度的周期内电流类似于做顺时针方向的旋转,从而辐射出右旋圆极化的电磁波。
由此可知,第一横向部212和第二横向部222延伸的方向决定了第一振子和第二振子所对应圆极化的是右旋还是左旋圆极化。参见附图1-4,第一振子22为右旋圆极化,且第 二振子23为左旋圆极化。基于相同的原理,在某些实施例中,如想实现其他圆极化功能,则可通过调整第一横向部221和第二横向部231延伸的方向来实现。
第一横向部222与第一竖向部221的长度之和大于第二横向部232与第二竖向部231的长度之和。其中,第一横向部222与第一竖向部221的长度之和等于第一振子22对应的第一谐振频率的四分之一波长,第二横向部232与第二竖向部231的长度之和等于第二振子23对应的第二谐振频率的四分之一波长。由此可知,第一振子22辐射的电磁波的频率要低于第二振子23的电磁波频率。
进一步地,第一横向部222的长度大于第二横向部232的长度。在某些实施例中,第一横向部222的长度可以小于或等于第二横向部232的长度。当第一横向部222的长度小于或等于第二横向部232的长度时,需对应调整第一竖向部221和第二竖向部231的长度,以保证第一横向部222与第一竖向部221的长度之和大于第一横向部232与第一竖向部232的长度之和。
如图1所示,馈电网络1设置在圆柱面3内且分别连接于各第一振子单元20和各第二振子单元21。其中,馈电网络1主要包括第一馈电枝节11和第二馈电枝节12。第一馈电枝节11与设置在圆柱面3一端的各第一振子单元20连接,第二馈电枝节12与设置在圆柱面3另一端的各第二振子单元21连接。
具体而言,如图1,第一馈电枝节11和第二馈电枝节12的结构相同。针对如图1所示的具有4个偶极子的天线,每个馈电枝节可以为具有四个连接端的十字结构。第一馈电枝节11的每一个连接端分别与一个第一振子单元20中的第一竖向部221第二竖向部231连接,第二馈电枝节12的每一个连接端分别与一个第二振子单元21中的第一竖向部221第二竖向部231连接。
另外,本实施例中第一馈电枝节11和第二馈电枝节12选用十字结构的设计,可将每个馈电枝节的中心到与各竖向部211连接的连接部的距离相等,据此保证馈电网络对各第一振子单元和各第二振子单元的平衡馈电效果。在某些实施例中,针对不同的偶极子的个数和馈电需要,可以采用其他结构的馈电枝节,并不以本实施例为限。
进一步地,第一馈电枝节11与第二馈电枝节12之间的距离可以为1mm~2mm。
第一馈电枝节11还包括一个馈电点A,第二馈电枝节12还包括一个馈电点B,其中,本发明实施例提供的天线可以通过馈电点与外部电路连接,进一步地,馈电点A可以与馈 电线的内芯(外芯)连接,馈电点B可以与馈电线的外芯(内芯)连接,馈电线与外部电路连接。
下面将结合具体如图5-11所示的仿真结果和实验结果对所述圆极化天线的特性进行说明。
图5中示出了全向双频天线的回波损耗图,如图3所示,在本实施例中,该全向双频天线在3.23GHz和6.26GHz处各产生一个谐振,且带宽大于100MHz。其中,第一谐振频率即为3.23GHz,第二谐振频率即为6.26GHz。
如图6所示,天线在3.2GHZ时左旋极化和右旋极化的方向图,可以看出在3.2GHz时该全向双频天线辐射的主要是左旋圆极化波,符合上述关于天线辐射原理的分析,同时交叉极化小于10dB以上。
如图7所示,天线在6.26GHZ时左旋极化和右旋极化的方向图,可以看出在6.26GHz时该全向双频天线辐射的主要是右旋圆极化波,符合上述关于天线辐射原理的分析,同时交叉极化小于10dB以上。
如图8和图9所示,其分别示出了该圆极化双频天线在3.2GHz和6.26GHz时的俯仰面轴比。
如图10和图11所示,其分别示出了该全向双频天线在3.2GHz和6.26GHz时的水平面轴比。
针对图8-11,可以看出本发明实施例提出的全向双频天线在3.2GHZ和6.26GHZ时水平面均为全向圆极化,圆极化性能优异。
在此应注意,附图中示出而且在本说明书中描述的全向双频天线仅仅是能够采用本发明原理的许多种圆极化双频天线中的一个示例。应当清楚地理解,本发明的原理绝非仅限于附图中示出或本说明书中描述的圆极化双频天线的任何细节或圆极化双频天线的任何部件。
以上详细地描述和/或图示了本发明提出的圆极化双频天线的示例性实施例。但本发明的实施例不限于这里所描述的特定实施例,相反,每个实施例的组成部分和/或步骤可与这里所描述的其它组成部分和/或步骤独立和分开使用。一个实施例的每个组成部分和/或每个步骤也可与其它实施例的其它组成部分和/或步骤结合使用。在介绍这里所描述和/或图示的要素/组成部分/等时,用语“一个”、“一”和“上述”等用以表示存在一个或多个要素/组成部分/等。术语“包含”、“包括”和“具有”用以表示开放式的包括在内的意思并且是指除 了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。此外,权利要求书及说明书中的术语“第一”和“第二”等仅作为标记使用,不是对其对象的数字限制。
虽然已根据不同的特定实施例对本发明提出的圆极化双频天线进行了描述,但本领域技术人员将会认识到可在权利要求的精神和范围内对本发明的实施进行改动。

Claims (22)

  1. 一种圆极化双频天线,包括多个偶极子、馈电网络,其特征在于,
    所述偶极子设置在柱面上,所述偶极子包括第一振子单元和第二振子单元,每一个振子单元包括第一振子和第二振子;其中,所述第一振子包括第一竖向部和第一横向部,第二振子包括第二竖向部和第二横向部;
    所述第一竖向部和第二竖向部与柱面的中心轴线平行;
    所述馈电网络与每一个振子单元连接。
  2. 根据权利要求1所述的天线,其特征在于,
    所述第一竖向部与第二竖向部从与馈电网络的连接部向柱面的端部延伸。
  3. 根据权利要求1或2所述的天线,其特征在于,
    第一竖向部包括第二竖向部。
  4. 根据权利要求1所述的天线,其特征在于,
    第一横向部从与第一竖向部的连接部向垂直于第一竖向部的方向延伸。
  5. 根据权利要求4所述的天线,其特征在于,
    所述第一横向部靠近柱面的端部设置。
  6. 根据权利要求5所述的天线,其特征在于,
    所述第一横向部设置在柱面的端部。
  7. 根据权利要求4-6任一项所述的天线,其特征在于,
    第二横向部从与第二竖向部的连接部向垂直于第二竖向部的方向延伸。
  8. 根据权利要求7所述的天线,其特征在于,
    第一横向部延伸的方向与第二横向部的延伸的方向相同。
  9. 根据权利要求7所述的天线,其特征在于,
    第一横向部延伸的方向与第二横向部的延伸方向相反。
  10. 根据权利要求1-9任一项所述的天线,其特征在于,
    第一振子单元设置在柱面的一端,第二振子单元设置在柱面的另外一端。
  11. 根据权利要求10所述的天线,其特征在于,
    设置在柱面一端的多个第一振子的第一横向部延伸的方向相同;
    设置在柱面另一端的多个第一振子的第一横向部延伸的方向相同;
    其中,所述延伸的方向为第一横向部从与第一竖向部的连接部远离第一竖向部的方向。
  12. 根据权利要求10所述的天线,其特征在于,
    设置在所述柱面一端的多个第二横向部延伸的方向相同;
    设置在所述柱面另一端的多个第二横向部延伸的方向相同;
    其中,所述延伸的方向为第二横向部从与第二竖向部的连接部远离第二竖向部的方向。
  13. 根据权利要求1-12任一项所述的天线,其特征在于,
    所述第一振子单元与第二振子单元中心对称。
  14. 根据权利要求1-13任一项所述的天线,其特征在于,
    所述第一横向部与第一竖向部的长度之和大于所述第二横向部与第二竖向部的长度之和。
  15. 根据权利要求1-14任一项所述的方法,其特征在于,
    所述第一横向部的长度大于第二横向部。
  16. 根据权利要求10所述的天线,其特征在于,
    所述馈电网络包括第一馈电枝节和第二馈电枝节;
    其中,所述第一馈电枝节与设置在柱面的一端的第一振子单元连接,所述第二馈电枝节与设置在柱面的另一端的第二振子单元连接。
  17. 根据权利要求16所述的方法,其特征在于,
    所述馈电网络位于所述柱面内。
  18. 根据权利要求16或17所述的天线,其特征在于,
    所述第一馈电枝节与第二馈电枝节之间的距离为1-2mm。
  19. 根据权利要求1-18任一项所述的天线,其特征在于,
    所述柱面内收容载体。
  20. 根据权利要求19所述的天线。
    所述载体为非导体材料。
  21. 根据权利要求所述1-18任一项所述的天线,还包括圆柱形的基板,
    所述多个偶极子印刷在圆柱形基板的柱面上。
  22. 根据权利要求1-21任一项所述的天线,其特征在于,
    所述柱面为圆柱面、棱柱面中的至少一种。
PCT/CN2017/095870 2017-08-03 2017-08-03 圆极化双频天线 WO2019024054A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780027102.4A CN109075438B (zh) 2017-08-03 2017-08-03 圆极化双频天线
PCT/CN2017/095870 WO2019024054A1 (zh) 2017-08-03 2017-08-03 圆极化双频天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/095870 WO2019024054A1 (zh) 2017-08-03 2017-08-03 圆极化双频天线

Publications (1)

Publication Number Publication Date
WO2019024054A1 true WO2019024054A1 (zh) 2019-02-07

Family

ID=64822089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095870 WO2019024054A1 (zh) 2017-08-03 2017-08-03 圆极化双频天线

Country Status (2)

Country Link
CN (1) CN109075438B (zh)
WO (1) WO2019024054A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1129363A (zh) * 1995-07-18 1996-08-21 中国人民解放军总参谋部第63研究所 接地多臂螺旋天线
CN102074791A (zh) * 2010-10-25 2011-05-25 西安电子科技大学 一种全频段宽波束gps天线
CN202268481U (zh) * 2011-10-27 2012-06-06 华为技术有限公司 双极化阵列单元及阵列天线
CN103943954A (zh) * 2014-04-24 2014-07-23 深圳大学 一种超宽带低剖面印刷型圆极化螺旋天线
CN106099333A (zh) * 2016-07-28 2016-11-09 华南理工大学 双极化介质谐振器天线单元及基站天线
US20170149145A1 (en) * 2009-08-03 2017-05-25 Venti Group Llc Cross-Dipole Antenna Configurations

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2347792B (en) * 1999-03-10 2001-06-06 Andrew Jesman Antenna
US20090256769A1 (en) * 2008-04-09 2009-10-15 Kinsun Industries Inc. Asymmetrical yagi representation of dipole uwb antenna
FR2960710B1 (fr) * 2010-05-28 2013-08-23 Alcatel Lucent Element rayonnant a double polarisation d'antenne multibande

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1129363A (zh) * 1995-07-18 1996-08-21 中国人民解放军总参谋部第63研究所 接地多臂螺旋天线
US20170149145A1 (en) * 2009-08-03 2017-05-25 Venti Group Llc Cross-Dipole Antenna Configurations
CN102074791A (zh) * 2010-10-25 2011-05-25 西安电子科技大学 一种全频段宽波束gps天线
CN202268481U (zh) * 2011-10-27 2012-06-06 华为技术有限公司 双极化阵列单元及阵列天线
CN103943954A (zh) * 2014-04-24 2014-07-23 深圳大学 一种超宽带低剖面印刷型圆极化螺旋天线
CN106099333A (zh) * 2016-07-28 2016-11-09 华南理工大学 双极化介质谐振器天线单元及基站天线

Also Published As

Publication number Publication date
CN109075438A (zh) 2018-12-21
CN109075438B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
JP6342048B2 (ja) 容量結合した複合ループアンテナ
RU2704206C2 (ru) Миниатюрная антенна с двойной поляризацией для базовой станции
CN104157968B (zh) 一种新概念宽带圆极化天线
JPWO2017056437A1 (ja) マルチバンドアンテナおよび無線通信装置
JP6923490B2 (ja) アンテナ装置
JP6678617B2 (ja) 円偏波アンテナ
JP2014143591A (ja) アレイアンテナ
CN104885291A (zh) 天线和滤波器结构
JP2011082951A (ja) 逆l型アンテナ
JP2017530614A (ja) 無線通信用の減結合アンテナ
CN109417223B (zh) 圆极化双频天线
WO2018180877A1 (ja) 両偏波送受用アンテナ
WO2019024054A1 (zh) 圆极化双频天线
Xu et al. A novel design of circularly polarized omni-directional antenna for Ka band
JPH0324807B2 (zh)
JP3739721B2 (ja) 広角円偏波アンテナ
JPH06120729A (ja) アンテナ装置
KR101177665B1 (ko) 커플링 방식을 이용하는 다중 원형 편파 안테나
Xu et al. Isotropic radiation from an electrically small loop-loaded printed dipole
JP4565186B2 (ja) アレーアンテナ
JP2018117253A (ja) アンテナ
CN113270710B (zh) 双模天线结构
JPH10173431A (ja) モノポールアンテナ
JP2004350046A (ja) 2周波共用アンテナ
KR20180059283A (ko) 안테나 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920587

Country of ref document: EP

Kind code of ref document: A1