WO2019023770A1 - Composição para terapia gênica do sistema nervoso central, processo de obtenção e uso da mesma - Google Patents

Composição para terapia gênica do sistema nervoso central, processo de obtenção e uso da mesma Download PDF

Info

Publication number
WO2019023770A1
WO2019023770A1 PCT/BR2018/050236 BR2018050236W WO2019023770A1 WO 2019023770 A1 WO2019023770 A1 WO 2019023770A1 BR 2018050236 W BR2018050236 W BR 2018050236W WO 2019023770 A1 WO2019023770 A1 WO 2019023770A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipid
nervous system
central nervous
gene therapy
composition
Prior art date
Application number
PCT/BR2018/050236
Other languages
English (en)
French (fr)
Inventor
Roselena SILVESTRI SCHUH
Helder FERREIRA TEIXEIRA
Guilherme BALDO
Ursula DA SILVEIRA MATTE
Roberto GIUGLIANI
Juliana BIDONE
Original Assignee
Universidade Federal Do Rio Grande Do Sul
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Federal Do Rio Grande Do Sul filed Critical Universidade Federal Do Rio Grande Do Sul
Priority to US16/635,614 priority Critical patent/US20210008224A1/en
Priority to EP18840364.6A priority patent/EP3662934A4/en
Publication of WO2019023770A1 publication Critical patent/WO2019023770A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/88Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention provides a composition for gene therapy of the central nervous system comprising non-viral carriers of nanometric size ( ⁇ 1.0 micrometer) complexed with at least one nucleic acid for the purposes of gene therapy via nasal administration having as main target the central nervous system, and the processes of obtaining such carriers.
  • the present invention pertains to the field of nanotechnology and consists of aqueous formulations which can be used in the pharmaceutical and medical fields.
  • Deficiencies and / or genetic abnormalities are involved in the origin of numerous diseases, hereditary or not. Conventional medicine is limited to treat these diseases, using therapies to ameliorate symptoms. More recently, gene therapy has emerged, consisting of the insertion of a functional gene in order to correct a cellular dysfunction or to provide new functions to the cell, with the introduction of the genetic material directly into the patient's cells (in vivo), or from the administration of the cells after modification in vitro (ex vivo). Gene therapy is defined as the genetic modification of cells with the intention of altering the expression of some gene to prevent, prevent or reverse a pathological process ( ⁇ , MA State-of-the-art gene therapies: the road ahead. Nature Reviews Genetics 201, v. 12, pp. 316-328).
  • the most commonly used viral vectors in gene therapy are adenovirus, adeno-associated virus, lentivirus and retrovirus.
  • adenovirus adeno-associated virus
  • lentivirus lentivirus
  • retrovirus adeno-associated virus
  • problems related to immunogenicity, replication and safety YIN, H. et al., Non-viral vectors for gene-based therapy. , 8, pp. 541-545.
  • non-viral vectors are used, which have relative ease and low cost of production on a large scale, lower toxicity, low immunogenicity, ability to complex with high molecular weight nucleic acids, greater safety and good capacity (NAM, HY et al., Lipid-based emulsion system as non-viral gene carriers, Arch.
  • Non-viral vectors may occur through polymeric or lipid structures, the latter being more classical and more secure with respect to the toxicity, biocompatibility and biodegradability of the biomaterials used.
  • cationic lipid-based vectors the most commonly described in the literature are liposomes, nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers.
  • the cationic liposomes (NORDLING-DAVID, MM, GOLOMB, G. Gene Delivery by Liposomes, Israel Journal of Chemistry 2013, v. 53, No. 9-10, SI, pp. 737-747) and cationic nanoemulsions (BRUXEL, F. et al.
  • Liposomes can be defined as aqueous dispersions of a mixture of phospholipids, organized in the form of bilayers and with a central aqueous core.
  • Nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers act as monolayers with a liquid or solid lipid core, or both, dispersed in an aqueous phase (generally O / A type), and stabilized by a film
  • the present invention relates to the use of non-interfacial materials consisting of phospholipid emulsifiers (SCHUH, RS, BRUXEL, F., TEIXEIRA, HF Physicochemical properties of lecithin-based nanoemulsions obtained by spontaneous emulsification or high pressure homogenization. ).
  • non-viral systems contain a cationic lipid (usually a quaternary amine) which forms an ionic (complex) pair with the negatively charged phosphate pools of the nucleic acids.
  • a cationic lipid usually a quaternary amine
  • the compounds of the present invention may also be used in the preparation of a medicament for the treatment of mucopolysaccharidosis in the mucopolysaccharidosis type I murine model, Journal of Controlled Release 2015, v.
  • polyacids such as chitosan in formulations for administration is ample, especially because of its mucoadhesive properties, especially where the target is nasal administration for the treatment of disorders of the central nervous system (Khatri, K. et al., Surface modified liposomes for nasal delivery of DNA vaccine, Vaccine, 2008, v. 26 (18), pp. 2225-33).
  • the possibilities for treatment of diseases generated by gene therapy are numerous, and their transport through non-viral vectors greatly increases the chances of success, but the arrival of these compositions in the central nervous system remains a challenge.
  • the brain is an exclusively protected organ that resides within the bony limits of the skull, making it difficult to reach through systemic delivery of medications.
  • a variety of obstacles protect the central nervous system and at the same time prevent the arrival of drugs into the brain and spinal cord and include the brain blood-brain barrier (EBF) and the cerebrospinal fluid (BLCR) barrier.
  • EBF brain blood-brain barrier
  • BLCR cerebrospinal fluid
  • Blood-brain barriers restrict the passive diffusion of macromolecules to the brain and constitute a significant obstacle to the brain / central nervous system (CNS) in the pharmacological treatment of genetic diseases with neurological involvement, including lysosomal deposition diseases (Saraiva, C , Journal of Controlled Release, v. 235, pp. 34-47).
  • Invasive methods of CNS treatment include direct intracranial administration of drugs by intracerebroventricular, intracerebral or intrathecal administration, and create holes in the head that interrupt the integrity of the blood-brain barrier by osmotic rupture of the blood-brain barrier.
  • the nasal route has been explored as a non-invasive method to circumvent the BBB for the transport of drugs to the CNS and has been proven effective for a number of small molecules and peptides.
  • This drug delivery route works because of the unique neuronal binding that the trigeminal and olfactory nerves have between the nasal cavity, the cerebrospinal fluid (CSF) and the brain.
  • CSF cerebrospinal fluid
  • the liposomes of the protected technologies are produced by a membrane extrusion method or spontaneously formed by the hydration of the lipid film (Coelho et al, N Engl J Med 2013, v. 369, p.819-29, Basha et al., Molecular Therapy Biochem et al, Nature Biotechnology 2005, v. 23 (8), pp. 1002-07, Zimmerman et al, Nature Letters 2006, v. 441 (4), pp. 1286-00. ), pp.
  • WO 2016197133 (A1) describes how to deliver the CRISPR system with lipid nanoparticles, but does not describe the complexation with two different nucleic acid sequences or proteins.
  • WO 2015US23882 discloses methods and compositions for the prevention or treatment of disorders of the central nervous system, but does not describe the use of lipid carriers for such purpose.
  • EP 3087974 (A1) describes nanocarriers for delivering a genome-editing composition, but only cites liposomes and micelles, and these have a specific receptor-binding molecule.
  • WO 2015089462 (A1) describes lipid nanoparticulate compositions for delivery of CRISPR, but is composed only of RNA molecules and does not mention compositions containing different nucleic acids and proteins. It also determines a lipid: gRNA ratio of 5: 1 to 15: 1, different from the propositions of the present invention.
  • WO 2013188979 (A1) relates generally to mucoadhesive nanoparticles formed from amphiphilic polymer macromolecules conjugated to a polymeric coating for delivery of medicaments in general, but does not utilize lipids in their main composition.
  • the IN201 technology 1 MU01507 discloses a pharmaceutical composition comprising drug or drug carrier which after intranasal administration leads to an improvement in the receptor-mediated drug uptake of the drug, but does not relate to the delivery of nucleic acids.
  • WO 200641942 (A2) describes a composition that can be used as a biodegradable implant.
  • WO2016174250 (A1) relates to nano-ligators with anchor binders to deliver a tool for transfer to cells.
  • the anchors have a targeting moiety which may be a carbohydrate, an antibody or an antibody fragment, a protein, an aptamer, among others.
  • WO2015179492 (A1) demonstrates processes for the preparation of polymeric nanoparticles containing nucleic acids for the treatment of neurological diseases. This process does not use lipid components in its production.
  • WO20151 17021 (A1) technology relates in part to methods for delivery of nucleic acids, but has as its main target the skin.
  • WO2012135805 (A1) discloses a pharmaceutical composition for delivery of polynucleotides but does not determine the delivery of two nucleic acid sequences concomitantly.
  • the present invention differs from the prior art, comprising the use of four different types of aqueous nanometer carriers, produced by methods other than those mentioned in the prior art, containing at least one nucleic acid complexed in the same formulation, for nasal administration targeting the CNS for gene therapy purposes.
  • the technology described in the present invention provides novel compositions and methods for treating syndromes which primarily affect the central nervous system.
  • it may be administered from once a day to several times a day for several days.
  • compositions for gene therapy of The central nervous system may be administered as an intranasal or intratracheal spray for inhalation delivery of the brain, and / or by other aerosol vehicles.
  • the present invention also provides the incorporation of a plasmid of the CRISPR / Cas9 system together with another nucleic acid.
  • the present invention also provides the incorporation of a recombinant plasmid encoding a protein.
  • the present invention provides a composition for gene therapy of the central nervous system comprising at least one adsorbed or encapsulated nucleic acid and non-viral carriers, with an average droplet / particle diameter in the range of 0.001 to 1 , 0 micrometer.
  • the present invention provides a method of obtaining composition for gene therapy of the central nervous system, wherein the preparation of non-viral carriers comprises the steps of:
  • step (c) evaporating the organic solution obtained in step (a) to form a film
  • step (d) adding the aqueous solution obtained in step (b) to the lipid film obtained in step (c);
  • step (e) allowing the product obtained in step (d) to rest for 4 to 72 hours at a temperature between 2 ° C and 20 ° C;
  • step (f) sonicating the formulation obtained in step (e) for 1 to 60 minutes at a temperature between 25 ° C and 50 ° C;
  • step (g) homogenizing the formulation obtained in step (f) in a high pressure homogenizer or microfluidizer for 2 to 20 cycles of 250 to 2000 bar each;
  • nucleic acids for proportions between + 2 / -1 and + 10 / - 1 (DOTAP / NUCLEIC ACID);
  • the present invention provides a method for obtaining gene therapy of the central nervous system for the production of non-viral carriers, including solid lipid nanostructures and nanostructured lipid carriers containing the adsorbed nucleic acids, comprising steps in:
  • step (c) adding the aqueous solution of step (A) in the oily solution of step (B), under stirring and at a temperature of 30 C to Q 80 Q C;
  • nucleic acids for proportions between + 2 / -1 and + 10 / - 1 (DOTAP / NUCLEIC ACID);
  • the present invention provides the use of the gene therapy composition of the central nervous system in the preparation of a medicament for the treatment of diseases caused by deficiencies or genetic abnormalities such as deposition lysosomal diseases.
  • inventive concepts common to all protection contexts claim a composition for gene therapy of the nervous system comprising non-viral carriers of manometric size and at least one adsorbed or encapsulated nucleic acid having a mean droplet / particle diameter in the range of 0.001 to 1.0 micrometer.
  • compositions may be incorporated in the form of solution, suspension, gel, powder, among others.
  • Figure 1 demonstrates the co-complexing of the formulations with a CRISPR / Cas9 system plasmid and a plasmid donor of the alpha-L-iduronidase enzyme (IDUA) sequence used for genome repair by homologous recombination after cleavage by Cas9, directed to the pink locus 26 of mice.
  • IDUA alpha-L-iduronidase enzyme
  • Figure 2 shows the values of murine IDUA enzymatic activity found in the serum of untreated MPS I mice and in MPS I mice treated with the LA CRISPR / pROSA26 complex or with the nasal CRISPR / pROSA26 plasmids for 15 days. Values relative to the enzymatic activity of normal mice.
  • Figure 3 shows the enzyme activity values of IDUA murine mice found in different brain sections of untreated MPS I mice and in MPS I mice treated with the LA CRISPR / pROSA26 complex or with the nasal CRISPR / pROSA26 plasmids for 30 days. Values relative to the enzymatic activity of normal mice.
  • Figure 4 demonstrates the co-complexation of the formulations with a plasmid (pIDUA) containing the IDUA cDNA constructed using the commercial expression vector pREP9 (Invitrogen, USA) as described by Camassola et al. (M. Camassola, LM Braga , A. Delgado-Canedo, TP Dalberto, U. Matte, M. Burin, R. Giugliani, NB Nardi, Nonviral in vivo gene transfer in the mucopolysaccharidosis I murine model, J. Inherit Metab. 1043).
  • pIDUA plasmid
  • Figure 5 shows the values of the enzymatic activity of IDUA found in different organs and more precisely in the brain of untreated MPS I mice and in MPS I mice treated with the NA / pIDUA nasal complex in one application. Values relative to the enzymatic activity of normal mice.
  • Gene therapy allows an organism to produce a deficient protein that is essential for its proper functioning by administering nucleic acid sequences encoding the protein in question.
  • a recombinant plasmid can be used that has the correct sequence of the abnormal protein and is capable of overexpressing it or the use of gene editing technologies can be used.
  • the recombinant plasmid is complexed to a carrier which will be administered via the nasal route.
  • Genome-editing technology enables the modification of specific genome sequences by recognizing the region to be altered and the use of nucleases capable of cleaving at the target site. Genomic manipulation has generated expectations as it makes it possible to target any target gene, and thus increases the chances of treatment for genetic diseases. For this, systems composed of a domain of recognition and binding to specific sequences of the genomic DNA bound to a domain of cleavage of the target sequence in the DNA (COX, DBT; PLATT, RJ; ZHANG, F. Therapeutic genome editing: prospects and challenges, Nature Medicine 2015, v. 21, No. 2, pp. 121-131).
  • Genome editing platforms are based on nucleases proteins targeted for cleavage of target sites in the genome.
  • the nuclease may be a transcription activating type effector nuclease (TALEN), a zinc finger nuclease (ZFN), a meganuclease or a CRISPR (Cas) associated nuclease.
  • TALEN transcription activating type effector nuclease
  • ZFN zinc finger nuclease
  • Cas CRISPR
  • nucleases are delivered in the form of nucleic acid sequences (plasmids or oligonucleotides) encoding such proteins.
  • the protein is a CRISPR-associated nuclease and is provided as part of a ribonucleoprotein (RNP) that includes a recombinant Cas9 protein combined with guidewire (gRNA), guiding the nuclease to the target site of cleavage in the genome.
  • RNP ribonucleoprotein
  • gRNA guidewire
  • the nucleic acid to be delivered may be the DNA of a plasmid vector, the messenger RNA (mRNA) or the gRNA that encodes an enzyme or is part of the enzyme that will act by cleaving the target genetic material, or may be a sequence model used to repair the target genome by homologous recombination.
  • the target in the genome includes any sequence that can be modified to promote the silencing, expression or overexpression of proteins.
  • the nucleic acid will be complexed to a lipid carrier which will be administered via the nasal route.
  • the cleavable nuclease may be a transcription activating type effector nuclease (TALEN), a zinc finger nuclease (ZFN), a meganuclease or a CRISPR (Cas) associated nuclease.
  • TALEN transcription activating type effector nuclease
  • ZFN zinc finger nuclease
  • Cas CRISPR
  • the cleavable nuclease is a nuclease associated with CRISPR and is provided as part of an RNP which includes a recombinant Cas9 protein combined with the gRNA.
  • the cleavable nuclease is complexed to a carrier which will be administered by the nasal route.
  • This route involves the olfactory system that begins in the brain and ends in the nasal cavity in the respiratory epithelium, being the only region of the central nervous system considered easily accessible (LOCHHEAD, JJ; THORNE, RG Intranasal delivery of biologics to the central nervous system. Advanced drug delivery reviews, v. 64, No. 7, pp. 614-628, May 2012.).
  • nasal administration may be by intranasal or intratracheal spray, by inhalation, and / or by other aerosol vehicles.
  • the compositions may be incorporated in the form of solution, suspension, gel, powder, among others. In this manner, the invention provides methods and compositions that enable the production of a deficient protein by an individual through nasal administration of non-viral carriers containing a nucleic acid sequence encoding a protein or a nuclease that cleaves the material genetically.
  • the present invention relates to to aqueous formulations comprising at least one nucleic acid complexed to non-viral carriers of mean droplet / particle diameter of less than 1.0 micrometer.
  • the nanocarriers of the present invention comprise nanoemulsions, liposomes, solid lipid nanoparticles and nanostructured lipid carriers.
  • the product manufacturing process comprises a step of high pressure homogenization or microfluidization in order to produce nanometric lipid carriers of uniform sizes and with high stability.
  • the nanoemulsion manufacturing process may comprise a precompounding step with nucleic acids, which provides enhanced protection against degradation.
  • Carriers containing at least one genome-editing nucleic acid should preferably be used by nasal administration.
  • the present invention provides a composition for gene therapy of the central nervous system comprising at least one adsorbed or encapsulated nucleic acid and non-viral carriers, with an average droplet / particle diameter in the range of 0.001 to 1 , 0 micrometer.
  • the nucleic acids are one or more selected from the group consisting of: recombinant plasmid containing the entire sequence of a gene, guidewire RNA, nuclease coding sequence, template DNA sequence for homologous recombination or whole sequence of a gene.
  • the gene therapy composition of the central nervous system comprises a nuclease, which may be Cas9.
  • the nanostructures are nanoemulsions with adsorbed or encapsulated nucleic acids, liposomes, solid lipid nanoparticles, or nanostructured lipid carriers.
  • the gene therapy composition of the central nervous system comprises pharmaceutically suitable excipients.
  • the present invention provides a method of obtaining composition for gene therapy of the central nervous system, wherein the preparation of carriers comprises the steps of:
  • step (c) evaporating the organic solution obtained in step (a) to form a film
  • step (d) adding the aqueous solution obtained in step (b) to the lipid film obtained in step (c);
  • step (e) allowing the product obtained in step (d) to rest for 4 to 72 hours at a temperature between 2 ° C and 20 ° C;
  • step (f) sonicating the formulation obtained in step (e) for 1 to 60 minutes at a temperature between 25 ° C and 50 ° C;
  • step (g) homogenizing the formulation obtained in step (f) in a high pressure homogenizer or microfluidizer for 2 to 20 cycles of 250 to 2000 bar each;
  • the organic solution described in step (a) is a non-polar organic solvent.
  • the process comprises the additional step:
  • step (i) extruding the formulation obtained in step (g) into at least one membrane having a pore size of 1000 nm at 220 nm and at least one membrane having a pore size of 220 nm at 50 nm.
  • the organic solution is an organic solvent selected from the group consisting of protic, aprotic, or polar polar organic solvents and / or a mixture thereof.
  • a solution of non-lipid polyactions may be added after formation of the nanostructures.
  • the organic solution described in step (a) is the organic phase of the pre-complex obtained through the steps:
  • step (ii) adding to the product obtained in step (i) 2 mL of non-polar solvent and 2 mL of protic solvent;
  • step (iv) centrifuging the product obtained in step (iii) at a pressure between 1000 and 4000 x g for 2 to 30 min at a temperature between 15 and 35 ° C;
  • step (v) separating the organic phase obtained in step (iv).
  • the present invention provides a method for obtaining gene therapy of the central nervous system for obtaining solid lipid nanostructures or nanostructured lipid carriers containing the adsorbed nucleic acids, comprising the steps of: (A) melting 2.0% w / w to 20.0% w / w lipid phase at a temperature between 30 C and 80 Q C Q;
  • step (C) adding the aqueous solution of step (A) in the oily solution of step (B), under stirring and at a temperature of 30 C to Q 80 Q C;
  • the formulation is subjected to the subsequent step of evaporating the water under normal pressure or reduced between 0 and 1000 mbar at a temperature between 10 ° C and 50 ° C.
  • the protic polar organic solvent is methanol
  • the non-polar organic solvent is chloroform
  • a solution of non-lipid polyactions may be added after formation of the lipid nanostructures.
  • the lipid phase is selected from the group comprising:
  • liquid lipids such as decyl oleate, isohexadecane, esters of stearic and / or oleic acid, coconut fatty acid ethanolamide, natural oils such as corn oil, peanut, sesame, olive, jojoba, soybean, fatty alcohol, paraffin, medium chain triglycerides, long chain triglycerides, palmitates, myristates and octyldodecanol;
  • liquid lipids such as decyl oleate, isohexadecane, esters of stearic and / or oleic acid, coconut fatty acid ethanolamide, natural oils such as corn oil, peanut, sesame, olive, jojoba, soybean, fatty alcohol, paraffin, medium chain triglycerides, long chain triglycerides, palmitates, myristates and octyldodecanol;
  • lipids such as tristearine, tricaprine, trilaurin, trimyristin, tripalmitin, stearic acid, cetyl alcohol, stearyl alcohol, cocoa mateiga, carnauba wax, beeswax, cetyl palmitate, glyceryl monostearate, glyceryl behenate, glyceryl palmitostearate, glyceryl tripalmitate, glyceryl trimyristate, glyceryl tristearate and / or a mixture thereof; c) lipophilic surfactants such as lecithins and phospholipids and / or mixture thereof;
  • the tonicity agent is selected from the group comprising sorbitol, ethylene glycol, polyethylene glycol, mannitol, glycerol, and / or a mixture thereof.
  • the non-lipid polyactions solution at a concentration of 0.001 mg / mL (w / v) at 10 mg / ml (w / v), comprises chitosan, hexadimethrin bromide or other salt, poly-L polyallylamine, polyethyleneimine, among others, and / or a mixture thereof. Addition of these may be accomplished after the formation of the lipid nanostructures or of the complexes with the nucleic acids.
  • the lipid phase and aqueous phase of the liposome production process comprise:
  • Glycerol (0.1% w / w to 5.0% w / w);
  • the lipid phase and aqueous phase of the nanoemulsion production process comprise: lipid phase:
  • nucleic acids in the ratio of + 2 / -1 to + 8 / -1 (DOTAP / NUCLEIC ACID);
  • the lipid phase and aqueous phase of the process for obtaining the solid lipid nanoparticles comprise:
  • the lipid phase and aqueous phase of the process of obtaining the nanostructured lipid carriers comprise:
  • Polysorbate 80 (1.0% w / w to 5.0% w / w);
  • Glycerol (0.1% w / w and 5.0% w / w); - nucleic acids in the ratio of + 2 / -1 to + 8 / -1 (DOTAP / NUCLEIC ACID);
  • a solution of non-lipid polycations may be added after formation of the nanostructures.
  • compositions may be incorporated in the form of solution, suspension, gel, powder, among others.
  • the present invention provides the use of the gene therapy composition of the central nervous system in the preparation of a medicament for the treatment of diseases caused by genetic defects or abnormalities.
  • the use of the gene therapy composition of the central nervous system is in the preparation of a medicament for the treatment of depot lysosomal diseases which are neurologically impaired.
  • the use of the gene therapy composition of the central nervous system is through nasal administration.
  • the present invention features as advantages a greater intracellular penetrability due to the use of nanometric systems in the delivery and administration of nucleic acids enabling the production of a deficient protein through the use of nucleases combined with guidewire nucleic acids and nucleic acids containing the sequence partial or whole of a gene, or a recombinant plasmid containing the entire sequence of a gene. Also an advantage is the possibility of treating diseases which may be caused by genomic problems using the products of the present invention.
  • the gene therapy composition of the central nervous system should contain at least one nucleic acid, be it a leader RNA sequence, a plasmid or oligonucleotide containing the coding sequence for the Cas protein or another nuclease, a donor DNA sequence for homologous recombination or an entire sequence of a gene which may or may not be contained in a recombinant plasmid.
  • the protein nuclease may also form part of the gene therapy composition of the central nervous system.
  • the nucleic acid may be either a deoxyribonucleic acid or a ribonucleic acid. It can be sequences of natural or artificial origin.
  • deoxyribonucleic acids may be single or double stranded. These deoxyribonucleic acids can encode for enzymes, mRNAs or even partial sequences or entire therapeutic genes.
  • the therapeutic gene is understood to mean any gene encoding a protein product having a therapeutic effect.
  • the protein product thus encoded may be a protein, a peptide, etc.
  • This protein product may be homologous to the target cell (i.e., a product which is normally expressed in the target cell when no target pathology is present).
  • the expression of a protein allows for example to alleviate insufficient expression in the cell, or expression of an inactive or weakly active protein by reason of a modification, or to overexpress said protein.
  • the therapeutic gene may further encode a mutant cellular protein having increased stability, a modified activity, etc.
  • the protein product may also be heterologous to the target cell. In this case, an expressed protein may for example complete or promote a deficient activity for the cell, allowing it to fight against a pathology, or to stimulate an immune response. Lipid phase
  • the lipid phase suitable for the present invention consists of lipophilic surfactants, oils, solid and liquid lipids and / or a mixture thereof.
  • Lipid surfactants include, but are not limited to, lecithin and phospholipids.
  • Lecithins are known as glycerophospholipids which are formed from fatty acids, glycerol, phosphoric acid and choline by esterification. Lecithins are often referred to as phosphatidylcholines.
  • Suitable phospholipids for use in the present invention include, but are not limited to, phospholipids found in egg yolk and soybeans.
  • phospholipids and their derivatives examples include phosphatidylcholine (PC), dioleylphosphatidylcholine (DOPC), dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC), phosphatidylethanolamine (PE), dioleylphosphatidylethanolamine (DOPE), distearoylphosphatidylethanolamine (DSPE), phosphatidylserine PS), dimyristoylphosphatidylglycerol (DMPG), dipalmitoylphosphatidylglycerol (DPPG), phosphatidylinositol (PI), dipalmitoylphosphatidylserine (DPPS), distearoylphosphatidylserine (DSPS).
  • PC phosphatidylcholine
  • DOPC dimyristoylphosphatidylcholine
  • Suitable oily substances for use in the present invention include, but are not limited to, decyl oleate, isohexadecane, esters of stearic and / or oleic acid, coconut fatty acid ethanolamide, natural oils such as corn oil , peanut, sesame, olive, jojoba, soy, fatty alcohol, paraffin, medium chain triglycerides, long chain triglycerides, palmitates, myristates and octyldodecanol.
  • Solid lipids suitable for use in the present invention include, but are not limited to, triglycerides (tristearine, tricaprin, trilaurin, trimyristin, tripalmitin), fatty acids (stearic acid), fatty alcohols (cetyl alcohol, stearyl alcohol), waxes (cocoa mateiga, carnauba wax, beeswax, cetyl palmitate), partial glycines (glyceryl monostearate, glyceryl behenate, glyceryl palmitostearate, glyceryl tripalmitate, glyceryl trimyristate, glyceryl tristearate) and / or mixture of these.
  • triglycerides tristearine, tricaprin, trilaurin, trimyristin, tripalmitin
  • fatty acids stearic acid
  • fatty alcohols cetyl alcohol, stearyl alcohol
  • waxes cocoa mateiga, carnauba
  • Lipids can be pegylated, i.e. having a branched polyethylene glycol (PEG) in their chain, such as DSPE-PEG, DMPE-PEG, PEG-cholesterol, DPPE-PEG (dipalmitoylglycerophosphoethanolamine-polyethyleneglycol), DLPE-PEG ( dilauroylglycerophosphoethanolamine-polyethylene glycol), among others.
  • PEG polyethylene glycol
  • the lipids may be cationic, such as 1,2-di-ortho-octadecenyl-3-trimethylammoniopropane (DOTMA), 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC), didodecyldimethylammonium (DDAB), 1 , dimethyldioctadecylammonium (DODAP), dioleyltrimethylammonopropane (DOTAP), dimethylaminoethanocarbamoylcholesterol (DC-cholesterol), among others.
  • DOTMA 1,2-di-ortho-octadecenyl-3-trimethylammoniopropane
  • EPC 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine
  • DDAB didodecyldimethylammonium
  • DODAP dimethyldioctadecylammonium
  • the respective ratios of nucleic acid and cationic lipid are preferably determined so that the ratio of positive charges of the transfection agent / negative charges of the nucleic acids is comprised between 0.1 and 15, and more preferably 2 to 8. Such a charge ratio may or may not account for other positively or negatively charged lipids in the formulation.
  • compositions of the invention further comprise one or more neutral lipids.
  • the inventor anticipates that the addition of a neutral lipid allows to improve the formation of the lipid particles and, surprisingly, favor the penetration of the particle into the cell, destabilizing its membrane. Particularly advantageous is the use of natural or synthetic lipids, zwitterionic or devoid of ionic charge under physiological conditions.
  • DOPE dioleylphosphatidylethanolamine
  • POPE oleylpalmitoylphosphatidylethanolamine
  • di-stearoyl palmitoyl
  • palmitoyl palmitoyl
  • -miristoyl phosphatidylte-5-nolamine as well as their N-methylated derivatives 1 to 3 times
  • phosphatidylglycerols diacylglycerols, glycosylcylglycerols, cerebrosides (such as galactocerebrosidia), sphingolipids (such as sphingomyelins in particular), or asialogangliosides (such as notably asialoGMI and Glv12).
  • compositions of the invention employing a lipofectant as a transfection agent comprise a ratio of 0.1 to 20 equivalents of neutral lipid to 0.1 to 20 equivalents of cationic lipid, and, Preferably, the ratio is respectively 1 to 5 to 1 to 5, respectively.
  • compositions of the invention comprise, in addition to the cationic lipid in the above-mentioned ratios, from 0.1 to 20 molar equivalents of neutral lipid to 1 molar equivalent of nucleic acid, and more preferably 2 to 8.
  • the liposomes described in the present invention comprise the use of DOPE (0.5% w / w to 5.0% w / w), DOTAP (0.5% w / p) and DSPE-PEG (0.25% w / w to 5.0% w / w).
  • the nanoemulsions described in the present invention comprise the use of DOPE (0.5% w / w to 5.0% w / w), DOTAP (0.5% w / p), DSPE-PEG (0.25% w / w to 5.0% w / w) and medium chain triglycerides (2.0% w / w to 20.0% w / w).
  • the solid lipid nanoparticles described in the present invention comprise the use of glyceryl monostearate (2.0% w / w to 10.0% w / w).
  • the nanostructured lipid carriers described in the present invention comprise the use of a 7: 3 ratio blend of glyceryl monostearate and medium chain triglycerides (2.0% w / w 10.0% w / w ).
  • the tonicity agents may be glycerol, mannitol, propylene glycol, ethylene glycol, sorbitol, etc.
  • the concentration may be between 0.1% w / w and 5.0% w / w.
  • Hydrophilic surfactants suitable for use in the present invention include anionic, nonionic, cationic and amphoteric surfactants.
  • the surfactants of the present invention may be selected from the group comprising, but not limited to, nonionic surfactants such as polysorbate 20, polysorbate 40, polysorbate 80, sorbitan monostearate 20, sorbitan monostearate 40, sorbitan monostearate 60, monostearate sorbitan 80, emulsifiers sodium cholate, sodium deoxycholate, sodium glycolate, poloxamers, sodium taurocholate, sodium taureodexicolate, and / or a mixture thereof.
  • nonionic surfactants such as polysorbate 20, polysorbate 40, polysorbate 80, sorbitan monostearate 20, sorbitan monostearate 40, sorbitan monostearate 60, monostearate sorbitan 80, emulsifiers sodium cholate, sodium deoxycholate, sodium glycolate, polox
  • the formulations described in the present invention comprise the use of polysorbate 80 (1.0% w / w to 5.0% w / w).
  • the aqueous phase may contain non-lipid polyactives such as chitosan, hexadimethrin bromide or other salt, poly-L-lysine, polyallylamine, polyethyleneimine, among others.
  • non-lipid polyactives such as chitosan, hexadimethrin bromide or other salt, poly-L-lysine, polyallylamine, polyethyleneimine, among others. The addition of these can be carried out during or after the formation of the lipid nanostructures.
  • the formulations described in the present invention comprise the use of chitosan (0.001 mg / mL w / v at 10 mg / mL).
  • Organic solvents suitable for use in the present invention include, but are not limited to, polar aprotic and aprotic organic solvents, such as ethanol, acetone and / or a mixture thereof, and organic aprotic solvents, such as chloroform.
  • the liposomes and nanoemulsions of the present invention comprise the use of chloroform for the solubilization of the lipid phase components and a chloroform: methanol: water (1: 2.1: 1) mixture.
  • lipid nanostructures The methods of obtaining the nanoemulsions comprise the steps of:
  • step c) evaporating all the organic solvent from the product obtained in step a, thereby obtaining a lipid film
  • the processes for obtaining the liposomes comprise the steps of:
  • step a evaporating all the organic solvent from the product obtained in step a;
  • the process of obtaining solid nanostructures and nanostructured lipid carriers containing the adsorbed nucleic acids comprises the steps of:
  • the products of the present invention are formulations comprising the lipid nanostructures, associated with suitable excipients, useful in the pharmaceutical and medical fields.
  • Carriers of the present invention may be in the form of nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers.
  • compositions may be incorporated in the form of solution, suspension, gel, powder, among others.
  • nanoparticles were first confirmed by evidence of homogeneous character (without phase separation) and by the non-occurrence of precipitates.
  • the formulations were then specified according to the mean droplet / vesicle diameter, polydispersity index, zeta potential, and complexing ability with the nucleic acids.
  • the formulations were specified by dynamic light scattering by the diffusion of monochromatic laser beam through the colloidal dispersion. This determination was carried out by observing the scattering at 173 Q C after dilution of the samples in purified water, previously filtered in a membrane of 0.22 ⁇ . The results were expressed as an average of three independent determinations.
  • Zeta potential was determined by the droplet / vesicle electrophoretic mobility. The measurements were performed after calibration with a standard solution at -55 mV (polystyrene carboxylate latex). All analyzes were performed after the dilution of the samples in purified water, previously filtered in 0.22 ⁇ nylon membrane. The results were expressed as mean of three independent determinations.
  • Example 1 Lipid nanocarrier consisting of a nanoemulsion with complexation of the nucleic acid by adsorption.
  • nucleic acids at + 4 / -1 ratio (DOTAP / NUCLEIC ACID). g. 0.001 mg / mL w / v chitosan.
  • the lipid phase components were weighed and dissolved in chloroform with constant stirring.
  • the components of the aqueous phase were weighed and dissolved in purified water with constant stirring.
  • the organic phase was rotoevolved by evaporation at normal pressure and room temperature, to remove the organic solvent and to dryness, to form the lipid film.
  • the aqueous phase was poured onto the lipid film, which was held at 4 ° C for 12 hours.
  • the formulation was sonicated at 37 ⁇ C for 15 minutes.
  • the formulation was homogenized in a high pressure homogenizer for 10 cycles of 500 bar each, in order to keep the oil phase droplet diameter as small as possible and with a lower polydispersity index.
  • the nucleic acids were added to the formulation and then to the chitosan solution.
  • Example 2 Lipid nanocarrier consisting of a nanoemulsion with complexing of the nucleic acid by encapsulation.
  • the hydrophobic DNA / DOTAP complex was prepared by incubating the nucleic acids with the DOTAP cationic lipid in a single-phase mixture of chloroform: methanol: water (1: 2.1: 1) at room temperature for 30 min. The monophase was then divided into two phases by the addition of chloroform and water (2 mL each), followed by brief vortexing. The upper aqueous and lower organic phases were separated by centrifugation at 2000 x g for 10 min at room temperature. In the organic phase, the other lipids were dissolved. The aqueous phase components were weighed and dissolved in purified water under constant stirring.
  • the organic phase was rotoevaporated at normal pressure at room temperature, to remove the organic solvent and to dryness, to form the lipid film.
  • the aqueous phase was poured onto the lipid film, which is maintained at 4 ⁇ C for 12 hours.
  • the formulation was sonicated at 37 ⁇ C for 15 minutes.
  • the formulation was homogenized in a high pressure homogenizer for 10 cycles of 500 bar each, in order to keep the oil phase droplet diameter as small as possible and with a lower polydispersity index. Finally the chitosan solution was added to the formulation.
  • Example 3 Lipid nanocarrier consisting of a liposome with nucleic acid complexation by adsorption.
  • the components of the lipid phase were weighed and dissolved in chloroform with constant stirring.
  • the components of the aqueous phase were weighed and dissolved in purified water with constant stirring.
  • the organic phase was rotoevolved by evaporation at normal pressure and room temperature, to remove the organic solvent and to dryness, to form the lipid film.
  • the aqueous phase is poured onto the lipid film, which is maintained at 4 ⁇ C for 12 hours. Thereafter, the formulation is sonicated at 37 ⁇ C for 15 minutes. Afterwards, the formulation is homogenized in a high pressure homogenizer for 10 cycles of 500 bar each, in order to keep the oil phase droplet diameter as small as possible and with a lower polydispersity index.
  • the nucleic acids were added to the formulation and, thereafter, the chitosan.
  • Example 4 Lipid nanocarrier consisting of a lipid nanoparticle solid with complexation of the nucleic acid by adsorption.
  • nucleic acids at the ratio + 4 / -1 (DOTAP / ACID
  • the lipid phase components were weighed and melted at a temperature of 80 Q C under constant stirring.
  • the water phase components were weighed and dissolved in a final volume of 100 ml of purified water with constant stirring at a temperature of 80 Q C.
  • the aqueous phase was poured into the lipid phase, the temperature being maintained at 80 Q C and with constant stirring for 15 minutes.
  • the formulation was mixed by Ultra-Turrax for 1 minute at a speed of 13,500 rpm and temperature 80 Q C.
  • the formulation was then homogenized by hot high-pressure homogenizer at 750 bar for 10 cycles each, in order to keep the particle diameter of the oil phase as small as possible and with a lower polydispersity index.
  • the product was allowed to stand at room temperature for at least 10 minutes.
  • the chitosan solution was added.
  • Example 5 Lipid nanocarrier consisting of a nanostructured lipid carrier.
  • the lipid phase components were weighed and melted at a temperature of 80 Q C under constant stirring.
  • the water phase components were weighed and dissolved to a final volume of 100 ml of purified water with constant stirring at a temperature of 80 Q C.
  • the aqueous layer was poured into the lipid phase, keeping the temperature at 80 Q C and with constant stirring for 15 minutes.
  • the formulation was mixed by Ultra-Turrax for 1 minute at a speed of 13,500 rpm and temperature 80 Q C.
  • the formulation was then homogenized by hot high-pressure homogenizer at 750 bar for 10 cycles each, in order to keep the particle diameters of the oil phase as small as possible and with a lower polydispersity index.
  • the product was allowed to stand at room temperature for at least 10 minutes.
  • the chitosan was added.
  • the invention provides for nasal administration in vivo. This administration can occur with nasal drops, by intranasal or intratracheal spray for pulmonary and / or cerebral delivery, by inhalation, and / or by other aerosol vehicles.
  • the invention prioritizes the use of the nasal route.
  • Many potential drugs for the treatment of neurological diseases are unable to reach the brain at concentrations sufficient to be therapeutically due to the blood-brain barrier.
  • direct administration of drugs to the brain provides the possibility of greater therapeutic effectiveness than with the systemic administration of a drug, precisely by circumventing the blood brain barrier and by providing the transport of high molecular weight molecules.
  • the use of nasal delivery of therapeutic agents to the brain provides a means of circumventing the blood-brain barrier in a non-invasive manner.
  • nanometric drug carriers have been shown to improve drug delivery to the central nervous system as compared to equivalent drug solutions.
  • Neurological conditions that could benefit from nasal administration for delivery to the brain include pain, epilepsy, neurodegenerative diseases and infectious diseases (WY, O. et al, Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders, Curr Med Chem, 2014, 21 (37), pp. 4247-56).
  • a mouse knockout mouse animal was used for the Idua (murine) gene. This model was created by means of the interruption of exon 6 of the Idua gene. In the middle of the exon, a neomycin resistance gene was inserted in the reverse direction. As a result, mice with a disease mimicking Hurler Syndrome, the most serious MPS I phenotype, with increased levels of glycosaminoglycans in urine and in several tissues, and undetectable Idua activity were produced.
  • a plasmid of the CRISPR / Cas9 system was used for the genomic editing experiments.
  • the Cas9 nuclease and guidewire formed by a crRNA-tracrRNA transcript are present in a single vector, the sgRNA (single guide RNA).
  • a target sequence for cleavage by Cas9 was selected on the ROSA26 locus of the mouse genome and was inserted into the vector.
  • the complete vector was inserted by heat shock transformation into TOP 10 competent bacteria (Invitrogen, USA), whose colonies were then expanded and subjected to plasmid extraction with the Maxiprep kit (Life Technologies, USA). Extracted plasmid DNA was then sequenced to verify correct orientation of the insert.
  • the construct contains the Idua cDNA sequence regulated by a promoter and two homologous regions (approximately 1 kb each) to the ROSA26 locus of mice in the locus region in which Cas9 recognizes and cleaves.
  • plasmid containing the IDUA cDNA constructed using the commercial expression vector pREP9 (Invitrogen, USA) was used as described by Camassola et al. ( M. Camassola, LM Braga, A. Delgado-Cahedo, TP Dalberto, U. Matte, M. Burin, R. Giugliani, NB Nardi, Nonviral in vivo gene transfer in the mucopolysaccharidosis I murine model, J. Inherit Metab. Dis 28 (2005) 1035-1043).
  • the animals are immobilized by the investigator and six doses of 10 ⁇ _ are instilled in each nostril, every 15 minutes, once a day for 30 days.
  • the animals are immobilized by the investigator and six doses of 10 ⁇ _ are instilled in each nostril, every 15 minutes, twice in one day.
  • Dosaqem enzymatic serum of Idua The serum and tissue level of Idua was measured in LA treated animals from 15 days after treatment and after 30 days. The results were compared to untreated MPS I animals and normal animals. The enzymatic activity was evaluated through the enzymatic assay by fluorimetric method using the artificial substrate 4-methyl-umbelliferyl-alpha-L-iduronide. The unit to be used was nmol / h / mL serum or nmol / h / mg protein (measured by the Lowry method). For this, the serum was incubated with the fluorescent substrate 4-methylumbelliferyl ⁇ -L-iduronide at 37 ° C for 1 h in sodium formate buffer (pH 2.8).
  • Figure 5 shows the values of the enzymatic activity of IDUA found in different organs and more precisely in the brains of untreated MPS I mice and in MPS I mice treated with the NA / pIDUA nasal complex in one application. Values relative to the enzymatic activity of normal mice.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Environmental Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pulmonology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A presente invenção descreve uma composição para terapia gênica do sistema nervoso central compreendendo carreadores não-virais de tamanho nanométrico (< 1,0 micrômetro) complexados com ao menos um ácido nucleico para fins de terapia gênica via administração nasal tendo como alvo principal o sistema nervoso central, e ainda os processos de obtenção de tais carreadores. A presente invenção pertence ao campo da nanotecnologia e consiste em formulações aquosas que podem ser utilizadas nas áreas farmacêutica e médica.

Description

Relatório Descritivo de Patente de Invenção
COMPOSIÇÃO PARA TERAPIA GÊNICA DO SISTEMA NERVOSO CENTRAL,
PROCESSO DE OBTENÇÃO E USO DA MESMA
Campo da Invenção
[0001] A presente invenção descreve uma composição para terapia gênica do sistema nervoso central compreendendo carreadores não-virais de tamanho nanométrico (< 1 ,0 micrômetro) complexados com ao menos um ácido nucleico para fins de terapia gênica via administração nasal tendo como alvo principal o sistema nervoso central, e ainda os processos de obtenção de tais carreadores. A presente invenção pertence ao campo da nanotecnologia e consiste em formulações aquosas que podem ser utilizadas nas áreas farmacêutica e médica.
Antecedentes da Invenção
[0002] Deficiências e/ou anomalias genéticas (mutação, expressão aberrante, etc) estão envolvidas na origem de numerosas doenças, de caráter hereditário ou não. A medicina convencional é limitada para tratar essas doenças, utilizando-se de terapias para amenização dos sintomas. Mais recentemente, surgiu a terapia gênica, que consiste na inserção de um gene funcional a fim de corrigir uma disfunção celular ou prover novas funções à célula, com a introdução do material genético diretamente nas células do paciente (in vivo), ou a partir da administração das células após modificação in vitro (ex vivo). A terapia gênica é definida como a modificação genética de células com a intenção de alterar a expressão de algum gene para prevenir, impedir ou reverter um processo patológico (ΚΑΥ, M. A. State-of-the-art gene- based therapies: the road ahead. Nature Reviews Genetics 201 1 , v. 12, p. 316- 328).
[0003] Entretanto, apesar de promissora, a terapia gênica enfrenta diversas limitações relacionadas à capacidade de penetração e estabilidade intracelular dos ácidos nucleicos, devido a seu caráter altamente polianiônico, à possibilidade de interação e agregação com proteínas, e à ocorrência de degradação enzimática (LIU, C.-H.; YU, S.-Y. Cationic nanoemulsions as non- viral vectors for plasmid DNA delivery. Colloids and surfaces. B, Biointerfaces 2010, v. 79, n. 2, p. 509-515). Com o intuito de transpor essas dificuldades, algumas estratégias têm sido utilizadas, como a veiculação dos ácidos nucleicos mediante a associação a vetores virais e/ou não-virais.
[0004] Os vetores virais mais utilizados em terapia gênica são adenovírus, vírus adenoassociados, lentivírus e retrovírus. Apesar da grande eficiência de inserção e transdução oferecidas pelos vetores virais, eles apresentam alguns problemas relacionados à imunogenicidade, replicação e segurança (YIN, H. et al. Non-viral vectors for gene-based therapy. Nature Reviews Genetics 2014, v. 15, n. 8, p. 541 -545). Para contornar esses problemas, faz-se uso dos vetores não-virais, que possuem relativa facilidade e baixo custo de produção em larga escala, menor toxicidade, baixa imunogenicidade, capacidade de complexar com ácidos nucleicos de alto peso molecular, maior segurança e boa capacidade de transfecção (NAM, H. Y. et al. Lipid-based emulsion system as non-viral gene carriers. Archives of Pharmaceutical Research 2009, v. 32, n. 5, p. 639-646; NORDLING-DAVID, M. M.; GOLOMB, G. Gene Delivery by Liposomes. Israel Journal of Chemistry 2013, v. 53, n. 9-10, SI, p. 737-747).
[0005] A transfecção mediante o uso de vetores não-virais pode ocorrer através de estruturas poliméricas ou lipídicas, sendo as últimas mais clássicas e mais seguras no que se refere à toxicidade, à biocompatibilidade e biodegradabilidade dos biomateriais utilizados. Entre os vetores baseados em lipídeos catiônicos, os mais descritos na literatura são lipossomas, nanoemulsões, nanopartículas lipídicas sólidas e carreadores lipídicos nanoestruturados. Os lipossomas catiônicos (NORDLING-DAVID, M. M.; GOLOMB, G. Gene Delivery by Liposomes. Israel Journal of Chemistry 2013, v. 53, n. 9-10, SI, p. 737-747) e as nanoemulsões catiônicas (BRUXEL, F. et al. Investigation of the structural organization of cationic nanoemulsion/antisense oligonucleotide complexes. Colloids and surfaces B, Biointerfaces 2013, v. 1 12, p. 530-536) estão dentre os vetores lipídicos não-virais mais descritos. Os lipossomas podem ser definidos como dispersões aquosas de uma mistura de fosfolipídios, organizadas na forma de bicamadas e com um núcleo aquoso central. Já as nanoemulsões, as nanopartículas lipídicas sólidas e os carreadores lipídicos nanoestruturados, organizam-se como monocamadas com um núcleo lipídico respectivamente líquido, sólido, ou ambos, dispersas em uma fase aquosa (geralmente do tipo O/A), e estabilizadas por um filme interfacial constituído por emulsificantes fosfolipídicos (SCHUH, R. S.; BRUXEL, F.; TEIXEIRA, H. F. Physicochemical properties of lecithin-based nanoemulsions obtained by spontaneous emulsification or high-pressure homogenization. Química Nova 2014, v. 37, p. 1 193-1 198).
[0006] Independentemente da estrutura formada, esses sistemas não- virais contêm um lipídio catiônico (normalmente uma amina quaternária) que forma um par iônico (complexo) com os grupamentos fosfato negativamente carregados dos ácidos nucleicos. Diversos estudos demonstram a eficiência desses complexos formados por nanoestruturas lipídicas/ácidos nucleicos (NORDLING-DAVID, M. M.; GOLOMB, G. Gene Delivery by Liposomes. Israel Journal of Chemistry 2013, v. 53, n. 9-10, SI, p. 737-747; FRAGA, M. et al. PEGylated cationic nanoemulsions can efficiently bind and transfect pIDUA in a mucopolysaccharidosis type I murine model. Journal of Controlled Release 2015, v. 209, p. 37-46). Entretanto, algumas limitações relacionadas à liberação dos ácidos nucleicos in vivo, devido à captura dos complexos pelo sistema fagocítico mononuclear e sua limitada biodistribuição, exigem algumas estratégias de formulação. Dentre essas, a incorporação de fosfolipídios ligados covalentemente a polímeros hidrofílicos como o polietilenoglicol (PEG) parece conferir um maior tempo de circulação aos complexos e uma maior proteção dos ácidos nucleicos, o que possibilita o aumento da sua biodistribuição nos tecidos e consequentemente, da eficiência de transfecção (FRAGA, M. et al. PEGylated cationic nanoemulsions can efficiently bind and transfect plDUA in a mucopolysaccharidosis type I murine model. Journal of Controlled Release 2015, v. 209, p. 37-46).
[0007] Além disso, a utilização de policátions como a quitosana em formulações para administração é ampla, especialmente devido a suas propriedades muco adesivas, especialmente quando o alvo é a administração nasal visando o tratamento de desordens do sistema nervoso central (Khatri, K. et al. Surface modified liposomes for nasal delivery of DNA vaccine. Vaccine, 2008, v. 26(18), p. 2225-33).
[0008] As possibilidades de tratamento de doenças geradas pela terapia gênica são inúmeras, e seu carreamento através de vetores não-virais aumenta muito as chances de sucesso, porém a chegada dessas composições no sistema nervoso central continua sendo um desafio. O cérebro é um órgão exclusivamente protegido que reside dentro dos limites ósseos do crânio, tornando difícil seu alcance através da entrega sistémica de medicamentos. Uma variedade de obstáculos protege o sistema nervoso central e ao mesmo tempo impede a chegada de medicamentos ao cérebro e medula espinhal e incluem a barreira hemato encefálica (BHE) e a barreira do líquido cefalorraquidiano (BLCR). As barreiras sangue-cérebro restringem a difusão passiva de macromoléculas ao cérebro e constituem um obstáculo significativo ao cérebro / sistema nervoso central (SNC) no tratamento farmacológico de doenças genéticas com acometimento neurológico, e entre elas estão as doenças lisossômicas de depósito (Saraiva, C. et al. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. Journal of Controlled Release, 2016, v. 235, p. 34-47).
[0009] Métodos invasivos de tratamento do SNC incluem a administração intracraniana direta de fármacos por administração intracerebroventricular, intracerebral ou intratecal, e criam buracos na cabeça que interrompem a integridade da barreira hematoencefálica pela ruptura osmótica da barreira cerebral do sangue. [0010] Assim, a via nasal passou a ser explorada como um método não- invasivo para contornar a BHE para o transporte de fármacos para o SNC e tem sido comprovadamente efetiva para um número de pequenas moléculas e peptídeos. Essa via de administração de fármacos funciona devido à ligação neuronal única que os nervos trigêmeo e olfativo possuem entre a cavidade nasal, o líquido cefalorraquidiano (LCR) e o cérebro.
[0011] Na busca pelo estado da técnica em literaturas científica e patentária, foram encontrados os seguintes documentos que tratam sobre o tema:
[0012] As tecnologias protegidas pelos números WO 2015089419 (A2) 18/06/2015, e WO2014093622 (A2) 19/06/2014, descrevem a utilização de partículas para entrega do sistema CRISPR/Cas. Os lipossomas das tecnologias protegidas são produzidos por um método de extrusão através de membrana ou formação espontânea pela hidratação do filme lipídico (Coelho et al, N Engl J Med 2013, v. 369, p. 819-29; Basha et al, Molecular Therapy 201 1 , v. 19(12), p. 1286-00; Morrissey et al, Nature Biotechnology 2005, v. 23(8), p. 1002-07; Zimmerman et al, Nature Letters 2006, v. 441 (4), p. 1 1 1 -14; Geisbert et al, Lancet 2010, v. 375, p. 1896-905; Semple et al, Nature Nanotechnology 2010, v. 28(2), p. 172-177; Jayararnan A., Chem. Int. Ed. 2012, v. 51 , p. 8529-33; U.S. Pat. Nos. 5593972, 5589466 e 5580859). A tecnologia protegida também cita nanoplexos (Bartlett et al, PNAS 2007, v. 104(39), p. 15549-54) e um sistema de entrega baseado em nanopartículas (Davis et al, Nature 2010, v. 464(15), p. 1067-70), que utilizam ciclodextrinas em sua composição, diferindo da presente invenção. As nanopartículas citadas contém polímeros, diferindo da presente invenção.
[0013] A tecnologia WO 2016197133 (A1 ) descreve como entregar o sistema CRISPR com nanopartículas lipídicas, porém não descreve a complexação com duas sequências de ácidos nucleicos diferentes ou proteínas.
[0014] A tecnologia protegida sob o número WO 2015191693 (A2) 17/12/2015, propõe a utilização de dois vetores diferentes, sendo que um carrega o RNA guia e outro o sistema de edição de genoma, além de lipossomas e nanopartículas poliméricas produzidas por métodos diferentes dos mencionados na presente invenção.
[0015] A tecnologia protegida sob o número WO 2015US23882 (A2) descreve métodos e composições para a prevenção ou tratamento de desordens do sistema nervoso central, porém não descreve a utilização de carreadores lipídicos para tal fim.
[0016] A tecnologia EP 3087974 (A1 ) descreve nanocarreadores para entrega de uma composição editora de genoma, porém só cita lipossomas e micelas, e estes possuem uma molécula ligante de algum receptor específico.
[0017] A tecnologia protegida sob o número WO 2015089462 (A1 ) descreve composições nanoparticuladas lipídicas para entrega de CRISPR, porém é composta somente por moléculas de RNA e não cita composições contendo diferentes ácidos nucleicos e proteínas. Também determina uma razão de lipídio:gRNA de 5:1 a 15:1 , diferente das proposições do presente invento.
[0018] A tecnologia WO 2013188979 (A1 ) refere-se, de um modo geral, a nanopartículas mucoadesivas formadas a partir de macromoléculas poliméricas anfifílicas conjugadas a um revestimento polimérico para entrega de medicamentos em geral, porém não utiliza lipídeos em sua composição principal.
[0019] A tecnologia IN201 1 MU01507 apresenta uma composição farmacêutica compreendendo fármaco ou veículo de fármaco que após administração intranasal conduz a uma melhora na captação cerebral do fármaco mediada por receptor, porém não versa sobre a entrega de ácidos nucleicos.
[0020] A tecnologia protegida sob o número WO 200641942 (A2) descreve uma composição que pode ser utilizada como implante biodegradável.
[0021] A tecnologia WO2016174250 (A1 ) refere-se a nanocarreadores com ligantes de ancoragem para entregar uma ferramenta para a transferência gênica a células. As âncoras possuem uma porção de direcionamento que pode ser um carboidrato, um anticorpo ou um fragmento de anticorpo, uma proteína, um aptâmero, entre outros.
[0022] A tecnologia protegida sob o número WO2015179492 (A1 ) demonstra processos para a preparação de nanopartículas poliméricas contendo ácidos nucleicos para tratamento de doenças neurológicas. Esse processo não utiliza componentes lipídicos em sua produção.
[0023] A tecnologia WO20151 17021 (A1 ) refere-se em parte a métodos para entrega de ácidos nucleicos, porém possui como alvo principal a pele.
[0024] A tecnologia WO2012135805 (A1 ) descreve uma composição farmacêutica para entrega de polinucleotídeos porém não determina a entrega de duas sequências de ácidos nucleicos concomitantemente.
[0025] Assim, do que se depreende da literatura pesquisada, não foram encontrados documentos antecipando ou sugerindo os ensinamentos da presente invenção, de forma que a solução aqui proposta possui novidade e atividade inventiva frente ao estado da técnica.
Sumário da Invenção
[0026] Dessa forma, a presente invenção difere do estado da técnica, compreendendo a utilização de quatro diferentes tipos de carreadores nanométricos aquosos, produzidos por métodos distintos dos mencionados no estado da técnica, contendo ao menos um ácido nucleico complexado na mesma formulação, para administração nasal tendo como alvo o SNC para fins de terapia gênica.
[0027] A tecnologia descrita no presente invento fornece novas composições e métodos para tratar síndromes que acometem principalmente o sistema nervoso central. Em algumas formas de realização da seguinte invenção, ela pode ser administrada desde uma vez ao dia até diversas vezes ao dia durante vários dias.
[0028] Em algumas realizações, as composições para terapia gênica do sistema nervoso central podem ser administradas como spray intranasal ou intratraqueal para entrega cerebral, por via inalatória, e/ou por meio de outros veículos aerossóis.
[0029] A presente invenção também apresenta a incorporação de um plasmídeo do sistema CRISPR/Cas9 juntamente com outro ácido nucleico.
[0030] A presente invenção também apresenta a incorporação de um plasmídeo recombinante codificante para uma proteína.
[0031] Em um primeiro objeto, a presente invenção apresenta uma composição para terapia gênica do sistema nervoso central compreendendo ao menos um ácido nucleico adsorvido ou encapsulado e carreadores não-virais, com diâmetro médio de gotícula/partícula compreendido na faixa de 0,001 a 1 ,0 micrômetro.
[0032] Em um segundo objeto, a presente invenção apresenta um processo de obtenção de composição para terapia gênica do sistema nervoso central, onde a obtenção de carreadores não-virais compreende as etapas de:
(a) dissolver entre 2,0% p/p a 20,0% p/p de fase lipídica em uma solução orgânica;
(b) dissolver entre 0,1 % p/p a 5,0% p/p de agente de tonicidade em uma solução aquosa;
(c) evaporar a solução orgânica obtida na etapa (a), para formar um filme;
(d) adicionar a solução aquosa obtida na etapa (b) ao filme lipídico obtido na etapa (c);
(e) deixar descansar o produto obtido na etapa (d) por 4 a 72 horas em uma temperatura entre 2°C e 20°C;
(f) sonicar a formulação obtida na etapa (e) por 1 a 60 minutos a uma temperatura entre 25°C e 50°C;
(g) h omogeneizar a formulação obtida na etapa (f) em um homogeneizador à alta pressão ou microfluidizador, por 2 a 20 ciclos de 250 a 2000 bar cada;
(h) ácidos nucleicos para proporções entre +2/-1 e +10/- 1 (DOTAP/ÁCIDO NUCLEICO); e
(i) adicionar uma solução de policátions com concentração de 0,001 mg/mL a 10mg/mL
[0033] Em um terceiro objeto, a presente invenção apresenta um processo de obtenção de composição para terapia gênica do sistema nervoso central para obtenção de carreadores não-virais, incluindo nanoestruturas lipídicas sólidas e carreadores lipídicos nanoestruturados contendo os ácidos nucleicos adsorvidos, compreendendo as etapas de:
(a) fundir de 2,0% p/p a 20,0% p/p de fase lipídica a uma temperatura entre 30Q C e 80Q C;
(b) dissolver, de 1 ,0% p/p a 5% p/p de tensoativo e de 0,1 % p/p a 5,0% p/p de um agente de tonicidade em uma solução aquosa, com temperatura de 30Q C a 80Q C;
(c) adicionar a solução aquosa da etapa (A) na solução oleosa da etapa (B), sob agitação e com temperatura de 30Q C a 80Q C;
(d) agitar o produto obtido em (C) em dispersor ultra-turrax, a uma velocidade entre 500 e 25000 rpm, sob aquecimento de 30Q C a 80Q C, durante 30 segundos a 10 minutos; e
(e) homogeneizar a formulação obtida em (D) em homogeneizador à alta pressão ou microfluidizador, por 2 a 20 ciclos de 250 a 2000 bar cada;
(f) ácidos nucleicos para proporções entre +2/-1 e +10/- 1 (DOTAP/ÁCIDO NUCLEICO); e
(g) adicionar uma solução de policátions com concentração de 0,001 mg/mL a 10mg/mL.
[0034] Em um quarto objeto, a presente invenção apresenta o uso da composição para terapia gênica do sistema nervoso central no preparo de um medicamento para o tratamento de doenças causadas por deficiências ou anomalias genéticas como as doenças lisossômicas de depósito.
[0035] Ainda, os conceitos inventivos comuns a todos os contextos de proteção reivindicam uma composição para terapia gênica do sistema nervoso central, compreendendo carreadores não-virais de tamanho manométrico e ao menos um ácido nucleico adsorvido ou encapsulado com diâmetro médio de gotícula/partícula compreendido na faixa de 0,001 a 1 ,0 micrômetro.
[0036] Ainda, as composições poderão ser incorporadas em forma de solução, suspensão, gel, pó, entre outras.
[0037] Esses e outros objetos da invenção serão imediatamente valorizados pelos versados na arte e pelas empresas com interesses no segmento, e serão descritos em detalhes suficientes para sua reprodução na descrição a seguir.
Breve Descrição das Figuras
[0038] Com o intuito de melhor definir e esclarecer o conteúdo do presente pedido de patente, são apresentadas as presentes figuras:
[0039] A figura 1 demonstra a co-complexação das formulações com um plasmídeo do sistema CRISPR/Cas9 e um plasmídeo doador da sequência da enzima alfa-L-iduronidase (IDUA) utilizado para reparação do genoma por recombinação homóloga após clivagem pela Cas9, direcionado ao lócus Rosa 26 de camundongos. Podem ser observadas bandas dos plasmídeos nus, e pode-se observar que as formulações nanoemulsão com ácidos nucleicos adsorvidos (NA), nanoemulsão com ácidos nucleicos encapsulados (NE) e lipossomas com ácidos nucleicos adsorvidos (LA) complexaram os plasmídeos que não migraram no gel, demonstrando 100% de complexação pois permaneceram no ponto de aplicação. A taxa de 100% foi calculada através do software ImageJ®.
[0040] A figura 2 mostra os valores de atividade enzimática de IDUA murina encontrada no soro de camundongos MPS I não tratados, e em camundongos MPS I tratados com o complexo LA CRISPR/pROSA26 ou com os plasmídeos CRISPR/pROSA26 nus, por via nasal durante 15 dias. Valores relativos à atividade enzimática de camundongos normais.
[0041] A figura 3 mostra os valores de atividade enzimática de IDUA murina encontrada em diferentes secções do cérebro de camundongos MPS I não tratados e em camundongos MPS I tratados com o complexo LA CRISPR/pROSA26 ou com os plasmídeos CRISPR/pROSA26 nus por via nasal durante 30 dias. Valores relativos à atividade enzimática de camundongos normais.
[0042] A figura 4 demonstra a co-complexação das formulações com um plasmídeo (pIDUA) contendo o cDNA da IDUA construído usando o vetor de expressão comercial pREP9 (Invitrogen, USA) como descrito por Camassola e colaboradores (M. Camassola, L.M. Braga, A. Delgado-Canedo, T.P. Dalberto, U. Matte, M. Burin, R. Giugliani, N.B. Nardi, Nonviral in vivo gene transfer in the mucopolysaccharidosis I murine model, J. Inherit. Metab. Dis. 28 (2005) 1035- 1043). Podem ser observadas bandas dos plasmídeos nus, e pode-se observar que as formulações nanoemulsão com ácidos nucleicos adsorvidos (NA) e a nanoemulsão com ácidos nucleicos encapsulados (NE) complexaram os plasmídeos que não migraram no gel, demonstrando 100% de complexação pois permaneceram no ponto de aplicação. A taxa de 100% foi calculada através do software ImageJ®.
[0043] A figura 5 mostra os valores de atividade enzimática de IDUA encontrada em diferentes órgãos e mais precisamente no cérebro de camundongos MPS I não tratados e em camundongos MPS I tratados com o complexo NA/pIDUA por via nasal em uma aplicação. Valores relativos à atividade enzimática de camundongos normais.
Descrição Detalhada da Invenção
[0044] A terapia gênica permite a um organismo produzir uma proteína deficiente que é essencial para seu funcionamento adequado através da administração de sequências de ácidos nucleicos que codificam para a proteína em questão. Para tal feito pode-se utilizar um plasmídeo recombinante que possua a sequência correta da proteína anormal e seja capaz de superexpressá- la ou ainda pode-se lançar mão das tecnologias de edição gênica. Em concretizações preferenciais, o plasmídeo recombinante está complexado a um carreador que será administrado pela via nasal.
[0045] A tecnologia de edição de genoma possibilita a modificação de sequências específicas do genoma através do reconhecimento da região que se deseja alterar e da utilização de nucleases capazes de clivar no local alvo. A manipulação genômica tem gerado expectativas, pois torna possível visar qualquer gene alvo, e assim aumenta as chances de tratamento para doenças genéticas. Para isso, são utilizados sistemas compostos por um domínio de reconhecimento e ligação a sequências específicas do DNA genômico unido a um domínio de clivagem da sequência alvo no DNA (COX, D. B. T.; PLATT, RJ.; ZHANG, F. Therapeutic genome editing: prospects and challenges. Nature Medicine 2015, v. 21 , n. 2, p. 121 -131 ).
[0046] As plataformas de edição de genoma são baseadas em proteínas nucleases direcionadas para clivagem de sítios alvo no genoma. A nuclease pode ser uma nuclease efetora tipo ativadora de transcrição (TALEN), uma nuclease dedo de zinco (ZFN), uma meganuclease ou uma nuclease associada a CRISPR (Cas). Em algumas concretizações essas nucleases são entregues em forma de sequências de ácidos nucleicos (plasmídeos ou oligonucleotídeos) codificantes para essas proteínas. Em algumas concretizações, a proteína é uma nuclease associada a CRISPR e é fornecida como parte de uma ribonucleoproteína (RNP) que inclui uma proteína Cas9 recombinante combinada com RNA guia (gRNA), que guia a nuclease até o sítio alvo de clivagem no genoma.
[0047] O ácido nucleico a ser entregue pode ser o DNA de um vetor plasmideal, o RNA mensageiro (mRNA) ou o gRNA que codifica uma enzima ou faz parte da enzima que atuará clivando o material genético alvo, ou ainda pode ser uma sequência modelo utilizada para reparação do genoma alvo por recombinação homóloga. Onde o alvo no genoma inclui qualquer sequência que possa ser modificada para promover o silenciamento, a expressão ou superexpressão de proteínas. Em concretizações preferenciais, o ácido nucleico estará complexado a um carreador lipídico que será administrado pela via nasal.
[0048] A nuclease segmentável pode ser uma nuclease efetora tipo ativadora de transcrição (TALEN), uma nuclease de dedo de zinco (ZFN), uma meganuclease ou uma nuclease associada a CRISPR (Cas). Em algumas concretizações, a nuclease segmentável é uma nuclease associada a CRISPR e é fornecida como parte de uma RNP que inclui uma proteína Cas9 recombinante combinada com o gRNA. Em concretizações preferenciais, a nuclease segmentável está complexada a um carreador que será administrado pela via nasal.
[0049] Entretanto, algumas doenças possuem acometimento do SNC e necessitam da chegada do tratamento ao cérebro. Para a administração dos vetores não-virais contendo um plasmídeo recombinante ou o sistema CRISPR/Cas9 visando à terapia gênica de doenças com acometimento do SNC, sugere-se a via nasal, que é uma região altamente vascularizada, de fácil acesso e não invasiva. Além de ser uma via avaliada para absorção sistémica, mais recentemente tem sido estudada como via de passagem direta de moléculas ao cérebro (GHORI, M. U. et al. Nasal Drug Delivery Systems: An Overview. American Journal of Pharmacological Sciences, v. 3, n. 5, p. 1 10-1 19, 18 dez. 2015.). Existem diversos relatos da satisfatória passagem de macromoléculas através da barreira hematoencefálica após administração nasal. Esta rota envolve o sistema olfatório que inicia no cérebro e termina na cavidade nasal, no epitélio respiratório, sendo a única região do sistema nervoso central considerada de fácil acesso (LOCHHEAD, J. J.; THORNE, R. G. Intranasal delivery of biologics to the central nervous system. Advanced drug delivery reviews, v. 64, n. 7, p. 614-628, maio 2012.).
[0050] Para que os carreadores cheguem principalmente ao sistema nervoso, a administração nasal pode se dar através de spray intranasal ou intratraqueal, por via inalatória, e/ou por meio de outros veículos aerossóis. E ainda, as composições poderão ser incorporadas em forma de solução, suspensão, gel, pó, entre outras. [0051] Desta forma, a invenção proporciona métodos e composições que permitem a produção de uma proteína deficiente por um indivíduo através da administração nasal de carreadores não-virais contendo uma sequência de ácido nucleico que codifica uma proteína ou ainda uma nuclease que cliva o material genético alvo.
[0052] Face ao exposto, considerando a baixa penetrabilidade intracelular dos ácidos nucleicos nus, juntamente com as vantagens do uso de sistemas nanométricos no carreamento e administração de ácidos nucleicos, juntamente com as potencialidades biológicas da administração desses complexos, a presente invenção refere-se a formulações aquosas compreendendo ao menos um ácido nucleico complexado a carreadores não-virais de diâmetro médio de gotícula/partícula inferior a 1 ,0 micrômetro. Os nanocarreadores da presente invenção compreendem nanoemulsões, lipossomas, nanopartículas lipídicas sólidas e carreadores lipídicos nanoestruturados.
[0053] O processo de fabricação dos produtos compreende uma etapa de homogeneização a alta pressão ou microfluidização, a fim de produzir carreadores lipídicos nanométricos de tamanhos uniformes e com alta estabilidade. Além disso, o processo de fabricação das nanoemulsões pode compreender uma etapa de pré-complexação com os ácidos nucleicos, que confere maior proteção contra degradação. Já o processo de fabricação dos lipossomas passa por uma etapa adicional de extrusão manual que confere alta estabilidade aos produtos. Os carreadores contendo ao menos um ácido nucleico para edição de genoma devem ser utilizados preferencialmente por administração nasal.
[0054] Em um primeiro objeto, a presente invenção apresenta uma composição para terapia gênica do sistema nervoso central compreendendo ao menos um ácido nucleico adsorvido ou encapsulado e carreadores não-virais, com diâmetro médio de gotícula/partícula compreendido na faixa de 0,001 a 1 ,0 micrômetro.
[0055] Em uma concretização, os ácidos nucleicos são um ou mais selecionados do grupo que consiste em: plasmídeo recombinante contendo a sequência inteira de um gene, sequência de RNA guia, sequência codificadora de nuclease, sequência de DNA modelo para recombinação homóloga ou sequência inteira de um gene.
[0056] Em uma concretização, a composição para terapia gênica do sistema nervoso central compreende uma nuclease, que pode ser a Cas9.
[0057] Em uma concretização, as nanoestruturas são nanoemulsões com ácidos nucleicos adsorvidos ou encapsulados, lipossomas, nanopartículas lipídicas sólidas ou carreadores lipídicos nanoestruturados.
[0058] Em uma concretização, a composição para terapia gênica do sistema nervoso central compreende excipientes farmaceuticamente adequados.
[0059] Em um segundo objeto, a presente invenção apresenta um processo de obtenção de composição para terapia gênica do sistema nervoso central, onde a obtenção de carreadores compreende as etapas de:
(a) dissolver entre 2,0% p/p a 20,0% p/p de fase lipídica em uma solução orgânica;
(b) dissolver entre 0,1 % p/p a 5,0% p/p de agente de tonicidade em uma solução aquosa;
(c) evaporar a solução orgânica obtida na etapa (a), para formar um filme;
(d) adicionar a solução aquosa obtida na etapa (b) ao filme lipídico obtido na etapa (c);
(e) deixar descansar o produto obtido na etapa (d) por 4 a 72 horas em uma temperatura entre 2°C e 20°C;
(f) sonicar a formulação obtida na etapa (e) por 1 a 60 minutos a uma temperatura entre 25°C e 50°C;
(g) h omogeneizar a formulação obtida na etapa (f) em um homogeneizador à alta pressão ou microfluidizador, por 2 a 20 ciclos de 250 a 2000 bar cada; e
(h) adicionar uma solução de policátions com concentração de 0,001 mg/mL a 10mg/mL
[0060] Em uma concretização, a solução orgânica descrita na etapa (a) é um solvente orgânico apolar.
[0061] Em uma concretização, caso o produto a ser obtido seja o lipossoma, o processo compreende a etapa adicional:
(i) extrusar a formulação obtida na etapa (g) em ao menos uma membrana com tamanho de poro de 1 000 nm a 220 nm e em ao menos uma membrana com tamanho de poro de 220 nm a 50 nm.
[0062] Em uma concretização, a solução orgânica é um solvente orgânico escolhido do grupo que compreende solventes orgânicos polares próticos, apróticos ou apoiares e/ou mistura dos mesmos.
[0063] Em uma concretização, uma solução de policátions não-lipídicos poderá ser adicionada após a formação das nanoestruturas.
[0064] Em uma concretização, para a obtenção de nanoemulsões contendo os ácidos nucleicos encapsulados, a solução orgânica descrita na etapa (a) é a fase orgânica do pré-complexo obtido através das etapas:
(i) dissolver de 0,1 % p/p a 5,0% p/p de lipídeo catiônico e ácidos nucleicos em uma mistura monofásica de solventes apolar:prótico:prótico (1 :2,1 :1 ) por 30 minutos;
(ii) adicionar ao produto obtido na etapa (i) 2 mL de solvente apolar e 2 mL de solvente prótico;
(iii) agitar o produto obtido na etapa (ii) brevemente em vórtex;
(iv) centrifugar o produto obtido na etapa (iii) a uma pressão entre 1000 e 4000 x g durante 2 a 30 min em uma temperatura entre 15 a 35°C; e
(v) separar a fase orgânica obtida na etapa (iv).
[0065] Em um terceiro objeto, a presente invenção apresenta um processo de obtenção de composição para terapia gênica do sistema nervoso central para obtenção de nanoestruturas lipídicas sólidas ou carreadores lipídicos nanoestruturados contendo os ácidos nucleicos adsorvidos, compreendendo as etapas de: (A) fundir de 2,0% p/p a 20,0% p/p de fase lipídica a uma temperatura entre 30Q C e 80Q C;
(B) dissolver, de 1 ,0% p/p a 5% p/p de tensoativo e de 0,1 % p/p a 5,0% p/p de um agente de tonicidade em uma solução aquosa, com temperatura de 30Q C a 80Q C;
(C) adicionar a solução aquosa da etapa (A) na solução oleosa da etapa (B), sob agitação e com temperatura de 30Q C a 80Q C;
(D) agitar o produto obtido em (C) em dispersor ultra-turrax, a uma velocidade entre 500 e 25000 rpm, sob aquecimento de 30Q C a 80Q C, durante 30 segundos a 5 minutos;
(E) homogeneizar a formulação obtida em (D) em homogeneizador à alta pressão ou microfluidizador, por 2 a 20 ciclos de 250 a 2000 bar cada; e
(F) adicionar uma solução de policátions com concentração de 0,001 mg/mL a 10mg/ml_.
[0066] Em uma concretização, a formulação é submetida à etapa posterior de evaporação da água sob pressão normal ou reduzida entre 0 e 1 000 mbar a uma temperatura entre 1 0°C e 50°C.
[0067] Em uma concretização, o solvente orgânico polar prótico é metanol, e o solvente orgânico apolar é clorofórmio.
[0068] Em uma concretização, uma solução de policátions não-lipídicos poderá ser adicionada após a formação das nanoestruturas lipídicas.
[0069] Em uma concretização, a fase lipídica é escolhida do grupo que compreende:
a) lipídeos líquidos tais como oleato de decila, isohexadecano, ésteres do ácido esteárico e/ou oléico, etanolamida de ácido graxo de coco, óleos naturais, como o óleo de milho, amendoim, sésamo, oliva, jojoba, soja, álcool graxo, parafina, triglicerídeos de cadeia média, triglicerídeos de cadeia longa, palmitatos, miristatos e octildodecanol;
b) lipídeos sólidos tais como triestearina, tricaprina, trilaurina, trimiristina, tripalmitina, ácido esteárico, álcool cetílico, álcool estearílico, mateiga de cacau, cera de carnaúba, cera de abelhas, palmitato de cetila, monoestearato de glicerila, behenato de glicerila, palmitoestearato de glicerila, tripalmitato de glicerila, trimiristato de glicerila, triestearato de glicerila e/ou mistura destes; c) tensoativos lipofílicos tais como lecitinas e fosfolipídeos e/ou mistura dos mesmos;
d) lipídeos neutros;
e) lipídeos catiônicos; e
f) lipídios com ramificação de PEG (peguilados).
[0070] Em uma concretização, o agente de tonicidade ser escolhido do grupo que compreende sorbitol, etilenoglicol, polietilenoglicol, manitol, glicerol, e/ou mistura destes.
[0071] Em uma concretização, a solução de policátions não-lipídicos na concentração de 0,001 mg/mL (p/v) a 10mg/ml_ (p/v), compreende a quitosana, brometo de hexadimetrina ou outro sal, poli-L-lisina, polialilamina, polietileneimina, entre outros, e/ou mistura destes. A adição destes pode ser realizada após a formação das nanoestruturas lipídicas ou dos complexos com os ácidos nucleicos.
[0072] Em uma concretização, a fase lipídica e fase aquosa do processo de obtenção dos lipossomas compreendem:
fase lipídica:
- DOPE (0,5% p/p a 5,0% p/p);
- DOTAP (0,5% p/p a 5,0% p/p);
- DSPE-PEG (0,25% p/p a 5,0% p/p);
fase aquosa:
- Glicerol (0,1 % p/p a 5,0% p/p);
- Ácidos nucleicos para a proporção entre +2/-1 e +8/-1 (DOTAP/ÁCIDO NUCLEICO);
- Solução de quitosana (0,001 mg/mL a 10mg/ml_).
[0073] Em uma concretização, a fase lipídica e fase aquosa do processo de obtenção das nanoemulsões compreendem: fase lipídica:
- DOPE (0,5% p/p a 5,0% p/p);
- DOTAP (0,5% p/p a 5,0% p/p);
- DSPE-PEG (0,25% p/p a 5,0% p/p);
- Triglicerídeos de cadeia média (2,0% p/p a 20,0% p/p);
fase aquosa:
- Glicerol (0,1 % p/p e 5,0% p/p);
- ácidos nucleicos para a proporção entre +2/-1 e +8/-1 (DOTAP/ÁCIDO NUCLEICO);
- solução de quitosana (0,001 mg/mL a 1 0mg/ml_).
[0074] Em uma concretização, a fase lipídica e fase aquosa do processo de obtenção das nanopartículas lipídicas sólidas compreendem:
fase lipídica:
- monoestearato de glicerila (2,0% p/p a 10,0% p/p);
- DOTAP (0,5% p/p a 5,0% p/p);
fase aquosa:
- 1 ,0% p/p Polissorbato 80 (1 ,0% p/p a 5,0% p/p);
- Glicerol (0,1 % p/p e 5,0% p/p);
- Ácidos nucleicos para a proporção entre +2/-1 e +8/-1 (DOTAP/ÁCIDO NUCLEICO);
- Solução de quitosana (0,001 mg/mL a 10mg/mL).
[0075] Em uma concretização, a fase lipídica e fase aquosa do processo de obtenção dos carreadores lipídicos nanoestruturados compreendem:
fase lipídica:
- Mistura na proporção 7:3 de monoestearato de glicerila e triglicerídeos de cadeia média (2,0% p/p a 10,0% p/p);
- DOTAP (0,5% p/p a 5,0% p/p);
fase aquosa:
- Polissorbato 80 (1 ,0% p/p a 5,0% p/p);
- Glicerol (0,1 % p/p e 5,0% p/p); - Ácidos nucleicos para a proporção entre +2/-1 e +8/-1 (DOTAP/ÁCIDO NUCLEICO);
- Solução de quitosana (0,001 mg/mL a 1 0mg/mL).
[0076] Em uma concretização, uma solução de policátions não-lipídicos poderá ser adicionada após a formação das nanoestruturas.
[0077] Em uma concretização, as composições poderão ser incorporadas em forma de solução, suspensão, gel, pó, entre outras.
[0078] Em um quarto objeto, a presente invenção apresenta o uso da composição para terapia gênica do sistema nervoso central no preparo de um medicamento para o tratamento de doenças causadas por deficiências ou anomalias genéticas.
[0079] Em uma concretização, o uso da composição para terapia gênica do sistema nervoso central é no preparo de um medicamento para o tratamento das doenças lisossômicas de depósito que possuam acometimento neurológico.
[0080] Em uma concretização ideal, o uso da composição para terapia gênica do sistema nervoso central é através da administração nasal.
[0081] A presente invenção apresenta como vantagens uma maior penetrabilidade intracelular devido ao uso de sistemas nanométricos no carreamento e administração de ácidos nucleicos possibilitando a produção de uma proteína deficiente, através do uso de nucleases combinado a ácidos nucleicos guia e ácidos nucleicos contendo a sequência parcial ou inteira de um gene, ou ainda de um plasmídeo recombinante contendo a sequência inteira de um gene. Também é uma vantagem a possibilidade de tratamento de doenças que possam ser causadas por problemas genômicos utilizando os produtos da presente invenção.
Exemplos - Concretizações
[0082] Os exemplos aqui mostrados têm o intuito somente de exemplificar uma das inúmeras maneiras de se realizar a invenção, contudo sem limitar o escopo da mesma.
Ácidos nucleicos [0083] A composição para terapia gênica do sistema nervoso central deve conter ao menos um ácido nucleico, seja ele uma sequência de RNA guia, um plasmídeo ou oligonucleotídeo contendo a sequência codificadora para a proteína Cas ou outra nuclease, uma sequência de DNA doadora para recombinação homóloga ou ainda uma sequência inteira de um gene que pode ou não estar contida em um plasmídeo recombinante. A nuclease proteica também pode fazer parte da composição para terapia gênica do sistema nervoso central.
[0084] Nas composições da presente invenção, o ácido nucleico pode ser tanto um ácido desoxirribonucleico, como um ácido ribonucleico. Pode tratar-se de sequências de origem natural ou artificial.
[0085] Com relação mais particularmente aos ácidos desoxirribonucleicos, eles podem ser de fita simples ou dupla. Esses ácidos desoxirribonucleicos podem codificar para enzimas, RNAm ou ainda sequências parciais ou inteiras genes terapêuticos.
[0086] No sentido da invenção, entende-se por gene terapêutico notadamente qualquer gene codificando para um produto proteico tendo um efeito terapêutico. O produto proteico assim codificado pode ser uma proteína, um peptídeo, etc. Este produto proteico pode ser homólogo com relação à célula alvo (isto é, um produto que é normalmente expresso na célula alvo, quando esta não apresenta nenhuma patologia). Nesse caso, a expressão de uma proteína permite por exemplo paliar uma expressão insuficiente na célula, ou a expressão de uma proteína inativa ou fracamente ativa em razão de uma modificação, ou ainda superexpressar a referida proteína. O gene terapêutico pode ainda codificar para uma proteína celular mutante, tendo uma estabilidade aumentada, uma atividade modificada, etc. O produto proteico pode igualmente ser heterologo com relação à célula alvo. Neste caso, uma proteína expressada pode por exemplo completar ou promover uma atividade deficiente para a célula, permitindo-lhe lutar contra uma patologia, ou estimular uma resposta imune. Fase lipídica
[0087] A fase lipídica adequada para a presente invenção é constituída por tensoativos lipofílicos, óleos, lipídeos sólidos e líquidos e/ou mistura desses.
[0088] Os tensoativos lipídicos incluem, mas não se limitam a, lecitina e fosfolipídios. Lecitinas são conhecidas como glicerofosfolipídios os quais são formados a partir de ácidos graxos, glicerol, ácido fosfórico e colina por esterificação. As lecitinas são frequentemente referenciadas como fosfatidilcolinas. Os fosfolipídios adequados para o uso na presente invenção incluem, mas não se limitam, a fosfolipídios encontrados na gema de ovo e na soja. São exemplos de fosfolipídios e seus derivados, fosfatidilcolina (PC), dioleilfosfatidilcolina (DOPC), dimiristoilfosfatidilcolina (DMPC), dipalmitoilfosfatidilcolina (DPPC), diestearoilfosfatidilcolina (DSPC), fosfatidiletanolamina (PE), dioleilfosfatidiletanolamina (DOPE), diestearoilfosfatidiletanolamina (DSPE), fosfatidilserina (PS), dimiristoilfosfatidilglicerol (DMPG), dipalmitoilfosfatidilglicerol (DPPG), fosfatidilinositol (PI), dipalmitoilfosfatidilserina (DPPS), diestearoilfosfatidilserina (DSPS).
[0089] Substâncias oleosas adequadas para o uso na presente invenção incluem, mas não se limitam a, oleato de decila, isohexadecano, ésteres do ácido esteárico e/ou oléico, etanolamida de ácido graxo de coco, óleos naturais, como o óleo de milho, amendoim, sésamo, oliva, jojoba, soja, álcool graxo, parafina, triglicerídeos de cadeia média, triglicerídeos de cadeia longa, palmitatos, miristatos e octildodecanol.
[0090] Lipídios sólidos adequados para o uso na presente invenção incluem, mas não se limitam a, triglicerídeos (triestearina, tricaprina, trilaurina, trimiristina, tripalmitina), ácidos graxos (ácido esteárico), álcoois graxos (álcool cetílico, álcool estearílico), ceras (mateiga de cacau, cera de carnaúba, cera de abelhas, palmitato de cetila), glicídeos parciais (monoestearato de glicerila, behenato de glicerila, palmitoestearato de glicerila, tripalmitato de glicerila, trimiristato de glicerila, triestearato de glicerila) e/ou mistura destes. [0091] Os lipídios podem ser peguilados, isto é, possuindo uma ramificação de polietilenoglicol (PEG) em sua cadeia, como DSPE-PEG, DMPE- PEG, colesterol-PEG, DPPE-PEG (dipalmitoilglicerofosfoetanolamina- polietilenoglicol), DLPE-PEG (dilauroilglicerofosfoetanolamina-polietilenoglicol), entre outros.
[0092] Os lipídios podem ser catiônicos, como 1 ,2-di-orto-octadecenil-3- trimetilamôniopropano (DOTMA), 1 ,2-dimiristoleil-sn-glicero-3-etilfosfocolina (EPC), didodecildimetilamônio (DDAB), 1 , dimetildioctadecilamônio (DODAP), dioleiltrimetilamônopropano (DOTAP), dimetilaminoetanocarbamoilcolesterol (DC-colesterol), entre outros.
[0093] Para se obter um efeito ótimo das composições da invenção, as proporções respectivas de ácido nucleico e de lipídio catiônico são, de preferência, determinadas de maneira que a relação cargas positivas do agente de transfecção/cargas negativas dos ácidos nucleicos seja compreendida entre 0,1 e 15 e, com maior preferência, entre 2 e 8. Essa relação de cargas pode contabilizar ou não outros lipídios carregados positivamente ou negativamente na formulação.
[0094] Com maior preferência, as composições da invenção compreendem, ainda, um ou vários lipídeos neutros. A requerente prevê que a adição de um lipídio neutro permite melhorar a formação das partículas lipídicas e, de maneira surpreendente, favorecer a penetração da partícula na célula, desestabilizando sua membrana. De maneira particularmente vantajosa, utilizam-se lipídios naturais ou sintéticos, zwitteriônicos ou desprovidos de carga iônica nas condições fisiológicas. Eles podem ser escolhidos mais particularmente entre a dioleilfosfatidiletanolamina (DOPE), a oleilpalmitoilfosfatidiletanolamina (POPE), a di-estearoil, - palmitoil, -miristoil fosfatidileta-5 nolamina, assim como seus derivados N-metilados 1 a 3 vezes; os fosfatidilglicerois, os diacilglicerois, os glicosildiacilglicerois, os cerebrosídios (tais como notadamente os galactocerebrosidios), os esfingolipídios (tais como notadamente as esfingomielinas), ou ainda os asialogangliosídios (tais como notadamente os asialoGMI e Glv12).
[0095] De preferência, as composições da invenção, que empregam um lipofectante a título de agente de transfecção, compreendem uma relação de 0,1 a 20 equivalentes de lipídio neutro para 0,1 a 20 equivalentes de lipídio catiônico, e, com maior preferência, a relação é respectivamente de 1 a 5 para 1 a 5, respectivamente.
[0096] No caso em que o agente de transfecção é um lipídio catiônico, as composições da invenção compreendem, além do lipídio catiônico nas relações citadas acima, de 0,1 a 20 equivalentes molares de lipídio neutro para 1 equivalente molar de fosfato do ácido nucleico, e, com maior preferência, de 2 a 8.
[0097] Em uma realização preferencial os lipossomas descritos na presente invenção compreendem o uso de DOPE (0,5% p/p a 5,0% p/p), DOTAP (0,5% p/p a 5,0% p/p) e DSPE-PEG (0,25% p/p a 5,0% p/p).
[0098] Em uma realização preferencial as nanoemulsões descritas na presente invenção compreendem o uso de DOPE (0,5% p/p a 5,0% p/p), DOTAP (0,5% p/p a 5,0% p/p), DSPE-PEG (0,25% p/p a 5,0% p/p) e triglicerídeos de cadeia média (2,0% p/p a 20,0% p/p).
[0099] Em uma realização preferencial as nanopartículas lipídicas sólidas descritas na presente invenção compreendem o uso de monoestearato de glicerila (2,0% p/p a 10,0% p/p).
[0100] Em uma realização preferencial os carreadores lipídicos nanoestruturados descritos na presente invenção compreendem o uso de uma mistura na proporção 7:3 de monoestearato de glicerila e triglicerídeos de cadeia média (2,0% p/p a 10,0% p/p).
Agentes de tonicidade
[0101] Os agentes de tonicidade podem ser glicerol, manitol, propilenoglicol, etilenoglicol, sorbitol, etc. A concentração pode estar entre 0,1 % p/p e 5,0% p/p.
Tensoativos hidrofílicos [0102] Os tensoativos hidrofílicos adequados para o uso na presente invenção incluem os surfactantes aniônicos, não aniônicos, catiônicos e anfóteros. Preferencialmente, os surfactantes da presente invenção podem ser escolhidos de grupo que compreende, sem, contudo, limitar, surfactantes não iónicos como polissorbato 20, polissorbato 40, polissorbato 80, monoestearato de sorbitano 20, monoestearato de sorbitano 40, monoestearato de sorbitano 60, monoestearato de sorbitano 80, emulsificantes colato de sódio, deoxicolato de sódio, glicolato de sódio, poloxâmeros, taurocolato de sódio, taureodexicolato de sódio, e/ou mistura destes.
[0103] Em uma realização preferencial as formulações descritas na presente invenção compreendem o uso de polissorbarto 80 (1 ,0% p/p a 5,0% p/p).
Policátions
[0104] A fase aquosa pode conter policátions não-lipídicos tais como quitosana, brometo de hexadimetrina ou outro sal, poli-L-lisina, polialilamina, polietileneimina, entre outros. A adição destes pode ser realizada durante ou após a formação das nanoestruturas lipídicas.
[0105] Em uma realização preferencial as formulações descritas na presente invenção compreendem o uso de quitosana (0,001 mg/mL p/v a 10mg/ml_ p/v).
Solventes orgânicos
[0106] Solventes orgânicos adequados para o uso na presente invenção incluem, mas não se limitam a, solventes orgânicos polares próticos e apróticos, como por exemplo etanol, acetona e/ou mistura desses, e solventes orgânicos apoiares, como por exemplo, clorofórmio.
[0107] Em uma realização preferencial os lipossomas e as nanoemulsões da presente invenção compreendem o uso de clorofórmio para a solubilização dos componentes da fase lipídica e uma mistura de clorofórmio: metanol: água (1 :2,1 :1 ).
Obtenção das nanoestruturas lipídicas [0108] Os processos de obtenção das nanoemulsões compreendem as etapas de:
a) dissolver de 2,0% p/p a 20,0% p/p de fase lipídica em uma solução orgânica composta por um solvente orgânico apolar;
b) dissolver de 0,1 % p/p a 5,0% p/p de agente de tonicidade em uma solução aquosa;
c) evaporar todo o solvente orgânico do produto obtido na etapa a, obtendo assim um filme lipídico;
d) adicionar a solução aquosa ao filme lipídico e deixar por 4 a 72 horas em 2°C a 20°C;
e) sonicar a formulação por 1 a 60 minutos a uma temperatura entre 25°C e 50°C;
f) homogeneizar a formulação em homogeneizador à alta pressão ou microfluidizador, por 2 a 20 ciclos de 250 a 2000 bar cada;
g) adicionar policátions não-lipídicos (0,001 mg/mL p/v a 10mg/ml_ p/v).
[0109] Os processos de obtenção dos lipossomas compreendem as etapas de:
a) dissolver de 2,0% p/p a 20,0% p/p de fase lipídica em uma solução orgânica composta por um solvente orgânico apolar;
b) dissolver de 0,1 % p/p a 5,0% p/p de agente de tonicidade em uma solução aquosa;
c) evaporar todo o solvente orgânico do produto obtido na etapa a;
d) adicionar a solução aquosa ao filme lipídico e deixar por 4 a 72 horas em 2°C a 20°C;
e) sonicar a formulação por 1 a 60 minutos a uma temperatura entre 25°C e 50°C;
f) homogeneizar a formulação em homogeneizador à alta pressão ou microfluidizador, por 2 a 20 ciclos de 250 a 2000 bar cada;
g) extrusar a formulação em ao menos uma membrana com poro de 1 000 nm a 220 nm e em ao menos uma membrana de 220 nm a 50 nm. g) adicionar policátions não-lipídicos (0,001 mg/mL p/v a 10mg/ml_ p/v).
[0110] É um objeto adicional da presente invenção os processos de obtenção das nanoemulsões que terão os ácidos nucleicos encapsulados, com as etapas de:
a) dissolver de 0,1 % p/p a 5,0% p/p de lipídeo catiônico juntamente com os ácidos nucleicos em uma mistura monofásica de solventes apolar: prótico: prótico (1 :2,1 :1 ) por 30 minutos;
b) separar a monofase num sistema de duas fases pela adição de um solve apolar e um prótico (2 mL cada), seguido por vórtex breve. As fases polar e apolar são separadas por centrifugação a uma pressão entre 1000 e 4000 x g durante 2 a 30 min em temperatura entre 15°C e 35°C;
c) adicionar de 2,0% p/p a 20,0% p/p de fase lipídica à fase orgânica do pré-complexo;
d) dissolver de 0,1 % p/p a 5,0% p/p de agente de tonicidade em uma solução aquosa;
e) evaporar o solvente orgânico para formar um filme;
f) adicionar a fase aquosa;
g) deixar por 4 a 72 horas em 2°C a 20°C;
e) sonicar por 1 a 60 minutos a uma temperatura entre 25°C e 50°C; f) homogeneizar a formulação em homogeneizador à alta pressão ou microfluidizador, por 2 a 20 ciclos de 250 a 2000 bar cada;
g) adicionar policátions não-lipídicos (0,001 mg/mL p/v a 10mg/mL p/v).
[0111] O processo de obtenção das nanoestruturas lipídicas sólidas e carreadores lipídicos nanoestruturados contendo os ácidos nucleicos adsorvidos, compreende as etapas de:
a) fundir de 2,0% p/p a 20,0% p/p de fase lipídica a uma temperatura entre 30Q C a 80Q C;
b) dissolver de 1 ,0% p/p a 5,0% p/p de tensoativo e de 0,1 % p/p a 5,0% p/p de agente de tonicidade em uma solução aquosa, com temperatura de 30QC a 80QC; c) adicionar a solução aquosa na solução oleosa, sob agitação e com temperatura de 30Q C a 80Q C;
d) agitar no dispersor ultra-turrax, a uma velocidade entre 500 e 25000 rpm sob aquecimento de 30Q C a 80Q C, durante período compreendido de 30 segundos a 5 minutos;
e) homogeneizar a formulação em homogeneizador à alta pressão ou microfluidizador, por 2 a 20 ciclos de 250 a 2000 bar cada.
f) adicionar policátions não-lipídicos (0,001 mg/mL p/v a 10mg/ml_ p/v). Formulações compreendendo os carreadores lipídicos
[0112] Os produtos da presente invenção são formulações que compreendem as nanoestruturas lipídicas, associadas a excipientes adequados, úteis nas áreas farmacêutica e médica.
[0113] Os carreadores da presente invenção podem estar sob a forma de nanoemulsões, lipossomas, nanopartículas lipídicas sólidas e carreadores lipídicos nanoestruturados.
[0114] Em uma concretização, as composições poderão ser incorporadas em forma de solução, suspensão, gel, pó, entre outras.
Especificação das nanopartículas lipídicas
[0115] A formação de nanopartículas foi primeiramente confirmada pela evidência de caráter homogéneo (sem separação de fases) e pela não ocorrência de precipitados. A seguir, as formulações foram especificadas de acordo com o diâmetro médio de gotícula/vesícula, índice de polidispersão, potencial zeta, e capacidade de complexação com os ácidos nucleicos.
[0116] Determinação do diâmetro de gotícula/partícula e do índice de polidispersão (IPD):
[0117] As formulações foram especificadas através do espalhamento de luz dinâmico pela difusão de raio laser monocromático que atravessa a dispersão coloidal. Essa determinação foi realizada observando-se o espalhamento a 173Q C após diluição das amostras em água purificada, previamente filtrada em membrana de 0,22 μιη. Os resultados foram expressos como média de três determinações independentes.
Determinação do potencial zeta
[0118] O potencial zeta foi determinado através da mobilidade eletroforética das gotículas/vesículas. As medidas foram realizadas após calibração com uma solução padrão a -55 mV (látex poliestireno carboxilato). Todas as análises foram realizadas após a diluição das amostras em água purificada, previamente filtrada em membrana nylon de 0,22 μιη. Os resultados foram expressos como média de três determinações independentes.
Taxa de complexação com os ácidos nucleicos
[0119] A complexação dos ácidos nucleicos com as formulações foi verificada através de eletroforese em gel de agarose. Os complexos foram avaliados na relação de cargas +4/ -1 (cargas do lipídio catiônico/cargas dos ácidos nucleicos) e foram sujeitos à eletroforese em gel de agarose 1 % corados com o corante SYBR® Gold Nucleic Acid Gel Stain (Invitrogen, Carlsbad, EUA). A estabilidade dos complexos das nanoestruturas catiônicas/DNA foi determinada utilizando um ensaio de digestão com DNase I (Invitrogen, Carlsbad, EUA). As bandas foram analisadas e sua intensidade foi calculada através do software ImageJ®, gerando a taxa de complexação em porcentagem.
Exemplo 1 : Nanocarreador lipídico consistindo de uma nanoemulsão com complexação do ácido nucleico por adsorção.
Composição final:
[0120] Fase lipídica
a. 5% p/p Triglicerídeos de cadeia média
b. 0,56% p/p DOPE
c. 0,56% p/p DOTAP
d. 0,285% p/p DSPE-PEG
[0121] Fase aquosa
e. 2,25% p/p Glicerol
f. ácidos nucleicos para a proporção +4/-1 (DOTAP/ÁCIDO NUCLEICO). g. 0,001 mg/mL p/v quitosana.
Procedimento:
[0122] Primeiramente, os componentes da fase lipídica foram pesados e dissolvidos em clorofórmio, com agitação constante. Os componentes da fase aquosa foram pesados e dissolvidos em água purificada, com agitação constante. A fase orgânica foi rota evaporada a pressão normal e temperatura ambiente, para eliminação do solvente orgânico e até a secura total, para formação do filme lipídico. Ao final do processo, a fase aquosa foi vertida sobre o filme lipídico, que foi mantido a 4°C durante 12 horas. Após, a formulação foi sonicada a 37°C durante 15 minutos. Após, então, a formulação foi homogeneizada em homogeneizador a alta pressão por 10 ciclos de 500 bar cada, a fim de manter o diâmetro de gotícula da fase oleosa o menor possível e com menor índice de polidispersão. Por fim, os ácidos nucleicos foram adicionados à formulação e após, a solução de quitosana.
Produto obtido: Nanoemulsão (NA).
Resultados:
- Tamanho: 163 nm
- IPD: 0,14
- Potencial zeta: +47,1 mV
- Taxa de complexação: 100%. Ver figura 1 .
Exemplo 2: Nanocarreador lipídico consistindo de uma nanoemulsão com complexação do ácido nucleico por encapsulamento.
Composição:
[0123] Fase lipídica
h. 5% p/p Triglicerídeos de cadeia média
i. 0,56% p/p DOPE
j. 0,56% p/p DOTAP
k. 0,285% p/p DSPE-PEG
[0124] Fase aquosa
I. 2,25% p/p Glicerol m. ácidos nucleicos para a proporção +4/-1 (DOTAP/ÁCIDO
NUCLEICO)
n. 0,001 mg/mL p/v quitosana.
Procedimento:
[0125] Primeiramente, os componentes da fase lipídica foram pesados. O complexo hidrofóbico DNA/DOTAP foi preparado através da incubação dos ácidos nucleicos com o lipídio catiônico DOTAP numa mistura monofásica de clorofórmio:metanol:água (1 :2,1 :1 ) em temperatura ambiente durante 30 min. A monofase foi, então, dividida em duas fases pela adição de clorofórmio e água (2 mL de cada), seguido por vórtex breve. As fases aquosa superior e orgânica inferior foram separadas por centrifugação a 2000 x g durante 10 min em temperatura ambiente. Na fase orgânica, então, os demais lipídios foram dissolvidos. Os componentes da fase aquosa foram pesados e dissolvidos em água purificada, sob agitação constante. A fase orgânica foi rota evaporada a pressão normal em temperatura ambiente, para eliminação do solvente orgânico e até a secura total, para formação do filme lipídico. Ao final do processo, a fase aquosa foi vertida sobre o filme lipídico, que é mantido a 4°C durante 12 horas. Após, a formulação foi sonicada a 37°C durante 15 minutos. Após, então, a formulação foi homogeneizada em homogeneizador a alta pressão por 10 ciclos de 500 bar cada, a fim de manter o diâmetro de gotícula da fase oleosa o menor possível e com menor índice de polidispersão. Por fim a solução de quitosana foi adicionada à formulação.
Produto obtido: Nanoem u Isão (NE).
Resultados:
-Tamanho: 163 nm
-IPD: 0,14
-Potencial zeta: +48,7 mV
-Taxa de complexação: 100%. Ver figura 1 .
Exemplo 3: Nanocarreador lipídico consistindo de um lipossoma com complexação do ácido nucleico por adsorção. Composição
[0126] Fase lipídica
o 0,56% p/p DOPE
P 0,56% p/p DOTAP
q 0,285% p/p DSPE-PEG
[0127] Fase aquosa
r. 2,25% p/p Glicerol
s ácidos nucleicos para a proporção +4/-1 (DOTAP/ÁCIDO NUCLEICO)
t. 0,001 mg/ml_ p/v quitosana.
Procedimento:
[0128] Primeiramente, os componentes da fase lipídica foram pesados e dissolvidos em clorofórmio, com agitação constante. Os componentes da fase aquosa foram pesados e dissolvidos em água purificada, com agitação constante. A fase orgânica foi rota evaporada a pressão normal e temperatura ambiente, para eliminação do solvente orgânico e até a secura total, para formação do filme lipídico. Ao final do processo, a fase aquosa é vertida sobre o filme lipídico, que é mantido a 4°C durante 12 horas. Após, a formulação é sonicada a 37°C durante 15 minutos. Após, então, a formulação é homogeneizada em homogeneizador a alta pressão por 10 ciclos de 500 bar cada, a fim de manter o diâmetro de gotícula da fase oleosa o menor possível e com menor índice de polidispersão. Por fim, os ácidos nucleicos foram adicionados à formulação e, após, a quitosana.
Produto obtido: Lipossoma (LA).
Resultados:
-Tamanho: 108 nm
-IPD: 0,17
-Potencial zeta: +38,7 mV
-Taxa de complexação: 100%. Ver figura 1 .
Exemplo 4: Nanocarreador lipídico consistindo de uma nanopartícula lipídica sólida com complexação do ácido nucleico por adsorção.
Composição:
[0129] Fase orgânica
u. 1 ,4% p/p Monoestearato de glicerila
v. 0,6% p/p DOTAP
[0130] Fase aquosa
w. 1 ,0% p/p Polissorbato 80
x. 2,25% p/p Glicerol
y. ácidos nucleicos para a proporção +4/-1 (DOTAP/ÁCIDO
NUCLEICO)
z. 0,005mg/ml_ p/v quitosana.
Procedimento:
[0131] Primeiramente, os componentes da fase lipídica foram pesados e fundidos a uma temperatura de 80Q C, sob agitação constante. Os componentes da fase aquosa foram pesados e dissolvidos em um volume final de 100 mL de água purificada, sob agitação constante a uma temperatura de 80Q C. A fase aquosa foi vertida sobre a fase lipídica, mantendo-se a temperatura em 80Q C e com agitação constante durante 15 minutos. A formulação foi misturada em ultra-turrax durante 1 minuto, a uma velocidade de 13.500 rpm e temperatura de 80Q C. Ao final do processo, a formulação foi então homogeneizada a quente em homogeneizador a alta pressão com 10 ciclos de 750 bar cada, a fim de manter o diâmetro de partícula da fase oleosa o menor possível e com menor índice de polidispersão. O produto foi deixado em repouso em temperatura ambiente por no mínimo 10 minutos. Por fim a solução de quitosana foi adicionada.
Produto obtido: Nanopartícula lipídica sólida.
Resultados:
-Tamanho: 388 nm
-IPD: 0,69
-Potencial zeta: +2,20 mV
-Taxa de complexação: 100%. Exemplo 5: Nanocarreador lipídico consistindo de um carreador lipídico nanoestruturado.
Composição:
[0132] Fase orgânica
aa.1 ,0% p/p Monoestearato de glicerila
bb.0,5% p/p DOTAP
cc. 0,5% p/p Triglicerídeos de cadeia média
[0133] Fase aquosa
dd.1 ,0% p/p Polissorbato 80
ee.2,25% p/p Glicerol
ff. ácidos nucleicos para a proporção +4/-1 (DOTAP/ÁCIDO
NUCLEICO)
gg.0,05mg/mL p/v quitosana.
Procedimento:
[0134] Primeiramente, os componentes da fase lipídica foram pesados e fundidos a uma temperatura de 80Q C, sob agitação constante. Os componentes da fase aquosa foram pesados e dissolvidos para um volume final de 100 mL de água purificada, com agitação constante a uma temperatura de 80Q C. A fase aquosa foi vertida sobre a fase lipídica, mantendo-se a temperatura a 80Q C e com agitação constante durante 15 minutos. A formulação foi misturada em ultra-turrax durante 1 minuto, a uma velocidade de 13.500 rpm e temperatura de 80Q C. Ao final do processo, a formulação foi então homogeneizada a quente em homogeneizador a alta pressão com 10 ciclos de 750 bar cada, a fim de manter os diâmetros de partícula da fase oleosa o menor possível e com menor índice de polidispersão. O produto foi deixado em repouso a uma temperatura ambiente por no mínimo 10 minutos. Por fim a quitosana foi adicionada.
Produto obtido: Carreador lipídico nanoestruturado.
Resultados:
-Tamanho: 238 nm
-IPD: 0,48 -Potencial zeta: +3,12 mV
-Taxa de complexação: 100%.
Administração nasal
[0135] Para a entrega dos carreadores lipídicos contendo ao menos um ácido nucleico para fins de terapia gênica do sistema nervoso central, a invenção proporciona a administração nasal in vivo. Esta administração pode se dar com gotas nasais, por spray intranasal ou intratraqueal para entrega pulmonar e/ou cerebral, por via inalatória, e/ou por meio de outros veículos aerossóis.
[0136] Para a entrega dos carreadores lipídicos contendo ao menos um ácido nucleico para fins de terapia gênica do sistema nervoso central, a invenção prioriza o uso da via nasal. Muitos fármacos potenciais para o tratamento de doenças neurológicas são incapazes de atingir o cérebro em concentrações suficientes para serem terapêuticas devido à barreira hematoencefálica. Por outro lado, a administração direta de fármacos ao cérebro proporciona a possibilidade de uma maior efetividade terapêutica do que com a administração sistémica de um fármaco, exatamente por contornar a barreira hematoencefálica e por proporcionar o transporte de moléculas de alto peso molecular. A utilização da administração nasal de agentes terapêuticos ao cérebro proporciona um meio de contornar a barreira hematoencefálica de uma forma não invasiva. Nesse contexto, mostrou-se que os transportadores de fármaco nanométricos melhoram a administração de fármacos ao sistema nervoso central em comparação com soluções de fármaco equivalentes. As condições neurológicas que poderiam se beneficiar da administração nasal para entrega no cérebro incluem dor, epilepsia, doenças neurodegenerativas e doenças infecciosas (WY, O. et al, Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders, Curr Med Chem, 2014, 21 (37), p. 4247-56).
Exemplos de aplicação do produto obtido de acordo com o exemplo 3, acima descrito: Ensaios in vivo em modelo murino de MPS I
[0137] Foi utilizado como modelo animal camundongo nocaute para o gene da Idua (murina). Este modelo foi criado por meio da interrupção do éxon 6 do gene da Idua. No meio do éxon foi inserido um gene de resistência à neomicina em sentido inverso. Como resultado foram produzidos camundongos com uma doença que mimetiza a Síndrome de Hurler, fenótipo mais grave da MPS I, com aumento do nível de glicosaminoglicanos na urina e em diversos tecidos, e atividade indetectável de Idua.
[0138] Todos os procedimentos com animais foram realizados na Unidade de Experimentação Animal do Centro de Pesquisa Experimental do Hospital de Clínicas de Porto Alegre, e seguem as normas de adequação às diretrizes vigentes preditas na Lei 1 1 .794/08 e nas resoluções normativas números 12 (Utilização de Animais para fins Científicos e Didáticos) e 30 (Diretrizes da Prática de Eutanásia do CONCEA). Os animais são mantidos em ambiente controlado (temperatura 20-24QC, umidade relativa do ar 40-60% e sistemas de exaustão de ar) com ciclos de 12 horas de luz e 12 horas de escuro e alimentação comercial padrão para a espécie e água ad libitum. Todos os animais utilizados foram genotipados por identificação molecular do transgene. Construção dos plasmídeos CRISPR/Cas9 ROSA26 e Doador Idua ROSA26
[0139] Um plasmídeo do sistema CRISPR/Cas9 foi utilizado para os experimentos de edição genômica. Neste sistema, a nuclease Cas9 e o RNA guia formado por um transcrito crRNA-tracrRNA estão presentes em um único vetor, o sgRNA (single guide RNA). Uma sequência alvo para clivagem pela Cas9 foi selecionada no lócus ROSA26 do genoma de camundongos e foi inserida no vetor. O vetor completo foi inserido por transformação por choque térmico em bactérias competentes TOP 10 (Invitrogen, USA), cujas colónias foram então expandidas e submetidas à extração de plasmídeo com o kit Maxiprep (Life Technologies, EUA). O DNA plasmideal extraído foi então sequenciado para verificação da correta orientação do inserto.
[0140] Para a recombinação direcionada é utilizado um vetor contendo o cDNA da Idua. O construto contém a sequência de cDNA da Idua regulada por um promotor e duas regiões homólogas (de aproximadamente 1 kb cada uma) ao lócus ROSA26 de camundongos, na região do lócus em que a Cas9 reconhece e cliva.
[0141] Já para os experimentos de terapia gênica do sistema nervoso central com plasmídeo recombinante, foi utilizado um plasmídeo (pIDUA) contendo o cDNA da IDUA construído usando o vetor de expressão comercial pREP9 (Invitrogen, USA) como descrito por Camassola e colaboradores (M. Camassola, L.M. Braga, A. Delgado-Cahedo, T.P. Dalberto, U. Matte, M. Burin, R. Giugliani, N.B. Nardi, Nonviral in vivo gene transfer in the mucopolysaccharidosis I murine model, J. Inherit. Metab. Dis. 28 (2005) 1035- 1043).
Tratamentos
[0142] Um grupo (n=5) foi utilizado para a administração dos complexos lipossomais contendo o plasmídeo CRISPR/Cas9 e o plasmídeo ldua/Rosa26 (LA) e este recebeu por via nasal o complexo LA em 30 aplicações de 120μΙ_. Como controles foram utilizados camundongos normais que não receberam nenhum tratamento (n=3) e camundongos MPS I que não receberam nenhum tratamento (n=3). Para a administração nasal, os animais são imobilizados pelo pesquisador e são instiladas seis doses de 10μΙ_ em cada narina, a cada 15 minutos, uma vez por dia, durante 30 dias.
[0143] Outro tratamento foi concretizado utilizando-se um grupo (n=5) para a administração dos complexos de nanoemulsões contendo o plasmídeo pIDUA (NA/pIDUA) e este recebeu por via nasal o complexo em 2 aplicações de 120μΙ_. Como controles foram utilizados camundongos normais que não receberam nenhum tratamento (n=3) e camundongos MPS I que não receberam nenhum tratamento (n=3). Para a administração nasal, os animais são imobilizados pelo pesquisador e são instiladas seis doses de 10μΙ_ em cada narina, a cada 15 minutos, duas vezes em um dia.
Dosaqem enzimática sérica de Idua [0144] O nível sérico e tecidual de Idua foi mensurado nos animais tratados com LA a partir de 15 dias após o tratamento, e após, 30 dias. Os resultados foram comparados com animais MPS I não-tratados e animais normais. A atividade enzimática foi avaliada através do ensaio enzimático por método fluorimétrico utilizando o substrato artificial 4-metil-umbeliferil-alfa-L- iduronídeo. A unidade a ser adotada foi nmol/h/mL de soro ou nmol/h/mg de proteína (medida através do método de Lowry). Para isto, o soro foi incubado com o substrato fluorescente 4-metilumbeliferil α-L-iduronídeo a 37 °C por 1 h em tampão formato de sódio (pH 2,8). A fluorescência foi medida em 365 nm (excitação) e 450 nm (emissão) utilizando o fluorímetro SpectraMax M2 (Molecular Devices, CA, USA). Neste ensaio, a quantidade de IDUA foi medida pela quantidade de substrato clivado em 1 hora. Ver Figuras 2 e 3.
[0145] A figura 5 mostra os valores de atividade enzimática de IDUA encontrada em diferentes órgãos e mais precisamente no cérebro de camundongos MPS I não tratados e em camundongos MPS I tratados com o complexo NA/pIDUA por via nasal em uma aplicação. Valores relativos à atividade enzimática de camundongos normais.
Equivalentes
[0146] Diversas modificações do invento e muitas outras concretizações do mesmo, em adição aos representados e descritos aqui, tornar-se-ão evidentes para os especialistas na técnica do conteúdo integral deste documento, incluindo referências à literatura científica e de patentes aqui referidas. O assunto presente contém informações importantes, exemplificação e orientação que pode ser adaptada à prática desta invenção nas suas várias formas de realização e equivalentes.

Claims

Reivindicações
1 . Composição para terapia gênica do sistema nervoso central caracterizada por compreender ao menos um ácido nucleico adsorvido ou encapsulado e carreadores não-virais, com diâmetro médio de gotícula/partícula compreendido na faixa de 0,001 a 1 ,0 micrômetro.
2. Composição para terapia gênica do sistema nervoso central, de acordo com a reivindicação 1 , caracterizada pelos ácidos nucleicos serem um ou mais selecionados do grupo que consiste em: sequência de RNA guia, sequência codificadora de nuclease, sequência de DNA modelo para recombinação homóloga, sequência inteira de um gene ou plasmídeo recombinante contendo a sequência inteira de um gene.
3. Composição para terapia gênica do sistema nervoso central, de acordo com qualquer uma das reivindicações de 1 e 2, caracterizada pelas nanoestruturas serem nanoemulsões, lipossomas, nanopartículas lipídicas sólidas ou carreadores lipídicos nanoestruturados.
4. Composição para terapia gênica do sistema nervoso central, de acordo com qualquer uma das reivindicações 1 a 3, caracterizada por compreender excipientes farmaceuticamente adequados.
5. Processo de obtenção de composição para terapia gênica do sistema nervoso central conforme definido em qualquer uma das reivindicações 1 a 4, caracterizado pela obtenção da composição para terapia gênica do sistema nervoso central compreender as etapas de:
(a) dissolver entre 2,0% p/p a 20,0% p/p de fase lipídica em uma solução orgânica;
(b) dissolver entre 0,1 % p/p a 5,0% p/p de agente de tonicidade em uma solução aquosa;
(c) evaporar a solução orgânica obtida na etapa (a), para formar um filme;
(d) adicionar a solução aquosa obtida na etapa (b) ao filme lipídico obtido na etapa (c); (e) deixar descansar o produto obtido na etapa (d) por 4 a 72 horas em uma temperatura entre 2°C e 20°C;
(f) sonicar a formulação obtida na etapa (e) por 1 a 60 minutos a uma temperatura entre 25°C e 50°C;
(g) h omogeneizar a formulação obtida na etapa (f) em um homogeneizador à alta pressão ou microfluidizador, por 2 a 20 ciclos de 250 a 2000 bar cada; e
h) adicionar policátions não-lipídicos (0,001 mg/mL p/v a 10mg/ml_ p/v).
6. Processo de obtenção de composição para terapia gênica do sistema nervoso central de acordo com a reivindicação 7, caso o produto a ser obtido seja o lipossoma, caracterizado por compreender a etapa adicional:
(i) extrusar a formulação obtida na etapa (g) em ao menos uma membrana com tamanho de poro de 1 000 nm a 220 nm e em ao menos uma membrana com tamanho de poro de 220 nm a 50 nm.
7. Processo de obtenção de composição para terapia gênica do sistema nervoso central, de acordo com a reivindicação 6, caracterizado pela solução orgânica ser um solvente orgânico escolhido do grupo que compreende solventes orgânicos polares próticos, apróticos ou apoiares e/ou mistura dos mesmos.
8. Processo de obtenção de composição para terapia gênica do sistema nervoso central de acordo com a reivindicação 6, caracterizado pelo fato de que, para a obtenção de nanoemulsões contendo os ácidos nucleicos encapsulados, a solução orgânica descrita na etapa (a) é a fase orgânica cio pré-complexo obtido através das etapas:
(i) dissolver de 0,1 % p/p a 5,0% p/p de lipídeo catiônico e ácidos nucleicos em uma mistura monofásica de solventes apolar:prótico:prótico (1 :2,1 :1 ) por 30 minutos;
(ii) adicionar ao produto obtido na etapa (i) 2 mL de solvente apolar e 2 mL de solvente prótico;
(iii) agitar o produto obtido na etapa (ii) brevemente em vórtex; (iv) centrifugar o produto obtido na etapa (iii) a uma pressão entre 1000 e 4000 x g durante 2 a 30 min em uma temperatura entre 15 a 35°C; e
(v) separar a fase orgânica obtida na etapa (iv).
9. Processo de obtenção de composição para terapia gênica do sistema nervoso central conforme definido em qualquer uma das reivindicações 1 a 4, caracterizado por, caso o produto a ser obtido seja nanoestruturas lipídicas sólidas ou carreadores lipídicos nanoestruturados contendo os ácidos nucleicos adsorvidos, compreender as etapas de:
(A) fundir de 2,0% p/p a 20,0% p/p de fase lipídica a uma temperatura entre 30Q C e 80Q C;
(B) dissolver, de 1 ,0% p/p a 5% p/p de tensoativo e de 0,1 % p/p a 5,0% p/p de um agente de tonicidade em uma solução aquosa, com temperatura de 30Q C a 80Q C;
(C) adicionar a solução aquosa da etapa (A) na solução oleosa da etapa (B), sob agitação e com temperatura de 30Q C a 80Q C;
(D) agitar o produto obtido em (C) em dispersor ultra-turrax, a uma velocidade entre 500 e 25000 rpm, sob aquecimento de 30Q C a 80Q C, durante 30 segundos a 5 minutos;
(E) homogeneizar a formulação obtida em (D) em homogeneizador à alta pressão ou microfluidizador, por 2 a 20 ciclos de 250 a 2000 bar cada; e
(F) adicionar policátions não-lipídicos (0,001 mg/mL p/v a 10mg/ml_ p/v).
10. Processo de obtenção de composição editora de genoma, de acordo com as reivindicações 5 a 9, caracterizado pela formulação ser submetida à etapa posterior de evaporação da água sob pressão normal ou reduzida entre 0 e 1 000 mbar a uma temperatura entre 10°C e 50°C.
1 1 . Processo de obtenção de composição para terapia gênica do sistema nervoso central, de acordo com a reivindicação 9, caracterizado pelo solvente orgânico polar prótico ser metanol, e o solvente orgânico apolar ser clorofórmio.
12. Processo de obtenção de composição para terapia gênica do sistema nervoso central, de acordo com as reivindicações 5 a 9 caracterizado pela fase lipídica ser escolhida do grupo que consiste em:
a) lipídeos líquidos tais como oleato de decila, isohexadecano, ésteres do ácido esteárico e/ou oléico, etanolamida de ácido graxo de coco, óleos naturais, como o óleo de milho, amendoim, sésamo, oliva, jojoba, soja, álcool graxo, parafina, triglicerídeos de cadeia média, triglicerídeos de cadeia longa, palmitatos, miristatos e octildodecanol;
b) lipídeos sólidos tais como triestearina, tricaprina, trilaurina, trimiristina, tripalmitina, ácido esteárico, álcool cetílico, álcool estearílico, mateiga de cacau, cera de carnaúba, cera de abelhas, palmitato de cetila, monoestearato de glicerila, behenato de glicerila, palmitoestearato de glicerila, tripalmitato de glicerila, trimiristato de glicerila, triestearato de glicerila e/ou mistura destes; c) tensoativos lipofílicos tais como lecitinas e fosfolipídeos e/ou mistura dos mesmos;
d) lipídeos neutros;
e) lipídeos catiônicos; e
f) lipídios com ramificação de PEG (peguilados).
13. Processo de obtenção de composição para terapia gênica do sistema nervoso central, de acordo com as reivindicações 5 a 9, caracterizado pelo agente de tonicidade ser escolhido do grupo que compreende sorbitol, etilenoglicol, polietilenoglicol, manitol, glicerol, e/ou mistura destes.
14. Processo de obtenção de composição para terapia gênica do sistema nervoso central, de acordo com qualquer uma das reivindicações 5 a 13, caracterizado pela fase lipídica e fase aquosa do processo de obtenção dos lipossomas compreenderem:
fase lipídica:
- DOPE (0,5% p/p a 5,0% p/p);
- DOTAP (0,5% p/p a 5,0% p/p);
- DSPE-PEG (0,25% p/p a 5,0% p/p);
fase aquosa:
- Glicerol (0,1 % p/p e 5,0% p/p); - Ácidos nucleicos para a proporção entre +2/-1 e +8/-1 (DOTAP/ÁCIDO NUCLEICO);
- Solução de policátions não-lipídicos (0,001 mg/mL p/v a 10mg/ml_ p/v).
15. Processo de obtenção de composição para terapia gênica do sistema nervoso central, de acordo com qualquer uma das reivindicações 5 a 13, caracterizado pela fase lipídica e fase aquosa do processo de obtenção das nanoemulsões compreenderem:
fase lipídica:
- DOPE (0,5% p/p a 5,0% p/p);
- DOTAP (0,5% p/p a 5,0% p/p);
- DSPE-PEG (0,25% p/p a 5,0% p/p);
- Triglicerídeos de cadeia média (2,0% p/p a 20,0% p/p);
fase aquosa:
- Glicerol (0,1 % p/p e 5,0% p/p)
- Ácidos nucleicos para a proporção entre +2/-1 e +8/-1 (DOTAP/ÁCIDO NUCLEICO);
- Solução de policátions não-lipídicos (0,001 mg/mL p/v a 10mg/mL p/v).
16. Processo de obtenção de composição para terapia gênica do sistema nervoso central, de acordo com qualquer uma das reivindicações 5 a 13, caracterizado pela fase lipídica e fase aquosa do processo de obtenção das nanopartículas lipídicas sólidas compreenderem:
fase lipídica:
- monoestearato de glicerila (2,0% p/p a 10,0% p/p);
- DOTAP (0,5% p/p a 5,0% p/p);
fase aquosa:
- 1 ,0% p/p Polissorbato 80 (1 ,0% p/p a 5,0% p/p);
- Glicerol (0,1 % p/p e 5,0% p/p); e
- Ácidos nucleicos para a proporção entre +2/-1 e +8/-1 (DOTAP/ÁCIDO NUCLEICO);
- Solução de policátions não-lipídicos (0,001 mg/mL p/v a 10mg/mL p/v).
17. Processo de obtenção de composição editora de genoma, de acordo com qualquer uma das reivindicações 5 a 13, caracterizado pela fase lipídica e fase aquosa do processo de obtenção dos carreadores lipídicos nanoestruturados compreenderem:
fase lipídica:
- Mistura na proporção 7:3 de monoestearato de glicerila e triglicerídeos de cadeia média (2,0% p/p a 10,0% p/p);
- DOTAP (0,5% p/p a 5,0% p/p);
fase aquosa:
- 1 ,0% p/p Polissorbato 80 (1 ,0% p/p a 5,0% p/p);
- Glicerol (0,1 % p/p e 5,0% p/p); e
- Ácidos nucleicos para a proporção entre +2/-1 e +8/-1 (DOTAP/ÁCIDO NUCLEICO);
- Solução de policátions não-lipídicos (0,001 mg/mL p/v a 10mg/ml_ p/v).
18. Processo de obtenção de composição para terapia gênica do sistema nervoso central, de acordo com qualquer uma das reivindicações 5 a 13, caracterizado pela adição de uma solução de policátions não-lipídicos na concentração de 0,001 mg/mL (p/v) a 10mg/mL (p/v), que compreende a quitosana, brometo de hexadimetrina ou outro sal, poli-L-lisina, polialilamina, polietileneimina, entre outros, e/ou mistura destes. A adição destes pode ser realizada antes ou após a formação das nanoestruturas lipídicas ou dos complexos com os ácidos nucleicos.
19. Processo de obtenção de composição para terapia gênica do sistema nervoso central, de acordo com qualquer uma das reivindicações 5 a 18, caracterizado pela incorporação das composições em forma de solução, suspensão, gel, pó, entre outras formas farmacêuticas.
20. Uso da composição para terapia gênica do sistema nervoso central conforme definido em qualquer uma das reivindicações 1 a 4, caracterizado por ser no preparo de um medicamento para o tratamento de doenças causadas por deficiências ou anomalias genéticas que possuam acometimento neurológico.
21 . Uso da composição para terapia gênica do sistema nervoso central de acordo com a reivindicação 20, caracterizado por ser no preparo de um medicamento para o tratamento das doenças lisossômicas de depósito.
22. Uso da composição para terapia gênica do sistema nervoso central de acordo com as reivindicações 20 ou 21 , caracterizada pela administração ser nasal tendo como alvo o sistema nervoso central.
PCT/BR2018/050236 2017-07-31 2018-07-12 Composição para terapia gênica do sistema nervoso central, processo de obtenção e uso da mesma WO2019023770A1 (pt)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/635,614 US20210008224A1 (en) 2017-07-31 2018-07-12 Composition for gene therapy of the central nervous system, process of production and use thereof
EP18840364.6A EP3662934A4 (en) 2017-07-31 2018-07-12 COMPOSITION FOR GENE THERAPY OF THE CENTRAL NERVOUS SYSTEM, METHOD FOR PRODUCING IT AND USING IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102017016440-3A BR102017016440A2 (pt) 2017-07-31 2017-07-31 Composição para terapia gênica do sistema nervoso central, processo de obtenção e uso da mesma
BRBR1020170164403 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019023770A1 true WO2019023770A1 (pt) 2019-02-07

Family

ID=65232204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2018/050236 WO2019023770A1 (pt) 2017-07-31 2018-07-12 Composição para terapia gênica do sistema nervoso central, processo de obtenção e uso da mesma

Country Status (4)

Country Link
US (1) US20210008224A1 (pt)
EP (1) EP3662934A4 (pt)
BR (1) BR102017016440A2 (pt)
WO (1) WO2019023770A1 (pt)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022109050A1 (en) * 2020-11-18 2022-05-27 Bexson Biomedical, Inc. Complexing agent salt formulations of pharmaceutical compounds
US11534454B2 (en) 2020-11-18 2022-12-27 Bexson Biomedical, Inc. Complexing agent salt formulations of pharmaceutical compounds

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580859A (en) 1989-03-21 1996-12-03 Vical Incorporated Delivery of exogenous DNA sequences in a mammal
US5593972A (en) 1993-01-26 1997-01-14 The Wistar Institute Genetic immunization
WO2006041942A2 (en) 2004-10-04 2006-04-20 Qlt Usa, Inc. Ocular delivery of polymeric delivery formulations
WO2012135805A2 (en) 2011-03-31 2012-10-04 modeRNA Therapeutics Delivery and formulation of engineered nucleic acids
WO2013040295A2 (en) * 2011-09-14 2013-03-21 University Of South Florida Divalent-metal coated nanoparticles for delivery of compositions into the central nervous system by nasal insufflation
WO2013188979A1 (en) 2012-06-20 2013-12-27 Frank Gu Mucoadhesive nanoparticle delivery system
WO2014093622A2 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications
WO2015023882A1 (en) 2013-08-14 2015-02-19 Kla-Tencor Corporation System and method for imaging a sample with a laser sustained plasma illumination output
US20150110857A1 (en) * 2013-10-22 2015-04-23 Shire Human Genetic Therapies, Inc. Cns delivery of mrna and uses thereof
WO2015089419A2 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components
WO2015089462A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for genome editing
WO2015117021A1 (en) 2014-01-31 2015-08-06 Factor Bioscience Inc. Methods and products for nucleic acid production and delivery
WO2015179492A1 (en) 2014-05-20 2015-11-26 The Johns Hopkins University Shape-controlled nucleic acid nanoparticles for in vivo delivery of nucleic acid therapeutics
WO2015191693A2 (en) 2014-06-10 2015-12-17 Massachusetts Institute Of Technology Method for gene editing
EP3087974A1 (en) 2015-04-29 2016-11-02 Rodos BioTarget GmbH Targeted nanocarriers for targeted drug delivery of gene therapeutics
WO2016197133A1 (en) 2015-06-04 2016-12-08 Protiva Biotherapeutics, Inc. Delivering crispr therapeutics with lipid nanoparticles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858784A (en) * 1991-12-17 1999-01-12 The Regents Of The University Of California Expression of cloned genes in the lung by aerosol- and liposome-based delivery
JP2002521423A (ja) * 1998-07-31 2002-07-16 コリア インスティチュート オブ サイエンス アンド テクノロージ 遺伝子又は薬物運搬体としての脂質エマルジョン及び固形脂質微粒子
CA2368185A1 (en) * 1999-04-02 2000-10-12 Research Development Foundation Polyethyleneimine:dna formulations for aerosol delivery
EP1884570A4 (en) * 2005-05-26 2009-11-11 Mebiopharm Co Ltd GENE TRANSFER METHOD
WO2008063562A2 (en) * 2006-11-16 2008-05-29 The University Of Akron Materials and methods of introducing genetic material into living cells
BR112018014288A2 (pt) * 2016-01-15 2018-12-18 Univ Minnesota métodos e composições para o tratamento de doença neurológica

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580859A (en) 1989-03-21 1996-12-03 Vical Incorporated Delivery of exogenous DNA sequences in a mammal
US5589466A (en) 1989-03-21 1996-12-31 Vical Incorporated Induction of a protective immune response in a mammal by injecting a DNA sequence
US5593972A (en) 1993-01-26 1997-01-14 The Wistar Institute Genetic immunization
WO2006041942A2 (en) 2004-10-04 2006-04-20 Qlt Usa, Inc. Ocular delivery of polymeric delivery formulations
WO2012135805A2 (en) 2011-03-31 2012-10-04 modeRNA Therapeutics Delivery and formulation of engineered nucleic acids
WO2013040295A2 (en) * 2011-09-14 2013-03-21 University Of South Florida Divalent-metal coated nanoparticles for delivery of compositions into the central nervous system by nasal insufflation
WO2013188979A1 (en) 2012-06-20 2013-12-27 Frank Gu Mucoadhesive nanoparticle delivery system
WO2014093622A2 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications
WO2015023882A1 (en) 2013-08-14 2015-02-19 Kla-Tencor Corporation System and method for imaging a sample with a laser sustained plasma illumination output
US20150110857A1 (en) * 2013-10-22 2015-04-23 Shire Human Genetic Therapies, Inc. Cns delivery of mrna and uses thereof
WO2015089419A2 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using particle delivery components
WO2015089462A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for genome editing
WO2015117021A1 (en) 2014-01-31 2015-08-06 Factor Bioscience Inc. Methods and products for nucleic acid production and delivery
WO2015179492A1 (en) 2014-05-20 2015-11-26 The Johns Hopkins University Shape-controlled nucleic acid nanoparticles for in vivo delivery of nucleic acid therapeutics
WO2015191693A2 (en) 2014-06-10 2015-12-17 Massachusetts Institute Of Technology Method for gene editing
EP3087974A1 (en) 2015-04-29 2016-11-02 Rodos BioTarget GmbH Targeted nanocarriers for targeted drug delivery of gene therapeutics
WO2016174250A1 (en) 2015-04-29 2016-11-03 Rodos Biotarget Gmbh Targeted nanocarriers for targeted drud delivery of gene therapeutics
WO2016197133A1 (en) 2015-06-04 2016-12-08 Protiva Biotherapeutics, Inc. Delivering crispr therapeutics with lipid nanoparticles

Non-Patent Citations (33)

* Cited by examiner, † Cited by third party
Title
ARITZ PEREZ RUIZ DE GARIBAY; DELGADO; DEL POZO ANA; SOLINÍS Mª ANGELES; RODRIGUEZ GASCÓN ALICIA: "Multicomponent nanoparticles as nonviral vectors for the treatment of Fabry disease by gene therapy", DRUG DESIGN, DEVELOPMENT AND THERAPY, vol. 6, 25 October 2012 (2012-10-25), pages 303 - 310, XP055674575, ISSN: 1177-8881, DOI: 10.2147/DDDT.S36131. *
BARTLETT ET AL., PNAS, vol. 104, no. 39, 2007, pages 15549 - 54
BASHA ET AL., MOLECULAR THERAPY, vol. 19, no. 12, 2011, pages 1286 - 00
BRUXEL, F. ET AL.: "Investigation of the structural organization of cationic nanoemulsion/antisense oligonucleotide complexes", COLLOIDS AND SURFACES B, BIOINTERFACES, vol. 112, 2013, pages 530 - 536
CAMASSOLA M; BRAGA L M; DELGADO-CAÑEDO A; DALBERTO T P; MATTE U; BURIN M; GIUGLIANI R; NARDI N B: "Nonviral in vivo gene transfer in the mucopolysaccharidosis I murine model", JOURNAL OF INHERITED METABOLIC DISEASE, vol. 28, no. 6, 31 December 2005 (2005-12-31), pages 1035 - 1043, XP019232712, ISSN: 1573-2665, DOI: 10.1007/s10545-005-0070-5
CHI-HUSSEIN LIU , SHIN-YING YU: "Cationic nanoemulsions as non-viral vectors for plasmid DNA delivery", COLLOIDS AND SURFACES. B, BIOINTERFACES, vol. 79, no. 2, 11 June 2010 (2010-06-11), pages 509 - 515, XP027095626, ISSN: 0927-7765, DOI: 10.1016/j.colsurfb.2010.05.026
COELHO ET AL., N ENGL J MED, vol. 369, 2013, pages 819 - 29
DAVID COX; COX TURITZ; PLATT RANDALL JEFFREY; ZHANG FENG: "Therapeutic genome editing: prospects and challenges", NATURE MEDICINE, vol. 21, no. 2, 28 February 2015 (2015-02-28), pages 121 - 131, XP055285107, ISSN: 1078-8956, DOI: 10.1038/nm.3793
DAVIS ET AL., NATURE, vol. 464, no. 15, 2010, pages 1067 - 70
FRAGA MICHELLE; BRUXEL FERNANDA; DIEL DIRNETE; DE CARVALHO TALITA GIACOMET; PEREZ CARLOS ALBERTO; MAGALHÃES-PANIAGO ROGÉRIO; MALAC: "PEGylated cationic nanoemulsions can efficiently bind and transfect pIDUA in a mucopolysaccharidosis type I murine model", JOURNAL OF CONTROLLED RELEASE, vol. 209, 14 April 2015 (2015-04-14), pages 37 - 46, XP029173947, ISSN: 0168-3659, DOI: 10.1016/j.jconrel.2015.04.013
FRAGA, M. ET AL.: "PEGylated cationic nanoemulsions can efficiently ", XP029173947 *
GEISBERT ET AL., LANCET, vol. 375, 2010, pages 1896 - 905
GHORI, M. U. ET AL.: "Nasal Drug Delivery Systems: An Overview", AMERICAN JOURNAL OF PHARMACOLOGICAL SCIENCES, vol. 3, no. 5, 18 December 2015 (2015-12-18), pages 110 - 119
HAO YIN; KANASTY ROSEMARY L; ELTOUKHY AHMED A; VEGAS ARTURO J; DORKIN J ROBERT; ANDERSON DANIEL G: "Non-viral vectors for gene-based therapy", NATURE REVIEWS GENETICS, vol. 15, no. 8, 15 July 2014 (2014-07-15), pages 541 - 545, XP055240438, ISSN: 1471-0056, DOI: 10.1038/nrg3763
JAYARARNAN A., CHEM. INT. ED., vol. 51, 2012, pages 8529 - 33
JESSICA M KELLY; ALLISON BRADBURY; DOUGLAS R MARTIN; MARK E BYRNE: "Emerging therapies for neuropathic lysosomal storage disorders", PROGRESS IN NEUROBIOLOGY, vol. 152, 31 May 2016 (2016-05-31), pages 166 - 180, XP055480801, ISSN: 0301-0082, DOI: 10.1016/j.pneurobio.2016.10.002 *
KHATRI K; GOYAL A K; GUPTA P N; MISHRA N; MEHTA A; VYAS S P: "Surface modified liposomes for nasal delivery of DNA vaccine", VACCINE, vol. 26, no. 18, 17 March 2008 (2008-03-17), pages 2225 - 33, XP022621155, ISSN: 0264-410X, DOI: 10.1016/j.vaccine.2008.02.058
KHATRI K; GOYAL A K; GUPTA P N; MISHRA N; MEHTA A; VYAS S P: "Surface modified liposomes for nasal delivery of DNA vaccine", VACCINE, vol. 26, no. 18, 17 March 2018 (2018-03-17), pages 2225 - 2233, XP022621155, ISSN: 0264-410X, DOI: 10.1016/j.vaccine.2008.02.058 *
LOCHHEAD, J. J.THORNE, R. G.: "Intranasal delivery of biologies to the central nervous system", ADVANCED DRUG DELIVERY REVIEWS, vol. 64, no. 7, May 2012 (2012-05-01), pages 614 - 628
MARK A KAY: "State-of-the-art gene-based therapies: the road ahead", NATURE REVIEWS GENETICS, vol. 12, no. 5, 30 May 2011 (2011-05-30), pages 316 - 328, XP055260042, ISSN: 1471-0056, DOI: 10.1038/nrg2971
MORRISSEY ET AL., NATURE BIOTECHNOLOGY, vol. 23, no. 8, 2005, pages 1002 - 07
NAM, H. Y. ET AL.: "Lipid-based emulsion system as non-viral gene carriers", ARCHIVES OF PHARMACEUTICAL RESEARCH, vol. 32, no. 5, 2009, pages 639 - 646
NORDLING-DAVID, M. M.GOLOMB, G.: "Gene Delivery by Liposomes", ISRAEL JOURNAL OF CHEMISTRY, vol. 53, no. 9-10, 2013, pages 737 - 747
RUBEN J BOADO; PARDRIDGE WILLIAM M: "The Trojan horse liposome technology for nonviral gene transfer across the bood brain barrier", JOURNAL OF DRUG DELIVERY, vol. 2011, 1 January 2011 (2011-01-01), pages 1 - 13, XP055674579, ISSN: 2090-3014 , DOI: 10.1155/2011/296151 *
SARAIVA CLÁUDIA; PRAÇA CATARINA; FERREIRA RAQUEL; SANTOS TIAGO; FERREIRA LINO; BERNARDINO LILIANA: "Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases", JOURNAL OF CONTROLLED RELEASE, vol. 235, 18 May 2016 (2016-05-18), pages 34 - 47, XP029633325, ISSN: 0168-3659, DOI: 10.1016/j.jconrel.2016.05.044
SCHUH, R. S.: "Desenvolvimento de vetores nanotecnol6gicos", DOUTORADO EM CIENCIAS FARMACEUTICAS) - UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL, PORTO ALEGRE, 28 November 2017 (2017-11-28) *
SCHUH, R. S.BRUXEL, F.TEIXEIRA, H. F.: "Physicochemical properties of lecithin-based nanoemulsions obtained by spontaneous emulsification or high-pressure homogenization", QUIMICA NOVA, vol. 37, 2014, pages 1193 - 1198
See also references of EP3662934A4 *
SEMPLE ET AL., NATURE NANOTECHNOLOGY, vol. 28, no. 2, 2010, pages 172 - 177
WY, O. ET AL.: "Nose-to-brain drug delivery by nanoparticles in the treatment of neurological disorders", CURR MED CHEM, vol. 21, no. 37, 2014, pages 4247 - 56
XP055250933 *
XP055346958 *
ZIMRNERRNAN ET AL., NATURE LETTERS, vol. 441, no. 4, 2006, pages 111 - 14

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022109050A1 (en) * 2020-11-18 2022-05-27 Bexson Biomedical, Inc. Complexing agent salt formulations of pharmaceutical compounds
US11534454B2 (en) 2020-11-18 2022-12-27 Bexson Biomedical, Inc. Complexing agent salt formulations of pharmaceutical compounds

Also Published As

Publication number Publication date
BR102017016440A2 (pt) 2019-03-19
EP3662934A4 (en) 2021-05-12
EP3662934A1 (en) 2020-06-10
US20210008224A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
US9655848B2 (en) Liposomes for in-vivo delivery
Weissig et al. Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems
DE69207603T2 (de) Zusammensetzung und verfahren zur behandlung von zystischer fibrose
JP5571308B2 (ja) 両性リポソームにおけるまたはそれに関する改善
KR101198354B1 (ko) 핵산 전달용 저밀도 지단백질 유사(LDL-like) 양이온성 나노입자, 그의 제조방법 및 이를 이용한 핵산의 전달 방법
Maurer et al. Lipid-based systems for the intracellular delivery of genetic drugs
US5965542A (en) Use of temperature to control the size of cationic liposome/plasmid DNA complexes
US9271932B2 (en) Fusogenic properties of saposin C and related proteins and peptides for application to transmembrane drug delivery systems
Blau et al. Drug targeting by surface cationization
JP6280120B2 (ja) 干渉rnaの内在性メカニズムを調節することができる核酸配列を送達するための製剤
JP2008520600A (ja) 局所投与のための医薬組成物におけるまたはそれに関する改善
JP2011503070A (ja) 全身遺伝子送達のための自己構築型ミセル様ナノ粒子
KR20090128491A (ko) 약물 송달 제어용 경폐 투여 리포좀
JP2002538096A (ja) 生理活性複合体のリポソームへのカプセル化
KR20060034215A (ko) 비대칭 지질 코팅을 가지는 지질 입자 및 그 제조 방법
WO2019023770A1 (pt) Composição para terapia gênica do sistema nervoso central, processo de obtenção e uso da mesma
MacKay et al. HIV TAT peptide modifies the distribution of DNA nanolipoparticles following convection-enhanced delivery
KR20000070914A (ko) 안정화된 양이온 형질감염제(들)/핵산 입자의 제형
ES2698565B2 (es) Procedimiento para la elaboración de nanopartículas lipídicas, y nanopartículas lipídicas con los macrófagos cerebrales como células diana
Sade et al. Lipid based drug delivery system: a review
BR102017003860A2 (pt) composição editora de genoma, processo de obtenção e uso da mesma
WO2024181359A1 (ja) ミトコンドリアゲノム編集用脂質ナノ粒子
Ropert et al. The Delivery of Oligonucleotides Using pH Sensitive Liposomes
Schuh Desenvolvimento de vetores nanotecnológicos lipídicos do sistema CRISPR/Cas9 visando à terapia gênica para Mucopolissacaridose tipo I
Yang Therapeutic Delivery of Nucleic Acid and Small Molecule Drug Cargos Using Bioreducible Lipid-Based Nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018840364

Country of ref document: EP

Effective date: 20200302