WO2019022575A1 - 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치 - Google Patents

동기 신호 블록을 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2019022575A1
WO2019022575A1 PCT/KR2018/008574 KR2018008574W WO2019022575A1 WO 2019022575 A1 WO2019022575 A1 WO 2019022575A1 KR 2018008574 W KR2018008574 W KR 2018008574W WO 2019022575 A1 WO2019022575 A1 WO 2019022575A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
pbch
information
sequence
transmitted
Prior art date
Application number
PCT/KR2018/008574
Other languages
English (en)
French (fr)
Inventor
고현수
김병훈
김기준
윤석현
김은선
김영섭
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201880023401.5A priority Critical patent/CN110521146B/zh
Priority to US16/317,502 priority patent/US11115943B2/en
Priority to SG11201911813WA priority patent/SG11201911813WA/en
Priority to CA3070072A priority patent/CA3070072C/en
Priority to EP18829168.6A priority patent/EP3480978B1/en
Priority to JP2019541167A priority patent/JP6852169B2/ja
Publication of WO2019022575A1 publication Critical patent/WO2019022575A1/ko
Priority to US16/919,946 priority patent/US20200337002A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0079Acquisition of downlink reference signals, e.g. detection of cell-ID
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0096Network synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]

Definitions

  • the present invention relates to a method of transmitting and receiving a synchronous signal block and, more particularly, to a method and apparatus for transmitting and receiving synchronous signal blocks, in which, when a synchronous signal block is received from a serving cell and a neighboring cell, To a method for acquiring time information of a block and an apparatus therefor.
  • NewRAT Enhanced Mobile BroadBand
  • URLLC Ultra-reliability and low latency communication
  • mMTC Massive Machine-Type Communications
  • the eMBB is a next generation mobile communication scenario having characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, and High Peak Data Rate
  • URLLC is a next generation mobile communication scenario having characteristics such as Ultra Reliable, Ultra Low Latency, (Eg, V2X, Emergency Service, Remote Control)
  • mMTC is a next generation mobile communication scenario with low cost, low energy, short packet, and massive connectivity. (e.g., IoT).
  • the present invention is intended to provide a method of transmitting and receiving a synchronous signal block and an apparatus therefor.
  • a method for receiving a synchronization signal block (SSB) in a wireless communication system includes receiving a first SSB from a serving cell and receiving a first SSB from a neighbor cell, 2 SSB, acquires time information of the first SSB based on a PBCH (Physical Broadcasting Channel) included in the first SSB, and calculates an index of the second SSB using the time information of the first SSB ≪ / RTI >
  • PBCH Physical Broadcasting Channel
  • the time information of the obtained first SSB may include index information of the first SSB.
  • the index of the second SSB may be an index obtained through a PBCH DMRS (Demodulation Reference Signal) included in the most significant 3 bits for the index of the first SSB obtained through the payload of the PBCH, And the lowest 3 bits for the index of the second SSB.
  • PBCH DMRS Demodulation Reference Signal
  • the index of the first SSB is calculated by dividing the highest 3 bits for the index of the first SSB obtained through the payload of the PBCH and the highest 3 bits for the index of the first SSB obtained through the PBCH demodulation reference signal 1 SSB, and the 3 bits of the most significant 3 bits and the least significant 3 bits are determined by a combination of a plurality of SSBs grouped by a predetermined number of positions of candidate SSBs transmittable from the serving cell
  • the SSB group to which the first SSB belongs and the remaining 3 bits may indicate the position of the first SSB in the SSB group to which the first SSB belongs.
  • a sequence of a demodulation reference signal (DMRS) transmitted through the mapped symbol of the PBCH may be generated based on the identifier of the serving cell and the index of the first SSB.
  • DMRS demodulation reference signal
  • the half frame through which the first SSB is transmitted may be identified through a scrambling sequence of the PBCH and a frequency location mapped with a Demodulation Reference Signal (DMRS) transmitted through a symbol mapped to the PBCH.
  • DMRS Demodulation Reference Signal
  • the scrambling sequence of the PBCH used in a particular time interval may be the same.
  • the frequency position to which the DMRS (Demodulation Reference Signal) transmitted through the PBCH-mapped symbol is mapped may depend on the identifier of the serving cell.
  • the UE may assume that the EPRE of the PBCH is equal to the EPRE of a demodulation reference signal (DMRS) transmitted through a symbol mapped to the PBCH.
  • DMRS demodulation reference signal
  • the method may further include receiving an indicator indicating whether the time information of the first SSB can be used to acquire the index of the second SSB.
  • a terminal for receiving a synchronization signal block includes: a transceiver for transmitting and receiving signals to and from a plurality of cells; And a transceiver coupled to the transceiver to control the transceiver to receive a first SSB from a serving cell and to control the transceiver to receive a second SSB from a neighbor cell, And a processor for acquiring the time information of the first SSB based on the physical broadcast channel and acquiring the index of the second SSB using the time information of the first SSB.
  • SSB synchronization signal block
  • the time information of the obtained first SSB may include index information of the first SSB.
  • a sequence of a demodulation reference signal (DMRS) transmitted through the mapped symbol of the PBCH may be generated based on the identifier of the serving cell and the index of the first SSB.
  • DMRS demodulation reference signal
  • the scrambling sequence of the PBCH used within a certain time interval may be the same.
  • the UE may assume that the EPRE of the PBCH is equal to the EPRE of a demodulation reference signal (DMRS) transmitted through a symbol mapped to the PBCH.
  • DMRS demodulation reference signal
  • an index of a sync signal block received from a neighboring cell can be obtained without decoding a sync signal block received from a neighboring cell, thereby reducing decoding complexity.
  • FIG. 1 is a diagram showing a control plane and a user plane structure of a radio interface protocol between a UE and an E-UTRAN based on a 3GPP radio access network standard;
  • FIG. 2 is a view for explaining a physical channel used in a 3GPP system and a general signal transmission method using the same.
  • FIG 3 illustrates a radio frame structure for transmission of a synchronization signal (SS) used in an LTE system.
  • SS synchronization signal
  • Figure 4 illustrates a slot structure available in a new radio access technology (NR).
  • NR new radio access technology
  • FIG 5 shows an example of the connection method of the TXRU and the antenna element.
  • FIG. 6 abstractly illustrates a hybrid beamforming structure in terms of a transceiver unit (TXRU) and a physical antenna.
  • TXRU transceiver unit
  • FIG. 7 shows a beam sweeping operation for the synchronization signal and the system information in the downlink transmission process.
  • Figure 8 illustrates a cell of a new radio access technology (NR) system.
  • NR new radio access technology
  • 9 to 12 are diagrams for explaining a method of configuring a synchronous signal burst and a synchronous signal burst set.
  • 13 to 18 are diagrams illustrating a method of indexing a synchronous signal and a method of indicating the synchronous signal index, SFN, and Half Frame.
  • FIGS. 19 to 31 are diagrams showing results of measurement of performance according to an embodiment of the present invention.
  • 32 is a diagram for explaining a method for obtaining half frame boundary information according to an embodiment of the present invention.
  • 33 to 34 are diagrams for explaining embodiments for setting a bandwidth for a synchronization signal and a downlink common channel.
  • 35 illustrates a block diagram of a communication apparatus according to an embodiment of the present invention.
  • the present invention can be used in a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay and the like.
  • RRH remote radio head
  • eNB transmission point
  • RP reception point
  • relay a relay
  • the 3GPP-based communication standard includes downlink physical channels corresponding to resource elements carrying information originating from an upper layer and downlink physical channels used by the physical layer but corresponding to resource elements not carrying information originated from an upper layer Physical signals are defined.
  • a Physical Downlink Shared Channel (PDSCH), a Physical Broadcast Channel (PBCH), a Physical Multicast Channel (PMCH), a Physical Control Format Indicator Channel a physical downlink control channel (PDCCH), and a physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, and a reference signal and a synchronization signal Are defined as downlink physical signals.
  • a reference signal also referred to as a pilot, refers to a signal of a particular predetermined waveform that is known to the gNB and the UE, for example, a cell specific RS, a UE- A specific RS (UE-specific RS, UE-RS), a positioning RS (PRS) and channel state information RS (CSI-RS) are defined as downlink reference signals.
  • RS reference signal
  • the 3GPP LTE / LTE-A standard supports uplink physical channels corresponding to resource elements carrying information originating from an upper layer and resource elements used by the physical layer but not carrying information originated from an upper layer Uplink physical signals.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • a Physical Uplink Control CHannel (PUCCH), a Physical Uplink Control Channel (PUSCH), a Physical Uplink Control Channel (PUSCH), and a Physical Uplink Control Channel (PUSCH) (Uplink Shared CHannel) / PRACH (Physical Random Access CHannel) refers to a set of time-frequency resources or a set of resource elements each carrying Uplink Control Information (UCI) / uplink data / random access signals.
  • UCI Uplink Control Information
  • the expression that the user equipment transmits a PUCCH / PUSCH / PRACH is referred to as a PUCCH / PUCCH / PRACH or a PUCCH / PUCCH / PRACH through an uplink control information / uplink
  • the expression that the gNB transmits PDCCH / PCFICH / PHICH / PDSCH is used to indicate that the downlink data / control information is transmitted on the PDCCH / PCFICH / PHICH / Is used in the same sense.
  • an OFDM symbol / subcarrier / RE allocated / configured with a CRS / DMRS / CSI-RS / SRS / UE-RS is referred to as a CRS / DMRS / CSI- RS / SRS / UE- RS symbol / / Subcarrier / RE.
  • a CRS / DMRS / CSI- RS / SRS / UE- RS symbol referred to as a CRS / DMRS / CSI- RS / SRS / UE- RS symbol / / Subcarrier / RE.
  • TRS tracking RS
  • a sub-carrier allocated or configured with a TRS is called a TRS sub-carrier.
  • TRS RE a configured RE.
  • a subframe configured for TRS transmission is called a TRS subframe.
  • a subframe in which a broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe, and a subframe in which a synchronization signal (for example, PSS and / or SSS) is transmitted is referred to as a synchronization signal subframe or a PSS / Quot;
  • An OFDM symbol / subcarrier / RE allocated or configured with PSS / SSS is referred to as PSS / SSS symbol / subcarrier / RE, respectively.
  • the CRS port, the UE-RS port, the CSI-RS port, and the TRS port are respectively configured as an antenna port configured to transmit CRSs, an antenna port configured to transmit UE- An antenna port configured to transmit CSI-RS, and an antenna port configured to transmit TRS.
  • the antenna ports configured to transmit CRSs may be separated by the location of the REs occupied by the CRS according to the CRS ports and the antenna ports configured to transmit the UE-RSs may be separated by UE RS ports, and the antenna ports configured to transmit CSI-RSs may be classified according to the CSI-RS ports occupied by the CSI-RS. The location of the REs.
  • CRS / UE-RS / CSI-RS / TRS port is also used as a term for a pattern of REs occupied by a CRS / UE-RS / CSI-RS / TRS within a certain resource area.
  • the control plane refers to a path through which control messages used by a UE and a network are transmitted.
  • the user plane means a path through which data generated in the application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer using a physical channel.
  • the physical layer is connected to the upper Medium Access Control layer through a transmission channel (Trans Port Channel). Data moves between the MAC layer and the physical layer over the transmission channel. Data is transferred between the transmitting side and the receiving side physical layer through the physical channel.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in an OFDMA (Orthogonal Frequency Division Multiple Access) scheme in a downlink, and is modulated in an SC-FDMA (Single Carrier Frequency Division Multiple Access) scheme in an uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the Medium Access Control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block in the MAC.
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information in order to efficiently transmit IP packets such as IPv4 and IPv6 in a wireless interface with a narrow bandwidth.
  • PDCP Packet Data Convergence Protocol
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for the control of the logical channels, the transmission channels and the physical channels in connection with the configuration, re-configuration and release of radio bearers.
  • the radio bearer refers to a service provided by the second layer for data transmission between the UE and the network.
  • the terminal and the RRC layer of the network exchange RRC messages with each other. If there is an RRC connection (RRC Connected) between the UE and the RRC layer of the network, the UE is in the RRC Connected Mode, otherwise it is in the RRC Idle Mode.
  • the Non-Access Stratum (NAS) layer at the top of the RRC layer performs functions such as session management and mobility management.
  • NAS Non-Access Stratum
  • a downlink transmission channel for transmitting data from a network to a terminal includes a BCH (Broadcast Channel) for transmitting system information, a PCH (Paging Channel) for transmitting a paging message, a downlink SCH (Shared Channel) for transmitting user traffic and control messages, have.
  • a traffic or control message of a downlink multicast or broadcast service it may be transmitted through a downlink SCH, or may be transmitted via a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the UE to the network includes RACH (Random Access Channel) for transmitting an initial control message and an uplink SCH (Shared Channel) for transmitting user traffic or control messages.
  • a logical channel mapped to a transmission channel is a Broadcast Control Channel (BCCH), a Paging Control Channel (PCCH), a Common Control Channel (CCCH), a Multicast Control Channel (MCCH) Traffic Channel).
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH
  • FIG. 2 is a view for explaining a physical channel used in a 3GPP system and a general signal transmission method using the same.
  • the UE When the UE is turned on or newly enters a cell, the UE performs an initial cell search operation such as synchronizing with the BS (S201). To this end, the terminal receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from a base station and synchronizes with the base station and acquires information such as a cell ID have. Then, the terminal can receive the physical broadcast channel from the base station and acquire the in-cell broadcast information. Meanwhile, the UE can receive the downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • P-SCH primary synchronization channel
  • S-SCH secondary synchronization channel
  • DL RS downlink reference signal
  • the UE Upon completion of the initial cell search, the UE receives more detailed system information by receiving a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) according to the information on the PDCCH (S202).
  • a Physical Downlink Control Channel (PDCCH)
  • a Physical Downlink Control Channel (PDSCH)
  • the mobile station can perform a random access procedure (RACH) on the base station (steps S203 to S206).
  • RACH random access procedure
  • the UE transmits a specific sequence through a Physical Random Access Channel (PRACH) (S203 and S205), and receives a response message for the preamble on the PDCCH and the corresponding PDSCH ( S204 and S206).
  • PRACH Physical Random Access Channel
  • a contention resolution procedure can be additionally performed.
  • the UE having performed the above procedure performs PDCCH / PDSCH reception (S207) and physical uplink shared channel (PUSCH) / physical uplink control channel Control Channel (PUCCH) transmission (S208).
  • the UE receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the UE, and formats are different according to the purpose of use.
  • the control information transmitted by the UE to the Node B via the uplink or received from the Node B by the UE includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI) ) And the like.
  • the UE can transmit control information such as CQI / PMI / RI as described above through PUSCH and / or PUCCH.
  • FIG. 3 illustrates a radio frame structure for transmission of a synchronization signal (SS) in a LTE / LTE-A based wireless communication system.
  • FIG. 3 illustrates a radio frame structure for transmission of a synchronization signal and a PBCH in a frequency division duplex (FDD).
  • FIG. 3 (a) illustrates a structure in which a normal cyclic prefix (CP)
  • FIG. 3B shows transmission positions of the SS and the PBCH in the radio frame set by the extended CP.
  • FIG. 3B shows transmission positions of the SS and the PBCH in the radio frame.
  • CP normal cyclic prefix
  • SS is divided into PSS (Primary Synchronization Signal) and SSS (Secondary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the PSS is used to obtain time domain synchronization and / or frequency domain synchronization such as OFDM symbol synchronization, slot synchronization, and the like, and the SSS can be used for frame synchronization, cell group ID and / or cell CP configuration (i.e., CP usage information).
  • the PSS and the SSS are transmitted in two OFDM symbols of each radio frame, respectively.
  • GSM Global System for Mobile communication
  • the UE can detect that the corresponding subframe is one of the subframe 0 and the subframe 5 by detecting the PSS, but it is not known what the subframe is specifically of the subframe 0 and the subframe 5 . Therefore, the UE can not recognize the boundary of the radio frame only by the PSS. That is, frame synchronization can not be obtained with only PSS.
  • the UE detects an SSS transmitted twice in one radio frame but transmitted as a different sequence and detects the boundary of the radio frame.
  • the UE which has determined the time and frequency parameters necessary for demodulating the DL signal and performing UL signal transmission at the correct time by performing a cell search process using the PSS / SSS, It is necessary to acquire system information necessary for the system configuration of the eNB.
  • the system information is configured by a master information block (MIB) and a system information block (SIB).
  • Each system information block includes a set of functionally related parameters and may include a master information block (MIB) and a system information block type 1 (SIB1), a system information block type 2 (System Information Block Type 2, SIB2), and SIB3 to SIB17.
  • the MIB contains the parameters that are most frequently transmitted, which is essential for the UE to initially access the network of the eNB.
  • the UE may receive the MIB over a broadcast channel (e.g., PBCH).
  • PBCH broadcast channel
  • the MIB includes a downlink system bandwidth (dl-Bandwidth, DL BW), a PHICH configuration, and a system frame number (SFN). Therefore, the UE can know explicitly the DL BW, SFN, and PHICH setting information by receiving the PBCH. Meanwhile, the information that the UE implicitly knows through the PBCH reception includes the number of transmission antenna ports of the eNB.
  • Information on the number of transmission antennas of the eNB is implicitly signaled by masking (for example, XOR) a sequence corresponding to the number of transmission antennas in a 16-bit CRC (Cyclic Redundancy Check) used for error detection of the PBCH.
  • masking for example, XOR
  • CRC Cyclic Redundancy Check
  • SIB1 includes not only information on time domain scheduling of other SIBs but also parameters necessary for determining whether a particular cell is suitable for cell selection. SIB1 is received by the UE via broadcast signaling or dedicated signaling.
  • the DL carrier frequency and the corresponding system bandwidth can be obtained by the MIB carrying the PBCH.
  • the UL carrier frequency and the corresponding system bandwidth can be obtained through system information, which is a DL signal.
  • the UE receiving the MIB applies the value of the DL BW in the MIB to the UL-bandwidth (UL BW) until the system information block type 2 (SystemInformationBlockType2, SIB2) is received, if there is no valid system information stored for the cell .
  • the UE may obtain system information block type 2 (SystemInformationBlockType2, SIB2) to determine the entire UL system band that it can use for UL transmission through the UL-carrier frequency and UL-bandwidth information in the SIB2 .
  • the PSS / SSS and the PBCH are transmitted only in a total of six RBs, that is, a total of 72 subcarriers, in three OFDM symbols within the corresponding OFDM symbol, regardless of the actual system bandwidth. Therefore, the UE is configured to detect or decode the SS and the PBCH regardless of the downlink transmission bandwidth configured to the UE.
  • the UE may perform a random access procedure to complete the connection to the eNB.
  • the UE may transmit a preamble through a physical random access channel (PRACH), and may receive a response message for a preamble on the PDCCH and the PDSCH.
  • PRACH physical random access channel
  • additional PRACH can be transmitted, and a contention resolution procedure such as a PDCCH and a PDSCH corresponding to the PDCCH can be performed.
  • the UE having performed the above-described procedure can perform PDCCH / PDSCH reception and PUSCH / PUCCH transmission as a general uplink / downlink signal transmission procedure.
  • the random access procedure is also referred to as a random access channel (RACH) procedure.
  • the random access procedure is used variously for initial connection, random access procedure for initial access, uplink synchronization adjustment, resource allocation, handover, and the like.
  • the random access procedure is classified into a contention-based process and a dedicated (i.e., non-competitive-based) process.
  • the contention-based random access procedure is generally used including an initial connection, and a dedicated random access procedure is used for a handover or the like.
  • the UE randomly selects the RACH preamble sequence.
  • the UE uses the RACH preamble sequence uniquely assigned to the UE by the eNB. Therefore, a random access procedure can be performed without collision with another UE.
  • the competition-based random access procedure includes the following four steps.
  • the messages transmitted in steps 1 to 4 may be referred to as messages 1 to 4 (Msg1 to Msg4), respectively.
  • Step 1 RACH preamble (via PRACH) (UE to eNB)
  • Step 2 random access response (RAR) (via PDCCH and PDSCH) (eNB to UE)
  • Step 3 Layer 2 / Layer 3 message (via PUSCH) (UE to eNB)
  • Step 4 contention resolution message (eNB to UE)
  • the dedicated random access procedure includes the following three steps.
  • the messages transmitted in steps 0 to 2 may be referred to as messages 0 to 2 (Msg0 to Msg2), respectively.
  • Uplink transmission corresponding to the RAR i.e., step 3 may also be performed as part of the random access procedure.
  • the dedicated random access procedure can be triggered using a PDCCH (hereinafter referred to as a PDCCH order) for use by the base station to command RACH preamble transmission.
  • a PDCCH hereinafter referred to as a PDCCH order
  • Step 0 RACH preamble allocation through dedicated signaling (eNB to UE)
  • Step 1 RACH preamble (via PRACH) (UE to eNB)
  • Step 2 Random Access Response (RAR) (via PDCCH and PDSCH) (eNB to UE)
  • RAR Random Access Response
  • the UE After transmitting the RACH preamble, the UE attempts to receive a random access response (RAR) within a pre-set time window. Specifically, the UE attempts to detect a PDCCH (hereinafter referred to as RA-RNTI PDCCH) having a random access RNTI (RA-RNTI) within the time window (e.g., CRC in the PDCCH is masked with RA-RNTI). Upon detection of the RA-RNTI PDCCH, the UE checks whether there is a RAR for itself in the PDSCH corresponding to the RA-RNTI PDCCH.
  • RA-RNTI PDCCH a PDCCH having a random access RNTI (RA-RNTI) within the time window (e.g., CRC in the PDCCH is masked with RA-RNTI).
  • RA-RNTI PDCCH a PDCCH having a random access RNTI (RA-RNTI) within the time window (e.g., CRC in
  • RAR includes timing advance (TA) information, UL resource allocation information (UL grant information), temporary terminal identifier (e.g., temporary cell-RNTI, TC-RNTI) indicating timing offset information for UL synchronization .
  • the UE may perform UL transmission (e.g., Msg3) according to the resource allocation information and the TA value in the RAR.
  • HARQ is applied to the UL transmission corresponding to the RAR.
  • the UE may receive Msg3 and then receive acknowledgment information (e.g., PHICH) corresponding to Msg3.
  • the random access preamble that is, RACH preamble is configured in the physical layer length of the sequence portion of the cyclic prefix (cyclic prefix) and a length T of SEQ T CP.
  • the T SEQ of the T CP depends on the frame structure and the random access configuration.
  • the preamble format is controlled by the upper layer.
  • the PACH preamble is transmitted in the UL subframe.
  • the transmission of the random access preamble is restricted to specific time and frequency resources. These resources are referred to as PRACH resources, and the PRACH resources are numbered in ascending order of sub-frame numbers in the radio frame and PRBs in the frequency domain, such that index 0 corresponds to a PRB and a subframe of a lower number in a radio frame Loses.
  • Random access resources are defined according to the PRACH setting index (see 3GPP TS 36.211 standard document).
  • the PRACH setting index is given by the upper layer signal (transmitted by the eNB).
  • the random access preamble that is, the subcarrier spacing for the RACH preamble is 1.25 kHz for the preamble formats 0 to 3 and 7.5 kHz for the preamble format 4 (see 3GPP TS 36.211 Reference).
  • the new RAT system uses an OFDM transmission scheme or a similar transmission scheme.
  • the new RAT system may follow OFDM parameters different from the OFDM parameters of LTE.
  • the new RAT system can follow the existing LTE / LTE-A neuronology, but with a larger system bandwidth (eg, 100 MHz).
  • one cell may support a plurality of memorylogies. That is, UEs operating in different lifetimes can coexist within one cell.
  • a radio frame used in the 3GPP LTE / LTE-A system has a length of 10ms (307200 T s), it consists of ten equally sized subframes (subframe, SF). 10 subframes within one radio frame may be assigned respective numbers.
  • T s denotes the sampling time
  • T s 1 / (2048 * 15 kHz).
  • Each subframe is 1 ms long and consists of two slots. 20 slots in one radio frame can be sequentially numbered from 0 to 19. [ Each slot has a length of 0.5 ms.
  • the time for transmitting one subframe is defined as a transmission time interval (TTI).
  • TTI transmission time interval
  • the time resource may be classified by a radio frame number (or a radio frame index), a subframe number (also referred to as a subframe number), a slot number (or a slot index), and the like.
  • TTI means the interval at which data can be scheduled. For example, in the current LTE / LTE-A system, the transmission opportunity of the UL grant or the DL grant is present every 1 ms, and the UL / DL grant opportunity does not exist several times in less than 1 ms. Therefore, the TTI in the existing LTE / LTE-A system is 1ms.
  • Figure 4 illustrates a slot structure available in a new radio access technology (NR).
  • NR new radio access technology
  • a slot structure in which a control channel and a data channel are time division multiplexed (TDM) is considered in the fifth generation new RAT.
  • the hatched area indicates the transmission area of the DL control channel (e.g., PDCCH) carrying the DCI
  • the black part indicates the transmission area of the UL control channel (e.g., PUCCH) carrying the UCI.
  • the DCI is control information that the gNB delivers to the UE, and the DCI includes information on cell configuration that the UE should know, DL specific information such as DL scheduling, and UL specific Information, and the like.
  • the UCI is control information that the UE transmits to the gNB.
  • the UCI may include a HARQ ACK / NACK report for the DL data, a CSI report for the DL channel status, and a scheduling request (SR).
  • symbol areas from symbol index 1 to symbol index 12 may be used for transmission of a physical channel (for example, PDSCH) carrying downlink data or for transmission of a physical channel (e.g., PUSCH) .
  • a physical channel for example, PDSCH
  • PUSCH physical channel
  • DL transmission and UL transmission are sequentially performed in one slot, so that DL data transmission / reception and UL ACK / NACK reception / transmission of DL data are performed in one slot Lt; / RTI >
  • the time taken to retransmit the data is reduced, thereby minimizing the delay of the final data transmission.
  • a time gap is required between the gNB and the UE for the transition process from the transmission mode to the reception mode or from the reception mode to the transmission mode.
  • some OFDM symbols at the time of switching from DL to UL in the slot structure are configured as a guard period (GP).
  • the DL control channel is TDM with the data channel, and the PDCCH, which is the control channel, is spread over the entire system band.
  • the bandwidth of one system is expected to reach at least about 100 MHz, which makes it difficult to spread the control channel over the entire bandwidth.
  • Monitoring the entire band for the UE to receive the downlink control channel for data transmission / reception may deteriorate the battery consumption and efficiency of the UE.
  • the DL control channel can be localized, transmitted, or distributed in a system band, i.e., a certain frequency band within a channel band.
  • the basic transmission unit is a slot.
  • the slot duration is made up of 14 symbols with a normal cyclic prefix (CP), or 12 symbols with an extended CP.
  • the slot is scaled by time as a function of the used subcarrier spacing. That is, as the subcarrier spacing increases, the length of the slot becomes shorter. For example, if the number of symbols per slot is 14, if the number of slots in a frame of 10 ms is 10 for a 15 kHz subcarrier interval, then 20 for 30 kHz subcarrier interval and 40 for 60 kHz subcarrier interval. As the subcarrier spacing increases, the length of the OFDM symbol becomes shorter.
  • the number of OFDM symbols in a slot depends on whether it is a regular CP or an extended CP, and does not depend on the subcarrier interval.
  • the actual sampling times for subcarrier spacing 30 kHz, 60 kHz, and 120 kHz are 1 / (2 * 15000 * 2048) seconds, 1 / (4 * 15000 * 2048) Will be.
  • the 5G mobile communication system which is being discussed recently considers using a high-frequency band, that is, a millimeter frequency band of 6 GHz or more, in order to transmit data while maintaining a high data rate to a large number of users using a wide frequency band.
  • a high-frequency band that is, a millimeter frequency band of 6 GHz or more
  • this is referred to as NR.
  • this is referred to as NR system in the future.
  • the millimeter frequency band has a frequency characteristic in which the signal attenuation due to the distance is very sharp due to the use of the frequency band which is too high.
  • an NR system using at least a band of 6 GHz or more transmits a signal beam in a specific direction rather than in all directions to transmit a narrow beam narrow beam transmission technique.
  • the base station collects a plurality of narrow beams and provides services in a wide band.
  • the wavelength is shortened so that a plurality of antenna elements can be installed in the same area.
  • a total of 100 antenna elements can be installed in a 5-by-5 cm panel in a 30 GHz band with a wavelength of about 1 cm in a two-dimensional array at 0.5 lambda (wavelength) spacing Do. Therefore, in mmW, it is considered to increase the coverage or the throughput by increasing the beamforming gain by using a plurality of antenna elements.
  • a beam forming method in which energy is raised only in a specific direction is mainly considered by transmitting the same signal using a proper phase difference to a large number of antennas in a base station or a UE.
  • Such beamforming schemes include digital beamforming to create a phase difference in a digital baseband signal, analog beamforming to create a phase difference using time delay (i.e., cyclic shift) to a modulated analog signal, digital beamforming, And hybrid beam forming using both of the beam forming and the like.
  • TXRU transceiver unit
  • the TXRU is not effective in terms of cost in installing all of the antenna elements of 100 or more. That is, a millimeter frequency band requires a large number of antennas to compensate for the sudden attenuation characteristics, and digital beamforming requires an RF component (eg, a digital-to-analog converter (DAC), a mixer, A power amplifier, a linear amplifier, and the like), so that the digital beamforming in the millimeter frequency band has a problem that the price of the communication device increases. Therefore, when a large number of antennas are required, such as the millimeter frequency band, the use of analog beamforming or hybrid beamforming is considered.
  • DAC digital-to-analog converter
  • Hybrid BF is an intermediate form of digital BF and analog BF and has B TXRUs that are fewer than Q antenna elements.
  • the direction of the beam that can be transmitted at the same time is limited to B or less although there is a difference depending on the connection method of B TXRU and Q antenna elements.
  • FIG 5 shows an example of the connection method of the TXRU and the antenna element.
  • 5 (a) shows how the TXRU is connected to a sub-array.
  • the antenna element is connected to only one TXRU.
  • 5 (b) shows how TXRU is connected to all antenna elements.
  • the antenna element is connected to all TXRUs.
  • W represents a phase vector multiplied by an analog phase shifter. That is, the direction of the analog beam forming is determined by W.
  • the mapping between the CSI-RS antenna port and the TXRUs may be 1-to-1 or 1-to-many.
  • a base station communicates with a plurality of users at the same time using a broadband transmission or a multi-antenna characteristic.
  • a base station uses analog or hybrid beamforming and forms an analog beam in one beam direction, It can only communicate with users included in the same analog beam direction.
  • the RACH resource allocation and the resource utilization scheme of the base station according to the present invention to be described later are proposed in consideration of the constraint inconsistency caused by the analog beamforming or the hybrid beamforming characteristic.
  • FIG. 6 abstractly illustrates a hybrid beamforming structure in terms of a transceiver unit (TXRU) and a physical antenna.
  • TXRU transceiver unit
  • the analog beamforming means an operation in which the RF unit performs precoding (or combining).
  • the baseband unit and the RF unit each perform precoding (or combining), thereby reducing the number of RF chains and the number of D / A (or A / D) converters.
  • the performance close to digital beamforming can be achieved.
  • the hybrid beamforming structure can be represented by N TXRU and M physical antennas.
  • the digital beamforming for the L data layers to be transmitted at the transmitting end can be represented by an N-by-L matrix, and then the N converted digital signals are converted into an analog signal via a TXRU and then converted into an M-by-N matrix
  • the expressed analog beamforming is applied.
  • the number of digital beams is L and the number of analog beams is N.
  • FIG. Further, in the NR system, a direction in which a base station is designed so as to change analog beamforming on a symbol basis, and a more efficient beamforming is supported for a UE located in a specific area is considered.
  • N TXRU and M RF antennas are defined as one antenna panel, it is considered to introduce a plurality of antenna panels which can apply independent hybrid beamforming in the NR system.
  • an analog beam advantageous for signal reception may be different for each UE. Therefore, at least a synchronization signal, system information, paging, and the like may be applied to a specific slot or a subframe A beam sweeping operation is considered in which all the UEs have a reception opportunity by changing a plurality of analog beams to be transmitted on a symbol-by-symbol basis.
  • FIG. 7 is a diagram illustrating a beam sweeping operation for a synchronization signal and system information in a downlink transmission process.
  • a physical resource or a physical channel through which system information of the New RAT system is broadcast is referred to as xPBCH (physical broadcast channel).
  • xPBCH physical broadcast channel
  • analog beams belonging to different antenna panels can be simultaneously transmitted within one symbol.
  • a method of introducing Beam RS (BRS), which is a reference signal (RS) transmitted for a corresponding single analog beam is being discussed.
  • the BRS may be defined for a plurality of antenna ports, and each antenna port of the BRS may correspond to a single analog beam.
  • the synchronization signal or the xPBCH can be transmitted for all the analog beams included in the analog beam group so that any UE can receive it well.
  • Figure 8 illustrates a cell of a new radio access technology (NR) system.
  • NR new radio access technology
  • a plurality of TRPs constitute one cell, unlike the case where one base station forms one cell in a wireless communication system such as an existing LTE system.
  • Cell is configured, it is advantageous that mobility management of the UE is easy since continuous communication can be performed even if the TRP for serving the UE is changed.
  • the PSS / SSS is transmitted in the omni-direction, whereas the gNB applying the mmWave transmits the PSS / SSS / PBCH signal
  • a beamforming method is considered.
  • the transmission / reception of signals while rotating the beam direction is referred to as beam sweeping or beam scanning.
  • the gNB can have a maximum of N beam directions, it is assumed that for each of the N beam directions, the PSS / SSS / PBCH, etc.
  • the gNB transmits synchronization signals such as PSS / SSS / PBCH for each direction while sweeping directions that the gNB can have or supports, or when the gNB transmits N synchronous signals SSS / PBCH may be transmitted / received for each beam group.
  • one beam group may be formed of one or more beams
  • a signal such as a PSS / SSS / PBCH transmitted in the same direction may be defined as one SS block, and a plurality of SS blocks may exist in one cell.
  • a PSS / SSS / PBCH in the same direction can constitute one SS block , It can be understood that there are ten SS blocks in the system.
  • the beam index can be interpreted as an SS block index.
  • the 'upper bit' and the 'most significant bit' represented in the present invention represented by the present invention mean a left bit in an array of information bits, can do. That is, an LSB (Least Significant Bit), which is a unit value for determining whether the value indicated by the information bits is an even number or an odd number, Can be interpreted in the same sense as.
  • LSB east Significant Bit
  • 'lower bit' and 'least significant bit' may mean the right bit in an array of information bits that places the highest number of digits to the right. In other words, it can be interpreted as the MSB (Most Significant Bit) in the arrangement of information bits which places the highest digit number to the leftmost.
  • the upper N-bit information of the SFN among the contents of the invention to be described later is obtained (e.g., S0, S1, S2), SFN information corresponding to the remaining (10- To S9), thereby constructing a total of 10 bits of SFN information.
  • the upper N-bit is the left N-bit (eg, S0 S1 S2), and the remaining (10-N) bits mean the right (10-N) bits (e.g., S3 to S9).
  • LSB and MSB are expressed by LSB N-bit in the information bitstream represented by (S9 S8 S7 S S1 S0)
  • the bitstream is expressed in the order of (S2 S1 S0)
  • the remaining '10-N' bits (eg, S3 to S9) are represented by MSB (10-N) bits
  • the bit string may be expressed in the order of (S9 S8 S7 ⁇ S3) .
  • the PSS is placed in the front of the SS block, a problem may arise in the AGC (Automatic Gain Control) operation of the UE when 120 kHz and 240 kHz subcarrier spacing is used. That is, in the case of 120 kHz and 240 kHz subcarrier spacing, the detection of the NR-PSS may not be performed properly due to the AGC operation. Accordingly, it may be considered to change the SS block configuration as in the following two embodiments .
  • AGC Automatic Gain Control
  • the AGC operation of the terminal can be performed more smoothly.
  • SS burst set configurations at subcarrier intervals of 120 kHz and at 240 kHz are shown.
  • SS bursts are formed by leaving a predetermined interval in units of four SS bursts. That is, the symbol interval for the uplink transmission of 0.125 ms is set to 0.5 ms, and the SS block is allocated.
  • subcarrier spacing of 60 kHz can be used for data transmission. That is, as shown in FIG. 10, a 60 kHz subcarrier interval for data transmission and a 120 kHz or 240 kHz subcarrier interval for SS block transmission in NR can be multiplexed.
  • the first embodiment is to change the positions of SS burst format 1 and SS burst format 2, as shown in FIG. That is, it is possible to prevent the collision between the SS block and the DL / UL control area from occurring by exchanging the SS burst format 1 and the format 2 in the square box of FIG.
  • the SS burst format 1 is located in the front part of the slot of 60 kHz subcarrier interval
  • the SS burst format 2 is located in the rear part of the slot of the 60 kHz subcarrier interval.
  • the index of the first OFDM symbols of the candidate SSBs is ⁇ 4, 8, 16, 20, 32, 36, 44, 48 ⁇ + 70 * n.
  • n 0, 2, 4, 6.
  • the first OFDM symbols of the candidate SS / PBCH blocks have indexes ⁇ 4, 8, 16, 20, 32, 36, 44, 48 ⁇ + 70 * n.
  • n 4, 6
  • the index of the first OFDM symbols of the candidate SSBs is ⁇ 2, 6, 18, 22, 30, 34, 46, 50 ⁇ + 70 * n.
  • n 1, 3, 5, 7.
  • the first OFDM symbols of the candidate SS / PBCH blocks have indexes ⁇ 2, 6, 18, 22, 30, 34, 46, 50 ⁇ + 70 * n.
  • n 5, 7.
  • the index of the first OFDM symbols of the candidate SSBs is ⁇ 8, 12, 16, 20, 32, 36, 40, 44, 64, 68, 72, 76, 88, 92, 96, 100 ⁇ + 140 * n.
  • n 0, 2.
  • the first OFDM symbols of the candidate SS / PBCH blocks have indexes ⁇ 8, 12, 16, 20, 32, 36, 40, 44, 64, 68, 72, 76, 88, 92, 96, n.
  • For carrier frequencies greater than 6 GHz, n 0, 2
  • the second embodiment is a method of changing the SS burst set configuration, as shown in FIG. That is, the SS burst set can be configured to align, i.e., match, the starting boundary of the 60 kHz subcarrier interval slot with the start boundary of the SS burst set.
  • the SS burst is constituted by an SS block locally disposed for 1 ms.
  • the SS burst of 120 kHz subcarrier spacing has 16 SS blocks
  • the 240 kHz subcarrier spacing SS burst has 32 SS blocks.
  • one slot is allocated as a gap based on a subcarrier interval of 60 kHz between SS bursts.
  • the index of the first OFDM symbols of the candidate SSBs is ⁇ 4, 8, 16, 20 ⁇ + 28 * n.
  • N 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18 when the carrier frequency is greater than 6 GHz.
  • the first OFDM symbols of the candidate SS / PBCH blocks have indexes ⁇ 4, 8, 16, 20 ⁇ + 28 * n.
  • n 0, 1, 2, 3, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18
  • the index of the first OFDM symbols of the candidate SSBs is ⁇ 8, 12, 16, 20, 32, 36, 40, 44 ⁇ + 56 * n.
  • n 0, 1, 2, 3, 5, 6, 7, (the first OFDM symbols of the candidate SS / PBCH blocks have indexes ⁇ 8,12,16,20,32,36,40,44 ⁇ + 56 * n.
  • n 2, 3, 5, 6, 7, 8.
  • the number of candidates for SS block transmission may be limited depending on the network environment.
  • the number of candidates may be different depending on the subcarrier interval in which the SS block is arranged.
  • the Actually transmitted SS / PBCH block indication indicating the location of the actually transmitted SS block may be used for a purpose of resource utilization, for example, rate matching, for a serving cell, It can be used for measurement purposes.
  • the UE can correctly recognize for an unsent SS block, the UE can receive other information, such as paging or data, via the candidate resource of the unsent SS block .
  • the SS block actually transmitted in the serving cell needs to be accurately indicated.
  • bit size included in the bit map can be determined according to the number of SS blocks that can be transmitted at the maximum in each frequency range. For example, in order to indicate the SS block actually transmitted in the 5 ms interval, 8 bits are required in the frequency range of 3 GHz to 6 GHz, and 64 bits are required in the frequency range of 6 GHz or more.
  • the bits for the SS block actually transmitted in the serving cell may be defined in RMSI or OSI, and the RMSI / OSI includes configuration information for data or paging. Since the actively transmitted SS / PBCH block indication is associated with the configuration for the downlink resource, it may result in the RMSI / OSI containing the SS block information to be actually transmitted.
  • the Actually transmitted SS / PBCH block indication of the neighbor cell may be required. That is, it is necessary to acquire the time synchronization information of the neighboring cell in order to measure the adjacent cell. In the case of designing to allow asynchronous transmission between the TRPs of the NR system, even if the time synchronization information of the neighboring cell is informed, It depends on the situation. Therefore, when notifying the time information of the neighboring cell, it is necessary to determine the unit of the time information as information valid for the UE while assuming asynchronous transmission between TRPs.
  • the full bitmap type indicator may excessively increase the signal overhead.
  • various compressed types of indicators may be considered.
  • the indicator for the SS block transmitted by the serving cell may also take into account the compressed type indicator for not only the purpose of neighbor cell measurement but also the signaling overhead.
  • the SS block indicator described below can be used for the actual transmitted SS block indication of the neighboring cell and the serving cell.
  • the SS burst may mean a bundle of SS blocks included in one slot according to each subcarrier.
  • the SS burst may be a constant number Of the SS block group.
  • an SS burst is composed of 8 SS blocks
  • a total of 8 SS bursts may exist in a band of 6 GHz or more where 64 SS blocks can be located .
  • the grouping of the SS blocks into the SS bursts is intended to compress the entire 64-bit bitmap.
  • 8-bit information indicating the SS burst containing the actually transmitted SS block may be used. If 8 bit bitmap information indicates SS burst # 0, SS burst # 0 may contain one or more SS blocks actually transmitted.
  • additional information for further indicating the number of SS blocks transmitted per SS burst to the UE may be considered.
  • An SS block may be present locally in each SS burst by the number of SS blocks indicated by the additional information.
  • the UE estimates the actually transmitted SS block .
  • additional information can also be transmitted in a bitmap format, so that the position of the SS block can be flexibly transferred.
  • a total of 64 SS blocks are divided into 8 SS bursts (that is, an SS block group), and 8 bit bitmap transmission informs the SS which burst is used.
  • the SS burst is defined as shown in FIG. 13, there is an advantage that the boundary between the SS burst and the slot having a subcarrier of 60 kHz is aligned when multiplexing is performed with a slot having a subcarrier interval of 60 kHz. Therefore, if the use of the SS burst is indicated as a bitmap, the UE can recognize whether or not the SS block is transmitted in the slot unit for all the subcarrier intervals in the frequency band of 6 GHz or more.
  • bitmap information since bitmap information must be transmitted to eight SS blocks included in each SS burst, 8 bits are required, and the additional information is commonly applied to all SS bursts. For example, if bit map information for an SS burst indicates that SS burst # 0 and SS burst # 1 are to be used and that the first and fifth SS blocks within the SS burst through additional bitmap information for the SS block If it is indicated to be transmitted, the first and fifth SS blocks are transmitted in both SS burst # 0 and SS burst # 1, so that the total number of SS blocks actually transmitted is four.
  • some neighboring cells may not be included in the cell list, and neighboring cells not included in the cell list use a default format for the SS block actually transmitted.
  • the UE can perform measurements on neighbor cells not included in the list.
  • the basic format described above may be predefined or set by the network.
  • the SS gives priority to SS block information transmitted from the serving cell, Information on the transmitted SS block can be obtained.
  • the lower N-bits of the SFN information are transferred to the PBCH payload, and the upper M-bits are transferred to the PBCH scrambling sequence. Meanwhile, the most significant 1-bit among the upper M-bits of the SFN information can be transmitted by the change of the time / frequency position of the PBCH DMRS, the NR-SSS, or the SS block.
  • the information on the Half radio frame (5 ms) boundary can be conveyed by changing the time / frequency location of the PBCH DMRS or NR-SSS or SS block.
  • the 'upper bit' and the 'most significant bit' mean the left bit in the case of placing the highest number of digits in the information bit string at the rightmost position. This is interpreted as an LSB (Least Significant Bit, least significant bit) which is a unit value that determines whether the integer number is an even number or an odd number, have.
  • LSB east Significant Bit, least significant bit
  • 'lower bit' and 'least significant bit' mean the right bit in the case of placing the highest number of digits in the information bit string at the rightmost position. This can be interpreted in the same way as MSB (Most Significant Bit) in an arrangement in which the number of the highest digits in the information bit string is located at the leftmost position.
  • the NB-PBCH contents include information that does not change within 80 ms.
  • the SFN information included in the PBCH contents are all the same.
  • the PBCH contents of the 10-bit SFN information include the lower 7-bits information, 3-bit information may be included in the PBCH scrambling sequence or the like.
  • the NB-PBCH contents include information that does not change within 80 ms.
  • the SFN information included in the PBCH contents are all the same.
  • the lower 7 bits information is included in the PBCH contents of the 10 bit SFN information and the upper 3 bits
  • the lower 2 bits information is included in the PBCH scrambling sequence and the uppermost 1 bit information is transmitted using another signal or channel different from PBCH channel coding, such as PBCH contents, CRC, scrambling sequence, and the like.
  • the PBCH DMRS can be used as another signal different from the portion related to PBCH channel coding, and the DMRS sequence, the DMRS RE position, the DMRS sequence to RE mapping change, the symbol position change in the SS block, Frequency position change, etc. can be used as information.
  • a method of using a phase difference of two OFDM symbols transmitted through a DMRS for example, an orthogonal code cover may be considered.
  • a method of changing the initial value can be considered. Specifically, if the initial value of one m-sequence of two m-sequences used in the Gold sequence is fixed and the initial value of the other m-sequence is changed using the cell-ID and other information, A method of changing the initial value using the information to be transmitted to the m-sequence using the initial value can be introduced.
  • another initial value (eg, [0 1 0 ⁇ 0]) is introduced in addition to the existing fixed initial value (eg, [1 0 0 ⁇ 0]) according to 1 bit indicating 10 ms boundary information, You can consider changing the two initial values in the range in 10ms increments.
  • one m-sequence may use a fixed initial value and add information to the initial value of the other m-sequence.
  • the V-shift method of changing the position of the frequency axis of the DMRS according to the information can be applied. Specifically, when REs are placed differently in 0ms and 10ms transmission in the 20ms range, the DMRS is arranged for every 4REs, and a 2RS unit shift can be introduced.
  • a method of changing the manner in which the PBCH DMRS sequence is mapped to the RE can be applied. Specifically, a sequence is mapped from the first RE in case of 0 ms, and a different mapping method is applied in case of 10 ms. For example, a sequence may be reversely mapped to the first RE, a mapping may be performed from an intermediate RE of the first OFDM symbol , Mapping from the first RE of the second OFDM symbol, or the like. It is also conceivable to change the order of the PSS-PBCH-SSS-PBCH, etc. in the SS block to another arrangement. For example, basically, PBCH-PSS-SSS-PBCH, etc. are allocated, but different allocation methods are applied at 0 ms and 10 ms. Also, a method of changing the RE position to which the PBCH data is mapped in the SS block can be applied.
  • the 1-bit information indicating the half frame boundary can be transmitted using other signals or channels different from those related to PBCH channel coding such as PBCH contents, CRC, and scrambling sequence.
  • the PBCH DMRS can be used as another signal different from the PBCH channel coding, and the DMRS sequence, the DMRS RE position, the DMRS sequence to RE mapping change, the symbol position in the SS block Change of frequency position of SS block, etc. can be used as information. In particular, this is applicable when changing from 0ms to 5ms boundaries in the 10ms range.
  • the DMRS sequence, the DMRS RE position, and the DMRS sequence to RE mapping are used for the time change information in 5 ms units in the 20 ms range including the half frame boundary information and the SFN 1-bit 1-bit information, Change of symbol position in SS block, change of frequency position of SS block, etc. can be used as information. This can be applied when the time information changes at the boundaries of 0, 5, 10, and 15 ms in the 20 ms range.
  • the 'upper bit' and the 'most significant bit' mean the left bit in the case where the number of the highest digits in the information bit string is located at the rightmost position. This is interpreted as an LSB (Least Significant Bit, least significant bit) which is a unit value that determines whether the integer number is an even number or an odd number, have.
  • LSB east Significant Bit, least significant bit
  • 'lower bit' and 'least significant bit' mean the right bit in the case of placing the highest number of digits in the information bit string at the rightmost position. This can be interpreted in the same way as MSB (Most Significant Bit) in an arrangement in which the number of the highest digits in the information bit string is located at the leftmost position.
  • the length of the scrambling sequence is 2 * M.
  • a method for generating a total of L different scrambling sequences of 2 * M length is to generate a long sequence of total L * 2 * M lengths and to divide by 2 * M units to generate L sequences.
  • the scrambling sequence a PN sequence can be used, and a Gold sequence and an M sequence can be used. Specifically, a Gold sequence of length 31 can be used. At least the cell ID is used as a value for initializing the PN sequence, and an SS block index obtained from the PBCH DMRS can be additionally used.
  • a slot number and an OFDM symbol are deduced from the SS block index, a slot number / OFDM symbol number can be used.
  • Half radio frame boundary information can be used as an initialization value.
  • the SFN information can be used as an initialization value of the scrambling sequence.
  • the length of the scrambling sequence is Is determined according to the length of bits transmitted through the scrambling sequence in the SFN information. For example, when three bits of SFN information are transmitted through a scrambling sequence, eight states must be represented. A total of 8 * 2 * M sequences is required for this purpose. Similarly, when 2-bit information is transmitted, a total length of 2 * 2 * M is required.
  • the bit string including the PBCH contents and the CRC is encoded using Polar code to generate 512 encoded bits.
  • the encoded bit is shorter than the length of the scrambling sequence.
  • the encoded bit of length 512 is repeated several times to form a bit string having the same length as the scrambling sequence length. Thereafter, the repeated coded bits are multiplied with the scrambling sequence, and QPSK modulation is performed.
  • the modulated symbols are segmented in length M units and mapped to PBCH REs.
  • a modulated symbol sequence of length M units is transmitted in units of 10 ms.
  • the respective modulated symbols transmitted in 10 ms units are different from each other.
  • the period of the SS burst set is 5 ms
  • the same modulated symbol sequence is transmitted during two 5 ms transmission periods included in the 10 ms range.
  • the terminal can acquire Half radio frame (5ms) boundary information, it can combine the information of the PBCH transmitted twice in the 10ms range.
  • a total of 8 blind decodings are performed.
  • the terminal decodes a channel other than the PBCH to acquire half-frame boundary 1-bit information (e.g., C0).
  • the UE acquires upper N-bit information of the SFN (e.g., S0, S1, S2) by performing PBCH blind decoding and SFN information corresponding to the remaining (10-N) bits ), So that SFN information of 10 bits in total can be constructed.
  • PBCH contents including 5ms offset include the same contents in 10ms transmission period, Since 1 bit is different, different contents can be transmitted every 5 ms. That is, two contents are constituted by one bit of the half frame boundary information, and the base station encodes each of the two contents and performs bit repetition, scrambling, and modulation on each of them.
  • the 8 blind decoding performed every 10 ms is performed at the 5 ms offset in the same manner. That is, the UE performs blind decoding at least eight times to acquire upper N-bits information of the SFN (e.g., S0, S1, S2), SFN information corresponding to the remaining 10-N bits ⁇ S9) as well as Half radio frame boundary 1bit information (eg, C0).
  • the acquired bit information can be configured to acquire time information in units of 5 ms.
  • the UE when 2 bits of SFN information is transmitted through the scrambling sequence, the scrambling sequence is changed every 20 ms, and the same modulated symbol sequence is transmitted during four 5 ms transmission periods included in the 20 ms range.
  • the UE can acquire Half-fame boundary information and the most significant 1-bit information of the SFN, it can combine 4 PBCHs received within a 20 ms range, and performs blind decoding four times every 20 ms.
  • the reception complexity of the UE can be increased by acquiring the Half frame boundary information and the SFN uppermost bit information, the complexity of the PBCH blind decoding can be lowered and the PBCH combining can be performed up to 16 times. Improvement can be expected.
  • the UE decodes a channel other than the PBCH to acquire Half frame boundary 1-bit information (e.g., C0) and the most significant 1-bit information (e.g., S0) of the SFN.
  • Half frame boundary 1-bit information e.g., C0
  • the UE performs PBCH blind decoding to obtain upper (N-1) -bit information after the most significant 1 bit of the SFN (for example, S1 and S2), SFN information corresponding to the remaining 10- S3 to S9). From this, the Half radio frame boundary information (eg, C0) and the 10-bit SFN information (S0 to S9) can be configured, and the obtained time information provides 5 ms units. At this time, a plurality of SS blocks can be transmitted in the range of 5 ms, and the SS block positions in the 5 ms range can be obtained from PBCH DMRS and PBCH contents.
  • information of 2 bits (for example, S1 and S2) of the SFN information is transmitted through a scrambling sequence, and information of the most significant 1 bit (e.g., S0) of the SFN information and information of a Half frame boundary 1 bit C0 are transferred from the PBCH contents, the contents of the PBCH contents are changed every 5 ms in the range of 20 ms (for example, S0 and C0), four information bit sets are generated, and each information bit set information bit set) performs a channel coding process for each information bit set.
  • S0 most significant 1 bit
  • 10 bits of SFN information and 1 bit of half frame boundary information can be included in PBCH contents.
  • the PBCH contents excluding the SFN upper 3 bits (eg, S0, S1, S2) and the Half frame 1 bit (eg, C0) are not changed during PBCH TTI (eg, 80 ms).
  • the SFN upper 3 bits (eg, S0, S1, S2) and Half frame 1 bit (eg, C0) information are changed in units of 5 ms.
  • 16 PBCH information bit sets can be generated in the PBCH TTI (e.g., 80 ms) interval.
  • a scrambling sequence is applied to information bits and CRCs except for some bits (e.g., S1 and S2) of SFN information in an information bit included in a PBCH payload.
  • a PN sequence such as a gold sequence may be used as the scrambling sequence.
  • the scrambling sequence may be initialized by the cell ID.
  • the sequence of length M is used as the scrambling sequence for each of the N sequences, as shown in the following example.
  • four PBCH information bit sets transmitted in the 20 ms range include the same scrambling sequence a scrambling sequence different from the scrambling sequence used in the four PBCH information bits transmitted in the previous 20 ms range is included in the four PBCH information bit sets transmitted in the next 20 ms range, Is used.
  • channel coding is performed on each of the 16 PBCH information bit sets scrambled using the scrambling sequence, and the encoded bits bit) is applied to the second scrambling sequence. That is, the number of scrambling performed by applying the first scrambling sequence to the 16 PBCH information bit sets in the same manner as described above, channel coding is performed, and a second scrambling sequence is applied to the obtained encoded bits will be.
  • a PN sequence such as a gold sequence is used as the second scrambling sequence, and a second scrambling sequence can be initialized by the 3-bit SS block index transmitted to the cell ID and the PBCH DMRS.
  • the same scrambling sequence may be used for the encoded bit of the PBCH contents transmitted in association with the specific SS block index depending on the transmission time point.
  • the scrambling sequence changed in units of 5 ms may be applied according to the half frame boundary information.
  • the number of encoded bits to be scrambled is K
  • a sequence of 2 * K lengths is generated, and the sequence is divided into two sequences each having a length K so that the elements of the sequence do not overlap, .
  • performance can be improved by randomly distributing interference when soft combining a PBCH transmitted in a 10 ms interval.
  • the UE can perform decoding several times, assuming that a scrambling sequence possible in the candidate sequence has been transmitted.
  • 1 bit of the half frame boundary information may be transmitted using a signal and / or a channel different from the portion related to PBCH channel coding, such as PBCH contents, CRC, and scrambling sequence.
  • the PSS / SSS / A 1-bit half-frame boundary information can be transmitted by changing the symbol position of the PBCH, changing the frequency position of the SS block, and polarity inversion of the SS or PBCH OFDM symbol. Details thereof will be described later.
  • the UE may perform de-scrambling using a scrambling sequence corresponding to the obtained Half frame boundary information.
  • the SS block time index transmitted to the PBCH DMRS sequence is information of N-bits
  • the SS block time index transmitted to the PBCH payload is information of M-bits.
  • the L-bit is the sum of M-bits and N-bits.
  • a state belonging to one group of the group B or the group C can express a maximum P (in this case, P is 1 or 2) in a range of 0.5 ms.
  • P is 1 or 2
  • the number of states transmitted to the PBCH DMRS sequence may be four in the frequency range of 3 GHz or less, 8 in the frequency range from 3GHz to 6 GHz, or 8 in the frequency range of 6 GHz or more.
  • 15kHz and 30kHz subcarrier spacing is used in the sub-6GHz band where up to 1 state is included within 0.5ms if 15kHz subcarrier spacing is used and up to 2 states within 0.5ms if 30kHz subcarrier spacing is used do.
  • 120kHz and 240kHz subcarrier spacing is used in the 6GHz and above bands where a maximum of one state is included within 0.5ms if a 120kHz subcarrier spacing is used and up to two states within 0.5ms if a 240kHz subcarrier spacing is used .
  • 15 (a) and 15 (b) show SS blocks included in the case of using a 15 kHz / 30 kHz subcarrier interval and a case of using a 120 kHz / 240 kHz subcarrier interval in a 0.5 ms range.
  • one SSMA block is included in a 0.5 ms range, two SSMA blocks in a case of a 30 kHz subcarrier interval, eight SSMA blocks in a 120 kHz subcarrier interval, and 16 SSAM blocks in a 240 kHz subcarrier spacing.
  • the index of the SS block included within 0.5 ms may be mapped on a one-to-one basis with the index transmitted in the PBCH DMRS sequence.
  • the PBCH payload may include an indicator bit for indicating the SS block index, which is not interpreted as a bit for the SS block index in the band below 6 GHz, but may be interpreted as other purpose information. For example, it may be used for coverage extension purposes and may be used for the purpose of conveying the number of repetitions of a signal or resource associated with an SS block.
  • the SS block index transmitted in the range of 5ms for 15kHz and 30kHz subcarriers can be used as the initial value of the sequence.
  • the SS block index may have the same meaning as the SSBID.
  • the PBCH DMRS sequence is the same in the 0.5 ms range, and the PBCH payload can be changed according to the SS block index.
  • the PBCH DMRS sequence in the 0.5 ms interval during which the first SS block group is transmitted is different from the sequence used in the 0.5 ms interval in the second SS block group transmitted before the first SS block group, that is, Lt; / RTI >
  • the SS block index for the SS block group is transmitted to the PBCH payload.
  • the index of the SS block included in 0.5 ms is 16, and the PBCH DMRS sequence can be 2 in the range of 0.5 ms. That is, among the SS blocks, the PBCH DMRS sequences used for the eight SS blocks within the first half 0.5 ms and the eight SS blocks within the second half 0.5 ms may be different from each other.
  • the SS block index is transmitted in the PBCH payload included in the SS blocks in the first half and the second half.
  • the PBCH DMRS sequence In case of applying the scheme in which the PBCH DMRS sequence is kept constant during the predetermined time interval, when the UE attempts to detect the adjacent cell signal to secure the time information of the neighboring cell, the PBCH DMRS sequence with low detection complexity and good detection performance Based time information transmission method, it is possible to acquire time information having accuracy of about 0.5 ms or 0.25 ms. This has the advantage of providing a time accuracy of about 0.25 ms or 0.5 ms regardless of the frequency range.
  • the SS block index included in 0.5 ms is 8
  • the SS block index included in the PBCH payload is the same in the 0.5 ms range
  • the PBCH DMRS sequence can be changed according to the SS block index .
  • the SS block index transmitted through the PBCH payload in the 0.5 ms interval in which the first SS block group is transmitted is the index in the 0.5 ms interval of the second SS block group transmitted before the first SS block group is transmitted I.e., a different sequence.
  • the SS block index included in the PBCH payload transmitted in 8 SS blocks in the first 0.5 ms interval of the SS block is the same, and the 8 SS block indexes in the 0.5 ms interval in the latter half are distinguished from the SS block index in the first half I.e., a different index.
  • the PBCH DMRS included in each of the first half and the second half uses a sequence separated according to the SS block index.
  • the SS block index is represented by combining the indices obtained from the two paths.
  • the above-described embodiments 2-1 and 2-2 they can be expressed by the following equations (1) and (2), respectively.
  • SS-PBCH block index SSBID * P + SSBGID
  • SSBID Floor (SS-PBCH block index / P)
  • SSBGID Mod (SS-PBCH block index, P)
  • SS-PBCH block index SSBID * P + SSBGID
  • SSBID Mod (SS-PBCH block index, P)
  • SSBGID Floor (SS-PBCH block index / P)
  • P can be expressed as 2 ⁇ (number of bits transferred to PBCH DMRS).
  • the SS block group can be composed of 4 SS blocks, and the 15kHz / 30kHz sub-
  • the SS block time index transmission method described in the case of the 120 kHz / 240 kHz subcarrier interval can be applied.
  • the 1 bit boundary (C0) and the 10 ms boundary information 1 bit (S0) change the DMRS RE position shift, the phase difference between the DMRS of the OFDM symbol containing the PBCH, the method of mapping the DMRS sequence to RE, the initial value of the PBCH DMRS sequence Forwarded to change
  • the UE After detecting the cell ID and the symbol timing information, the UE determines a part of timing information such as an SFN, an SS block index, a half frame timing, a common control channel related information such as a time / frequency position, SS burst set information, such as SS burst set information and SS burst set period and actually transmitted SS block index.
  • timing information such as an SFN, an SS block index, a half frame timing, a common control channel related information such as a time / frequency position, SS burst set information, such as SS burst set information and SS burst set period and actually transmitted SS block index.
  • the PBCH shall contain the required information. Also, if possible, an auxiliary signal such as a PBCH DMRS may be used to further include mandatory information or additional information.
  • a PBCH DMRS may be used to further include mandatory information or additional information.
  • system frame number can be defined to distinguish 10ms intervals. Also, similar to LTE systems, indexes between 0 and 1023 can be introduced for SFNs, which can be explicitly indicated using bits or represented implicitly.
  • the PBCH TTI is 80ms and the minimum SS burst period is 5ms.
  • up to 16 times the PBCH can be transmitted in 80 ms units, and different scrambling sequences for each transmission can be applied to the PBCH encoded bits.
  • the UE may detect a 10ms interval similar to the LTE PBCH decoding operation.
  • the 8 states of the SFN are implicitly indicated by the PBCH scrambling sequence, and 7 bits for the SFN indication can be defined in the PBCH contents.
  • the SS block index may be explicitly indicated by bits included in the PBCH DMRS sequence and / or PBCH content, depending on the carrier frequency range. For example, for the frequency band below 6 GHz, the 3 bits of the SS block index are transmitted only to the PBCH DMRS sequence. Also, for the frequency band of 6 GHz or more, the least significant 3 bits of the SS block index are represented by the PBCH DMRS sequence, and the most significant 3 bits of the SS block index are transmitted by the PBCH contents. That is, for the frequency range of 6 GHz to 52.6 GHz, up to three bits for the SS block index can be defined in the PBCH contents.
  • the boundary of the Half frame can be carried by the PBCH DMRS sequence.
  • the Half frame indicator is included in the PBCH DMRS in the frequency band of 3GHz or less, the effect can be enhanced more than the Half frame indicator is included in the PBCH contents. That is, since the FDD scheme is mainly used in the frequency band of 3Ghz or less, the degree of deviation of time synchronization between subframes or slots may be large. Therefore, it is advantageous to transmit the half frame indicator through the PBCH DMRS having better decoding performance than the PBCH contents in order to achieve more accurate time synchronization.
  • the TDD scheme is often used in the case of exceeding the 3Ghz band, the degree of deviation of time synchronization between subframes or slots is not so large, so even if a Half frame indicator is transmitted through the PBCH contents, the disadvantage may be somewhat small.
  • the half frame indicator may be transmitted through both PBCH DMRS and PBCH contents.
  • the SS block can be used not only for providing information for network access, but also for measuring operation.
  • multiple SS blocks can be transmitted for measurement.
  • the RMSI may be unnecessary for the RMSI to be transmitted over all frequency locations where the SS block is transmitted. That is, for the efficiency of resource utilization, the RMSI can be delivered over a specific frequency location. In this case, the UEs performing the initial access procedure can not recognize whether the RMSI is provided at the detected frequency location. To solve this problem, it is necessary to define a bit field for identifying that there is no RMSI corresponding to the PBCH of the detected frequency domain. On the other hand, a method of identifying that there is no RMSI corresponding to the PBCH without the bit field is also considered.
  • the SS block in which the RMSI does not exist is transmitted at a frequency position which is not defined by a frequency raster.
  • the UEs performing the initial access procedure can not detect the SS block, the above-described problem can be solved.
  • information about the SS burst set periodicity and the actually transmitted SS block may be indicated. Therefore, this information is preferably included in the system information for cell measurement and inter / intra cell measurement. That is, it is not necessary to define the above-mentioned information in the PBCH contents.
  • NR-PBCH scrambling sequence The type of NR-PBCH scrambling sequence and sequence initialization will be discussed. Although we can consider using PN sequences in NR, if we do not encounter serious problems using the 31-long Gold sequence defined in the LTE system as the NR-PBCH sequence, we can reuse the Gold sequence with the NR-PBCH scrambling sequence May be preferred.
  • the scrambling sequence may be initialized at least by the Cell-ID, and three bits of the SS block index indicated by PBCH-DMRS may be used to initialize the scrambling sequence. Also, if a Half frame indication is indicated by a PBCH-DMRS or other signal, the Half frame indication may also be used as a seed value for initialization of the scrambling sequence.
  • the MIB configuration may be changed according to CORESET information and SS block group index for each SS block. Therefore, the MIB is encoded for each SS block, and the size of the encoded bit is 3456 bits. Since the polar code output bit is 512 bits, the polar code output bit can be repeated 6.75 times. (512 * 6 + 384).
  • the repeated bits are multiplied by a scrambling sequence having a length of 3456, and the scrambling sequence is initialized to a cell ID and an SS block index transmitted through the DMRS. Then, the 3456-bit scrambling sequence is divided into quadrants by 864 bits, and QPSK modulation is performed on each of them, thereby forming a set of 4 modulated symbols of 432 lengths.
  • a new modulated symbol set is transmitted every 20 ms, and the same modulated symbol set can be transmitted repeatedly up to four times within 20 ms.
  • the frequency axis position of the PBCH DMRS is changed according to the cell ID. That is, the position of the DMRS is shifted by the following equation (3) every 0/5/10/15 ms.
  • the PBCH DMRS sequence uses a Gold sequence of 31 lengths.
  • the initial values of the first m-sequence are fixed to one value, and the initial values of the second m-sequence are SS block index and cell ID .
  • the scrambling sequence is performed for each SS block in a process of segmenting and modulating bits from the process of generating and multiplying a scrambling sequence.
  • C0 and S0 correspond to the Half frame boundary and the Frame boundary indication bit in FIG. 14, respectively.
  • This information is information changed every 0, 5, 10, and 15 ms. After four CRCs are generated, four encodings are performed, and repeatedly arranged on the assumption that each encoded bit is transmitted four times every 20 ms, Multiply the scrambling sequence.
  • blind decoding In addition, in order to combine the information that comes every 0, 5, 10, and 15 ms when receiving the terminal, blind decoding must be added. Although blind decoding is performed only for PBCHs received every 20 ms, there is no additional complexity. However, since signals transmitted every 5 ms can not be combined, it is difficult to guarantee maximum performance.
  • C0, and S0 to the DMRS sequence.
  • the position is determined based on the cell ID, and the frequency position is shifted according to 0, 5, 10, and 15 ms. Adjacent cells can perform the shift in the same manner. In particular, performing power boosting on the DMRS can further improve performance.
  • the NR-PBCH DMRS should be scrambled by 1008 cell IDs and a 3-bit SS block index. This is because, when the detection performance is compared according to the number of hypotheses of the DMRS sequence, the detection performance of 3 bits is most suitable for the number of hypotheses of the DMRS sequence. However, since the detection performance of 4 to 5 bits seems to have almost no performance loss, it is considered that the number of hypotheses of 4 to 5 bits can be used.
  • the SS block time index and the 5 ms boundary can be expressed through the DMRS sequence, it should be designed to have a total of 16 hypotheses.
  • the DMRS sequence must be able to represent at least the cell ID, the SS block index in the SS burst set and the Half frame indication, and the cell ID, the SS block index in the SS burst set, and the Half frame indication ).
  • the concrete initialization equation is as shown in the following equation (5).
  • HF is a half frame indication index having a value of ⁇ 0, 1 ⁇ .
  • the NR-PBCH DMRS sequence can be generated using a Gold sequence of 31 length, similar to the LTE DMRS sequence, or based on a gold sequence of 7 or 8 lengths.
  • a Gold sequence of 31 length is used in the present invention like LTE DMRS.
  • a gold sequence longer than 31 may be considered.
  • DMRS sequence modulated using QPSK Can be defined by the following equation (6).
  • BPSK and QPSK can be considered as a modulation type for DMRS sequence generation. Since the correlation performance of BPSK and QPSK is similar but the correlation performance of QPSK is better than BPSK, QPSK is more suitable as a modulation type of DMRS sequence generation Do.
  • the PBCH DMRS sequence is a Gold sequence, and two m-sequences are composed of polynomials of the same length. When a sequence is short, one m-sequence can be replaced by a short polynomial.
  • the two m-sequences that make up the gold sequence are of the same length.
  • the initial value of one of the m-sequences uses a fixed value, and the initial value of the other m-sequence can be initialized through the cell ID and the time indicator.
  • a 31-long Gold sequence used in LTE can be used as a Gold sequence.
  • the CRS of the existing LTE uses a Gold sequence of 31 lengths and initialized based on 140 time indicators based on 504 cell IDs, 7 OFDM symbols and 20 slots to generate different sequences.
  • the maximum number of SS blocks in the range of 5 ms in the 6 GHz band is 64, but the maximum SS block index transmitted by the PBCH DMRS is 8, which is equal to the maximum number of SS block indexes in the sub- A sequence can be generated according to a cell ID and a time indicator using a Gold sequence of 31 length.
  • a Gold sequence having a different length may be applied according to the frequency range.
  • 120 kHz subcarrier spacing and 240 kHz subcarrier spacing can be used in the 6 GHz and higher bands, so that the number of slots included in 10 ms increases 8 times (i.e., 80) and 16 times (i.e., 160), respectively, compared to the 15 kHz subcarrier spacing.
  • the sequence of the data DMRS is initialized using a 16-bit C-RNTI and a slot index, a polynomial longer than the existing 31 may be required. According to this requirement, when a Length-N (> 31) Gold sequence is introduced, this sequence can be used for PBCH DMRS and PBCH scrambling.
  • a Gold sequence having a different length may be applied according to the frequency range.
  • Length-31 Gold sequences can be used for lending less than 6 GHz, and Length-N (> 31) Gold sequences can be used for more than 6 GHz band.
  • the initial values may be applied in a manner similar to that described above.
  • the two m-sequences that make up the gold sequence are of the same length.
  • Initialization is performed using the time indicator of one of the m-sequences, and the initial value of the other m-sequence can be initialized using the cell ID or cell ID and another time indicator.
  • a Gold sequence of length-31 used in LTE can be used as a Gold sequence.
  • the m-sequence to which the initial fixed value is applied is initialized by using the time indicator.
  • the other m-sequence is initialized with cell ID.
  • half radio frame boundary (5ms) and SFN top 1 bit (10ms boundary) are allocated to the PBCH DMRS when half radio frame boundary (5ms) and SFN 1bit (10ms boundary) ) Can be indicated in the first m-sequence, and the SS block index can be indicated in the second m-sequence.
  • a Gold sequence is composed of M-sequences with polynomials of different lengths. M-sequences with long polynomials are used for information requiring a lot of instructions, and M-sequences with relatively short polynomials are used for information requiring less instructions.
  • the sequence of PBCH DMRS is generated according to time information, such as cell ID and SS block indication.
  • time information such as cell ID and SS block indication.
  • Two different length polynomials can be used to represent 1008 cell IDs and P kinds of time information (for example, 3-bit SS block indicator).
  • a 31-length polynomial is used to identify the cell ID
  • a 7-length polynomial can be used to identify the time information.
  • the two m-sequences can be initialized with the cell ID and time information, respectively.
  • the 31-polynomial may be part of the m-sequence constituting the Gold sequence used in LTE, and the 7-polynomial polynomial may be defined as two types of NR-PSS or NR- m-sequence.
  • a sequence is generated from an M-sequence having a short polynomial, a sequence is generated from a Gold sequence composed of M-sequences having a long polynomial, and the two sequences are multiplied by an element wise.
  • the PBCH DMRS sequence is initialized by the cell ID, time indicator.
  • c (0) to c (9) are determined by the cell ID
  • some of the information of the time indicator may be transmitted to bits corresponding to c (10) to c (30), and the initialization method may be changed according to the attribute of the time indicator.
  • C (0) to c (9) are determined by the cell ID and c (10) to c (30) are determined by the cell ID and the SS block index according to the above description when initializing the cell ID and the SS block index .
  • NID denotes a cell ID
  • SSBID denotes an SS block index.
  • the initial value is set in a form in which the SS block is extended. If the number of SS block indexes transmitted to the PBCH DMRS sequence in the range of 5 ms is P, and the half radio frame boundary is found in the DMRS sequence, the number of SS block indexes can be expressed by the same effect as doubling the number of SS block indexes. Also, if we want to find not only the half frame boundary but also the 10ms boundary, this can be expressed by the same effect as increasing the number of SS block index by four times.
  • the equation for the above-described embodiment 4-2 is expressed by the following equation (8).
  • c (0) to c (9) are determined by the cell ID, c (10) to c (13) Boundary, SFN information, and the like.
  • Equation (9) The formula for the above-mentioned Embodiment 4-3 is shown in the following Equation (9).
  • the SS block indexes transmitted to the PBCH DMRS sequence is P
  • L is less than or equal to P
  • the SS block indexes are all transmitted to the DMRS sequence
  • SS The block index is the same as the index obtained in the DMRS sequence.
  • the SS block index is composed of a combination of an index transmitted to the DMRS sequence and an index transmitted to PBCH contents.
  • the index used in the DMRS sequence is SSBID and the index included in the PBCH contents is SSBGID, the following three cases can be considered.
  • SS-PBCH block index SSBID
  • SS-PBCH block index SSBID * P + SSBGID
  • SSBID Floor (SS-PBCH block index / P)
  • SSBGID Mod (SS-PBCH block index, P)
  • SS-PBCH block index SSBID * P + SSBGID
  • SSBID Mod (SS-PBCH block index, P)
  • SSBGID Floor (SS-PBCH block index / P)
  • the Pesudo-random sequence for generating the NR-PBCH DMRS sequence is defined as a Gold Sequence having a length of 31,
  • the sequence c (n) of length is defined by the following equation (10).
  • variable RE mapping method With respect to the frequency location of the DMRS, two DMRS RE mapping methods may be considered.
  • the fixed RE mapping method fixes the RS mapping region in the frequency domain, and the variable RE mapping method shifts the RS position according to the cell ID using the Vshift method.
  • Such a variable RE mapping method has the advantage of randomizing the interference and obtaining additional performance gain, and it is more preferable to use the variable RE mapping method.
  • a complex modulation symbol Can be determined through Equation (11).
  • k and l represent subcarriers and OFDM symbol indexes located in the SS block, Represents a DMRS sequence.
  • RS power boosting can be considered. If RS power boosting and Vshift are used together, interference from interference TRPs (Total Radiated Power) can be reduced. Also, when considering the detection performance gain of the RS power boosting, the ratio of the PDSCH EPRE to the reference signal EPRE is preferably -1.25 dB.
  • the length of the sequence for the DMRS is determined by the number of REs and modulation order used in the PBCH DMRS.
  • PBCH When M REs are used in DMRS and the sequence is BPSK modulated, a sequence of length M is generated. BPSK modulation is performed in the order of the sequence, and the modulated symbols are mapped to the DMRS RE. For example, if there are 144 PBCH DMRS REs in two OFDM symbols, a sequence of length 144 is generated using one initial value, BPSK modulation is performed, and RE mapping is performed.
  • a sequence of length 2 * M is generated.
  • QPSK modulation is performed by combining a sequence of an even index and a sequence of an odd index. For example, if there are 144 PBCH DMRS REs in two OFDM symbols, a sequence of length 288 is generated using one initial value and a 144-length modulated sequence generated after QPSK modulation is mapped to DMRS RE do.
  • N REs are used for PBCH DMRS in one OFDM symbol and the sequence is BPSK modulated
  • a sequence of length N is generated.
  • BPSK modulation is performed in the order of the sequence, and the modulated symbols are mapped to the DMRS RE.
  • a sequence of length 72 is generated using one initial value, BPSK modulation is performed, and RE mapping is performed. If more than one OFDM symbol is used for PBCH transmission, initialization may be performed for each OFDM symbol to generate another sequence, or the sequence generated from the previous symbol may be mapped equally.
  • N REs are used in PBCH DMRS in one OFDM symbol and QPSK modulation is performed on the sequence
  • a sequence of length 2 * N is generated.
  • QPSK modulation is performed by combining a sequence of an even index and a sequence of an odd index.
  • the modulated symbols map to the DMRS RE. For example, when there are 72 PBCH DMRS REs in one OFDM symbol, a sequence of length 144 is generated using one initial value, and the RE mapping is performed after QPSK modulation. If more than one OFDM symbol is used for PBCH transmission, initialization may be performed for each OFDM symbol to generate another sequence, or the sequence generated from the previous symbol may be mapped equally.
  • cyclic shift can be applied. For example, when two OFDM symbols are used, if the modulated sequence of the first OFDM symbol is sequentially mapped to RE, then the second OFDM symbol has the modulated sequence at a half of the modulated sequence N And performs RE mapping by cyclic shifting by the corresponding offset.
  • NR-PBCH uses 24RB and NR-SSS uses 12RB
  • NR-SSS matches NR-PBCH with center frequency RE
  • NR-SSS is placed at the RB position from the 7th RB to the 18th RB. It is possible to estimate the channel from the NR-SSS.
  • coherent detection can be tried using the estimated channel. In order to make such detection possible, the same cyclic shift scheme as above can be used to transmit the sequence sequence of the PBCH DMRS over the two OFDM symbols in the 12RB region while the NR-SSS is transmitted.
  • the cyclic shift value can be determined according to the time indicator.
  • the same cyclic shift may be applied to each OFDM symbol, or a different cyclic shift may be applied to each OFDM symbol. If a sequence is generated corresponding to the total number of DMRS REs included in an OFDM symbol used as a PBCH, a cyclic shift is applied to the entire sequence, and then, the sequence is mapped to the DMRS RE.
  • reverse mapping can be considered. For example, if the modulated sequence is s (0), s (.), S (M-1), then the reverse mapping can be s (M-1), ⁇ , s (0).
  • the frequency location of the RE used for DMRS can be changed by specific parameters.
  • the maximum range in which the RE position of the frequency axis is shifted can be set to N.
  • the offset of the frequency axis Shift can be determined at least by the cell ID.
  • the offset of the shift can be determined using the cell ID obtained from the PSS and the SSS.
  • the cell ID of the NR system can be composed of a combination of Cell_ID (1) obtained from the PSS and Cell_ID (2) acquired from the SSS, and the cell ID can be represented by Cell_ID (2) * 3 + Cell_ID .
  • the offset of the shift can be determined using the acquired cell ID information or some of the information.
  • An example of calculating the offset may be the following equation (12).
  • v_shift Cell-ID mod N (where N is the frequency interval of the DMRS, e.g., N is set to 4)
  • v_shift Cell_ID (1) (Cell_ID (1) obtained from PSS is used as an offset value of shift)
  • the offset of the frequency axis Shift can be determined by some of the time information.
  • the offset value of the shift can be determined by the Half radio frame boundary (5 ms) or the most significant 1-bit information (10 ms boundary) of the SFN.
  • An example of calculating the offset may be the following equation (13).
  • v_shift 0, 1, 2, 3 (the position of the DMRS is shifted every 0/5/10 / 15ms, there are 4 shift opportunities when the frequency interval of DMRS is 4)
  • v_shift 0, 1 (shifted according to 0 / 5ms boundary or 0/10ms boundary)
  • v_shift 0, 2 (shifted according to 0 / 5ms boundary or 0/10ms boundary, and shifted by the maximum interval of 2 when the frequency interval of DMRS is 4)
  • the offset of the frequency axis Shift may be determined by some of the cell ID and time information.
  • it may be composed of the combination of Embodiment 6-3 and Embodiment 6-3.
  • It is composed of a combination of vshift_cell, which is a shift according to cell ID, and vshift_frame, which is shift according to time information, and this interval can be expressed as a modulor of interval DMRS RE.
  • An embodiment for obtaining the above-described offset may be the following Equation (14).
  • 17 is a diagram for illustrating an example in which the DMRS is mapped in the SS block.
  • PBCH DMRS RE The power ratio between PBCH DMRS RE and Data RE will be described below.
  • PBCH The RE used for DMRS transmission can be transmitted at a power-to-power ratio of RE for data transmission in an OFDM symbol with PBCH DMRS.
  • the energy ratio per DM RE to energy per RE is fixed for each frequency band. At this time, a fixed value may be used in all frequency bands, or a specific power ratio may be applied in a specific frequency band. That is, different power ratios may be applied to different frequency bands. For example, high power is used in the 6GHz band where the ICI dominates, and the same power can be used in the 6GHz or higher band where the noise is limited.
  • the power ratio is expressed by 'energy ratio per DMRS RE per data RE' for convenience of explanation, but it can be expressed in various ways. For example, it can be as follows.
  • the power of the RE used in the DMRS can be set to a value lower than 3 dB with respect to the power of the RE used as the data. For example, if 3RE is used as DMRS, 9RE is used as data, and 4RE / 8RE (DMRS / Data) is used as 12RE, PBRS decoding performance is similar. DMRS of 3RE is similar to 4RE
  • the power boosting level is about 3 dB when providing performance similar to the detection performance of 4.8RE DMRS. (4.15RE DMRS is about 2dB)
  • the BS can indicate the UE to the energy ratio per DM RE per energy per RE.
  • NSA Non Stand Alone
  • the base station can indicate to the UE the energy ratio per DMRS RE to energy per PBCH Data RE used in the NR system. For example, in the initial access stage, the UE may demodulate PBCH data assuming that the energy ratio per DMRS RE per energy is equal to that per PBCH Data RE. Thereafter, the base station can indicate to the UE the energy ratio used for the actual transmission. In particular, among the configurations for handover, it is possible to indicate an energy ratio for a target cell.
  • the energy ratio can be indicated together with the system information (System Information) indicating the transmission power of the PBCH DMRS for the serving cell.
  • System Information system information
  • At least one of the indicated energy ratio values indicates 0 dB, and may include a value if the transmit power of the DMRS increases or decreases.
  • the time information includes a system frame number (SFN), a half frame interval, and an SS block time index.
  • SFN system frame number
  • Each time information can be represented by 10 bits for SFN, 1 bit for Half frame, and 6 bits for SS block time index.
  • a part of 10 bits for the SFN can be included in the PBCH contents.
  • the NR-PBCH DMRS may include 3 bits out of 6 bits for the SS block index.
  • the embodiments of the time index indicating method represented in FIG. 18 may be as follows.
  • Half frame indication is delivered via the NR-PBCH DMRS, then combining the PBCH data every 5ms will result in additional performance enhancement. For this reason, as in measures 3 and 4, one bit for the Half frame indication can be transmitted via the NR-PBCH DMRS.
  • measure 3 can reduce the number of blind decodings, but can lead to loss of PBCH DMRS performance. If PBCH DMRS can deliver 5 bits including S0, C0, B0, B1, and B2 with good performance, measure 3 would be appropriate as a time indication method. However, if PBCH DMRS can not deliver the above-mentioned five bits with excellent performance, Embodiment 4 would be suitable as a time indication method.
  • the most significant 7 bits of the SFN can be included in the PBCH content, and the least significant 2 bits or 3 bits can be transmitted through PBCH scrambling.
  • the PBCH DMRS may include the least significant 3 bits of the SS block index
  • the PBCH contents may include the most significant 3 bits of the SS block index.
  • the SS block time index can be transmitted using only the NR-PBCH DMRS of the adjacent cell.
  • 64 SS block indices are divided through PBCH-DMRS and PBCH contents As indicated, the UE needs to decode the PBCH of the neighboring cell.
  • decoding PBCH-DMRS and PBCH content together may result in additional complexity of NR-PBCH decoding and may reduce decoding performance of the PBCH rather than using only PBCH-DMRS. Therefore, it may be difficult to decode the PBCH to receive the SS block of the neighboring cell.
  • the serving cell instead of decoding the PBCH of the neighboring cell, it may be considered that the serving cell provides the UE with a setting related to the SS block index of the neighboring cell. For example, the serving cell provides the UE with a setting for the three most significant bits of the SS block index of the target neighbor cell, and the UE detects the least significant 3 bits through the PBCH-DMRS of the target neighbor cell.
  • the SS block index of the target adjacent cell can be obtained by combining the above-mentioned 3-bit and 3-bit least significant bits.
  • the most significant 3 bits of the SS block index of the SSB transmitted by the serving cell are obtained through the PBCH contents of the SSB received from the serving cell, and the SSB of the SSB transmitted by the serving cell through the PBCH- The least significant 3 bits of the SS block index of the SS block are detected.
  • the UE After receiving another SSB from the neighboring cell, the UE detects the least significant 3 bits of the SS block index of another SSB through the PBCH-DMRS included in the other SSB, and detects the PBCH content of the SSB transmitted by the serving cell
  • the SS block index of the adjacent cell can be obtained by applying the most significant 3 bits of the SS block index obtained from the SS block index to the adjacent cell.
  • the SS burst set (i.e., 10, 20, 40, 80 ms) may have a plurality of periods, and the encoded bits are transmitted within 80 ms.
  • 19 shows the measurement result according to the SS block index.
  • 144 REs are used for the DMRS within 24 RBs and 2 OFDM symbols, and 432 REs are used for the information.
  • the DMRS sequence assumes that a long sequence (for example, a Gold sequence of length 31) and QPSK are used.
  • the 20 to 21 show the performance measurement results obtained by comparing BPSK and QPSK.
  • the DMRS hypothesis is 3 bits
  • the DMRS sequence is based on a long sequence
  • the power level of the interference TRP is the same as the power level of the serving TRP.
  • BPSK is distributed more in the region where the correlation amplitude is 0.1 or more than QPSK. Therefore, when considering a multi-cell environment, it is preferable to use QPSK as the modulation type of the DMRS. That is, in terms of correlation characteristics, QPSK is a more appropriate modulation type for the DMRS sequence.
  • FIGS. 24 to 25 show measurement results according to the DMRS sequence generation.
  • the DMRS sequence may be generated based on a long sequence of polynomial order 30 or a short sequence of polynomial order 8 or less. It is also assumed that the hypothesis for the DMRS is 3 bits and the power level of the interference TRP is the same as the serving TRP.
  • a polynomial having a length of 7 is introduced into the first M-sequence to improve the correlation of the sequence, there is no difference from the method using a polynomial having a length of 31, which is the first M-sequence.
  • the sequence is generated using the initial value of the first M-sequence as the SSBID, there is no difference from the method in which the initial value of the existing first M-sequence is fixed and the SSBID-CellID is used in the second M-sequence.
  • Length-31 Gold sequence initialize the initial value of the first M-sequence, and use the SSBID-CellID for the second M-sequence.
  • the performance measurement results according to the equal interval RE mapping method and the non-equal interval RE mapping method are 3 bits, the DMRS sequence is based on a long sequence, and the interference TRP power level is the same as the serving TRP. Also, there is only one interference source.
  • variable RE mapping can obtain the effect that the interference is randomly distributed. Therefore, the detection performance of the variable RE mapping is superior to the fixed RE mapping performance.
  • Fig. 27 shows measurement results in the case of using RS power boost.
  • Use of variable RE mapping and DMRS power boosting reduces interference in other cells.
  • the performance of applying RS power boosting has a gain of 2 to 3 dB over that without RS power boost.
  • FIGS. 28 to 29 show the results of measuring PBCH performance with and without RS power boosting.
  • the period of the SS burst set is assumed to be 40 ms, and the encoded bits are transmitted within 80 ms.
  • the transmission power of the RE to the PBCH data decreases, a performance loss may occur.
  • the channel estimation performance is improved due to the increase of the RS power, the demodulation performance can be improved. Therefore, as can be seen from Figs. 28 to 29, the performance of the two cases is almost the same. Therefore, the influence of the transmission power loss of the RE on the PBCH data can be compensated by the gain of the channel estimation performance.
  • FIG. 30 Introducing Vshift, which changes the position of the frequency axis of the DMRS RE according to the cell ID, when the PBCH DMRS transmitted in the multi-cell environment is received for two cycles and the two PBCHs are combined, the detection performance is improved due to ICI randomization When Vshift is applied, the detection performance is improved.
  • Carrier Frequency 4 GHz Channel Model CDL_C (delay scaling values: 100 ns)
  • time index indicating method other than the time index indicating method as described above may be considered.
  • various embodiments for efficiently indicating a half frame index will now be described.
  • the SS blocks included in the 5 ms duration may be transmitted with a period of 5 ms, 10 ms, 20 m, 40 m, 80 ms, 160 ms, or the like.
  • the UE in the initial access stage performs signal detection, assuming that SS blocks are transmitted in a period longer than 5 ms (e.g., 10 ms, 20 ms, etc.).
  • the UE in the initial access stage performs signal detection, assuming that the SS blocks are transmitted at a cycle of 20 ms.
  • the base station transmits the SS block at a 5 ms cycle and the UE detects the SS block at a 20 ms cycle, the UE may transmit the SS block in the first half radio frame, radio frame). That is, the UE can not make an accurate assumption as to whether the SS block is received in the first half half frame or the second half half frame. Therefore, the base station can consider the following methods for accurately conveying to the UE whether the SS block is transmitted in the first half half frame or in the second half half frame.
  • the UE may decode the received SS block to obtain half frame time information.
  • the above-described methods can be used in combination with each other, and various modifications of the above-described methods are possible.
  • time information such as a state of the UE, such as whether the UE is in an initial connection state, an IDLE mode, or a handover to an inter-cell / another RAT
  • Various methods for conveying Half frame time information can be considered.
  • the UE in the initial access stage tries to detect the SS block signal assuming that the SS block is transmitted to a fixed position of either the first half half frame or the second half half frame in the 10 ms time range. That is, the UE acquires time information such as an SFN and an SS block index by performing a sequence detection or data decoding process included in a signal and a channel included in the SS block, and the Half frame information is acquired by the SS block A slot defined to be transmitted, and a position of an OFDM symbol.
  • the UE performing the initial access only detects the SS block transmitted in the specific half frame And the SS block transmitted in another Half frame can not be detected, and the terminal operation.
  • the SS blocks of the two different types are referred to as a first type SS block and a second type SS block.
  • the network constitutes an SS block of a first type and includes a phase, a symbol position, a sequence type, a symbol mapping rule, and a transmission mode of a PSS / SSS / PBCH constituting the SS block of the first type, Power and the like of the second type.
  • the base station transmits the first type SS blocks in the first half frame and transmits the second type SS blocks in the second half frame.
  • the UE performing the initial connection assumes that the SS block of the first type is transmitted from the base station, and attempts synchronization signal detection and PBCH decoding. If the synchronization signal detection and the PBCH decoding are successful, the UE assumes that the corresponding point is a slot and an OFDM symbol belonging to the first half frame.
  • Embodiment 8-1 a method of obtaining the Half Frame boundary information by changing the phase of some symbols among the symbols to which the PSS / SSS / PBCH constituting the SS block is mapped will be described .
  • time information such as SFN, half frame, and SS block index can be transmitted through the phase change of the PSS / SSS / PBCH constituting the SS block.
  • it can be used to transmit time information of the half frame.
  • the PSS / SSS / PBCH included in the SS block use the same antenna port.
  • the phase of the OFDM symbol including the PSS / SSS and the OFDM symbol including the PBCH can be changed according to the transmission period.
  • the transmission period in which the phase is changed may be 5 ms.
  • (+ 1, +1, + 1, + 1) phases are applied to OFDM symbols including PSS-PBCH-SSS- , -1) can be applied.
  • the polarity of some OFDM symbols among the OFDM symbols including the PSS or the SSS may be reversed (+ 1, + 1, +1, +1) and (+1, +1, -1, + 1) + 1, + 1, + 1, + 1) and (-1, + 1, + 1, + 1).
  • the phase of the first 5 ms period is transmitted (+ 1, + 1, + 1, + 1) -1, -1, -1) of the third 5 ms period, and the phase (-1, -1, -1, -1) of the fourth 5 ms period is transmitted .
  • the phase of the first 5 ms period is transmitted (+ 1, + 1, + 1, + 1) -1, -1, -1) of the third 5 ms period
  • the phase (-1, -1, -1, -1) of the fourth 5 ms period is transmitted .
  • phase of the PSS and the SSS included in the SS block may be changed in order to distinguish the 20 ms interval period.
  • the phase of the first 5 ms period is transmitted (+ 1, +1, +1, +1)
  • the phase of the fourth 5 ms period is transferred from the second 5 ms period to (-1, Lt; / RTI > That is, by changing the PSS / SSS phase of the first 5 ms period and the PSS / SSS phase of the remaining 5 ms period, the 20 ms period can be distinguished.
  • the SS block transmitted in the second 5 ms period to the fourth 5 ms period may not be detected by the UE because the phase of the PSS / SSS is changed.
  • a phase change can be considered in addition to polarity inversion of the transmitted phase.
  • the SS block may be divided into (+ 1, + 1, +1, +1) and (+ 1, + j, + 1, + j) + 1, + 1) and (+ 1, -j, + 1, -j).
  • the time information of the Half Frame can be obtained by the phase change of the PBCH symbol and can be used to determine the PBCH scrambling sequence. That is, the base station changes the phase between the SSS symbol and the PBCH symbol every 5 ms to construct and transmit the SS block. In other words, the base station can change the phase of the symbols through which the PBCH and SSS of the SS block are transmitted, depending on the position at which the SS block is transmitted within a certain period. At this time, The symbol phase of the SSS and the PBCH corresponding to the SS block actually transmitted by the base station, but not the SSS corresponding to all possible candidate SS blocks and the symbol phase of the PBCH.
  • PBCH One bit in the DMRS can be used as an indicator for indicating a half frame.
  • the PBCH scrambling sequence may be initialized by an indicator for Half Frame timing.
  • the MSB [7-10] bits of the SFN can be explicitly indicated through the PBCH contents, and the LBS [3] bits of the SFN can be used for the PBCH scrambling sequence.
  • One bit for Half Frame timing can be indicated by the PBCH.
  • the PBCH scrambling sequence may be initialized by an indicator for Half Frame timing.
  • a phase difference may occur between the PBCH symbol and the SSS symbol, and the MSB [7 to 10] bits of the SFN may be explicitly indicated through the PBCH contents and the LBS [3] bits of the SFN may be the PBCH scrambling sequence Lt; / RTI >
  • One bit for Half Frame timing can be indicated by the PBCH.
  • a phase difference may occur between the PBCH symbol and the SSS symbol, and the MSB [7 to 10] bits of the SFN may be explicitly indicated through the PBCH contents and the LBS [3] bits of the SFN may be the PBCH scrambling sequence Lt; / RTI >
  • the base station For a UE performing measurement and handover, the base station indicates the transmission period of the actually transmitted SS block. This can be further transmitted together with the measurement periodicity information included in the measurement related time information, and further, the information on the measurement periodicity is regarded as the transmission period information of the SS block, Measurement and handover can be performed based on this.
  • the handover command may include system information related to a target cell such as cell information, SIB 0, 1, 2, and the like.
  • SIB System information
  • RMSI Remaining Minimum System Information
  • the RMSI may include information on the location and transmission period of an SS block used for actual transmission in a target cell.
  • SS block transmission period information for cells that can be candidates for handover as well as a target cell needs to be additionally transmitted to the UE. Therefore, the information on the SS block transmission period for the candidate cells is defined as system information separated from the handover command, and can be transmitted to the UE.
  • the UE acquires the synchronization signal of the neighboring cells and acquires time information, that is, obtains the SS block index using the SS block of the first type do. If a transmission period of 5 ms is indicated, the UE acquires synchronization signal search and time information of neighbor cells using the first type SS block and the second type SS block.
  • the UE searches the SS block of the 10-ms period using the SS block of the first type, detects the SS block of the first type, At a time position having an offset of about 5 ms based on the SS block of the first type, the UE may attempt to detect the sync signal and acquire time information using the SS block of the second type.
  • the UE performing Handover in the above-described method can acquire time information used in a target cell, candidate cells (Candidate Cells), target RAT (Target RAT), and the like.
  • Embodiment 8-2 when a periodicity for performing measurement is transmitted to the UE, the UE is also instructed to actually transmit the SS block.
  • the configuration for measurement is a period given to perform measurement from the UE point of view, which may be configured longer than the SS block transmission period that the actual base station transmits.
  • the configuration of the channel / signal, the resource configuration method, the sequence mapping method, and the like may be changed according to the assumption of the time information of the base station or the state of the UE.
  • the time information is composed of a SFN, a slot, and an OFDM symbol number.
  • the subframe number, the slot number and the like are indexed in the M time range, and the subframe number, the slot number and the like are indexed in the N time range smaller than M.
  • M 10 ms
  • N 5 ms
  • a time index defined in different time ranges may be applied according to conditions such as a time information assumption, a UE connection state, and the like.
  • a synchronization indicator which is an indicator for indicating whether a synchronous network or an asynchronous network, or a synchronous indicator indicating a time information and a channel / time information according to whether the connection state of the UE is Initial access, Handover, IDLE / A signal configuration, a resource configuration method, and the like may be changed. At this time, the synchronization indicator may be transmitted from the base station to the UE.
  • Scheme 2 A sequence mapped to a reference signal such as DMRS, CSI-RS, or SRS or a scrambling sequence of a data bit such as PDSCH / PUSCH is changed according to time information within a 10 ms range such as a slot number or an OFDM symbol number Or may be changed every 5ms. That is, the CSI-RS resource and the PRACH resource can be configured based on a radio frame range, a first half frame range, or a second half frame range within a 10 ms range, .
  • the configuration of the channel / signal, the resource configuration method, and the sequence mapping method may be changed according to the bandwidth part.
  • Data such as PDSCH / PUSCH for transmitting broadcast system information (Broadcasting SI), RACH Msg2 / 3/4, and paging in a bandwidth part used for initial access Channel, a control channel such as PDCCH / PUSCH, a reference signal such as DMRS / CRS-RS / SRS / PTRS, etc., can be configured within N time range and repeatedly transmitted in N time units.
  • the data channel, the control channel, and the reference signal are configured in the M time range, and can be repeatedly transmitted in units of M times.
  • the PRACH preamble, Msg2, etc., which are resources used in handover, can be configured as an M-time range and an N-time range.
  • M 10 ms
  • N 5 ms.
  • the UE If the UE is instructed to a synchronous network, the UE assumes that a signal transmitted in the cells of the same frequency band is received within a predetermined range (for example, 1 ms) ) Is assumed to be equally applicable to the serving cell as well as the neighboring cell.
  • a predetermined range for example, 1 ms
  • resources composed of M time ranges can be utilized.
  • resources configured in the M time range can be used in an environment that can be assumed as a synchronous network.
  • an N-time range resource can be used in an environment where an asynchronous network is indicated to a UE or an asynchronous network.
  • the UE When the UE is instructed to a synchronous network, the UE assumes that a signal transmitted in the cells of the same frequency band is received within a predetermined range (for example, 1 ms)
  • a predetermined range for example, 1 ms
  • the 5ms time information obtained from the serving cell is assumed to be applicable not only to the serving cell but also to the adjacent cell.
  • the initial access procedure of LTE operates within the system bandwidth configured by the MIB (Master Information Block).
  • the PSS / SSS / PBCH are arranged based on the center of the system bandwidth.
  • the common search space is defined within the system bandwidth, the system information is transmitted by the PDSCH of the common search space allocated within the system bandwidth, and the RACH procedure for Msg1 / 2/3/4 operates.
  • the NR system supports operation in a wideband CC (Component Carrier), but it is very difficult to implement the UE with the capability to perform necessary operations in all the wideband CCs in terms of cost. Therefore, it may be difficult to implement an initial connection procedure to operate smoothly within the system bandwidth.
  • CC Component Carrier
  • the NR can define a BWP for initial connection operation.
  • the at least one downlink BWP may include one CORESET having a common search space on at least one main component carrier.
  • At least RMSI, OSI, paging, RACH message 2/4 related downlink control information is transmitted in a CORESET having a common search space, and a downlink data channel associated with the downlink control information can be allocated in the downlink BWP .
  • the UE may expect the SS block to be transmitted within the BWP corresponding to the UE.
  • At least one downlink BWPs may be used for downlink common channel transmission.
  • the signal that can be included in the downlink common channel may be an SS block, a CORSET having a common search space, and a PDSCH for RMSI, OSI, paging, and RACH message 2/4.
  • the RMSI can be interpreted as SIB1 (System Information Block 1), and is system information that the UE must acquire after receiving the MIB (Master System Information Block) through the PBCH (Physical Broadcast Channel).
  • subcarrier spacings of 15, 30, 60 and 120 kHz are used for data transmission.
  • the NM for the PDCCH and the PDSCH in the BWP for the downlink common channel can be selected from the defined memories for data transmission.
  • one or more of the subcarrier spacings of 15 kHz, 30 kHz, and 60 kHz may be selected for the frequency range below 6 GHz, and one or more of the 60 kHz and 120 kHz subcarrier spacings may be selected for the frequency range of 6 GHz to 52.6 GHz .
  • subcarrier spacing of 60 kHz is not suitable for PBCH transmission in the frequency range below 6 GHz, since subcarrier spacing of 60 kHz is already defined for the URLLC service in the frequency range below 6 GHz. Therefore, subcarrier spacings of 15 kHz and 30 kHz may be used for downlink common channel transmission in the frequency range below 6 GHz, and subcarrier spacings of 60 kHz and 120 kHz may be used in the frequency range above 6 GHz.
  • NR supports subcarrier spacing of 15, 30, 120 and 240 kHz for SS block transmission. It can be assumed that the same subcarrier interval is applied to the SS block and the downlink channel such as CORESET and RMSI having common search space, PDSCH for paging and RAR. Thus, applying this assumption eliminates the need to define the journal information in the PBCH content.
  • the subcarrier interval for the downlink control channel needs to be changed.
  • a subcarrier interval of 240 kHz is applied to SS block transmission in a frequency band of 6 GHz or more, subcarrier spacing of 240 kHz is not used for data transmission including downlink control channel transmission.
  • the sub-carrier interval can be changed for data transmission including downlink data channel transmission, it can be indicated through a 1-bit indicator included in PBCH contents.
  • the 1 bit indicator may be interpreted as ⁇ 15 kHz, 30 kHz ⁇ or ⁇ 60 kHz, 120 kHz ⁇ .
  • the indicated subcarrier spacing can be considered as a reference neurorography of the RB grid.
  • the PBCH contents may mean a MIB (Master Information Block) transmitted in the PBCH.
  • the 1-bit indicator can indicate that the subcarrier interval for RMSI or OSI, paging, Msg 2/4 for initial connection is 15 kHz or 30 kHz, If it is 6Ghz or more, the 1 bit indicator can indicate that the subcarrier interval for RMSI or OSI, paging and Msg 2/4 for initial connection is 60 kHz or 120 kHz.
  • the bandwidth of the BWP for the downlink common channel need not be the same as the bandwidth of the system in which the network operates. That is, the bandwidth of the BWP may be narrower than the system bandwidth. That is, the bandwidth should be wider than the carrier minimum bandwidth, but not wider than the UE minimum bandwidth.
  • the BWP for downlink common channel transmission can be defined such that the bandwidth of the BWP is wider than the bandwidth of the SS block, and is equal to or smaller than the specific downlink bandwidth of all UEs capable of operating in each frequency range.
  • the carrier minimum bandwidth is defined as 5 MHz and the UE minimum bandwidth is assumed to be 20 MHz.
  • the bandwidth of the downlink common channel can be defined in the range of 5 MHz to 20 MHz. That is, the SS block may be located in a portion of the downlink common channel bandwidth.
  • the UE attempts to detect a signal within the bandwidth of the SS block during an initial synchronization procedure that includes cell ID detection and PBCH decoding. Thereafter, the UE may continue to perform the next initial access procedure within the bandwidth for the downlink common channel indicated by the network through the PBCH content. That is, the UE can acquire the system information within the bandwidth for the downlink common channel and perform the RACH procedure.
  • an indicator for the relative frequency position between the bandwidth for the SS block and the bandwidth for the downlink common channel may be defined in the PBCH content.
  • the PBCH contents may mean a MIB (Master Information Block) transmitted in the PBCH.
  • the relative frequency position between the bandwidths for the downlink common channel can be defined as offset information for the bandwidth for the SS block and the bandwidth for the downlink common channel.
  • the offset value can be indicated in units of RB, and the UE can determine that the bandwidth for the downlink common channel is located at the offset position by the indicated number of RBs.
  • the SS block bandwidth and the sub-carrier spacing of the bandwidth for the downlink common channel may be set differently.
  • the sub-carrier interval of the SS block bandwidth and the bandwidth of the downlink common channel The absolute frequency interval of the offset indicated by the RB unit can be calculated based on any one of the subcarrier intervals.
  • the bandwidth for the plurality of SS blocks may be any of the candidate positions for positioning the SS block within the bandwidth for the downlink common channel.
  • the bandwidth of the downlink common channel need not be the same as the bandwidth of the system in which the network operates. Also, the bandwidth may be narrower than the system bandwidth. That is, the bandwidth of the downlink common channel should be wider than the carrier minimum bandwidth, but not be wider than the minimum bandwidth of the UE.
  • the carrier minimum bandwidth is defined as 5MHz, and if the minimum bandwidth of the UE is assumed to be 20MHz, the bandwidth of the downlink common channel can be defined in the range of 5MHz to 20MHz.
  • the bandwidth of the SS block is 5 MHz and the bandwidth of the downlink common channel is 20 MHz, it is possible to define four candidate positions for searching the SS block within the bandwidth for the downlink common channel.
  • CORESET information including the RMSI scheduling information to the UE. That is, in the PBCH content, frequency resource related information such as the bandwidth for the CORESET and the frequency position can be indicated. In addition, time resource related information, such as the starting OFDM symbol, the duration and the number of OFDM symbols, can additionally be set to flexibly utilize network resources.
  • Information about the common search space monitoring period, duration and offset may also be transmitted from the network to the UE to reduce UE detection complexity.
  • the transmission type and the REG bundling size can be fixed according to the CORESET of the common search space.
  • the transmission type can be classified according to whether the transmitted signal is interleaved or not.
  • two candidates are considered, such as 7 OFDM symbol slots and 14 OFDM symbol slots. If the NR system decides to support both types of slots for a carrier frequency range below 6 GHz, then it is necessary to be able to define the indication of the slot type for the time resource representation of CORESET with a common search space .
  • Bit size 6GHz For a6GHz Reference numerology [One] [One] Bandwidth for DL common channel, and SS block position [3] [2] # OFDM symbols in a Slot [One] 0 CORESET (Time resource - starting OFDM symbol, Duration) (UE Monitoring Periodicity, offset, duration) About [10] About [10] Total About [14]
  • 35 is a block diagram showing components of a transmitting apparatus 10 and a receiving apparatus 20 that perform the present invention.
  • the transmitting apparatus 10 and the receiving apparatus 20 may include RF (Radio Frequency) units 13 and 23 capable of transmitting or receiving radio signals carrying information and / or data, signals, messages, (12, 22) for storing various information related to communication, a RF unit (13, 23) and a memory (12, 22) Each comprising a processor 11, 21 configured to control the memory 12, 22 and / or the RF unit 13, 23 to perform at least one of the embodiments of the invention described above.
  • RF Radio Frequency
  • the memories 12 and 22 may store a program for processing and controlling the processors 11 and 21, and may temporarily store the input / output information.
  • the memories 12 and 22 can be utilized as buffers.
  • Processors 11 and 21 typically control the overall operation of the various modules within the transmitting or receiving device.
  • the processors 11 and 21 may perform various control functions to perform the present invention.
  • the processors 11 and 21 may also be referred to as a controller, a microcontroller, a microprocessor, a microcomputer, or the like.
  • the processors 11 and 21 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays may be provided in the processors 11 and 21.
  • firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention.
  • the firmware or software may be contained within the processors 11, 21 or may be stored in the memories 12, 22 and driven by the processors 11,
  • the processor 11 of the transmission apparatus 10 performs predetermined coding and modulation on signals and / or data scheduled to be transmitted from the scheduler connected to the processor 11 or the processor 11, And transmits it to the RF unit 13.
  • the processor 11 converts a data stream to be transmitted into K layers through demultiplexing, channel coding, scrambling, modulation, and the like.
  • the encoded data stream is also referred to as a code word and is equivalent to a transport block that is a data block provided by the MAC layer.
  • a transport block (TB) is encoded into one codeword, and each codeword is transmitted to the receiving device in the form of one or more layers.
  • the RF unit 13 for frequency up-conversion may include an oscillator.
  • the RF unit 13 may include N t (where N t is a positive integer equal to or greater than 1) transmit antennas.
  • the signal processing procedure of the receiving apparatus 20 is configured in reverse to the signal processing procedure of the transmitting apparatus 10.
  • the RF unit 23 of the receiving device 20 receives the radio signal transmitted by the transmitting device 10.
  • the RF unit 23 may include N r reception antennas, and the RF unit 23 performs frequency down-conversion on each of the signals received through the reception antennas to recover the baseband signals .
  • the RF unit 23 may include an oscillator for frequency down conversion.
  • the processor 21 may perform decoding and demodulation of the radio signal received through the reception antenna to recover data that the transmission apparatus 10 originally intended to transmit.
  • the RF units 13 and 23 have one or more antennas.
  • the antenna may transmit signals processed by the RF units 13 and 23 to the outside under the control of the processors 11 and 21 or receive radio signals from the outside and transmit the signals processed by the RF unit 13 , 23).
  • Antennas are sometimes referred to as antenna ports.
  • Each antenna may be configured by a combination of physical antenna elements corresponding to one physical antenna or more than one physical antenna element. The signal transmitted from each antenna can not be further decomposed by the receiving apparatus 20.
  • a reference signal (RS) transmitted in response to the antenna defines the antenna viewed from the perspective of the receiving apparatus 20 and indicates whether the channel is a single radio channel from one physical antenna, Enables the receiving device 20 to channel estimate for the antenna regardless of whether it is a composite channel from a plurality of physical antenna elements. That is, the antenna is defined such that a channel carrying a symbol on the antenna can be derived from the channel through which another symbol on the same antenna is transmitted.
  • MIMO multi-input multi-output
  • the RF units 13 and 23 can support reception beamforming and transmission beamforming.
  • the RF units 13 and 23 may be configured to perform the functions illustrated in FIGS.
  • the RF units 13 and 23 may be referred to as a transceiver.
  • the UE operates as the transmitting apparatus 10 in the uplink and operates as the receiving apparatus 20 in the downlink.
  • the gNB operates as the receiving apparatus 20 in the uplink and as the transmitting apparatus 10 in the downlink.
  • a processor, an RF unit and a memory provided in the UE are referred to as a UE processor, a UE RF unit and a UE memory respectively, and a processor, an RF unit and a memory provided in the gNB are referred to as a gNB processor, a gNB RF unit and a gNB memory, respectively.
  • the gNB processor of the present invention controls to transmit the SSB composed of the PSS / SSS / PBCH to the UE.
  • the most significant 3 bits for indicating the SSB index may be transmitted through the PBCH payload, and the least significant 3 bits may be transmitted for indicating the SSB index through the PBCH DMRS.
  • both the PBCH payload and the PBCH DMRS are transmitted through the symbols to which the PBCH is mapped, they can be interpreted as being transmitted through the PBCH.
  • the most significant 3 bits for indicating the SSB index may indicate the SSB group to which the corresponding SSB belongs, and the least significant 3 bits for indicating the SSB index may indicate the position of the SSB in the SSB group.
  • the PBCH payload may further include an indicator for indicating a half frame indicator and a frame index in addition to the most significant 3 bits for indicating an SSB index.
  • the SSB index indicator, the half frame indicator, and the frame index indicator may be collectively referred to as SSB Time information.
  • the scrambling sequence for scrambling the PBCH payload may be applied equally within 20 ms, and the frequency location of the PBCH DMRS may be changed every 5 ms.
  • the frequency position of the PBCH DMRS may be mapped depending on the cell identifier.
  • the gNB processor may transmit to the UE an indicator indicating whether or not the time information of the serving cell can be used to acquire the SSB index of the neighboring cell.
  • the UE processor of the present invention can control to receive the SSB composed of the PSS / SSS / PBCH from the gNB.
  • the UE processor can receive the SSB from the serving cell and the neighboring cell, respectively, and obtain the time information through the payload and the DMRS of the PBCH included in the SSB received from the serving cell. That is, it can acquire the frame, half frame information, and SSB index information of the SSB received from the serving cell. Specifically, in order to acquire the SSB index of the neighbor cell from the BS, an indicator indicating whether the time information of the serving cell can be used is received, and the indicator indicates time information of the serving cell to the SSB index acquisition The SSB index information received from the serving cell can be determined from the SSB index received from the neighboring cell.
  • the index of the SSB received from the cell can be determined.
  • the index of the serving cell SSB may be determined by combining the most significant 3 bits obtained from the PBCH payload of the serving cell and the least significant 3 bits obtained from the PBCH DMRS of the serving cell, And the least significant 3 bits may indicate the position of the SSB in the SSB group.
  • the UE processor can identify the half frame through which the serving cell SSB or the neighbor cell SSB is transmitted through the PBCH scrambling sequence and the PBCH DMRS-mapped frequency position, and the DMRS- As shown in FIG. Further, when receiving the PBCH, the UE processor can receive the EPRE of the PBCH and the EPRE of the PBCH DMRS assuming that they are the same.
  • the gNB processor or the UE processor of the present invention can be configured to apply the present invention on a cell operating in a high frequency band of 6 GHz or more in which analog or hybrid beamforming is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은, 무선 통신 시스템에서, 단말이 동기 신호 블록(Synchronization Signal Block; SSB)을 수신하는 방법을 개시한다. 특히, 상기 방법은, 서빙 셀로부터 제 1 SSB를 수신하고, 인접 셀(neighbour cell)로부터 제 2 SSB를 수신하고, 상기 제 1 SSB에 포함된 PBCH(Physical Broadcasting Channel)를 기반으로 상기 제 1 SSB의 시간 정보를 획득하고, 상기 제 1 SSB의 시간 정보를 이용하여 상기 제 2 SSB의 인덱스를 획득하는 것을 포함하는 것을 특징으로 한다.

Description

동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
본 발명은 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치에 관한 것으로서, 더욱 상세하게는, 서빙 셀과 인접 셀 각각으로부터 동기 신호 블록을 수신한 경우, 하나의 동기 신호 블록만을 디코딩하여, 나머지 동기 신호 블록의 시간 정보까지 획득할 수 있는 방법 및 이를 위한 장치에 관한 것이다.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, 기존 LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. NewRAT이라고 명칭되는, 이러한 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC) 등으로 통신 시나리오가 구분된다.
여기서, eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, URLLC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g., V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다. (e.g., IoT).
본 발명은, 동기 신호 블록을 송수신하는 방법 및 이에 대한 장치를 제공하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따른, 무선 통신 시스템에서, 단말이 동기 신호 블록(Synchronization Signal Block; SSB)을 수신하는 방법에 있어서, 서빙 셀로부터 제 1 SSB를 수신하고, 인접 셀(neighbour cell)로부터 제 2 SSB를 수신하고, 상기 제 1 SSB에 포함된 PBCH(Physical Broadcasting Channel)를 기반으로 상기 제 1 SSB의 시간 정보를 획득하고, 상기 제 1 SSB의 시간 정보를 이용하여 상기 제 2 SSB의 인덱스를 획득하는 것을 포함할 수 있다.
이 때, 상기 획득되는 제 1 SSB의 시간 정보는, 상기 제 1 SSB의 인덱스 정보를 포함할 수 있다.
또한, 상기 제 2 SSB의 인덱스는, 상기 PBCH의 페이로드를 통해 획득되는 상기 제 1 SSB의 인덱스를 위한 최상위 3비트 및 상기 제 2 SSB에 포함된 PBCH DMRS(Demodulation Reference Signal)을 통해 획득되는 상기 제 2 SSB의 인덱스를 위한 최하위 3비트의 조합으로 결정될 수 있다.
또한, 제 1 SSB의 인덱스는, 상기 PBCH의 페이로드를 통해 획득되는 상기 제 1 SSB의 인덱스를 위한 최상위 3비트 및 상기 제 1 SSB에 포함된 PBCH DMRS(Demodulation Reference Signal)을 통해 획득되는 상기 제 1 SSB의 인덱스를 위한 최하위 3비트의 조합으로 결정되며, 상기 최상위 3비트 및 최하위 3비트 중 어느 하나의 3비트는, 상기 서빙 셀로부터 전송 가능한 후보 SSB의 위치들을 소정 개수로 그룹핑한 복수의 SSB 그룹 중, 상기 제 1 SSB가 속한 SSB 그룹을 나타내며, 나머지 3비트는, 상기 제 1 SSB가 속한 SSB 그룹 내에서의 상기 제 1 SSB의 위치를 나타낼 수 있다.
또한, 상기 PBCH가 맵핑된 심볼을 통해 전송되는 DMRS(Demodulation Reference Signal)의 시퀀스는, 상기 서빙 셀의 식별자 및 상기 제 1 SSB의 인덱스를 기반으로 생성될 수 있다.
또한, 상기 제 1 SSB가 전송되는 하프 프레임은, 상기 PBCH의 스크램블링 시퀀스 및 상기 PBCH가 맵핑된 심볼을 통해 전송되는 DMRS(Demodulation Reference Signal)가 맵핑된 주파수 위치를 통해 식별될 수 있다.
또한, 특정 시간 구간 내에서 사용되는 상기 PBCH의 스크램블링 시퀀스는 동일할 수 있다.
또한, 상기 PBCH가 맵핑된 심볼을 통해 전송되는 DMRS(Demodulation Reference Signal)가 맵핑된 주파수 위치는, 상기 서빙 셀의 식별자에 의존할 수 있다.
또한, 상기 단말은, 상기 PBCH의 EPRE(Energy per Resource Element)와 상기 PBCH가 맵핑된 심볼을 통해 전송되는 DMRS(Demodulation Reference Signal)의 EPRE가 동일한 것으로 가정할 수 있다.
또한, 상기 제 1 SSB의 시간 정보를 상기 제 2 SSB의 인덱스를 획득하는데 사용할 수 있는지 여부를 지시하는 지시자를 수신하는 것을 더 포함할 수 있다.
본 발명에 따른, 무선 통신 시스템에서, 동기 신호 블록(Synchronization Signal Block; SSB)을 수신하는 단말에 있어서, 복수의 셀들과 신호를 송수신하는 트랜시버; 및 상기 트랜시버와 연결되어, 서빙 셀로부터 제 1 SSB를 수신하도록 상기 트랜시버를 제어하고, 인접 셀(neighbour cell)로부터 제 2 SSB를 수신하도록 상기 트랜시버를 제어하고, 상기 제 1 SSB에 포함된 PBCH(Physical Broadcasting Channel)를 기반으로 상기 제 1 SSB의 시간 정보를 획득하고, 상기 제 1 SSB의 시간 정보를 이용하여 상기 제 2 SSB의 인덱스를 획득하는 프로세서를 포함할 수 있다.
이 때, 상기 획득되는 제 1 SSB의 시간 정보는, 상기 제 1 SSB의 인덱스 정보를 포함할 수 있다.
또한, 상기 PBCH가 맵핑된 심볼을 통해 전송되는 DMRS(Demodulation Reference Signal)의 시퀀스는, 상기 서빙 셀의 식별자 및 상기 제 1 SSB의 인덱스를 기반으로 생성될 수 있다.
또한, 특정 시간 구간 내에서는 사용되는 상기 PBCH의 스크램블링 시퀀스는 동일할 수 있다.
또한, 상기 단말은, 상기 PBCH의 EPRE(Energy per Resource Element)와 상기 PBCH가 맵핑된 심볼을 통해 전송되는 DMRS(Demodulation Reference Signal)의 EPRE가 동일한 것으로 가정할 수 있다.
본 발명에 따르면, 인접 셀로부터 수신된 동기 신호 블록을 디코딩하지 않더라도, 인접 셀로부터 수신된 동기 신호 블록의 인덱스를 획득할 수 있어, 디코딩의 복잡성을 감소시킬 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면.
도 3은 LTE 시스템에서 사용되는 동기 신호(synchronization signal, SS)의 전송을 위한 무선 프레임 구조를 예시한 것이다.
도 4는 새로운 무선 접속 기술(new radio access technology, NR)에서 이용 가능한 슬롯 구조를 예시한 것이다.
도 5는 TXRU와 안테나 엘리먼트의 연결 방식의 일례들을 나타낸다.
도 6은 송수신기 유닛(transceiver unit, TXRU) 및 물리적 안테나 관점에서 하이브리드 빔포밍 구조를 추상적으로 도시한 것이다.
도 7은 하향링크 전송 과정에서 동기 신호와 시스템 정보에 대한 빔 스위핑(Beam Sweeping) 동작을 나타낸다.
도 8은 새로운 무선 접속 기술(new radio access technology, NR) 시스템의 셀을 예시한 것이다.
도 9 내지 도 12은 동기 신호 버스트 및 동기 신호 버스트 집합의 구성 방법을 설명하기 위한 도면이다.
도 13 내지 도 18은 동기 신호를 인덱싱 하는 방법 및, 상기 동기 신호 인덱스 및 SFN, Half Frame을 지시하는 방법에 관한 도면이다.
도 19 내지 도 31은 본 발명의 실시 예에 따른, 성능을 측정한 결과에 대한 도면이다.
도 32는 본 발명의 실시 예에 따른, Half Frame 경계 정보를 획득하기 위한 방법을 설명하기 위한 도면이다.
도 33 내지 도 34는 동기 신호 및 하향링크 공통 채널을 위한 대역폭을 설정하는 실시 예들을 설명하기 위한 도면이다.
도 35는 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템, LTE-A 시스템 및 NR 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, gNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정(Configuration)된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정(Configuration)된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정(Configuration)된 RE 는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정(Configuration)된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.
본 발명에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정(Configuration)된(configured) 안테나 포트, UE-RS를 전송하도록 설정(Configuration)된 안테나 포트, CSI-RS를 전송하도록 설정(Configuration)된 안테나 포트, TRS를 전송하도록 설정(Configuration)된 안테나 포트를 의미한다. CRS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정(Configuration)된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S201). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S208)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
도 3은 LTE/LTE-A 기반 무선 통신 시스템에서 동기 신호(synchronization signal, SS)의 전송을 위한 무선 프레임 구조를 예시한 것이다. 특히, 도 3은 주파수 분할 듀플렉스(frequency division duplex, FDD)에서 동기 신호 및 PBCH의 전송을 위한 무선 프레임 구조를 예시한 것으로서, 도 3(a)는 정규 CP(normal cyclic prefix)로써 설정된(configured) 무선 프레임에서 SS 및 PBCH의 전송 위치를 도시한 것이고 도 3(b)는 확장 CP(extended CP)로써 설정된 무선 프레임에서 SS 및 PBCH의 전송 위치를 도시한 것이다.
도 3을 참조하여, SS를 조금 더 구체적으로 설명하면 다음과 같다. SS는 PSS (Primary Synchronization Signal)와 SSS(Secondary Synchronization Signal)로 구분된다. PSS는 OFDM 심볼 동기, 슬롯 동기 등의 시간 도메인 동기 및/또는 주파수 도메인 동기를 얻기 위해 사용되며, SSS는 프레임 동기, 셀 그룹 ID 및/또는 셀의 CP 설정(configuration)(즉, 일반 CP 또는 확장 CP 의 사용 정보)를 얻기 위해 사용된다. 도 3을 참조하면, PSS와 SSS는 매 무선 프레임의 2개의 OFDM 심볼에서 각각 전송된다. 구체적으로 SS는 인터-RAT(inter radio access technology) 측정의 용이함을 위해 GSM(Global System for Mobile communication) 프레임 길이인 4.6 ms를 고려하여 서브프레임 0의 첫 번째 슬롯과 서브프레임 5의 첫 번째 슬롯에서 각각 전송된다. 특히 PSS는 서브프레임 0의 첫 번째 슬롯의 마지막 OFDM 심볼과 서브프레임 5의 첫 번째 슬롯의 마지막 OFDM 심볼에서 각각 전송되고, SSS는 서브프레임 0의 첫 번째 슬롯의 마지막에서 두 번째 OFDM 심볼과 서브프레임 5의 첫 번째 슬롯의 마지막에서 두 번째 OFDM 심볼에서 각각 전송된다. 해당 무선 프레임의 경계는 SSS를 통해 검출될 수 있다. PSS는 해당 슬롯의 맨 마지막 OFDM 심볼에서 전송되고 SSS는 PSS 바로 앞 OFDM 심볼에서 전송된다. SS의 전송 다이버시티(diversity) 방식은 단일 안테나 포트(single antenna port)만을 사용하며 표준에서는 따로 정의하고 있지 않다.
PSS는 5ms마다 전송되므로 UE는 PSS를 검출함으로써 해당 서브프레임이 서브프레임 0와 서브프레임 5 중 하나임을 알 수 있으나, 해당 서브프레임이 서브프레임 0와 서브프레임 5 중 구체적으로 무엇인지는 알 수 없다. 따라서, UE는 PSS만으로는 무선 프레임의 경계를 인지하지 못한다. 즉, PSS만으로는 프레임 동기가 획득될 수 없다. UE는 일 무선 프레임 내에서 두 번 전송되되 서로 다른 시퀀스로서 전송되는 SSS를 검출하여 무선 프레임의 경계를 검출한다.
PSS/SSS를 이용한 셀(cell) 탐색 과정을 수행하여 DL 신호의 복조(demodulation) 및 UL 신호의 전송을 정확한 시점에 수행하는 데 필요한 시간 및 주파수 파라미터를 결정한 UE는, 또한, 상기 eNB로부터 상기 UE의 시스템 설정(system configuration)에 필요한 시스템 정보를 획득해야 상기 eNB와 통신할 수 있다.
시스템 정보는 마스터정보블록(Master Information Block, MIB) 및 시스템정보블록(System Information Block, SIB)들에 의해 설정된다(configured). 각 시스템정보블록은 기능적으로 연관된 파라미터들의 모음을 포함하며, 포함하는 파라미터에 따라 마스터정보블록(Master Information Block, MIB) 및 시스템정보블록타입 1(System Information Block Type 1, SIB1), 시스템정보블록타입 2(System Information Block Type 2, SIB2), SIB3∼SIB17로 구분될 수 있다.
MIB는 UE가 eNB의 네트워크(network)에 초기 접속(initial access)하는 데 필수적인, 가장 자주 전송되는 파라미터들을 포함한다. UE는 MIB를 브로드캐스트 채널(예, PBCH)를 통해 수신할 수 있다. MIB에는 하향링크 시스템 대역폭(dl-Bandwidth, DL BW), PHICH 설정(configuration), 시스템 프레임 넘버(SFN)가 포함된다. 따라서, UE는 PBCH를 수신함으로써 명시적(explicit)으로 DL BW, SFN, PHICH 설정에 대한 정보를 알 수 있다. 한편, PBCH를 수신을 통해 UE가 암묵적(implicit)으로 알 수 있는 정보로는 eNB의 전송 안테나 포트의 개수가 있다. eNB의 전송 안테나 개수에 대한 정보는 PBCH의 에러 검출에 사용되는 16-비트 CRC(Cyclic Redundancy Check)에 전송 안테나 개수에 대응되는 시퀀스를 마스킹(예, XOR 연산)하여 암묵적으로 시그널링된다.
SIB1은 다른 SIB들의 시간 도메인 스케줄링에 대한 정보뿐만 아니라, 특정 셀이 셀 선택에 적합한 셀인지를 판단하는 데 필요한 파라미터들을 포함한다. SIB1은 브로드캐스트 시그널링 혹은 전용(dedicated) 시그널링을 통해 UE에게 수신된다.
DL 반송파 주파수와 해당 시스템 대역폭은 PBCH가 나르는 MIB에 의해 획득될 수 있다. UL 반송파 주파수 및 해당 시스템 대역폭은 DL 신호인 시스템 정보를 통해 얻어질 수 있다. MIB를 수신한 UE는 해당 셀에 대해 저장된 유효한 시스템 정보가 없으면, 시스템 정보 블록 타입 2(SystemInformationBlockType2, SIB2)가 수신될 때까지, MIB 내 DL BW의 값을 UL-대역폭(UL BW)에 적용한다. 예를 들어, UE는 시스템 정보 블록 타입 2(SystemInformationBlockType2, SIB2)를 획득하여, 상기 SIB2 내 UL-반송파 주파수 및 UL-대역폭 정보를 통해 자신이 UL 전송에 사용할 수 있는 전체 UL 시스템 대역을 파악할 수 있다.
주파수 도메인에서, PSS/SSS 및 PBCH는 실제 시스템 대역폭과 관계없이 해당 OFDM 심볼 내에서 DC 부반송파를 중심으로 좌우 3개씩 총 6개의 RB, 즉 총 72개의 부반송파들 내에서만 전송된다. 따라서, UE는 상기 UE에게 설정된(configured) 하향링크 전송 대역폭과 관계없이 SS 및 PBCH를 검출(detect) 혹은 복호(decode)할 수 있도록 설정된다(configured).
초기 셀 탐색을 마친 UE는 eNB로의 접속을 완료하기 위해 임의 접속 과정(random access procedure)을 수행할 수 있다. 이를 위해 UE는 물리 임의 접속 채널(physical random access channel, PRACH)을 통해 프리앰블(preamble)을 전송하고, PDCCH 및 PDSCH을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다. 경쟁 기반 임의 접속(contention based random access)의 경우 추가적인 PRACH의 전송, 그리고 PDCCH 및 상기 PDCCH에 대응하는 PDSCH와 같은 충돌 해결 절차(contention resolution procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 UE는 이후 일반적인 상/하향링크 신호 전송 절차로서 PDCCH/PDSCH 수신 및 PUSCH/PUCCH 전송을 수행할 수 있다.
상기 임의 접속 과정은 임의 접속 채널(random access channel, RACH) 과정으로도 지칭된다. 임의 접속 과정은 초기 접속, 임의 접속 과정은 초기 접속, 상향링크 동기 조정, 자원 할당, 핸드오버 등의 용도로 다양하게 사용된다. 임의 접속 과정은 경쟁-기반(contention-based) 과정과, 전용(dedicated)(즉, 비-경쟁-기반) 과정으로 분류된다. 경쟁-기반 임의 접속 과정은 초기 접속을 포함하여 일반적으로 사용되며, 전용 임의 접속 과정을 핸드오버 등에 제한적으로 사용된다. 경쟁-기반 임의 접속 과정에서 UE는 RACH 프리앰블 시퀀스를 임의로(randomly) 선택한다. 따라서, 복수의 UE들이 동시에 동일한 RACH 프리앰블 시퀀스를 전송하는 것이 가능하며, 이로 인해 이후 경쟁 해소 과정이 필요하다. 반면, 전용 임의 접속 과정에서 UE는 eNB가 해당 UE에게 유일하게 할당한 RACH 프리앰블 시퀀스를 사용한다. 따라서, 다른 UE와의 충돌없이 임의 접속 과정을 수행할 수 있다.
경쟁-기반 임의 접속 과정은 다음의 4 단계를 포함한다. 이하, 단계 1~4에서 전송되는 메시지는 각각 메시지 1~4(Msg1 ~ Msg4)로 지칭될 수 있다.
- 단계 1: RACH 프리앰블(via PRACH)(UE to eNB)
- 단계 2: 임의 접속 응답(random access response, RAR)(via PDCCH 및 PDSCH)(eNB to UE)
- 단계 3: 레이어 2 / 레이어 3 메시지(via PUSCH)(UE to eNB)
- 단계 4: 경쟁 해소(contention resolution) 메시지(eNB to UE)
전용 임의 접속 과정은 다음의 3 단계를 포함한다. 이하, 단계 0~2에서 전송되는 메시지는 각각 메시지 0~2(Msg0 ~ Msg2)로 지칭될 수 있다. 임의 접속 과정의 일부로 RAR에 대응하는 상향링크 전송(즉, 단계 3)도 수행될 수 있다. 전용 임의 접속 과정은 기지국이 RACH 프리앰블 전송을 명령하는 용도의 PDCCH(이하, PDCCH 오더(order))를 이용하여 트리거링될 수 있다.
- 단계 0: 전용 시그널링을 통한 RACH 프리앰블 할당(eNB to UE)
- 단계 1: RACH 프리앰블(via PRACH)(UE to eNB)
- 단계 2: 임의 접속 응답(RAR)(via PDCCH 및 PDSCH)(eNB to UE)
RACH 프리앰블을 전송한 뒤, UE는 미리-설정된 시간 윈도우 내에서 임의 접속 응답(RAR) 수신을 시도한다. 구체적으로, UE는 시간 윈도우 내에서 RA-RNTI(Random Access RNTI)를 갖는 PDCCH(이하, RA-RNTI PDCCH)(예, PDCCH에서 CRC가 RA-RNTI로 마스킹됨)의 검출을 시도한다. RA-RNTI PDCCH 검출 시, UE는 RA-RNTI PDCCH에 대응하는 PDSCH 내에 자신을 위한 RAR이 존재하는지 확인한다. RAR은 UL 동기화를 위한 타이밍 오프셋 정보를 나타내는 타이밍 어드밴스(timing advance, TA) 정보, UL 자원 할당 정보(UL 그랜트 정보), 임시 단말 식별자(예, temporary cell-RNTI, TC-RNTI) 등을 포함한다. UE는 RAR 내의 자원 할당 정보 및 TA 값에 따라 UL 전송(예, Msg3)을 수행할 수 있다. RAR에 대응하는 UL 전송에는 HARQ가 적용된다. 따라서, UE는 Msg3 전송한 후, Msg3에 대응하는 수신 응답 정보(예, PHICH)를 수신할 수 있다.
임의 접속 프리앰블, 즉, RACH 프리앰블은 물리 계층에서 길이 T CP의 순환 전치(cyclic prefix) 및 길이 T SEQ의 시퀀스 부분으로 구성된다. T CPT SEQ는 프레임 구조와 임의 접속 설정(configuration)에 의존한다. 프리앰블 포맷은 상위 계층에 의해 제어된다. PACH 프리앰블은 UL 서브프레임에서 전송된다. 임의 접속 프리앰블의 전송은 특정 시간 및 주파수 자원들에 제한(restrict)된다. 이러한 자원들을 PRACH 자원들이라고 하며, PRACH 자원들은, 인덱스 0가 무선 프레임에서 낮은 번호의 PRB 및 서브프레임에 대응하도록, 상기 무선 프레임 내 서브프레임 번호와, 주파수 도메인에서 PRB들의 증가 순으로 번호가 매겨진다. 임의 접속 자원들이 PRACH 설정 인덱스에 따라 정의된다(3GPP TS 36.211 표준 문서 참조). PRACH 설정 인덱스는 (eNB에 의해 전송되는) 상위 계층 신호에 의해 주어진다.
LTE/LTE-A 시스템에서 임의 접속 프리앰블, 즉, RACH 프리앰블을 위한 부반송파 간격(Subcarrier Spacing)은 프리앰블 포맷 0~3의 경우 1.25kHz이고, 프리앰블 포맷 4의 경우 7.5kHz인 것으로 규정된다(3GPP TS 36.211 참조).
<OFDM 뉴머롤로지>
새로운 RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 새로운 RAT 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는 새로운 RAT 시스템은 기존의 LTE/LTE-A의 뉴머롤로지를 그대로 따르나 더 큰 시스템 대역폭(예, 100MHz)를 지닐 수 있다. 또는 하나의 셀이 복수 개의 뉴머롤로지들을 지원할 수도 있다. 즉, 서로 다른 뉴머롤리지로 동작하는 하는 UE들이 하나의 셀 안에서 공존할 수 있다.
<서브프레임 구조>
3GPP LTE/LTE-A 시스템에서 사용되는 무선프레임은 10ms(307200T s)의 길이를 가지며, 10개의 균등한 크기의 서브프레임(subframe, SF)으로 구성된다. 일 무선프레임 내 10개의 서브프레임에는 각각 번호가 부여될 수 있다. 여기에서, T s는 샘플링 시간을 나타내고, T s=1/(2048*15kHz)로 표시된다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성된다. 일 무선프레임 내에서 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링될 수 있다. 각각의 슬롯은 0.5ms의 길이를 가진다. 일 서브프레임을 전송하기 위한 시간은 전송 시간 간격(transmission time interval, TTI)로 정의된다. 시간 자원은 무선 프레임 번호(혹은 무선 프레임 인덱스라고도 함)와 서브프레임 번호(혹은 서브프레임 번호라고도 함), 슬롯 번호(혹은 슬롯 인덱스) 등에 의해 구분될 수 있다. TTI라 함은 데이터가 스케줄링될 수 있는 간격을 의미한다. 예를 들어, 현재 LTE/LTE-A 시스템에서 UL 그랜트 혹은 DL 그랜트의 전송 기회는 1ms마다 존재하고, 1ms보다 짧은 시간 내에 UL/DL 그랜트 기회가 여러 번 존재하지는 않는다. 따라서, 기존 LTE/LTE-A 시스템에서 TTI는 1ms이다.
도 4는 새로운 무선 접속 기술(new radio access technology, NR)에서 이용 가능한 슬롯 구조를 예시한 것이다.
데이터 전송 지연을 최소화하기 위하여 5세대 새로운 RAT에서는 제어 채널과 데이터 채널이 시간 분할 다중화(time division multiplexing, TDM)되는 슬롯 구조가 고려되고 있다.
도 4에서 빗금 친 영역은 DCI를 나르는 DL 제어 채널(예, PDCCH)의 전송 영역을 나타내고, 검정색 부분은 UCI를 나르는 UL 제어 채널(예, PUCCH)의 전송 영역을 나타낸다. 여기서 DCI는 gNB가 UE에게 전달하는 제어 정보이며, 상기 DCI는 상기 UE가 알아야 하는 셀 설정(Configuration)에 관한 정보, DL 스케줄링 등의 DL 특정적(specific) 정보, 그리고 UL 그랜트 등과 같은 UL 특정적 정보 등을 포함할 수 있다. 또한 UCI는 UE가 gNB에게 전달하는 제어 정보이며, 상기 UCI는 DL 데이터에 대한 HARQ ACK/NACK 보고, DL 채널 상태에 대한 CSI 보고, 그리고 스케줄링 요청 (scheduling request, SR) 등을 포함할 수 있다.
도 4에서 심볼 인덱스 1부터 심볼 인덱스 12까지의 심볼들 영역에서는 하향링크 데이터를 나르는 물리 채널(예, PDSCH)의 전송에 사용될 수도 있고, 상향링크 데이터를 나르는 물리 채널(예, PUSCH)의 전송에 사용될 수도 있다. 도 2의 슬롯 구조에 의하면, 1개의 슬롯 내에서 DL 전송과 UL 전송의 순차적으로 진행되어, DL 데이터의 전송/수신과 상기 DL 데이터에 대한 UL ACK/NACK의 수신/전송이 상기 1개의 슬롯 내에서 이루어질 수 있다. 결과적으로 데이터 전송 에러 발생시에 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 지연이 최소화될 수 있다.
이러한 슬롯 구조에서는, gNB와 UE가 전송 모드에서 수신 모드로의 전환 과정 또는 수신 모드에서 전송 모드로의 전환 과정을 위한 시간 갭(time gap)이 필요하다. 이러한 전송 모드와 수신 모드 간 전환 과정을 위하여 슬롯 구조에서 DL에서 UL로 전환되는 시점의 일부 OFDM 심볼이 가드 기간(guard period, GP)로 설정(Configuration)되게 된다.
기존 LTE/LTE-A 시스템에서 DL 제어 채널은 데이터 채널과 TDM되며, 제어 채널인 PDCCH는 시스템 전 대역으로 퍼져서 전송된다. 그러나 새로운 RAT에서는 한 시스템의 대역폭이 대략 최소 100MHz에 달할 것으로 예상되는 바, 제어 채널을 전 대역으로 확산시켜 전송시키기에는 무리가 있다. UE가 데이터 전송/수신을 위해서 하향링크 제어 채널 수신을 위해서 전 대역을 모니터링하는 것은 UE의 배터리 소모 증대 및 효율성을 저해할 수 있다. 따라서, 본 발명에서는 DL 제어 채널이 시스템 대역, 즉, 채널 대역 내 일부 주파수 대역에서 로컬라이즈(localize)되어 전송되거나 분산(distribute)되어 전송될 수 있다.
NR 시스템에서 기본 전송 단위(basic transmission unit)는 슬롯이다. 슬롯 구간(duration)은 정규(normal) 순환 프리픽스(cyclic prefix, CP)를 갖는 14개 심볼들로 이루어 지거나, 확장 CP를 갖는 12개의 심볼들로 이루어진다. 또한, 슬롯은 사용된 부반송파 간격(Subcarrier Spacing)의 함수로서 시간으로 스케일링된다. 즉, 부반송파 간격이 커지면 슬롯의 길이는 짧아진다. 예를 들어, 슬롯 당 심볼의 개수가 14인 경우, 10ms의 프레임 내 슬롯의 개수가 15kHz 부반송파 간격에 대해서는 10개라면, 30kHz 부반송파 간격에 대해서는 20개, 60kHz 부반송파 간격에 대해서는 40개가 된다. 부반송파 간격이 커지면 OFDM 심볼의 길이도 짧아진다. 슬롯 내 OFDM 심볼의 개수는 정규 CP인지 아니면 확장 CP인지에 따라 달라지며, 부반송파 간격에 따라 달라지지 않는다. LTE용 기본 시간 유닛인 T s는 LTE의 기본 부반송파 간격 15kHz와 최대 FFT 크기 2048을 고려하여 T s = 1/(15000*2048)초로 정의되며, 이는 15kHz 부반송파 간격에 대한 샘플링 시간이기도 하다. NR 시스템에서는 15kHz의 부반송파 간격 외에 다양한 부반송파 간격이 사용될 수 있고, 부반송파 간격과 해당 시간 길이는 반비례하므로, 15kHz보다 큰 부반송파 간격들에 대응하는 실제 샘플링 시간은 T s = 1/(15000*2048)초보다 짧아진다. 예를 들어, 부반송파 간격 30kHz, 60kHz, 120kHz에 대한 실제 샘플링 시간은 각각 1/(2*15000*2048)초, 1/(4*15000*2048)초, 1/(8*15000*2048)초가 될 것이다.
<아날로그 빔포밍(analog beamforming)>
최근 논의되고 있는 5세대 이동 통신 시스템은 넓은 주파수 대역을 이용하여 다수의 사용자에게 높은 전송율을 유지하면서 데이터 전송을 하기 위해 높은 초고주파 대역, 즉, 6GHz 이상의 밀리미터 주파수 대역을 이용하는 방안을 고려하고 있다. 3GPP에서는 이를 NR이라는 이름으로 사용하고 있으며, 본 발명에서는 앞으로 NR 시스템으로 칭한다. 하지만 밀리미터 주파수 대역은 너무 높은 주파수 대역을 이용하는 것으로 인해 거리에 따른 신호 감쇄가 매우 급격하게 나타나는 주파수 특성을 갖는다. 따라서, 적어도 6GHz 이상의 대역을 사용하는 NR 시스템은 급격한 전파 감쇄 특성을 보상하기 위해 신호 전송을 전방향이 아닌 특정 방향으로 에너지를 모아서 전송함으로써 급격한 전파 감쇄로 인한 커버리지의 감소 문제를 해결하는 좁은 빔(narrow beam) 전송 기법을 사용한다. 그러나 하나의 좁은 빔만을 이용하여 서비스하는 경우, 하나의 기지국이 서비스를 할 범위가 좁아지므로 기지국은 다수의 좁은 빔을 모아서 광대역으로 서비스를 하게 된다.
밀리미터 주파수 대역, 즉, 밀리미터 파장(millimeter wave, mmW) 대역에서는 파장이 짧아져서 동일 면적에 다수 개의 안테나 요소(element)의 설치가 가능해진다. 예를 들어, 1cm의 정도의 파장을 갖는 30GHz 대역에서 5 by 5cm의 패널(panel)에 0.5 람다(lamda) (파장) 간격으로 2-차원(dimension) 배열 형태로 총 100개의 안테나 요소 설치가 가능하다. 그러므로 mmW에서는 다수 개의 안테나 요소를 사용하여 빔포밍 이득을 높여 커버리지를 증가시키거나, 처리량(throughput)을 높이는 것이 고려된다.
밀리미터 주파수 대역에서 좁은 빔을 형성하기 위한 방법으로, 기지국이나 UE에서 많은 수의 안테나에 적절한 위상차를 이용하여 동일한 신호를 전송함으로써 특정한 방향에서만 에너지가 높아지게 하는 빔포밍 방식이 주로 고려하고 있다. 이와 같은 빔포밍 방식에는 디지털 기저대역(baseband) 신호에 위상차를 만드는 디지털 빔포밍, 변조된 아날로그 신호에 시간 지연(즉, 순환 천이)을 이용하여 위상차를 만드는 아날로그 빔포밍, 디지털 빔포밍과 아날로그 빔포밍을 모두 이용하는 하이브리드 빔포밍 등이 있다. 안테나 요소별로 전송 파워 및 위상 조절이 가능하도록 트랜시버 유닛(transceiver unit, TXRU)을 가지면 주파수 자원별로 독립적인 빔포밍이 가능하다. 그러나 100여 개의 안테나 요소 모두에 TXRU를 설치하기에는 가격 측면에서 실효성이 떨어지는 문제를 있다. 즉, 밀리미터 주파수 대역은 급격한 전파 감쇄 특성을 보상하기 위해 많은 수의 안테나가 사용해야 하고, 디지털 빔포밍은 안테나 수에 해당하는 만큼 RF 컴포넌트(예, 디지털 아날로그 컨버터(DAC), 믹서(mixer), 전력 증폭기(power amplifier), 선형 증폭기(linear amplifier) 등)를 필요로 하므로, 밀리미터 주파수 대역에서 디지털 빔포밍을 구현하려면 통신 기기의 가격이 증가하는 문제점이 있다. 그러므로 밀리미터 주파수 대역과 같이 안테나의 수가 많이 필요한 경우에는 아날로그 빔포밍 혹은 하이브리드 빔포밍 방식의 사용이 고려된다. 아날로그 빔포밍 방식은 하나의 TXRU에 다수 개의 안테나 요소를 매핑하고 아날로그 위상 천이기(analog phase shifter)로 빔(beam)의 방향을 조절한다. 이러한 아날로그 빔포밍 방식은 전체 대역에 있어서 하나의 빔 방향만을 만들 수 있어 주파수 선택적 빔포밍(beamforming, BF)을 해줄 수 없는 단점이 있다. 하이브리드 BF는 디지털 BF와 아날로그 BF의 중간 형태로 Q개의 안테나 요소보다 적은 개수인 B개의 TXRU를 갖는 방식이다. 하이브리드 BF의 경우, B개의 TXRU와 Q개의 안테나 요소의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 빔의 방향은 B개 이하로 제한되게 된다.
도 5는 TXRU와 안테나 엘리먼트의 연결 방식의 일례들을 나타낸다.
도 5의 (a)은 TXRU가 서브-어레이(sub-array)에 연결된 방식을 나타낸다. 이 경우에 안테나 엘리먼트는 하나의 TXRU에만 연결된다. 이와 달리 도 5의 (b)는 TXRU가 모든 안테나 엘리먼트에 연결된 방식을 나타낸다. 이 경우에 안테나 엘리먼트는 모든 TXRU에 연결된다. 도 5에서 W는 아날로그 위상 천이기에 의해 곱해지는 위상 벡터를 나타낸다. 즉, W에 의해 아날로그 빔포밍의 방향이 결정된다. 여기서 CSI-RS 안테나 포트와 TXRU들과의 매핑은 1-to-1 또는 1-to-多 일 수 있다.
앞서 언급한 바와 같이 디지털 빔포밍은 전송할 혹은 수신된 디지털 기저대역 신호에 대해 신호 처리를 하므로 다중의 빔을 이용하여 동시에 여러 방향으로 신호를 전송 혹은 수신할 수 있는 반면에, 아날로그 빔포밍은 전송할 혹은 수신된 아날로그 신호를 변조된 상태에서 빔포밍을 수행하므로 하나의 빔이 커버하는 범위를 넘어가는 다수의 방향으로 신호를 동시에 전송 혹은 수신할 수 없다. 통상 기지국은 광대역 전송 혹은 다중 안테나 특성을 이용하여 동시에 다수의 사용자와 통신을 수행하게 되는데, 기지국이 아날로그 혹은 하이브리드 빔포밍을 사용하고 하나의 빔 방향으로 아날로그 빔을 형성하는 경우에는 아날로그 빔포밍의 특성상 동일한 아날로그 빔 방향 안에 포함되는 사용자들과만 통신할 수 밖에 없다. 후술될 본 발명에 따른 RACH 자원 할당 및 기지국의 자원 활용 방안은 아날로그 빔포밍 혹은 하이브리드 빔포밍 특성으로 인해서 생기는 제약 사향을 반영하여 제안된다.
<하이브리드 아날로그 빔포밍(hybrid analog beamforming)>
도 6은 송수신기 유닛(transceiver unit, TXRU) 및 물리적 안테나 관점에서 하이브리드 빔포밍 구조를 추상적으로 도시한 것이다.
다수의 안테나가 사용되는 경우, 디지털 빔포밍과 아날로그 빔포밍을 결합한 하이브리드 빔포밍 기법이 대두되고 있다. 이때, 아날로그 빔포밍 (또는 RF 빔포밍)은 RF 유닛이 프리코딩 (또는 컴바이닝)을 수행하는 동작을 의미한다. 하드브리드 빔포밍에서 기저대역(baseband) 유닛과 RF 유닛은 각각 프리코딩 (또는 컴바이닝)을 수행하며, 이로 인해 RF 체인(chain) 수와 D/A (또는 A/D) 컨버터의 개수를 줄이면서도 디지털 빔포밍에 근접하는 성능을 낼 수 있다는 장점이 있다. 편의상 하이브리드 빔포밍 구조는 N개 TXRU와 M개의 물리적 안테나로 표현될 수 있다. 전송 단에서 전송할 L개 데이터 레이어에 대한 디지털 빔포밍은 N-by-L 행렬로 표현될 수 있고, 이후 변환된 N개 디지털 신호는 TXRU를 거쳐 아날로그 신호로 변환된 다음 M-by-N 행렬로 표현되는 아날로그 빔포밍이 적용된다. 도 6에서 디지털 빔의 개수는 L이며, 아날로그 빔의 개수는 N이다. 더 나아가 NR 시스템에서는 아날로그 빔포밍을 심볼 단위로 변경할 수 있도록 기지국을 설계하여, 특정한 지역에 위치한 UE에게 보다 효율적인 빔포밍을 지원하는 방향이 고려되고 있다. 더 나아가서 N개의 TXRU와 M개의 RF 안테나를 하나의 안테나 패널(panel)로서 정의될 때, NR 시스템에서는 서로 독립적인 하이브리드 빔포밍이 적용 가능한 복수의 안테나 패널을 도입하는 방안까지 고려되고 있다. 이와 같이 기지국이 복수의 아날로그 빔을 활용하는 경우, UE별로 신호 수신에 유리한 아날로그 빔이 다를 수 있으므로, 적어도 동기 신호, 시스템 정보, 페이징 등에 대해서는 특정 슬롯 혹은 서브프레임(subframe, SF)에서 기지국이 적용할 복수 아날로그 빔들을 심볼별로 바꾸어 모든 UE들이 수신 기회를 가질 수 있도록 하는 빔 스위핑 동작이 고려되고 있다.
도 7은 하향링크 전송 과정에서 동기 신호와 시스템 정보에 대한 빔 스위핑(Beam sweeping) 동작을 도식화 한 것이다. 도 7에서 New RAT 시스템의 시스템 정보가 방송(Broadcasting)되는 물리적 자원 또는 물리 채널을 xPBCH (physical broadcast channel)로 명명한다. 이때, 한 심볼 내에서 서로 다른 안테나 패널에 속하는 아날로그 빔(Analog beam)들이 동시에 전송될 수 있으며, 아날로그 빔(Analog beam) 별 채널을 측정하기 위해, 도 7에 나타나 있는 바와 같이, 특정 안테나 패널에 대응되는 단일 아날로그 빔(Analog beam)을 위해 전송되는 참조 신호(Reference signal; RS)인 Beam RS (BRS)를 도입하는 방안이 논의되고 있다. 상기 BRS는 복수의 안테나 포트에 대해 정의될 수 있으며, BRS의 각 안테나 포트는 단일 아날로그 빔(Analog beam)에 대응될 수 있다. 이때, BRS와는 달리, 동기 신호(Synchronization signal) 또는 xPBCH는 임의의 UE가 잘 수신할 수 있도록 아날로그 빔 그룹(Analog beam group)에 포함된 모든 아날로그 빔(Analog beam)을 위해 전송될 수 있다.
도 8은 새로운 무선 접속 기술(new radio access technology, NR) 시스템의 셀을 예시한 것이다.
도 8을 참조하면, NR 시스템에서는 기존 LTE 등의 무선 통신 시스템에 하나의 기지국이 하나의 셀을 형성하던 것과는 달리 복수의 TRP가 하나의 셀을 구성하는 방안이 논의되고 있다 복수의 TRP가 하나의 셀을 구성하면, UE를 서비스하는 TRP가 변경되더라고 끊김 없는 통신이 가능하여 UE의 이동성 관리가 용이하다는 장점이 있다.
LTE/LTE-A 시스템에서 PSS/SSS는 전-방위적(omni-direction)으로 전송되는 것에 반해서, mmWave를 적용하는 gNB가 빔 방향을 전-방위적으로 돌려가면서 PSS/SSS/PBCH 등의 신호를 빔포밍하여 전송하는 방법이 고려되고 있다. 이와 같이 빔 방향을 돌려가면서 신호를 전송/수신하는 것을 빔 스위핑(beam sweeping) 혹은 빔 스캐닝이라 한다. 본 발명에서 "빔 스위핑'은 전송기 측 행동이고, "빔 스캐닝"은 수신기 측 행동을 나타낸다. 예를 들어 gNB가 최대 N개의 빔 방향을 가질 수 있다고 가정하면, N개의 빔 방향에 대해서 각각 PSS/SSS/PBCH 등의 신호를 전송한다. 즉 gNB는 자신이 가질 수 있는 혹은 지원하고자 하는 방향들을 스위핑하면서 각각의 방향에 대해서 PSS/SSS/PBCH 등의 동기 신호들을 전송한다. 혹은 gNB가 N개의 빔을 형성할 수 있는 경우, 몇 개씩의 빔들이 묶여 하나의 빔 그룹으로 구성할 수 있으며, 빔 그룹별로 PSS/SSS/PBCH를 전송/수신될 수 있다. 이 때, 하나의 빔 그룹은 하나 이상의 빔을 포함한다. 동일 방향으로 전송되는 PSS/SSS/PBCH 등의 신호가 하나의 SS 블록으로 정의될 수 있으며, 한 셀 내에 복수의 SS 블록들이 존재할 수 있다. 복수의 SS 블록들이 존재하는 경우, 각 SS 블록의 구분을 위해서 SS 블록 인덱스가 사용될 수 있다. 예를 들여, 한 시스템에서 10개의 빔 방향으로 PSS/SSS/PBCH가 전송되는 경우, 동일 방향으로의 PSS/SSS/PBCH이 하나의 SS 블록을 구성할 수 있으며, 해당 시스템에서는 10개의 SS 블록들이 존재하는 것으로 이해될 수 있다. 본 발명에서 빔 인덱스는 SS 블록 인덱스로 해석될 수 있다.
이하, 본 발명의 실시 예에 따른 동기 신호를 생성하는 방법 및 동기 신호 인덱스, Half Frame 인덱스 등의 시간 인덱스를 지시하는 방법에 대해 설명하도록 한다.
한편, 본 발명의 본격적인 설명에 앞서, 본 발명에서 표현하는 본 발명에서 표현하는 '상위 비트'와 '최상위 비트'는 가장 높은 자리의 수를 가장 오른쪽에 위치시키는 정보 비트들의 배열에서 왼쪽 비트를 의미할 수 있다. 즉, 가장 높은 자리의 수를 가장 왼쪽에 위치시키는 정보 비트들의 배열에서, 상기 정보 비트들이 가리키는 값이 정수의 짝수인지 홀수인지를 결정하는 단위 값이 되는 비트인 LSB (Least Significant Bit, 최하위 비트)와 같은 의미로 해석될 수 있다.
이와 유사하게, '하위 비트'와 '최하위 비트'는 가장 높은 자리의 수를 가장 오른쪽에 위치시키는 정보 비트들의 배열에서 오른쪽 비트를 의미할 수 있다. 다시 말해, 가장 높은 자리의 수를 가장 왼쪽에 위치시키는 정보 비트들의 배열에서 MSB (Most Significant Bit, 최상위 비트)와 같은 의미로 해석될 수 있다.
예를 들어, 후술할 발명의 내용 중 'SFN의 상위 N-bit 정보를 획득하고 (예, S0, S1, S2), PBCH 컨텐츠로부터 나머지 (10-N) bit에 해당하는 SFN 정보 (예, S3 ~S9)를 획득하여, 총 10bit의 SFN 정보를 구성할 수 있다.'라는 표현이 있다.
이는 정보 비트 열의 순서를 가장 높은 자리 수를 가장 오른쪽에 위치시키는 배열 즉, (S0 S1 S2 S3 쪋 S9)과 같이 구성된 정보 비트 열에서, '상위 N-bit'는 왼쪽 N-bit (예, S0 S1 S2)를 의미하며, '나머지 (10-N) bit'은 오른쪽 (10-N) bit (예, S3 ~S9)를 의미한다. 이를 LSB와 MSB로 표현하는 경우에는, (S9 S8 S7 쪋 S1 S0)의 순서로 표현되는 정보 비트 열에서 LSB N-bit로 표현하는 경우 비트 열은 (예, S2 S1 S0)의 순서로 표현될 수 있고, 또한 나머지 '(10-N) bit (예, S3 ~S9)'를 MSB (10-N) bit로 표현하는 경우, 비트 열은 (S9 S8 S7 쪋 S3)의 순서로 표현될 수 있다.
1. SS 블록 구성
만약, PSS를 SS 블록 앞 부분에 위치시키는 경우, 120kHz와 240kHz 부반송파 간격을 사용할 때, 단말의 AGC(Automatic Gain Control) 동작에서 문제가 발생할 수 있다. 즉, 120kHz 및 240kHz 부반송파 간격의 경우, AGC 동작으로 인해, NR-PSS의 검출이 제대로 수행되지 않을 수 있으며, 이에 따라, 아래의 2가지 실시 예와 같이, SS 블록 구성을 변경하는 것을 고려할 수 있다.
(방안 1) PBCH-PSS-PBCH-SSS
(방안 2) PBCH-PSS-PBCH-SSS-PBCH
즉, PBCH 심볼을 SS 블록의 시작 부분에 위치시키고, PBCH 심볼을 AGC 동작을 위한 더미(Dummy) 심볼로 사용함으로써, 단말의 AGC 동작이 더 원활하게 수행될 수 있도록 할 수 있다.
2. SS 버스트 집합 구성
도 9를 참조하면, SS 블록을 배치하는 부반송파 간격이 120kHz일 때와 240kHz때의 SS 버스트 세트 구성을 나타내고 있다. 도 9를 보면, 120kHz와 240kHz의 부반송파를 가질 때, 4개의 SS 버스트 단위로 일정 간격을 비워두고 SS 버스트를 구성한다. 즉, 0.5ms 단위로 0.125ms의 상향링크 전송을 위한 심볼 구간을 비워두고, SS블록을 배치한다.
그런데, 6GHz 이상의 주파수 범위에서, 60kHz의 부반송파 간격이 데이터 전송을 위해 사용될 수 있다. 즉, 도 10에서 볼 수 있듯이, NR에서는 데이터 전송을 위한 60kHz의 부반송파 간격과, SS 블록 전송을 위한 120kHz 또는 240kHz의 부반송파 간격이 멀티플렉싱 될 수 있다.
한편, 도 10의 네모로 표시된 부분을 포면, 120kHz 부반송파 간격의 SS 블록과 60kHz 부반송파 간격의 데이터가 멀티플렉싱되면서, 120kHz 부반송파 간격의 SS 블록과 60kHz 부반송파 간격의 GP와 하향링크 제어 영역 간의 충돌 또는 중첩이 발생하는 것을 볼 수 있다. SS 블록과 DL/UL 제어 영역의 충돌은 가급적 피해야 하는 것이 바람직하므로, SS 버스트 및 SS 버스트 세트 구성의 수정이 요구된다.
본 발명에서는, 이를 해결하기 위한 SS 버스트 구성의 수정 방향으로는 2가지 실시 예를 제안하고자 한다.
첫 번째 실시 예는, 도 11에서 보는 바와 같이, SS 버스트 포맷 1과 SS 버스트 포맷 2의 위치를 변경하는 것이다. 즉, 도 10의 네모 상자 안에 있는 SS 버스트 포맷 1과 포맷 2를 교환함으로써, SS 블록과 DL/UL 제어 영역 사이의 충돌이 발생하지 않도록 할 수 있다. 다시 말해, SS 버스트 포맷 1 이 60kHz 부반송파 간격의 슬롯에 앞 부분에 위치하고, SS 버스트 포맷 2가 60kHz 부반송파 간격의 슬롯에 뒷 부분에 위치한다.
상술한 실시 예를 정리하면, 다음과 같이 표현될 수 있다.
1) 120 KHz 부반송파 간격(subcarrier spacing)
- 후보 SSB들의 첫번째 OFDM 심볼들의 인덱스는 {4, 8, 16, 20, 32, 36, 44, 48} + 70*n 를 가진다. 이 때, 반송파 주파수가 6GHz보다 큰 경우, n=0, 2, 4, 6이다. (the first OFDM symbols of the candidate SS/PBCH blocks have indexes {4, 8, 16, 20, 32, 36, 44, 48} + 70*n. For carrier frequencies larger than 6 GHz, n=0, 2, 4, 6)
- 후보 SSB들의 첫번째 OFDM 심볼들의 인덱스는 {2, 6, 18, 22, 30, 34, 46, 50} + 70*n 를 가진다. 이 때, 반송파 주파수가 6GHz보다 큰 경우, n=1, 3, 5, 7이다. (the first OFDM symbols of the candidate SS/PBCH blocks have indexes {2, 6, 18, 22, 30, 34, 46, 50} + 70*n. For carrier frequencies larger than 6 GHz, n=1, 3, 5, 7.)
2) 240 KHz 부반송파 간격(subcarrier spacing)
- 후보 SSB들의 첫번째 OFDM 심볼들의 인덱스는 {8, 12, 16, 20, 32, 36, 40, 44, 64, 68, 72, 76, 88, 92, 96, 100} + 140*n 를 가진다. 이 때, 반송파 주파수가 6GHz보다 큰 경우, n=0, 2이다. (the first OFDM symbols of the candidate SS/PBCH blocks have indexes {8, 12, 16, 20, 32, 36, 40, 44, 64, 68, 72, 76, 88, 92, 96, 100} + 140*n. For carrier frequencies larger than 6 GHz, n=0, 2)
- 후보 SSB들의 첫번째 OFDM 심볼들의 인덱스는 {4, 8, 12, 16, 36, 40, 44, 48, 60, 64, 68, 72, 92, 96, 100, 104} + 140*n 를 가진다. 이 때, 반송파 주파수가 6GHz보다 큰 경우, n=1, 3이다.(the first OFDM symbols of the candidate SS/PBCH blocks have indexes {4, 8, 12, 16, 36, 40, 44, 48, 60, 64, 68, 72, 92, 96, 100, 104} + 140*n. For carrier frequencies larger than 6 GHz, n=1, 3)
두 번째 실시 예는 도 12에서 보는 것과 같이, SS 버스트 세트 구성을 변경하는 방법이 있다. 즉, SS 버스트 세트는 SS 버스트 세트의 시작 경계와 60kHz 부반송파 간격 슬롯의 시작 경계가 정렬되도록, 즉, 일치하도록 구성될 수 있다.
구체적으로, SS 버스트는 1ms 동안 국부적으로 배치되는 SS 블록에 의해 구성된다. 따라서, 1ms 동안, 120kHz 부반송파 간격의 SS 버스트는 16개의 SS 블록을 가지고, 240kHz 부반송파 간격의 SS 버스트는 32개의 SS 블록을 가지게 된다. 이렇게 SS 버스트를 구성하면, SS 버스트 사이에 60kHz의 부반송파 간격 기준, 하나의 슬롯이 갭(gap)으로 할당된다.
상술한 두 번째 실시 예를 정리하면 다음과 같다.
1) 120 KHz 부반송파 간격(subcarrier spacing)
- 후보 SSB들의 첫번째 OFDM 심볼들의 인덱스는 {4, 8, 16, 20} + 28*n 를 가진다. 이 때, 반송파 주파수가 6GHz보다 큰 경우, n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18이다. (the first OFDM symbols of the candidate SS/PBCH blocks have indexes {4, 8, 16, 20} + 28*n. For carrier frequencies larger than 6 GHz, n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18)
2) 240 KHz 부반송파 간격(subcarrier spacing)
- 후보 SSB들의 첫번째 OFDM 심볼들의 인덱스는 {8, 12, 16, 20, 32, 36, 40, 44} + 56*n 를 가진다. 이 때, 반송파 주파수가 6GHz보다 큰 경우, n=0, 1, 2, 3, 5, 6, 7, 8이다. (the first OFDM symbols of the candidate SS/PBCH blocks have indexes {8, 12, 16, 20, 32, 36, 40, 44} + 56*n. For carrier frequencies larger than 6 GHz, n=0, 1, 2, 3, 5, 6, 7, 8.)
3. 5ms 구간 내에서 실제 전송되는 SS/ PBCH 블록을 지시하는 방법 (The indication of actually transmitted SS/PBCH block within 5ms duration)
한편, 네트워크 환경에 따라 SS 블록 전송을 위한 후보들의 수는 제한적일 수 있다. 예를 들어, SS 블록이 배치되는 부반송파 간격에 따라 후보들의 개수가 상이할 수 있다. 이러한 경우, 실제로 전송되는 SS 블록의 위치를 CONNECTED / IDLE 모드 UE에게 알려줄 수 있다. 이 때, 실제로 전송되는 SS 블록의 위치를 알려주는 Actual transmitted SS/PBCH block indication은 서빙 셀을 위해서는 자원 활용 목적, 예를 들어, 레이트 매칭의 용도로 사용될 수 있고, 인접 셀을 위해서는 해당 자원과 관련된 측정의 목적으로 사용될 수 있다.
서빙 셀과 관련하여, UE가 전송되지 않은 SS 블록에 대해서 정확히 인지할 수 있다면, UE는 전송되지 않은 SS 블록의 후보 자원을 통해 페이징 또는 데이터와 같은 다른 정보를 수신할 수 있음을 인지할 수 있다. 이러한 자원의 유연성을 위하여, 서빙 셀에서 실제로 전송되는 SS 블록은 정확하게 지시될 필요가 있다.
즉, SS 블록이 전송되는 자원에서는 페이징 또는 데이터와 같은 다른 정보를 수신할 수 없으므로, 실제로 SS 블록이 전송되지 않는 SS 블록을 통해 다른 데이터 또는 다른 신호를 수신하여 자원 활용의 효율성을 높이기 위하여, UE는 SS 블록이 실제로 전송되지 않는 SS 블록 후보에 대해서 인지할 필요가 있는 것이다.
그러므로, 서빙 셀에서 실제로 전송되는 SS 블록을 정확하게 지시하기 위하여, 4, 8, 또는 64비트의 풀 비트맵 정보가 요구된다. 이 때, 비트맵에 포함되는 비트 크기는 각 주파수 범위에서 최대로 전송될 수 있는 SS 블록의 개수에 따라 결정될 수 있다. 예를 들어, 5ms 구간에서 실제로 전송되는 SS 블록을 지시하기 위하여, 3GHz에서 6GHz의 주파수 범위에서는 8비트가 요구되고, 6GHz 이상의 주파수 범위에서는 64비트가 요구된다.
서빙 셀에서 실제로 전송되는 SS 블록을 위한 비트들은 RMSI 또는 OSI에서 정의될 수 있고, 상기 RMSI/OSI는 데이터 또는 페이징을 위한 설정 정보를 포함한다. Actual transmitted SS/PBCH block indication은 하향링크 자원을 위한 설정과 연관되므로, RMSI/OSI가 실제로 전송되는 SS 블록 정보를 포함하는 것으로 귀결될 수 있다.
한편, 인접 셀 측정의 목적으로 인접 셀의 Actual transmitted SS/PBCH block indication이 요구될 수 있다. 즉, 인접 셀의 측정을 위해서 인접 셀의 시간 동기 정보를 획득할 필요가 있는데, NR 시스템의 TRP간 비동기 전송을 허용하도록 설계하는 경우, 인접 셀의 시간 동기 정보를 알려 준다고 하더라도 그 정보의 정확성은 상황에 따라 달라질 수 있다. 따라서, 인접 셀의 시간 정보를 알려줄 때는, TRP간 비동기 전송을 가정하면서도 UE에게 유효한 정보로서, 그 시간 정보의 단위가 결정될 필요가 있다.
다만, 리스팅 된 셀(listed cell)이 많을 경우, 풀 비트맵 타입의 지시자는 시그널 오버헤드를 과도하게 증가시킬 우려가 있다. 따라서, 시그널링 오버헤드를 감소시키기 위하여, 다양하게 압축된 형태의 지시자를 고려할 수 있다. 한편, 인접 셀 측정의 목적으로뿐만 아니라, 시그널링 오버헤드를 감소시키기 위하여 서빙 셀이 전송하는 SS 블록을 위한 지시자도 압축된 형태의 지시자를 고려할 수 있다. 다시 말해, 아래에 설명되는 SS 블록 지시자는 인접 셀 및 서빙 셀의 실제 전송되는 SS 블록 지시를 위해 사용될 수 있다. 또한, 상술한 바에 의하면, SS 버스트는 각 부반송파에 따른 하나의 슬롯에 포함된 SS 블록들의 묶음을 의미할 수 있지만, 이하, 후술하는 실시 예에 국한하여, SS 버스트는 슬롯에 관계 없이, 일정 수의 SS 블록들을 그룹핑한 SS 블록 그룹을 의미할 수 있다.
도 13을 참조하여, 그 중 하나의 실시 예를 살펴보면, SS 버스트가 8개의 SS 블록으로 구성된다고 가정하면, 64개의 SS 블록이 위치할 수 있는 6GHz 이상의 대역에서 총 8개의 SS 버스트가 존재할 수 있다.
여기서, SS 블록을 SS 버스트로 그룹핑하는 것은 64비트의 전체 비트맵을 압축하기 위함이다. 64비트의 비트맵 정보 대신에, 실제로 전송되는 SS 블록을 포함하는 SS 버스트를 지시하는 8비트 정보를 사용할 수 있다. 만약, 8비트 비트맵 정보가 SS 버스트 #0을 지시한다면, SS 버스트 #0 은 실제로 전송되는 SS 블록을 하나 이상 포함할 수 있다.
여기에, UE에게 SS 버스트 당 전송되는 SS 블록의 수를 추가적으로 지시하기 위한 추가 정보를 고려할 수 있다. 상기 추가 정보에 의해 지시되는 SS 블록의 수만큼 각 SS 버스트에 국부적으로 SS 블록이 존재할 수 있다.
따라서, 추가 정보에 의해 지시되는 SS 버스트 당 실제로 전송되는 SS 블록의 수 및 상기 실제로 전송되는 SS 블록을 포함하는 SS 버스트를 지시하기 위한 비트맵을 조합하여, UE는 실제로 전송되는 SS 블록을 추정할 수 있다.
예를 들어, 아래의 표 1와 같이 지시되는 것을 가정해 볼 수 있다.
8 bit bitmap (SS/ PBCH burst unit) The number of actually transmitted SS/PBCH block per SS/PBCH burst unit Full bitmap
1 1 0 0 0 0 0 1 4 (11110000) (11110000) (00000000) (00000000) (00000000) (00000000) (00000000) (11110000)
즉, [표 1]에 따르면, 8비트 비트맵을 통해 SS 버스트 #0, #1, #7에 SS 블록이 포함되어 있음을 알 수 있고, 추가 정보를 통해 각 SS 버스트에 4개의 SS 블록이 포함됨을 알 수 있으므로, 결국, SS 버스트 #0, #1, #7 앞에 4개의 후보 위치를 통해 SS 블록이 전송됨을 추정할 수 있다.
한편, 상술한 예와 달리, 추가 정보 또한 비트맵 형식으로 전달함으로써, SS 블록이 전송되는 위치의 유연성을 가지도록 할 수 있다.
예를 들어, SS 버스트 전송과 관련된 정보는 비트맵으로 지시하고, SS 버스트 내에 전송되는 SS 블록을 그 외의 비트로 지시하는 방법이 있을 수 있다.
즉, 전체 64개의 SS 블록을 각각 8개의 SS 버스트 (즉, SS 블록 그룹)으로 구분하고, 8비트 비트맵 전송으로 어느 SS 버스트가 사용되는지를 단말에게 알려 준다. 도 13과 같이 SS 버스트를 정의하면, 부반송파 간격이 60kHz인 슬롯과 멀티플렉싱을 하는 경우에 SS 버스트와 60kHz의 부반송파를 가지는 슬롯의 경계가 정렬되는 장점이 있다. 따라서, 비트맵으로 SS 버스트의 사용 여부를 지시해주면, 6Ghz 이상 주파수 대역에서는 모든 부반송파 간격에 대해서 슬롯 단위로 SS 블록의 전송 여부를 단말이 인지할 수 있다.
여기서, 상술한 예시와 다른 점은 추가 정보를 비트맵 방식으로 알려주는 것이다. 이 경우, 각각의 SS 버스트에 포함된 8개의 SS 블록에 대해 비트맵 정보를 전송해야 하기 때문에, 8비트가 필요하고, 해당 추가 정보는 모든 SS 버스트에 공통적으로 적용된다. 예를 들어, SS 버스트에 대한 비트맵 정보를 통해 SS 버스트 #0과 SS 버스트 #1이 사용됨을 지시되었고, SS 블록에 대한 추가 비트맵 정보를 통해 SS 버스트 내에서 첫 번째와 다섯 번째 SS 블록이 전송되는 것으로 지시된다면, SS 버스트 #0과 SS 버스트 #1 모두 첫 번째와 다섯 번째 SS 블록이 전송되어, 실제로 전송되는 SS 블록의 총 개수는 4개가 되는 것이다.
한편, 몇몇의 인접 셀은 셀 리스트에 포함되어 있지 않을 수도 있는데, 셀 리스트에 포함되지 않은 인접 셀은 실제로 전송되는 SS 블록을 위한 기본 포맷 (default format)을 사용한다. 이러한 기본 포맷을 사용함으로써, UE는 리스트에 포함되지 않은 인접 셀에 대한 측정을 수행할 수 있다. 이 때, 상술한 기본 포맷은 기 정의되거나, 네트워크에 의해 설정될 수 있다.
한편, 서빙 셀에서 전송되는 실제로 전송되는 SS 블록에 대한 정보와, 인접 셀에서 전송되는 실제로 전송되는 SS 블록에 대한 정보가 상충되는 경우, 단말은 서빙 셀에서 전송되는 SS 블록 정보를 우선하여, 실제로 전송되는 SS 블록에 대한 정보를 획득할 수 있다.
즉, 실제로 전송되는 SS 블록들에 대한 정보가 풀 비트맵 형태와, 그룹핑 형태로 수신된 경우, 풀 비트맵 형태의 정보의 정확성이 높을 가능성이 크므로, 풀 비트맵 형태의 정보를 우선하여, SS 블록 수신에 이용할 수 있다.
4. System Frame Number, Half frame boundary
SFN 정보 하위 N-bits은 PBCH 페이로드로 전달되고, 상위 M-bit은 PBCH 스크램블링 시퀀스로 전달된다. 한편, SFN 정보의 상위 M-bits 중 최상위 1-bit은 PBCH DMRS, NR-SSS 혹은 SS block의 시간/주파수 위치의 변화로 전달될 수 있다. 이에 더하여, Half radio frame (5ms) 경계에 대한 정보는 PBCH DMRS 혹은 NR-SSS 혹은 SS block의 시간/주파수 위치의 변화로 전달될 수 있다.
여기서, '상위 bit'과 '최상위 bit'는 정보 비트열에서 가장 높은 자리의 수를 가장 오른쪽에 위치시키는 경우에서의, 왼쪽 비트를 의미한다. 이는 정보 비트열에서 가장 높은 자리의 수를 가장 왼쪽에 위치시키는 배열에서, 정수의 짝수인지 홀수인지를 결정하는 단위 값이 되는 비트인 LSB (Least Significant Bit, 최하위 비트)와 같은 의미로 해석될 수 있다.
또한, '하위 bit'과 '최하위 bit'은 정보 비트열에서 가장 높은 자리의 수를 가장 오른쪽에 위치시키는 경우에서의, 오른쪽 비트를 의미한다. 이는 정보 비트열에서 가장 높은 자리의 수를 가장 왼쪽에 위치시키는 배열에서, MSB (Most Significant Bit, 최상위 비트)와 같은 의미로 해석될 수 있다.
실시 예 1-1
특정 SS 블록에 포함된 NR-PBCH에서 전달하는 컨텐츠가 80ms 마다 변경된다고 할 때, NB-PBCH 컨텐츠에는 80ms 내에서 변경되지 않는 정보를 포함한다. 예를 들어, PBCH TTI (80ms) 범위에서 PBCH 컨텐츠에 포함되는 SFN 정보는 모두 동일하며, 이를 위해서 10bit SFN 정보 중 PBCH 컨텐츠에는 하위 7-bits 정보가 포함되며, frame boundary (10ms)을 구분하는 상위 3bit 정보는 PBCH 스크램블링 시퀀스 등에 포함될 수 있다.
실시 예 1-2
특정 SS 블록에 포함된 NR-PBCH에서 전달하는 컨텐츠가 80ms 마다 변경된다고 할 때, NB-PBCH 컨텐츠에는 80ms 내에서 변경되지 않는 정보를 포함한다. 예를 들어, PBCH TTI (80ms) 범위에서 PBCH 컨텐츠에 포함되는 SFN 정보는 모두 동일하며, 이를 위해서 10bit SFN 정보 중 PBCH 컨텐츠에는 하위 7 bits 정보가 포함되며, frame boundary (10ms)을 구분하는 상위 3bit 정보 중 하위 2bits 정보는 PBCH 스크램블링 시퀀스에 포함되며, 최상위 1bit 정보는 PBCH 컨텐츠, CRC, 스크램블링 시퀀스 등, PBCH 채널 코딩과는 구별되는 다른 신호 또는 채널을 사용하여 전송한다. 예를 들어, PBCH 채널 코딩과 관련된 부분과는 구분되는 다른 신호로는 상기 PBCH DMRS가 사용될 수 있으며, DMRS시퀀스, DMRS RE 위치, DMRS 시퀀스 to RE 맵핑 변경, SS 블록 내 심볼 위치 변경, SS 블록 의 주파수 위치 변경 등을 정보로 사용할 수 있다.
구체적으로, DMRS 시퀀스가 사용되는 경우, DMRS 전송되는 두 OFDM 심볼의 위상 차이, 예를 들어, Orthogonal code cover를 이용하는 방법을 고려할 수 있다. 또한, DMRS 시퀀스가 사용되는 경우, 초기 값을 변경하는 방법을 고려할 수 있다. 구체적으로는, Gold 시퀀스에 사용되는 2개의 m-sequence 중 하나의 m-sequence의 초기값은 고정하고 다른 하나의 m-sequence의 초기값을 cell-ID 및 다른 정보를 사용하여 변경하였다면, 고정된 초기값을 사용한 m-sequence에 전송하고자 하는 정보를 사용하여 초기 값을 변경하는 방법을 도입할 수 있다.
좀 더 구체적으로, 10ms 경계 정보를 나타내는 1bit에 따라서 기존의 고정된 초기값 (예, [1 0 0 쪋 0])에 추가로 다른 초기값 (예 [0 1 0 쪋 0])을 도입해서 20ms 범위에서 두 가지 초기 값을 10ms 단위로 변경하는 것을 고려할 수 있다. 다른 방법으로는 하나의 m-sequence는 고정된 초기값을 그대로 사용하고 다른 하나의 m-sequence의 초기값에 전송하고자 하는 정보를 추가하는 방법을 생각할 수 있다.
또한, DMRS RE 위치를 사용하는 경우, 정보에 따라서 DMRS의 주파수 축 위치를 변경하는, V-shift 방법을 적용해 볼 수 있다. 구체적으로, 20ms 범위에서 0ms과 10ms 전송 시 RE 위치를 다르게 배치하는데, DMRS가 4 RE 마다 배치된다고 할 때 2RE 단위로 shift하는 방안을 도입할 수 있다.
또한, PBCH DMRS 시퀀스가 RE에 맵핑되는 방식을 변경하는 방법을 적용할 수 있다. 구체적으로 0ms의 경우 첫 번째 RE 부터 시퀀스를 맵핑하고, 10ms의 경우 시퀀스를 다른 맵핑 방법을 적용하는데, 예를 들어, 첫 번째 RE에 시퀀스를 반대로 맵핑하거나, 첫 번째 OFDM 심볼의 중간 RE부터 맵핑하거나, 두 번째 OFDM 심볼의 첫번째 RE 부터 맵핑 하는 등이 방법을 적용할 수 있다. 또한, SS 블록 내에서 PSS-PBCH-SSS-PBCH 등의 순서 배치를 다른 배치로 변경하는 방안도 생각해 볼 수 있다. 예를 들어, 기본적으로, PBCH-PSS-SSS-PBCH 등으로 배치하되, 0ms과 10ms에서 서로 다른 배치 방법을 적용한다. 또한, SS 블록 내에서 PBCH 데이터가 맵핑되는 RE 위치를 변경하는 방법을 적용해 볼 수 있다.
실시 예 1-3
Half frame 경계를 지시하는 1bit 정보는 PBCH 컨텐츠, CRC, 스크램블링 시퀀스 등 PBCH 채널 코딩과 관련된 부분과는 구분되는 다른 신호 또는 채널 등을 사용하여 전송할 수 있다. 예를 들어, PBCH 채널 코딩과는 구별되는 다른 신호로는 실시 예 1-2와 동일하게 상기 PBCH DMRS가 사용될 수 있으며, DMRS시퀀스, DMRS RE 위치, DMRS 시퀀스 to RE 맵핑 변경, SS 블록 내 심볼 위치 변경, SS 블록 의 주파수 위치 변경 등을 정보로 사용할 수 있다. 특히, 이는, 10ms 범위에서 0ms과 5ms 경계로 변경될 때 적용할 수 있다.
추가로, Half frame 경계 정보 및 SFN 최상위 1bit 정보를 포함한 20ms 범위에서 5ms 단위의 시간 변경 정보를 위해서, 실시 예 1-2 에서 제시한 방법과 같이, DMRS 시퀀스, DMRS RE 위치, DMRS 시퀀스 to RE 맵핑 변경, SS 블록 내 심볼 위치 변경, SS 블록 의 주파수 위치 변경 등을 정보로 사용할 수 있다. 이는, 20ms 범위에서 0, 5, 10, 15ms의 경계에서 시간 정보가 변경될 때 적용할 수 있다.
실시 예 1-4
한편 실시 예 1-4에서, '상위 bit'과 '최상위 bit'는 정보 비트열에서 가장 높은 자리의 수를 가장 오른쪽에 위치시키는 경우에서의, 왼쪽 비트를 의미한다. 이는 정보 비트열에서 가장 높은 자리의 수를 가장 왼쪽에 위치시키는 배열에서, 정수의 짝수인지 홀수인지를 결정하는 단위 값이 되는 비트인 LSB (Least Significant Bit, 최하위 비트)와 같은 의미로 해석될 수 있다.
또한, '하위 bit'과 '최하위 bit'은 정보 비트열에서 가장 높은 자리의 수를 가장 오른쪽에 위치시키는 경우에서의, 오른쪽 비트를 의미한다. 이는 정보 비트열에서 가장 높은 자리의 수를 가장 왼쪽에 위치시키는 배열에서, MSB (Most Significant Bit, 최상위 비트)와 같은 의미로 해석될 수 있다.
하나의 PBCH가 총 N REs로 구성될 때 PBCH 데이터 전송을 위해서 M(<N) REs가 할당되며, QPSK 변조가 사용된다면, 스크램블링 시퀀스의 길이는 2*M이 된다. 총 L가지의 서로 다른 2*M 길이의 스크램블링 시퀀스를 만드는 방법은, 총 L*2*M 길이의 긴 시퀀스를 생성하여 2*M 단위로 구분하여 L개의 시퀀스를 생성한다. 스크램블링 시퀀스로는 PN 시퀀스가 사용될 수 있으며, Gold sequence 및 M sequence 등이 사용될 수 있다. 구체적으로 길이 31의 Gold sequence가 사용될 수 있다. PN 시퀀스를 초기화 하는 값으로는 최소한 셀 ID가 사용되며, PBCH DMRS로부터 획득한 SS 블록 인덱스가 추가로 사용될 수 있다. SS 블록 인덱스로부터 슬롯 넘버 및 OFDM 심볼이 유추되는 경우, 슬롯 넘버/OFDM 심볼 넘버가 사용될 수 있다. 또한 추가로 Half radio frame boundary 정보를 초기화 값으로 사용할 수도 있다. 또한 추가로 SFN 정보 중 일부 bit를 컨텐츠나 스크램블링 시퀀스등, 채널 코딩과는 구별되는 신호 또는 채널로 획득할 수 있는 경우, 해당 SFN 정보는 스크램블링 시퀀스의 초기화 값으로 사용할 수 있다.
스크램블링 시퀀스의 길이는 SFN 정보 중, 스크램블링 시퀀스를 통해 전달되는 비트의 길이에 따라 결정된다. 예를 들어, SFN 정보 중 3bit의 정보가 스크램블링 시퀀스를 통해 전달되는 경우 8가지의 상태가 표현되어야 하는데, 이를 위해서는 총 8*2*M 길이의 시퀀스가 요구된다. 이와 유사하게, 2bit 정보가 전달되는 경우에는 총 2*2*M 길이의 시퀀스가 요구된다.
PBCH 컨텐츠와 CRC를 포함한 bit열은 Polar code를 사용하여 인코딩되어 길이 512의 부호화된 비트들이 생성된다. 부호화된 비트는 스크램블링 시퀀스의 길이 보다 짧은데, 길이 512의 부호화된 비트를 여러 번 반복하여 스크램블링 시퀀스 길이와 같은 길이의 bit열로 만든다. 이후에, 반복된 부호화된 비트를 스크램블링 시퀀스와 곱하고, QPSK 변조를 수행한다. 변조된 심볼은 길이 M 단위로 분할하여 PBCH RE에 맵핑한다.
예를 들어, 도 14를 참조하여 설명하면, SFN 정보 중 3bit의 정보가 스크램블링 시퀀스를 통해 전달되는 경우 10ms 마다 스크램블링 시퀀스를 변경하기 위해서, 길이 M 단위의 변조된 심볼 시퀀스를 10ms 단위로 전송한다. 이 때, 10ms 단위로 전송되는 각각의 변조된 심볼은 서로 상이하다. SS 버스트 집합의 주기가 5ms인 경우는, 10ms 범위에 포함된 두 번의 5ms 전송 주기 동안에는 동일한 변조된 심볼 시퀀스를 전송한다. 단말이 Half radio frame (5ms) 경계 정보를 획득할 수 있는 경우에는, 10ms 범위에서 두 번 전송된 PBCH의 정보를 결합할 수 있으며, 80ms 범위에서 10ms 단위로 전송되는 8가지 스크램블링 시퀀스를 알아내기 위해서 총 8번의 블라인드 디코딩을 수행한다. 이 때, 단말은 PBCH가 아닌 다른 채널의 디코딩을 수행하여 Half frame 경계 1bit 정보 (예, C0)를 획득한다. 그리고 단말은 PBCH 블라인드 디코딩을 수행하여 SFN의 상위 N-bit 정보를 획득하고 (예, S0, S1, S2), PBCH 컨텐츠로부터 나머지 (10-N) bit에 해당하는 SFN 정보 (예, S3 ~S9)를 획득하여, 총 10bit의 SFN 정보를 구성할 수 있다.
또 다른 예로서, SFN 정보 중 3bit 정보가 스크램블링 시퀀스를 통해 전달되고, Half frame 경계 정보가 PBCH 컨텐츠에 포함되는 경우, 10ms 전송 주기에서는 동일한 컨텐츠가 포함되지만 5ms 오프셋이 있는 PBCH 컨텐츠는 half frame 경계 정보 1bit가 다르기 때문에 5ms 마다 다른 컨텐츠가 전송될 수 있다. 즉, half frame 경계 정보 1bit에로 인하여 2가지 컨텐츠가 구성되며, 기지국은 2가지 컨텐츠를 각각 인코딩하고 각각에 대하여 bit 반복, 스크램블링, 변조 등을 수행한다.
단말이 5ms 경계 정보를 획득하지 못한 경우, 5ms 마다 전송된 신호의 결합을 수행하기는 어렵고, 대신 10ms 마다 수행한 8번의 블라인드 디코딩을 5ms 오프셋에서도 동일하게 수행한다. 즉, 단말은 최소 8번의 블라인드 디코딩을 수행하여, SFN의 상위 N-bits 정보를 획득하고 (예, S0, S1, S2), PBCH 컨텐츠로부터 나머지 10-N bits에 해당하는 SFN 정보 (예, S3~S9) 뿐만 아니라 Half radio frame 경계 1bit 정보 (예, C0)를 획득한다. 다시 말해, 획득한 bit 정보를 구성하여 5ms 단위의 시간 정보를 획득할 수 있게 된다.
이와 유사하게, SFN 정보 중 2bit의 정보가 스크램블링 시퀀스를 통해 전달되는 경우, 20ms 마다 스크램블링 시퀀스가 변경되며, 20ms 범위에 포함된 네 번의 5ms 전송 주기 동안에는 동일한 변조된 심볼 시퀀스를 전송한다. 단말이 Half fame 경계 정보 및 SFN의 최상위 1bit 정보를 획득할 수 있는 경우, 20ms 범위에서 수신한 4 번의 PBCH를 결합할 수 있으며, 20ms 마다 4번의 블라인드 디코딩을 수행한다. 이 때, 단말의 수신 복잡도는 Half frame 경계 정보 및 SFN 최상위 bit 정보를 획득으로 인해 증가될 수 있지만, PBCH 블라인드 디코딩의 복잡도를 낮출 수 있고, PBCH 결합을 최대 16번 수행할 수 있기 때문에 검출 성능의 향상을 기대할 수 있다. 이 때, 단말은 PBCH가 아닌 다른 채널의 디코딩을 수행하여 Half frame 경계 1bit 정보 (예, C0) 및 SFN의 최상위 1bit 정보 (예, S0)를 획득한다.
단말은 PBCH 블라인드 디코딩을 수행하여 SFN의 최상위 1bit이후의 상위 (N-1)-bit 정보를 획득하고 (예, S1, S2), PBCH 컨텐츠로부터 나머지 10-N bit에 해당하는 SFN 정보 (예, S3 ~S9)를 획득한다. 이로부터 Half radio frame 경계 정보 (예, C0) 및 총 10bit의 SFN 정보 (S0 ~ S9)를 구성할 수 있게 되며, 이렇게 획득한 시간 정보는 5ms 단위를 제공한다. 이 때, 5ms 범위에서 다수의 SS 블록이 전송될 수 있는데, 5ms 범위에서의 SS블록 위치는 PBCH DMRS 및 PBCH 컨텐츠로부터 획득할 수 있다.
한편으로, SFN 정보 중 2 비트 (예, S1, S2)의 정보가 스크램블링 시퀀스(scrambling sequence)를 통해 전달되고, SFN정보 중 최상위 1 비트 (예, S0)의 정보와 Half frame boundary 1bit (예, C0)는 PBCH 컨텐츠로부터 전달되게 되는 경우, 20ms 범위에서 5ms 마다 PBCH 컨텐츠의 내용이 변경됨으로써 (예, S0, C0) 4가지의 정보 비트 집합(information bit set)이 생성되며, 각 정보 비트 집합(information bit set)은 각 정보 비트 집합 별로 채널 코딩과정을 수행하게 된다.
또 다른 예로, SFN 정보 10bit와 Half frame 경계(boundary) 정보 1bit를 PBCH 컨텐츠에 포함시킬 수 있다. 이와 같은 경우, SFN 상위 3bit (예, S0, S1, S2) 및 Half frame 1 bit (예, C0)을 제외한 PBCH 컨텐츠는 PBCH TTI (예, 80ms) 동안은 변경되지 않는다. 다만, SFN 상위 3bit (예, S0, S1, S2) 및 Half frame 1bit (예, C0) 정보는 5ms 단위로 변경된다. 이에 따라서, PBCH TTI (예, 80ms) 구간에서는 16가지의 PBCH 정보 비트 집합(information bit set)들이 생성될 수 있다.
또한, PBCH 페이로드(payload)에 포함된 정보 비트(information bit) 에서 SFN 정보의 일부 비트 (예, S1, S2)를 제외한 정보 비트 및 CRC에 스크램블링 시퀀스(Scrambling sequence)가 적용된다. 이 때, 상기 스크램블링 시퀀스(Scrambling sequence)로는 골드 시퀀스와 같은 PN 시퀀스가 사용될 수 있다. 또한, 스크램블링 시퀀스는 셀 ID에 의해서 초기화 될 수 있다.
한편, 스크램블링되는 비트 수를 M이라고 할 때, M*N 길이의 시퀀스를 생성하고, 시퀀스의 요소(element)가 겹치지 않도록 길이가 M인 시퀀스를 N개로 분할하며, SFN 정보 중 일부 비트 (예, S1, S2)가 변경되는 순서에 따라, 아래의 예시와 같이, 길이 M의 시퀀스를 N개의 시퀀스 각각에 대한 스크램블링 시퀀스로 사용한다.
(예시)
- (S2,S1)=(0,0) 일 때, 0~M-1의 시퀀스 열을 스크램블링 시퀀스로 사용
- (S2,S1)=(0,1) 일 때, M~2M-1의 시퀀스 열을 스크램블링 시퀀스로 사용
- (S2,S1)=(1,0) 일 때, 2M~3M-1의 시퀀스 열을 스크램블링 시퀀스로 사용
- (S2,S1)=(1,1) 일 때, 3M~4M-1의 시퀀스 열을 스크램블링 시퀀스로 사용
상술한 바에 따르면, PBCH TTI (예, 80ms) 구간에서 생성되는 16가지의 PBCH 정보 비트 집합 (information bit set) 중, 20ms 범위에서 전송되는 4가지 PBCH 정보 비트 집합(information bit set)에는 동일한 스크램블링 시퀀스(scrambling sequence)가 사용되고, 다음 20ms 범위에서 전송되는 4가지 PBCH 정보 비트 집합(information bit set)에는 이전 20ms 범위에서 전송되는 4가지 PBCH 정보 비트에서 사용된 스크램블링 시퀀스와는 다른 스크램블링 시퀀스(scrambling sequence)가 사용된다.
이후, 상술한 것과 같이, 스크램블링 시퀀스를 사용하여 스크램블링이 수행된 상기 16개의 PBCH 정보 비트 집합(information bit set)들 각각에 채널 코딩(channel coding)이 수행되며, 채널 코딩에 의해 부호화된 비트(encoded bit)에 두 번째 스크램블링 시퀀스가 적용한다. 즉, 16개의 PBCH 정보 비트 집합들에 상술한 것과 같은 방식으로 첫번째 스크램블링 시퀀스를 적용하여 스크램블링을 수행한 수, 채널 코딩이 수행되며, 이에 따라, 획득된 부호화된 비트에 두 번째 스크램블링 시퀀스를 적용하는 것이다. 이 때, 두 번째 스크램블링 시퀀스로는 골드 시퀀스와 같은 PN 시퀀스가 사용되며, 두 번째 스크램블링 시퀀스는 셀 ID 및 PBCH DMRS로 전달되는 SS 블록 인덱스 3bit에 의해서 초기화 될 수 있다.
특정 SS 블록 인덱스와 연관되어 전송되는 PBCH 컨텐츠의 부호화된 비트(encoded bit)에는 전송 시점에 따라 동일한 스크램블링 시퀀스(scrambling sequence)가 사용될 수 있다.
반면, Half frame 경계 정보에 따라 5ms 단위로 변경된 스크램블링 시퀀스를 적용할 수도 있다. 예를 들어, 스크램블링되는 부호화된 비트의 수를 K라고 할 때 2*K 길이의 시퀀스를 생성하고, 시퀀스의 요소가 겹치지 않도록 각각 길이가 K인 2개의 시퀀스로 분할하여, 각각의 Half frame 경계 정보에 적용한다. 상술한 방법에 따르면, 10ms 구간에서 전송되는 PBCH를 soft combining할 때, 간섭(interference)을 무작위(randomization)로 분산시킴으로써, 성능을 개선할 수 있다.
한편, 두 번째 스크램블링 시퀀스의 후보 시퀀스에 대한 정보가 없는 경우, UE는 후보 시퀀스로 가능한 스크램블링 시퀀스(scrambling sequence)가 전송되었다고 가정하고 여러 번의 디코딩을 수행할 수 있다.
한편, Half frame 경계 정보 1bit 는 PBCH 컨텐츠, CRC, 스크램블링 시퀀스 등, PBCH 채널 코딩과 관련된 부분과는 상이한 신호 및/또는 채널 등을 사용하여 전송될 수 있다.
예를 들어, PBCH DMRS를 활용하여 상기 Half Frame 경계 정보 1bit를 전송할 수 있으며, DMRS 시퀀스, DMRS RE 위치(position), DMRS 시퀀스를 RE에 맵핑하는 방법 혹은 순서의 변경, SS 블록 내의 PSS/SSS/PBCH의 심볼 위치 변경, SS 블록의 주파수 위치 변경, SS 혹은 PBCH OFDM 심볼의 극성 반전 등을 활용하여 Half Frame 경계 정보 1bit를 전송할 수 있다. 이에 대한 상세한 내용은 후술하기로 한다.
PBCH 디코딩을 수행하기에 앞서 UE가 Half frame 경계 정보를 획득하는 경우, UE는 획득된 Half frame 경계 정보에 대응하는 스크램블링 시퀀스를 사용하여 디-스크램블링(de-scrambling)을 수행할 수 있다.
5. SS 블록 시간 인덱스
이제, SS 블록 시간 인덱스를 지시하는 방법에 대해서 살펴보도록 한다.
SS 블록 시간 인덱스 중 일부는 PBCH DMRS의 시퀀스로 전달되고, 나머지 인덱스는 PBCH 페이로드로 전달된다. 이 때, PBCH DMRS 시퀀스로 전달되는 SS 블록 시간 인덱스는 N-bits의 정보이고, PBCH 페이로드로 전달되는 SS 블록 시간 인덱스는 M-bits의 정보이다. 주파수 범위의 최대 SS 블록의 수를 L-bits 이라고 할 때, L-bit은 M-bit과 N-bits의 합이 된다. 5ms 범위에서 전달될 수 있는 총 H(=2^L) 상태를 그룹 A, PBCH DMRS 시퀀스로 전달되는 N-bits가 표현할 수 있는 J(=2^N) 상태를 그룹 B, PBCH 페이로드로 전달되는 M-bits가 표현할 수 있는 I(=2^M) 상태를 그룹 C라고 할 때, 그룹 A의 상태의 수 H는 그룹 B의 상태 수 J와 그룹 C의 상태 수 C의 곱으로 표현할 수 있다. 이 때, 그룹 B 혹은 그룹 C 중 하나의 그룹에 속한 상태는 0.5ms 범위 안에서는 최대 P (이 때, P는 1 또는 2)개를 표현할 수 있다. 한편, 본 발명에서 명명한 그룹은 설명의 편의를 위해 사용하였으며, 다양한 형태로 표현될 수 있다.
한편, PBCH DMRS 시퀀스로 전달되는 상태의 수는, 3GHz 이하의 주파수 범위에서는 4개, 3GHz에서 6GHz까지의 주파수 범위에서는 8개, 6GHz 이상의 주파수 범위에서는 8개가 될 수 있다. 6GHz 이하 대역에서 15kHz 및 30kHz 부반송파 간격이 사용되는데, 이 때, 15kHz 부반송파 간격이 사용되면 0.5ms 범위 안에서 최대 1개의 상태가 포함되며, 30kHz 부반송파 간격이 사용되면 0.5ms 범위 안에서 최대 2개의 상태가 포함된다. 6GHz 이상 대역에서 120kHz 및 240kHz 부반송파 간격이 사용되는데, 이 때 120kHz 부반송파 간격이 사용되면 0.5ms 범위 안에서 최대 1개의 상태가 포함되며, 240kHz 부반송파 간격이 사용되면 0.5ms 범위 안에서 최대 2개의 상태가 포함된다.
도 15(a), (b)는 각각 15kHz/30kHz 부반송파 간격을 사용하는 경우와 120kHz/240kHz 부반송파 간격을 사용하는 경우, 0.5ms 범위에 포함되는 SS 블록을 나타낸다. 도 15에서 보는 바와 같이, 15kHz 부반송파 간격의 경우, 0.5ms 범위에는 1개, 30kHz 부반송파 간격의 경우 2개, 120kHz 부반송파 간격의 경우 8개, 240kHz 부반송파 간격의 경우 16개의 SS 블록이 포함된다.
15kHz 및 30kHz 부반송파 간격의 경우, 0.5ms내에 포함되는 SS 블록의 인덱스는 PBCH DMRS 시퀀스에 전송되는 인덱스와 1대 1로 맵핑될 수 있다. PBCH 페이로드에는 SS 블록 인덱스를 지시하기 위한 지시자 비트가 포함될 수 있는데, 6GHz 이하 대역에서는 SS 블록 인덱스를 위한 비트로 해석되지 않고, 다른 목적의 정보로 해석될 수 있다. 예를 들어, 커버리지 확장 목적으로 사용될 수 있으며, SS 블록과 연관된 신호 또는 자원의 반복 횟수를 전달하는 목적으로 사용될 수 있다.
PBCH DMRS 시퀀스는 셀 ID와 SS 블록 인덱스로 초기화될 때, 15kHz 및 30kHz 부반송파의 경우, 5ms 범위에서 전송되는 SS 블록 인덱스를 시퀀스의 초기 값으로 사용할 수 있다. 여기서, SS 블록 인덱스는 SSBID와 동일한 의미일 수 있다.
실시 예 2-1
부반송파 간격이 120kHz의 경우, 0.5ms내에 포함되는 SS 블록의 인덱스는 8개인데, 0.5ms 범위에서 PBCH DMRS 시퀀스가 동일하며 PBCH 페이로드는 SS 블록 인덱스에 따라 변경될 수 있다. 다만, 제 1 SS 블록 그룹이 전송되는 0.5ms 구간에서의 PBCH DMRS 시퀀스는, 제 1 SS 블록 그룹 이전에 전송되는 제 2 SS 블록 그룹의 0.5ms 구간에서 사용한 시퀀스와는 구분되는, 즉, 상이한 시퀀스를 사용한다. 또한, 상기 상이한 0.5ms 구간에서 전송되는 SS 블록을 구분하기 위해, SS 블록 그룹을 위한 SS 블록 인덱스는 PBCH 페이로드로 전달된다.
240kHz의 경우, 0.5ms내에 포함되는 SS 블록의 인덱스는 16개인데, 0.5ms 범위에서 PBCH DMRS 시퀀스는 2개일 수 있다. 즉, SS 블록 중, 전반부 0.5ms 내의 8개의 SS 블록과 후반부 0.5ms 내의 8개의 SS 블록에 사용되는 PBCH DMRS 시퀀스는 서로 상이할 수 있다. 전반부 및 후반부의 SS 블록들에 포함되는 PBCH 페이로드에서 SS 블록 인덱스를 전달한다.
이와 같이 일정 시간 구간 동안 PBCH DMRS 시퀀스가 일정하게 유지되는 방안을 적용하는 경우, 단말이 인접 셀의 시간 정보를 확보하기 위하여 인접 셀 신호 검출을 시도할 때에 검출 복잡도가 낮고 검출 성능이 좋은 PBCH DMRS 시퀀스 기반의 시간 정보 전달 방법을 적용함으로써, 0.5ms 혹은 0.25ms 정도의 정확성을 가지는 시간 정보를 획득할 수 있는 장점을 제공한다. 이는 주파수 범위에 관계 없이 0.25ms 혹은 0.5ms 정도의 시간 정확성을 제공하는 장점이 있다.
실시 예 2-2
120kHz의 부반송파 간격의 경우, 0.5ms내에 포함되는 SS 블록의 인덱스는 8개인데, 0.5ms 범위에서 PBCH 페이로드에 포함되는 SS 블록 인덱스는 동일하며 PBCH DMRS 시퀀스는 SS 블록 인덱스에 따라 변경될 수 있다. 다만, 제 1 SS 블록 그룹이 전송되는 0.5ms 구간에서의 PBCH 페이로드를 통해 전달되는 SS 블록 인덱스는 제 1 SS 블록 그룹이 전송되기 이전에 전송되는 제 2 SS 블록 그룹의 0.5ms 구간에서의 인덱스와 구분되는, 즉, 상이한 시퀀스를 사용한다.
240kHz의 부반송파 간격의 경우, 0.5ms내에 포함되는 SS 블록의 인덱스는 16개인데, 0.5ms 범위에서 PBCH 페이로드로 전달되는 SS 블록 인덱스는 2가지가 될 수 있다. 즉, SS 블록 중 전반부 0.5ms 구간에서의 8개의 SS 블록에서 전송되는 PBCH 페이로드에 포함되는 SS 블록 인덱스는 동일하며, 후반부 0.5ms 구간에서의 8개의 SS 블록 인덱스는 전반부의 SS 블록 인덱스와 구분되는, 즉, 상이한 인덱스이다. 이 때, 전반부 및 후반부 각각에 포함되는 PBCH DMRS는 SS 블록 인덱스에 따라 구분되는 시퀀스가 사용된다.
120kHz 및 240kHz 부반송파 간격의 경우, SS 블록 인덱스는 2가지 경로로부터 획득한 인덱스를 조합하여 표현된다. 상기 설명한 실시 예 2-1과 실시 예 2-2의 경우, 각각 아래의 [수학식 1] 및 [수학식 2]에 의해 표현될 수 있다.
[수학식 1]
SS-PBCH block index = SSBID*P + SSBGID
SSBID = Floor (SS-PBCH block index / P)
SSBGID = Mod(SS-PBCH block index, P)
[수학식 2]
SS-PBCH block index = SSBID*P + SSBGID
SSBID = Mod(SS-PBCH block index, P)
SSBGID = Floor (SS-PBCH block index / P)
여기서, P는 2^(PBCH DMRS로 전달되는 bit 수)로 표현될 수 있다.
상술한 설명에서, 설명의 편의를 위해 특정한 개수(예를 들면, 4 또는 8)를 사용하여 설명하였는데, 이는 설명의 편의를 위한 것이며, 상술한 특정 값으로 한정하지 않는다. 예를 들어, PBCH DMRS 전달되는 정보 bit의 수에 따라 상기 설명의 값이 결정될 수 있고, PBCH DMRS로 2bit의 정보가 전달된다면 SS 블록 그룹은 4개의 SS 블록으로 구성될 수 있으며 15kHz/30kHz 부반송파 간격의 경우에도 120kHz/240kHz 부반송파 간격의 경우에서 설명한 SS 블록 시간 인덱스 전달 방식이 적용될 수 있다.
다시 도 14를 참조하여, "4. System Frame Number, Half frame boundary"및"5 . SS 블록 시간 인덱스"에서 설명한 시간 정보의 비트 구성과 해당 정보의 전달 경로의 예를 정리하면 다음과 같다.
- SFN 10bit 중 7bit과 SS 블록 그룹 인덱스 3bit은 PBCH 컨텐츠로 전달
- 20ms 경계 정보 2bit (S2,S1)는 PBCH 스크램블링으로 전달
- 5ms 경계 정보 1bit (C0)와 10ms 경계 정보 1bit (S0)는 DMRS RE 위치 시프트, PBCH가 포함된 OFDM 심볼의 DMRS간 위상 차이, DMRS 시퀀스를 RE에 맵핑하는 방법의 변경, PBCH DMRS 시퀀스 초기값 변경 등으로 전달
- SS 블록 인덱스 지시 정보 3bit (B2,B1,B0)는 DMRS 시퀀스로 전달
6. NR-PBCH 컨텐츠
UE는 셀 ID 및 심볼 타이밍 정보를 검출 한 후, SFN, SS 블록 인덱스, Half frame 타이밍과 같은 타이밍 정보의 일부, 시간/주파수 위치와 같은 공통 제어 채널 관련 정보, 대역폭, SS 블록 위치와 같은 대역폭 부분(Bandwidth part) 정보 및 SS 버스트 세트 주기 및 실제로 전송된 SS 블록 인덱스와 같은, SS 버스트 세트 정보 등을 포함하는 PBCH로부터 네트워크 액세스를 위한 정보를 획득할 수 있다.
576 RE라는 제한된 시간/주파수 자원만이 PBCH를 위해 점유되기 때문에, PBCH에는 필수 정보가 포함되어야 한다. 또한, 가능하다면, 필수 정보 또는 추가 정보를 더 포함시키기 위하여, PBCH DMRS와 같은 보조 신호를 사용할 수 있다.
(1) SFN (System Frame Number)
NR에서는 시스템 프레임 넘버 (SFN)를 정의하여 10ms 간격을 구별 할 수 있다. 또한, LTE 시스템과 유사하게 SFN을 위해 0과 1023 사이의 인덱스를 도입 할 수 있으며 상기 인덱스는 명시적으로 비트를 이용하여 지시하거나, 암시적 방식으로 나타낼 수 있다.
NR에서는 PBCH TTI가 80ms이고 최소 SS 버스트 주기가 5ms이다. 따라서, 최대 16 배의 PBCH가 80ms 단위로 전송 될 수 있고, 각 전송에 대한 상이한 스크램블링 시퀀스가 PBCH 인코딩된 비트에 적용될 수 있다. UE는 LTE PBCH 디코딩 동작과 유사하게 10ms 간격을 검출 할 수 있다. 이 경우 SFN의 8 가지 상태가 PBCH 스크램블링 시퀀스에 의해 암시적으로 표시되고, SFN 표시를 위한 7 비트가 PBCH 내용에 정의 될 수 있습니다.
(2) 라디오 프레임 내의 타이밍 정보
SS 블록 인덱스는 반송파 주파수 범위에 따라, PBCH DMRS 시퀀스 및/또는 PBCH 컨텐츠에 포함된 비트에 의해 명시적으로 지시될 수 있다. 예를 들어, 6GHz 이하의 주파수 대역에 대해서는 SS 블록 인덱스의 3비트가 PBCH DMRS 시퀀스로만 전달된다. 또한 6GHz 이상의 주파수 대역에 대해서 SS 블록 인덱스의 최하위 3비트는 PBCH DMRS 시퀀스로 표시되고, SS 블록 인덱스의 최상위 3비트는 PBCH 컨텐츠에 의해 전달된다. 즉, 6GHz ~ 52.6GHz의 주파수 범위에 한하여, SS 블록 인덱스를 위한 최대 3비트가 PBCH 컨텐츠에 정의될 수 있다.
또한, Half frame 의 경계는 PBCH DMRS 시퀀스에 의해 전달될 수 있다. 특히, 3GHz 이하의 주파수 대역에서 Half frame 지시자가 PBCH DMRS에 포함되는 경우, PBCH 컨텐츠에 Half frame 지시자가 포함되는 것보다 효과를 높일 수 있다. 즉, 3Ghz 이하의 주파수 대역에서는 주로 FDD 방식이 사용되기 때문에, 서브프레임 또는 슬롯 간의 시간 동기가 어긋나는 정도가 클 수 있다. 따라서, 보다 정확한 시간 동기를 맞추기 위해서는, PBCH 컨텐츠 보다 디코딩 성능이 좋은 PBCH DMRS를 통해 half frame 지시자를 전달하는 것이 유리하다.
다만, 3Ghz 대역을 초과하는 경우네는 TDD 방식이 많이 사용되지 때문에, 서브프레임 또는 슬롯 간의 시간 동기가 어긋나는 정도가 크지 않으므로, PBCH 컨텐츠를 통해 Half frame 지시자를 전달하더라도 불이익이 다소 적을 수 있다.
한편, half frame 지시자는 PBCH DMRS와 PBCH 컨텐츠 모두를 통해 전달될 수도 있다.
(4) PBCH에 대응하는 RMSI가 없음을 식별하기 위한 정보
NR에서는 SS 블록은 네트워크 액세스를 위한 정보 제공뿐만 아니라, 동작 측정을 위해도 사용될 수 있다. 특히, 광대역 CC 동작을 위해서는 측정을 위해 다중 SS 블록을 전송할 수 있다.
그러나, RMSI가 SS 블록이 전송되는 모든 주파수 위치를 통해 전달되는 것은 불필요할 수 있다. 즉, 자원 활용의 효율성을 위하여, RMSI가 특정 주파수 위치를 통해 전달될 수 있다. 이 경우, 초기 접속 절차를 수행하는 UE들은 검출된 주파수 위치에서 RMSI가 제공되는지 여부를 인식 할 수 없다. 이러한 문제를 해결하기 위하여, 검출된 주파수 영역의 PBCH에 대응하는 RMSI가 없다는 것을 식별하기 위한 비트 필드를 정의할 필요가 있다. 한편으로, 상기 비트 필드 없이 PBCH에 대응하는 RMSI가 없음을 식별할 수 있는 방법 또한 생각해야 한다.
이를 위하여, RMSI가 존재하지 않는 SS 블록은 주파수 래스터(Frequency Raster)로 정의되지 않은 주파수 위치에서 전송되도록 한다. 이러한 경우, 초기 접속 절차를 수행하는 UE들은 SS 블록을 검출 할 수 없기 때문에, 상술한 문제점을 해결할 수 있다.
(5) SS 버스트 세트 주기성과 실제로 전송되는 SS 블록
측정 목적을 위해 SS 버스트 세트 주기성 및 실제로 전송된 SS 블록에 대한 정보가 지시될 수 있다. 따라서, 이러한 정보는 셀 측정 및 inter/intra 셀 측정을 위해서 시스템 정보에 포함되는 것이 바람직하다. 즉, PBCH 컨텐츠 내에서 상술한 정보를 정의할 필요는 없다.
(8) 페이로드 크기
PBCH의 디코딩 성능을 고려하여, [표 2]와 같이, 최대 64비트의 페이로드 크기를 가정할 수 있다.
Details Bit size
6GHz 이하 6GHz 이상
System Frame Number (MSB) 7 7
SS/PBCH block time index (MSB) 0 3
Reference numerology [1] [1]
Bandwidth for DL common channel, and SS block position [3] [2]
# of OFDM symbols in a Slot [1] 0
CORESET(Frequency resource - bandwidth, location)(Time resource - starting OFDM symbol, Duration)(UE Monitoring Periodicity, offset, duration) About [10] About [10]
Reserved Bit [20] [20]
CRS 16+a 16+a
Total 64 64
7. NR - PBCH 스크램블링
NR-PBCH 스크램블링 시퀀스의 타입과 시퀀스 초기화에 대해 살펴보도록 한다. NR에서 PN 시퀀스를 사용하는 것에 대해서 고려해볼 수 있으나, LTE 시스템에서 정의된 31 길이의 골드 시퀀스를 NR-PBCH 시퀀스로 사용하여 심각한 문제가 발생하지 않는다면, NR-PBCH 스크램블링 시퀀스로 골드 시퀀스를 재사용하는 것이 바람직할 수 있다.
또한, 스크램블링 시퀀스는 적어도 Cell-ID에 의해 초기회될 수 있고, PBCH-DMRS에 의해 지시된 SS 블록 인덱스의 3비트가 스크램블링 시퀀스의 초기화에 사용될 수 있다. 또한, Half frame indication이 PBCH-DMRS 또는 다른 신호에 의해 표시된다면, 상기 Half frame indication 또한, 스크램블링 시퀀스의 초기화를 위한 시드 값으로 사용될 수 있다.
8. PBCH 코딩 체인 구성 및 PBCH DMRS 전송 방식
도 16을 참조하여, PBCH 코딩 체인 구성과 PBCH DMRS 전송 방식의 실시 예에 대해 설명하면 다음과 같다.
우선, SS 블록 별로 CORESET 정보, SS 블록 그룹 인덱스에 따라 MIB 구성이 달라 질 수 있다. 따라서, SS 블록 별로 MIB에 대한 인코딩을 수행하며, 이 때, 인코딩된 비트의 크기는 3456 비트이다. 폴라 코드 아웃풋 비트(Polar code output bit)가 512 비트이므로, 폴라코드 아웃풋 비트는 6.75번 반복될 수 있다. (512*6+384).
상기 반복된 비트에 길이 3456짜리 스크램블링 시퀀스를 곱하는데, 스크램블링 시퀀스는 셀 ID와 DMRS로 전달되는 SS 블록 인덱스로 초기화된다. 그리고, 상기 3456비트 짜리 스크램블링 시퀀스를 864 비트씩 4 등분을 하고, 각각에 대해 QPSK 변조를 수행하여, 432 길이의 변조된 심볼 4개의 집합을 구성한다.
20ms 마다 새로운 변조된 심볼 집합(Modulated symbol set)이 전송되며, 20ms 내에서 동일한 변조된 심볼 집합이 최대 4번 반복 전송될 수 있다. 이 때, 동일한 변조된 심볼 집합이 반복 전송되는 구간에서, PBCH DMRS의 주파수 축 위치는 셀 ID에 따라서 변경된다. 즉, 0/5/10/15ms 마다 DMRS의 위치는 아래의 [수학식 3]에 의해 시프트된다.
[수학식 3]
vshift = (vshift_cell + vshift_frame)mod4,  vshift_cell = Cell-ID mod3, vshift_frame= 0,1,2,3
PBCH DMRS 시퀀스는 31 길이의 Gold sequence가 사용되며, 첫번 째 m-sequence의 초기값은 하나의 값으로 고정하고, 두번째 m-sequence의 초기 값은 [수학식 4]과 같이 SS 블록 인덱스와 셀 ID에 기반하여 결정된다.
[수학식 4]
cinit = 210*(SSBID+1)*(2*CellID+1) + CellID
만약, SS 블록의 컨텐츠가 같다면, 채널 코딩과 비트의 반복은 하나의 SS 블록에 대해서만 수행된다. 또한, 스크램블링 시퀀스는 SS 블록 별로, 다른 값이 적용된다고 가정하면, 스크램블링 시퀀스를 생성하고 곱하는 과정부터 비트를 분할(segmentation)하고 변조하는 과정을 각 SS 블록 별로 수행한다.
이하에서는, Half radio frame 정보와 SFN 최상위 1bit가 전달되는 방식에 따른, 기지국 동작 및 단말의 동작을 설명한다. 이하, 설명에 따른, C0, S0는 각각 도 14의 Half frame 경계 및 Frame 경계 지시 비트에 대응한다.
(1) C0,S0를 CRC로 전달:
이 정보는 0,5,10,15ms 마다 변경되는 정보이고, 총 4가지의 CRC가 만들어져서 4번의 인코딩을 수행한 후, 각 인코딩된 비트를 20ms 마다 총 4번 전송한다는 가정으로 반복배열 하고, 스크램블링 시퀀스를 곱한다.
또한, 단말 수신 시, 0,5,10,15ms 마다 오는 정보들을 결합하기 위해서, 블라인드 디코딩을 더 해야한다. 20ms 마다 수신되는 PBCH들만 블라인드 디코딩을 하는 방식이면 추가적인 복잡성(additional complexity)는 없으나 5ms마다 전송되는 신호들을 결합하지 못하므로 최대 성능을 보장하기 어려운 단점이 있다.
(2) C0,S0를 PBCH 스크램블링으로 전달:
한가지의 정보 비트 + CRC를 사용하여 인코딩을 수행한 후, 인코딩된 비트를 5ms 마다 전송, 즉, 총 16번 전송한다는 가정으로 반복 배열하고 스크램블링 시퀀스를 곱한다. 상술한 방식을 사용하면, 블라인드 디코딩 횟수가 16번으로 증가한다는 문제점이 있다.
(3) C0,S0를 DMRS 시퀀스로 전달:
144길이의 시퀀스로 5bit을 전달하는 방식인데, 하나의 정보 + CRC를 사용하여 인코딩 수행 하는데, 이를 스크램블링하는 방식은 2가지가 있다.
1) 인코딩된 비트를 5ms 마다 전송, 즉, 총 16번 전송한다는 가정으로 반복배열하고 스크램블링 시퀀스를 곱한다. 이러한 경우, 5ms 마다 스크램블링 시퀀스가 변경되기 때문에, PBCH의 ICI 랜덤화가 발생할 수 있다. 또한, 단말은 DMRS 시퀀스로부터 C0,S0 정보를 획득하기 때문에 0,5,10,15ms 마다 변경되는 스크램블링 시퀀스 정보를 획득할 수 있다. 또한, PBCH 디코딩 시 블라인드 디코딩 의 횟수는 증가되지 않는다. 그리고 상술한 방법은, 5ms 마다 전송되는 신호를 결합하기 때문에 최대 성능 기대할 수 있다.
2) 인코딩된 비트를 20ms 마다 전송, 즉, 총 4번 전송한다는 가정으로 반복배열하고 스크램블링 시퀀스를 곱한다. 이렇게 하면, ICI 랜덤화는 감소할 수 있다. 또한, 단말의 블라인드 디코딩 횟수는 증가하지 않고, 성능 향상을 기대할 수 있으며, 획득 시간(acquisition time)이 향상될 수 있다.
다만, C0, So를 DMRS 시퀀스로 전달하는 경우, DMRS 시퀀스에 다수의 비트들을 포함시켜야 하기 때문에, 검출 성능이 감소하고, 블라인드 검출 횟수가 증가하는 문제점이 있다. 이를 극복하기 위해서는, 결합을 여러 번 수행해야 한다.
(4) C0,S0를 DMRS 위치로 전달:
C0,S0를 DMRS 시퀀스로 전달하는 것과 기본적인 내용은 동일하다. 다만, DMRS 위치를 통해 C0, S0를 전달하기 위해서는 셀 ID를 기반으로 위치를 결정하고, 0,5,10,15ms에 따라 주파수 위치를 이동한다. 인접 셀도 동일한 방식으로 시프트를 수행할 수 있다. 특히, DMRS에 전력 부스팅을 수행하면, 성능이 좀 더 향상될 수 있다.
9. NR-PBCH DM-RS 설계
NR-PBCH DMRS는 1008개의 셀 ID 및 3비트의 SS 블록 인덱스에 의해 스크램블링 되어야 한다. 왜냐하면, DMRS 시퀀스의 가설 수에 따라 검출 성능을 비교했을 때, 3비트의 검출 성능이 DMRS 시퀀스의 가설 수에 가장 적합한 것으로 나타났기 때문이다. 하지만, 4~5비트의 검출 성능도 성능 손실이 거의 없는 것으로 보이므로, 4~5비트의 가설 수를 사용하여도 무방할 것으로 보여진다.
한편, DMRS 시퀀스를 통해 SS 블록 시간 인덱스와 5ms 경계를 표현할 수 있어야 하므로, 총 16개의 가설들을 가질 수 있도록 설계 되어야 한다.
다시 말해, DMRS 시퀀스는 적어도 셀 ID, SS 버스트 세트 내의 SS 블록 인덱스 및 Half frame 경계(Half frame indication)를 표현할 수 있어야 하며, 셀 ID, SS 버스트 세트 내의 SS 블록 인덱스 및 Half frame 경계(Half frame indication)에 의해 초기화 될 수 있다. 구체적인 초기화 식은 다음의 [수학식 5]과 같다.
[수학식 5]
Figure PCTKR2018008574-appb-I000001
여기서,
Figure PCTKR2018008574-appb-I000002
는 SS 블록 그룹 내의 SS 블록 인덱스이고,
Figure PCTKR2018008574-appb-I000003
셀 ID이면, HF는 {0, 1}의 값을 가지는 half frame indication 인덱스이다.
NR-PBCH DMRS 시퀀스는 LTE DMRS 시퀀스와 유사하게 31길이의 골드 시퀀스를 사용하거나, 7 또는 8 길이의 골드 시퀀스를 기반으로 생성될 수 있다.
한편, 31 길이의 골드 시퀀스와 7 또는 8 길이의 골드 시퀀스를 사용하는 경우의 검출 성능이 유사하므로, 본 발명에서는 LTE DMRS와 같이, 31 길이의 골드 시퀀스를 사용하는 것을 제안하며, 만약, 6GHz 이상의 주파수 범위에서는 31보다 긴 골드 시퀀스를 고려할 수 있다.
QPSK를 이용하여 변조된 DMRS 시퀀스
Figure PCTKR2018008574-appb-I000004
은, 다음의 [수학식 6]에 의해 정의될 수 있다.
[수학식 6]
Figure PCTKR2018008574-appb-I000005
또한, DMRS 시퀀스 생성을 위한 변조 타입으로 BPSK와 QPSK를 고려할 수 있는데, BPSK와 QPSK의 검출 성능은 유사하나, QPSK의 코릴레이션 성능이 BPSK보다 우수하므로, QPSK가 DMRS 시퀀스 생성의 변조 타입으로 더 적절하다.
이제, 좀 더 구체적으로, PBCH DMRS 시퀀스를 구성하는 방법에 대해 살펴보도록 한다. PBCH DMRS 시퀀스는 Gold sequence가 사용되며, 2개의 m-sequence는 동일한 길이를 구성하는 다항식으로 구성되는데, 시퀀스의 길이가 짧은 경우 하나의 m-sequence는 짧은 길이의 다항식으로 대체할 수 있다.
실시 예 3-1
Gold sequence를 구성하는 2개의 m-sequence는 동일한 길이로 구성한다. 그 중 하나의 m-sequence의 초기값은 고정된 값을 사용하며, 다른 하나의 m-sequence의 초기값은 셀ID 및 시간 지시자를 통해 초기화될 수 있다.
예를 들어, Gold sequence로는 LTE에서 사용한 31 길이의 Gold sequence가 사용될 수 있다. 기존 LTE의 CRS는 31 길이의 Gold sequence를 사용하였고, 504가지 셀 ID와 7개 OFDM 심볼 및 20개의 슬롯을 기반으로 한 140가지의 시간 지시자를 기반으로 초기화하여 서로 다른 시퀀스를 생성하였다.
6GHz 이하 대역에서는 15kHz 및 30kHz 부반송파 간격이 사용되어 5ms 범위에서 포함되는 SS 블록의 수가 최대 8개이며, 20ms 범위에서는 최대 32개의 SS 블록이 포함될 수 있다. 즉, 20ms 범위에서 5ms 경계에 대한 정보를 PBCH DMRS 시퀀스로 획득하는 경우, 32개의 SS 블록을 찾는 것과 동일한 동작을 수행한다. NR의 셀 ID가 1008로 LTE 대비 2배 늘었으나 구분해야 하는 SS 블록의 수가 70 (=140/2) 보다 적기 때문에 상술한 시퀀스를 사용할 수 있다.
한편, 6GHz 이상 대역에서 5ms 범위에서 SS 블록의 최대 수는 64개이지만, PBCH DMRS에서 전달하는 SS 블록 인덱스는 최대 8이며, 이는 6GHz 이하 대역의 최대 SS 블록 인덱스의 수와 같기 때문에, 6GHz 이상 대역에서도 31 길이의 Gold sequence를 사용해서 셀 ID 및 시간 지시자에 따라 시퀀스를 생성할 수 있다.
또 다른 방법으로는, 주파수 범위에 따라서 길이가 다른 Gold sequence가 적용될 수 있다. 6GHz 이상 대역에서는 120kHz 부반송파 간격 및 240kHz 부반송파 간격이 사용될 수 있는데, 이에 따라서 10ms에 포함되는 슬롯의 수가 15kHz 부반송파 간격 대비 각각 8배 (즉, 80개) 및 16배 (즉, 160개) 증가한다. 특히, 데이터 DMRS의 시퀀스를 16bit의 C-RNTI과 슬롯 인덱스를 사용하여 초기화 한다면, 기존 31보다 긴 길이의 다항식이 요구될 수도 있다. 이러한 요구 사항에 따라, Length-N (>31) Gold sequence가 도입되는 경우 이 시퀀스는 PBCH DMRS 및 PBCH 스크램블링에 사용될 수 있다. 이와 같은 경우, 주파수 범위에 따라 길이가 다른 Gold sequence를 적용할 수 있다. 6GHz 이하 대여에서는 Length-31 Gold sequence를 사용하고, 6GHz 이상 대역에서는 Length-N (>31) Gold sequence를 사용할 수 있다. 이때 초기 값은 위에서 설명한 것과 유사한 방식으로 적용할 수 있다.
실시 예 3-2
Gold sequence를 구성하는 2개의 m-sequence는 동일한 길이로 구성한다. 그 중 하나의 m-sequence의 시간 지시자를 이용하여 초기화하며, 다른 하나의 m-sequence의 초기값은 셀 ID 또는 셀 ID 및 다른 시간 지시자를 이용하여 초기화 될 수 있다. 예를 들어, Gold sequence로는 LTE에서 사용한 length-31의 Gold sequence가 사용될 수 있다. 기존에 고정된 초기값이 적용된 m-sequence에는 시간 지시자를 이용하여 초기화를 한다. 그리고 다른 m-sequence는 셀 ID로 초기화 한다.
다른 방법으로는 시간 지시자 중 SS 블록 인덱스와 더불어 half radio frame 경계(5ms), SFN 최상위 1bit (10ms 경계) 등이 PBCH DMRS로 전송되는 경우, half radio frame 경계(5ms) 및 SFN 최상위 1bit (10ms 경계) 등은 첫 번째 m-sequence에서 지시되고, SS 블록 인덱스는 두 번째 m-sequence에서 지시될 수 있다.
상술한 실시 예 3-1에서 제시한 것과 같이 주파수 범위에 따라 길이가 서로 다른 Gold sequence가 도입되는 경우에도, 위에서 설명한 시퀀스의 초기화 방법을 적용할 수 있다.
실시 예 3-3
서로 다른 길이의 다항식을 갖는 M-sequence로 Gold sequence를 구성한다. 많은 지시가 요구되는 정보에는 긴 다항식을 갖는 M-sequence를 사용하고, 적은 지시가 요구되는 정보에는 상대적으로 짧은 다항식을 갖는 M-sequence를 사용한다.
PBCH DMRS의 시퀀스는 셀 ID와 SS 블록 지시와 같은, 시간 정보에 따라 생성된다. 1008가지의 셀ID와 P가지의 시간 정보(예를 들어, SS 블록 지시자 3bit)를 표현하기 위해서 2가지 서로 다른 길이의 다항식을 사용할 수 있다. 예를 들어, 셀 ID를 구분하기 위해서 31길이의 다항식이 사용되고, 시간 정보를 구분하기 위해서 7길이의 다항식이 사용될 수 있다. 이 때, 2개의 m-sequence는 각각 셀 ID와 시간 정보로 초기화 될 수 있다. 한편, 상술한 예에서, 31길이의 다항식은 LTE에서 사용된 Gold sequence를 구성하는 m-sequence 중 일부일 수 있고, 7길이의 다항식은 NR-PSS 혹은 NR-SSS 시퀀스를 구성하기 위해 정의된 2가지 m-sequence 중 하나 일 수 있다.
실시 예 3-4
길이가 짧은 다항식을 갖는 M-sequence로부터 시퀀스를 생성하고, 길이가 긴 다항식을 갖는 M-sequence들로 구성된 Gold sequence로부터 시퀀스를 생성하여, 두 sequence를 element wise로 곱한다.
이하에서는, PBCH DMRS 시퀀스로 사용되는 시퀀스의 초기값 설정 방법을 설명한다. PBCH DMRS 시퀀스는 셀ID, 시간 지시자에 의해서 초기화된다. 또한, 초기화에 사용되는 bit열을 c(i)*2^i, i=0,쪋,30으로 표시할 때, c(0)~c(9)은 셀ID에 의해서 결정되며, c(10)~c(30)은 셀ID와 시간 지시자에 따라 결정된다. 특히, c(10)~c(30)에 해당하는 bit에는 시간 지시자의 정보 중 일부가 전달 될 수 있는데, 그 정보의 속성에 따라서 초기화 방법이 달라 질 수 있다.
실시 예 4-1
셀 ID와 SS 블록 인덱스로 초기화 할 때 상기 설명에 따라 c(0)~c(9)은 셀 ID에 의해서 결정되고, c(10)~c(30)은 셀 ID와 SS 블록 인덱스로 결정된다. 아래 [수학식 7]에서 NID는 셀 ID를 나타내며, SSBID는 SS 블록 인덱스를 나타낸다.
[수학식 7]
2^10*( SSBID *(2*NID+1) ) + NID+1
2^10*(( SSBID +1)*(2*NID+1) ) + NID+1
2^10*(( SSBID +1)*(2*NID+1) ) + NID
실시 예 4-2
상기 실시 예 4-1에서 나타낸 초기화 방식에서 시간 지시자를 추가하는 경우, SS 블록이 늘어나는 형태로 초기화 값을 설정한다. 5ms 범위에서 PBCH DMRS 시퀀스로 전달되는 SS 블록 인덱스의 수를 P이라고 할 때, Half radio frame 경계를 DMRS 시퀀스에서 찾고자 한다면, SS 블록 인덱스의 수를 2배 증가한 것과 같은 효과로 표현할 수 있다. 또한 Half frame 경계 뿐만 아니라 10ms 경계를 찾고자 한다면 이는 SS 블록 인덱스의 수를 4배 증가시킨 것과 같은 효과로 표현할 있다. 상술한 실시 예 4-2에 대한 수식은 아래의 [수학식 8]과 같다.
[수학식 8]
2^10*(( SSBID + P*(i))*(2*NID+1) ) + NID+1
2^10*(( SSBID +1+ P *(i))*(2*NID+1) ) + NID+1
2^10*(( SSBID +1+ P*(i))*(2*NID+1) ) + NID
여기서, 0,5,10,15ms 경계를 표현하는 경우, i=0,1,2,3 이고, half frame 경계만을 표현할 경우, i=0,1이다.
실시 예 4-3
상기 실시 예 4-1에서 나타낸 초기화 방식에서 시간 지시를 추가하는 경우, SS 블록 인덱스와 구분하여 표시할 수 있다. 예를 들어, c(0)~c(9)은 셀 ID에 의해서 결정되고, c(10)~c(13)은 SS 블록 인덱스에 의해서, 그리고 c(14)~c(30)은 half frame 경계, SFN 정보 등과 같이, 추가된 시간 지시자에 의해서 결정될 수 있다. 상술한 실시 예 4-3에 대한 수식은 아래의 [수학식 9]과 같다.
[수학식 9]
2^13*(i)+2^10*( (SSBID +1) ) + NID
2^13*(i+1)+2^10*( (SSBID +1) ) + NID
2^13*(i)+2^10*( (SSBID +1) ) + NID+1
2^13*(i+1)+2^10*( (SSBID +1) ) + NID+1
실시 예 4-4
주파수 범위에 따라 최대 SS 블록의 수 L이 결정되는데, PBCH DMRS 시퀀스로 전달되는 SS 블록 인덱스의 수를 P이라고 할 때, L이 P보다 작거나 같은 경우 SS 블록 인덱스는 모두 DMRS 시퀀스로 전달되며 SS 블록 인덱스는 DMRS 시퀀스에서 획득한 인덱스와 동일하다. 한편, L이 P 보다 큰 경우, SS 블록 인덱스는 DMRS 시퀀스로 전달되는 인덱스와 PBCH 컨텐츠로 전달되는 인덱스의 조합으로 구성된다.
DMRS 시퀀스에서 사용하는 인덱스를 SSBID라고 하고, PBCH 컨텐츠에 포함되는 인덱스를 SSBGID라고 할 때, 아래의 3가지 case를 고려할 수 있다.
(1) Case 0 : L <= P
SS-PBCH block index = SSBID
(2)Case 1 : L > P
SS-PBCH block index = SSBID*P + SSBGID
SSBID = Floor (SS-PBCH block index / P)
SSBGID = Mod(SS-PBCH block index, P)
(3) Case 2 : L > P
SS-PBCH block index = SSBID*P + SSBGID
SSBID = Mod(SS-PBCH block index, P)
SSBGID = Floor (SS-PBCH block index / P)
한편, NR-PBCH DMRS 시퀀스를 생성하기 위한 Pesudo-random 시퀀스는 31 길이의 Gold Sequence로 정의되고,
Figure PCTKR2018008574-appb-I000006
길이의 시퀀스 c(n) 은 다음의 [수학식 10]에 의해 정의된다.
[수학식 10]
Figure PCTKR2018008574-appb-I000007
여기서,
Figure PCTKR2018008574-appb-I000008
이고,
Figure PCTKR2018008574-appb-I000009
이고, 첫번째 m-sequence 는,
Figure PCTKR2018008574-appb-I000010
의 초기값을 가지며, 두번째 m-sequence의 초기값은
Figure PCTKR2018008574-appb-I000011
에 의해 정의되며, 이 때,
Figure PCTKR2018008574-appb-I000012
이다.
10. NR-PBCH DMRS 패턴 설계
DMRS의 주파수 위치와 관련하여, 2가지 DMRS RE 맵핑 방법을 고려할 수 있다. 고정된 RE 맵핑 방법은 주파수 도메인 상에서 RS 맵핑 영역을 고정시키는 것이고, 가변적 RE 맵핑 방법은 Vshift 방법을 이용하여 셀 ID에 따라 RS 위치를 시프트 시키는 것이다. 이러한 가변적 RE 맵핑 방법은 간섭을 랜덤화하여, 추가적인 성능 이득을 얻을 수 있는 장점이 있어, 가변적 RE 맵핑 방법을 사용하는 것이 더 바람직한 것으로 보여진다.
가변적 RE 맵핑에 대해 구체적으로 살펴보면, Half frame 내에 포함된 복소 변조 심볼
Figure PCTKR2018008574-appb-I000013
는 [수학식 11]를 통해 결정될 수 있다.
[수학식 11]
Figure PCTKR2018008574-appb-I000014
여기서, k, l은 SS블록 내에 위치하는 부반송파와 OFDM 심볼 인덱스를 나타내며,
Figure PCTKR2018008574-appb-I000015
은 DMRS 시퀀스를 나타낸다. 한편,
Figure PCTKR2018008574-appb-I000016
를 통해 결정될 수도 있다. 또한,
또한, 성능 향상을 위해, RS 전력 부스팅이 고려될 수 있는데, RS 전력 부스팅과 Vshift가 함께 사용되면, 간섭 TRP (Total Radiated Power)들로부터의 간섭은 감소할 수 있다. 또한, RS 전력 부스팅의 검출 성능 이득을 고려할 때, PDSCH EPRE 대 참조 신호 EPRE의 비는 -1.25dB가 바람직하다.
이하, PBCH DMRS 시퀀스의 RE 맵핑 방법에 대한 실시 예에 대해서 설명하도록 한다.
실시 예 5-1
DMRS를 위한 시퀀스의 길이는 PBCH DMRS로 사용되는 RE의 개수와 변조 차수에 의해서 결정된다.
PBCH DMRS에 M개 RE가 사용되고 시퀀스를 BPSK 변조하는 경우, 길이 M의 시퀀스를 생성한다. 시퀀스의 순서대로 BPSK 변조를 수행하고, 변조된 심볼은 DMRS RE에 맵핑된다. 예를 들어, 2개의 OFDM 심볼에 PBCH DMRS RE가 총 144개 있는 경우, 하나의 초기값을 사용하여 길이 144의 시퀀스를 생성하고 BPSK 변조한 후 RE 맵핑을 수행한다.
한편, PBCH DMRS에 M개 RE가 사용되고 QPSK 변조하는 경우, 길이 2*M의 시퀀스를 생성한다. 시퀀스 열을 s(0),쪋,s(2*M-1)이라고 할 때, 짝수 인덱스의 시퀀스와 홀수 인덱스의 시퀀스를 조합하여 QPSK 변조한다. 예를 들어, 2개의 OFDM 심볼에 PBCH DMRS RE가 총 144개 있는 경우, 하나의 초기값을 사용하여 길이 288의 시퀀스를 생성하고 QPSK 변조한 후 생성된 144길이의 변조된 시퀀스를 DMRS RE에 맵핑한다.
또한, 하나의 OFDM 심볼에서 PBCH DMRS에 N개 RE가 사용되고 시퀀스를 BPSK 변조하는 경우, 길이 N의 시퀀스를 생성한다. 시퀀스의 순서대로 BPSK 변조를 수행하고, 변조된 심볼은 DMRS RE에 맵핑된다. 예를 들어, 하나의 OFDM 심볼에 PBCH DMRS RE가 총 72개 있는 경우, 하나의 초기값을 사용하여 길이 72의 시퀀스를 생성하고 BPSK 변조한 후 RE 맵핑을 수행한다. 하나 이상의 OFDM 심볼이 PBCH 전송에 사용되는 경우, 각 OFDM 심볼 별로 초기화를 수행하여 다른 시퀀스를 생성할 수도 있고, 이전 심볼에서 생성한 시퀀스를 동일하게 맵핑할 수도 있다.
그리고, 하나의 OFDM symbol에서 PBCH DMRS에 N개 RE가 사용되고 시퀀스를 QPSK 변조하는 경우, 길이 2*N의 시퀀스를 생성한다. 시퀀스 열을 s(0),쪋,s(2*M-1)이라고 할 때, 짝수 인덱스의 시퀀스와 홀수 인덱스의 시퀀스를 조합하여 QPSK 변조한다. 변조된 심볼은 DMRS RE에 맵핑한다. 예를 들어, 하나의 OFDM 심볼에 PBCH DMRS RE가 총 72개 있는 경우, 하나의 초기값을 사용하여 길이 144의 시퀀스를 생성하고 QPSK 변조한 후 RE 맵핑을 수행한다. 하나 이상의 OFDM 심볼이 PBCH 전송에 사용되는 경우, 각 OFDM 심볼 별로 초기화를 수행하여 다른 시퀀스를 생성할 수도 있고, 이전 심볼에서 생성한 시퀀스를 동일하게 맵핑할 수도 있다.
실시 예 5-2
동일한 시퀀스를 다른 심볼에 맵핑하는 경우, cyclic shift를 적용할 수 있다. 예를 들어, 2개의 OFDM 심볼이 사용되는 경우, 첫 번째 OFDM 심볼의 변조된 시퀀스 열을 순차적으로 RE에 맵핑한다면, 두 번째 OFDM 심볼에는 변조된 시퀀스 열을 변조된 시퀀스 열 N의 1/2에 해당하는 오프셋만큼 cyclic shift하여 RE 맵핑을 한다. NR-PBCH는 24RB를 사용하고 NR-SSS는 12RB를 사용할 때 NR-SSS가 NR-PBCH와 가운데 주파수 RE를 일치 시키는 경우, 7번 째 RB 부터 18번 째 RB 위치에 NR-SSS가 배치된다. NR-SSS로부터 채널을 추정할 수 있는데, NR-PBCH DMRS로부터 SS 블록 인덱스를 검출할 때는 추정된 채널을 사용하여 coherent detection을 시도해 볼 수 있다. 이와 같은 검출을 용의하게 하기 위해서 위와 같은 cyclic shift 방법을 적용하면, NR-SSS가 전송되는 가운데 12RB 영역에서 두 OFDM 심볼에 걸쳐 PBCH DMRS의 시퀀스 열이 전송되도록 하는 것과 같은 효과를 얻을 수 있다.
실시 예 5-3
SS 블록 지시 이외에 다른 시간 지시자가 전송될 때, 시간 지시자에 따라 cyclic shift 값이 결정될 수 있다.
OFDM 심볼에 동일한 시퀀스가 맵핑되는 경우에는, 각 OFDM 심볼에 동일한 cyclic shift가 적용될 수도 있고, 각 OFDM 심볼마다 서로 다른 cyclic shift가 적용될 수 도 있다. 만약, PBCH로 사용되는 OFDM 심볼에 포함된 DMRS RE의 전체 수에 대응하게 시퀀스가 생성되는 경우, 전체 시퀀스에 cyclic shift를 적용한 후 DMRS RE에 맵핑한다. Cyclic shift의 다른 예로서, Reverse mapping을 고려할 수 있다. 예를 들어, 변조된 시퀀스 열이 s(0), 쪋., s(M-1)이라고 할 때, reverse mapping은 s(M-1), 쪋, s(0)가 될 수 있다.
이하, PBCH DMRS RE의 주파수 위치에 대해 설명하도록 한다.
PBCH DMRS를 위해 사용되는 RE의 주파수 위치는 특정 파라미터에 의해 변경될 수 있다.
실시 예 6-1
N개 (예, N=4) RE 마다 DMRS가 배치되는 경우, 주파수 축의 RE 위치의 Shift되는 최대 범위는 N으로 설정할 수 있다. 예를 들어, N*m + v_shift (where, m=0,.., 12xNRB_PBCH-1, v_shift = 0,쪋, N-1)와 같이 표현될 수 있다.
실시 예 6-2
주파수 축 Shift의 오프셋은 적어도 셀 ID에 의해서 결정될 수 있다. PSS와 SSS로부터 획득한 셀 ID를 사용하여 shift의 오프셋이 결정될 수 있다. NR 시스템의 셀 ID는 PSS로부터 획득한 Cell_ID(1)과 SSS로부터 획득한 Cell_ID(2)의 조합으로 구성할 수 있는데, 셀 ID는 Cell_ID(2)*3+Cell_ID(1)으로 표시될 수 있다. 이와 같이 획득한 셀 ID 정보 또는 그 중 일부 정보를 사용하여 shift의 오프셋을 결정할 수 있다. 상기 오프셋을 산출하는 예시는 아래 [수학식 12]와 같을 수 있다.
[수학식 12]
v_shift = Cell-ID mod N (여기서, N은 DMRS의 주파수 간격으로 예를 들어 N은 4로 설정)
v_shift = Cell-ID mod 3 (인접 3개 cell간 간섭 randomization 효과, DMRS 주파수 간격은 3보다 넓을 수 있음, 예를 들어 N은 4)
v_shift = Cell_ID(1) (PSS로부터 획득한 Cell_ID(1)을 shift의 offset 값으로 사용)
실시 예 6-3
주파수 축 Shift의 오프셋은 시간 정보 중 일부 값에 의해서 결정될 수 있다. 예를 들어, Half radio frame 경계 (5ms)이나 SFN의 최상위 1-bit 정보 (10ms 경계) 등에 의해서 shift의 오프셋 값이 결정될 수 있다. 상기 오프셋을 산출하는 예시는 아래 [수학식 13]와 같을 수 있다.
[수학식 13]
v_shift = 0, 1, 2, 3 (0/5/10/15ms 마다 DMRS의 위치는 shift됨, DMRS의 주파수 간격이 4인 경우 4번의 shift 기회가 있음)
v_shift = 0, 1 (0/5ms boundary 혹은, 0/10ms boundary에 따라 shift 됨)
v_shift = 0, 2 (0/5ms boundary 혹은, 0/10ms boundary에 따라 shift 됨, DMRS의 주파수 간격이 4인 경우 최대 간격인 2만큼 shift함)
실시 예 6-4
주파수 축 Shift의 오프셋은 셀 ID 및 시간 정보 중 일부 값에 의해서 결정될 수 있다. 예를 들어, 상기 실시 예 6-3 및 실시 예 6-3의 조합으로 구성될 수 있다. 셀 ID에 따른 shift인 vshift_cell과 시간 정보에 따른 shift인 vshift_frame의 조합으로 구성되는데, 이 간격은 DMRS RE 간격 N의 modulor로 표시될 수 있다. 상술한 오프셋을 구하는 실시 예는 다음 [수학식 14]과 같을 수 있다.
[수학식 14]
vshift = (vshift_cell + vshift_frame) mod N
도 17은 SS 블록 내에서 DMRS가 맵핑되는 예시를 나타내기 위한 도면이다.
이하에서는, PBCH DMRS RE와 Data RE 사이의 전력비를 설명한다. PBCH DMRS 전송을 위해 사용되는 RE는 PBCH DMRS가 포함된 OFDM 심볼에 있는 Data 전송 전송을 위한 RE의 전력 대비 높은 전력으로 전송될 수 있다.
실시 예 7-1
Data RE 당 에너지 대비 DMRS RE 당 에너지 비는 주파수 밴드 별로 고정된 값을 사용한다. 이 때, 모든 주파수 밴드에서 고정된 값을 사용할 수도 있고, 특정 주파수 밴드에서 특정 전력비를 적용할 수 있다. 즉, 주파수 밴드 별로 다른 전력비가 적용될 수 있다. 예를 들어, ICI가 지배적으로 작용하는 6GHz 이하 대역에서는 높은 전력을 사용하고, 잡음이 제한된 환경인 6GHz 이상 대역에서는 동일한 전력을 사용할 수 있다.
본 발명에서는 설명의 편의상 전력 비율을 'Data RE 당 Energy 대비 DMRS RE 당 Energy 비'로 표현하였으나, 이에 대하여 다양한 방식으로 표현될 수 있다. 예를 들면, 아래와 같을 수 있다.
- DMRS RE 당 Power 대비 Data RE 당 Power 비율
- DMRS RE 당 Energy 대비 Data RE 당 Energy 비율
- Data RE 당 Power 대비 DMRS RE 당 Power 비율
- Data RE 당 Energy 대비 DMRS RE 당 Energy 비율
실시 예 7-2
DMRS로 사용되는 RE의 전력은 Data로 사용되는 RE의 전력 대비 3dB 보다 낮은 값으로 설정될 수 있다. 예를 들어, 12RE 중 3RE를 DMRS로 사용하고 9RE를 Data로 사용하는 경우와 4RE/8RE (DMRS/Data)를 사용하는 경우, PBCH decoding 성능이 유사하다고 하면, 3RE의 DMRS를 4RE를 사용한 것과 유사한 효과를 얻고자 하는 경우, 3RE DMRS의 전력을 RE 별로 약 1.3334배 향상 시키고 인접 Data RE들의 전력을 0.8889배로 조정하여 OFDM 심볼의 전체 전력을 유지하면서 DMRS의 전력을 증가 시킬 수 있다. 이 때, Power boosting level은 약 1.76dB (=10*log(1.3334/0.8889))가 된다.
다른 예로서, 3RE/9RE (DMRS/Data)를 사용하는 경우 4.8RE DMRS의 검출 성능과 유사한 성능을 제공하는 경우 Power boosting level은 약 3dB가 된다. (4.15RE DMRS는 약 2dB)
실시 예 7-3
NR 시스템이 LTE 시스템과 연계하여 Non Stand Alone (NSA) 동작하는 경우, 기지국은 UE에게 Data RE 당 Energy 대비 DMRS RE 당 Energy 비를 지시할 수 있다.
실시 예 7-4
기지국은 UE에게 NR 시스템에서 사용되는 PBCH Data RE 당 Energy 대비 DMRS RE 당 Energy 비를 지시할 수 있다. 예를 들어, 초기 접속(Initial access) 단계에서 UE는 PBCH Data RE 당 Energy 대비 DMRS RE 당 energy 비가 동일하다고 가정하고 PBCH 데이터를 복조(Demodulation)할 수 있다. 그 후, 기지국은 UE에게 실제 전송에 사용한 Energy 비를 지시할 수 있다. 특히, 핸드오버(Handover)를 위한 설정(Configuration)들 중에서, 타겟 셀 (Target cell)에 대한 Energy 비를 지시할 수 있다.
또 다른 예를 들면, 서빙 셀에 대한 PBCH DMRS의 전송 전력을 지시하는 시스템 정보(System Information)와 함께 Energy 비를 함께 지시할 수 있다. 지시된 Energy 비 값 중 적어도 하나는 0dB를 지시하며, DMRS의 전송 전력이 증가하거나 감소한 경우, 이에 대한 값을 포함할 수도 있다.
11. 시간 인덱스 지시 방법
도 18을 참조하면, 시간 정보는 SFN(System Frame Number), Half frame 간격, SS 블록 시간 인덱스를 포함한다. 각 시간 정보는 SFN을 위한 10비트, Half frame을 위한 1비트, SS 블록 시간 인덱스를 위한 6비트로 표현 될 수 있다. 이 때, SFN를 위한 10비트 중 일부분은 PBCH 컨텐츠에 포함될 수 있다. 또한, NR-PBCH DMRS는 SS 블록 인덱스를 위한 6비트 중, 3비트를 포함할 수 있다.
도 18에서 표현되는, 시간 인덱스 지시 방법의 실시 예들은 다음과 같을 수 있다.
- 방안 1: S2 S1 (PBCH scrambling) + S0 C0 (PBCH contents)
- 방안 2: S2 S1 S0 (PBCH scrambling) + C0 (PBCH contents)
- 방안 3: S2 S1 (PBCH scrambling) + S0 C0 (PBCH DMRS)
- 방안 4: S2 S1 S0 (PBCH scrambling) + C0 (PBCH DMRS)
만약, NR-PBCH DMRS을 통해 Half frame indication이 전달된다면, 5ms 마다 PBCH 데이터를 결합함으로써 추가적인 성능 향상을 가져올 수 있다. 이러한 이유로, 방안 3 및 4와 같이, Half frame indication을 위한 1 비트가 NR-PBCH DMRS를 통해 전달될 수 있다.
방안 3 및 4를 비교해보면, 방안 3은 블라인드 디코딩 횟수를 줄일 수 있지만, PBCH DMRS 성능의 손실을 가져올 수 있다. 만약, PBCH DMRS가 S0, C0, B0, B1, B2를 포함하는 5비트를 우수한 성능으로 전달할 수 있다면, 방안 3이 시간 지시 방법으로 적절할 것이다. 하지만, 상술한 5비트를 PBCH DMRS가 우수한 성능으로 전달 할 수 없다면, 실시 예 4가 시간 지시 방법으로 적절할 것이다.
상술한 바를 고려해 볼 때, SFN의 최상위 7비트는 PBCH 컨텐츠에 포함시키고, 최하위 2비트 또는 3비트를 PBCH 스크램블링을 통해 전달할 수 있다. 또한, PBCH DMRS에 SS 블록 인덱스의 최하위 3비트를 포함시키고, PBCH 컨텐츠에 SS 블록 인덱스의 최상위 3비트를 포함시킬 수 있다.
추가적으로, 인접 셀의 SS 블록 시간 인덱스를 획득하는 방법에 대해 생각해 볼 수 있는데, DMRS 시퀀스를 통한 디코딩이 PBCH 컨텐츠를 통한 디코딩 보다 더 좋은 성능을 발휘하기 때문에, 각 5ms 기간 내에서 DMRS 시퀀스를 변경함으로써, SS 블록 인덱스의 3비트를 전송할 수 있다.
한편, 6GHz 이하의 주파수 범위에서는 SS 블록 시간 인덱스는 오직 인접 셀의 NR-PBCH DMRS만을 이용하여 전송할 수 있으나, 6GHz 이상의 주파수 범위에서는, 64개의 SS 블록 인덱스들을 PBCH-DMRS 및 PBCH 컨텐츠를 통해 구분하여 지시되기 때문에, UE는 인접 셀의 PBCH를 디코딩 할 필요가 있다.
그러나, PBCH-DMRS 및 PBCH 컨텐츠를 함께 디코딩 하는 것은, NR-PBCH 디코딩의 추가적인 복잡성을 가져올 수 있고, PBCH-DMRS만을 사용하는 것 보다 PBCH의 디코딩 성능을 감소시킬 수 있다. 따라서, 인접 셀의 SS 블록을 수신하기 위하여 PBCH를 디코딩하는 것이 어려울 수 있다.
그러므로, 인접 셀의 PBCH를 디코딩하는 것 대신에, 인접 셀의 SS 블록 인덱스와 관련한 설정을 서빙 셀이 UE에게 제공하는 것을 고려할 수 있다. 예를 들어, 서빙 셀은 타겟 인접 셀의 SS 블록 인덱스의 최상위 3비트에 관한 설정을 UE에게 제공하고, UE는 타겟 인접 셀의 PBCH-DMRS를 통해 최하위 3비트를 검출한다. 그리고, 상술한 최상위 3비트와 최하위 3비트를 조합하여 타겟 인접 셀의 SS 블록 인덱스를 획득할 수 있다.
상술한 내용을 보충하여 설명하면, 서빙 셀로부터 수신한 SSB의 PBCH 컨텐츠를 통해 상기 서빙 셀이 전송한 SSB의 SS 블록 인덱스의 최상위 3비트를 획득하고, PBCH-DMRS를 통해 서빙 셀이 전송한 SSB의 SS 블록 인덱스의 최하위 3비트를 검출한다. 그리고, UE는 인접 셀로부터 또 다른 SSB를 수신한 후, 상기 다른 SSB에 포함된 PBCH-DMRS를 통해 다른 SSB의 SS 블록 인덱스의 최하위 3비트를 검출 하고, 상기 서빙 셀이 전송한 SSB의 PBCH 컨텐츠로부터 획득된 SS 블록 인덱스의 최상위 3비트를 인접 셀에도 공통적으로 적용하여, 인접 셀의 SS 블록 인덱스를 획득할 수 있는 것이다.
12. 측정 결과 평가
이제, 페이로드 사이즈, 전송 방식 및 DMRS에 따른, 성능 측정 결과에 대해 살펴보도록 한다. 이 때, NR-PBCH 전송을 위해 24 개의 RB를 갖는 2 개의 OFDM 심볼이 사용된다고 가정한다. 또한, SS 버스트 집합(즉, 10, 20, 40, 80ms)은 복수의 주기를 가질 수 있으며, 인코딩된 비트가 80ms 내에 전송된다고 가정한다.
(1) DMRS 시퀀스 가설의 수
도 19는, SS 블록 인덱스에 따른 측정 결과를 나타낸다. 여기서, 24RB 및 2개의 OFDM 심볼 내에서 DMRS를 위해 144RE들이 사용되고, 정보를 위해 432RE들이 사용되었다. 그리고, DMRS 시퀀스는 긴 시퀀스 (예를 들면, 길이 31의 골드 시퀀스) 및 QPSK가 사용되었음을 가정한다.
도 19를 보면, 3~5비트들의 검출 성능을 2번 축적하여 측정할 때, -6dB에서 1%의 에러율을 보여준다. 그러므로, 3~5비트의 정보는 검출 성능 관점에서 DMRS 시퀀스에 대한 가설 수로 사용할 수 있다.
(2) 변조 타입
도 20 내지 도 21은 BPSK와 QPSK를 비교한 성능 측정 결과이다. 본 실험에서, DMRS 가설은 3비트이고, DMRS 시퀀스는 긴 시퀀스를 기반으로 하였으며, 간섭 TRP의 전력 레벨은 서빙 TRP의 전력 레벨과 동일하다.
도 20 내지 도 21을 보면, BPSK와 QPSK의 성능이 유사한 것으로 볼 수 있다. 따라서, 어떤 변조 타입을 DMRS 시퀀스를 위한 변조타입으로 사용하더라도, 성능 측정 관점에서는 별 차이가 없다. 그러나, 도 25 및 도 26을 참조하면, BPSK와 QPSK를 사용한 경우의 각 코릴레이션 특성이 다름을 알 수 있다.
도 22 및 도 23을 보면, BPSK는 QPSK보다 코릴레이션 진폭이 0.1 이상인 영역에 더 많이 분포한다. 따라서, 다중 셀 환경을 고려할 때, DMRS의 변조 타입으로 QPSK를 사용하는 것이 바람직하다. 즉, 코릴레이션 특성 측면에서, QPSK가 DMRS 시퀀스에 더 적절한 변조 타입인 것이다.
(3) PBCH DMRS의 시퀀스 생성
도 24 내지 도 25는 DMRS 시퀀스 생성에 따른 측정 결과를 나타낸다. DMRS 시퀀스는 다항식 차수 30 이상의 긴 시퀀스 또는 다항식 차수 8 이하의 짧은 시퀀스를 기반으로 생성할 수 있다. 또한, DMRS에 대한 가설은 3비트이고, 간섭 TRP의 전력 레벨은 서빙 TRP와 동일하다고 가정한다.
도 24 내지 도 25를 보면, 짧은 시퀀스 기반 생성의 검출 성능과 긴 시퀀스 기반 생성의 검출 성능이 유사한 것을 알 수 있다.
구체적으로, 첫번째 M-sequence에 길이가 7인 다항식을 도입해서 시퀀스의 코릴레이션 성능을 높이고자 했으나, 기존 첫번째 M-sequence인 길이 31의 다항식을 사용하는 방식과 차이가 없다. 또한, 첫번째 M-sequence의 초기값을 SSBID로 해서 시퀀스를 생성하였으나, 기존 첫번째 M-sequence의 초기값을 고정하고 두번째 M-sequence에 SSBID-CellID를 사용하는 방식과 차이가 없다.
따라서, LTE와 같이 Length-31 Gold sequence를 사용하고, 초기화는 기존과 같이 첫번째 M-sequence의 초기값을 고정하고, 두번째 M-sequence에 SSBID-CellID를 사용한다.
(4) DMRS RE 맵핑
도 26은 등 간격 RE 맵핑 방법 및 등 간격이 아닌 RE 맵핑 방법에 따른 성능 측정 결과를 나타낸다. 여기서, DMRS에 대한 가설은 3비트이고, DMRS 시퀀스는 긴 시퀀스에 기초하며, 간섭 TRP 전력 레벨은 서빙 TRP와 동일하다. 또한, 오직 하나의 간섭원만이 존재한다.
도 26에서 볼 수 있듯이, 가변 RE 맵핑을 사용하면, 간섭이 무작위로 분산되는 효과를 얻을 수 있다. 따라서, 가변 RE 맵핑의 검출 성능이 고정 RE 맵핑 성능보다 우수하다.
도 27은 RS 전력 부스트를 사용한 경우의 측정 결과를 나타낸다. 여기서, DMRS에 대한 RE 송신 전력은 PBCH 데이터에 대한 RE 송신 전력보다 약 1.76dB (= 10 * log (1.334 / 0.889)) 높은 것으로 가정한다. 가변 RE 맵핑과 DMRS 전력 부스팅을 함께 사용하면 다른 셀의 간섭이 감소한다. 도 27에서 볼 수 있듯이, RS 전력 부스팅을 적용한 성능은 RS 파워 부스트가 없는 것보다 2~3dB의 이득을 갖는다.
반면, RS 전력 부스팅은 PBCH 데이터에 대한 RE 송신 전력을 감소시킨다. 따라서, RS 전력 부스팅은 PBCH 성능에 영향을 줄 수 있다. 도 28 내지 도 29는, RS 전력 부스팅이 있는 경우와 없는 경우의 PBCH 성능을 측정한 결과이다. 여기서, SS 버스트 세트의 주기는 40ms로 가정되고, 인코딩된 비트는 80ms 이내에 전송되는 것을 가정한다.
PBCH 데이터에 대한 RE의 전송 전력이 감소하면 성능 손실이 발생할 수 있다. 그러나, RS 전력 증가로 인해 채널 추정 성능이 향상되므로 복조 성능을 향상시킬 수 있다. 따라서, 도 28 내지 도 29에서 볼 수 있듯이, 두 경우의 성능은 거의 동일하다. 그러므로, PBCH 데이터에 대한 RE의 전송 전력 손실의 영향은 채널 추정 성능의 이득에 의해 보완될 수 있다.
한편, 상기 RS 전력 부스팅에 Vshift를 적용한 실험 관찰 결과를 도 30 내지 도 31을 참조하여 살펴본다. DMRS RE의 주파수축 위치를 셀 ID에 따라 변경하는 Vshift를 도입하면, 다중셀 환경에서 전송되는 PBCH DMRS를 2번의 주기 동안 수신하고 두 개의 PBCH 결합하면, ICI 랜덤화로 인하여 검출 성능을 개선하는 효과가 생기며, Vshift를 적용한 경우, 검출 성능 향상이 크다.
아래의 [표 3]은 상술한 성능측정을 위해 사용된 파라미터의 가정값이다.
Parameter Value
Carrier Frequency 4GHz
Channel Model CDL_C (delay scaling values: 100ns)
Subcarrier Spacing 15 kHz
Antenna Configuration TRP: (1,1,2) with Omni-directional antenna elementUE: (1,1,2) with Omni-directional antenna element
Frequency Offset 0% and 10% of subcarrier spacing
Default period 20 ms
Subframe duration 1 ms
OFDM symbols in SF 14
Number of interfering TRPs 1
Operating SNR -6 dB
13. Half frame 인덱스 지시 및 신호 설계
한편, 상술한 바와 같은 시간 인덱스 지시 방법 이외에 다른 시간 인덱스 지시 방법 등도 생각해볼 수 있는데, 특히, 이제부터 Half frame 인덱스를 효과적으로 지시하기 위한 다양한 실시 예들에 대해 살펴보도록 한다.
5ms 구간(duration)에 포함된 SS 블록들은 5ms, 10ms, 20m, 40m, 80ms, 160ms 등의 주기를 가지고 전송될 수 있다. 또한, 초기 접속 단계의 UE는 5ms 보다 긴 주기 (예, 10ms, 20ms 등)으로 SS 블록들이 전송된다고 가정하고, 신호 검출을 수행한다. 특히, NR 시스템에서 초기 접속 단계의 UE는 SS 블록들이 20ms 주기로 전송된다고 가정하고 신호 검출을 수행한다.
그런데, 만약, 기지국이 5ms 주기로 SS 블록을 전송하고, UE가 20ms 주기로 SS 블록을 검출한다면, UE는 SS 블록이 전반부 하프 프레임 (First half radio frame)에서 전송될 수도 있고, 후반부 하프 프레임 (Second half radio frame) 에서 전송될 수 있음을 고려해야 한다. 즉, UE는 SS 블록이 전반부 하프 프레임에서 수신될지, 후반부 하프 프레임에서 수신될지에 대해서 정확한 가정을 할 수 없다. 따라서, 기지국은 SS 블록이 전반부 하프 프레임에서 전송되는지, 아니면 후반부 하프 프레임에서 전송되는지를 UE에게 정확히 전달하기 위한 방법들을 다음과 같이 고려할 수 있다.
(1) 명시적 지시(Explicit indication):
- 5ms 주기로 PBCH 컨텐츠를 변경. 이러한 경우, UE는 수신된 SS 블록을 디코딩 하여 하프 프레임 시간 정보를 획득할 수 있다.
(2) 암묵적 지시(Implicit indication):
- 5ms 주기로 PBCH DMRS의 시퀀스를 변경
- 5ms 주기로 PBCH DMRS의 시퀀스 맵핑 방법을 변경
- 5ms 주기로 PBCH를 전송하는 OFDM 심볼들의 위상(phase)을 변경
- 5ms 주기로 PBCH 컨텐츠의 부호화된 비트(encoded bit)에 서로 다른 스크램블링 시퀀스(scrambling sequence)를 적용
여기서, 상술한 방법들은 서로 조합하여 사용할 수 있으며, 상술한 방법의 다양한 변형도 가능하다. 이는 UE가 초기 접속 상태인지, IDLE 모드 인지 등의 UE의 상태 또는 인접 셀 (Inter-cell)/다른 RAT (Inter-RAT)로의 핸드오버(Handover) 수행 등 현재 UE가 시간 정보를 수신해야 하는 상황에 따라, Half 프레임 시간 정보를 전달하기 위한 다양한 방법들이 고려될 수 있다.
이제, Half frame 시간 정보를 획득할 때의 복잡도를 줄이기 위한 방법들을 살펴보도록 한다.
실시 예 8-1.
초기 접속 단계의 UE는, 10ms 시간 범위에서 전반부 Half frame 또는 후반부 Half frame 중 하나의 고정된 위치에 SS 블록이 전송된다고 가정하고 SS 블록의 신호 검출을 시도한다. 즉, UE는 SFN, SS 블록 인덱스 등의 시간 정보는 SS 블록에 포함된 신호 및 채널 등에 포함된 시퀀스 검출 혹은 데이터 디코딩 등의 과정을 수행하여 획득하고, Half frame 정보는 무선 프레임 내에서 SS 블록이 전송되기로 정의된 슬롯, OFDM 심볼의 위치를 통해 획득한다.
상술한 방법의 구체적인 예시로써, 이하에서는, 상술한 시간 정보 획득 방안으로서, 5ms 주기로 SS 블록이 전송될 때, 초기 접속(Initial access)을 수행하는 UE가 특정 half frame에서 전송되는 SS 블록만을 검출할 수 있고, 다른 Half frame에서 전송되는 SS 블록은 검출할 수 없도록 하는 방법 및 단말 동작을 설명한다.
이를 위하여, 2가지 다른 형태의 SS 블록을 구성한다. 본 발명에서는 설명의 편의상, 상기 2가지 다른 형태의 SS 블록을 제 1형태의 SS 블록 및 제 2형태의 SS 블록이라고 한다. 네트워크는 제 1 형태의 SS 블록을 구성하고, 제 1 형태의 SS 블록을 구성하는 PSS/SSS/PBCH 등의 위상, 심볼 위치, 시퀀스 유형(sequence type), 심볼 맵핑 규칙(symbol mapping rule) 및 전송 전력 등을 변형한 형태의 제 2 형태의 SS 블록들 구성한다.
그 후, 기지국은 전반부(first) half frame에서는 제 1 형태의 SS 블록들을 전송하고, 후반부(second) half frame에서는 제 2 형태의 SS 블록들을 전송한다.
이 때, 초기 접속을 수행하는 UE는 제 1 형태의 SS 블록이 기지국으로부터 전송되었다고 가정하고, 동기 신호 검출 및 PBCH 디코딩을 시도한다. 그리고 동기 신호 검출 및 PBCH 디코딩에 성공하였다면, UE는 해당 지점을 전반부(First) half frame에 속한 슬롯 및 OFDM 심볼이라고 가정한다.
실시 예 8-2.
상술한 실시 예 8-1의 구체적인 방법으로서, SS 블록을 구성하는 PSS/SSS/PBCH가 맵핑되는 심볼들 중, 일부 심볼의 위상을 변경하여, Half Frame 경계 정보를 획득하는 방법에 대해 살펴보도록 한다.
즉, SS 블록을 구성하는 PSS/SSS/PBCH의 위상 변화를 통해 SFN, half frame, SS 블록 인덱스 등의 시간 정보를 전달할 수 있으며, 특히, Half frame의 시간 정보를 전달하기 위해 사용될 수 있다.
이 때, SS 블록 에 포함된 PSS/SSS/PBCH는 동일한 안테나 포트를 사용한다고 가정한다.
구체적으로, PSS/SSS를 포함하는 OFDM 심볼과 PBCH를 포함하는 OFDM 심볼의 위상을 전송 주기에 따라 변경할 수 있다. 이 때, 상기 위상이 변경되는 전송 주기는 5ms 일 수 있다.
도 32를 참조하면, 5ms 주기로 PSS-PBCH-SSS-PBCH를 포함하는 OFDM 심볼에 각각 (+1,+1,+1,+1)의 위상을 인가 하거나, (+1,-1,+1,-1)의 위상을 인가할 수 있다. 다른 방법으로는, PSS/SSS를 포함하는 OFDM 심볼의 극성을 반전 하는 방법이 있다. 즉, PSS-PBCH-SSS-PBCH를 포함하는 OFDM 심볼의 극성을 각각 (a,b,c,d)라고 할 때, (+1,+1,+1,+1)과 (-1,+1,-1,+1) 등으로 PBCH의 극성을 반전 (Polarity inversion)할 수 있다. 또한, PSS 혹은 SSS를 포함하는 OFDM 심볼 중 일부 OFDM 심볼의 극성을 (+1,+1,+1,+1) 및 (+1,+1,-1,+1)과 같이 반전하거나, (+1,+1,+1,+1) 및 (-1,+1,+1,+1)과 같이 반전할 수도 있다.
한편, 상술한 예시를 좀 더 구체화하여, 20ms 간격 주기로 위상을 변경할 수 있는 방법도 생각해볼 수 있다. 즉, 도 32를 참조하면, 첫번째 5ms 주기의 위상을 (+1,+1,+1,+1)로 전송하고, 두번째 5ms 주기의 위상을 (+1,-1,+1,-1)로 전송하고, 세번째 5ms 주기의 위상을 (+1,-1,-1,-1)로 전송하고, 네번째 5ms 주기의 위상을 (-1,-1,-1,-1)로 전송할 수도 있다. 상술한 방법으로 5ms의 주기 즉, Half frame의 경계 정보를 획득할 수 있고, 20ms 간격 주기로 위상이 변경되기 때문에, SFN의 정보를 획득할 수도 있다. 다만, SFN의 정보를 획득하기 위해, 20ms 간격 주기로, 첫번째 10ms에서는 (+1,+1,+1,+1)로 전송하고, 두번째 10ms에서는 (+1,-1,+1,-1)로 전송할 수도 있다.
한편, 20ms 간격 주기를 구분하기 위하여, SS 블록에 포함된 PSS와 SSS의 위상만을 변경시킬 수도 있다. 예를 들어, 첫번째 5ms 주기의 위상을 (+1,+1,+1,+1)로 전송하고, 두번째 5ms 주기부터 네번째 5ms 주기의 위상을 (-1, +1, -1, +1)로 전송할 수 있다. 즉, 첫번째 5ms 주기의 PSS/SSS 위상과 나머지 5ms 주기의 PSS/SSS 위상을 변경하여 전송함으로써, 20ms 주기를 구분할 수 있다.
이 때, 두번째 5ms 주기부터 네번째 5ms 주기에서 전송되는 SS 블록은 PSS/SSS의 위상이 변경되어, UE에 의해 검출이 되지 않을 수도 있다.
한편, 전송되는 위상의 극성 반전과 함께 위상 변화도 고려할 수 있다. 예를 들어, (+1,+1,+1,+1) 및 (+1,+j,+1,+j)로 구분하여 SS 블록을 5ms 주기로 전송할 수도 있고, (+1,+1,+1,+1) 및 (+1,-j,+1,-j)로 구분하여 SS 블록을 5ms 주기로 전송할 수도 있다.
Half Frame의 시간 정보는 PBCH 심볼의 위상 변화로 획득될 수 있고, PBCH 스크램블링 시퀀스를 결정하는데 사용될 수 있다. 즉, 기지국은 매 5ms 마다, SSS 심볼과 PBCH 심볼 간 위상을 변화하여 SS 블록을 구성하고, 전송한다. 다시 말해, 기지국은 특정 주기 내에서 SS 블록이 전송되는 위치에 따라, SS 블록의 PBCH와 SSS가 전송되는 심볼의 위상을 변경할 수 있는데, 이 때, 위상이 변경되는 심볼은, SS 블록이 전송될 수 있는 모든 후보 SS 블록에 대응하는 SSS 및 PBCH의 심볼 위상이 아닌, 기지국이 실제로 전송하는 SS 블록에 대응하는 SSS 및 PBCH의 심볼 위상을 변경할 수 있다.
다시 말해, 5ms 의 Half Frame 내에 포함된 후보 SS 블록에 대응하나, 실제로 SS 블록이 전송되지 않는 후보 SS 블록의 SSS 및 PBCH에 대응하는 심볼의 위상은 변경하지 않을 수 있다.
이에 대한 구체적인 방안들에 대해서 살펴보도록 한다.
(방안 1) PBCH DMRS 내의 1비트를 Half Frame을 지시하기 위한 지시자로 사용될 수 있다. 또한, PBCH 스크램블링 시퀀스는 Half Frame 타이밍을 위한 지시자 의해 초기화 될 수 있다. 이 때, SFN의 MSB [7~10] 비트들은 PBCH 컨텐츠를 통해 명시적으로 지시될 수 있고, SFN의 LBS [3] 비트들은 PBCH 스크램블링 시퀀스를 위해 사용될 수 있다.
(방안 2) Half Frame 타이밍을 위한 1비트는 PBCH에 의해 지시될 수 있다. 또한, PBCH 스크램블링 시퀀스는 Half Frame 타이밍을 위한 지시자에 의해 초기화될 수 있다. 이 때, PBCH 심볼과 SSS 심볼 간의 위상 차이가 발생할 수 있고, SFN의 MSB [7~10] 비트들은 PBCH 컨텐츠를 통해 명시적으로 지시될 수 있고, SFN의 LBS [3] 비트들은 PBCH 스크램블링 시퀀스를 위해 사용될 수 있다.
(방안 3) Half Frame 타이밍을 위한 1비트는 PBCH에 의해 지시될 수 있다. 이 때, PBCH 심볼과 SSS 심볼 간의 위상 차이가 발생할 수 있고, SFN의 MSB [7~10] 비트들은 PBCH 컨텐츠를 통해 명시적으로 지시될 수 있고, SFN의 LBS [3] 비트들은 PBCH 스크램블링 시퀀스를 위해 사용될 수 있다.
실시 예 8-3.
측정 (Measurement) 및 핸드오버(Handover)를 수행하는 UE에게, 기지국은 실제 전송되는 SS 블록의 전송 주기를 지시한다. 이는 측정 (Measurement) 관련 시간 정보에 포함된 측정 주기 (Measurement periodicity) 정보와 함께, 추가로 전달될 수 있으며, 또한, 측정 주기(Measurement periodicity) 에 대한 정보를 SS 블록의 전송 주기 정보로 간주하여, 이를 기반으로 측정(Measurement) 및 핸드오버(Handover)를 수행할 수 있다. 또한, 핸드오버 명령(Handover command)에는 셀 정보, SIB 0, 1, 2 등과 같은 타겟 셀(Target cell)과 관련된 시스템 정보가 포함될 수 있다. 한편, NR 시스템에서는 설계 시 논의의 편의를 위해, LTE에서 정의한 SIB 0,1,2 등의 정보들을 포함하는 새로운 시스템 정보를 RMSI(Remaining Minimum System Information)이라고 표현한다.
상술한 RMSI에는 타겟 셀(Target cell)에서 실제 전송에 사용하는 SS 블록의 위치 및 전송 주기에 대한 정보가 포함될 수 있다. 또한, 핸드 오버(Handover)를 위해서는 타겟 셀(Target Cell) 뿐만 아니라 핸드 오버(Handover)의 후보가 될 수 있는 셀들에 대한 SS 블록 전송 주기 정보가 추가적으로 UE에게 전달될 필요가 있다. 그러므로, 후보 셀들에 대한 SS 블록 전송 주기에 대한 정보가 핸드오버 명령(Handover command)과 구분된 시스템 정보로 정의되어, UE에게 전달될 수 있다.
이 때의 UE의 동작을 살펴보면, 5ms 보다 긴 SS 블록 전송 주기를 지시 받은 경우, UE는 제 1 형태의 SS 블록을 사용하여 인접 셀들의 동기 신호 검색 및 시간 정보 획득, 즉, SS 블록 인덱스를 획득한다. 만약, 5ms의 전송 주기를 지시 받는 경우, UE는 제 1 형태의 SS 블록 및 제 2 형태의 SS 블록을 사용하여 인접 셀들의 동기 신호 검색 및 시간 정보를 획득한다.
한편, UE의 수신 복잡도를 줄이기 위한 방안으로 UE는 제 1 형태의 SS 블록을 사용하여 10ms 주기의 SS 블록을 검색하고, 상기 제 1 형태의 SS 블록을 검출한 이후에, 10ms 범위 내에서 검출된 제 1 형태의 SS 블록을 기준으로 5ms 정도의 오프셋을 갖는 시간 위치에서 UE는 제 2 형태의 SS 블록을 사용하여 동기 신호 검출 및 시간 정보 획득을 시도할 수 있다. 또한, 상술한 방법으로 핸드오버(Handover)를 수행하는 UE는 타겟 셀(Target Cell)/ 후보 셀들(Candidate Cells)/ 타겟 RAT (Target RAT) 등에서 사용하는 시간 정보를 획득할 수 있다.
상술한 실시 예 8-2에 대해 정리하자면, 측정(Measurement)을 수행하기 위한 주기(Periodicity)가 UE에게 전달 될 때, SS 블록이 실제로 전송되는 주기 또한 UE에게 지시된다. 이 때, 측정(Measurement)을 위한 설정(configuration)은 UE 관점에서 측정(Measurement)을 수행하기 위해 주어지는 주기로, 이는 실제 기지국이 전송하는 SS 블록 전송 주기 보다 길게 설정(configuration)될 수도 있으며, 이는 UE가 핸드오버 전에 인접 셀들의 PBCH를 디코딩 할 때, 실제 SS 블록이 전송 되는 주기에 맞춰 디코딩을 수행할 수 있도록 하며, 디코딩 횟수를 줄여 UE의 배터리 소비를 줄일 수 있다.
실시 예 8-4.
채널/신호의 구성, 자원 설정(Resource configuration) 방식, 시퀀스 맵핑 (Sequence mapping) 방식 등은 기지국의 시간 정보 가정이나 UE의 상태에 따라 변경될 수 있다.
시간 정보는 SFN, 슬롯, OFDM 심볼 넘버 등으로 구성되는데, M 시간 범위에서 서브 프레임 넘버, 슬롯 넘버 등이 인덱싱되고, M 보다 작은 N 시간 범위에서 서브 프레임 넘버, 슬롯 넘버 등이 인덱싱 될 수 있다. 여기서, M=10ms 이고, N= 5ms 일 수 있으며, 기지국이 시간 정보 가정, UE의 접속 상태 등과 같은 조건에 따라서 서로 다른 시간 범위에서 정의된 시간 인덱스가 적용될 수 있다.
이에 대한 구체적인 실시 방안을 살펴보면 다음과 같다.
(방안 1) 동기 네트워크인지 비동기 네트워크인지를 알려주는 지시자인 동기 지시자, 또는 UE의 접속 상태가 초기 접속(Initial access), 핸드오버(Handover), IDLE/ CONNECTED 모드 인지 등에 따라서, 시간 정보, 채널/신호 구성, 자원 설정(Resource configuration) 방식 등이 변경될 수 있다. 이 때, 동기 지시자는 기지국으로부터 UE에게 전달될 수 있다.
(방안 2) DMRS, CSI-RS, SRS 등의 참조 신호에 맵핑되는 시퀀스 혹은 PDSCH/PUSCH 등과 같은 데이터 비트의 스크램블링 시퀀스 등이 슬롯 넘버 또는 OFDM 심볼 넘버 등과 같은 10ms 범위 내의 시간 정보에 따라 시퀀스가 변경되거나, 5ms 주기로 변경될 수 있다. 즉, CSI-RS 자원, PRACH 자원 등이 10ms 범위 내에서 무선 프레임 범위, 전반부(first) Half frame 범위 또는 후반부(second) Half Frame 범위를 기반으로 구성될 수 있고, 5ms 주기로 Half Frame을 기반으로 구성될 수도 있다.
(방안 3) 대역폭 부분(Bandwidth part)에 따라서 채널/신호의 구성, 자원 설정(Resource configuration) 방식 및 시퀀스 맵핑(Sequence mapping) 방식이 변경될 수 있다. 초기 접속(Initial access)에 사용되는 대역폭 부분(Bandwidth part) 내에서, 브로드캐스팅되는 시스템 정보(Broadcasting SI), RACH Msg2/3/4 및 페이징(Paging) 등을 전달하기 위한 PDSCH/PUSCH 와 같은 데이터 채널, PDCCH/PUSCH와 같은 제어 채널, DMRS/CRS-RS/SRS/PTRS 등과 같은 참조 신호는 N 시간 범위 내에서 구성하고 N 시간 단위로 반복 전송될 수 있다. 반면, RRC 연결 상태에서 설정(configuration)되는 대역폭 부분(Bandwidth part)에서는 M 시간 범위에서 상기 데이터 채널, 제어 채널 및 참조 신호를 구성하고, 상기 M 시간 단위로 반복 전송될 수 있다.
(방안 4) 핸드오버(Handover)에서 사용되는 자원인 PRACH 프리앰블, Msg2 등은 M 시간 범위 및 N 시간 범위로 구성할 수 있다. 여기서, 설명의 편의를 위해, M=10ms이고, N=5ms임을 가정한다.
만약, 동기 네트워크(Synchronous network)로 UE에게 지시되는 경우, UE는 동일 주파수 대역의 셀들에서 전송되는 신호가 기 설정된 범위(예를 들면, 1ms) 오차 내에서 수신되었다고 가정하고, 서빙 셀(Serving cell)로부터 획득한 5ms 시간 정보는 서빙 셀 뿐만 아니라 인접 셀에서도 동일하게 적용할 수 있다고 가정한다.
이러한 가정 하에서는, M 시간 범위로 구성된 자원을 활용할 수 있다. 즉, 기지국으로부터 특별한 지시자의 전송이 없더라도, 동기 네트워크(Synchronous network)로 가정할 수 있는 환경에서는 M 시간 범위로 구성된 자원을 사용할 수 있는 것이다. 한편, 비동기 네트워크(Asynchronous network)로 UE에게 지시되는 경우, 또는 비동기 네트워크(Asynchronous network)로 가정하는 환경에서는 N 시간 범위로 구성된 자원을 사용할 수 있다.
(방안 5) 동기 네트워크(Synchronous network)로 UE에게 지시되는 경우, UE는 동일 주파수 대역의 셀들에서 전송되는 신호가 기 설정된 범위(예를 들면, 1ms) 오차 내에서 수신되었다고 가정하고, 서빙 셀(Serving cell)로부터 획득한 5ms 시간 정보는 서빙 셀 뿐만 아니라 인접 셀에서도 동일하게 적용할 수 있다고 가정한다.
14. 하향링크 공통 채널 전송을 위한 BWP(Bandwidth part)
LTE의 초기 접속 절차는 MIB (Master Information Block)에 의해 구성된 시스템 대역폭 내에서 동작한다. 또한, PSS/SSS/PBCH는 시스템 대역폭의 중심을 기준으로 정렬되어 있다. 그리고, 공통 검색 공간은 시스템 대역폭 내에서 정의되고, 상기 시스템 대역폭 내에서 할당된 공통 검색 공간의 PDSCH에 의해 시스템 정보가 전달되며, Msg1/2/3/4에 대한 RACH 절차가 동작한다.
한편, NR 시스템은 광대역 CC (Component Carrier) 내에서의 동작을 지원하지만, UE는 모든 광대역 CC 내에서 필요한 동작을 수행하기 위한 Capability를 갖도록 구현하는 것은 비용적인 측면에서 매우 어려운 문제이다. 따라서, 시스템 대역폭 내에서 초기 접속 절차를 원활하게 작동하도록 구현하는 것이 어려울 수 있다.
이러한 문제를 해결하기 위하여, 도 33에서 보는 것과 같이, NR은 초기 접속 동작을 위한 BWP를 정의할 수 있다. NR 시스템에서는, 각 UE에 대응하는 BWP 내에서 SS 블록 전송, 시스템 정보 전달, 페이징 및 RACH 절차를 위한 초기 접속 절차를 수행 할 수 있다. 또한, 적어도 하나의 하향링크 BWP는 적어도 하나의 주 컴포넌트 반송파 에서 공통 검색 공간을 갖는 하나의 CORESET을 포함할 수 있다.
따라서, 적어도 RMSI, OSI, 페이징, RACH 메시지 2/4 관련 하향링크 제어 정보는 공통 검색 공간을 갖는 CORESET에서 전송되고, 상기 하향링크 제어 정보와 연관된 하향링크 데이터 채널은 하향링크 BWP 내에 할당 될 수 있다. 또한, UE는 상기 UE에 대응하는 BWP 내에서 SS 블록이 전송 될 것으로 예상 할 수 있다.
즉, NR에서는 적어도 하나의 하향링크 BWP들이 하향링크 공통 채널 전송을 위해 사용될 수 있다. 여기서, 하향링크 공통 채널에 포함될 수 있는 신호는, SS 블록, 공통 검색 공간을 갖는 CORSET 및 RMSI, OSI, 페이징, RACH 메시지 2/4 등을 위한 PDSCH 등이 있을 수 있다. 여기서, RMSI 는 SIB1(System Information Block 1)로 해석될 수 있으며, PBCH(Physical Broadcast Channel)를 통해서 MIB(Master System Information Block) 수신 이후 UE가 획득해야 하는 시스템 정보이다.
(1) 뉴머롤로지
NR에서는 15, 30, 60 및 120 kHz의 부반송파 간격이 데이터 전송에 이용된다. 따라서, 하향링크 공통 채널에 대한 BWP 내의 PDCCH 및 PDSCH에 대한 뉴머롤로지는 데이터 전송을 위해 정의된 뉴머놀로지 중에서 선택 될 수 있다. 예를 들어, 6GHz 이하의 주파수 범위에 대해서는 15kHz, 30kHz 및 60kHz의 부반송파 간격 중 하나 이상이 선택될 수 있고, 6GHz 내지 52.6GHz의 주파수 범위에 대해서는 60kHz 및 120kHz 부반송파 간격 중 하나 이상이 선택될 수 있다.
그러나, 6GHz 이하의 주파수 범위에서는, URLLC 서비스를 위해 60kHz의 부반송파 간격이 이미 정의되어 있으므로, 60kHz의 부반송파 간격은 6GHz 이하의 주파수 범위에서의 PBCH 전송에 적합하지 않다. 따라서, 6GHz 이하의 주파수 범위에서 하향링크 공통 채널 전송을 위해 15kHz 및 30kHz의 부반송파 간격이 사용될 수 있고, 6GHz 이상의 주파수 범위에서는 60kHz 및 120kHz의 부반송파 간격이 사용될 수 있다.
한편, NR에서는 SS 블록 전송을 위해 15, 30, 120 및 240 kHz의 부반송파 간격을 지원한다. SS 블록과 공통 검색 공간을 갖는 CORESET 및 RMSI, 페이징, RAR에 대한 PDSCH와 같은 하향링크 채널에 대해, 동일한 부반송파 간격이 적용된다고 가정 할 수 있다. 따라서, 이러한 가정을 적용하면, PBCH 컨텐츠에 뉴머롤로지 정보를 정의 할 필요가 없게 된다.
반대로, 하향링크 제어 채널에 대한 부반송파 간격이 변경될 필요가 있는 경우가 발생할 수 있다. 예를 들어, 240kHz의 부반송파 간격이 6GHz 이상의 주파수 대역에서 SS 블록 전송에 적용되는 경우, 하향링크 제어 채널 전송을 포함하는 데이터 전송에는 240kHz의 부반송파 간격이 사용되지 않기 때문에 하향링크 데어 채널 전송을 포함하는 데이터 전송을 위해서는 부반송파 간격의 변경이 필요하다. 따라서, 하향링크 데이터 채널 전송을 포함하는 데이터 전송을 위해 부반송파 간격이 변경될 수 있는 경우, PBCH 컨텐츠에 포함되는 1 비트 지시자를 통해 이를 지시할 수 있다. 예를 들어, 반송파 주파수 범위에 따라, 상기 1 비트 지시자는 {15 kHz, 30 kHz} 또는 {60 kHz, 120 kHz}로 해석 될 수 있다. 또한, 표시된 부반송파 간격은 RB 그리드의 참조 뉴머롤로지로 간주될 수 있다. 상기에서 PBCH 컨텐츠는 PBCH에 포함되어 전송되는 MIB(Master Information Block)을 의미할 수 있다.
즉, 주파수 범위가 6Ghz 이하인 경우에는, 상기 1 비트 지시자를 통해, 초기 접속을 위한 RMSI 혹은, OSI, 페이징, Msg 2/4에 대한 부반송파 간격이 15kHz 또는 30 kHz임을 지시할 수 있고, 주파수 범위가 6Ghz 이상인 경우에는, 상기 1 비트 지시자를 통해, 초기 접속을 위한 RMSI 혹은, OSI, 페이징, Msg 2/4에 대한 부반송파 간격이 60 kHz 또는 120 kHz임을 지시할 수 있다.
(2) 하향링크 공통 채널 전송을 위한 BWP의 대역폭
NR 시스템에서, 하향링크 공통 채널에 대한 BWP의 대역폭이 네트워크가 동작하는 시스템 대역폭과 동일할 필요는 없다. 즉, BWP의 대역폭은 시스템 대역폭보다 좁을 수도 있다. 즉, 대역폭은 반송파 최소 대역폭보다 넓어야 하나, UE 최소 대역폭보다는 넓지 않아야 한다.
따라서, 하향링크 공통 채널 전송을 위한 BWP는 BWP의 대역폭이 SS 블록의 대역폭보다 넓고, 각 주파수 범위에서 동작할 수 있는 모든 UE의 특정 하향링크 대역폭과 같거나 더 작도록 정의 할 수 있다. 예를 들어, 6GHz 이하의 주파수 범위에서 반송파 최소 대역폭은 5MHz로 정의되며 UE 최소 대역폭은 20MHz로 가정 할 수 있다. 이 경우, 하향링크 공통 채널의 대역폭은 5MHz ~ 20MHz 범위에서 정의 될 수 있다. 즉, SS 블록은 하향링크 공통 채널 대역폭의 일부분에 위치할 수 있다.
(3) 대역폭 설정
도 34는 대역폭 설정의 예시를 나타낸다.
UE는 셀 ID 검출 및 PBCH 디코딩을 포함하는 초기 동기화 절차 동안, SS 블록의 대역폭 내에서 신호를 검출하려고 시도한다. 그 이후, UE는 PBCH 컨텐츠를 통해 네트워크가 지시하는 하향링크 공통 채널에 대한 대역폭 내에서 다음 초기 접속 절차를 계속 수행 할 수 있다. 즉, UE는 하향링크 공통 채널에 대한 대역폭 내에서 시스템 정보를 획득하고 RACH 절차를 수행할 수 있다.
한편, SS 블록에 대한 대역폭과 하향링크 공통 채널에 대한 대역폭 간의 상대적인 주파수 위치를 위한 지시자가 PBCH 컨텐츠에 정의될 수 있다. 한편, 상술한 바와 같이 PBCH 컨텐츠는 PBCH에 포함되어 전송되는 MIB(Master Information Block)을 의미할 수 있다.
예를 들어, 도 34에서 보는 바와 같이, 하향링크 공통 채널에 대한 대역폭 간의 상대적인 주파수 위치로서, SS 블록에 대한 대역폭과 하향링크 공통 채널에 대한 대역폭의 간격에 대한 오프셋 정보로 정의될 수 있다.
특히, 도 34를 참조하면, 상기 오프셋 값은 RB단위로 지시될 수 있고, 지시된 RB 수만큼의 오프셋 위치에 하향링크 공통 채널에 대한 대역폭이 위치하는 것으로 UE가 결정할 수 있다. 한편, NR 시스템에서는 SS 블록 대역폭과 하향링크 공통 채널에 대한 대역폭의 뉴머롤로지, 즉, 부반송파 간격이 다르게 설정될 수 있는데, 이 때에는, SS 블록 대역폭의 부반송파 간격과 하향링크 공통 채널에 대한 대역폭의 부반송파 간격 중 어느 하나를 기준으로, RB 단위로 지시되는 오프셋의 절대적 주파수 간격을 산출할 수 있다.
또한, 상대적인 주파수 위치의 지시를 단순화하기 위해, 복수의 SS 블록에 대한 대역폭은 하향링크 공통 채널에 대한 대역폭 내에서 SS 블록을 위치시키는 후보 위치들 중 어느 하나일 수 있다.
또한, NR 시스템에서는 하향링크 공통 채널의 대역폭이 네트워크가 동작하는 시스템 대역폭과 동일할 필요는 없다. 또한 대역폭은 시스템 대역폭보다 좁을 수 있다. 즉, 하향링크 공통 채널의 대역폭은 반송파 최소 대역폭보다 넓어야 하지만, UE의 최소 대역폭보다 넓지 않아야 한다. 예를 들어, 6GHz 이하의 주파수 범위에서 반송파 최소 대역폭은 5MHz로 정의되며 UE의 최소 대역폭이 20MHz로 가정되는 경우, 하향링크 공통 채널의 대역폭은 5MHz ~ 20MHz 범위에서 정의 할 수 있습니다.
예를 들어, SS 블록의 대역폭이 5MHz이고 하향링크 공통 채널의 대역폭이 20MHz라고 가정하면, 하향링크 공통 채널을 위한 대역폭 내에서 SS 블록을 찾기 위한 4 개의 후보 위치를 정의 할 수 있다.
15. CORESET 설정
(1) CORESET 정보와 RMSI 스케줄링 정보
RMSI에 대한 스케줄링 정보를 직접 지시하는 것보다, 네트워크가 RMSI 스케줄링 정보를 포함하는 CORESET 정보를 UE에게 전송하는 것이 더 효율 적일 수 있다. 즉, PBCH 컨텐츠에서, CORESET 및 주파수 위치에 대한 대역폭과 같은, 주파수 자원 관련 정보를 지시할 수 있다. 또한, 시작 OFDM 심볼, 지속 시간 및 OFDM 심볼의 수와 같은, 시간 자원 관련 정보는 네트워크 자원을 유연하게 이용하기 위하여 추가적으로 설정될 수 있다.
또한, 공통 탐색 공간 모니터링 주기, 지속 시간 및 오프셋에 관한 정보도 UE 검출 복잡성을 감소시키기 위해 네트워크로부터 UE로 전송될 수 있다.
한편, 전송 타입 및 REG 번들링 사이즈는 공통 검색 공간의 CORESET에 따라 고정 될 수 있다. 여기서, 전송 타입은 전송되는 신호가 인터리빙 되어 있는지 여부에 따라 구분될 수 있다.
(2) 슬롯에 포함된 OFDM 심볼 수
슬롯 내의 OFDM 심볼 수 또는 6GHz 이하의 반송파 주파수 범위와 관련하여, 7 OFDM 심볼 슬롯 및 14 OFDM 심볼 슬롯과 같은 2 개의 후보를 고려한다. 만약, NR 시스템에서, 6GHz 이하의 반송파 주파수 범위를 위해 두 가지 유형의 슬롯을 모두 지원하기로 결정하면 공통 검색 공간을 갖는 CORESET의 시간 자원 표시를 위해 슬롯 유형에 대한 지시 방법을 정의할 수 있어야 한다.
(3) PBCH 컨텐츠의 비트 사이즈
PBCH 컨텐츠에서 뉴머롤로지, 대역폭 및 CORESET 정보를 표시하기 위해 [표 4]과 같이 약 14비트를 지정할 수 있다.
Details Bit size
6GHz For a6GHz
Reference numerology [1] [1]
Bandwidth for DL common channel, and SS block position [3] [2]
# of OFDM symbols in a Slot [1] 0
CORESET(Frequency resource - bandwidth, location)(Time resource - starting OFDM symbol, Duration)(UE Monitoring Periodicity, offset, duration) About [10] About [10]
Total About [14]
도 35는 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.
전송장치(10) 및 수신장치(20)는 정보 및/또는 데이터, 신호, 메시지 등을 나르는 무선 신호를 전송 또는 수신할 수 있는 RF(Radio Frequency) 유닛(13, 23)과, 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(12, 22), 상기 RF 유닛(13, 23) 및 메모리(12, 22) 등의 구성요소와 동작적으로 연결되어, 상기 구성요소를 제어하여 해당 장치가 전술한 본 발명의 실시예들 중 적어도 하나를 수행하도록 메모리(12, 22) 및/또는 RF 유닛(13, 23)을 제어하도록 구성된(configured) 프로세서(11, 21)를 각각 포함한다.
메모리(12, 22)는 프로세서(11, 21)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입/출력되는 정보를 임시 저장할 수 있다. 메모리(12, 22)가 버퍼로서 활용될 수 있다.
프로세서(11, 21)는 통상적으로 전송장치 또는 수신장치 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(11, 21)는 본 발명을 수행하기 위한 각종 제어 기능을 수행할 수 있다. 프로세서(11, 21)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 프로세서(11, 21)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(11, 21)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(11, 21) 내에 구비되거나 메모리(12, 22)에 저장되어 프로세서(11, 21)에 의해 구동될 수 있다.
전송장치(10)의 프로세서(11)는 상기 프로세서(11) 또는 상기 프로세서(11)와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 RF 유닛(13)에 전송한다. 예를 들어, 프로세서(11)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 K 개의 레이어로 변환한다. 부호화된 데이터 열은 코드워드로 지칭되기도 하며, MAC 계층이 제공하는 데이터 블록인 수송 블록과 등가이다. 일 수송블록(transport block, TB)은 일 코드워드로 부호화되며, 각 코드워드는 하나 이상의 레이어의 형태로 수신장치에 전송되게 된다. 주파수 상향 변환을 위해 RF 유닛(13)은 오실레이터(oscillator)를 포함할 수 있다. RF 유닛(13)은 N t 개(N t 는 1 이상의 양의 정수)의 전송 안테나를 포함할 수 있다.
수신장치(20)의 신호 처리 과정은 전송장치(10)의 신호 처리 과정의 역으로 구성된다. 프로세서(21)의 제어 하에, 수신장치(20)의 RF 유닛(23)은 전송장치(10)에 의해 전송된 무선 신호를 수신한다. 상기 RF 유닛(23)은 N r 개의 수신 안테나를 포함할 수 있으며, 상기 RF 유닛(23)은 수신 안테나를 통해 수신된 신호 각각을 주파수 하향 변환하여(frequency down-convert) 기저대역 신호로 복원한다. RF 유닛(23)은 주파수 하향 변환을 위해 오실레이터를 포함할 수 있다. 상기 프로세서(21)는 수신 안테나를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여, 전송장치(10)가 본래 전송하고자 했던 데이터를 복원할 수 있다.
RF 유닛(13, 23)은 하나 이상의 안테나를 구비한다. 안테나는, 프로세서(11, 21)의 제어 하에 본 발명의 일 실시예에 따라, RF 유닛(13, 23)에 의해 처리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 RF 유닛(13, 23)으로 전달하는 기능을 수행한다. 안테나는 안테나 포트로 불리기도 한다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될(configured) 수 있다. 각 안테나로부터 전송된 신호는 수신장치(20)에 의해 더는 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호(reference signal, RS)는 수신장치(20)의 관점에서 본 안테나를 정의하며, 채널이 일 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 수신장치(20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 한다. 즉, 안테나는 상기 안테나 상의 심볼을 전달하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의된다. 복수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 RF 유닛의 경우에는 2개 이상의 안테나와 연결될 수 있다.
본 발명에서 RF 유닛(13, 23)은 수신 빔포밍과 전송 빔포밍을 지원할 수 있다. 예를 들어, 본 발명에서 RF 유닛(13,23)은 도 5 내지 도 8에 예시된 기능을 수행하도록 구성될 수 있다. 또한, 본 발명에서 RF 유닛(13, 23)은 트랜시버(Transceiver)로 명명될 수도 있다.
본 발명의 실시예들에 있어서, UE는 상향링크에서는 전송장치(10)로 동작하고, 하향링크에서는 수신장치(20)로 동작한다. 본 발명의 실시예들에 있어서, gNB는 상향링크에서는 수신장치(20)로 동작하고, 하향링크에서는 전송장치(10)로 동작한다. 이하, UE에 구비된 프로세서, RF 유닛 및 메모리를 UE 프로세서, UE RF 유닛 및 UE 메모리라 각각 칭하고, gNB에 구비된 프로세서, RF 유닛 및 메모리를 gNB 프로세서, gNB RF 유닛 및 gNB 메모리라 각각 칭한다.
본 발명의 gNB 프로세서는 PSS/SSS/PBCH로 구성된 SSB를 UE에 전송하도록 제어한다. 이 때, PBCH 페이로드를 통해서는 SSB 인덱스를 지시하기 위한 최상위 3비트를 전송하고, PBCH DMRS를 통해서 SSB 인덱스를 지시하기 위한 최하위 3비트를 전송할 수 있다. 이 때, PBCH 페이로드 및 PBCH DMRS 모두 PBCH가 맵핑되는 심볼을 통해 전송되므로, PBCH를 통해 전달되는 것으로 해석될 수 있다.
또한, SSB 인덱스를 지시하기 위한 최상위 3비트는 해당 SSB가 속한 SSB 그룹을 지시할 수 있으며, SSB 인덱스를 지시하기 위한 최하위 3비트는 상기 SSB 그룹 내의 상기 SSB의 위치를 나타낼 수 있다.
한편, 상기 PBCH 페이로드에는 SSB 인덱스를 지시하기 위한 최상위 3비트 이외에, 하프 프레임 지시자 및 프레임 인덱스를 지시하는 지시자를 더 포함할 수 있으며, SSB 인덱스 지시자, 하프 프레임 지시자 및 프레임 인덱스 지시자를 통틀어 SSB의 시간 정보라고 명칭할 수 있다.
또한, 상기 PBCH 페이로드를 스크램블링 하기 위한 스크램블링 시퀀스는 20ms 내에서 동일하게 적용될 수 있고, PBCH DMRS의 주파수 위치는 5ms 마다 변경될 수 있다. 따라서, 스크램블링 시퀀스 및 PBCH DMRS의 주파수 위치를 기반으로, SSB가 전송되는 하프 프레임을 식별할 수 있다. 한편, PBCH DMRS의 주파수 위치는 셀의 식별자에 의존하여 맵핑될 수도 있다.
또한, gNB 프로세서는 인접 셀의 SSB 인덱스를 획득하기 위해, 서빙 셀의 시간 정보를 사용할 수 있는지 여부를 지시하는 지시자를 UE에게 전송할 수 있다.
본 발명의 UE 프로세서는 gNB로부터 PSS/SSS/PBCH로 구성된 SSB를 수신하도록 제어할 수 있다.
이 때, UE 프로세서는 서빙 셀과 인접 셀로부터 각각 SSB를 수신할 수 있고, 서빙 셀로부터 수신한 SSB에 포함된 PBCH의 페이로드 및 DMRS를 통해, 시간 정보를 획득할 수 있다. 즉, 서빙 셀로부터 수신한 SSB가 전송된 프레임 및 하프 프레임 정보, SSB 인덱스 정보를 획득할 수 있다. 구체적으로, 상기 기지국으로부터 인접 셀의 SSB 인덱스를 획득하기 위해, 서빙 셀의 시간 정보를 사용할 수 있는지 여부를 지시하는 지시자를 수신하여, 상기 지시자가 서빙 셀의 시간 정보를 인접 셀의 SSB 인덱스 획득에 사용할 수 있음을 지시한다면, 서빙 셀로부터 수신한 SSB 인덱스 정보를 인접 셀로부터 수신한 SSB의 인덱스를 결정할 수 있다. 즉, 인접 셀로부터 수신한 PBCH DMRS로부터 인접 셀 SSB의 인덱스를 위한 최하위 3비트를 서빙 셀로부터 수신한 SSB의 PBCH 페이로드로부터 수신한 서빙 셀 SSB의 인덱스를 위한 최상위 3비트를 조합하여, 상기 인접 셀로부터 수신한 SSB의 인덱스를 결정할 수 있다.
이와 마찬가지로, 서빙 셀 SSB의 인덱스는 서빙 셀의 PBCH 페이로드로부터 획득한 최상위 3비트와 서빙 셀의 PBCH DMRS로부터 획득한 최하위 3비트를 조합하여 결정할 수 있으며, 이 때, 상기 최상위 3비트는 SSB 그룹을 나타내고, 상기 최하위 3비트는 상기 SSB 그룹 내의 SSB의 위치를 나타낼 수 있다.
또한, UE 프로세서는 서빙 셀 SSB 혹은 인접 셀 SSB가 전송되는 하프 프레임을 각각의 PBCH 스크램블링 시퀀스와 PBCH DMRS가 맵핑된 주파수 위치를 통해 식별될 수 있으며, DMRS 가 맵핑된 주파수 위치는 각각의 셀의 식별자에 의존하여 결정될 수 있다. 또한, UE 프로세서는 상기 PBCH를 수신할 때, PBCH의 EPRE와 PBCH DMRS의 EPRE가 동일한 것을 가정하고 수신할 수 있다.
본 발명의 gNB 프로세서 혹은 UE 프로세서는 아날로그 혹은 하이브리드 빔포밍이 사용되는 6GHz 이상의 고주파 대역에서 동작하는 셀 상에서 본 발명을 적용하도록 구성될 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치는 5세대 NewRAT 시스템에 적용되는 예를 중심으로 설명하였으나, 5세대 NewRAT 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (15)

  1. 무선 통신 시스템에서, 단말이 동기 신호 블록(Synchronization Signal Block; SSB)을 수신하는 방법에 있어서,
    서빙 셀로부터 제 1 SSB를 수신하고,
    인접 셀(neighbour cell)로부터 제 2 SSB를 수신하고,
    상기 제 1 SSB에 포함된 PBCH(Physical Broadcasting Channel)를 기반으로 상기 제 1 SSB의 시간 정보를 획득하고,
    상기 제 1 SSB의 시간 정보를 이용하여 상기 제 2 SSB의 인덱스를 획득하는 것을 포함하는,
    SSB 수신 방법.
  2. 제 1 항에 있어서,
    상기 획득되는 제 1 SSB의 시간 정보는,
    상기 제 1 SSB의 인덱스 정보를 포함하는,
    SSB 수신 방법.
  3. 제 1 항에 있어서,
    상기 제 2 SSB의 인덱스는,
    상기 PBCH의 페이로드를 통해 획득되는 상기 제 1 SSB의 인덱스를 위한 최상위 3비트 및 상기 제 2 SSB에 포함된 PBCH DMRS(Demodulation Reference Signal)을 통해 획득되는 상기 제 2 SSB의 인덱스를 위한 최하위 3비트의 조합으로 결정되는,
    SSB 수신 방법.
  4. 제 1 항에 있어서,
    제 1 SSB의 인덱스는, 상기 PBCH의 페이로드를 통해 획득되는 상기 제 1 SSB의 인덱스를 위한 최상위 3비트 및 상기 제 1 SSB에 포함된 PBCH DMRS(Demodulation Reference Signal)을 통해 획득되는 상기 제 1 SSB의 인덱스를 위한 최하위 3비트의 조합으로 결정되며,
    상기 최상위 3비트 및 최하위 3비트 중 어느 하나의 3비트는, 상기 서빙 셀로부터 전송 가능한 후보 SSB의 위치들을 소정 개수로 그룹핑한 복수의 SSB 그룹 중, 상기 제 1 SSB가 속한 SSB 그룹을 나타내며,
    나머지 3비트는, 상기 제 1 SSB가 속한 SSB 그룹 내에서의 상기 제 1 SSB의 위치를 나타내는,
    SSB 수신 방법.
  5. 제 1 항에 있어서,
    상기 PBCH가 맵핑된 심볼을 통해 전송되는 DMRS(Demodulation Reference Signal)의 시퀀스는,
    상기 서빙 셀의 식별자 및 상기 제 1 SSB의 인덱스를 기반으로 생성되는,
    SSB 수신 방법.
  6. 제 1 항에 있어서,
    상기 제 1 SSB가 전송되는 하프 프레임은,
    상기 PBCH의 스크램블링 시퀀스 및 상기 PBCH가 맵핑된 심볼을 통해 전송되는 DMRS(Demodulation Reference Signal)가 맵핑된 주파수 위치를 통해 식별되는,
    SSB 수신 방법.
  7. 제 1 항에 있어서,
    특정 시간 구간 내에서 사용되는 상기 PBCH의 스크램블링 시퀀스는 동일한,
    SSB 수신 방법.
  8. 제 1 항에 있어서,
    상기 PBCH가 맵핑된 심볼을 통해 전송되는 DMRS(Demodulation Reference Signal)가 맵핑된 주파수 위치는,
    상기 서빙 셀의 식별자에 의존하는,
    SSB 수신 방법.
  9. 제 1 항에 있어서,
    상기 단말은, 상기 PBCH의 EPRE(Energy per Resource Element)와 상기 PBCH가 맵핑된 심볼을 통해 전송되는 DMRS(Demodulation Reference Signal)의 EPRE가 동일한 것으로 가정하는,
    SSB 수신 방법.
  10. 제 1 항에 있어서,
    상기 제 1 SSB의 시간 정보를 상기 제 2 SSB의 인덱스를 획득하는데 사용할 수 있는지 여부를 지시하는 지시자를 수신하는 것을 더 포함하는,
    SSB 수신 방법.
  11. 무선 통신 시스템에서, 동기 신호 블록(Synchronization Signal Block; SSB)을 수신하는 단말에 있어서,
    복수의 셀들과 신호를 송수신하는 트랜시버; 및
    상기 트랜시버와 연결되어, 서빙 셀로부터 제 1 SSB를 수신하도록 상기 트랜시버를 제어하고, 인접 셀(neighbour cell)로부터 제 2 SSB를 수신하도록 상기 트랜시버를 제어하고,
    상기 제 1 SSB에 포함된 PBCH(Physical Broadcasting Channel)를 기반으로 상기 제 1 SSB의 시간 정보를 획득하고, 상기 제 1 SSB의 시간 정보를 이용하여 상기 제 2 SSB의 인덱스를 획득하는 프로세서를 포함하는,
    단말.
  12. 제 11 항에 있어서,
    상기 획득되는 제 1 SSB의 시간 정보는,
    상기 제 1 SSB의 인덱스 정보를 포함하는,
    단말.
  13. 제 11 항에 있어서,
    상기 PBCH가 맵핑된 심볼을 통해 전송되는 DMRS(Demodulation Reference Signal)의 시퀀스는,
    상기 서빙 셀의 식별자 및 상기 제 1 SSB의 인덱스를 기반으로 생성되는,
    단말.
  14. 제 11 항에 있어서,
    특정 시간 구간 내에서 사용되는 상기 PBCH의 스크램블링 시퀀스는 동일한,
    단말.
  15. 제 1 항에 있어서,
    상기 단말은, 상기 PBCH의 EPRE(Energy per Resource Element)와 상기 PBCH가 맵핑된 심볼을 통해 전송되는 DMRS(Demodulation Reference Signal)의 EPRE가 동일한 것으로 가정하는,
    단말.
PCT/KR2018/008574 2017-07-28 2018-07-27 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치 WO2019022575A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880023401.5A CN110521146B (zh) 2017-07-28 2018-07-27 接收同步信号块的方法及其设备
US16/317,502 US11115943B2 (en) 2017-07-28 2018-07-27 Method of transmitting and receiving synchronization signal block and method therefor
SG11201911813WA SG11201911813WA (en) 2017-07-28 2018-07-27 Method for transmitting and receiving synchronization signal block and device therefor
CA3070072A CA3070072C (en) 2017-07-28 2018-07-27 Method for transmitting and receiving synchronization signal block and device therefor
EP18829168.6A EP3480978B1 (en) 2017-07-28 2018-07-27 Method for transmitting and receiving synchronization signal block and device therefor
JP2019541167A JP6852169B2 (ja) 2017-07-28 2018-07-27 同期信号ブロックを送受信する方法及びそのための装置
US16/919,946 US20200337002A1 (en) 2017-07-28 2020-07-02 Method of transmitting and receiving synchronization signal block and method therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762538065P 2017-07-28 2017-07-28
US62/538,065 2017-07-28
US201762544212P 2017-08-11 2017-08-11
US62/544,212 2017-08-11
US201762566519P 2017-10-01 2017-10-01
US62/566,519 2017-10-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/317,502 A-371-Of-International US11115943B2 (en) 2017-07-28 2018-07-27 Method of transmitting and receiving synchronization signal block and method therefor
US16/919,946 Continuation US20200337002A1 (en) 2017-07-28 2020-07-02 Method of transmitting and receiving synchronization signal block and method therefor

Publications (1)

Publication Number Publication Date
WO2019022575A1 true WO2019022575A1 (ko) 2019-01-31

Family

ID=65039869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008574 WO2019022575A1 (ko) 2017-07-28 2018-07-27 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치

Country Status (8)

Country Link
US (1) US11115943B2 (ko)
EP (1) EP3480978B1 (ko)
JP (1) JP6852169B2 (ko)
KR (2) KR101984604B1 (ko)
CN (1) CN110521146B (ko)
CA (1) CA3070072C (ko)
SG (1) SG11201911813WA (ko)
WO (1) WO2019022575A1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190044669A1 (en) * 2017-08-11 2019-02-07 Intel IP Corporation Scrambling sequence initial seed configuration for reference signals, data, and control channel for new radio
US10686585B2 (en) * 2018-08-31 2020-06-16 Apple Inc. Methods and devices for broadcast channel decoding
WO2020168120A1 (en) * 2019-02-13 2020-08-20 Apple Inc. Synchronization signal block periodicity for cell reselection
WO2020190205A1 (en) * 2019-03-21 2020-09-24 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for mib extension and reinterpretation
JPWO2021038652A1 (ko) * 2019-08-23 2021-03-04
WO2021038653A1 (ja) * 2019-08-23 2021-03-04 株式会社Nttドコモ 端末及び無線通信方法
US11490361B2 (en) 2017-05-05 2022-11-01 Lg Electronics Inc. Method and apparatus for receiving a synchronization signal
US11528675B2 (en) * 2017-06-16 2022-12-13 Qualcomm Incorporated Reference signal (RS) configuration and transmission from serving and neighbor cell for mobility
US11533144B2 (en) 2019-08-15 2022-12-20 Qualcomm Incorporated Indication of time-frequency synchronization signal block (SSB) locations of neighboring transmission-reception points for positioning reference signal puncturing purposes

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018227599A1 (zh) * 2017-06-16 2018-12-20 北京小米移动软件有限公司 信号传输方法和信号传输装置
CN110892657B (zh) * 2017-08-10 2021-07-09 中兴通讯股份有限公司 公共控制块的传输
US11924780B2 (en) * 2017-10-12 2024-03-05 Lg Electronics Inc. Method for receiving phase tracking reference signal by terminal in wireless communication system and apparatus supporting same
KR102489733B1 (ko) * 2017-11-17 2023-01-18 삼성전자주식회사 무선 통신 시스템에서 랜덤 억세스 채널을 전송하기 위한 방법 및 장치
CN110035493B (zh) * 2018-01-12 2022-04-15 大唐移动通信设备有限公司 一种信息指示、确定方法、终端及基站
CN110087311A (zh) * 2018-01-26 2019-08-02 华为技术有限公司 通信方法和通信设备
WO2019157737A1 (zh) * 2018-02-14 2019-08-22 华为技术有限公司 传输参考信号的方法及设备
US11153904B2 (en) * 2018-02-21 2021-10-19 FG Innovation Company Limited Prioritizing access and services in next generation networks
CN108781425B (zh) * 2018-06-21 2021-01-22 北京小米移动软件有限公司 传输同步信号的方法及装置
KR102547937B1 (ko) * 2018-08-08 2023-06-26 삼성전자주식회사 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
CN109496438B (zh) * 2018-09-27 2022-06-24 北京小米移动软件有限公司 传输同步指示信息的方法及装置
US11856538B2 (en) * 2018-11-15 2023-12-26 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for broadcasting configuration information of synchronizing signal block, and method and apparatus for receiving configuration information of synchronizing signal block
US11445460B2 (en) * 2018-12-20 2022-09-13 Qualcomm Incorporated Flexible configuration of synchronization signal block time locations
US20200221405A1 (en) * 2019-01-04 2020-07-09 Huawei Technologies Co., Ltd. Sounding reference signal for uplink-based multi-cell measurement
US20220124654A1 (en) * 2019-01-09 2022-04-21 Ntt Docomo, Inc. Terminal and communication method
US11991111B2 (en) * 2019-01-11 2024-05-21 Apple Inc. Discovery reference signal design for quasi co-location and frame timing information in new radio user equipment
KR20200101045A (ko) * 2019-02-19 2020-08-27 삼성전자주식회사 무선 통신 시스템에서 동기 신호 송수신 방법 및 장치
KR102214084B1 (ko) * 2019-02-22 2021-02-10 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
KR102433357B1 (ko) * 2019-03-07 2022-08-17 주식회사 케이티 디지털 방식의 동기 신호 검출 방법, 하이브리드 방식의 동기 신호 검출 방법 및 이를 수행하는 5g 무선 주파수 중계기
JP7379477B2 (ja) * 2019-05-16 2023-11-14 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
US11140646B2 (en) * 2019-05-27 2021-10-05 Electronics And Telecommunications Research Institute Method and apparatus for transmitting and receiving synchronizing signal in a communication system
KR102153434B1 (ko) * 2019-07-09 2020-09-21 에스케이텔레콤 주식회사 동기 신호를 이용한 무선중계기의 이득을 설정하기 위한 장치 및 이를 위한 방법
CN110351766B (zh) * 2019-07-17 2023-01-31 南京创远信息科技有限公司 针对5g nr进行多小区盲检及测量处理的方法
US20220286987A1 (en) * 2019-07-30 2022-09-08 Ntt Docomo, Inc. Terminal
CN110519838B (zh) * 2019-08-06 2021-07-13 三维通信股份有限公司 分布式天线系统的时分双工同步方法、装置、设备和介质
CN110336655B (zh) * 2019-08-09 2022-01-28 北京紫光展锐通信技术有限公司 Ssb候选位置索引指示、接收方法及装置、存储介质、基站、用户设备
CN112399492B (zh) * 2019-08-15 2022-01-14 华为技术有限公司 一种ssb测量方法和装置
US11558831B2 (en) * 2019-09-10 2023-01-17 Samsung Electronics Co., Ltd. Method and apparatus for S-SSB transmission
US11743006B2 (en) * 2019-11-27 2023-08-29 Intel Corporation Physical uplink control channel design for discrete fourier transform-spread-orthogonal frequency-division multiplexing (DFT-s-OFDM) waveforms
US11622340B2 (en) * 2019-12-20 2023-04-04 Samsung Electronics Co., Ltd. Method and apparatus for SS/PBCH block patterns in higher frequency ranges
KR20210085539A (ko) * 2019-12-30 2021-07-08 주식회사 크로스웍스 Tdd 방식을 사용하는 무선 통신 시스템에서의 rf 중계기의 동기 획득 방법 및 장치
CN115244998A (zh) * 2020-03-13 2022-10-25 华为技术有限公司 一种同步信号块的确定方法以及相关装置
US20210329574A1 (en) * 2020-04-15 2021-10-21 Qualcomm Incorporated Selection of initial acquisition parameters for reduced-capability devices
US11711775B2 (en) * 2020-05-07 2023-07-25 Qualcomm Incorporated Energy per resource element ratio for synchronization signal block symbols
CN111669235B (zh) * 2020-05-15 2022-04-22 中国信息通信研究院 一种高频发现信号传输方法、设备和系统
CN113965300B (zh) * 2020-07-20 2023-02-17 大唐移动通信设备有限公司 一种ssb解调及生成的方法、装置及存储介质
US20220029688A1 (en) * 2020-07-24 2022-01-27 Qualcomm Incorporated Switching between beamforming modes
CN114071688A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种同步信号块的传输方法和通信装置
US20220303842A1 (en) * 2020-08-05 2022-09-22 Apple Inc. Network Configuration of CSI-RS Based Radio Resource Management
EP4173424A4 (en) 2020-08-05 2023-08-02 Apple Inc. USER EQUIPMENT TIMING SYNCHRONIZATION FOR CSI-RS BASED RADIO RESOURCE MANAGEMENT
WO2022029982A1 (ja) * 2020-08-06 2022-02-10 株式会社Nttドコモ 端末
US12047962B2 (en) * 2020-09-09 2024-07-23 Qualcomm Incorporated Remaining minimum system information transmission, synchronization signal block forwarding, and demodulation reference signal management by wireless forwarding node
CN116325603A (zh) * 2020-11-30 2023-06-23 华为技术有限公司 一种通信方法及装置
CN112994826B (zh) * 2021-02-04 2022-09-20 展讯通信(上海)有限公司 小区搜索方法、装置及设备
CN113411811B (zh) * 2021-05-27 2022-11-04 国网江苏省电力有限公司南京供电分公司 基于新用户发现机制和剩余带宽动态调度的带宽分配方法
US11653312B1 (en) * 2021-10-22 2023-05-16 Qualcomm Incorporated Power adaptation for synchronization signal blocks
US20230209514A1 (en) * 2021-12-23 2023-06-29 Samsung Electronics Co., Ltd. Repetitions of uplink transmissions for multi-trp operation
KR20240024590A (ko) * 2022-08-17 2024-02-26 삼성전자주식회사 무선 통신 시스템에서 다중 송수신 지점 동작을 지원하기 위한 방법 및 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170187488A1 (en) * 2015-12-28 2017-06-29 Qualcomm Incorporated Physical broadcast channel (pbch) and master information block (mib) design

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100487239B1 (ko) 2002-12-26 2005-05-03 삼성전자주식회사 이동통신 단말기에서 인접 셀과 동기를 유지하기 위한 방법
CN102076076B (zh) * 2009-11-20 2015-11-25 夏普株式会社 一种解调参考信号的资源分配通知方法
WO2013025039A2 (ko) 2011-08-15 2013-02-21 엘지전자 주식회사 무선통신시스템에서 동기 신호를 송수신하는 방법 및 장치
JP5813444B2 (ja) 2011-09-30 2015-11-17 シャープ株式会社 基地局、端末、通信システムおよび通信方法
CN103906139B (zh) 2012-12-27 2018-10-30 夏普株式会社 系统信息的发送和接收方法以及基站和用户设备
JP2016528770A (ja) 2013-07-01 2016-09-15 華為技術有限公司Huawei Technologies Co.,Ltd. エアインターフェイスを基にした同期方法、基地局、制御装置、および無線通信システム
MX2019005201A (es) 2014-11-11 2022-04-27 Samsung Electronics Co Ltd Aparato de transmisión, aparato de recepción y método de control del mismo.
US10334546B2 (en) * 2015-08-31 2019-06-25 Qualcomm Incorporated Synchronization signaling coordination for co-existence on a shared communication medium
CN107623933B (zh) * 2016-07-15 2019-12-10 电信科学技术研究院 一种初始接入信号的传输方法和装置
CN108282859B (zh) * 2017-01-06 2020-10-27 华为技术有限公司 一种通信方法和装置
EP4152675A1 (en) 2017-02-07 2023-03-22 Innovative Technology Lab Co., Ltd. Method and apparatus for broadcast channel configuration and broadccast channel transmission and reception for communication system
US10568102B2 (en) * 2017-02-23 2020-02-18 Qualcomm Incorporated Usage of synchronization signal block index in new radio
US10484153B2 (en) 2017-03-09 2019-11-19 Samsung Electronics Co., Ltd. Method and apparatus for NR-DMRS sequence design
CN108809554B (zh) * 2017-04-28 2020-04-28 维沃移动通信有限公司 一种解调参考信号的资源映射方法及基站
EP4009719B1 (en) * 2017-05-03 2023-01-25 Sony Group Corporation Efficient utilization of ssbs in new radio systems
CN108811086B (zh) 2017-05-04 2024-05-07 华为技术有限公司 Pbch传输方法及装置
US11310009B2 (en) * 2017-05-05 2022-04-19 Qualcomm Incorporated Reference signal acquisition
WO2018231924A1 (en) * 2017-06-14 2018-12-20 Idac Holdings, Inc. Two-stage scrambling for polar coded pdcch transmission
CN110892664A (zh) 2017-06-15 2020-03-17 康维达无线有限责任公司 基于波束的下行链路控制信令
US10805863B2 (en) * 2017-06-15 2020-10-13 Sharp Kabushiki Kaisha Method and apparatus for generating and using reference signal for broadcast channel for radio system
CN114513291B (zh) * 2017-06-16 2024-08-09 中兴通讯股份有限公司 定时信息的发送、确定方法、装置、存储介质及处理器
US10750466B2 (en) 2017-06-16 2020-08-18 Qualcomm Incorporated Reference signal (RS) configuration and transmission from serving and neighbor cell for mobility
CN110392991B (zh) 2017-06-16 2021-10-26 Lg电子株式会社 测量同步信号块的方法及其装置
US10736063B2 (en) * 2017-06-27 2020-08-04 Qualcomm Incorporated Neighbor cell synchronization signal block index determination
EP4216467A1 (en) 2017-07-27 2023-07-26 Apple Inc. Scrambling of physical broadcast channel (pbch)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170187488A1 (en) * 2015-12-28 2017-06-29 Qualcomm Incorporated Physical broadcast channel (pbch) and master information block (mib) design

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
COHERE TECHNOLOGIES: "NR SS Burst Composition and SS Time Index Indication", R1-1702374, 3GPP TSG-RAN MEETING #88, 7 February 2017 (2017-02-07), Athens, Greece, XP051221249 *
ERICSSON: "Timing Indication Based on SS Block", R1-1711373, 3GPP TSG-RAN WG1 AD-HOC#2, 19 June 2017 (2017-06-19), Qingdao, P.R, XP051305699 *
INTEL CORPORATION: "Time Index Signaling for SS Blocks", R1-1711611, 3GPP TSG RAN WG1 MEETING AD-HOC#2, 25 June 2017 (2017-06-25), Qingdao, P.R. China, XP051305866 *
QUALCOMM INCORPORATED: "Timing Indication Based on SS Block Consideration", R1-1711646, 3GPP TSG-RAN WG1 AD-HOC#2, 27 June 2017 (2017-06-27), Qingdao, P.R. China, XP051305907 *
See also references of EP3480978A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11950260B2 (en) 2017-05-05 2024-04-02 Lg Electronics Inc. Method and apparatus for receiving a synchronization signal
US11490361B2 (en) 2017-05-05 2022-11-01 Lg Electronics Inc. Method and apparatus for receiving a synchronization signal
US11528675B2 (en) * 2017-06-16 2022-12-13 Qualcomm Incorporated Reference signal (RS) configuration and transmission from serving and neighbor cell for mobility
US20190044669A1 (en) * 2017-08-11 2019-02-07 Intel IP Corporation Scrambling sequence initial seed configuration for reference signals, data, and control channel for new radio
US11575554B2 (en) * 2017-08-11 2023-02-07 Apple Inc. Scrambling sequence initial seed configuration for reference signals, data, and control channel for new radio
US10686585B2 (en) * 2018-08-31 2020-06-16 Apple Inc. Methods and devices for broadcast channel decoding
JP2022520364A (ja) * 2019-02-13 2022-03-30 アップル インコーポレイテッド セル再選択のための同期信号ブロック周期性
CN113424589A (zh) * 2019-02-13 2021-09-21 苹果公司 用于小区重选的同步信号块周期
JP7245345B2 (ja) 2019-02-13 2023-03-23 アップル インコーポレイテッド セル再選択のための同期信号ブロック周期性
WO2020168120A1 (en) * 2019-02-13 2020-08-20 Apple Inc. Synchronization signal block periodicity for cell reselection
CN113424589B (zh) * 2019-02-13 2024-09-10 苹果公司 用于小区重选的同步信号块周期
WO2020190205A1 (en) * 2019-03-21 2020-09-24 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for mib extension and reinterpretation
US11533144B2 (en) 2019-08-15 2022-12-20 Qualcomm Incorporated Indication of time-frequency synchronization signal block (SSB) locations of neighboring transmission-reception points for positioning reference signal puncturing purposes
WO2021038653A1 (ja) * 2019-08-23 2021-03-04 株式会社Nttドコモ 端末及び無線通信方法
WO2021038652A1 (ja) * 2019-08-23 2021-03-04 株式会社Nttドコモ 端末及び無線通信方法
JPWO2021038652A1 (ko) * 2019-08-23 2021-03-04

Also Published As

Publication number Publication date
CA3070072A1 (en) 2019-01-31
EP3480978A4 (en) 2020-03-11
EP3480978A1 (en) 2019-05-08
KR101984604B1 (ko) 2019-05-31
CN110521146B (zh) 2021-05-11
US20210007065A1 (en) 2021-01-07
US11115943B2 (en) 2021-09-07
KR102344068B1 (ko) 2021-12-28
CN110521146A (zh) 2019-11-29
JP6852169B2 (ja) 2021-03-31
SG11201911813WA (en) 2020-01-30
CA3070072C (en) 2022-10-25
KR20190013621A (ko) 2019-02-11
EP3480978B1 (en) 2023-05-24
JP2020507276A (ja) 2020-03-05
KR20190058418A (ko) 2019-05-29

Similar Documents

Publication Publication Date Title
WO2018231016A1 (ko) 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
WO2019022575A1 (ko) 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
WO2019098769A1 (ko) 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2019022574A1 (ko) 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
WO2018203617A1 (ko) 동기 신호를 수신하는 방법 및 이를 위한 장치
WO2019022577A1 (ko) 방송 채널을 송수신하는 방법 및 이를 위한 장치
WO2018203616A1 (ko) 동기 신호를 수신하는 방법 및 이를 위한 장치
WO2018231014A1 (ko) 하향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2019098768A1 (ko) 하향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2019139298A1 (ko) 물리 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2018203673A1 (ko) 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
WO2018203708A1 (en) Method and apparatus for synchronization signal block index and timing indication in wireless systems
WO2018128399A1 (ko) 무선 통신 시스템에서, 참조 신호를 전송하는 방법 및 이를 위한 장치
WO2018052275A1 (en) Method and apparatus for transmitting initial access signals in wireless communication systems
WO2018128493A1 (ko) 무선 통신 시스템에서 단말과 기지국 간 상향링크 신호 송수신 방법 및 이를 지원하는 장치
WO2017146342A1 (ko) 협대역 iot를 지원하는 무선 통신 시스템에서 시스템 정보를 수신하는 방법 및 이를 위한 장치
WO2018203682A1 (ko) 무선 통신 시스템에서 단말과 기지국의 신호 송수신 방법 및 이를 지원하는 장치
WO2018016921A1 (ko) 무선 통신 시스템에서 기지국과 단말 간 하향링크 제어 정보를 송수신하는 방법 및 이를 지원하는 장치
WO2017057984A1 (ko) 협대역 사물인터넷을 지원하는 무선 접속 시스템에서 주동기신호 송수신 방법 및 장치
WO2015182970A1 (ko) 탐색 신호 측정 수행 방법 및 사용자 장치
WO2019182401A1 (ko) 차세대 무선망에서 포지셔닝을 수행하는 방법 및 장치
WO2016167623A1 (ko) 무선 통신 시스템에서 상향링크 데이터 전송 방법 및 이를 위한 장치
WO2016021979A1 (ko) 동기 신호 수신 방법 및 사용자기기와, 동기 신호 전송 방법 및 기지국
WO2016021993A2 (ko) 무선 통신 시스템에서 측정 수행 방법 및 이를 위한 장치
WO2016006854A1 (ko) 비-면허 대역을 통한 데이터 수신 방법 및 단말

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018829168

Country of ref document: EP

Effective date: 20190111

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18829168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541167

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3070072

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE