WO2019022442A2 - 무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2019022442A2
WO2019022442A2 PCT/KR2018/008240 KR2018008240W WO2019022442A2 WO 2019022442 A2 WO2019022442 A2 WO 2019022442A2 KR 2018008240 W KR2018008240 W KR 2018008240W WO 2019022442 A2 WO2019022442 A2 WO 2019022442A2
Authority
WO
WIPO (PCT)
Prior art keywords
sms
mme
epc
hss
information
Prior art date
Application number
PCT/KR2018/008240
Other languages
English (en)
French (fr)
Other versions
WO2019022442A3 (ko
WO2019022442A9 (ko
Inventor
김래영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US16/633,964 priority Critical patent/US11102625B2/en
Publication of WO2019022442A2 publication Critical patent/WO2019022442A2/ko
Publication of WO2019022442A3 publication Critical patent/WO2019022442A3/ko
Publication of WO2019022442A9 publication Critical patent/WO2019022442A9/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • H04W4/14Short messaging services, e.g. short message services [SMS] or unstructured supplementary service data [USSD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/04Registration at HLR or HSS [Home Subscriber Server]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/18Service support devices; Network management devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/005Multiple registrations, e.g. multihoming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/12Mobility data transfer between location registers or mobility servers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the following description relates to a wireless communication system, and relates to a method and apparatus for efficiently transmitting an SMS for a terminal capable of receiving services from the 3GPP 5G System and EPS.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, a single carrier frequency division multiple access (MC-FDMA) system, and a multi-carrier frequency division multiple access (MC-FDMA) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • MC-FDMA single carrier frequency division multiple access
  • MC-FDMA multi-carrier frequency division multiple access
  • the present invention provides a method for supporting a Mobile Terminated Short Message Service (SM) for a UE registered in both the EPC and the 5GC by the HSS + UDM.
  • SM Mobile Terminated Short Message Service
  • an HSS + UDM Home Subscriber Server + User Data Management mobile terminal (MT) for a UE registered in both EPC (Evolved Packet Core) and 5GC (5G Core Network)
  • a method of supporting short message service comprising: receiving information for MT SM routing from an Access and Mobility Management Function (AMF) and a Mobility Management Entity (MME) by an HSS + UDM; Determining, based on the information, a priority order for transmitting the MT SM to the SMSF and the MME, which are connected to the AMF, first; And transmitting the routing information including the determined priority to an SMS related node, wherein the HSS + UDM determines the priority according to whether the UE to receive the MT SM is connected to the 5GC or EPC Lt; / RTI >
  • an HSS + UDM Short Message Service supporting a Mobile Terminated Short Message Service (MT) for a UE registered in both EPC (Evolved Packet Core) and 5GC (5G Core Network) Subscriber Server + User Data Management) apparatus, comprising: a transceiver; And a processor, wherein the processor receives the information for MT SM routing from the Access and Mobility Management Function (AMF) and the Mobility Management Entity (AMF), and based on the information, AMF, and the MME, and transmits routing information including the determined priority to an SMS related node, and the HSS + UDM receives the MT SM
  • the HSS + UDM device determines the priority according to whether the UE is connected to the 5GC or EPC.
  • the HSS + UDM may set a higher priority to the serving node of the core network in the connected state.
  • the HSS + UDM may set the priority of the SMSF and the MME to be the same.
  • the decision of which of the SMSF and the MME to route the MTM can be delegated to the SMS-GMSC.
  • the HSS + UDM moves the most recent time at which the UE moves the PDN connection to the 5GC and the UE moves the PDU session to the EPC at 5GC By comparing the most recent times performed, it is possible to determine the priority.
  • the information for MT SM routing received from the MME includes information on whether the UE is in the ECM-CONNECTED state, the most recent time when the UE performed the attach or TAU, the most recent time when the UE was in the ECM-IDLE state, May include one or more of the most recent times at which the PDU session was moved from the 5GC to the EPC.
  • the SMSF and the MME associated with the AMF may correspond to a serving node supporting SMS to the UE.
  • the SMS related node may be one of an SMS-GMSC, an SMS Router, an IP-SM-GW, and an SMS-GW (SMS-Gateway).
  • the MME may be determined that the MME has a higher priority if the most recent time at which the UE performed attach or TAU is later than the most recent time at which the UE performs the 5GC registration.
  • the MME may be determined to have a higher priority if the most recent time when the UE is in the ECM-IDLE state is later than the most recent time when the UE is in the CM-IDLE state.
  • unnecessary signaling and resource use can be reduced by selecting a network in which the UE registered in both the EPC and the 5GC is likely to actually exist as a network to which the SMS is to be routed.
  • EPS evolved packet system
  • EPC Evolved Packet Core
  • FIG. 2 is an exemplary diagram illustrating an architecture of a general E-UTRAN and an EPC.
  • 3 is an exemplary diagram illustrating the structure of a radio interface protocol in a control plane.
  • FIG. 4 is an exemplary diagram illustrating a structure of a radio interface protocol in a user plane.
  • 5 is a flowchart for explaining the random access procedure.
  • RRC radio resource control
  • FIG. 7 is a diagram for explaining a 5G system.
  • FIG. 8 illustrates an interworking architecture between the 5G System and the EPS when the UE does not roam.
  • Figure 9 shows SMS over NAS at 5GC.
  • Figure 10 shows an SMS over NAS associated with an MME.
  • 11 to 12 are views for explaining embodiments of the present invention.
  • FIG. 13 is a diagram illustrating a configuration of a node device according to an embodiment of the present invention.
  • each component or characteristic may be considered optional unless otherwise expressly stated.
  • Each component or feature may be implemented in a form that is not combined with other components or features.
  • some of the elements and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some configurations or features of certain embodiments may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments.
  • Embodiments of the present invention may be supported by standard documents disclosed in connection with at least one of the Institute of Electrical and Electronics Engineers (IEEE) 802 system, 3GPP system, 3GPP LTE and LTE-A system, and 3GPP2 system. That is, the steps or portions of the embodiments of the present invention that are not described in order to clearly illustrate the technical idea of the present invention can be supported by the documents. In addition, all terms disclosed in this document may be described by the standard document.
  • IEEE Institute of Electrical and Electronics Engineers
  • Universal Mobile Telecommunications System A third generation (3G) mobile communication technology based on Global System for Mobile Communication (GSM) developed by 3GPP.
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • PS packet switched core network
  • IP Internet Protocol
  • UMTS is an evolved form of network.
  • Node B base station of GERAN / UTRAN. It is installed outdoors and its coverage is macro cell scale.
  • - eNodeB base station of E-UTRAN. It is installed outdoors and its coverage is macro cell scale.
  • the UE may be referred to as a terminal, a mobile equipment (ME), a mobile station (MS), or the like.
  • the UE may be a portable device such as a notebook, a mobile phone, a PDA (Personal Digital Assistant), a smart phone, a multimedia device, or the like, or a non-portable device such as a PC (Personal Computer) or a vehicle-mounted device.
  • the term UE or terminal may refer to an MTC device.
  • Home NodeB Home NodeB
  • Home NodeB It is installed in indoor area as a base station of UMTS network, and the coverage is micro cell scale.
  • - HeNB Home eNodeB: Installed indoors as a base station of EPS network, the coverage is micro cell scale.
  • Mobility Management Entity A network node in the EPS network that performs Mobility Management (MM) and Session Management (SM) functions.
  • MM Mobility Management
  • SM Session Management
  • - PDN-GW / PGW A network node in the EPS network that performs UE IP address allocation, packet screening and filtering, and charging data collection functions.
  • SGW Serving Gateway: A network node in the EPS network that performs mobility anchor, packet routing, idle mode packet buffering, triggering the MME to page the UE, and so on.
  • Non-Access Stratum The upper stratum of the control plane between the UE and the MME.
  • Packet Data Network A network in which a server supporting a specific service (for example, a Multimedia Messaging Service (MMS) server, a Wireless Application Protocol (WAP) server, etc.) is located.
  • MMS Multimedia Messaging Service
  • WAP Wireless Application Protocol
  • - PDN connection a logical connection between the UE and the PDN, expressed as one IP address (one IPv4 address and / or one IPv6 prefix).
  • Radio Access Network A unit that includes NodeB, eNodeB and RNC (Radio Network Controller) controlling them in 3GPP network. Lt; / RTI > between UEs and provides connectivity to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • PLMN Public Land Mobile Network
  • Proximity Service A service that enables discovery and mutual direct communication between physically adjacent devices, or communication via a base station or communication via a third device. At this time, user plane data is exchanged via a direct data path without going through a 3GPP core network (e.g., EPC).
  • EPC 3GPP core network
  • - eRelay-UE a Layer 2 relay in which a UE supports Indirect 3GPP Communication between an eRemote-UE and the 3GPP network, using E-UTRA, WLAN or Bluetooth between the eRemote-UE and the relay.
  • the present invention can be referred to as ProSe UE-to-Network Relay, UE-to-Network Relay, Relay, Relay UE, eRelay, Evolved ProSe UE-to-Network Relay,
  • - eRemote-UE a UE that is connected to a network using an Indirect 3GPP Communication.
  • it can be referred to as a ProSe Remote UE, a Remote UE, a Remote, an eRemote, and an Evolved ProSe Remote UE.
  • Model A discovery involving one UE announcing 'I am here'.
  • This model defines two roles of ProSe-enabled UEs participating in ProSe direct discovery. The first is an Announcing UE that announces the information used by the UE that is allowed to be discovery in proximity. The second is a Monitoring UE interested in this information in the proximity of the announcing UE.
  • EPC Evolved Packet Core
  • EPS evolved packet system
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project that determines the network structure that supports mobility between various types of networks.
  • SAE aims to provide an optimized packet-based system, such as, for example, supporting various wireless access technologies on an IP-based basis and providing improved data transfer capabilities.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system, and can support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second- or third-generation mobile communication system
  • CS Circuit-Switched
  • Packet- Function has been implemented.
  • the 3GPP LTE system which is an evolution of the 3G mobile communication system
  • the CS and PS sub-domains are unified into one IP domain.
  • the connection between the terminal and the terminal having the IP capability is established between an IP-based base station (eNodeB (evolved Node B), an EPC, an application domain (for example, IMS IP Multimedia Subsystem).
  • eNodeB evolved Node B
  • EPC an application domain
  • IMS IP Multimedia Subsystem IMS IP Multimedia Subsystem
  • the EPC may include various components.
  • a Serving Gateway SGW
  • PDN GW Packet Data Network Gateway
  • MME Mobility Management Entity
  • ePDG Enhanced Packet Data Gateway
  • the SGW (or S-GW) is an element that functions as a boundary point between the radio access network (RAN) and the core network and functions to maintain the data path between the eNodeB and the PDN GW.
  • the SGW acts as a local mobility anchor point. That is, the packets can be routed through the SGW for mobility within the E-UTRAN (Evolved-Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network defined after 3GPP Release-8).
  • the SGW can also provide mobility to other 3GPP networks (RANs defined before 3GPP Release-8, for example UTRAN or GERAN (Global System for Mobile Communication) / EDGE (Enhanced Data Rates for Global Evolution) As an anchor point.
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW can support policy enforcement features, packet filtering, and charging support.
  • mobility management with 3GPP networks and non-3GPP networks e.g., untrusted networks such as Interworking Wireless Local Area Network (I-WLAN), Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax) It can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Network (I-WLAN), Code Division Multiple Access (CDMA) networks or trusted networks such as WiMax
  • I-WLAN Interworking Wireless Local Area Network
  • CDMA Code Division Multiple Access
  • WiMax trusted networks
  • the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to the Single Gateway Configuration Option.
  • the MME is an element that performs signaling and control functions to support UE access to network connections, allocation, tracking, paging, roaming, and handover of network resources.
  • the MME controls the control plane functions related to subscriber and session management.
  • the MME manages a large number of eNodeBs and performs signaling for selection of conventional gateways for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • the SGSN handles all packet data such as the user's mobility management and authentication to another 3GPP network (e.g., GPRS network).
  • 3GPP network e.g., GPRS network
  • ePDG acts as a secure node for an untrusted Non-3GPP network (e.g., I-WLAN, WiFi hotspot, etc.).
  • an untrusted Non-3GPP network e.g., I-WLAN, WiFi hotspot, etc.
  • a terminal having IP capability can access an IP service network (not shown) provided by a provider (i.e., an operator) via various elements in the EPC, (E. G., IMS). ≪ / RTI >
  • FIG. 1 also shows various reference points (e.g., S1-U, S1-MME, etc.).
  • reference points e.g., S1-U, S1-MME, etc.
  • 3GPP system a conceptual link connecting two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 summarizes the reference points shown in FIG.
  • various reference points may exist depending on the network structure.
  • Reference point Explanation S1-MME A reference point for the control plane protocol between the E-UTRAN and the MME (reference point for the control plane protocol between the E-UTRAN and the MME)
  • S1-U A reference point between E-UTRAN and SGW for path switching between eNBs during handover and user plane tunneling per bearer (reference point between E-UTRAN and Serving GW for inter-eNodeB path switching during handover)
  • S3 A reference point between the MME and the SGSN that provides user and bearer information exchange for 3GPP access network mobility in an idle and / or active state.
  • This reference point may be used in PLMN- or PLMN- (for example, in the case of a PLMN-to-PLMN handover)) (It is user and bearer information exchange for inter-3GPP access network mobility in idle and / or active state This reference point can be used intra-PLMN or inter-PLMN (eg in the case of Inter-PLMN HO).
  • S4 A reference point between the SGW and the SGSN that provides the associated control and mobility support between the GPRS core and the 3GPP anchor function of the SGW, and also provides user plane tunneling if a direct tunnel is not established. and the 3GPP Anchor function of Serving GW.In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.
  • S5 A reference point that provides user plane tunneling and tunnel management between the SGW and the PDN GW. It is used for SGW relocation because of terminal mobility and connection to PDN GW where SGW is not located together for required PDN connectivity. It is used for Serving GW and PDN GW. Serving GW relocation due to UE mobility and if Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.
  • the PDN may be an operator external public or private PDN or, for example, an operator-in-PDN for the provision of an IMS service.
  • This reference point corresponds to Gi of 3GPP access (It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra-operator packet data network, eg for provision of IMS services. This reference point corresponds to 3G for 3GPP accesses.)
  • S2a and S2b correspond to a Non-3GPP interface.
  • S2a is a reference point that provides the user plane with the associated control and mobility support between trusted Non-3GPP access and PDN GW.
  • S2b is a reference point providing the user plane with the associated control and mobility support between the ePDG and the PDN GW.
  • FIG. 2 is an exemplary diagram illustrating an architecture of a general E-UTRAN and an EPC.
  • the eNodeB is responsible for routing to the gateway, scheduling and transmission of paging messages, scheduling and transmission of the Broadcast Channel (BCH), and resources in the uplink and downlink, while the RRC (Radio Resource Control) To the UE, to perform functions such as setting and providing for measurement of the eNodeB, radio bearer control, radio admission control, and connection mobility control.
  • RRC Radio Resource Control
  • paging can occur, LTE_IDLE state management, user plane encryption, SAE bearer control, NAS signaling encryption and integrity protection.
  • FIG. 3 is a diagram illustrating a structure of a radio interface protocol in a control plane between a terminal and a base station
  • FIG. 4 is a diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station .
  • the air interface protocol is based on the 3GPP radio access network standard.
  • the wireless interface protocol horizontally comprises a physical layer, a data link layer, and a network layer, and vertically includes a user plane for data information transmission and a control plane And a control plane for signal transmission.
  • the protocol layers are classified into L1 (first layer), L2 (second layer) and L3 (third layer) based on the lower three layers of an Open System Interconnection (OSI) ).
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to an upper Medium Access Control layer through a transport channel, and data is transmitted between the medium access control layer and the physical layer through the transport channel. Data is transmitted between the different physical layers, that is, between the transmitting side and the receiving side physical layer through the physical channel.
  • a physical channel is composed of several subframes on the time axis and several subcarriers on the frequency axis.
  • one sub-frame is composed of a plurality of symbols and a plurality of sub-carriers on the time axis.
  • One subframe is composed of a plurality of resource blocks, and one resource block is composed of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is the unit time at which data is transmitted, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitter and the receiver can be classified into a Physical Downlink Shared Channel (PDSCH), a Physical Uplink Shared Channel (PUSCH) and a Physical Downlink Control Channel (PDCCH)
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the Medium Access Control (MAC) layer of the second layer maps various logical channels to various transport channels, and also performs logical channel multiplexing (Multiplexing).
  • the MAC layer is connected to an RLC layer, which is an upper layer, through a logical channel.
  • a logical channel includes a control channel for transmitting control plane information according to the type of information to be transmitted, And a traffic channel for transmitting information of a user plane (User Plane).
  • the Radio Link Control (RLC) layer of the second layer divides and concatenates the data received from the upper layer to adjust the data size so that the lower layer is suitable for transmitting data in the radio section .
  • RLC Radio Link Control
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP (Packet Data Convergence Protocol) layer that is relatively large and contains unnecessary control information in order to efficiently transmit IP packets, such as IPv4 or IPv6, It performs header compression to reduce packet header size.
  • IP Packet Data Convergence Protocol
  • the PDCP layer also performs a security function, which consists of ciphering to prevent third party data interception and integrity protection to prevent third party data manipulation.
  • a radio resource control (RRC) layer located at the uppermost level of the third layer is defined only in the control plane and includes a configuration of a radio bearer (RB), a re- -configuration and release of the logical channel, the transport channel, and the physical channel.
  • the RB means a service provided by the second layer for data transmission between the UE and the E-UTRAN.
  • the UE If there is an RRC connection between the RRC of the UE and the RRC layer of the wireless network, the UE is in an RRC Connected Mode, and if not, it is in an RRC Idle Mode.
  • the RRC state refers to whether or not the RRC of the UE is a logical connection with the RRC of the E-UTRAN. If the RRC is connected, it is called the RRC_CONNECTED state, and if it is not connected, it is called the RRC_IDLE state. Since the UE in the RRC_CONNECTED state has the RRC connection, the E-UTRAN can grasp the existence of the UE in the cell unit, and thus can effectively control the UE.
  • the terminal in the RRC_IDLE state can not grasp the existence of the terminal in the E-UTRAN, and the core network manages the TA (Tracking Area) unit, which is a larger area unit than the cell. That is, the UE in the RRC_IDLE state only knows whether the corresponding UE is present in a larger area than the cell, and the UE must transition to the RRC_CONNECTED state in order to receive ordinary mobile communication services such as voice or data.
  • Each TA is identified by a tracking area identity (TAI).
  • a terminal can construct a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAI tracking area identity
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, establishes an RRC connection in the corresponding cell, and registers the terminal information in the core network. Thereafter, the terminal remains in the RRC_IDLE state. The terminal staying in the RRC_IDLE state selects (re-selects) the cell as needed and checks the system information and paging information. It is said to camp on the cell.
  • the terminal When a terminal that has stayed in the RRC_IDLE state needs to establish an RRC connection, the terminal establishes an RRC connection with the RRC of the E-UTRAN through the RRC connection procedure and transitions to the RRC_CONNECTED state.
  • the UE in the RRC_IDLE state needs to make an RRC connection. For example, when the UE needs a call attempt or a data transmission attempt, or receives a paging message from the E-UTRAN, Response message transmission, and the like.
  • a non-access stratum (NAS) layer located at an upper level of the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • the NAS layer shown in FIG. 3 will be described in detail below.
  • ESM Evolved Session Management
  • the NAS layer performs functions such as default bearer management and dedicated bearer management, and the terminal is responsible for controlling the PS service from the network.
  • the default bearer resource is allocated from the network when it is first connected to a specific Packet Data Network (PDN) when connected to the network.
  • PDN Packet Data Network
  • the network allocates available IP addresses to the UE so that the UE can use the data service, and allocates the QoS of the default bearer.
  • LTE supports two types of bearers: Guaranteed bit rate (GBR) QoS, which guarantees a specific bandwidth for data transmission and reception, and Non-GBR bearer, which has best effort QoS without bandwidth guarantee.
  • GBR Guaranteed bit rate
  • Non-GBR bearer which has best effort QoS without bandwidth guarantee.
  • a non-GBR bearer is allocated.
  • bearers having QoS characteristics of GBR or non-GBR can be allocated.
  • a bearer assigned to a terminal in the network is called an evolved packet service (EPS) bearer.
  • EPS evolved packet service
  • the network assigns an ID. This is called EPS Bearer ID.
  • An EPS bearer has QoS characteristics of a maximum bit rate (MBR) and / or a guaranteed bit rate (GBR).
  • 5 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE to obtain UL synchronization with the base station or to allocate UL radio resources.
  • the UE receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the transmission of the random access preamble is limited to specific time and frequency resources for each cell.
  • the PRACH setting index indicates a specific subframe and a preamble format in which a random access preamble can be transmitted.
  • the UE transmits the randomly selected random access preamble to the eNodeB.
  • the UE selects one of 64 candidate random access preambles.
  • the corresponding subframe is selected by the PRACH setting index.
  • the UE transmits the selected random access preamble in the selected subframe.
  • the eNodeB receiving the random access preamble sends a random access response (RAR) to the UE.
  • the random access response is detected in two steps. First, the UE detects a PDCCH masked with a random access-RNTI (RA-RNTI). The UE receives a random access response in a Medium Access Control (MAC) PDU (Protocol Data Unit) on the PDSCH indicated by the detected PDCCH.
  • MAC Medium Access Control
  • FIG. 6 shows a connection procedure in the radio resource control (RRC) layer.
  • RRC radio resource control
  • the RRC state is shown depending on whether the RRC is connected or not.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE is a logical connection with an entity of the RRC layer of the eNodeB. If the entity is connected, it is referred to as an RRC connected state, Is referred to as an RRC idle state.
  • the E-UTRAN can grasp the existence of the corresponding UE on a cell basis, and thus can effectively control the UE.
  • UEs in an idle state can not be grasped by an eNodeB, but are managed by a core network in a tracking area unit, which is an area unit larger than a cell.
  • the tracking area is a set of cells. That is, an idle state UE is only detected in a large area, and in order to receive normal mobile communication services such as voice and data, the UE must transition to a connected state.
  • the UE When the user first turns on the power of the UE, the UE first searches for an appropriate cell and stays in an idle state in the corresponding cell. When the UE staying in the idle state needs to establish an RRC connection, the UE establishes an RRC connection with the RRC layer of the eNodeB through the RRC connection procedure and transitions to the RRC connected state .
  • the UE in the idle state needs to make an RRC connection. For example, when a user needs a call attempt or uplink data transmission or receives a paging message from the EUTRAN And sending a response message to the user.
  • the RRC connection process includes a process of transmitting an RRC connection request message to the eNodeB by the UE, a process of transmitting an RRC connection setup message to the UE by the eNodeB, a process of establishing an RRC connection setup with the eNodeB (RRC connection setup complete) message. This process will be described in more detail with reference to FIG.
  • the UE When the UE in an idle state tries to make an RRC connection for a reason such as a call attempt, a data transmission attempt, or a response to paging of an eNodeB, the UE first transmits an RRC connection request message eNodeB.
  • the eNB Upon receiving the RRC connection request message from the UE, the eNB accepts the RRC connection request of the UE when the radio resources are sufficient, and transmits an RRC connection setup message (RRC connection setup message) as a response message to the UE .
  • RRC connection setup message RRC connection setup message
  • the UE When the UE receives the RRC connection setup message, it transmits an RRC connection setup complete message to the eNodeB. When the UE successfully transmits an RRC connection setup message, the UE establishes an RRC connection with the eNodeB and transitions to the RRC connection mode.
  • the MME is separated into AMF (Core Access and Mobility Management Function) and SMF (Session Management Function) in the Next Generation system (or 5G CN (Core Network)). Therefore, the NAS interaction with the UE and the MM (Mobility Management) are performed by the AMF, and the SM (Session Management) is performed by the SMF.
  • the SMF manages UPF (User Plane Function), which is a gateway that has a user plane function, that is, a gateway for routing user traffic.
  • UPF User Plane Function
  • the control plane portion of the S-GW and the P- The user-plane portion can be regarded as the UPF.
  • UPF User Plane Function
  • DN Data Network
  • UPF User Plane Function
  • the 5G system is working on TS 23.501 and TS 23.502.
  • the 5G system ie, the next generation system
  • the 5G system must support interworking with the existing system EPS. This is because it is not normally possible to place a new mobile communication system in a whole area where a service provider needs to be provided at the initial stage when the new mobile communication system is installed and when the UE moves out of the service area of the new mobile communication system, .
  • a service provider may be provided to the new mobile communication system and a certain service (e.g., voice service) may be provided to the existing mobile communication system depending on the type of the service.
  • Section 4.3 of TS 23.501 v1.1.0 shows the architecture that the 5G System works with the EPS
  • Figure 8 shows the interworking architecture between the 5G System and the EPS when the UE does not roam.
  • there is an interface between the MME and the AMF that is, an interface between the Core Networks, N26, which may or may not be supported depending on the operator's choice.
  • Section 5.17.2 of TS 23.501 v1.1.0 describes the interworking between the 5G System (5GS) and the EPS when the N26 interface is supported and not supported. That is, an operation of changing the EPS (or EPC, hereinafter, EPS and EPC can be used in combination) in the 5GS (or 5GC, 5G Core, hereinafter, 5GS and 5GC can be used in combination)
  • the opposite case describes the operation.
  • a UE supporting both the 5GC NAS and the EPC NAS i.e., a UE having both a capability to connect to 5GS and a capability to connect to EPS
  • Table 2 is a part of TS 23.501 v1.1.0 for the support of the UE in the dual-registration mode when the N26 interface is not supported.
  • SMS should be supported in 5G System.
  • SMS over NAS transmits SMS to the control plane.
  • SMS is transmitted to the user plane using IMS.
  • SMS over NAS in the 5GC is shown in FIG. 9, for the contents, see Section 4.4.2 (SMS over NAS) of TS 23.501v1.1.0 and Section 4.13.3 (SMS over NAS procedure) of TS 23.502v0.5.0
  • Section 4.4.2 SMS over NAS
  • Section 4.13.3 SMS over NAS procedure
  • Table 3 shows the case where the AMF serving the UE when the UE registers with the 5GC registers itself as a mobility management (MC) serving node of the UE with the UDM and selects the SMSF to support the SMS transmission to the UE,
  • the procedure disclosed in TS 23.502 is a description of a procedure for registering itself as an SMS serving node of the UE with the UDM and an operation for releasing the registration.
  • Tables 4 to 6 show procedures for transmitting MT SMS through 3GPP access or non-3GPP access (extracted from TS 23.502).
  • the SMS over NAS in the EPC can be divided into the case where the MME supports the SMS function and the case where the MME does not support the SMS function.
  • the SMS is transmitted according to the architecture as shown in FIG. 10 (a), with the MME supporting the SMS protocol stack.
  • Annex C (normative): SMS in MME of TS 23.272.
  • SMS is transmitted according to the architecture as shown in FIG. 10 (b). This is also referred to as SMS over SGs, see TS 23.272 for details.
  • Tables 7 to 9 below show a procedure of registering that the MME is the serving node of the UE to the HSS when the MME supports the SMS function when the UE is registered in the EPC and the description of the procedure in which the registration is canceled , Which is taken from TS 23.272.
  • the SMS-GMSC when the MT SMS to the UE arrives at the SC (SMS's service center), it is transmitted to the SMS-GMSC.
  • the SMS-GMSC then asks the HSS / UDM which node the MT SMS should be sent to. That is, it requests routing information.
  • the HSS / UDM then identifies the serving node supporting the SMS to the UE and provides the information to the SMS-GMSC.
  • the HSS provides the SMS-GMSC with information about the corresponding MME, and the SMS- To request delivery to the UE. If the UE has only registered with the 5GC, the UDM will provide the SMS-GMSC with information about the SMSF and the SMS-GMSC will send the MT SMS to the SMSF to request delivery to the UE.
  • Both MME and SMSF may be registered as a serving node that supports SMS. In this case, it is unclear to which CN or which serving node the MT SMS should be forwarded.
  • TS 23.501 v1.3.0, Section 5.17.2.3.3 Mobility for UEs in dual-registration mode
  • Embodiment 1 is for 5GS when either 3GPP access or non-3GPP access is registered through access or both accesses are registered but both accesses belong to the same PLMN.
  • the portion mainly described with respect to the HSS + UDM can be understood mainly with respect to other network nodes. For example, the fact that the HSS + UDM receives a signal from the SC must be interpreted as the SC transmits the signal to the HSS + UDM.
  • the HSS + UDM receives information for MT SM routing from the AMF and the MME, and based on the information, it can determine a priority for transmitting the MT SM to the SMSF associated with the AMF and the MME first . And transmit the routing information including the determined priority to the SMS related node.
  • the HSS + UDM can determine the priority according to whether the UE receiving the MT SM is connected to the 5GC or EPC.
  • the HSS + UDM can set a higher priority to the serving node of the core network in the connected state. That is, if the UE is connected in either the 5GC or the EPC, the serving node of the connected CN is given a higher priority. For example, if the UE is connected only at 5GC, the priority for the SMSF is set higher than the MME.
  • the HSS + UDM can set the priority of the SMSF and the MME to be the same. If the priority of the SMSF and the MME is the same, The determination of the priority may be performed by the SMS-GMSC. Alternatively, if the UE is both connected in the 5GC and EPC, the HSS + UDM may not assign the same priority or provide priority information (in this case, either SMSF or MME should be selected first to transmit MT SMS The SMS-GMSC will decide).
  • the HSS + UDM will notify the AMF of the information provided by the AMF (information that the AMF included in the response to the information request for MT SM routing, described below), iii), iv) II), III), IV) (provided this information has been provided), local policy / configuration provided by the MME (information that the MME has included in the response to the information request for MT SM routing, described below)
  • the higher priority may be given to one of the serving nodes. Or it can always give SMSF a high priority and always give MME a high priority.
  • the HSS + UDM is the information that the AMF provided (ii) the information that the AMF included in the response to the information request for MT SM routing, iii) ), iv), based on one or more of the following: II), III), IV), local policy / configuration provided by the MME (information the MME has included in the response to the information request for MT SM routing, , A higher priority may be given to the serving node of either the MME or the SMSF.
  • the HSS + UDM determines the most recent time at which the UE performed the PDN connection movement to the 5GC and the UE transmits the PDU session with the EPC at 5GC By comparing the most recent time of performing the moving operation, and determining the priority. If the latest time at which the UE moves the PDU session from the 5GC to the EPC is later than the latest time at which the UE moves the PDN connection to the 5GC, the HSS + UDM is higher It can be determined to have priority.
  • the MME can be given a higher priority (based on the premise that the UE is more likely to receive a response from the EPC than to the 5GC when looking through paging). Or it can always give SMSF a high priority and always give MME a high priority.
  • the MME has a higher priority if the most recent time when the UE performed attach or TAU is later than the most recent time when the UE performs the 5GC registration.
  • the MME may be determined to have a higher priority if the most recent time when the UE is in the ECM-IDLE state is later than the most recent time when the UE is in the CM-IDLE state.
  • the MT can be transmitted to the network with a higher possibility that the UE can receive a response.
  • the HSS + UDM may not assign the same priority or provide priority information (in this case either SMSF or MME)
  • the SMS-GMSC determines whether to send the MT SMS first).
  • the AMF may provide the HSS + UDM with a response (eg, response for MT SM routing) containing one or more of the following i) to iv): i) to iv) Let's take a closer look.
  • the UE in the CM-CONNECTED state may mean that the UE is reachable or the UE is available. Instead of providing or not providing whether the UE is in the CM-CONNECTED state, it may additionally provide whether the UE is reachable or available. In addition, the UE may include access information in the CM-CONNECTED state (e.g., 3GPP access, non-3GPP access, etc.).
  • access information in the CM-CONNECTED state e.g., 3GPP access, non-3GPP access, etc.
  • the CM-CONNECTED state for at least one access may indicate that the UE is in a CM-CONNECTED state (which may be interpreted as a CM-CONNECTED state at 5GC) have).
  • the most recent (or last) time at which the UE performed the registration may include any type of registration (ie, initial, periodic, mobility, handover, etc.). In addition, it may include information on which access the UE has performed registration with. Alternatively, instead of providing the above information for each access, the most recent (or last) time at which registration was performed across all accesses may be informed (this may be interpreted as the time at which the UE last performed the registration at 5GC ).
  • Most recent (or last) time at which the UE became CM-IDLE in the CM-CONNECTED state this can be interpreted as the time when the UE was in the most recent CM-CONNECTED state.
  • it may include information on which access the UE has switched to the CM-IDLE state.
  • it may inform the most recent (or last) time that it has become CM-IDLE across all accesses (this is the time at which the UE was last CM-IDLE at 5GC) Can be interpreted).
  • Moving the PDN connection from the EPC to the 5GC in this case means that the PDN connection created in the EPC is changed from the 5GC to the PDU session Can be generated. Also, this may mean a PDN connection / PDU session using the same APN / DNN.
  • the UE may include information as to which access has moved the PDN connection. Alternatively, instead of providing the above information for each access, it may inform the most recent (or last) time at which the PDN connection was moved across all accesses (this is the time at which the UE last moved the PDN connection from the EPC at 5GC) Can be interpreted). In the above, movement between PDU connection and PDU session can be interpreted as a handover operation.
  • ii), iii), and iv) information may be provided only when the UE is not in the CM-CONNECTED state (or in the CM-IDLE state) for a specific access, or may always be provided regardless of the CM state.
  • various information may be provided as follows.
  • the AMF is in the CM-CONNECTED state in the 3GPP access
  • the UE is not in the CONNECTED state (or in the CM-IDLE state, this information may not be explicitly provided, indicating that the UE is in the CM-CONNECTED state in non-3GPP access )
  • the information for MT SM routing received from the MME includes information on whether the UE is in the ECM-CONNECTED state, the most recent time when the UE performed the attach or TAU, the most recent time when the UE was in the ECM- And at least one of the most recent times at which the UE performed an operation to move a PDU session. That is, the MME may provide a response (eg, response for MT SM routing) containing one or more of the following I) to IV) to the HSS + UDM, as detailed below for I) to IV).
  • a response eg, response for MT SM routing
  • the UE in the ECM-CONNECTED state may mean that the UE is reachable or the UE is available. Instead of providing the UE whether it is in the ECM-CONNECTED state, or in addition, it may provide whether the UE is reachable or available.
  • the most recent (or last) time at which the UE performed attach or TAU: where attach may include any type of attach (ie, initial, handover, etc.).
  • a TAU may include all types of TAUs (i.e., periodic, mobility, etc.).
  • Moving PDU session from 5GC to EPC in this case means that the PDU session created in 5GC is changed from EPC to PDN connection Can be generated. Also, this may mean a PDN connection / PDU session using the same APN / DNN. In the above, movement between PDU connection and PDU session can be interpreted as a handover operation.
  • step S1101-S1102 when an SMS to the UE arrives, the SC transmits it to the SMS-GMSC, and the SMS-GMSC requests routing information to the HSS + UDM to obtain routing information Message.
  • the HSS + UDM identifies the serving node supporting the SMS to the UE. If there is only one serving node supporting the SMS to the UE (i.e., one of MME or SMSF), the HSS + UDM provides the SMS-GMSC with information on the corresponding serving node through step S1106. If it is determined that all the SMSFs and the MMEs are serving as a serving node supporting the SMS to the UE as a result of the serving node check, steps S1104 to S115 are performed.
  • the HSS + UDM requests information for MT SM routing to the AMF and the MME (steps S1104a and S1104b).
  • the AMF is an AMF serving the UE in the same PLMN as the registered SMSF. That is, AMF serving the UE in the MM side. (Such an AMF may inform the UDM that it supports SMS when registering itself as a serving node, if the UE registers with notification of SMS support).
  • the routing information request may request A) the HSS + UDM to request information for the MT SM routing to the AMF, and B) if the HSS + UDM requests it to the SMSF, the SMSF receiving the request may request the AMF If AMF also responds to SMSF, it sends it to HSS + UDM)
  • step S1105a the AMF provides the HSS + UDM with a response (e.g., response for MT SM routing) containing one or more of the above i) to iv).
  • a response e.g., response for MT SM routing
  • step S1105b the MME provides the HSS + UDM with a response (e.g., response for MT SM routing) containing one or more of the above I) to IV).
  • a response e.g., response for MT SM routing
  • the HSS + UDM provides a response to the routing information to the SMS-GMSC.
  • the HSS + UDM provides both information on the SMSF and information on the MME, and also provides priority (or priority or precedence) information for them.
  • the priority information may be configured / determined based on information provided by the AMF (received through step S1105a) and information provided by the MME (received via step S1105b). At this time, operator policy and local policy can also be used (considered).
  • the HSS + UDM is either the first, second, or third case of whether the UE is connected to the 5GC or EPC Can operate. If the UE is both connected in 5GC and EPC, 5GC and EPC do not provide the same priority or provide priority information while the UE is not connected, the HSS + UDM will send the information provided by AMF and MME ii), iii), iv), II), III), IV)) may be provided to the SMS-GMSC. When the HSS + UDM provides information on the SMSF, it may provide information on the access type (eg, 3GPP access, non-3GPP access, or both).
  • the access type eg, 3GPP access, non-3GPP access, or both.
  • step S1107 based on the response obtained from the HSS + UDM, the SMS-GMSC selects / determines a serving node to which the MT SMS transmission is to be attempted. If the serving node is one (i.e., SMSF or MME), the SMS-GMSC selects the corresponding serving node for MT SMS transmission.
  • the serving node is one (i.e., SMSF or MME)
  • the SMS-GMSC selects the serving node with the highest priority for MT SMS transmission. This means the first attempted serving node. Thus, if the first transmission attempt fails, the SMS-GMSC may attempt to transmit the MT SMS to the next higher-priority serving node.
  • SMS-GMSC selects one of them for MT SMS transmission.
  • SMS-GMSC can use carrier policy, local policy / configuration information.
  • HSS + UDM a variety of information provided by the HSS + UDM is available. Alternatively, you can always select SMSF first, or always choose MME first.
  • the SMS-GMSC sends an MT SMS transmission request to the selected / determined serving node (it sends an MT SMS transfer request), followed by the following steps.
  • steps S1108a to S1110a are performed. This is in accordance with TS 23.502.
  • steps S1108b to S1109b are performed.
  • the MME receiving the MT SMS transmits the MT SMS in the NAS message to the UE when the UE is connected. Paging the UE when the UE is in the idle state, and transmitting the MT SMS in the NAS message to the UE when the UE responds.
  • Paging the UE when the UE is in the idle state and transmitting the MT SMS in the NAS message to the UE when the UE responds.
  • 3GPP standards please refer to 3GPP standards.
  • the UE registers in both EPS and 5GS. And a case in which 5 GS has registered through both 3GPP access and non-3GPP access and two accesses belong to different PLMNs (i.e., 3GPP access and N3IWF belong to different PLMNs), will be described with reference to FIG.
  • AMF and SMSF serving 3GPP access and AMF and SMSF serving non-3GPP access belong to different PLMNs.
  • AMF # 1 and SMSF # 1 serve 3GPP access and AMF # 2 and SMSF # 2 serve non-3GPP access.
  • steps S1201 - S1202 when the SMS arrives at the UE, the SC transmits it to the SMS-GMSC, and the SMS-GMSC requests routing information to the HSS + UDM to obtain routing information Message.
  • the HSS + UDM identifies the serving node supporting the SMS to the UE. If there is only one serving node (i.e., MME or SMSF), the HSS + UDM provides information on the corresponding serving node to the SMS-GMSC through step S1206. If there are a plurality of such serving nodes (both SMSF # 1, SMSF # 2 and MME), steps S1204 through S5 are performed.
  • step S1204 the HSS + UDM requests the AMF and the MME for information for MT SM routing. That is, steps S1204a, S1204b, and S1204c.
  • steps S1204a, S1204b, and S1204c The other explanation is the same as the step S1104 in the first embodiment.
  • AMF # 1 operates as in S1105a of the first embodiment.
  • the AMF # 1 serves only the 3GPP access portion for the UE, and can be interpreted as operating considering the above. Even if AMF # 1 does not provide access information in providing information, HSS + UDM can acquire access type information when AMF # 1 and / or SMSF # 1 is already registered, and information provided by corresponding AMF # It can be seen that this is for access.
  • AMF # 2 operates as in S1105a of the first embodiment.
  • the AMF # 2 serves only the non-3GPP access part for the UE, and can be interpreted as operating in consideration of this. Even if AMF # 2 does not provide access information in providing information, HSS + UDM can acquire access type information when AMF # 2 and / or SMSF # 2 is already registered. If information provided by AMF # 2 is non -3 GPP access. ≪ / RTI >
  • step S1205c the MME operates as in S1105b of the first embodiment.
  • the HSS + UDM provides a response to the routing information to the SMS-GMSC.
  • the HSS + UDM provides both the information on the two SMSFs and the information on the MME, and the priority (or priority or precedence) to provide.
  • the priority information is based on information provided by the AMF # 1 (received through step S1205a), information provided by the AMF # 2 (received through step S1205b), and information provided by the MME (received via step S1205c) .
  • operator policy and local policy can also be used.
  • the HSS + UDM can operate in either of the following:
  • the UE If the UE is connected in 3GPP access in 5GS, non-3GPP access in 5GS, or EPC, the highest priority is given to the serving node in the connected state. For example, if 3GPP access only at UE 5GS is connected, it gives highest priority to SMSF # 1.
  • priority may be given to the same priority or a higher priority may be given to either one, ≪ / RTI >
  • the HSS + UDM may not assign the same priority or provide priority information (in this case SMSF # 1, SMSF # 2, or MME) is selected by the SMS-GMSC. However, at this time, HSS + UDM is provided by the AMU # 1, AMF # 2, ii), iii), iv) (provided this information is provided), II), III), IV) ), It may be given the highest priority for a serving node based on one or more of the local policy / configuration. Or it can always give SMSF a high priority and always give MME a high priority. When the SMSF is given a high priority, it may always give the highest priority to the 3GPP access side SMSF or the non-3GPP access side SMSF.
  • priority information in this case SMSF # 1, SMSF # 2, or MME
  • HSS + UDM will not assign the same priority or provide priority information (In this case, SMS-GMSC determines which of SMSF # 1, SMSF # 2, and MME is first selected and MT SMS transmission is performed). However, at this time, HSS + UDM is provided by the AMU # 1, AMF # 2, ii), iii), iv) (provided this information is provided), II), III), IV) ), It may be given the highest priority for a serving node based on one or more of the local policy / configuration.
  • the MME can be given the highest priority (which is based on the assumption that the UE is more likely to receive a response from the EPC than to the 5GC when looking through the paging box). Or it can always give SMSF a high priority and always give MME a high priority. When the SMSF is given a high priority, it may always give the highest priority to the 3GPP access side SMSF or the non-3GPP access side SMSF.
  • the higher priority can be given to the serving nodes in the connected state. That is, a higher priority can be given to a serving node in a non-connected state (or in an idle state).
  • 3GPP access side is connected in 5GS and non 3GPP access side is connected in 5GS.
  • 3GPP access side is connected and EPC side is not connected (or idle).
  • non-3GPP access side is connected and EPC side is not connected (or idle).
  • the two serving nodes in the Connected state may be assigned the same priority or may be given a higher priority on one side.
  • various information that is, the AMF, the information provided by the MME, the information held by the HSS + UDM, and the like may be used.
  • HSS + UDM is the information provided by AMF and MME (ii), iii) if the same priority is given to multiple serving nodes in the above 2), 3) and 4) , iv), II), III), IV)) may be provided to the SMS-GMSC.
  • the HSS + UDM When the HSS + UDM provides information on the SMSF, it may provide information on the access type (eg, 3GPP access, non-3GPP access, or both).
  • the access type eg, 3GPP access, non-3GPP access, or both.
  • step S1207 based on the response obtained from the HSS + UDM, the SMS-GMSC selects / determines a serving node to which to transmit the MT SMS. If the serving node is one (i.e., SMSF or MME), the SMS-GMSC selects the corresponding serving node for MT SMS transmission.
  • the serving node is one (i.e., SMSF or MME)
  • the SMS-GMSC selects the serving node with the highest priority for the MT SMS transmission. This means the first attempted serving node. Thus, if the first transmission attempt fails, the SMS-GMSC may attempt to transmit the MT SMS to the next higher-priority serving node. If transmission to the second serving node fails, the MT SMS transmission can be attempted to the next higher priority serving node.
  • SMS-GMSC selects one of them for MT SMS transmission.
  • SMS-GMSC can use carrier policy, local policy / configuration information.
  • a variety of information provided by the HSS + UDM is available. Alternatively, you can always select SMSF first, or always choose MME first.
  • the 3GPP access side SMSF may always be selected first, or the non-3GPP access side SMSF may be selected first.
  • the SMS-GMSC requests MT SMS transmission to the selected / determined serving node, which follows the following steps.
  • steps S1208a to S1210a are performed. This is in accordance with TS 23.502.
  • steps S1208b to S1210b are performed. This is in accordance with TS 23.502.
  • steps S1208c to S1209c are performed.
  • the MME receiving the MT SMS transmits the MT SMS in the NAS message to the UE when the UE is connected. Paging the UE when the UE is in the idle state, and transmitting the MT SMS in the NAS message to the UE when the UE responds.
  • Paging the UE when the UE is in the idle state and transmitting the MT SMS in the NAS message to the UE when the UE responds.
  • 3GPP standards please refer to 3GPP standards.
  • the UE registers with 5GS. And, in 5GS, both 3GPP access and non-3GPP access are registered, and both accesses belong to different PLMNs (that is, 3GPP access and N3IWF belong to different PLMNs).
  • the proposal of the second embodiment can be applied. That is, in the second embodiment, the MME is excluded from the serving node, and the SMSF # 1 and the SMSF # 2 are considered to exist.
  • the HSS + UDM may omit the process of requesting the serving node for information on the MT SM Routing (that is, steps S1204a and S1204b).
  • the HSS + UDM may aa) grant the SMSF of the 3GPP access side a higher priority and provide it to the SMS-GMSC, or bb) give the SMSF of the Non-3GPP access side a higher priority, Cc) may give the SMSF of the 3GPP access side and the SMSF of the non-3GPP access side the same priority and provide it to the SMS-GMSC, or may not give the priority to the SMS-GMSC.
  • SMS-GMSC first selects the SMSF to attempt MT SMS transmission.
  • SMS-GMSC can select SMSF based on information (especially access type information) provided by HSS + UDM, carrier policy, local policy / configuration, and so on.
  • the SMSF on the 3GPP access side can be selected to first attempt an MT SMS transmission.
  • the reason for selecting the 3GPP access side first is that, unlike the non-3GPP access in which the paging is impossible when the UE is in the CM-IDLE state, the 3GPP access can find the UE through paging when the UE is in the CM-IDLE state. This makes it possible to give the 3GPP access serving node higher priority to the non-3GPP access serving node or to provide the 3GPP access serving node with respect to the non-3GPP access serving node, This can be a reason to choose.
  • HSS + UDM describes that all information about them is provided to SMS-GMSC.
  • the SMS-GMSC may include an indication to request the mobile station to request the routing information again.
  • the SMS-GMSC attempts to transmit the SMS (re) based on the routing information obtained from the HSS + UDM.
  • an entity other than the SMS-GMSC e.g., SMS Router, IP-SM-GW, SMS Gateway (SMS Gateway), etc. acquires routing information from the HSS + UDM and re- .
  • the SMS-GMSC can be interpreted and applied to the entity.
  • the information on the serving node provided by the HSS + UDM to the SMS-GMSC includes the identification information of the serving node.
  • the identification information for the MME the type of information conventionally provided is used. For this, see TS 29.173.
  • the identification information for the SMSF information similar to the MME identification information can be provided.
  • the MME concentrates on the case where the SMS function is supported.
  • the present invention is not limited thereto, and the SMS can be extended even in the case of the SMS over SGs.
  • the UE sends and receives SMS messages using the NAS message through the MME.
  • the content of SMS is related to TS 23.040, TS 29.338, TS 29.002, etc.
  • FIG. 13 is a diagram showing a configuration of a terminal apparatus and a network node apparatus according to a preferred embodiment of the present invention.
  • a terminal device 100 may include a transceiver 110, a processor 120, and a memory 130.
  • the transceiver 110 may be configured to transmit various signals, data, and information to an external device, and receive various signals, data, and information from the external device.
  • the terminal device 100 may be connected to an external device by wire and / or wirelessly.
  • the processor 120 may control the overall operation of the terminal device 100 and may be configured to perform a function of computing and processing information to be transmitted and received with the external device.
  • the memory 130 may store the processed information or the like for a predetermined time, and may be replaced with a component such as a buffer (not shown).
  • the processor 120 may be configured to perform the terminal operation proposed in the present invention.
  • the network node apparatus 200 may include a transceiver 210, a processor 220, and a memory 230.
  • the transceiver 210 may be configured to transmit various signals, data, and information to an external device and receive various signals, data, and information to an external device.
  • the network node device 200 may be connected to an external device in a wired and / or wireless manner.
  • the processor 220 may control the operation of the entire network node apparatus 200 and may be configured to perform a function of operating the network node apparatus 200 to process information to be transmitted and received with the external apparatus.
  • the memory 230 may store the processed information or the like for a predetermined time, and may be replaced with a component such as a buffer (not shown).
  • the processor 220 may be configured to perform the network node operations proposed in the present invention. Specifically, the processor 220 receives the information for the MT SM routing from the Access and Mobility Management Function (AMF) and the Mobility Management Entity (MME) and the HSS + UDM sends the MT SM to the AMF Wherein the HSS + UDM determines whether the UE to receive the MT SM receives the routing information from the SMS entity, The priority can be determined depending on whether or not it is connected to the 5GC or EPC.
  • AMF Access and Mobility Management Function
  • MME Mobility Management Entity
  • the specific configurations of the terminal device 100 and the network device 200 may be implemented independently of those described in the various embodiments of the present invention, or two or more embodiments may be applied at the same time, The description is omitted for the sake of clarity.
  • embodiments of the present invention can be implemented by various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
  • the method according to embodiments of the present invention may be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs) , FPGAs (Field Programmable Gate Arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • the method according to embodiments of the present invention may be implemented in the form of an apparatus, a procedure, or a function for performing the functions or operations described above.
  • the software code can be stored in a memory unit and driven by the processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

본 발명의 일 실시예는, 무선통신시스템에서 HSS+UDM (Home Subscriber Server + User Data Management) 이 EPC(Evolved Packet Core) 및 5GC(5G Core Network)에 모두 등록한 UE에 대한 MT(Mobile Terminated) SM(Short message) 서비스를 지원하는 방법에 있어서, HSS+UDM이 AMF (Access and Mobility Management Function) 및 MME (Mobility Management Entity) 로부터 MT SM 라우팅을 위한 정보를 수신하는 단계; 상기 정보에 기초하여, MT SM을 상기 AMF와 연결된 SMSF와 상기 MME 중 어느 곳으로 먼저 전송할지에 대한 우선순위를 결정하는 단계; 상기 결정된 우선순위를 포함하는 라우팅 정보를 SMS 관련 노드에게 전송하는 단계를 포함하며, 상기 HSS+UDM은 상기 MT SM을 수신할 UE가 5GC 또는 EPC에 connected 상태인지 여부에 따라 상기 우선순위를 결정하는 것일 수 있다.

Description

무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치
이하의 설명은 무선 통신 시스템에 대한 것으로, 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS를 효율적으로 전송하는 방법 및 장치에 대한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템, MC-FDMA(multi carrier frequency division multiple access) 시스템 등이 있다.
본 발명에서는 HSS+UDM이 EPC 및 5GC에 모두 등록한 UE에 대한 MT(Mobile Terminated) SM(Short message) 서비스를 지원하는 방법을 기술적 과제로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예는, 무선통신시스템에서 HSS+UDM (Home Subscriber Server + User Data Management) 이 EPC(Evolved Packet Core) 및 5GC(5G Core Network)에 모두 등록한 UE에 대한 MT(Mobile Terminated) SM(Short message) 서비스를 지원하는 방법에 있어서, HSS+UDM이 AMF (Access and Mobility Management Function) 및 MME (Mobility Management Entity) 로부터 MT SM 라우팅을 위한 정보를 수신하는 단계; 상기 정보에 기초하여, MT SM을 상기 AMF와 연결된 SMSF와 상기 MME 중 어느 곳으로 먼저 전송할지에 대한 우선순위를 결정하는 단계; 상기 결정된 우선순위를 포함하는 라우팅 정보를 SMS 관련 노드에게 전송하는 단계를 포함하며, 상기 HSS+UDM은 상기 MT SM을 수신할 UE가 5GC 또는 EPC에 connected 상태인지 여부에 따라 상기 우선순위를 결정하는 것일 수 있다.
본 발명의 일 실시예는, 무선통신시스템에서 EPC(Evolved Packet Core) 및 5GC(5G Core Network)에 모두 등록한 UE에 대한 MT(Mobile Terminated) SM(Short message) 서비스를 지원하는 HSS+UDM (Home Subscriber Server + User Data Management) 장치에 있어서, 송수신 장치; 및 프로세서를 포함하고, 상기 프로세서는, HSS+UDM이 AMF (Access and Mobility Management Function) 및 MME (Mobility Management Entity) 로부터 MT SM 라우팅을 위한 정보를 수신하고, 상기 정보에 기초하여, MT SM을 상기 AMF와 연결된 SMSF와 상기 MME 중 어느 곳으로 먼저 전송할지에 대한 우선순위를 결정하며, 상기 결정된 우선순위를 포함하는 라우팅 정보를 SMS 관련 노드에게 전송하며, 상기 HSS+UDM은 상기 MT SM을 수신할 UE가 5GC 또는 EPC에 connected 상태인지 여부에 따라 상기 우선순위를 결정하는, HSS+UDM 장치이다.
상기 UE가 5GC 또는 EPC 중 어느 하나에 connected 인 경우, 상기 HSS+UDM은 connected 상태인 코어 네트워크의 서빙 노드에 더 높은 우선순위를 설정할 수 있다.
상기 UE가 5GC 또는 EPC 모두에 connected 인 경우, 상기 HSS+UDM은 상기 SMSF와 상기 MME의 우선순위를 동일하게 설정할 수 있다.
상기 SMSF와 상기 MME의 우선순위가 동일한 경우, 상기 MT SM을 상기 SMSF와 MME 중 어느 곳으로 라우팅 할지 결정은 상기 SMS-GMSC에 위임될 수 있다.
상기 UE가 5GC 및 EPC에 모두 connected 상태가 아닌 경우, 상기 HSS+UDM은 상기 UE가 5GC로 PDN connection을 이동시키는 동작을 수행한 가장 최근 시각과 UE가 5GC에서 EPC로 PDU session을 이동시키는 동작을 수행한 가장 최근 시각을 비교하여, 상기 우선순위를 결정할 수 있다.
상기 HSS+UDM은 상기 UE가 EPC에서 5GC로 PDN connection을 이동시키는 동작을 수행한 가장 최근 시각 보다 UE가 5GC에서 EPC로 PDU session을 이동시키는 동작을 수행한 가장 최근 시각이 늦은 경우, 상기 MME가 더 높은 우선순위를 갖는 것으로 결정될 수 있다.
상기 AMF로부터 수신된 MT SM 라우팅을 위한 정보는, 상기 UE 가 CM-CONNECTED 상태인지 여부, 상기 UE가 registration을 수행한 가장 최근 시각, 상기 UE가 CM-IDLE 상태가 된 가장 최근 시각, 상기 UE가 EPC에서 5GC로 PDN connection을 이동시키는 동작을 수행한 가장 최근 시각 중 하나 이상을 포함할 수 있다.
상기 MME로부터 수신된 MT SM 라우팅을 위한 정보는, UE가 ECM-CONNECTED 상태인지 여부, 상기 UE가 attach 또는 TAU를 수행한 가장 최근 시각, 상기 UE가 ECM-IDLE 상태가 된 가장 최근 시각, 상기 UE가 5GC에서 EPC로 PDU session을 이동시키는 동작을 수행한 가장 최근 시각 중 하나 이상을 포함할 수 있다.
상기 AMF와 연결된 SMSF 및 MME는 상기 UE에게 SMS를 지원하는 서빙 노드에 해당할 수 있다.
상기 SMS 관련 노드는, SMS-GMSC, SMS Router, IP-SM-GW, SMS-GW(SMS-Gateway) 중 하나일 수 있다.
상기 UE가 상기 5GC registration을 수행한 가장 최근 시각보다 상기 UE가 attach 또는 TAU를 수행한 가장 최근 시각이 늦은 경우, 상기 MME가 더 높은 우선순위를 갖는 것으로 결정될 수 있다.
상기 UE가 CM-IDLE 상태가 된 가장 최근 시각보다 상기 UE가 ECM-IDLE 상태가 된 가장 최근 시각이 늦은 경우, 상기 MME가 더 높은 우선순위를 갖는 것으로 결정될 수 있다.
본 발명에 따르면, EPC 및 5GC에 모두 등록한 UE가 실제로 존재할 가능성이 큰 네트워크를 SMS를 라우팅할 네트워크로 선택함으로써, 불필요한 시그널링, 자원 사용을 줄일 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 도면은 본 발명에 대한 이해를 제공하기 위한 것으로서 본 발명의 다양한 실시형태들을 나타내고 명세서의 기재와 함께 본 발명의 원리를 설명하기 위한 것이다.
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도 3은 제어 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 4는 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
도 5는 랜덤 액세스 과정을 설명하기 위한 흐름도이다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타내는 도면이다.
도 7은 5G 시스템을 설명하기 위한 도면이다.
도 8은 UE가 로밍하지 않은 경우의 5G System과 EPS 간의 연동 아키텍처를 도시한다.
도 9는 5GC에서 SMS over NAS를 도시한다.
도 10은 MME에 관련된 SMS over NAS를 도시한다.
도 11 내지 도 12는 본 발명의 실시예들을 설명하기 위한 도면이다.
도 13는 본 발명의 실시예에 따른 노드 장치에 대한 구성을 예시한 도면이다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 IEEE(Institute of Electrical and Electronics Engineers) 802 계열 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A 시스템 및 3GPP2 시스템 중 적어도 하나에 관련하여 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 다양한 무선 통신 시스템에서 사용될 수 있다. 명확성을 위하여 이하에서는 3GPP LTE 및 3GPP LTE-A 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
본 문서에서 사용되는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술.
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 PS(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE/UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: GERAN/UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: E-UTRAN의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- UE(User Equipment): 사용자 기기. UE는 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수도 있다. 또한, UE는 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트 폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 UE 또는 단말이라는 용어는 MTC 디바이스를 지칭할 수 있다.
- HNB(Home NodeB): UMTS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀(micro cell) 규모이다.
- HeNB(Home eNodeB): EPS 네트워크의 기지국으로서 옥내에 설치하며 커버리지는 마이크로 셀 규모이다.
- MME(Mobility Management Entity): 이동성 관리(Mobility Management; MM), 세션 관리(Session Management; SM) 기능을 수행하는 EPS 네트워크의 네트워크 노드.
- PDN-GW(Packet Data Network-Gateway)/PGW: UE IP 주소 할당, 패킷 스크리닝(screening) 및 필터링, 과금 데이터 취합(charging data collection) 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- SGW(Serving Gateway): 이동성 앵커(mobility anchor), 패킷 라우팅(routing), 유휴(idle) 모드 패킷 버퍼링, MME가 UE를 페이징하도록 트리거링하는 기능 등을 수행하는 EPS 네트워크의 네트워크 노드.
- NAS(Non-Access Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 단(stratum). LTE/UMTS 프로토콜 스택에서 UE와 코어 네트워크간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층으로서, UE의 이동성을 지원하고, UE와 PDN GW 간의 IP 연결을 수립(establish) 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
- PDN(Packet Data Network): 특정 서비스를 지원하는 서버(예를 들어, MMS(Multimedia Messaging Service) 서버, WAP(Wireless Application Protocol) 서버 등)가 위치하고 있는 네트워크.
- PDN 연결: 하나의 IP 주소(하나의 IPv4 주소 및/또는 하나의 IPv6 프리픽스)로 표현되는, UE와 PDN 간의 논리적인 연결.
- RAN(Radio Access Network): 3GPP 네트워크에서 NodeB, eNodeB 및 이들을 제어하는 RNC(Radio Network Controller)를 포함하는 단위. UE 간에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 아이덴티티 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- PLMN(Public Land Mobile Network): 개인들에게 이동통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- Proximity Service (또는 ProSe Service 또는 Proximity based Service): 물리적으로 근접한 장치 사이의 디스커버리 및 상호 직접적인 커뮤니케이션 또는 기지국을 통한 커뮤니케이션 또는 제 3의 장치를 통한 커뮤니케이션이 가능한 서비스. 이때 사용자 평면 데이터(user plane data)는 3GPP 코어 네트워크(예를 들어, EPC)를 거치지 않고 직접 데이터 경로(direct data path)를 통해 교환된다.
- eRelay-UE: a Layer 2 relay in which a UE supports Indirect 3GPP Communication between an eRemote-UE and the 3GPP network, using E-UTRA, WLAN or Bluetooth between the eRemote-UE and the relay. 본 발명에서는 ProSe UE-to-Network Relay, UE-to-Network Relay, Relay, Relay UE, eRelay, Evolved ProSe UE-to-Network Relay 등으로 일컬어질 수 있다.
- eRemote-UE: a UE that is connected to a network using an Indirect 3GPP Communication. 본 발명에서는 ProSe Remote UE, Remote UE, Remote, eRemote, Evolved ProSe Remote UE 등으로 일컬어질 수 있다.
- Model A discovery: involves one UE announcing ‘I am here’. 이 모델은 ProSe direct 디스커버리에 참여하는 ProSe-enabled UEs의 두 가지 역할을 정의한다. 첫번째는, proximity 에서 디스커버리가 허용된 UE가 사용하는 정보들을 announce하는 Announcing UE이다. 두 번째는, announcing UE의 proximity에서 이러한 정보에 관심이 있는 Monitoring UE이다.
- Model B discovery: involves one UE asking ‘who is there’ and/or ‘are you there’. 이 모델은 ProSe direct 디스커버리에 참여하는 ProSe-enabled UEs의 두 가지 역할을 정의한다. 첫 번째로, 디스커버리를 위해 관심있는 것에 대한 정보를 포함하는 요청을 전송하는 Discoverer UE이다. 두 번째는, 디스커버러의 요청에 관련된 정보에 응답하는 요청 메시지를 수신하는 Discoveree UE이다. EPC(Evolved Packet Core)
도 1은 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 개략적인 구조를 나타내는 도면이다.
EPC는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 캐퍼빌리티를 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 캐퍼빌리티(capability)를 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS(IP Multimedia Subsystem))을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW(또는 S-GW)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 캐퍼빌리티를 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
레퍼런스 포인트 설명
S1-MME E-UTRAN와 MME 간의 제어 플레인 프로토콜에 대한 레퍼런스 포인트(Reference point for the control plane protocol between E-UTRAN and MME)
S1-U 핸드오버 동안 eNB 간 경로 스위칭 및 베어러 당 사용자 플레인 터널링에 대한 E-UTRAN와 SGW 간의 레퍼런스 포인트(Reference point between E-UTRAN and Serving GW for the per bearer user plane tunnelling and inter eNodeB path switching during handover)
S3 유휴(idle) 및/또는 활성화 상태에서 3GPP 액세스 네트워크 간 이동성에 대한 사용자 및 베어러 정보 교환을 제공하는 MME와 SGSN 간의 레퍼런스 포인트. 이 레퍼런스 포인트는 PLMN-내 또는 PLMN-간(예를 들어, PLMN-간 핸드오버의 경우)에 사용될 수 있음) (It enables user and bearer information exchange for inter 3GPP access network mobility in idle and/or active state. This reference point can be used intra-PLMN or inter-PLMN (e.g. in the case of Inter-PLMN HO).)
S4 (GPRS 코어와 SGW의 3GPP 앵커 기능 간의 관련 제어 및 이동성 지원을 제공하는 SGW와 SGSN 간의 레퍼런스 포인트. 또한, 직접 터널이 수립되지 않으면, 사용자 플레인 터널링을 제공함(It provides related control and mobility support between GPRS Core and the 3GPP Anchor function of Serving GW. In addition, if Direct Tunnel is not established, it provides the user plane tunnelling.)
S5 SGW와 PDN GW 간의 사용자 플레인 터널링 및 터널 관리를 제공하는 레퍼런스 포인트. 단말 이동성으로 인해, 그리고 요구되는 PDN 연결성을 위해서 SGW가 함께 위치하지 않은 PDN GW로의 연결이 필요한 경우, SGW 재배치를 위해서 사용됨(It provides user plane tunnelling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to UE mobility and if the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity.)
S11 MME와 SGW 간의 레퍼런스 포인트
SGi PDN GW와 PDN 간의 레퍼런스 포인트. PDN은, 오퍼레이터 외부 공용 또는 사설 PDN이거나 예를 들어, IMS 서비스의 제공을 위한 오퍼레이터-내 PDN일 수 있음. 이 레퍼런스 포인트는 3GPP 액세스의 Gi에 해당함(It is the reference point between the PDN GW and the packet data network. Packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IMS services. This reference point corresponds to Gi for 3GPP accesses.)
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 평면에 제공하는 레퍼런스 포인트이다.
도 2는 일반적인 E-UTRAN과 EPC의 아키텍처를 나타낸 예시도이다.
도시된 바와 같이, eNodeB는 RRC(Radio Resource Control) 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 업링크 및 다운링크에서의 자원을 UE에게 동적 할당, eNodeB의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, SAE 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
도 3은 단말과 기지국 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고, 도 4는 단말과 기지국 사이의 사용자 평면에서의 무선 인터페이스 프로토콜의 구조를 나타낸 예시도이다.
상기 무선 인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling) 전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신 시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과, 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
제2계층에는 여러 가지 계층이 존재한다.
먼저 제2계층의 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면(Control Plane)의 정보를 전송하는 제어채널(Control Channel)과 사용자평면(User Plane)의 정보를 전송하는 트래픽채널(Traffic Channel)로 나뉜다.
제2 계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다.
제2 계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC유휴 모드(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on)한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도, 데이터 전송 시도 등이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 eSM (evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 또는/그리고 GBR(guaranteed bit rate)의 QoS 특성을 가진다.
도 5는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE가 기지국과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE는 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB로 전송한다. UE는 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE는 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB는 랜덤 액세스 응답(random access response, RAR)을 UE로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE는 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE는 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 6은 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 6에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE의 RRC 계층의 엔티티(entity)가 eNodeB의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 모드(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE는 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE를 효과적으로 제어할 수 있다. 반면에 유휴 모드(idle state)의 UE는 eNodeB가 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 모드(idle state) UE는 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE의 전원을 맨 처음 켰을 때, 상기 UE는 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 모드(idle state)에 머무른다. 상기 유휴 모드(idle state)에 머물러 있던 UE는 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정(RRC connection procedure)을 통해 eNodeB의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 모드(Idle state)에 있던 UE가 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 모드(idle state)의 UE가 상기 eNodeB와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE가 eNodeB로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB가 UE로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE가 eNodeB로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 6을 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 모드(Idle state)의 UE는 통화 시도, 데이터 전송 시도, 또는 eNodeB의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE는 RRC 연결 요청(RRC connection request) 메시지를 eNodeB로 전송한다.
2) 상기 UE로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB는 무선 자원이 충분한 경우에는 상기 UE의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE로 전송한다.
3) 상기 UE가 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE가 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE는 eNodeB과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
종래 EPC에서의 MME는 Next Generation system(또는 5G CN(Core Network))에서는 AMF(Core Access and Mobility Management Function)와 SMF(Session Management Function)로 분리되었다. 이에 UE와의 NAS interaction 및 MM(Mobility Management)은 AMF가, 그리고 SM(Session Management)은 SMF가 수행하게 된다. 또한 SMF는 user-plane 기능을 갖는, 즉 user traffic을 라우팅하는 gateway인 UPF(User Plane Function)를 관리하는데, 이는 종래 EPC에서 S-GW와 P-GW의 control-plane 부분은 SMF가 담당하고, user-plane 부분은 UPF가 담당하는 것으로 간주할 수 있다. User traffic의 라우팅을 위해 RAN과 DN(Data Network) 사이에 UPF는 하나 이상이 존재할 수 있다. 즉, 종래 EPC는 5G에서 도 7에 예시된 바와 같이 구성될 수 있다. 또한, 종래 EPS에서의 PDN connection에 대응하는 개념으로 5G system에서는 PDU(Protocol Data Unit) session이 정의되었다. PDU session은 IP type 뿐만 아니라 Ethernet type 또는 unstructured type의 PDU connectivity service를 제공하는 UE와 DN 간의 association을 일컫는다. 그 외에 UDM(Unified Data Management)은 EPC의 HSS에 대응되는 기능을 수행하며, PCF(Policy Control Function)은 EPC의 PCRF에 대응되는 기능을 수행한다. 물론 5G system의 요구사항을 만족하기 위해 그 기능들이 확장된 형태로 제공될 수 있다. 5G system architecture, 각 function, 각 interface에 대한 자세한 사항은 TS 23.501을 준용한다.
5G 시스템은 TS 23.501 및 TS 23.502에 작업되고 있다. 특히, 5G system (즉, next generation system)은 기존의 시스템인 EPS와의 interworking을 지원해야 한다. 이는 통상적으로 새로운 이동통신 시스템을 포설 시 초기에는 사업자가 서비스해야 하는 전지역에 포설하기 여의치 않은 바, UE가 새로운 이동통신 시스템의 서비스 지역을 벗어나면 기존의 이동통신 시스템으로부터 서비스를 받도록 해야 하기 때문이다. 또는 서비스의 종류에 따라 어떤 서비스 (예, 데이터 서비스)는 신규 이동통신 시스템으로 제공하고 어떤 서비스 (예, 음성 서비스)는 기존의 이동통신 시스템으로 제공하도록 망을 구성할 수도 있다.
TS 23.501v1.1.0의 4.3절에서는 5G System이 EPS와 연동하는 아키텍처를 보여주고 있으며, 도 8은 UE가 로밍하지 않은 경우의 5G System과 EPS 간의 연동 아키텍처이다. 여기서 MME와 AMF 간에 인터페이스, 즉 Core Network 간의 인터페이스인 N26이 있는데, 이는 사업자의 선택에 따라 지원할 수도 있고, 지원하지 않을 수도 있다.
TS 23.501v1.1.0의 5.17.2절에서는 N26 인터페이스가 지원되는 경우 및 지원되지 않는 경우에 5G System (5GS)과 EPS 간의 연동을 기술하고 있다. 즉, UE가 5GS (또는 5GC, 5G Core, 이하 5GS와 5GC는 혼용되어 사용될 수 있음)에서 EPS (또는 EPC, 이하 EPS와 EPC는 혼용되어 사용될 수 있음)로 변경하여 서비스를 받도록 하는 동작 및 그 반대의 경우 동작에 대해 기술하고 있다. 특히, 5GC NAS도 지원하고 EPC NAS도 지원하는 UE (즉, 5GS에 연결될 수 있는 기능과 EPS에 연결될 수 있는 기능을 모두 갖는 UE)는 single-registration mode로 동작할 수도 있고, dual-registration mode로 동작할 수도 있다. 다음 표 2는 N26 인터페이스가 지원되지 않는 경우 dual-registration 모드의 UE의 지원에 대한 내용으로 TS 23.501v1.1.0의 일부이다.
Figure PCTKR2018008240-appb-I000001
또한, 5G System에서도 SMS를 지원해야 한다.
SMS over NAS는 control plane으로 SMS를 전송하는 방식으로 이와 대비되는 방식으로는 IMS를 이용하여 user plane으로 SMS를 전송하는 방식이 있다.
5GC에서 SMS over NAS는 도 9에 도시되어 있으며, 이에 대한 내용은 TS 23.501v1.1.0의 4.4.2절 (SMS over NAS) 및 TS 23.502v0.5.0의 4.13.3절 (SMS over NAS procedure)을 참고하기로 한다.
다음 표 3는 UE가 5GC에 등록 시 UE를 serving하는 AMF가 UDM으로 자신이 UE의 MM(Mobility Management) serving node임을 등록하고, 또한 UE에게 SMS 전송을 지원해 주기 위해 SMSF를 선택하면, 해당 SMSF가 UDM으로 자신이 UE의 SMS serving node임을 등록하는 절차 및 상기의 등록이 해제되는 동작에 대한 설명으로써, TS 23.502에서 개시된 내용이다.
Figure PCTKR2018008240-appb-I000002
또한, 다음 표 4 내지 표 6은 MT SMS를 3GPP access를 통해서 또는 non-3GPP access를 통해서 전송하는 절차를 보여준다 (TS 23.502에서 발췌).
Figure PCTKR2018008240-appb-I000003
Figure PCTKR2018008240-appb-I000004
Figure PCTKR2018008240-appb-I000005
EPC에서의 SMS over NAS는 MME가 SMS 기능을 지원하는 경우와 그렇지 않은 경우로 나눌 수 있다. MME가 SMS 기능을 지원하는 경우는 MME가 SMS protocol stack을 지원하는 것으로 도 10(a)에 도시된 바와 같은 아키텍처에 따라 SMS가 전송된다. 자세한 사항은 TS 23.272의 Annex C (normative): SMS in MME를 참고한다.
MME가 SMS 기능을 지원하지 않는 경우는 MME에 SMS protocol stack이 없는 경우로, 도 10(b)에 도시된 바와 같은 아키텍처에 따라 SMS가 전송된다. 이를 SMS over SGs라고도 하며, 자세한 사항은 TS 23.272를 참고한다.
다음 표 7 내지 표 9는 UE가 EPC에 등록 시 UE를 serving하는 MME가 SMS 기능을 지원하는 경우 MME가 HSS로 자신이 UE의 serving node임을 등록하는 절차 및 상기의 등록이 해제되는 절차에 대한 설명으로, TS 23.272에서 발췌된 것이다.
Figure PCTKR2018008240-appb-I000006
Figure PCTKR2018008240-appb-I000007
Figure PCTKR2018008240-appb-I000008
앞서 살펴본 바와 같이 UE로 향하는 MT SMS가 SC (SMS의 service center)에 도착하면 이는 SMS-GMSC로 전송된다. 그러면 SMS-GMSC는 HSS/UDM에게 MT SMS를 어떤 node로 전송해야 할지 문의한다. 즉, routing 정보를 요청한다. 그러면 HSS/UDM은 UE에게 SMS를 지원하는 serving node를 확인하여 이에 대한 정보를 SMS-GMSC에게 제공한다.
이러한 경우, 만약, UE가 EPC에만 등록했고, MME가 UE에게 SMS 기능을 지원하는 것으로 HSS에 등록했다면 HSS는 SMS-GMSC에게 해당 MME에 대한 정보를 제공하고, SMS-GMSC는 이 MME에게 MT SMS를 전송하여 UE로의 전달을 요청할 것이다. 만약, UE가 5GC에만 등록했다면, UDM은 SMS-GMSC에게 SMSF에 대한 정보를 제공하고 SMS-GMSC는 이 SMSF에게 MT SMS를 전송하여 UE로의 전달을 요청할 것이다.
그러나, 만약 UE가 EPC 및 5GC에 모두 등록한 경우, 즉 dual-registration mode로 동작하는 UE가 두 Core Network에 모두 등록한 경우, HSS+UDM (이는 두개의 CN에서 공유하는 또는 접근 가능한 가입자 정보 DB)에는 SMS를 지원하는 serving node로 MME 및 SMSF 모두 등록되어 있을 수 있다. 이 경우, MT SMS를 어떤 CN으로 또는 어떤 serving node로 전달해야 하는지가 불명확하다. 이에 TS 23.501v1.3.0의 5.17.2.3.3절(Mobility for UEs in dual-registration mode)에서는 어떤 네트워크로 control plane 요청을 먼저 전달할지는 network configuration이라고 기술되어 있다. (When sending a control plane request for MT services (e.g. MT SMS) the network routes it via either the EPC or the 5GC. In absence of UE response, the network should attempt routing the control plane request via the other system. NOTE 5: The choice of the system through which the network attempts to deliver the control plane request first is left to network configuration). 다만, 이와 같이 네트워의 선택에만 일임해 놓는 경우, 보다 가능성이 높은 네트워크로 요청을 전달하는 것에 비해 불필요한 시그널링의 반복, 리소스의 낭비 등이 발생하므로, 해결책이 필요하다.
실시예 1
이하에서는, 본 발명의 일 실시예에 의한 EPC(Evolved Packet Core) 및 5GC(5G Core Network)에 모두 등록한 UE에 대한 MT(Mobile Terminated) SM(Short message) 서비스를 지원하는 방법에 대해 설명한다. 특히, 실시예 1은 5GS에서는 3GPP access 또는 non-3GPP access 중 하나의 access를 통해 등록했거나 두 access 모두를 통해 등록했으나 두 access가 동일한 PLMN에 속하는 경우에 대한 것이다. 이하에서 HSS+UDM를 위주로 설명되는 부분은 다른 네트워크 노드를 위주로도 이해될 수 있다. 예를 들어, HSS+UDM이 SC로부터 신호를 수신한다는 것은, SC가 해당 신호를 HSS+UDM으로 전송함으로 해석되어야만 한다.
HSS+UDM은 AMF 및 MME 로부터 MT SM 라우팅을 위한 정보를 수신하고, 상기 정보에 기초하여, MT SM을 상기 AMF와 연결된 SMSF와 상기 MME 중 어느 곳으로 먼저 전송할지에 대한 우선순위를 결정할 수 있다. 그리고 상기 결정된 우선순위를 포함하는 라우팅 정보를 SMS 관련 노드에게 전송할 수 있다.
즉, 종래 기술에서 MT SMS를 어떤 CN으로 또는 어떤 serving node로 전달해야 하는지가 불명확했던 것을, HSS+UDM가 우선순위를 결정하고 이를 시그널링 함으로써 해결하는 것이다. 여기서, 우선순위가 어떻게 결정되는지와 관련해, 상기 HSS+UDM은 상기 MT SM을 수신할 UE가 5GC 또는 EPC에 connected 상태인지 여부에 따라 상기 우선순위를 결정할 수 있다.
첫 번째 경우로써, 만약 상기 UE가 5GC 또는 EPC 중 어느 하나에 connected 인 경우, 상기 HSS+UDM은 connected 상태인 코어 네트워크의 서빙 노드에 더 높은 우선순위를 설정할 수 있다. 즉, 5GC와 EPC 중 어느 한쪽에서 UE가 connected 상태면, connected 상태인 CN의 serving node에 더 높은 우선순위를 부여한다. 예를 들어, 5GC에서만 UE가 connected 상태면, SMSF에 대한 우선순위를 MME 대비 더 높게 설정한다.
두 번째 경우로써, 만약 상기 UE가 5GC 또는 EPC 모두에 connected 인 경우, 상기 HSS+UDM은 상기 SMSF와 상기 MME의 우선순위를 동일하게 설정할 수 있으며, 상기 SMSF와 상기 MME의 우선순위가 동일한 경우, 상기 우선순위의 결정은 상기 SMS-GMSC에 의해 수행될 수 있다. 또는, 5GC와 EPC에서 모두 UE가 connected 상태면, HSS+UDM은 우선순위를 동일하게 부여하거나 우선순위 정보를 제공하지 않을 수 있다 (이 경우 SMSF와 MME 중 어느쪽을 먼저 선택하여 MT SMS 전송을 할지는 SMS-GMSC가 결정). 그러나, 이 때 HSS+UDM은 AMF가 제공한 (후술되는, MT SM 라우팅을 위한 정보 요청에 대해 AMF가 응답에 포함시킨 정보들) ii), iii), iv) (이러한 정보를 제공했다면), MME가 제공한 (후술되는, MT SM 라우팅을 위한 정보 요청에 대해 MME가 응답에 포함시킨 정보들) II), III), IV) (이러한 정보를 제공했다면), local policy/configuration 중 하나 이상에 기반하여 한쪽의 serving node에 대해 더 높은 우선순위를 부여할 수도 있다. 또는 항상 SMSF에게 높은 우선순위를 줄 수도 있고, 항상 MME에게 높은 우선순위를 줄 수도 있다.
세 번째 경우로써, 5GC와 EPC에서 모두 UE가 connected 상태가 아니면HSS+UDM은 AMF가 제공한 (후술되는, MT SM 라우팅을 위한 정보 요청에 대해 AMF가 응답에 포함시킨 정보들) ii), iii), iv), MME가 제공한 (후술되는, MT SM 라우팅을 위한 정보 요청에 대해 MME가 응답에 포함시킨 정보들) II), III), IV), local policy/configuration 중 하나 이상에 기반하여, MME와 SMSF 중 어느 한쪽의 serving node에 대해 더 높은 우선순위를 부여할 수도 있다.
구체적인 예로써, 상기 UE가 5GC 및 EPC에 모두 connected 상태가 아닌 경우, 상기 HSS+UDM은 상기 UE가 5GC로 PDN connection을 이동시키는 동작을 수행한 가장 최근 시각과 UE가 5GC에서 EPC로 PDU session을 이동시키는 동작을 수행한 가장 최근 시각을 비교하여, 상기 우선순위를 결정할 수 있다. 상기 HSS+UDM은 상기 UE가 5GC로 PDN connection을 이동시키는 동작을 수행한 가장 최근 시각 보다 UE가 5GC에서 EPC로 PDU session을 이동시키는 동작을 수행한 가장 최근 시각이 늦은 경우, 상기 MME가 더 높은 우선순위를 갖는 것으로 결정될 수 있다. 다시 말해, UE가 EPC에서 5GC로 PDN connection을 이동시키는 동작을 수행한 가장 최근 (또는 마지막) 시각 보다 UE가 5GC에서 EPC로 PDU session을 이동시키는 동작을 수행한 가장 최근 (또는 마지막) 시각이 더 늦다면 (즉, 더 최근이라면), MME에 더 높은 우선순위를 부여할 수 있다 (이는 UE를 paging을 통해 찾을 시 5GC 보다는 EPC로부터 응답을 받을 가능성이 더 크다는 전제를 기반으로 함). 또는 항상 SMSF에게 높은 우선순위를 줄 수도 있고, 항상 MME에게 높은 우선순위를 줄 수도 있다.
또는, 상기 UE가 상기 5GC registration을 수행한 가장 최근 시각보다 상기 UE가 attach 또는 TAU를 수행한 가장 최근 시각이 늦은 경우, 상기 MME가 더 높은 우선순위를 갖는 것으로 결정될 수 있다. 또는, 상기 UE가 CM-IDLE 상태가 된 가장 최근 시각보다 상기 UE가 ECM-IDLE 상태가 된 가장 최근 시각이 늦은 경우, 상기 MME가 더 높은 우선순위를 갖는 것으로 결정될 수 있다.
상기와 같이 우선순위를 결정함으로써, UE가 응답을 받을 수 있는 가능성이 보다 높은 네트워크로 MT SM 을 전송할 수 있다.
한편, 5GC와 EPC에서 모두 UE가 connected 상태가 아닌 경우에도 (또는 idle 상태면), HSS+UDM은 우선순위를 동일하게 부여하거나 우선순위 정보를 제공하지 않을 수 있다 (이 경우 SMSF와 MME 중 어느쪽을 먼저 선택하여 MT SMS 전송을 할지는 SMS-GMSC가 결정).
상기 AMF로부터 수신된 MT SM 라우팅을 위한 정보는, 상기 UE 가 CM-CONNECTED 상태인지 여부, 상기 UE가 registration을 수행한 가장 최근 시각, 상기 UE가 CM-IDLE 상태가 된 가장 최근 시각, 상기 UE가 EPC에서 5GC로 PDN connection을 이동시키는 동작을 수행한 가장 최근 시각 중 하나 이상을 포함할 수 있다. 구체적으로, AMF는 다음 i)~iv) 중 하나 이상의 정보를 포함하는 응답(예를 들어, response for MT SM routing)을 HSS+UDM에게 제공할 수 있는데, 이하 i)~iv) 각 정보에 대해 상세히 살펴본다.
i) UE가 CM-CONNECTED 상태인지 여부 : 여기서 UE가 CM-CONNECTED 상태에 있다는 것은 UE가 reachable함 또는 UE가 available함을 의미할 수도 있다. UE가 CM-CONNECTED 상태인지 여부를 제공하는 대신 또는 추가적으로 UE의 reachable 여부 또는 available 여부를 제공할 수도 있다. 추가적으로 UE가 CM-CONNECTED 상태인 access 정보를 포함할 수 있다 (예, 3GPP access, non-3GPP access 등). 또는 각 access에 대해 CM-CONNECTED 상태를 제공하는 대신, 최소 하나의 access에 대해 CM-CONNECTED 상태면 UE가 CM-CONNECTED 상태라고 알릴 수도 있다 (이는 5GC에서 UE가 CM-CONNECTED 상태인 것으로 해석될 수 있다).
ii) UE가 registration을 수행한 가장 최근 (또는 마지막) 시각 : 여기에서 registration은 모든 형태의 registration (즉, initial, periodic, mobility, handover 등)을 포함할 수 있다. 추가적으로 UE가 어떤 access를 통해 registration을 수행했는지에 대한 정보를 포함할 수 있다. 또는 각 access에 대해 상기의 정보를 제공하는 대신, 모든 access에 걸쳐 registration을 수행한 가장 최근 (또는 마지막) 시각을 알릴 수도 있다 (이는 5GC에서 UE가 마지막으로 registration을 수행한 시각으로 해석될 수 있다).
iii) UE가 CM-CONNECTED 상태에서 CM-IDLE 상태가 된 가장 최근 (또는 마지막) 시각 : 이는 UE가 가장 최근에 CM-CONNECTED 상태였던 시각으로 해석할 수 있다. 추가적으로 UE가 어떤 access를 통해 CM-IDLE 상태로 전환했는지에 대한 정보를 포함할 수 있다. 또는 각 access에 대해 상기의 정보를 제공하는 대신, 모든 access에 걸쳐 CM-IDLE 상태가 된 가장 최근 (또는 마지막) 시각을 알릴 수도 있다 (이는 5GC에서 UE가 마지막으로 CM-IDLE 상태가 된 시각으로 해석될 수 있다).
iv) UE가 EPC에서 5GC로 PDN connection을 이동시키는 동작을 수행한 가장 최근 (또는 마지막) 시각 : 상기에서 EPC에서 5GC로 PDN connection을 이동시키는 것은 EPC에 생성되어 있던 PDN connection을 5GC에서 PDU session으로 생성하는 것을 의미할 수 있다. 또한, 이는 서로 동일한 APN/DNN을 사용하는 PDN connection/PDU session을 의미할 수 있다. 추가적으로 UE가 어떤 access를 통해 PDN connection을 이동시켰는지에 대한 정보를 포함할 수 있다. 또는 각 access에 대해 상기의 정보를 제공하는 대신, 모든 access에 걸쳐 PDN connection을 이동시킨 가장 최근 (또는 마지막) 시각을 알릴 수도 있다 (이는 5GC에서 UE가 마지막으로 EPC로부터 PDN connection을 이동시킨 시각으로 해석될 수 있다). 상기에서 PDU connection과 PDU session 간 이동은 handover 동작으로 해석될 수 있다.
상기 ii), iii), iv) 정보는 UE가 특정 access에 대해 CM-CONNECTED 상태가 아닌 경우 (또는 CM-IDLE 상태인 경우)에만 제공할 수도 있고, CM 상태에 상관없이 항상 제공할 수도 있다. 상기 i) ~ iv) 정보 외에도 다음과 같은 다양한 정보가 제공될 수 있다. 예를 들어, UE가 3GPP access에 대해 CM-CONNECTED 상태이고, non-3GPP access에 대해 CM-IDLE 상태인 경우 AMF는 UE가 3GPP access에서 CM-CONNECTED 상태임, UE가 non-3GPP access에서 CM-CONNECTED 상태가 아님 (또는 CM-IDLE 상태임, 이 정보는 명시적으로 제공되지 않음으로써 상태가 지시될 수 있다. 즉, 이런 정보를 제공하지 않음으로써 UE가 non-3GPP access에서 CM-CONNECTED 상태가 아님을 표현할 수도 있다), UE가 non-3GPP access를 통해 registration을 수행한 가장 최근 (또는 마지막) 시각, UE가 non-3GPP access에서 CM-CONNECTED 상태에서 CM-IDLE 상태가 된 가장 최근 (또는 마지막) 시각 중 적어도 하나의 정보를 HSS+UDM에게 제공할 수 있다.
또한, 상기 MME로부터 수신된 MT SM 라우팅을 위한 정보는, UE가 ECM-CONNECTED 상태인지 여부, 상기 UE가 attach 또는 TAU를 수행한 가장 최근 시각, 상기 UE가 ECM-IDLE 상태가 된 가장 최근 시각, 상기 UE가 PDU session을 이동시키는 동작을 수행한 가장 최근 시각 중 하나 이상을 포함할 수 있다. 즉, MME는 다음 I) ~ IV) 중 하나 이상의 정보를 포함하는 응답(예를 들어, response for MT SM routing)을 HSS+UDM에게 제공할 수 있는데, 이하 I) ~ IV)에 대해 상술한다.
I) UE가 ECM-CONNECTED 상태인지 여부 : 여기서 UE가 ECM-CONNECTED 상태에 있다는 것은 UE가 reachable함, 또는 UE가 available함을 의미할 수도 있다. UE가 ECM-CONNECTED 상태인지 여부를 제공하는 대신, 또는 추가로 UE의 reachable 여부 또는 available 여부를 제공할 수도 있다.
II) UE가 attach 또는 TAU를 수행한 가장 최근 (또는 마지막) 시각 : 여기에서 attach는 모든 형태의 attach (즉, initial, handover 등)을 포함할 수 있다. 여기에서 TAU는 모든 형태의 TAU (즉, periodic, mobility 등)을 포함할 수 있다.
III) UE가 ECM-CONNECTED 상태에서 ECM-IDLE 상태가 된 가장 최근 (또는 마지막) 시각 : 이는 UE가 가장 최근에 ECM-CONNECTED 상태였던 시각으로 해석할 수 있다.
IV) UE가 5GC에서 EPC로 PDU session을 이동시키는 동작을 수행한 가장 최근 (또는 마지막) 시각 : 상기에서 5GC에서 EPC로 PDU session을 이동시키는 것은 5GC에 생성되어 있던 PDU session을 EPC에서 PDN connection으로 생성하는 것을 의미할 수 있다. 또한, 이는 서로 동일한 APN/DNN을 사용하는 PDN connection/PDU session을 의미할 수 있다. 상기에서 PDU connection과 PDU session 간 이동은 handover 동작으로 해석될 수 있다.
상기의 II), III), IV)는 UE가 ECM-CONNECTED 상태인 경우에만 제공할 수도 있고, ECM 상태에 상관없이 항상 제공할 수도 있다. 상기 I) ~ IV) 외에도 다양한 정보가 제공될 수 있다.
도 11에는 첫 번째 실시예와 관련하여, 각 네트워크 노드들의 시그널링이 어떻게 이루어지는지 구체적인 예가 도시되어 있다. 도 11을 참조하면, 단계 S1101- S1102에서, UE로의 SMS가 도착하면 SC는 이를 SMS-GMSC로 전송하고, SMS-GMSC는 이를 어디로 전송해야 할지 routing 정보를 얻기 위해 HSS+UDM으로 routing 정보를 요청하는 메시지를 전송한다.
단계 S1103 에서, HSS+UDM은 UE에게 SMS를 지원하는 serving node를 확인한다. 만약, UE에게 SMS를 지원하는 serving node가 하나뿐이라면 (즉, MME 또는 SMSF 중 하나) HSS+UDM은 단계 S1106을 통해 SMS-GMSC에게 해당하는 serving node에 대한 정보를 제공한다. 서빙 노드 확인 결과, UE에게 SMS를 지원하는 serving node로써 SMSF 및 MME가 모두 존재하면, 단계 S1104~5가 수행된다.
단계 S1104 에서, HSS+UDM은 AMF 및 MME에게 MT SM 라우팅을 위한 정보를 요청한다(단계 S1104a 및 단계 S1104b) 상기에서 AMF는 등록되어 있는 SMSF와 동일한 PLMN에서 UE를 serving하는 AMF이다. 즉, UE를 MM 측면에서 serving하는 AMF이다. (이러한 AMF는 UE가 SMS 지원을 알리면서 등록한 경우, UDM에 자신을 serving node로 등록 시 SMS 지원함을 알릴 수도 있다). 상기 라우팅 정보 요청은, A) HSS+UDM이 AMF에게 상기 MT SM 라우팅을 위한 정보를 요청할 수도 있고, B) HSS+UDM이 SMSF로 요청하면 이 요청을 수신한 SMSF가 AMF에게 요청할 수도 있다 (이 경우, 응답도 AMF가 SMSF에게 하면 이를 HSS+UDM에게 전송)
단계 S1105a 에서, AMF는 상술한 i)~iv) 중 하나 이상의 정보를 포함하는 응답(예를 들어, response for MT SM routing)을 HSS+UDM에게 제공한다.
단계 S1105b 에서, MME는 상술한 I) ~ IV) 중 하나 이상의 정보를 포함하는 응답(예를 들어, response for MT SM routing)을 HSS+UDM에게 제공한다.
단계 S1106 에서, HSS+UDM은 SMS-GMSC에게 routing 정보에 대한 응답을 제공한다. 이 때, serving node로 SMSF 및 MME가 모두 존재하면, HSS+UDM은 SMSF에 대한 정보 및 MME에 대한 정보를 모두 제공하는데, 이들에 대한 우선순위 (또는 priority 또는 precedence) 정보를 함께 제공한다. 상기 우선순위 정보는 AMF가 제공한 정보 (단계 S1105a를 통해 수신) 및 MME가 제공한 정보 (단계 S1105b를 통해 수신)에 기반하여 구성된/결정된 것일 수 있다. 이 때, 사업자 정책 및 local policy 등도 사용(고려)될 수 있다.
Serving node로 2개 (또는 다수개로, SMSF 및 MME)가 모두 존재하면, HSS+UDM은 상기 UE가 5GC 또는 EPC에 connected 상태인지 여부에 대한 첫 번째, 두 번째, 세 번째 경우 중 어느 한 경우로 동작할 수 있다. 5GC와 EPC에서 모두 UE가 connected 상태, 5GC와 EPC에서 모두 UE가 connected가 아닌 상태에서 동일한 우선순위를 부여하거나 또는 우선순위 정보를 제공하지 않을 시, HSS+UDM은 AMF 및 MME가 제공한 정보 (ii), iii), iv), II), III), IV)) 중 하나 이상을 SMS-GMSC에게 제공할 수도 있다. HSS+UDM이 SMSF에 대한 정보 제공시 access type에 대한 정보 (예, 3GPP access인지, non-3GPP acess인지, 둘다인지)를 함께 제공할 수도 있다.
단계 S1107 에서, SMS-GMSC는 HSS+UDM으로부터 획득한 응답에 기반하여, MT SMS 전송을 시도할 serving node를 선택/결정한다. 만약 serving node가 하나면 (즉, SMSF 또는 MME), SMS-GMSC는 해당 serving node를 MT SMS 전송을 위해 선택한다.
만약 serving node가 두개면 (또는 다수개면), SMS-GMSC는 우선순위가 가장 높은 serving node를 MT SMS 전송을 위해 선택한다. 이는 첫번째로 시도할 serving node를 의미한다. 이에 만약 첫번째 전송 시도가 실패한 경우, SMS-GMSC는 그 다음 우선순위가 높은 serving node로 MT SMS 전송을 시도할 수 있다.
만약 serving node가 두개인데 (또는 다수개인데) 우선순위가 동일하거나 또는 우선순위 정보가 없다면, SMS-GMSC는 그 중 하나를 MT SMS 전송을 위해 선택한다. 이 때 SMS-GMSC는 사업자 정책, local policy/configuration 정보를 이용할 수 있다. 또한, HSS+UDM이 제공한 다양한 정보를 이용할 수 있다. 또는 항상 SMSF를 먼저 선택할 수도 있고, 항상 MME를 먼저 선택할 수도 있다.
SMS-GMSC는 선택/결정한 serving node로 MT SMS 전송을 요청(MT SMS transfer request를 전송)하며, 이는 이후 step을 따른다.
MT SMS 전송을 위해 SMSF가 선택된 경우, 단계 S1108a ~ 단계 S1110a가 수행된다. 이는 TS 23.502 내용을 따른다.
MT SMS 전송을 위해 MME가 선택된 경우, 단계 S1108b ~ 단계 S1109b가 수행된다. MT SMS를 수신한 MME는 UE가 connected 상태인 경우 MT SMS를 NAS message에 담아 UE로 전송한다. UE가 idle 상태인 경우 UE를 paging하고, UE가 응답하면 MT SMS를 NAS message에 담아 UE로 전송한다. 보다 자세한 사항은 3GPP에 관련 규격을 준용한다.
실시예 2
두 번째 실시예는, UE가 EPS와 5GS 모두에 등록. 그리고 5GS에서 3GPP access와 non-3GPP access 모두를 통해 등록했으며 두 access가 서로 다른 PLMN에 속하는(즉, 3GPP access와 N3IWF이 서로 다른 PLMN에 속함) 경우에 관한 것으로, 도 12를 참조하여 설명한다. 두 번째 실시예에서는 3GPP access를 serving하는 AMF, SMSF와 non-3GPP access를 serving하는 AMF, SMSF가 서로 다른 PLMN에 속한다. 도 12 에서 AMF#1, SMSF#1은 3GPP access를 serving하고, AMF#2, SMSF#2는 non-3GPP access를 serving하는 것으로 도시되어 있다.
도 12를 참조하면, 단계 S1201- S1202 에서, UE로 SMS가 도착한 바 SC는 이를 SMS-GMSC로 전송하고, SMS-GMSC는 이를 어디로 전송해야 할지 routing 정보를 얻기 위해 HSS+UDM으로 routing 정보를 요청하는 메시지를 전송한다.
단계 S1203 에서, HSS+UDM은 UE에게 SMS를 지원하는 serving node를 확인한다. 만약, 이러한 serving node가 하나뿐이라면 (즉, MME 또는 SMSF) HSS+UDM은 단계 S1206을 통해 SMS-GMSC에게 해당하는 serving node에 대한 정보를 제공한다. 이러한 serving node가 다수개 (SMSF#1, SMSF#2 및 MME 모두) 존재하는 경우, 단계 S1204~5가 수행된다.
단계 S1204 에서, HSS+UDM은 AMF 및 MME에게 MT SM 라우팅을 위한 정보를 요청한다. 즉, 단계 S1204a, 단계 S1204b 및 단계 S1204c. 이외의 설명은 상기 실시예 1의 단계 S1104와 동일하다.
단계 S1205a 에서, AMF#1은 상기 실시예 1의 S1105a 처럼 동작한다. AMF#1은 UE에 대해 3GPP access 부분만을 serving하는 바, 이를 고려하여 동작하는 것으로 해석할 수 있다. AMF#1이 정보 제공 시 access 정보를 제공하지 않더라도 HSS+UDM은 이미 AMF#1 and/or SMSF#1이 등록 시 access type 정보를 획득할 수 있는 바, 해당 AMF#1이 제공한 정보가 3GPP access에 대한 것임을 인지할 수 있다.
단계 S1205b 에서, AMF#2는 상기 실시예 1의 S1105a 처럼 동작한다. AMF#2는 UE에 대해 non-3GPP access 부분만을 serving하는 바, 이를 고려하여 동작하는 것으로 해석할 수 있다. AMF#2가 정보 제공 시 access 정보를 제공하지 않더라도 HSS+UDM은 이미 AMF#2 and/or SMSF#2가 등록 시 access type 정보를 획득할 수 있는 바, 해당 AMF#2가 제공한 정보가 non-3GPP access에 대한 것임을 인지할 수 있다.
단계 S1205c 에서, MME는 상기 실시예 1의 S1105b 처럼 동작한다.
단계 S1206 에서, HSS+UDM은 SMS-GMSC에게 routing 정보에 대한 응답을 제공한다. 이 때, serving node로 2개의 SMSF 및 MME가 모두 존재하면, HSS+UDM은 2개의 SMSF에 대한 정보 및 MME에 대한 정보를 모두 제공하는데, 이들에 대한 우선순위 (또는 priority 또는 precedence) 정보를 함께 제공한다. 상기 우선순위 정보는 AMF#1이 제공한 정보 (단계 S1205a를 통해 수신), AMF#2가 제공한 정보 (단계 S1205b를 통해 수신) 및 MME가 제공한 정보 (단계 S1205c를 통해 수신)에 기반하여 구성한다. 이 때, 사업자 정책 및 local policy 등도 사용될 수 있다.
Serving node로 2개의 SMSF 및 MME가 모두 존재하면, HSS+UDM은 다음 중 하나로 동작할 수 있다.
1) 5GS에서 3GPP access, 5GS에서 non-3GPP access, EPC 중 어느 한쪽에서 UE가 connected 상태면, connected 상태인 쪽의 serving node에 가장 높은 우선순위를 부여한다. 예를 들어, 5GS에서 3GPP access만 UE가 connected 상태면, SMSF#1에 대한 가장 높은 우선순위를 부여한다.
나머지 2개, 즉 connected 상태가 아닌 (또는 idle 상태인) 곳의 serving node에 대해서는 우선순위를 동일하게 부여하거나 어느 하나에 대해 더 높은 우선순위를 부여할 수도 있으며 이는 상기한 바와 같이 다양한 정보에 기반하여 결정될 수 있다.
2) 5GC (즉, 3GPP access 및 non-3GPP access 모두)와 EPC에서 모두 UE가 connected 상태면, HSS+UDM은 우선순위를 동일하게 부여하거나 우선순위 정보를 제공하지 않을 수 있다 (이 경우 SMSF#1, SMSF#2, MME 중 어느쪽을 먼저 선택하여 MT SMS 전송을 할지는 SMS-GMSC가 결정). 그러나, 이 때 HSS+UDM은 AMF#1, AMF#2가 제공한 ii), iii), iv) (이러한 정보를 제공했다면), MME가 제공한 II), III), IV) (이러한 정보를 제공했다면), local policy/configuration 중 하나 이상에 기반하여 하나의 serving node에 대해 가장 높은 우선순위를 부여할 수도 있다. 또는 항상 SMSF에게 높은 우선순위를 줄 수도 있고, 항상 MME에게 높은 우선순위를 줄 수도 있다. SMSF에게 높은 우선순위를 부여 시, 항상 3GPP access 쪽 SMSF에게 또는 non-3GPP access 쪽 SMSF에게 가장 높은 우선순위를 부여할 수도 있다.
3) 5GC (즉, 3GPP access 및 non-3GPP access 모두)와 EPC에서 모두 UE가 connected 상태가 아니면 (또는 idle 상태면), HSS+UDM은 우선순위를 동일하게 부여하거나 우선순위 정보를 제공하지 않을 수 있다 (이 경우 SMSF#1, SMSF#2, MME 중 어느쪽을 먼저 선택하여 MT SMS 전송을 할지는 SMS-GMSC가 결정). 그러나, 이 때 HSS+UDM은 AMF#1, AMF#2가 제공한 ii), iii), iv) (이러한 정보를 제공했다면), MME가 제공한 II), III), IV) (이러한 정보를 제공했다면), local policy/configuration 중 하나 이상에 기반하여 하나의 serving node에 대해 가장 높은 우선순위를 부여할 수도 있다. 예를 들어, UE가 EPC에서 3GPP access를 통해 5GC로 PDN connection을 이동시키는 동작을 수행한 가장 최근 (또는 마지막) 시각이 UE가 5GC에서 EPC로 PDU session을 이동시키는 동작을 수행한 가장 최근 (또는 마지막) 시각 보다 더 늦다면 (즉, 더 최근이라면), MME에 가장 높은 우선순위를 부여할 수 있다 (이는 UE를 paging을 통해 찾을 시 5GC 보다는 EPC로부터 응답을 받을 가능성이 더 크다는 전제를 기반으로 함). 또는 항상 SMSF에게 높은 우선순위를 줄 수도 있고, 항상 MME에게 높은 우선순위를 줄 수도 있다. SMSF에게 높은 우선순위를 부여 시, 항상 3GPP access 쪽 SMSF에게 또는 non-3GPP access 쪽 SMSF에게 가장 높은 우선순위를 부여할 수도 있다.
4) 아래와 같이 2개의 serving node와 연관된 access 내지는 core network에서 UE가 connected 상태인 경우, connected 상태인 쪽의 serving node들에 더 높은 우선순위를 부여할 수 있다. 즉, connected 상태가 아닌 (또는 idle 상태인) 쪽의 serving node 대비 더 높은 우선순위를 부여할 수 있다.
- 5GS에서 3GPP access 쪽이 connected 상태이며, 5GS에서 non-3GPP access 쪽이 connected 상태임.
- 5GS에서 3GPP access 쪽이 connected 상태이며, EPC 쪽이 connected 상태가 아님 (또는 idle 상태임).
- 5GS에서 non-3GPP access 쪽이 connected 상태이며, EPC 쪽이 connected 상태가 아님 (또는 idle 상태임).
Connected 상태인 쪽의 serving node 2개에 대해 동일한 우선순위를 부여할 수도 있고, 한쪽에 더욱 높은 우선순위를 부여할 수도 있다. 이 때 상기한 다양한 정보, 즉 AMF, MME로부터 제공받은 정보, HSS+UDM이 가지고 있는 정보 등에 기반할 수 있다.
상기한 2), 3), 4)에서 다수의 serving node에 대해 동일한 우선순위를 부여하거나 또는 우선순위 정보를 제공하지 않을 시, HSS+UDM은 AMF 및 MME가 제공한 정보 (ii), iii), iv), II), III), IV)) 중 하나 이상을 SMS-GMSC에게 제공할 수도 있다.
HSS+UDM이 SMSF에 대한 정보 제공시 access type에 대한 정보 (예, 3GPP access인지, non-3GPP acess인지, 둘다인지)를 함께 제공할 수도 있다.
단계 S1207 에서, SMS-GMSC는 HSS+UDM으로부터 획득한 응답에 기반하여, MT SMS 전송을 시도할 serving node를 선택/결정한다. 만약 serving node가 하나면 (즉, SMSF 또는 MME), SMS-GMSC는 해당 serving node를 MT SMS 전송을 위해 선택한다.
만약 serving node가 세개면 (또는 다수개면), SMS-GMSC는 우선순위가 가장 높은 serving node를 MT SMS 전송을 위해 선택한다. 이는 첫번째로 시도할 serving node를 의미한다. 이에 만약 첫번째 전송 시도가 실패한 경우, SMS-GMSC는 그 다음 우선순위가 높은 serving node로 MT SMS 전송을 시도할 수 있다. 두번째 serving node로의 전송도 실패하면 그 다음 우선순위가 높은 serving node로 MT SMS 전송을 시도할 수 있다.
만약 serving node가 세개인데 (또는 다수개인데) 우선순위가 동일하거나 또는 우선순위 정보가 없다면, SMS-GMSC는 그 중 하나를 MT SMS 전송을 위해 선택한다. 이 때 SMS-GMSC는 사업자 정책, local policy/configuration 정보를 이용할 수 있다. 또한, HSS+UDM이 제공한 다양한 정보를 이용할 수 있다. 또는 항상 SMSF를 먼저 선택할 수도 있고, 항상 MME를 먼저 선택할 수도 있다. SMSF를 (먼저) 선택 시, 항상 3GPP access 쪽 SMSF를 먼저 선택할 수도 있고, 항상 non-3GPP access 쪽 SMSF를 먼저 선택할 수도 있다.
SMS-GMSC는 선택/결정한 serving node로 MT SMS 전송을 요청하며, 이는 이후 step을 따른다.
MT SMS 전송을 위해 SMSF#1이 선택된 경우, 단계 S1208a ~ 단계 S1210a가 수행된다. 이는 TS 23.502 내용을 따른다.
MT SMS 전송을 위해 SMSF#2가 선택된 경우, 단계 S1208b ~ 단계 S1210b가 수행된다. 이는 TS 23.502 내용을 따른다.
MT SMS 전송을 위해 MME가 선택된 경우, 단계 S1208c ~ 단계 S1209c가 수행된다. MT SMS를 수신한 MME는 UE가 connected 상태인 경우 MT SMS를 NAS message에 담아 UE로 전송한다. UE가 idle 상태인 경우 UE를 paging하고, UE가 응답하면 MT SMS를 NAS message에 담아 UE로 전송한다. 보다 자세한 사항은 3GPP에 관련 규격을 준용한다.
한편, UE가 5GS에 등록. 그리고 5GS에서 3GPP access와 non-3GPP access 모두를 통해 등록했으며 두 access가 서로 다른 PLMN에 속할 수 있다 (즉, 3GPP access와 N3IWF이 서로 다른 PLMN에 속함). 이러한 시나리오에서 상기 실시예 2의 제안 내용이 적용될 수 있다. 즉, 상기 실시예 2에서 serving node 중에 MME를 제외하고 SMSF#1과 SMSF#2가 있는 것으로 간주하고 적용할 수 있다.
이 때, HSS+UDM은 serving node로 MT SM Routing에 대한 정보를 요청하는 과정 (즉, 단계 S1204a, 단계 S1204b)를 생략할 수도 있다. 이 경우, HSS+UDM은 aa) 3GPP access 쪽 SMSF에 더 높은 우선순위를 부여하여 SMS-GMSC에게 제공할 수도 있고, bb) Non-3GPP access 쪽 SMSF에 더 높은 우선순위를 부여하여 SMS-GMSC에게 제공할 수도 있고, cc) 3GPP access 쪽 SMSF와 non-3GPP access 쪽 SMSF에 동일한 우선순위를 부여하여 SMS-GMSC에게 제공할 수도 있고, dd) 우선순위를 부여하지 않을 수도 있다.
cc), dd)의 경우, SMS-GMSC가 첫번째로 MT SMS 전송을 시도할 SMSF를 선택한다. 이 때, SMS-GMSC는 HSS+UDM이 제공한 정보 (특히, access type 정보), 사업자 정책, local policy/configuration 등에 기반하여 SMSF를 선택할 수 있다. 예를 들어, 3GPP access 쪽의 SMSF를 첫번째로 MT SMS 전송을 시도하기 위해 선택할 수 있다. 이처럼 3GPP access 쪽을 먼저 선택하는 이유는 UE가 CM-IDLE 상태인 경우 paging이 불가능한 non-3GPP access와 달리, 3GPP access는 UE가 CM-IDLE 상태인 경우 paging을 통해 UE를 찾을 수 있기 때문이다. 이는 본 발명 전반에 걸쳐 non-3GPP access 쪽 serving node 대비하여 3GPP access 쪽 serving node에게 더 높은 우선순위를 부여하거나, non-3GPP access 쪽 serving node 대비하여 3GPP access 쪽 serving node를 MT SMS 전송을 위해 먼저 선택하는 이유가 될 수 있다.
상기 실시예 1, 실시예 2에서는 SMS에 대한 serving node로 MME와 SMSF가 존재하는 경우 HSS+UDM은 이들에 대한 정보를 모두 SMS-GMSC에게 제공하는 것으로 기술하였다. 그러나, 이와 달리 우선순위를 가장 높게 부여한 또는 SMS-GMSC로 하여금 가장 먼저 MT SMS 전송을 시도하게 할 serving node 하나에 대한 정보만을 제공할 수도 있다. 이 때 추가적으로 MT SMS 전송 실패시 SMS-GMSC로 하여금 자신에게 라우팅 정보 요청을 다시 하라는 지시자를 포함시킬 수도 있다.
상기에서는 SMS-GMSC가 HSS+UDM으로부터 획득한 라우팅 정보에 기반하여 SMS (재)전송을 시도하는 것으로 기술하였다. 그러나, 상기 기술된 내용은 SMS-GMSC가 아닌 다른 entity (예, SMS Router, IP-SM-GW, SMSGW(SMS Gateway) 등)가 HSS+UDM로부터 라우팅 정보를 획득, SMS (재)전송을 시도하는 경우, SMS-GMSC를 상기 entity로 해석하여 적용할 수 있다.
상기에서 HSS+UDM이 SMS-GMSC에게 제공하는 serving node에 대한 정보는 serving node의 식별 정보를 포함하는데, MME에 대한 식별 정보의 경우 종래에 제공하던 정보의 형태를 준용한다. 이에 대해 TS 29.173을 참고할 수 있다. SMSF에 대한 식별 정보의 경우 MME 식별 정보와 유사한 정보를 제공할 수 있다.
상술한 설명에서는 EPC에서의 SMS의 경우 MME가 SMS 기능을 지원하는 경우에 집중하여 기술하였지만, 본 발명이 반드시 그에 국한되는 것은 아니고, SMS over SGs인 경우에도 확장 적용될 수 있다. 두 경우 모두 UE는 MME를 통해 NAS 메시지를 이용하여 SMS를 송수신하게 된다. 또한, SMS에 대한 내용은 TS 23.040, TS 29.338, TS 29.002 등의 내용을 준용한다.
도 13는 본 발명의 일례에 따른 단말 장치 및 네트워크 노드 장치에 대한 바람직한 실시예의 구성을 도시한 도면이다.
도 13를 참조하여 본 발명에 따른 단말 장치(100)는, 송수신장치(110), 프로세서(120) 및 메모리(130)를 포함할 수 있다. 송수신장치(110)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 단말 장치(100)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(120)는 단말 장치(100) 전반의 동작을 제어할 수 있으며, 단말 장치(100)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(130)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(120)는 본 발명에서 제안하는 단말 동작을 수행하도록 구성될 수 있다.
도 13를 참조하면 본 발명에 따른 네트워크 노드 장치(200)는, 송수신장치(210), 프로세서(220) 및 메모리(230)를 포함할 수 있다. 송수신장치(210)은 외부 장치로 각종 신호, 데이터 및 정보를 송신하고, 외부 장치로 각종 신호, 데이터 및 정보를 수신하도록 구성될 수 있다. 네트워크 노드 장치(200)는 외부 장치와 유선 및/또는 무선으로 연결될 수 있다. 프로세서(220)는 네트워크 노드 장치(200) 전반의 동작을 제어할 수 있으며, 네트워크 노드 장치(200)가 외부 장치와 송수신할 정보 등을 연산 처리하는 기능을 수행하도록 구성될 수 있다. 메모리(230)는 연산 처리된 정보 등을 소정시간 동안 저장할 수 있으며, 버퍼(미도시) 등의 구성요소로 대체될 수 있다. 또한, 프로세서(220)는 본 발명에서 제안하는 네트워크 노드 동작을 수행하도록 구성될 수 있다. 구체적으로, 프로세서(220)는 HSS+UDM이 AMF (Access and Mobility Management Function) 및 MME (Mobility Management Entity) 로부터 MT SM 라우팅을 위한 정보를 수신하고, 상기 정보에 기초하여, MT SM을 상기 AMF와 연결된 SMSF와 상기 MME 중 어느 곳으로 먼저 전송할지에 대한 우선순위를 결정하며, 상기 결정된 우선순위를 포함하는 라우팅 정보를 SMS 관련 노드에게 전송하며, 상기 HSS+UDM은 상기 MT SM을 수신할 UE가 5GC 또는 EPC에 connected 상태인지 여부에 따라 상기 우선순위를 결정할 수 있다.
또한, 위와 같은 단말 장치(100) 및 네트워크 장치(200)의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있으며, 중복되는 내용은 명확성을 위하여 설명을 생략한다.
상술한 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(Application Specific Integrated Circuits), DSPs(Digital Signal Processors), DSPDs(Digital Signal Processing Devices), PLDs(Programmable Logic Devices), FPGAs(Field Programmable Gate Arrays), 프로세서, 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 장치, 절차 또는 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
상술한 바와 같이 개시된 본 발명의 바람직한 실시형태에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시 형태를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.
상술한 바와 같은 본 발명의 다양한 실시형태들은 3GPP 시스템을 중심으로 설명하였으나, 다양한 이동통신 시스템에 동일한 방식으로 적용될 수 있다.

Claims (13)

  1. 무선통신시스템에서 HSS+UDM (Home Subscriber Server + User Data Management) 이 EPC(Evolved Packet Core) 및 5GC(5G Core Network)에 모두 등록한 UE에 대한 MT(Mobile Terminated) SM(Short message) 서비스를 지원하는 방법에 있어서,
    HSS+UDM이 AMF (Access and Mobility Management Function) 및 MME (Mobility Management Entity) 로부터 MT SM 라우팅을 위한 정보를 수신하는 단계;
    상기 정보에 기초하여, MT SM을 상기 AMF와 연결된 SMSF와 상기 MME 중 어느 곳으로 먼저 전송할지에 대한 우선순위를 결정하는 단계;
    상기 결정된 우선순위를 포함하는 라우팅 정보를 SMS 관련 노드에게 전송하는 단계;
    를 포함하며,
    상기 HSS+UDM은 상기 MT SM을 수신할 UE가 5GC 또는 EPC에 connected 상태인지 여부에 따라 상기 우선순위를 결정하는, MT SM 지원 방법.
  2. 제1항에 있어서,
    상기 UE가 5GC 또는 EPC 중 어느 하나에 connected 인 경우, 상기 HSS+UDM은 connected 상태인 코어 네트워크의 서빙 노드에 더 높은 우선순위를 설정하는, MT SM 지원 방법.
  3. 제1항에 있어서,
    상기 UE가 5GC 또는 EPC 모두에 connected 인 경우, 상기 HSS+UDM은 상기 SMSF와 상기 MME의 우선순위를 동일하게 설정하는, MT SM 지원 방법.
  4. 제3항에 있어서,
    상기 SMSF와 상기 MME의 우선순위가 동일한 경우, 상기 MT SM을 상기 SMSF와 MME 중 어느 곳으로 라우팅 할지 결정은 상기 SMS-GMSC에 위임되는, MT SM 지원 방법.
  5. 제1항에 있어서,
    상기 UE가 5GC 및 EPC에 모두 connected 상태가 아닌 경우, 상기 HSS+UDM은 상기 UE가 5GC로 PDN connection을 이동시키는 동작을 수행한 가장 최근 시각과 UE가 5GC에서 EPC로 PDU session을 이동시키는 동작을 수행한 가장 최근 시각을 비교하여, 상기 우선순위를 결정하는, MT SM 지원 방법.
  6. 제5항에 있어서,
    상기 HSS+UDM은 상기 UE가 EPC에서 5GC로 PDN connection을 이동시키는 동작을 수행한 가장 최근 시각 보다 UE가 5GC에서 EPC로 PDU session을 이동시키는 동작을 수행한 가장 최근 시각이 늦은 경우, 상기 MME가 더 높은 우선순위를 갖는 것으로 결정되는, MT SM 지원 방법.
  7. 제1항에 있어서,
    상기 AMF로부터 수신된 MT SM 라우팅을 위한 정보는, 상기 UE 가 CM-CONNECTED 상태인지 여부, 상기 UE가 registration을 수행한 가장 최근 시각, 상기 UE가 CM-IDLE 상태가 된 가장 최근 시각, 상기 UE가 EPC에서 5GC로 PDN connection을 이동시키는 동작을 수행한 가장 최근 시각 중 하나 이상을 포함하는, MT SM 지원 방법.
  8. 제1항에 있어서,
    상기 MME로부터 수신된 MT SM 라우팅을 위한 정보는, UE가 ECM-CONNECTED 상태인지 여부, 상기 UE가 attach 또는 TAU를 수행한 가장 최근 시각, 상기 UE가 ECM-IDLE 상태가 된 가장 최근 시각, 상기 UE가 5GC에서 EPC로 PDU session을 이동시키는 동작을 수행한 가장 최근 시각 중 하나 이상을 포함하는, MT SM 지원 방법.
  9. 제1항에 있어서,
    상기 AMF와 연결된 SMSF 및 MME는 상기 UE에게 SMS를 지원하는 서빙 노드에 해당하는, MT SM 지원 방법.
  10. 제1항에 있어서,
    상기 SMS 관련 노드는, SMS-GMSC, SMS Router, IP-SM-GW, SMS-GW(SMS-Gateway) 중 하나인, MT SM 지원 방법.
  11. 제1항에 있어서,
    상기 UE가 상기 5GC registration을 수행한 가장 최근 시각보다 상기 UE가 attach 또는 TAU를 수행한 가장 최근 시각이 늦은 경우, 상기 MME가 더 높은 우선순위를 갖는 것으로 결정되는, MT SM 지원 방법.
  12. 제1항에 있어서,
    상기 UE가 CM-IDLE 상태가 된 가장 최근 시각보다 상기 UE가 ECM-IDLE 상태가 된 가장 최근 시각이 늦은 경우, 상기 MME가 더 높은 우선순위를 갖는 것으로 결정되는, MT SM 지원 방법.
  13. 무선통신시스템에서 EPC(Evolved Packet Core) 및 5GC(5G Core Network)에 모두 등록한 UE에 대한 MT(Mobile Terminated) SM(Short message) 서비스를 지원하는 HSS+UDM (Home Subscriber Server + User Data Management) 장치에 있어서,
    송수신 장치; 및
    프로세서를 포함하고,
    상기 프로세서는, HSS+UDM이 AMF (Access and Mobility Management Function) 및 MME (Mobility Management Entity) 로부터 MT SM 라우팅을 위한 정보를 수신하고, 상기 정보에 기초하여, MT SM을 상기 AMF와 연결된 SMSF와 상기 MME 중 어느 곳으로 먼저 전송할지에 대한 우선순위를 결정하며, 상기 결정된 우선순위를 포함하는 라우팅 정보를 SMS 관련 노드에게 전송하며,
    상기 HSS+UDM은 상기 MT SM을 수신할 UE가 5GC 또는 EPC에 connected 상태인지 여부에 따라 상기 우선순위를 결정하는, HSS+UDM 장치.
PCT/KR2018/008240 2017-07-26 2018-07-20 무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치 WO2019022442A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/633,964 US11102625B2 (en) 2017-07-26 2018-07-20 Method for supporting SMS transmission for user equipment that can receive service from 3GPP 5G system and from EPS in wireless communication system, and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762537421P 2017-07-26 2017-07-26
US62/537,421 2017-07-26

Publications (3)

Publication Number Publication Date
WO2019022442A2 true WO2019022442A2 (ko) 2019-01-31
WO2019022442A3 WO2019022442A3 (ko) 2019-03-21
WO2019022442A9 WO2019022442A9 (ko) 2019-05-09

Family

ID=65040249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008240 WO2019022442A2 (ko) 2017-07-26 2018-07-20 무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치

Country Status (2)

Country Link
US (1) US11102625B2 (ko)
WO (1) WO2019022442A2 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611891A (zh) * 2019-08-29 2019-12-24 深圳市梦网科技发展有限公司 一种短信发送方法及装置
WO2021052373A1 (zh) * 2019-09-17 2021-03-25 中国移动通信有限公司研究院 短信处理方法及设备
CN112584332A (zh) * 2019-09-29 2021-03-30 中兴通讯股份有限公司 短消息传输方法、装置和系统、注册方法和装置
CN112911573A (zh) * 2020-12-28 2021-06-04 广州爱浦路网络技术有限公司 一种4g/5g融合组网的网元发现方法及nrf装置
CN114514761A (zh) * 2019-10-01 2022-05-17 瑞典爱立信有限公司 短消息服务(sms)传输
CN114731735A (zh) * 2019-11-07 2022-07-08 三星电子株式会社 在无线通信系统中提供服务的方法和装置
CN115066914A (zh) * 2020-02-12 2022-09-16 瑞典爱立信有限公司 仅5G部署中对因特网协议上的短消息服务(SMSoIP)的支持

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018137152A1 (zh) * 2017-01-24 2018-08-02 华为技术有限公司 短消息传输方法、设备和系统
KR102329925B1 (ko) 2017-08-14 2021-11-23 삼성전자 주식회사 4g/5g 동시 등록된 이동 통신 단말을 위한 네트워크 이동시 데이터 동기화 제공 방안
CN109756938B (zh) 2017-11-03 2021-06-22 华为技术有限公司 通信方法、网元、终端装置和系统
US11985585B2 (en) * 2018-08-10 2024-05-14 Nokia Technologies Oy Downlink signaling to user equipment in non-3GPP idle state
US20230209410A1 (en) * 2021-12-28 2023-06-29 T-Mobile Innovations Llc Optimizing layer assignment based on qci
US12034570B2 (en) 2022-03-14 2024-07-09 T-Mobile Usa, Inc. Multi-element routing system for mobile communications
US20230354005A1 (en) * 2022-04-28 2023-11-02 T-Mobile Innovations Llc Accelerated user data messaging in a wireless communication network

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112996069B (zh) * 2015-10-06 2024-10-18 苹果公司 使用3gpp无线电接入技术的接入系统之间的双无线电操作
EP3569006A4 (en) * 2017-01-10 2020-07-22 Nokia Technologies Oy SHORT MESSAGE SERVICE INTERWORK
US10624020B2 (en) * 2017-02-06 2020-04-14 Qualcomm Incorporated Non-access stratum transport for non-mobility management messages

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110611891A (zh) * 2019-08-29 2019-12-24 深圳市梦网科技发展有限公司 一种短信发送方法及装置
WO2021052373A1 (zh) * 2019-09-17 2021-03-25 中国移动通信有限公司研究院 短信处理方法及设备
CN112584332A (zh) * 2019-09-29 2021-03-30 中兴通讯股份有限公司 短消息传输方法、装置和系统、注册方法和装置
CN114514761A (zh) * 2019-10-01 2022-05-17 瑞典爱立信有限公司 短消息服务(sms)传输
CN114731735A (zh) * 2019-11-07 2022-07-08 三星电子株式会社 在无线通信系统中提供服务的方法和装置
CN115066914A (zh) * 2020-02-12 2022-09-16 瑞典爱立信有限公司 仅5G部署中对因特网协议上的短消息服务(SMSoIP)的支持
CN112911573A (zh) * 2020-12-28 2021-06-04 广州爱浦路网络技术有限公司 一种4g/5g融合组网的网元发现方法及nrf装置
CN112911573B (zh) * 2020-12-28 2021-12-14 广州爱浦路网络技术有限公司 一种4g/5g融合组网的网元发现方法及nrf装置

Also Published As

Publication number Publication date
US11102625B2 (en) 2021-08-24
US20200213819A1 (en) 2020-07-02
WO2019022442A3 (ko) 2019-03-21
WO2019022442A9 (ko) 2019-05-09

Similar Documents

Publication Publication Date Title
WO2019022442A9 (ko) 무선 통신 시스템에서 3GPP 5G System과 EPS로부터 서비스를 받을 수 있는 단말을 위해 SMS 전송을 지원하는 방법 및 이를 위한 장치
WO2018199668A1 (ko) 무선 통신 시스템에서 udm이 amf의 등록에 관련된 절차를 수행하는 방법 및 이를 위한 장치
WO2018155934A1 (ko) 무선 통신 시스템에서 3GPP access를 통해 non-3GPP에 관련된 데이터를 수신하는 방법 및 이를 위한 장치
WO2019160376A1 (ko) 무선 통신 시스템에서 smf의 신호 송수신 방법 및 이를 위한 장치
WO2019066544A1 (ko) 무선 통신 시스템에서 5gs에서 eps로의 핸드오버에 관련된 신호 송수신 방법 및 이를 위한 장치
WO2018084635A1 (ko) 무선 통신 시스템에서 ngs에서 eps로 이동 방법 및 이를 위한 장치
WO2017191973A1 (ko) 무선 통신 시스템에서 리모트 ue의 위치 등록 수행 방법 및 이를 위한 장치
WO2015174702A1 (ko) 무선 통신 시스템에서 hss/mme의 신호 송수신 방법 및 장치
WO2016190670A1 (ko) 무선 통신 시스템에서 데이터 트래픽을 전송하는 방법 및 단말
WO2017052335A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 수행하는 방법 및 이를 위한 장치
WO2017188787A2 (ko) 무선 통신 시스템에서 기지국에 의해 수행되는 데이터 전달 방법 및 상기 방법을 이용하는 장치
WO2017126948A1 (ko) 무선 통신 시스템에서 로컬 네트워크에서 v2x 메시지 송수신 방법 및 이를 위한 장치
WO2015002456A1 (ko) 근접 서비스를 위해 중계기를 선택 또는 재선택하는 방법
WO2018169281A1 (ko) 보고 수신 방법 및 네트워크 장치, 그리고 보고 수행 방법 및 기지국
WO2018221943A1 (ko) 무선 통신 시스템에서 multi-homing 기반 psa 추가와 관련하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2017043854A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 지원하는 방법 및 이를 위한 장치
WO2017026872A1 (ko) 무선 통신 시스템에서 리모트 ue의 신호 송수신 방법 및 이를 위한 장치
WO2017086618A1 (ko) 무선 통신 시스템에서 단말 간의 직접 통신을 방법 및 이를 위한 장치
WO2018008922A2 (ko) 무선 통신 시스템에서 기지국의 nas 시그널링 지원 방법 및 이를 위한 장치
WO2019074250A1 (ko) 무선 통신 시스템에서 등록 해제 관련 메시지 송수신 방법 및 이를 위한 장치
WO2014137098A1 (ko) 근접 서비스 범위 조정 방법 및 필터링 방법
WO2016144009A1 (ko) 무선 통신 시스템에서 네트워크 트래픽을 제어하는 방법 및 단말
WO2017138780A1 (ko) 데이터 전송 방법 및 사용자기기, 및 데이터 수신 방법 및 기지국
WO2017026772A1 (ko) 무선 통신 시스템에서 p-cscf 선택 및 sip 메시지 전송 방법 및 이를 위한 장치
WO2019059740A1 (ko) 무선 통신 시스템에서 ng-ran이 ims voice 지원에 관련된 신호를 송수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837539

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837539

Country of ref document: EP

Kind code of ref document: A2