WO2019022138A1 - Working medium for heat cycle, composition for heat cycle system, and heat cycle system - Google Patents

Working medium for heat cycle, composition for heat cycle system, and heat cycle system Download PDF

Info

Publication number
WO2019022138A1
WO2019022138A1 PCT/JP2018/027902 JP2018027902W WO2019022138A1 WO 2019022138 A1 WO2019022138 A1 WO 2019022138A1 JP 2018027902 W JP2018027902 W JP 2018027902W WO 2019022138 A1 WO2019022138 A1 WO 2019022138A1
Authority
WO
WIPO (PCT)
Prior art keywords
working medium
hcfo
hfo
cycle system
tetrafluoropropene
Prior art date
Application number
PCT/JP2018/027902
Other languages
French (fr)
Japanese (ja)
Inventor
正人 福島
洋輝 速水
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN201880046066.0A priority Critical patent/CN110869462A/en
Priority to JP2019532834A priority patent/JP7060017B2/en
Publication of WO2019022138A1 publication Critical patent/WO2019022138A1/en
Priority to JP2022057395A priority patent/JP7226623B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a working fluid for thermal cycling, a composition for thermal cycling system including the same, and a thermal cycling system using the composition.
  • CFCs chlorofluorocarbons
  • HCFCs hydrochlorofluorocarbons
  • HFC hydrofluorocarbon
  • CFC-11 trichlorofluoromethane
  • CFC-11 with an ODP of 1 and a GWP of 4750 has already been abolished, and as a working medium to replace it, the ODP is currently 0.02 with a GWP of 77, both of which are low 1,1- Dichloro-2,2,2-trifluoroethane (HCFC-123) is used.
  • HFCs having high GWP but having ODP of 0, 1,1,1,2-tetrafluoroethane (HFC-134a) having a GWP of 1430 or 1,1,1,3,3- having a GWP of 1030 Pentafluoropropane (HFC-245fa) and the like are also used as alternatives to CFC-11.
  • HFO hydrofluoroolefins
  • HCFO hydrochlorofluoroolefins
  • CFO chlorofluoroolefins having carbon-carbon double bonds as working media with low influence on the ozone layer and low GWP Expectations are gathered at (CFO) etc. Since these working media have carbon-carbon double bonds, they are easily decomposed by OH radicals in the atmosphere.
  • saturated HFC is referred to as HFC and is used separately from HFO.
  • HCFO and CFO are compounds in which the flammability is suppressed because the ratio of halogen in one molecule is large, and are considered as a working medium in which the load on the environment is small and the flammability is suppressed.
  • Patent Document 1 describes a working medium using 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd).
  • the working medium using the above HCFO-1224yd has a low environmental load and a good cycle performance, a working medium with further improved cycle performance is required while the environmental load is low.
  • a working medium one which is maintained at a low level of combustibility and has no problem with safety is required.
  • An object of the present invention is to provide a working medium for reduced thermal cycling with high safety.
  • Another object of the present invention is to provide a composition for a thermal cycle system including such a working medium, as well as a thermal cycle system using the composition.
  • the present invention made in view of the above, provides a working medium for thermal cycling, a composition for thermal cycling system, and a thermal cycling system having the following configuration.
  • a working medium for thermal cycling comprising 1-chloro-2,3,3,3-tetrafluoropropene and (E) -1,3,3,3-tetrafluoropropene, the actuation for thermal cycling
  • the total content of the 1-chloro-2,3,3,3-tetrafluoropropene and the 1,3,3,3-tetrafluoropropene contained in the medium is 50% by mass or more, and 1
  • the ratio represented by -chloro-2,3,3,3-tetrafluoropropene: (E) -1,3,3,3-tetrafluoropropene is from 20:80 to 99: 1 on a mass basis.
  • a working fluid for thermal cycling characterized by [2] A working medium for thermal cycling comprising 1-chloro-2,3,3,3-tetrafluoropropene and 2,3,3,3-tetrafluoropropene, wherein the working medium for thermal cycling is The total content of 1-chloro-2,3,3,3-tetrafluoropropene and 2,3,3,3-tetrafluoropropene contained is 50% by mass or more, and 1-chloro- 2,3,3,3-tetrafluoropropene: a thermal cycle characterized in that a ratio represented by 2,3,3,3-tetrafluoropropene is 30:70 to 99: 1 on a mass basis.
  • Working medium characterized in that a ratio represented by 2,3,3,3-tetrafluoropropene is 30:70 to 99: 1 on a mass basis.
  • a composition for a thermal cycle system comprising the thermal cycle working medium according to any one of [1] to [3].
  • the composition for a thermal cycle system according to [4] which comprises a lubricating oil.
  • the working medium for thermal cycling and the composition for thermal cycling system of the present invention have excellent cycle performance and a working medium for thermal cycling in which the effect on global warming is sufficiently suppressed by sufficiently low ODP and GWP. And a composition for a heat cycle system can be provided. Furthermore, the working medium for thermal cycling and the composition for thermal cycling system have sufficiently suppressed flammability.
  • the composition for the thermal cycle system of the present invention since the composition for the thermal cycle system of the present invention is used, the cycle performance is excellent, the environmental load can be reduced, and the combustibility is suppressed, thereby enhancing the safety. Can be
  • FIG. 2 is a cycle diagram in which a change in the state of a working medium for thermal cycling in the thermal cycling system of FIG. 1 is described on a pressure-enthalpy diagram.
  • the abbreviation of the compound is indicated in the parenthesis after the compound name, but in the present specification, the abbreviation is used in place of the compound name as necessary.
  • the name of the compound having a geometric isomer and (E) attached to its abbreviation indicate E form (trans form) and (Z) indicate Z form (cis form).
  • the name and the abbreviation mean a generic name including the E form, the Z form, and the mixture of the E form and the Z form.
  • thermal cycle system is an operation in which a thermal cycle working medium (hereinafter, also simply referred to as a working medium) is supplied to the thermal cycle system to enable thermal cycle operation.
  • a system comprising a medium and a system for thermal cycling.
  • a “thermal cycle system” is a thermal cycle designed to allow heat exchange (heat cycle) between the working medium and other substances other than the working medium by circulating the working medium in the system.
  • the thermal cycle working medium according to the embodiment of the present invention is a mixture of specific working mediums in a predetermined ratio. Specifically, the following two working media can be mentioned.
  • the first working medium for thermal cycling of the present embodiment is 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd) and (E) -1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), and the total content of HCFO-1224yd and HFO-1234ze (E) contained in the working medium is 50% by mass or more, and HCFO-1224yd: HFO-1234ze ( The proportion represented by E) is from 20:80 to 99: 1 on a mass basis.
  • the second working medium for thermal cycling of the present embodiment includes 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd) and 2,3,3,3-tetrafluoropropene (HFO-1234yf) And the total content of HCFO-1224yd and HFO-1234yf in the working medium is 50% by mass or more, and the ratio represented by HCFO-1224yd: HFO-1234yf is on a mass basis. 30: 70-99: 1.
  • the working medium of these embodiments is used in combination with a system for thermal cycling.
  • these working media may be combined with a compound other than the working media, and used in a thermal cycle system as a composition for a thermal cycling system including these working media.
  • HCFO-1224yd has halogen that suppresses flammability and a carbon-carbon double bond that is easily decomposed by OH radicals in the atmosphere, as described above, for the first and second thermal cycles. It is an essential component that is also included in the working medium.
  • the HCFO-1224yd contains geometric isomers of HCFO-1224yd (Z) and HCFO-1224yd (E), and the boiling point of HCFO-1224yd (Z) is 15 ° C., and the boiling point of HCFO-1224yd (E) Is 19 ° C.
  • HCFO-1224yd (Z) and HCFO 1224yd (E) are both ⁇ 1.
  • the ODP is 0 for both HCFO-1224yd (Z) and HCFO-1224yd (E).
  • HCFO-1224yd (Z) is more chemically stable than HCFO 1224yd (E).
  • HCFO-1224yd is HCFO-1224yd (Z) alone, HCFO-1224yd (E) alone, a mixture of HCFO-1224yd (Z) and HCFO-1224yd (E), It is interpreted as including any of In the present embodiment, it is preferable that the ratio represented by HCFO-1224yd (E): HCFO 1224yd (Z) is 50:50 to 0: 100 on a mass basis, and HCFO-1224yd is purified. It is more preferable that it is 50: 50-0.001: 99.9999 from a relation with cost, it is still more preferable that it is 50: 50-0.01: 99.99, 20: 80-0.01 Particularly preferred is 99.99.
  • HFO-1234ze (E) HFO-1234ze (E) has a carbon-carbon double bond which is easily decomposed by OH radicals in the atmosphere and is used in combination with HCFO-1224yd to suppress the state of flammability. It can be a working medium for thermal cycling with good cycle performance while maintaining it.
  • the boiling point of this HFO-1234ze (E) is -15 ° C.
  • the GWP is ⁇ 1
  • the ODP is 0.
  • HFO-1234yf HFO-1234yf has a carbon-carbon double bond which is easily decomposed by OH radicals in the atmosphere, and it is used in combination with HCFO-1224yd while maintaining the state of suppression of flammability. And a working medium for thermal cycling with good cycle performance.
  • the boiling point of this HFO-1234yf is -29.4 ° C.
  • the GWP is ⁇ 1
  • the ODP is 0.
  • HCFO-1224yd, HFO-1234ze (E) and HFO-1234yf as working media contained in the working fluid for thermal cycling of the present embodiment are shown in Table 1. Specifically, the characteristics shown here are the boiling point, the cycle performance, and the environmental load as compared with those of HCFO-1224yd (Z) alone.
  • the cycle performance includes, for example, the coefficient of performance and the refrigeration capacity evaluated in the heat cycle system (refrigeration cycle system) shown in FIG.
  • the coefficients of performance and refrigeration capacity of HCFO-1224yd (Z), HFO-1234ze (E) and HFO-1234yf are relative coefficient of performance and relative refrigeration capacity based on that of HCFO-1224yd (Z) alone (1.00) As shown in Table 1.
  • the relative coefficient of performance and the relative refrigeration capacity indicate that the working medium having a cycle performance better as compared to HCFO-1224yd (Z), as the relative coefficient of performance is greater than 1.
  • ODP Environmental load
  • GWP is a value shown in or measured according to the ozone layer protection method.
  • GWP is a 100-year value shown in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (2007) or measured according to the method of the report. In the present specification, GWP refers to this value unless otherwise noted.
  • IPCC Intergovernmental Panel on climate Change
  • GWP in the working medium which is a mixture is taken as the weighted average by the composition mass of each component.
  • HFO-1234ze (E) is extremely superior in refrigeration capacity as a working medium compared to HCFO-1224yd (Z) alone, is equivalent in coefficient of performance, and has environmental load such as GWP. Is small.
  • HFO-1234yf is very excellent in refrigeration capacity as a working medium, has almost the same coefficient of performance, and has a small environmental load such as GWP, as compared with HCFO-1224yd (Z) alone.
  • the working medium for thermal cycling of the present embodiment further improves cycle performance by containing HCFO-1224yd (Z) in any proportion of HFO-1234ze (E) or HFO-1234yf, and is combustible. It is a safe working medium with sufficiently reduced That is, the thermal cycle working medium of the present embodiment is a thermal cycle working medium having a further improved function with respect to HCFO-1224 yd (Z) conventionally used.
  • the temperature gradient is an index for measuring the difference in composition between the liquid phase and the gas phase in the working medium of the mixture, for example, as the difference between the start temperature and the completion temperature of condensation in the condenser 12 of the refrigeration cycle system 10 shown in FIG. Indicated.
  • the temperature gradient is zero for a single compound and an azeotropic mixture, and the temperature gradient is very near zero for a quasi-azeotropic mixture that exhibits near-azeotropic behavior (less change in gas-liquid composition) upon evaporation.
  • the thermal cycle system it is general to make the working medium flowing through the heat exchanger and the heat source fluid such as water and air into opposite flow in order to improve the heat exchange efficiency. Due to the small temperature difference of the heat source fluid, it is difficult to obtain an energy efficient thermal cycle system in the case of a non-azeotropic mixture with a large temperature gradient. For this reason, when using a mixture as a working medium, a working medium having a suitable temperature gradient is desired.
  • the mixture of HCFO-1224yd (Z) and HFO-1234ze (E) and the mixture of HCFO 1224yd (Z) and HFO-1234yf do not azeotrope in mixtures of any mixing ratio. That is, in these mixtures, mixtures of any mixing ratio are non-azeotropic mixtures.
  • the composition in consideration of the temperature gradient.
  • the temperature gradient is, for example, preferably 14 ° C. or less, more preferably 13 ° C. or less, and still more preferably 12 ° C. or less.
  • the preferred composition may be selected mainly considering the balance between the cycle performance and the temperature gradient.
  • HCFO is taken into consideration in consideration of the balance of the flammability, cycle performance and temperature gradient.
  • the composition is such that the ratio of HCFO-1224yd (Z) is 20 to 99% by mass and the ratio of HFO-1234ze (E) is 80 to 1% by mass with respect to the total amount of -1224yd (Z) and HFO-1234ze (E) It can be mentioned. If the composition of HCFO-1224yd (Z) and HFO-1234ze (E) in the working medium is in the above-mentioned range, it is possible to sufficiently suppress the flammability while improving the cycle performance.
  • the proportion of HCFO-1224 yd (Z) is preferably 40 to 99% by mass
  • the proportion of HFO-1234ze (E) is preferably 60 to 1% by mass
  • the proportion of HCFO 1224 yd (Z) is preferably 70 to 70
  • a proportion of 99% by mass and HFO-1234ze (E) is particularly preferably 30 to 1% by mass.
  • HCFO 1224yd (Z) is considered in consideration of the balance of the flammability, cycle performance and temperature gradient.
  • the composition is such that the ratio of HCFO-1224yd (Z) is 30 to 99% by mass, and the ratio of HFO-1234yf is 70 to 1% by mass with respect to the total amount of HFO and 1234yf. If the composition of HCFO-1224yd (Z) and HFO-1234yf in the working medium is in the above-mentioned range, it is possible to sufficiently suppress the flammability while improving the cycle performance.
  • the proportion of HCFO-1224 yd (Z) is preferably 50 to 99% by mass
  • the proportion of HFO-1234yf is preferably 50 to 1% by mass
  • the proportion of HCFO 1224 yd (Z) is 80 to 99% by mass
  • the ratio of HFO-1234yf is particularly preferably 20 to 1% by mass.
  • the total content of HCFO-1224yd (Z) and HFO-1234ze (E) or the total content of HCFO 1224yd (Z) and HFO-1234yf is at least 50% by mass, based on the total amount of the working medium.
  • the total content is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 100% by mass with respect to the total amount of the working medium.
  • HCFO-1224yd (Z) and HFO-1234ze (E) or the total content of HCFO 1224yd (Z) and HFO-1234yf is within the above range, while improving the cycle performance of the working medium, Flammability can be sufficiently suppressed.
  • These working media also serve as thermal cycling working media with the preferred features of low environmental impact and minimal thermal gradient problems.
  • the working medium for thermal cycling of the present embodiment preferably contains HCFO-1224yd (Z), HFO-1234ze (E), and HFO-1234yf.
  • the proportion of HCFO-1224yd (Z) is 10 to 50% by mass
  • the proportion of HFO-1234ze (E) is 40 to 40% of the total amount of HCFO-1224yd (Z), HFO-1234ze (E) and HFO-1234yf.
  • the proportion of 80% by mass and HFO-1234yf is preferably 10 to 50% by mass.
  • the cycle performance (refrigerating capacity (Q), coefficient of performance (COP)), flammability and temperature gradient of the working medium for thermal cycling can be evaluated, for example, using a refrigeration cycle system whose schematic configuration is shown in FIG.
  • the refrigeration cycle system 10 shown in FIG. 1 cools and liquefies the working medium vapor B discharged from the compressor 11 by compressing the working medium vapor A into a high temperature and high pressure working medium vapor B and the working medium vapor B discharged from the compressor 11.
  • a condenser 12 as a working medium C of low temperature and high pressure
  • an expansion valve 13 of expanding the working medium C discharged from the condenser 12 to a working medium D of low temperature and low pressure
  • a pump 15 for supplying the load fluid E to the evaporator 14 and a pump 16 for supplying the fluid F to the condenser 12.
  • the working medium vapor A discharged from the evaporator 14 is compressed by the compressor 11 to be a high temperature and high pressure working medium vapor B (hereinafter referred to as "AB process").
  • the working medium vapor B discharged from the compressor 11 is cooled by the fluid F in the condenser 12 and liquefied to form a working medium C of low temperature and high pressure. At this time, the fluid F is heated to become fluid F ′ and discharged from the condenser 12 (hereinafter referred to as “BC process”).
  • the working medium C discharged from the condenser 12 is expanded by the expansion valve 13 to form a low-temperature low-pressure working medium D (hereinafter referred to as "CD process").
  • the working medium D discharged from the expansion valve 13 is heated by the load fluid E in the evaporator 14 to be a high-temperature low-pressure working medium vapor A. At this time, the load fluid E is cooled to be a load fluid E ′ and discharged from the evaporator 14 (hereinafter referred to as “DA process”).
  • the refrigeration cycle system 10 is a cycle system consisting of adiabatic and isentropic changes, isenthalpy changes and isobaric changes.
  • the change in state of the working medium can be represented as a trapezoid with vertices A, B, C, and D, when it is described on the pressure-enthalpy line (curve) diagram shown in FIG.
  • the AB process is a process in which adiabatic compression is performed by the compressor 11 to make the high temperature and low pressure working medium vapor A into a high temperature and high pressure working medium vapor B, which is shown by an AB line in FIG. As described later, the working medium vapor A is introduced into the compressor 11 in a superheated state, and the resulting working medium vapor B is also a superheated vapor.
  • the discharge pressure is the pressure (Px) in the state of B in FIG. 2 and is the maximum pressure in the refrigeration cycle. Further, the temperature (Tx) in the state of B in FIG. 2 is the discharge temperature, which is the maximum temperature in the refrigeration cycle. As described below, since the BC process is isobaric cooling, the discharge pressure has the same value as the condensation pressure. Therefore, in FIG. 2, the condensation pressure is indicated as Px for convenience.
  • the BC process is a process of performing isobaric cooling in the condenser 12 and making the high temperature / high pressure working medium vapor B into a low temperature / high pressure working medium C, and is shown by a BC line in FIG.
  • the pressure at this time is the condensation pressure.
  • Pressure - an intersection T 1 of the high enthalpy side condensing temperature of the intersection of the enthalpy and BC line, the low enthalpy side intersection T 2 is the condensation boiling temperature.
  • the temperature gradient when the working medium is a non-azeotropic mixture medium is shown as the difference between T 1 and T 2 .
  • the CD process is a process in which isenthalpy expansion is performed by the expansion valve 13 to make the working medium C of low temperature and high pressure into the working medium D of low temperature and low pressure, which is shown by a CD line in FIG. Incidentally, if Shimese the temperature in the working medium C of low temperature and high pressure at T 3, T 2 -T 3 is (i) ⁇ supercooling degree of the working medium in the cycle of (iv) (SC).
  • the DA process is a process in which isobaric heating is performed by the evaporator 14 to return the low-temperature low-pressure working medium D to the high-temperature low-pressure working medium vapor A, which is shown by a DA line in FIG.
  • the pressure at this time is the evaporation pressure.
  • Pressure - intersection T 6 of the high enthalpy side of the intersection of the enthalpy and DA line is evaporating temperature. If Shimese the temperature of the working medium vapor A in T 7, T 7 -T 6 is (i) ⁇ superheat of the working medium in the cycle of (iv) (SH).
  • T 4 denotes the temperature of the working medium D.
  • the refrigeration capacity (Q) and coefficient of performance (COP) of the working medium are the working medium A (evaporated, high temperature and low pressure after evaporation), B (high pressure and high temperature after compression), C (low temperature and high pressure after condensation), D (after expansion each enthalpy in each state of low temperature and low pressure), h a, h B, h C, the use of h D, the following formula (a), obtained from each of (B). At this time, there is no loss due to equipment efficiency, and no pressure loss in piping and heat exchangers.
  • thermodynamic properties required to calculate the cycle performance of the working medium can be calculated based on the generalized equation of state (Soave-Redlich-Kwong equation) based on the corresponding state principle, and thermodynamic relations. If the characteristic value can not be obtained, calculation is performed using an estimation method based on the group contribution method.
  • the compression work indicated by (h B -h A ) corresponds to the output (kW) of the refrigeration cycle, and the Q shown by (h A -h D ) above is required to operate the compressor, for example
  • the amount of power corresponds to the consumed power (kW).
  • Q means the ability to freeze the load fluid, and a higher Q means more work can be done in the same system. In other words, if it has a large Q, it indicates that the desired performance can be obtained with a small amount of working medium, and the system can be miniaturized.
  • the working fluid for thermal cycling of the present embodiment includes, in addition to HCFO-1224yd and HFO-1234ze (E) or HCFO-1224yd and HFO-1234yf, known compounds used as working fluid as compared to the total amount of working fluid for thermal cycling. You may contain arbitrarily in the ratio of 50 mass% or less. When such a compound (optional component) is contained, the ratio of the compound (optional component) to the total amount of the working medium is preferably 30% by mass or less, more preferably 20% by mass or less, and particularly 10% by mass or less Preferably, 5% by mass or less is the most preferable.
  • HFO other than HFC HFO-1234ze (E) and HFO-1234yf (hereinafter, also referred to as “other HFO")
  • HCFO other than HCFO-1224yd hereinafter, “other HCFO”
  • Working media such as trans-1,2-dichloroethylene and the like.
  • the optional component When the optional component is combined with a mixture of HCFO-1224yd and HFO-1234ze (E) or a mixture of HCFO-1224yd and HFO-1234yf to form a working medium, it has an action to further enhance cycle performance, such as GWP etc. It is preferable to be selected from the viewpoint of being able to sufficiently secure the safety such that the environmental load is limited to an acceptable range and the combustibility is not improved.
  • HFC HFC
  • E HFO-1234ze
  • HFO-1234yf HFC
  • environmental loads such as GWP, etc. can be made particularly acceptable when used as a working medium. It is preferable to be selected appropriately, keeping in mind that it is limited.
  • an HFC having 1 to 5 carbon atoms is preferable as the HFC having a small environmental load such as GWP.
  • the HFC may be linear, branched or cyclic.
  • difluoromethane, difluoroethane, trifluoroethane, tetrafluoroethane, pentafluoroethane, pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclopentane and the like can be mentioned.
  • HFC-365mfc 1,1,2,2-tetrafluoroethane, HFC-134a, HFC-245fa and 1,1,1,3,3-pentafluorobutane
  • HFC-365mfc 1,1,2,2-tetrafluoroethane
  • HFC-365mfc 1,1,1,3,3-pentafluorobutane
  • HFC-365mfc 1,1,1,3,3-pentafluorobutane
  • HFC-365mfc 1,1,1,3,3-pentafluorobutane
  • One of HFCs may be used alone, or two or more thereof may be used in combination.
  • HFO HFO-1234ze (E) and HFO-1234yf
  • GWP is orders of magnitude lower than HFC. Therefore, it is preferable to appropriately select other HFOs from the point of view that safety can be ensured without improving the cycle performance as the working medium and the combustibility, rather than considering GWP.
  • HFOs include HFO-1336mzz (Z), HFO-1336mzz (E), 1,2-difluoroethylene (HFO-1132), 2-fluoropropene (HFO-1261yf), 1,1,2-trifluoro Propene (HFO-1243yc), (E) -1,2,3,3,3-pentafluoropropene (HFO-1225ye (E)), (Z) -1,2,3,3,3-pentafluoropropene (HFO-1225ye (Z)), (Z) -1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)), 3,3,3-trifluoropropene (HFO-1243zf). .
  • HFO-1234ze (Z) and HFO-1243zf are preferable.
  • the other HFO may be used alone or in combination of two or more.
  • the boiling point of HFO-1234ze (Z) is 9.7 ° C.
  • GWP is ⁇ 1
  • ODP is 0.
  • HCFO As HCFO, 1-chloro-2,2-difluoroethylene (HCFO-1122), 1,2-dichlorofluoroethylene (HCFO-1121), 1-chloro-2-fluoroethylene (HCFO-1131), 2-chloro -3,3,3-Trifluoropropene (HCFO-1233xf), 1-Chloro-2,3,3-trifluoro-1-propene (HCFO-1233yd) and 1-Chloro-3,3,3-tetrafluoro Propene (HCFO-1233zd) may be mentioned.
  • HCFO-1233zd is preferable from the viewpoint of having high critical temperature and being excellent in durability and coefficient of performance.
  • One of other HCFOs may be used alone, or two or more thereof may be used in combination.
  • the working medium used for the thermal cycle system of the present embodiment may contain carbon dioxide, hydrocarbons, chlorofluoroolefin (CFO), etc., in addition to the above components.
  • CFO chlorofluoroolefin
  • a component which has less influence on the ozone layer and has less influence on global warming is preferable.
  • hydrocarbon propane, propylene, cyclopropane, butane, isobutane, pentane, isopentane and the like can be mentioned.
  • the hydrocarbon may be used alone or in combination of two or more.
  • the inclusion of the hydrocarbon improves the solubility of the mineral lubricating oil in the working medium.
  • the hydrocarbon content is preferably 10% by mass or less based on 100% by mass of the working medium from the viewpoint of combustibility, more preferably 5% by mass or less .
  • CFO examples include chlorofluoropropene and chlorofluoroethylene.
  • CFO 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya), 1 as a CFO, because the flammability of the working medium can be easily suppressed without significantly reducing the cycle performance of the working medium.
  • Preferred is 3, 3-dichloro-1,2,3,3-tetrafluoropropene (CFO-1214yb) or 1,2-dichloro-1,2-difluoroethylene (CFO-1112).
  • the CFO may be used alone or in combination of two or more.
  • the content of each optional component is 50% by mass or less, preferably 30% by mass or less, and further 20% by mass or less based on 100% by mass of the working medium. Preferably, 10% by mass or less is particularly preferable.
  • the total content of the optional components in the working medium is 50% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less, with respect to 100% by mass of the working medium. 10 mass% or less is especially preferable.
  • the working medium of the present embodiment can be used as a composition for a heat cycle system of the present embodiment including the application to a heat cycle system.
  • the composition for a thermal cycle system of the present embodiment usually contains a lubricating oil in addition to the working medium of the present embodiment described above.
  • the composition for a heat cycle system of the present embodiment may contain known additives such as a stabilizer and a leak detection substance. These lubricating oils and additives can also be used in combination.
  • the lubricating oil As the lubricating oil, a known lubricating oil used in the working medium composition can be adopted without particular limitation, together with the working medium conventionally composed of halogenated hydrocarbons. Specific examples of the lubricating oil include oxygen-containing synthetic oils (ester-based lubricating oils, ether-based lubricating oils and the like), fluorine-based lubricating oils, mineral-based lubricating oils, hydrocarbon-based synthetic oils and the like.
  • ester-based lubricating oils dibasic acid ester oils, polyol ester oils, complex ester oils, polyol carbonate oils and the like can be mentioned.
  • ether-based lubricating oils examples include polyvinyl ether oils and polyoxyalkylene oils such as polyglycol oils.
  • fluorine-based lubricating oils include compounds in which hydrogen atoms of synthetic oils (mineral oil, poly ⁇ -olefin, alkylbenzene, alkylnaphthalene, etc. described later) are substituted with fluorine atoms, perfluoropolyether oils, fluorinated silicone oils, etc.
  • a mineral-based lubricating oil As a mineral-based lubricating oil, a lubricating oil fraction obtained by atmospheric distillation or vacuum distillation of crude oil is subjected to purification treatment (solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrogenation
  • purifying, clay treatment etc. are mentioned.
  • hydrocarbon synthetic oils examples include poly ⁇ -olefins, alkylbenzenes and alkylnaphthalenes.
  • the lubricating oils may be used alone or in combination of two or more.
  • the lubricating oil is preferably at least one selected from polyol ester oils, polyvinyl ether oils and polyglycol oils from the viewpoint of compatibility with the working medium.
  • the addition amount of the lubricating oil may be in a range that does not significantly reduce the effects of the present invention, and is preferably 10 to 100 parts by mass, and more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the working medium.
  • Stabilizers are components that improve the stability of the working medium against heat and oxidation.
  • the stabilizer there are no particular limitations on known stabilizers conventionally used in thermal cycle systems, such as oxidation resistance improvers, heat resistance improvers, metal deactivators, etc., together with the working medium conventionally made of halogenated hydrocarbons. It can be adopted.
  • N N'-diphenyl phenylene diamine, p-octyl diphenylamine, p, p'-dioctyl diphenylamine, N-phenyl-1-naphthylamine, N-phenyl-2-naphthylamine N- (p-dodecyl) phenyl-2-naphthylamine, di-1-naphthylamine, di-2-naphthylamine, N-alkylphenothiazine, 6- (t-butyl) phenol, 2,6-di- (t-butyl) And the like) phenol, 4-methyl-2,6-di- (t-butyl) phenol, 4,4'-methylenebis (2,6-di-t-butylphenol) and the like.
  • the oxidation resistance improver and the heat resistance improver one type may be used alone,
  • metal deactivators examples include imidazole, benzimidazole, 2-mercaptobenzthiazole, 2,5-dimethylcaptothiadiazole, salicylidine-propylenediamine, pyrazole, benzotriazole, toltriazole, 2-methylbenzamidazole, 3,5- Dimethylpyrazole, methylenebis-benzotriazole, organic acids or their esters, primary, secondary or tertiary aliphatic amines, amine salts of organic acids or inorganic acids, heterocyclic nitrogen-containing compounds, alkyl acid phosphates Amine salts or derivatives thereof.
  • the addition amount of the stabilizer may be within a range not significantly reducing the effects of the present invention, and is preferably 5 parts by mass or less, and more preferably 1 part by mass or less with respect to 100 parts by mass of the working medium.
  • UV fluorescent dye As a leak detection substance, an ultraviolet fluorescent dye, an odor gas, an odor masking agent and the like can be mentioned.
  • Ultraviolet fluorescent dyes are described in U.S. Pat. No. 4,249,412, JP-A-10-502737, JP-A-2007-511645, JP-A-2008-500437, and JP-A-2008-531836.
  • Known ultraviolet fluorescent dyes used in thermal cycle systems, as well as working media conventionally comprising halogenated hydrocarbons such as those described in U.S. Pat.
  • a solubilizer may be used to improve the solubility of the leak detection substance in the working medium.
  • solubilizers examples include those described in JP-A-2007-511645, JP-A-2008-500437, and JP-A-2008-531836.
  • the addition amount of the leak detection substance may be within the range not significantly reducing the effects of the present invention, preferably 2 parts by mass or less and more preferably 0.5 parts by mass or less with respect to 100 parts by mass of the working medium.
  • the thermal cycle system of the present embodiment is obtained by applying a composition for a thermal cycle system including the above-mentioned working medium to an apparatus and device for thermal cycle.
  • the thermal cycle system includes a thermal cycle system including a heat exchanger such as a compressor, a condenser and an evaporator.
  • the heat cycle system of the present embodiment may be a heat pump system that utilizes the heat obtained by the condenser, or may be a refrigeration cycle system that uses the cold heat obtained by the evaporator.
  • the thermal cycle system of the present embodiment may be a flooded evaporator type or a direct expansion type.
  • water or air is preferable as the substance other than the working medium which is heat-exchanged with the working medium.
  • the heat cycle system of the present embodiment includes refrigeration / refrigeration equipment, air conditioning equipment, power generation system, heat transport device, secondary cooler, and the like.
  • the thermal cycle system of the present embodiment is preferably used as an air conditioner that is often installed outdoors, since it can stably exhibit cycle performance even in a higher temperature operating environment.
  • the thermal cycle system of this embodiment is used as a freezing / refrigerating apparatus.
  • the power generation system is preferably a Rankine cycle system power generation system.
  • the working medium is heated by geothermal energy, solar heat, middle to high temperature range waste heat at about 50 to 200 ° C. in an evaporator, and the working medium that has become high-temperature high-pressure steam is expanded
  • An example is a system in which adiabatic expansion is performed in a machine, and a work generated by the adiabatic expansion drives a generator to generate electric power.
  • the heat cycle system of the present embodiment may be a heat transport device.
  • a latent heat transport device is preferable.
  • the latent heat transport device include a heat pipe that performs latent heat transport utilizing phenomena such as evaporation, boiling, and condensation of a working medium enclosed in the device, and a two-phase closed thermosiphon device.
  • the heat pipe is applied to a relatively small cooling device such as a cooling device for a semiconductor element or a heat generating portion of an electronic device. Since the two-phase closed thermosyphon does not require a wig and has a simple structure, it is widely used for gas-to-gas heat exchangers, snow melting on roads, prevention of freezing, and the like.
  • refrigeration / refrigeration equipment examples include showcases (built-in showcases, separately mounted showcases, etc.), commercial freezers / refrigerators, vending machines, ice makers, and the like.
  • air conditioners specifically, room air conditioners, package air conditioners (package air conditioners for buildings, package air conditioners for buildings, equipment package air conditioners, etc.), heat source equipment chilling units, gas engine heat pumps, train air conditioners, car air conditioners Etc.
  • the heat source equipment chilling unit includes, for example, a volumetric compression type refrigerator and a centrifugal type refrigerator.
  • a centrifugal type refrigerator to be described next has a large amount of the working medium, the effect of the present embodiment is more remarkable. Preferably obtained.
  • centrifugal refrigerator is a refrigerator using a centrifugal compressor.
  • a centrifugal refrigerator is a type of vapor compression refrigerator, and is generally referred to as a turbo refrigerator.
  • a centrifugal compressor includes an impeller and performs compression by discharging a working medium to the outer peripheral portion by the rotating impeller.
  • Centrifugal refrigerators are used in office buildings, district heating and cooling, heating and cooling in hospitals, semiconductor factories, cold water production plants in the petrochemical industry, and the like.
  • the centrifugal refrigerator may be either a low pressure type or a high pressure type, but is preferably a low pressure type centrifugal refrigerator.
  • the low-pressure type is a working medium that is not subject to the High Pressure Gas Safety Act such as CFC-11, HCFC-123, HFC-245fa, that is, "The pressure is 0.2 MPa or more at ordinary temperature.
  • the inclusion of moisture in the thermal cycling system can cause problems, especially when used at low temperatures. For example, problems such as freezing in a capillary tube, hydrolysis of a working medium or refrigeration oil, material deterioration due to an acid component generated in a cycle, generation of contamination, etc. occur.
  • the refrigerator oil is a polyalkylene glycol, polyol ester or the like
  • the hygroscopicity is extremely high, and a hydrolysis reaction is likely to occur, and the characteristics as a refrigerator oil are degraded, and the long-term reliability of the compressor is impaired. It becomes a cause. Therefore, in order to suppress the hydrolysis of refrigeration oil, it is necessary to control the moisture concentration in the thermal cycle system.
  • a method using a water removing means such as a desiccant (silica gel, activated alumina, zeolite, etc.) can be mentioned. It is preferable in terms of dewatering efficiency that the desiccant be brought into contact with the liquid thermal cycle system composition. For example, it is preferable to place a desiccant at the outlet of the condenser or at the inlet of the evaporator to contact the composition for the thermal cycle system.
  • a zeolitic desiccant is preferable from the viewpoint of the chemical reactivity between the desiccant and the composition for a heat cycle system and the moisture absorption capacity of the desiccant.
  • the compound represented by the following formula (C) is the main component from the viewpoint of excellent moisture absorption capacity.
  • Zeolite based desiccants are preferred.
  • M is an element of Group 1 such as Na and K or an element of Group 2 such as Ca
  • n is a valence of M
  • x and y are values determined by the crystal structure.
  • the pore size can be adjusted by changing M.
  • the pore size and the breaking strength are important in the selection of the desiccant.
  • working media etc. such as working media contained in the composition for thermal cycle system
  • the working media etc. is adsorbed in the desiccant
  • undesirable phenomena such as generation of noncondensable gas, reduction in strength of the desiccant, and reduction in adsorption capacity.
  • a zeolite-based desiccant with a small pore size.
  • a sodium-potassium A-type synthetic zeolite having a pore size of 3.5 angstroms or less is preferable.
  • the shape is preferably granular or cylindrical.
  • the zeolitic desiccant can be made into an arbitrary shape by solidifying powdered zeolite with a binder (bentonite or the like).
  • a binder bentonite or the like.
  • Other desiccants silicon gel, activated alumina, etc. may be used in combination as long as the zeolite-based desiccant is mainly used.
  • the non-condensable gas is mixed in the thermal cycle system, it has an adverse effect of poor heat transfer in the condenser and the evaporator and an increase in operating pressure, so it is necessary to suppress the mixing as much as possible.
  • oxygen which is one of the non-condensable gases, reacts with the working medium and refrigerator oil to promote decomposition.
  • the noncondensable gas concentration is preferably 1.5% by volume or less by volume ratio to the working medium in the gas phase portion of the working medium, and particularly preferably 0.5% by volume or less.
  • thermal cycle system of this embodiment was demonstrated, the thermal cycle system of this embodiment is not limited above. These embodiments can be modified or changed without departing from the spirit and scope of the present invention.
  • a predetermined composition for a heat cycle system including the working medium of the present embodiment is used. Therefore, the thermal cycle system using the composition for a thermal cycle system containing this working medium has good cycle performance as described above, and the effect on global warming is suppressed by sufficiently low ODP and GWP. It is an excellent material that exhibits the characteristics of a highly safe working medium with reduced flammability. In particular, by suppressing the flammability of the working medium, even if any trouble occurs in the thermal cycle system, it is possible to avoid dangers such as fire and explosion.
  • Example 1-1 to 1-9 A working medium was prepared by mixing HCFO-1224yd (Z) and HFO-1234ze (E) in the proportions shown in Table 2, and the temperature gradient and refrigeration cycle performance (refrigerating capacity Q and coefficient of performance COP) were measured by the following method did.
  • ⁇ Measurement of temperature gradient, refrigeration cycle performance applies the working medium to the refrigeration cycle system 10 shown in FIG. 1 and adiabatic compression by the compressor 11 in the thermal cycle shown in FIG. In the BC process, isobaric cooling by the condenser 12, isenthalpic expansion by the expansion valve 13 in the CD process, and isobaric heating by the evaporator 14 in the DA process.
  • Measurement conditions are the evaporation temperature of working medium in evaporator 14 (average temperature of evaporation start temperature and evaporation completion temperature) 5 ° C., condensation completion temperature of working medium in condenser 12 (average temperature of condensation start temperature and condensation completion temperature) C., the degree of subcooling (SC) of the working medium in the condenser 12 as 5.degree. C., and the degree of superheat (SH) of the working medium in the evaporator 14 as 0.degree.
  • the compressor efficiency was 0.8, and there was no pressure loss in the piping and the heat exchanger.
  • the refrigeration capacity and coefficient of performance are the enthalpy of each state of the working medium A (evaporation, high temperature and low pressure), B (compression, high temperature and high pressure after compression), C (condensed, low temperature and high pressure after condensation), and D (low temperature, low pressure after expansion). It calculated
  • thermodynamic properties required to calculate the refrigeration cycle performance were calculated based on the generalized equation of state (Soave-Redlich-Kwong equation) based on the corresponding state principle, and thermodynamic relations. When characteristic values were not available, calculation was performed using the estimation method based on the group contribution method.
  • the refrigerating capacity and the coefficient of performance were determined as relative ratios when the refrigerating capacity and coefficient of performance of HCFC-1224 yd (Z) measured in the same manner as described above were respectively 1.00.
  • the temperature gradient was determined as the difference between T 1 and T 2 in FIG.
  • the GWP of the working fluid was determined based on the GWP of each compound shown in Table 1 as a weighted average by composition mass. That is, the GWP of the working medium was determined by dividing the sum of the product of the mass% of each compound constituting the working medium and the GWP by 100.
  • the working media of Examples 1-1 to 1-9 all have an ODP of 0.
  • Examples 2-1 to 2-8 A working medium was prepared by mixing HCFO-1224yd (Z) and HFO-1234yf in the proportions shown in Table 3, and temperature gradient and refrigeration cycle performance (refrigerating capacity Q and coefficient of performance COP) were prepared in the same manner as in Example 1 above. It was measured.
  • the working media of Examples 2-1 to 2-8 all have an ODP of 0.
  • Example 3-1 to 3-15 A working medium was prepared by mixing HCFO-1224yd (Z), HFO-1234ze (E) and HFO-1234yf in the proportions shown in Table 4, and in the same manner as Example 1 above, the temperature gradient and the refrigeration cycle performance (refrigerating capacity Q and coefficient of performance COP were measured.
  • the working media of Examples 3-1 to 3-15 all have an ODP of 0.
  • Examples 4-1 to 4-9 A working medium was prepared by mixing HCFO-1224yd (Z) and HFO-1234ze (Z) in the proportions shown in Table 5, and in the same manner as in Example 1 above, temperature gradient and refrigeration cycle performance (refrigerant capacity Q and coefficient of performance) COP) was measured.
  • the working media of Examples 4-1 to 4-9 all have an ODP of 0.
  • a working fluid for thermal cycle comprising the mixture obtained in Examples 1-6 to 1-9 and Examples 2-6 to 2-8, and further, 10% by mass of HCFO-1224yd (Z), HFO-1234ze Thermal cycle working medium (Example 1-10) consisting of a mixture of 90% by weight of (E), thermal cycle working medium consisting of a mixture of 20% by weight of HCFO-1224yd (Z) and 80% by weight of HFO-1234yf
  • each working medium was mixed with air at a ratio of every 10% to 90% by mass with respect to air to evaluate the flammability when it reached an equilibrium state.
  • the flammability evaluation was performed as follows using the equipment specified in ASTM E-681. After evacuating the inside of a 12-liter flask installed in a thermostat controlled at 58.0-59.0 ° C, each working medium mixed with air at the above ratio was sealed up to atmospheric pressure . Thereafter, in the gas phase near the center in the flask, discharge ignition was performed at 15 kV and 30 mA for 0.4 seconds, and the spread of the flame was visually confirmed. It was judged to be combustible when the angle of the flame spread upward was 90 degrees or more, and not combustible when it was less than 90 degrees. The results are shown in Tables 6 and 7.
  • the compounds constituting the working medium used here are summarized in Tables 2-3.
  • the working media shown in Tables 2 to 3 are working media in the non-combustible range, and are also shown together with the evaluation of the refrigeration cycle performance of the working media and the evaluation of the global warming potential (GWP).
  • GWP global warming potential
  • the thermal cycle working medium consisting of a mixture of HCFO-1224yd (Z) and HFO-1234ze (E) has sufficient combustibility if 20% by mass or more of HCFO-1224yd (Z) is contained. It has been found that it is possible to make it a highly safe working medium.
  • the thermal cycle working medium consisting of a mixture of HCFO-1224yd (Z) and HFO-1234yf is sufficiently reduced in flammability as long as HCFO-1224yd (Z) is contained in an amount of 30% by mass or more. It turned out that it can be considered as highly safe.
  • a composition for a thermal cycle system including the same, and a thermal cycle system using the composition can be used as a refrigerating / refrigerating device (built-in showcase, separate showcase, freezer / refrigerator for business use, Vending machines, ice makers, etc., air conditioners (room air conditioners, package air conditioners for stores, package air conditioners for buildings, equipment package air conditioners, heat source equipment chilling units, gas engine heat pumps, air conditioners for trains, air conditioners for automobiles, etc.) It can be used for power generation systems (such as waste heat recovery power generation), heat transport devices (such as heat pipes), and secondary coolers.
  • a refrigerating / refrigerating device built-in showcase, separate showcase, freezer / refrigerator for business use, Vending machines, ice makers, etc.
  • air conditioners room air conditioners, package air conditioners for stores, package air conditioners for buildings, equipment package air conditioners, heat source equipment chilling units, gas engine heat pumps, air conditioners for trains, air conditioners for automobiles, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

Provided is a working medium for a heat cycle. The ODP and GWP of the working medium are low enough that the impact of the working medium on global warming is substantially suppressed. The working medium also has favorable cycle performance, e.g., refrigerating capacity, coefficient of performance (COP), etc. The working medium also has substantially suppressed combustibility and is therefore highly safe. A working medium that is for a heat cycle and includes HCFO-1224yd and HFO-1234ze(E). The working medium for a heat cycle is characterized in that the total HCFO-1224yd and HFO-1234ze(E) content thereof is at least 50 mass% and in that the ratio HCFO-1224yd:HFO-1234ze(E) is a prescribed ratio.

Description

熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステムWorking medium for thermal cycling, composition for thermal cycling system and thermal cycling system
 本発明は、熱サイクル用作動媒体およびこれを含む熱サイクルシステム用組成物、ならびに該組成物を用いた熱サイクルシステムに関する。 The present invention relates to a working fluid for thermal cycling, a composition for thermal cycling system including the same, and a thermal cycling system using the composition.
 従来、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動媒体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の熱サイクルシステム用の作動媒体としては、クロロフルオロカーボン(CFC)やヒドロクロロフルオロカーボン(HCFC)が用いられてきた。しかし、CFCおよびHCFCは、成層圏に存在するオゾン層への影響が指摘され、特にCFCはオゾン破壊係数(ODP)が高いことからモントリオール議定書にしたがって既に全廃となっており、HCFCについても2020年に全廃が決まっている。 Conventionally, working media for heat cycle systems such as refrigerants for refrigerators, refrigerants for air conditioners, working media for power generation systems (waste heat recovery power generation etc), working media for latent heat transport devices (heat pipes etc), secondary cooling media etc. As chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) have been used. However, CFCs and HCFCs have been pointed out that the effect on the ozone layer existing in the stratosphere is pointed out, and in particular, CFCs have already been totally abolished in accordance with the Montreal Protocol due to their high ozone depletion potential (ODP). Complete elimination has been decided.
 そこで、CFCやHCFCに代えて、オゾン層への影響が少ない、ヒドロフルオロカーボン(HFC)が熱サイクル用の作動媒体として用いられるようになった。一方で、HFCは地球温暖化係数(GWP)が比較的高く問題があると考えられている。 Therefore, instead of CFC and HCFC, hydrofluorocarbon (HFC), which has less influence on the ozone layer, has come to be used as a working medium for thermal cycling. On the other hand, HFC is considered to have a relatively high global warming potential (GWP) and a problem.
 例えば、ビルの冷暖房用、工業用の冷水製造プラントなどに用いられる遠心式冷凍機においては、従来、トリクロロフルオロメタン(CFC-11)が作動媒体として用いられていた。しかしながら、ODPが1、GWPが4750であるCFC-11は、既に全廃されており、これを代替する作動媒体として、現状では、ODPが0.02、GWPが77と、ともに低い1,1-ジクロロ-2,2,2-トリフルオロエタン(HCFC-123)が使用されている。また、GWPが高いがODPが0であるHFCとして、GWPが1430の1,1,1,2-テトラフルオロエタン(HFC-134a)や、GWPが1030の1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)等もCFC-11の代替として使用されている。 For example, trichlorofluoromethane (CFC-11) has conventionally been used as a working medium in centrifugal refrigerators used for cold water production plants for buildings, etc. for cooling and heating of buildings and the like. However, CFC-11 with an ODP of 1 and a GWP of 4750 has already been abolished, and as a working medium to replace it, the ODP is currently 0.02 with a GWP of 77, both of which are low 1,1- Dichloro-2,2,2-trifluoroethane (HCFC-123) is used. In addition, as HFCs having high GWP but having ODP of 0, 1,1,1,2-tetrafluoroethane (HFC-134a) having a GWP of 1430 or 1,1,1,3,3- having a GWP of 1030 Pentafluoropropane (HFC-245fa) and the like are also used as alternatives to CFC-11.
 これに対して、最近、オゾン層への影響が少なく、かつGWPが低い作動媒体として、炭素-炭素二重結合を有する、ヒドロフルオロオレフィン(HFO)、ヒドロクロロフルオロオレフィン(HCFO)およびクロロフルオロオレフィン(CFO)等に期待が集まっている。これらの作動媒体は、炭素-炭素二重結合を有しているため、大気中のOHラジカルによって分解されやすい。本明細書においては、特に断りのない限り飽和のHFCをHFCといい、HFOとは区別して用いる。 On the other hand, recently, hydrofluoroolefins (HFO), hydrochlorofluoroolefins (HCFO) and chlorofluoroolefins having carbon-carbon double bonds as working media with low influence on the ozone layer and low GWP Expectations are gathered at (CFO) etc. Since these working media have carbon-carbon double bonds, they are easily decomposed by OH radicals in the atmosphere. In the present specification, unless otherwise specified, saturated HFC is referred to as HFC and is used separately from HFO.
 なかでも、HCFOおよびCFOは、一分子中のハロゲンの割合が多いため、燃焼性が抑えられた化合物であり、環境への負荷が少なくかつ燃焼性を抑えた作動媒体として検討されている。例えば、特許文献1には1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)を用いる作動媒体が記載されている。 Among them, HCFO and CFO are compounds in which the flammability is suppressed because the ratio of halogen in one molecule is large, and are considered as a working medium in which the load on the environment is small and the flammability is suppressed. For example, Patent Document 1 describes a working medium using 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd).
国際公開第2012/157763号International Publication No. 2012/157763
 上記のHCFO-1224ydを使用した作動媒体は、環境への負荷が少なくかつサイクル性能が良好なものであるが、環境負荷が低いまま、よりサイクル性能を向上させた作動媒体が求められている。このような作動媒体としては、さらに燃焼性が低く維持され、安全性についても問題のないものが求められている。 Although the working medium using the above HCFO-1224yd has a low environmental load and a good cycle performance, a working medium with further improved cycle performance is required while the environmental load is low. As such a working medium, one which is maintained at a low level of combustibility and has no problem with safety is required.
 そこで、本発明は、ODPおよびGWPが充分に低いことで地球温暖化への影響が充分に抑制され、冷凍能力および成績係数(COP)等のサイクル性能も良好で、さらに、燃焼性が充分に抑えられた安全性の高い熱サイクル用の作動媒体の提供を目的とする。 Therefore, according to the present invention, the effects on global warming are sufficiently suppressed by sufficiently low ODP and GWP, and the cycle performance such as refrigeration capacity and coefficient of performance (COP) is good, and further, the combustibility is sufficient. An object of the present invention is to provide a working medium for reduced thermal cycling with high safety.
 また、本発明は、このような作動媒体を含む熱サイクルシステム用組成物、ならびに該組成物を用いた熱サイクルシステムの提供も目的とする。 Another object of the present invention is to provide a composition for a thermal cycle system including such a working medium, as well as a thermal cycle system using the composition.
 本発明は、上記観点からなされたものであって、以下の構成を有する熱サイクル用作動媒体、熱サイクルシステム用組成物および熱サイクルシステムを提供する。 The present invention, made in view of the above, provides a working medium for thermal cycling, a composition for thermal cycling system, and a thermal cycling system having the following configuration.
 [1]1-クロロ-2,3,3,3-テトラフルオロプロペンと(E)-1,3,3,3-テトラフルオロプロペンを含む熱サイクル用作動媒体であって、前記熱サイクル用作動媒体中に含まれる、前記1-クロロ-2,3,3,3-テトラフルオロプロペンと前記1,3,3,3-テトラフルオロプロペンの合計含有量が50質量%以上であり、かつ、1-クロロ-2,3,3,3-テトラフルオロプロペン:(E)-1,3,3,3-テトラフルオロプロペンで表される割合が、質量基準で、20:80~99:1であることを特徴とする熱サイクル用作動媒体。
 [2]1-クロロ-2,3,3,3-テトラフルオロプロペンと2,3,3,3-テトラフルオロプロペンとを含む熱サイクル用作動媒体であって、前記熱サイクル用作動媒体中に含まれる、前記1-クロロ-2,3,3,3-テトラフルオロプロペンと前記2,3,3,3-テトラフルオロプロペンの合計含有量が50質量%以上であり、かつ、1-クロロ-2,3,3,3-テトラフルオロプロペン:2,3,3,3-テトラフルオロプロペンで表される割合が、質量基準で、30:70~99:1であることを特徴とする熱サイクル用作動媒体。
 [3]前記1-クロロ-2,3,3,3-テトラフルオロプロペンは、(E)-1-クロロ-2,3,3,3-テトラフルオロプロペン:(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペンで表される割合が、質量基準で、50:50~0.01:99.99である[1]または[2]に記載の熱サイクル用作動媒体。
[1] A working medium for thermal cycling comprising 1-chloro-2,3,3,3-tetrafluoropropene and (E) -1,3,3,3-tetrafluoropropene, the actuation for thermal cycling The total content of the 1-chloro-2,3,3,3-tetrafluoropropene and the 1,3,3,3-tetrafluoropropene contained in the medium is 50% by mass or more, and 1 The ratio represented by -chloro-2,3,3,3-tetrafluoropropene: (E) -1,3,3,3-tetrafluoropropene is from 20:80 to 99: 1 on a mass basis. A working fluid for thermal cycling characterized by
[2] A working medium for thermal cycling comprising 1-chloro-2,3,3,3-tetrafluoropropene and 2,3,3,3-tetrafluoropropene, wherein the working medium for thermal cycling is The total content of 1-chloro-2,3,3,3-tetrafluoropropene and 2,3,3,3-tetrafluoropropene contained is 50% by mass or more, and 1-chloro- 2,3,3,3-tetrafluoropropene: a thermal cycle characterized in that a ratio represented by 2,3,3,3-tetrafluoropropene is 30:70 to 99: 1 on a mass basis. Working medium.
[3] The above 1-chloro-2,3,3,3-tetrafluoropropene is (E) -1-chloro-2,3,3,3-tetrafluoropropene: (Z) -1-chloro-2 The working medium for thermal cycling according to [1] or [2], wherein the ratio represented by 3,3,3,3-tetrafluoropropene is 50:50 to 0.01: 99.99 on a mass basis.
 [4][1]~[3]のいずれかに記載の熱サイクル用作動媒体を含む熱サイクルシステム用組成物。
 [5]潤滑油を含む[4]に記載の熱サイクルシステム用組成物。
 [6]前記熱サイクル用作動媒体の劣化を抑制する安定剤を含む[4]または[5]に記載の熱サイクルシステム用組成物。
[4] A composition for a thermal cycle system, comprising the thermal cycle working medium according to any one of [1] to [3].
[5] The composition for a thermal cycle system according to [4], which comprises a lubricating oil.
[6] The composition for a heat cycle system according to [4] or [5], which contains a stabilizer that suppresses the deterioration of the heat cycle working medium.
 [7][4]~[6]のいずれかに記載の熱サイクルシステム用組成物を用いた、熱サイクルシステム。
 [8]前記熱サイクルシステムが冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機である[7]に記載の熱サイクルシステム。
 [9]前記熱サイクルシステムが遠心式冷凍機である[7]または[8]に記載の熱サイクルシステム。
 [10]前記熱サイクルシステムが低圧型遠心式冷凍機である[7]~[9]のいずれかに記載の熱サイクルシステム。
[7] A thermal cycle system using the composition for a thermal cycle system according to any one of [4] to [6].
[8] The heat cycle system according to [7], wherein the heat cycle system is a refrigeration / refrigerator, an air conditioner, a power generation system, a heat transport device, or a secondary cooler.
[9] The heat cycle system according to [7] or [8], wherein the heat cycle system is a centrifugal refrigerator.
[10] The thermal cycle system according to any one of [7] to [9], wherein the thermal cycle system is a low pressure centrifugal refrigerator.
 本発明の熱サイクル用作動媒体および熱サイクルシステム用組成物によれば、サイクル性能に優れ、ODPおよびGWPが充分に低いことで地球温暖化への影響が充分に抑制された熱サイクル用作動媒体および熱サイクルシステム用組成物を提供できる。さらに、この熱サイクル用作動媒体および熱サイクルシステム用組成物は、燃焼性が十分に抑制されたものである。 ADVANTAGE OF THE INVENTION The working medium for thermal cycling and the composition for thermal cycling system of the present invention have excellent cycle performance and a working medium for thermal cycling in which the effect on global warming is sufficiently suppressed by sufficiently low ODP and GWP. And a composition for a heat cycle system can be provided. Furthermore, the working medium for thermal cycling and the composition for thermal cycling system have sufficiently suppressed flammability.
 本発明の熱サイクルシステムによれば、上記本発明の熱サイクルシステム用組成物を用いているため、サイクル性能に優れ、環境負荷を低くできるとともに、燃焼性が抑制されているため安全性を高めたものとできる。 According to the thermal cycle system of the present invention, since the composition for the thermal cycle system of the present invention is used, the cycle performance is excellent, the environmental load can be reduced, and the combustibility is suppressed, thereby enhancing the safety. Can be
本発明の熱サイクルシステム(冷凍サイクルシステム)の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the thermal cycle system (refrigeration cycle system) of this invention. 図1の熱サイクルシステムにおける、熱サイクル用作動媒体の状態変化を圧力-エンタルピ線図上に記載したサイクル図である。FIG. 2 is a cycle diagram in which a change in the state of a working medium for thermal cycling in the thermal cycling system of FIG. 1 is described on a pressure-enthalpy diagram.
 以下、本発明の実施の形態について説明する。
 本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、本明細書では必要に応じて化合物名に代えてその略称を用いる。また、幾何異性体を有する化合物の名称およびその略称に付けられた(E)は、E体(トランス体)を示し、(Z)はZ体(シス体)を示す。該化合物の名称、略称において、E体、Z体の明記がない場合、該名称、略称は、E体、Z体、およびE体とZ体の混合物を含む総称を意味する。
Hereinafter, embodiments of the present invention will be described.
In the present specification, for halogenated hydrocarbons, the abbreviation of the compound is indicated in the parenthesis after the compound name, but in the present specification, the abbreviation is used in place of the compound name as necessary. In addition, the name of the compound having a geometric isomer and (E) attached to its abbreviation indicate E form (trans form) and (Z) indicate Z form (cis form). In the name of the compound, in the abbreviation, when the E form and the Z form are not specified, the name and the abbreviation mean a generic name including the E form, the Z form, and the mixture of the E form and the Z form.
 本明細書において、「熱サイクルシステム」とは、熱サイクル用システムに、熱サイクル用作動媒体(以下、単に作動媒体ともいう。)が投入されて熱サイクルが実行可能な状態にされた、作動媒体と熱サイクル用システムを備えるシステムをいう。「熱サイクル用システム」とは、システム内を作動媒体が流通することで該作動媒体と該作動媒体以外の他の物質との間で熱交換(熱サイクル)が行えるように設計された熱サイクル用のシステムをいう。 In the present specification, the “thermal cycle system” is an operation in which a thermal cycle working medium (hereinafter, also simply referred to as a working medium) is supplied to the thermal cycle system to enable thermal cycle operation. A system comprising a medium and a system for thermal cycling. A “thermal cycle system” is a thermal cycle designed to allow heat exchange (heat cycle) between the working medium and other substances other than the working medium by circulating the working medium in the system. System for
<熱サイクル用作動媒体>
 本発明の実施形態である熱サイクル用作動媒体は、上記したように、特定の作動媒体が所定の割合で混合されてなるものである。具体的には、次の2つの作動媒体が挙げられる。
<Working medium for thermal cycle>
As described above, the thermal cycle working medium according to the embodiment of the present invention is a mixture of specific working mediums in a predetermined ratio. Specifically, the following two working media can be mentioned.
〈第1の熱サイクル用作動媒体〉
 本実施形態の第1の熱サイクル用作動媒体は、1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)と(E)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))を含み、作動媒体中に含まれる、HCFO-1224ydとHFO-1234ze(E)の合計含有量が50質量%以上であり、かつ、HCFO-1224yd:HFO-1234ze(E)で表される割合が、質量基準で、20:80~99:1である。
First Working Medium for Thermal Cycle
The first working medium for thermal cycling of the present embodiment is 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd) and (E) -1,3,3,3-tetrafluoropropene (HFO-1234ze (E)), and the total content of HCFO-1224yd and HFO-1234ze (E) contained in the working medium is 50% by mass or more, and HCFO-1224yd: HFO-1234ze ( The proportion represented by E) is from 20:80 to 99: 1 on a mass basis.
〈第2の熱サイクル用作動媒体〉
 本実施形態の第2の熱サイクル用作動媒体は、1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)と2,3,3,3-テトラフルオロプロペン(HFO-1234yf)を含み、作動媒体中に含まれる、HCFO-1224ydとHFO-1234yfの合計含有量が50質量%以上であり、かつ、HCFO-1224yd:HFO-1234yfで表される割合が、質量基準で、30:70~99:1である。
Second Working Medium for Thermal Cycle
The second working medium for thermal cycling of the present embodiment includes 1-chloro-2,3,3,3-tetrafluoropropene (HCFO-1224yd) and 2,3,3,3-tetrafluoropropene (HFO-1234yf) And the total content of HCFO-1224yd and HFO-1234yf in the working medium is 50% by mass or more, and the ratio represented by HCFO-1224yd: HFO-1234yf is on a mass basis. 30: 70-99: 1.
 これら実施形態の作動媒体は、熱サイクル用システムと組み合わせて用いられる。また、これらの作動媒体を作動媒体以外の化合物と組合わせて、これら作動媒体を含む熱サイクルシステム用組成物として熱サイクルシステムに用いてもよい。 The working medium of these embodiments is used in combination with a system for thermal cycling. In addition, these working media may be combined with a compound other than the working media, and used in a thermal cycle system as a composition for a thermal cycling system including these working media.
 次に、上記した作動媒体に含まれる各成分について説明する。
(HCFO-1224yd)
 HCFO-1224ydは、燃焼性を抑えるハロゲンと、大気中のOHラジカルによって分解され易い炭素-炭素二重結合をその分子内に有し、上記のように第1および第2のいずれの熱サイクル用作動媒体にも含まれる必須成分である。
Next, each component contained in the above-described working medium will be described.
(HCFO-1224yd)
HCFO-1224yd has halogen that suppresses flammability and a carbon-carbon double bond that is easily decomposed by OH radicals in the atmosphere, as described above, for the first and second thermal cycles. It is an essential component that is also included in the working medium.
 このHCFO-1224ydには、HCFO-1224yd(Z)とHCFO-1224yd(E)の幾何異性体が存在し、HCFO-1224yd(Z)の沸点は15℃であり、HCFO-1224yd(E)の沸点は19℃である。GWPは、HCFO-1224yd(Z)およびHCFO-1224yd(E)はともに<1である。なお、ODPはHCFO-1224yd(Z)およびHCFO-1224yd(E)ともに0である。HCFO-1224yd(Z)は、HCFO-1224yd(E)に比べて化学的安定性が高い。 The HCFO-1224yd contains geometric isomers of HCFO-1224yd (Z) and HCFO-1224yd (E), and the boiling point of HCFO-1224yd (Z) is 15 ° C., and the boiling point of HCFO-1224yd (E) Is 19 ° C. As for GWP, HCFO-1224yd (Z) and HCFO 1224yd (E) are both <1. The ODP is 0 for both HCFO-1224yd (Z) and HCFO-1224yd (E). HCFO-1224yd (Z) is more chemically stable than HCFO 1224yd (E).
 なお、本明細書において、「HCFO-1224yd」との表記は、HCFO-1224yd(Z)単独、HCFO-1224yd(E)単独、HCFO-1224yd(Z)とHCFO-1224yd(E)との混合物、のいずれをも含むものとして解釈される。
 なお、本実施形態では、HCFO-1224ydは、HCFO-1224yd(E):HCFO-1224yd(Z)で表される割合が、質量基準で、50:50~0:100であることが好ましく、精製コストとの関係から、50:50~0.001:99.999であることがより好ましく、50:50~0.01:99.99であることがよりさらに好ましく、20:80~0.01:99.99であることが特に好ましい。
In this specification, the notation “HCFO-1224yd” is HCFO-1224yd (Z) alone, HCFO-1224yd (E) alone, a mixture of HCFO-1224yd (Z) and HCFO-1224yd (E), It is interpreted as including any of
In the present embodiment, it is preferable that the ratio represented by HCFO-1224yd (E): HCFO 1224yd (Z) is 50:50 to 0: 100 on a mass basis, and HCFO-1224yd is purified. It is more preferable that it is 50: 50-0.001: 99.9999 from a relation with cost, it is still more preferable that it is 50: 50-0.01: 99.99, 20: 80-0.01 Particularly preferred is 99.99.
(HFO-1234ze(E))
 HFO-1234ze(E)は、大気中のOHラジカルによって分解され易い炭素-炭素二重結合をその分子内に有し、これをHCFO-1224ydと混合して用いることで、燃焼性の抑制状態を維持しつつ、サイクル性能の良好な熱サイクル用作動媒体とできる。このHFO-1234ze(E)の沸点は-15℃であり、GWPは<1であり、ODPは0である。
(HFO-1234ze (E))
HFO-1234ze (E) has a carbon-carbon double bond which is easily decomposed by OH radicals in the atmosphere and is used in combination with HCFO-1224yd to suppress the state of flammability. It can be a working medium for thermal cycling with good cycle performance while maintaining it. The boiling point of this HFO-1234ze (E) is -15 ° C., the GWP is <1, and the ODP is 0.
(HFO-1234yf)
 HFO-1234yfは、大気中のOHラジカルによって分解され易い炭素-炭素二重結合をその分子内に有し、これをHCFO-1224ydと混合して用いることで、燃焼性の抑制状態を維持しつつ、サイクル性能の良好な熱サイクル用作動媒体とできる。このHFO-1234yfの沸点は-29.4℃であり、GWPは<1であり、ODPは0である。
(HFO-1234yf)
HFO-1234yf has a carbon-carbon double bond which is easily decomposed by OH radicals in the atmosphere, and it is used in combination with HCFO-1224yd while maintaining the state of suppression of flammability. And a working medium for thermal cycling with good cycle performance. The boiling point of this HFO-1234yf is -29.4 ° C., the GWP is <1, and the ODP is 0.
 上記本実施形態の熱サイクル用作動媒体に含まれる、HCFO-1224yd、HFO-1234ze(E)およびHFO-1234yfの作動媒体としての特性について表1に示す。ここで示す特性は、具体的には、沸点、サイクル性能、環境負荷について、HCFO-1224yd(Z)単独のものと比較したものである。 The characteristics of HCFO-1224yd, HFO-1234ze (E) and HFO-1234yf as working media contained in the working fluid for thermal cycling of the present embodiment are shown in Table 1. Specifically, the characteristics shown here are the boiling point, the cycle performance, and the environmental load as compared with those of HCFO-1224yd (Z) alone.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(サイクル性能)
 サイクル性能としては、例えば、図1に示す熱サイクルシステム(冷凍サイクルシステム)で評価される成績係数および冷凍能力が挙げられる。HCFO-1224yd(Z)、HFO-1234ze(E)およびHFO-1234yfの成績係数および冷凍能力は、HCFO-1224yd(Z)単独のものを基準(1.00)とする相対成績係数および相対冷凍能力として表1に示した。相対成績係数および相対冷凍能力は、1より大きいほど、HCFO-1224yd(Z)に比較してサイクル性能に優れる作動媒体であることを示す。
(Cycle performance)
The cycle performance includes, for example, the coefficient of performance and the refrigeration capacity evaluated in the heat cycle system (refrigeration cycle system) shown in FIG. The coefficients of performance and refrigeration capacity of HCFO-1224yd (Z), HFO-1234ze (E) and HFO-1234yf are relative coefficient of performance and relative refrigeration capacity based on that of HCFO-1224yd (Z) alone (1.00) As shown in Table 1. The relative coefficient of performance and the relative refrigeration capacity indicate that the working medium having a cycle performance better as compared to HCFO-1224yd (Z), as the relative coefficient of performance is greater than 1.
(環境負荷)
 環境への負荷は、ODPおよびGWPで評価する。ODPはオゾン層保護法に示されるまたはこれに準じて測定された値である。GWPは、気候変動に関する政府間パネル(IPCC)第4次評価報告書(2007年)に示される、または該報告書の方法に準じて測定された100年の値である。本明細書において、GWPは特に断りのない限りこの値をいう。なお、混合物である作動媒体におけるGWPは、各成分の組成質量による加重平均とする。
(Environmental load)
Environmental impact is evaluated by ODP and GWP. ODP is a value shown in or measured according to the ozone layer protection method. GWP is a 100-year value shown in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (2007) or measured according to the method of the report. In the present specification, GWP refers to this value unless otherwise noted. In addition, GWP in the working medium which is a mixture is taken as the weighted average by the composition mass of each component.
 表1から、HFO-1234ze(E)は、HCFO-1224yd(Z)単独と比較して、作動媒体としての冷凍能力に非常に優れ、成績係数については同等であり、かつ、GWP等の環境負荷が小さい。 From Table 1, HFO-1234ze (E) is extremely superior in refrigeration capacity as a working medium compared to HCFO-1224yd (Z) alone, is equivalent in coefficient of performance, and has environmental load such as GWP. Is small.
 また、HFO-1234yfは、HCFO-1224yd(Z)単独と比較して、作動媒体としての冷凍能力に非常に優れ、成績係数についてはほぼ同等であり、かつ、GWP等の環境負荷が小さい。 In addition, HFO-1234yf is very excellent in refrigeration capacity as a working medium, has almost the same coefficient of performance, and has a small environmental load such as GWP, as compared with HCFO-1224yd (Z) alone.
 本実施形態の熱サイクル用作動媒体は、HCFO-1224yd(Z)に、HFO-1234ze(E)またはHFO-1234yfを任意の割合で含有することで、さらにサイクル性能を向上させ、かつ、燃焼性を十分に抑制した安全性の良好な作動媒体である。すなわち、本実施形態の熱サイクル用作動媒体は、従来使用されているHCFO-1224yd(Z)に対して、さらに機能を向上させた熱サイクル用作動媒体である。 The working medium for thermal cycling of the present embodiment further improves cycle performance by containing HCFO-1224yd (Z) in any proportion of HFO-1234ze (E) or HFO-1234yf, and is combustible. It is a safe working medium with sufficiently reduced That is, the thermal cycle working medium of the present embodiment is a thermal cycle working medium having a further improved function with respect to HCFO-1224 yd (Z) conventionally used.
 ここで、作動媒体を上記のように複数の化合物を含む混合物とする場合、温度勾配を考慮する必要がある。温度勾配は、混合物の作動媒体における液相、気相での組成の差異をはかる指標であり、例えば、図1に示す冷凍サイクルシステム10の凝縮器12における凝縮の開始温度と完了温度の差として示される。化合物単体および共沸混合物においては、温度勾配は0であり、蒸発時に共沸混合物に近い挙動(気液組成の変化が少ない)を示す擬似共沸混合物では温度勾配は極めて0に近い。 Here, when the working medium is a mixture containing a plurality of compounds as described above, it is necessary to consider a temperature gradient. The temperature gradient is an index for measuring the difference in composition between the liquid phase and the gas phase in the working medium of the mixture, for example, as the difference between the start temperature and the completion temperature of condensation in the condenser 12 of the refrigeration cycle system 10 shown in FIG. Indicated. The temperature gradient is zero for a single compound and an azeotropic mixture, and the temperature gradient is very near zero for a quasi-azeotropic mixture that exhibits near-azeotropic behavior (less change in gas-liquid composition) upon evaporation.
 温度勾配が大きいと、例えば、蒸発器における入口温度が低下することで着霜の可能性が大きくなり問題である。さらに、熱サイクルシステムにおいては、熱交換効率の向上をはかるために熱交換器を流れる作動媒体と水や空気等の熱源流体を対向流にすることが一般的であり、安定運転状態においては該熱源流体の温度差が小さいことから、温度勾配の大きい非共沸混合物の場合、エネルギー効率のよい熱サイクルシステムを得ることが困難である。このため、混合物を作動媒体として使用する場合は適切な温度勾配を有する作動媒体が望まれる。 If the temperature gradient is large, for example, the possibility of frost formation increases due to the decrease of the inlet temperature in the evaporator, which is a problem. Furthermore, in the thermal cycle system, it is general to make the working medium flowing through the heat exchanger and the heat source fluid such as water and air into opposite flow in order to improve the heat exchange efficiency. Due to the small temperature difference of the heat source fluid, it is difficult to obtain an energy efficient thermal cycle system in the case of a non-azeotropic mixture with a large temperature gradient. For this reason, when using a mixture as a working medium, a working medium having a suitable temperature gradient is desired.
 HCFO-1224yd(Z)とHFO-1234ze(E)の混合物およびHCFO-1224yd(Z)とHFO-1234yfの混合物は、いずれの混合割合の混合物においても共沸しない。すなわち、これらの混合物においては、いずれの混合割合の混合物も非共沸混合物である。 The mixture of HCFO-1224yd (Z) and HFO-1234ze (E) and the mixture of HCFO 1224yd (Z) and HFO-1234yf do not azeotrope in mixtures of any mixing ratio. That is, in these mixtures, mixtures of any mixing ratio are non-azeotropic mixtures.
 したがって、本実施形態の熱サイクル用作動媒体において、上記の混合物とする場合には、温度勾配も考慮して組成を設定することが好ましい。温度勾配は、例えば、14℃以下となるようにすることが好ましく、13℃以下がより好ましく、12℃以下がさらに好ましい。 Therefore, in the working fluid for thermal cycling of the present embodiment, when the above mixture is used, it is preferable to set the composition in consideration of the temperature gradient. The temperature gradient is, for example, preferably 14 ° C. or less, more preferably 13 ° C. or less, and still more preferably 12 ° C. or less.
 なお、上記混合物における組成変化によるGWP等の環境負荷の変化は殆どないことから、HCFO-1224yd(Z)とHFO-1234ze(E)の混合物、HCFO-1224yd(Z)とHFO-1234yfの混合物の好ましい組成は、サイクル性能と温度勾配のバランスを主に考慮して、選択すればよい。 In addition, since there is almost no change in environmental load such as GWP due to composition change in the above mixture, a mixture of HCFO-1224yd (Z) and HFO-1234ze (E), a mixture of HCFO 1224yd (Z) and HFO-1234yf The preferred composition may be selected mainly considering the balance between the cycle performance and the temperature gradient.
 また、本実施形態の熱サイクル用作動媒体における、HCFO-1224yd(Z)とHFO-1234ze(E)の混合物の好ましい組成としては、燃焼性、サイクル性能と温度勾配のバランスを勘案して、HCFO-1224yd(Z)とHFO-1234ze(E)の合計量に対する、HCFO-1224yd(Z)の割合が20~99質量%、HFO-1234ze(E)の割合が80~1質量%となる組成が挙げられる。作動媒体における、HCFO-1224yd(Z)とHFO-1234ze(E)の組成が、上記範囲であれば、サイクル性能を向上させながら、燃焼性も十分に抑制できる。 Moreover, as a preferable composition of the mixture of HCFO-1224yd (Z) and HFO-1234ze (E) in the working medium for thermal cycling of the present embodiment, HCFO is taken into consideration in consideration of the balance of the flammability, cycle performance and temperature gradient. The composition is such that the ratio of HCFO-1224yd (Z) is 20 to 99% by mass and the ratio of HFO-1234ze (E) is 80 to 1% by mass with respect to the total amount of -1224yd (Z) and HFO-1234ze (E) It can be mentioned. If the composition of HCFO-1224yd (Z) and HFO-1234ze (E) in the working medium is in the above-mentioned range, it is possible to sufficiently suppress the flammability while improving the cycle performance.
 この組成としては、さらに、HCFO-1224yd(Z)の割合が40~99質量%、HFO-1234ze(E)の割合が60~1質量%が好ましく、HCFO-1224yd(Z)の割合が70~99質量%、HFO-1234ze(E)の割合が30~1質量%が特に好ましい。 As the composition, furthermore, the proportion of HCFO-1224 yd (Z) is preferably 40 to 99% by mass, the proportion of HFO-1234ze (E) is preferably 60 to 1% by mass, and the proportion of HCFO 1224 yd (Z) is preferably 70 to 70 A proportion of 99% by mass and HFO-1234ze (E) is particularly preferably 30 to 1% by mass.
 本実施形態の熱サイクル用作動媒体における、HCFO-1224yd(Z)とHFO-1234yfの混合物の好ましい組成としては、燃焼性、サイクル性能と温度勾配のバランスを勘案して、HCFO-1224yd(Z)とHFO-1234yfの合計量に対する、HCFO-1224yd(Z)の割合が30~99質量%、HFO-1234yfの割合が70~1質量%となる組成が挙げられる。作動媒体における、HCFO-1224yd(Z)とHFO-1234yfの組成が、上記範囲であれば、サイクル性能を向上させながら、燃焼性も十分に抑制できる。 As a preferable composition of the mixture of HCFO-1224yd (Z) and HFO-1234yf in the working fluid for thermal cycling of the present embodiment, HCFO 1224yd (Z) is considered in consideration of the balance of the flammability, cycle performance and temperature gradient. The composition is such that the ratio of HCFO-1224yd (Z) is 30 to 99% by mass, and the ratio of HFO-1234yf is 70 to 1% by mass with respect to the total amount of HFO and 1234yf. If the composition of HCFO-1224yd (Z) and HFO-1234yf in the working medium is in the above-mentioned range, it is possible to sufficiently suppress the flammability while improving the cycle performance.
 この組成としては、さらに、HCFO-1224yd(Z)の割合が50~99質量%、HFO-1234yfの割合が50~1質量%が好ましく、HCFO-1224yd(Z)の割合が80~99質量%、HFO-1234yfの割合が20~1質量%が特に好ましい。 As the composition, furthermore, the proportion of HCFO-1224 yd (Z) is preferably 50 to 99% by mass, the proportion of HFO-1234yf is preferably 50 to 1% by mass, and the proportion of HCFO 1224 yd (Z) is 80 to 99% by mass The ratio of HFO-1234yf is particularly preferably 20 to 1% by mass.
 これら混合物において、作動媒体全量に対する、HCFO-1224yd(Z)とHFO-1234ze(E)の合計含有量またはHCFO-1224yd(Z)とHFO-1234yfの合計含有量がそれぞれ50質量%以上である。この合計含有量は、作動媒体全量に対して50質量%以上が好ましく、70質量%以上がより好ましく、100質量%がさらに好ましい。 In these mixtures, the total content of HCFO-1224yd (Z) and HFO-1234ze (E) or the total content of HCFO 1224yd (Z) and HFO-1234yf is at least 50% by mass, based on the total amount of the working medium. The total content is preferably 50% by mass or more, more preferably 70% by mass or more, and still more preferably 100% by mass with respect to the total amount of the working medium.
 HCFO-1224yd(Z)とHFO-1234ze(E)の合計含有量またはHCFO-1224yd(Z)とHFO-1234yfの合計含有量が上記範囲内であれば、作動媒体のサイクル性能を向上させつつ、燃焼性を十分に抑制できる。これらの作動媒体は、さらに、環境に対する負荷が小さく、温度勾配の問題も殆どないという好ましい特徴を有する熱サイクル用作動媒体となる。 If the total content of HCFO-1224yd (Z) and HFO-1234ze (E) or the total content of HCFO 1224yd (Z) and HFO-1234yf is within the above range, while improving the cycle performance of the working medium, Flammability can be sufficiently suppressed. These working media also serve as thermal cycling working media with the preferred features of low environmental impact and minimal thermal gradient problems.
 本実施形態の熱サイクル用作動媒体は、作動媒体のサイクル性能をさらに向上させる観点から、HCFO-1224yd(Z)と、HFO-1234ze(E)と、HFO-1234yfとを含むことが好ましい。この場合、HCFO-1224yd(Z)、HFO-1234ze(E)およびHFO-1234yfの合計量に対するHCFO-1224yd(Z)の割合が10~50質量%、HFO-1234ze(E)の割合が40~80質量%、HFO-1234yfの割合が10~50質量%であることが好ましい。 From the viewpoint of further improving the cycle performance of the working medium, the working medium for thermal cycling of the present embodiment preferably contains HCFO-1224yd (Z), HFO-1234ze (E), and HFO-1234yf. In this case, the proportion of HCFO-1224yd (Z) is 10 to 50% by mass, and the proportion of HFO-1234ze (E) is 40 to 40% of the total amount of HCFO-1224yd (Z), HFO-1234ze (E) and HFO-1234yf. The proportion of 80% by mass and HFO-1234yf is preferably 10 to 50% by mass.
(サイクル性能、燃焼性および温度勾配の評価方法)
 熱サイクル用作動媒体のサイクル性能(冷凍能力(Q)、成績係数(COP))、燃焼性および温度勾配は、例えば、図1に概略構成図が示される冷凍サイクルシステムを用いて評価できる。
(Evaluation method of cycle performance, flammability and temperature gradient)
The cycle performance (refrigerating capacity (Q), coefficient of performance (COP)), flammability and temperature gradient of the working medium for thermal cycling can be evaluated, for example, using a refrigeration cycle system whose schematic configuration is shown in FIG.
 図1に示す冷凍サイクルシステム10は、作動媒体蒸気Aを圧縮して高温高圧の作動媒体蒸気Bとする圧縮機11と、圧縮機11から排出された作動媒体蒸気Bを冷却し、液化して低温高圧の作動媒体Cとする凝縮器12と、凝縮器12から排出された作動媒体Cを膨張させて低温低圧の作動媒体Dとする膨張弁13と、膨張弁13から排出された作動媒体Dを加熱して高温低圧の作動媒体蒸気Aとする蒸発器14と、蒸発器14に負荷流体Eを供給するポンプ15と、凝縮器12に流体Fを供給するポンプ16とを具備して概略構成されるシステムである。 The refrigeration cycle system 10 shown in FIG. 1 cools and liquefies the working medium vapor B discharged from the compressor 11 by compressing the working medium vapor A into a high temperature and high pressure working medium vapor B and the working medium vapor B discharged from the compressor 11. A condenser 12 as a working medium C of low temperature and high pressure, an expansion valve 13 of expanding the working medium C discharged from the condenser 12 to a working medium D of low temperature and low pressure, and a working medium D discharged from the expansion valve 13 And a pump 15 for supplying the load fluid E to the evaporator 14 and a pump 16 for supplying the fluid F to the condenser 12. System.
 冷凍サイクルシステム10においては、以下の(i)~(iv)のサイクルが繰り返される。
 (i)蒸発器14から排出された作動媒体蒸気Aを圧縮機11にて圧縮して高温高圧の作動媒体蒸気Bとする(以下、「AB過程」という。)。
 (ii)圧縮機11から排出された作動媒体蒸気Bを凝縮器12にて流体Fによって冷却し、液化して低温高圧の作動媒体Cとする。この際、流体Fは加熱されて流体F’となり、凝縮器12から排出される(以下、「BC過程」という。)。
 (iii)凝縮器12から排出された作動媒体Cを膨張弁13にて膨張させて低温低圧の作動媒体Dとする(以下、「CD過程」という。)。
 (iv)膨張弁13から排出された作動媒体Dを蒸発器14にて負荷流体Eによって加熱して高温低圧の作動媒体蒸気Aとする。この際、負荷流体Eは冷却されて負荷流体E’となり、蒸発器14から排出される(以下、「DA過程」という。)。
In the refrigeration cycle system 10, the following cycles (i) to (iv) are repeated.
(I) The working medium vapor A discharged from the evaporator 14 is compressed by the compressor 11 to be a high temperature and high pressure working medium vapor B (hereinafter referred to as "AB process").
(Ii) The working medium vapor B discharged from the compressor 11 is cooled by the fluid F in the condenser 12 and liquefied to form a working medium C of low temperature and high pressure. At this time, the fluid F is heated to become fluid F ′ and discharged from the condenser 12 (hereinafter referred to as “BC process”).
(Iii) The working medium C discharged from the condenser 12 is expanded by the expansion valve 13 to form a low-temperature low-pressure working medium D (hereinafter referred to as "CD process").
(Iv) The working medium D discharged from the expansion valve 13 is heated by the load fluid E in the evaporator 14 to be a high-temperature low-pressure working medium vapor A. At this time, the load fluid E is cooled to be a load fluid E ′ and discharged from the evaporator 14 (hereinafter referred to as “DA process”).
 冷凍サイクルシステム10は、断熱・等エントロピ変化、等エンタルピ変化および等圧変化からなるサイクルシステムである。作動媒体の状態変化を、図2に示される圧力-エンタルピ線(曲線)図上に記載すると、A、B、C、Dを頂点とする台形として表すことができる。 The refrigeration cycle system 10 is a cycle system consisting of adiabatic and isentropic changes, isenthalpy changes and isobaric changes. The change in state of the working medium can be represented as a trapezoid with vertices A, B, C, and D, when it is described on the pressure-enthalpy line (curve) diagram shown in FIG.
 AB過程は、圧縮機11で断熱圧縮を行い、高温低圧の作動媒体蒸気Aを高温高圧の作動媒体蒸気Bとする過程であり、図2においてAB線で示される。後述のとおり、作動媒体蒸気Aは過熱状態で圧縮機11に導入され、得られる作動媒体蒸気Bも過熱状態の蒸気である。 The AB process is a process in which adiabatic compression is performed by the compressor 11 to make the high temperature and low pressure working medium vapor A into a high temperature and high pressure working medium vapor B, which is shown by an AB line in FIG. As described later, the working medium vapor A is introduced into the compressor 11 in a superheated state, and the resulting working medium vapor B is also a superheated vapor.
 吐出圧力は、図2においてBの状態の圧力(Px)であり、冷凍サイクルにおける最高圧力である。また、図2においてBの状態の温度(Tx)は吐出温度であり、冷凍サイクルにおける最高温度である。なお、以下に説明するとおり、BC過程は等圧冷却であることから吐出圧力は凝縮圧と同じ値を示す。よって、図2においては、便宜上、凝縮圧をPxと示している。 The discharge pressure is the pressure (Px) in the state of B in FIG. 2 and is the maximum pressure in the refrigeration cycle. Further, the temperature (Tx) in the state of B in FIG. 2 is the discharge temperature, which is the maximum temperature in the refrigeration cycle. As described below, since the BC process is isobaric cooling, the discharge pressure has the same value as the condensation pressure. Therefore, in FIG. 2, the condensation pressure is indicated as Px for convenience.
 BC過程は、凝縮器12で等圧冷却を行い、高温高圧の作動媒体蒸気Bを低温高圧の作動媒体Cとする過程であり、図2においてBC線で示される。この際の圧力が凝縮圧である。圧力-エンタルピ線とBC線の交点のうち高エンタルピ側の交点Tが凝縮温度であり、低エンタルピ側の交点Tが凝縮沸点温度である。ここで、作動媒体が非共沸混合媒体である場合の温度勾配は、TとTの差として示される。 The BC process is a process of performing isobaric cooling in the condenser 12 and making the high temperature / high pressure working medium vapor B into a low temperature / high pressure working medium C, and is shown by a BC line in FIG. The pressure at this time is the condensation pressure. Pressure - an intersection T 1 of the high enthalpy side condensing temperature of the intersection of the enthalpy and BC line, the low enthalpy side intersection T 2 is the condensation boiling temperature. Here, the temperature gradient when the working medium is a non-azeotropic mixture medium is shown as the difference between T 1 and T 2 .
 CD過程は、膨張弁13で等エンタルピ膨張を行い、低温高圧の作動媒体Cを低温低圧の作動媒体Dとする過程であり、図2においてCD線で示される。なお、低温高圧の作動媒体Cにおける温度をTで示せば、T-Tが(i)~(iv)のサイクルにおける作動媒体の過冷却度(SC)となる。 The CD process is a process in which isenthalpy expansion is performed by the expansion valve 13 to make the working medium C of low temperature and high pressure into the working medium D of low temperature and low pressure, which is shown by a CD line in FIG. Incidentally, if Shimese the temperature in the working medium C of low temperature and high pressure at T 3, T 2 -T 3 is (i) ~ supercooling degree of the working medium in the cycle of (iv) (SC).
 DA過程は、蒸発器14で等圧加熱を行い、低温低圧の作動媒体Dを高温低圧の作動媒体蒸気Aに戻す過程であり、図2においてDA線で示される。この際の圧力が蒸発圧である。圧力-エンタルピ線とDA線の交点のうち高エンタルピ側の交点Tは蒸発温度である。作動媒体蒸気Aの温度をTで示せば、T-Tが(i)~(iv)のサイクルにおける作動媒体の過熱度(SH)となる。なお、Tは作動媒体Dの温度を示す。 The DA process is a process in which isobaric heating is performed by the evaporator 14 to return the low-temperature low-pressure working medium D to the high-temperature low-pressure working medium vapor A, which is shown by a DA line in FIG. The pressure at this time is the evaporation pressure. Pressure - intersection T 6 of the high enthalpy side of the intersection of the enthalpy and DA line is evaporating temperature. If Shimese the temperature of the working medium vapor A in T 7, T 7 -T 6 is (i) ~ superheat of the working medium in the cycle of (iv) (SH). Incidentally, T 4 denotes the temperature of the working medium D.
 作動媒体の冷凍能力(Q)と成績係数(COP)は、作動媒体のA(蒸発後、高温低圧)、B(圧縮後、高温高圧)、C(凝縮後、低温高圧)、D(膨張後、低温低圧)の各状態における各エンタルピ、h、h、h、hを用いると、下式(A)、(B)からそれぞれ求められる。このとき、機器効率による損失、および配管、熱交換器における圧力損失はないものとする。 The refrigeration capacity (Q) and coefficient of performance (COP) of the working medium are the working medium A (evaporated, high temperature and low pressure after evaporation), B (high pressure and high temperature after compression), C (low temperature and high pressure after condensation), D (after expansion each enthalpy in each state of low temperature and low pressure), h a, h B, h C, the use of h D, the following formula (a), obtained from each of (B). At this time, there is no loss due to equipment efficiency, and no pressure loss in piping and heat exchangers.
 作動媒体のサイクル性能の算出に必要となる熱力学性質は、対応状態原理に基づく一般化状態方程式(Soave-Redlich-Kwong式)、および熱力学諸関係式に基づき算出できる。特性値が入手できない場合は、原子団寄与法に基づく推算手法を用い算出を行う。 The thermodynamic properties required to calculate the cycle performance of the working medium can be calculated based on the generalized equation of state (Soave-Redlich-Kwong equation) based on the corresponding state principle, and thermodynamic relations. If the characteristic value can not be obtained, calculation is performed using an estimation method based on the group contribution method.
 Q=h-h  …(A)
 COP=Q/圧縮仕事=(h-h)/(h-h)  …(B)
Q = h A -h D (A)
COP = Q / compression work = (h A −h D ) / (h B −h A ) (B)
 上記(h-h)で示されるQが冷凍サイクルの出力(kW)に相当し、(h-h)で示される圧縮仕事、例えば、圧縮機を運転するために必要とされる電力量が、消費された動力(kW)に相当する。また、Qは負荷流体を冷凍する能力を意味しており、Qが高いほど同一のシステムにおいて、多くの仕事ができることを意味する。言い換えると、大きなQを有する場合は、少量の作動媒体で目的とする性能が得られることを表し、システムの小型化が可能である。 The compression work indicated by (h B -h A ) corresponds to the output (kW) of the refrigeration cycle, and the Q shown by (h A -h D ) above is required to operate the compressor, for example The amount of power corresponds to the consumed power (kW). Also, Q means the ability to freeze the load fluid, and a higher Q means more work can be done in the same system. In other words, if it has a large Q, it indicates that the desired performance can be obtained with a small amount of working medium, and the system can be miniaturized.
 なお、表1の数値についても上記算出方法に基づいて行っているが、このときの冷凍サイクルの温度条件としては以下の温度により評価を行った際の数値に基づくものである。 In addition, although the numerical values in Table 1 are also based on the above calculation method, the temperature conditions of the refrigeration cycle at this time are based on the numerical values at the time of evaluation at the following temperatures.
 蒸発温度;5℃(蒸発開始温度と蒸発完了温度の平均温度)
 凝縮完了温度;40℃(凝縮開始温度と凝縮完了温度の平均温度)
 過冷却度(SC);5℃
 過熱度(SH);0℃
 圧縮機効率:0.8
Evaporation temperature; 5 ° C (average temperature of evaporation start temperature and evaporation completion temperature)
Condensation completion temperature; 40 ° C (average temperature of condensation start temperature and condensation completion temperature)
Degree of supercooling (SC); 5 ° C
Degree of superheat (SH); 0 ° C
Compressor efficiency: 0.8
(任意成分)
 本実施形態の熱サイクル用作動媒体は、HCFO-1224ydとHFO-1234ze(E)またはHCFO-1224ydとHFO-1234yf以外に、作動媒体として用いられる公知の化合物を熱サイクル用作動媒体の全量に対して50質量%以下の割合で任意に含有してもよい。このような化合物(任意成分)が含有される場合、この化合物(任意成分)の作動媒体全量に対する割合は、30質量%以下がより好ましく、20質量%以下がさらに好ましく、10質量%以下が特に好ましく、5質量%以下が最も好ましい。
(Optional ingredient)
The working fluid for thermal cycling of the present embodiment includes, in addition to HCFO-1224yd and HFO-1234ze (E) or HCFO-1224yd and HFO-1234yf, known compounds used as working fluid as compared to the total amount of working fluid for thermal cycling. You may contain arbitrarily in the ratio of 50 mass% or less. When such a compound (optional component) is contained, the ratio of the compound (optional component) to the total amount of the working medium is preferably 30% by mass or less, more preferably 20% by mass or less, and particularly 10% by mass or less Preferably, 5% by mass or less is the most preferable.
 任意成分としては、例えば、HFC、HFO-1234ze(E)およびHFO-1234yf以外のHFO(以下、「その他のHFO」ともいう。)、HCFO-1224yd以外のHCFO(以下、「その他のHCFO」ともいう。)、トランス-1,2-ジクロロエチレン等の作動媒体が挙げられる。 As optional components, for example, HFO other than HFC, HFO-1234ze (E) and HFO-1234yf (hereinafter, also referred to as "other HFO"), HCFO other than HCFO-1224yd (hereinafter, "other HCFO" Working media such as trans-1,2-dichloroethylene and the like.
 任意成分は、HCFO-1224ydとHFO-1234ze(E)の混合物またはHCFO-1224ydとHFO-1234yfの混合物と組み合わせて作動媒体とした際に、サイクル性能をより高める作用を有しながら、GWP等の環境への負荷を許容の範囲にとどめられ、燃焼性を向上させない等の安全性を十分に確保可能とする観点から選択されることが好ましい。 When the optional component is combined with a mixture of HCFO-1224yd and HFO-1234ze (E) or a mixture of HCFO-1224yd and HFO-1234yf to form a working medium, it has an action to further enhance cycle performance, such as GWP etc. It is preferable to be selected from the viewpoint of being able to sufficiently secure the safety such that the environmental load is limited to an acceptable range and the combustibility is not improved.
(HFC)
 HFCは、HCFO-1224yd、HFO-1234ze(E)、HFO-1234yfに比べてGWPが高いことが知られている。したがって、HCFO-1224ydとHFO-1234ze(E)の混合物またはHCFO-1224ydとHFO-1234yfの混合物と組合せるHFCとしては、作動媒体とした際に特にGWP等の環境への負荷を許容の範囲にとどめることに留意して、適宜選択されることが好ましい。
(HFC)
HFC is known to have a higher GWP than HCFO-1224yd, HFO-1234ze (E), and HFO-1234yf. Therefore, as an HFC combined with a mixture of HCFO-1224yd and HFO-1234ze (E) or a mixture of HCFO-1224yd and HFO-1234yf, environmental loads such as GWP, etc. can be made particularly acceptable when used as a working medium. It is preferable to be selected appropriately, keeping in mind that it is limited.
 GWP等の環境への負荷が小さいHFCとして具体的には炭素数1~5のHFCが好ましい。HFCは、直鎖状であっても、分岐状であってもよく、環状であってもよい。 Specifically, an HFC having 1 to 5 carbon atoms is preferable as the HFC having a small environmental load such as GWP. The HFC may be linear, branched or cyclic.
 HFCとしては、ジフルオロメタン、ジフルオロエタン、トリフルオロエタン、テトラフルオロエタン、ペンタフルオロエタン、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、ヘプタフルオロシクロペンタン等が挙げられる。 As HFC, difluoromethane, difluoroethane, trifluoroethane, tetrafluoroethane, pentafluoroethane, pentafluoropropane, hexafluoropropane, heptafluoropropane, pentafluorobutane, heptafluorocyclopentane and the like can be mentioned.
 これらのなかでも、1,1,2,2-テトラフルオロエタン、HFC-134a、HFC-245fa、1,1,1,3,3-ペンタフルオロブタン(HFC-365mfc)がより好ましく、HFC-134a、HFC-245fa、HFC-365mfcがさらに好ましい。HFCは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Among these, 1,1,2,2-tetrafluoroethane, HFC-134a, HFC-245fa and 1,1,1,3,3-pentafluorobutane (HFC-365mfc) are more preferable, and HFC-134a is more preferable. , HFC-245fa and HFC-365mfc are more preferable. One of HFCs may be used alone, or two or more thereof may be used in combination.
(HFO)
 HFO-1234ze(E)およびHFO-1234yf以外であってもHFOであれば、GWPはHFCに比べて桁違いに低い。したがって、その他のHFOとしては、GWPを考慮するよりも、作動媒体としてのサイクル性能の向上や燃焼性を高めずに安全性が確保できる点に留意して、適宜選択することが好ましい。
(HFO)
If HFO is other than HFO-1234ze (E) and HFO-1234yf, GWP is orders of magnitude lower than HFC. Therefore, it is preferable to appropriately select other HFOs from the point of view that safety can be ensured without improving the cycle performance as the working medium and the combustibility, rather than considering GWP.
 その他のHFOとしては、HFO-1336mzz(Z)、HFO-1336mzz(E)、1,2-ジフルオロエチレン(HFO-1132)、2-フルオロプロペン(HFO-1261yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)、(E)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))、(Z)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))、(Z)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))、3,3,3-トリフルオロプロペン(HFO-1243zf)が挙げられる。 Other HFOs include HFO-1336mzz (Z), HFO-1336mzz (E), 1,2-difluoroethylene (HFO-1132), 2-fluoropropene (HFO-1261yf), 1,1,2-trifluoro Propene (HFO-1243yc), (E) -1,2,3,3,3-pentafluoropropene (HFO-1225ye (E)), (Z) -1,2,3,3,3-pentafluoropropene (HFO-1225ye (Z)), (Z) -1,3,3,3-tetrafluoropropene (HFO-1234ze (Z)), 3,3,3-trifluoropropene (HFO-1243zf). .
 その他のHFOとしては、HFO-1234ze(Z)、HFO-1243zfが好ましい。その他のHFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。ちなみに、HFO-1234ze(Z)の沸点は9.7℃であり、GWPは<1であり、ODPは0である。 As other HFOs, HFO-1234ze (Z) and HFO-1243zf are preferable. The other HFO may be used alone or in combination of two or more. By the way, the boiling point of HFO-1234ze (Z) is 9.7 ° C., GWP is <1, and ODP is 0.
(HCFO)
 HCFOとしては、1-クロロ-2,2-ジフルオロエチレン(HCFO-1122)、1,2-ジクロロフルオロエチレン(HCFO-1121)、1-クロロ-2-フルオロエチレン(HCFO-1131)、2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)、1-クロロ-2,3,3-トリフルオロ-1-プロペン(HCFO-1233yd)および1-クロロ-3,3,3-テトラフルオロプロペン(HCFO-1233zd)が挙げられる。
(HCFO)
As HCFO, 1-chloro-2,2-difluoroethylene (HCFO-1122), 1,2-dichlorofluoroethylene (HCFO-1121), 1-chloro-2-fluoroethylene (HCFO-1131), 2-chloro -3,3,3-Trifluoropropene (HCFO-1233xf), 1-Chloro-2,3,3-trifluoro-1-propene (HCFO-1233yd) and 1-Chloro-3,3,3-tetrafluoro Propene (HCFO-1233zd) may be mentioned.
 その他のHCFOとしては、高い臨界温度を有し、耐久性、成績係数が優れる点から、HCFO-1233zdが好ましい。その他のHCFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As other HCFOs, HCFO-1233zd is preferable from the viewpoint of having high critical temperature and being excellent in durability and coefficient of performance. One of other HCFOs may be used alone, or two or more thereof may be used in combination.
(その他の任意成分)
 本実施形態の熱サイクルシステムに用いる作動媒体は、上記各成分以外に、二酸化炭素、炭化水素、クロロフルオロオレフィン(CFO)等を含有してもよい。その他の任意成分としてはオゾン層への影響が少なく、かつ地球温暖化への影響が小さい成分が好ましい。
(Other optional ingredients)
The working medium used for the thermal cycle system of the present embodiment may contain carbon dioxide, hydrocarbons, chlorofluoroolefin (CFO), etc., in addition to the above components. As another optional component, a component which has less influence on the ozone layer and has less influence on global warming is preferable.
 炭化水素としては、プロパン、プロピレン、シクロプロパン、ブタン、イソブタン、ペンタン、イソペンタン等が挙げられる。炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。炭化水素を含有することで作動媒体への鉱物系潤滑油の溶解性が良好になる。
 作動媒体が炭化水素を含有する場合、炭化水素の含有量は作動媒体100質量%に対して、10質量%以下であることが燃焼性の観点から好ましく、5質量%以下であることがより好ましい。
As a hydrocarbon, propane, propylene, cyclopropane, butane, isobutane, pentane, isopentane and the like can be mentioned. The hydrocarbon may be used alone or in combination of two or more. The inclusion of the hydrocarbon improves the solubility of the mineral lubricating oil in the working medium.
When the working medium contains a hydrocarbon, the hydrocarbon content is preferably 10% by mass or less based on 100% by mass of the working medium from the viewpoint of combustibility, more preferably 5% by mass or less .
 CFOとしては、クロロフルオロプロペン、クロロフルオロエチレン等が挙げられる。作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、CFOとしては、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)、1,3-ジクロロ-1,2,3,3-テトラフルオロプロペン(CFO-1214yb)、1,2-ジクロロ-1,2-ジフルオロエチレン(CFO-1112)が好ましい。CFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of CFO include chlorofluoropropene and chlorofluoroethylene. As CFO, 1,1-dichloro-2,3,3,3-tetrafluoropropene (CFO-1214ya), 1 as a CFO, because the flammability of the working medium can be easily suppressed without significantly reducing the cycle performance of the working medium. Preferred is 3, 3-dichloro-1,2,3,3-tetrafluoropropene (CFO-1214yb) or 1,2-dichloro-1,2-difluoroethylene (CFO-1112). The CFO may be used alone or in combination of two or more.
 作動媒体が上記のような任意成分を含有する場合、各任意成分について含有量は、作動媒体100質量%に対して50質量%以下であり、30質量%以下が好ましく、20質量%以下がさらに好ましく、10質量%以下が特に好ましい。複数の任意成分を含有する場合、作動媒体における任意成分の合計含有量は、作動媒体100質量%に対して50質量%以下であり、30質量%以下が好ましく、20質量%以下がさらに好ましく、10質量%以下が特に好ましい。 When the working medium contains the optional components as described above, the content of each optional component is 50% by mass or less, preferably 30% by mass or less, and further 20% by mass or less based on 100% by mass of the working medium. Preferably, 10% by mass or less is particularly preferable. When a plurality of optional components are contained, the total content of the optional components in the working medium is 50% by mass or less, preferably 30% by mass or less, and more preferably 20% by mass or less, with respect to 100% by mass of the working medium. 10 mass% or less is especially preferable.
<熱サイクルシステム用組成物>
 本実施形態の作動媒体は、熱サイクルシステムへの適用に際して、これを含む本実施形態の熱サイクルシステム用組成物として使用することができる。本実施形態の熱サイクルシステム用組成物は、通常、上記した本実施形態の作動媒体に加えて、潤滑油を含有する。また、本実施形態の熱サイクルシステム用組成物は、安定剤、漏れ検出物質等の公知の添加剤を含有してもよい。これらの潤滑油や添加剤は、それぞれ組み合わせて用いることもできる。
<Composition for Thermal Cycle System>
The working medium of the present embodiment can be used as a composition for a heat cycle system of the present embodiment including the application to a heat cycle system. The composition for a thermal cycle system of the present embodiment usually contains a lubricating oil in addition to the working medium of the present embodiment described above. Further, the composition for a heat cycle system of the present embodiment may contain known additives such as a stabilizer and a leak detection substance. These lubricating oils and additives can also be used in combination.
(潤滑油)
 潤滑油としては、従来からハロゲン化炭化水素からなる作動媒体とともに、作動媒体組成物に用いられる公知の潤滑油が特に制限なく採用できる。潤滑油として具体的には、含酸素系合成油(エステル系潤滑油、エーテル系潤滑油等)、フッ素系潤滑油、鉱物系潤滑油、炭化水素系合成油等が挙げられる。
(Lubricant)
As the lubricating oil, a known lubricating oil used in the working medium composition can be adopted without particular limitation, together with the working medium conventionally composed of halogenated hydrocarbons. Specific examples of the lubricating oil include oxygen-containing synthetic oils (ester-based lubricating oils, ether-based lubricating oils and the like), fluorine-based lubricating oils, mineral-based lubricating oils, hydrocarbon-based synthetic oils and the like.
 エステル系潤滑油としては、二塩基酸エステル油、ポリオールエステル油、コンプレックスエステル油、ポリオール炭酸エステル油等が挙げられる。 As ester-based lubricating oils, dibasic acid ester oils, polyol ester oils, complex ester oils, polyol carbonate oils and the like can be mentioned.
 エーテル系潤滑油としては、ポリビニルエーテル油や、ポリグリコール油等のポリオキシアルキレン油が挙げられる。 Examples of ether-based lubricating oils include polyvinyl ether oils and polyoxyalkylene oils such as polyglycol oils.
 フッ素系潤滑油としては、合成油(後述する鉱物油、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等。)の水素原子をフッ素原子に置換した化合物、ペルフルオロポリエーテル油、フッ素化シリコーン油等が挙げられる。 Examples of fluorine-based lubricating oils include compounds in which hydrogen atoms of synthetic oils (mineral oil, poly α-olefin, alkylbenzene, alkylnaphthalene, etc. described later) are substituted with fluorine atoms, perfluoropolyether oils, fluorinated silicone oils, etc. Be
 鉱物系潤滑油としては、原油を常圧蒸留または減圧蒸留して得られた潤滑油留分を、精製処理(溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、白土処理等)を適宜組み合わせて精製したパラフィン系鉱物油、ナフテン系鉱物油等が挙げられる。 As a mineral-based lubricating oil, a lubricating oil fraction obtained by atmospheric distillation or vacuum distillation of crude oil is subjected to purification treatment (solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrogenation The paraffinic mineral oil, the naphthenic mineral oil, etc. which refine | purified and refine | purified by appropriate | suitably refine | purifying, clay treatment etc. are mentioned.
 炭化水素系合成油としては、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等が挙げられる。 Examples of hydrocarbon synthetic oils include poly α-olefins, alkylbenzenes and alkylnaphthalenes.
 潤滑油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 潤滑油としては、作動媒体との相溶性の点から、ポリオールエステル油、ポリビニルエーテル油およびポリグリコール油から選ばれる1種以上が好ましい。
The lubricating oils may be used alone or in combination of two or more.
The lubricating oil is preferably at least one selected from polyol ester oils, polyvinyl ether oils and polyglycol oils from the viewpoint of compatibility with the working medium.
 潤滑油の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、10~100質量部が好ましく、20~50質量部がより好ましい。 The addition amount of the lubricating oil may be in a range that does not significantly reduce the effects of the present invention, and is preferably 10 to 100 parts by mass, and more preferably 20 to 50 parts by mass with respect to 100 parts by mass of the working medium.
(安定剤)
 安定剤は、熱および酸化に対する作動媒体の安定性を向上させる成分である。安定剤としては、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の安定剤、例えば、耐酸化性向上剤、耐熱性向上剤、金属不活性剤等が特に制限なく採用できる。
(Stabilizer)
Stabilizers are components that improve the stability of the working medium against heat and oxidation. As the stabilizer, there are no particular limitations on known stabilizers conventionally used in thermal cycle systems, such as oxidation resistance improvers, heat resistance improvers, metal deactivators, etc., together with the working medium conventionally made of halogenated hydrocarbons. It can be adopted.
 耐酸化性向上剤および耐熱性向上剤としては、N,N’-ジフェニルフェニレンジアミン、p-オクチルジフェニルアミン、p,p’-ジオクチルジフェニルアミン、N-フェニル-1-ナフチルアミン、N-フェニル-2-ナフチルアミン、N-(p-ドデシル)フェニル-2-ナフチルアミン、ジ-1-ナフチルアミン、ジ-2-ナフチルアミン、N-アルキルフェノチアジン、6-(t-ブチル)フェノール、2,6-ジ-(t-ブチル)フェノール、4-メチル-2,6-ジ-(t-ブチル)フェノール、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)等が挙げられる。耐酸化性向上剤および耐熱性向上剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the oxidation resistance improver and heat resistance improver, N, N'-diphenyl phenylene diamine, p-octyl diphenylamine, p, p'-dioctyl diphenylamine, N-phenyl-1-naphthylamine, N-phenyl-2-naphthylamine N- (p-dodecyl) phenyl-2-naphthylamine, di-1-naphthylamine, di-2-naphthylamine, N-alkylphenothiazine, 6- (t-butyl) phenol, 2,6-di- (t-butyl) And the like) phenol, 4-methyl-2,6-di- (t-butyl) phenol, 4,4'-methylenebis (2,6-di-t-butylphenol) and the like. As the oxidation resistance improver and the heat resistance improver, one type may be used alone, or two or more types may be used in combination.
 金属不活性剤としては、イミダゾール、ベンズイミダゾール、2-メルカプトベンズチアゾール、2,5-ジメチルカプトチアジアゾール、サリシリジン-プロピレンジアミン、ピラゾール、ベンゾトリアゾール、トルトリアゾール、2-メチルベンズアミダゾール、3,5-ジメチルピラゾール、メチレンビス-ベンゾトリアゾール、有機酸またはそれらのエステル、第1級、第2級または第3級の脂肪族アミン、有機酸または無機酸のアミン塩、複素環式窒素含有化合物、アルキル酸ホスフェートのアミン塩またはそれらの誘導体等が挙げられる。 Examples of metal deactivators include imidazole, benzimidazole, 2-mercaptobenzthiazole, 2,5-dimethylcaptothiadiazole, salicylidine-propylenediamine, pyrazole, benzotriazole, toltriazole, 2-methylbenzamidazole, 3,5- Dimethylpyrazole, methylenebis-benzotriazole, organic acids or their esters, primary, secondary or tertiary aliphatic amines, amine salts of organic acids or inorganic acids, heterocyclic nitrogen-containing compounds, alkyl acid phosphates Amine salts or derivatives thereof.
 安定剤の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、5質量部以下が好ましく、1質量部以下がより好ましい。 The addition amount of the stabilizer may be within a range not significantly reducing the effects of the present invention, and is preferably 5 parts by mass or less, and more preferably 1 part by mass or less with respect to 100 parts by mass of the working medium.
(漏れ検出物質)
 漏れ検出物質としては、紫外線蛍光染料、臭気ガスや臭いマスキング剤等が挙げられる。
 紫外線蛍光染料としては、米国特許第4249412号明細書、特表平10-502737号公報、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、従来、ハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の紫外線蛍光染料が挙げられる。
(Leakage detection substance)
As a leak detection substance, an ultraviolet fluorescent dye, an odor gas, an odor masking agent and the like can be mentioned.
Ultraviolet fluorescent dyes are described in U.S. Pat. No. 4,249,412, JP-A-10-502737, JP-A-2007-511645, JP-A-2008-500437, and JP-A-2008-531836. Known ultraviolet fluorescent dyes used in thermal cycle systems, as well as working media conventionally comprising halogenated hydrocarbons, such as those described in U.S. Pat.
 臭いマスキング剤としては、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の香料が挙げられる。 As odor masking agents, known perfumes used in heat cycle systems together with working media conventionally comprising halogenated hydrocarbons such as those described in JP-A-2008-500437 and JP-A-2008-531836 are known. It can be mentioned.
 漏れ検出物質を用いる場合には、作動媒体への漏れ検出物質の溶解性を向上させる可溶化剤を用いてもよい。 When a leak detection substance is used, a solubilizer may be used to improve the solubility of the leak detection substance in the working medium.
 可溶化剤としては、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等が挙げられる。 Examples of solubilizers include those described in JP-A-2007-511645, JP-A-2008-500437, and JP-A-2008-531836.
 漏れ検出物質の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、2質量部以下が好ましく、0.5質量部以下がより好ましい。 The addition amount of the leak detection substance may be within the range not significantly reducing the effects of the present invention, preferably 2 parts by mass or less and more preferably 0.5 parts by mass or less with respect to 100 parts by mass of the working medium.
<熱サイクルシステム>
 本実施形態の熱サイクルシステムは、熱サイクル用の機器や装置に上記作動媒体を含む熱サイクルシステム用組成物を適用して得られる。熱サイクルシステムとしては、圧縮機、凝縮器や蒸発器等の熱交換器を含む熱サイクルシステムが挙げられる。
<Thermal cycle system>
The thermal cycle system of the present embodiment is obtained by applying a composition for a thermal cycle system including the above-mentioned working medium to an apparatus and device for thermal cycle. The thermal cycle system includes a thermal cycle system including a heat exchanger such as a compressor, a condenser and an evaporator.
 本実施形態の熱サイクルシステムは、凝縮器で得られる温熱を利用するヒートポンプシステムであってもよく、蒸発器で得られる冷熱を利用する冷凍サイクルシステムであってもよい。本実施形態の熱サイクルシステムは、フラデッドエバポレーター式であってもよく、直接膨張式であってもよい。本実施形態の熱サイクルシステムにおいて、作動媒体との間で熱交換される作動媒体以外の他の物質は水または空気が好ましい。 The heat cycle system of the present embodiment may be a heat pump system that utilizes the heat obtained by the condenser, or may be a refrigeration cycle system that uses the cold heat obtained by the evaporator. The thermal cycle system of the present embodiment may be a flooded evaporator type or a direct expansion type. In the thermal cycle system of the present embodiment, water or air is preferable as the substance other than the working medium which is heat-exchanged with the working medium.
 本実施形態の熱サイクルシステムとして、具体的には、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置および二次冷却機等が挙げられる。なかでも、本実施形態の熱サイクルシステムは、より高温の作動環境でも安定してサイクル性能を発揮できるため屋外等に設置されることが多い空調機器として用いられることが好ましい。また、本実施形態の熱サイクルシステムは、冷凍・冷蔵機器として用いられることも好ましい。 Specific examples of the heat cycle system of the present embodiment include refrigeration / refrigeration equipment, air conditioning equipment, power generation system, heat transport device, secondary cooler, and the like. Among them, the thermal cycle system of the present embodiment is preferably used as an air conditioner that is often installed outdoors, since it can stably exhibit cycle performance even in a higher temperature operating environment. Moreover, it is also preferable that the thermal cycle system of this embodiment is used as a freezing / refrigerating apparatus.
 発電システムとしては、ランキンサイクルシステムによる発電システムが好ましい。発電システムとして、具体的には、蒸発器において地熱エネルギー、太陽熱、50~200℃程度の中~高温度域廃熱等により作動媒体を加熱し、高温高圧状態の蒸気となった作動媒体を膨張機にて断熱膨張させ、該断熱膨張によって発生する仕事によって発電機を駆動させ、発電を行うシステムが例示される。 The power generation system is preferably a Rankine cycle system power generation system. As a power generation system, specifically, the working medium is heated by geothermal energy, solar heat, middle to high temperature range waste heat at about 50 to 200 ° C. in an evaporator, and the working medium that has become high-temperature high-pressure steam is expanded An example is a system in which adiabatic expansion is performed in a machine, and a work generated by the adiabatic expansion drives a generator to generate electric power.
 また、本実施形態の熱サイクルシステムは、熱輸送装置であってもよい。熱輸送装置としては、潜熱輸送装置が好ましい。潜熱輸送装置としては、装置内に封入された作動媒体の蒸発、沸騰、凝縮等の現象を利用して潜熱輸送を行うヒートパイプおよび二相密閉型熱サイフォン装置が挙げられる。ヒートパイプは、半導体素子や電子機器の発熱部の冷却装置等、比較的小型の冷却装置に適用される。二相密閉型熱サイフォンは、ウィッグを必要とせず構造が簡単であることから、ガス-ガス型熱交換器、道路の融雪促進および凍結防止等に広く利用される。 In addition, the heat cycle system of the present embodiment may be a heat transport device. As a heat transport device, a latent heat transport device is preferable. Examples of the latent heat transport device include a heat pipe that performs latent heat transport utilizing phenomena such as evaporation, boiling, and condensation of a working medium enclosed in the device, and a two-phase closed thermosiphon device. The heat pipe is applied to a relatively small cooling device such as a cooling device for a semiconductor element or a heat generating portion of an electronic device. Since the two-phase closed thermosyphon does not require a wig and has a simple structure, it is widely used for gas-to-gas heat exchangers, snow melting on roads, prevention of freezing, and the like.
 冷凍・冷蔵機器として、具体的には、ショーケース(内蔵型ショーケース、別置型ショーケース等)、業務用冷凍・冷蔵庫、自動販売機、製氷機等が挙げられる。 Specific examples of the refrigeration / refrigeration equipment include showcases (built-in showcases, separately mounted showcases, etc.), commercial freezers / refrigerators, vending machines, ice makers, and the like.
 空調機器として、具体的には、ルームエアコン、パッケージエアコン(店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン等)、熱源機器チリングユニット、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置等が挙げられる。 As air conditioners, specifically, room air conditioners, package air conditioners (package air conditioners for buildings, package air conditioners for buildings, equipment package air conditioners, etc.), heat source equipment chilling units, gas engine heat pumps, train air conditioners, car air conditioners Etc.
 熱源機器チリングユニットとしては、例えば、容積圧縮式冷凍機、遠心式冷凍機が挙げられるが、次に説明する遠心式冷凍機は作動媒体の充填量が多いので、本実施形態の効果をより顕著に得ることができ好ましい。 The heat source equipment chilling unit includes, for example, a volumetric compression type refrigerator and a centrifugal type refrigerator. However, since the centrifugal type refrigerator to be described next has a large amount of the working medium, the effect of the present embodiment is more remarkable. Preferably obtained.
 ここで、遠心式冷凍機は、遠心圧縮機を用いた冷凍機である。遠心式冷凍機は、蒸気圧縮式の冷凍機の一種であり、通常、ターボ冷凍機とも言われる。遠心圧縮機は、羽根車を備えており、回転する羽根車で作動媒体を外周部へ吐き出すことで圧縮を行う。遠心式冷凍機は、オフィスビル、地域冷暖房、病院での冷暖房の他、半導体工場、石油化学工業での冷水製造プラント等に用いられている。 Here, the centrifugal refrigerator is a refrigerator using a centrifugal compressor. A centrifugal refrigerator is a type of vapor compression refrigerator, and is generally referred to as a turbo refrigerator. A centrifugal compressor includes an impeller and performs compression by discharging a working medium to the outer peripheral portion by the rotating impeller. Centrifugal refrigerators are used in office buildings, district heating and cooling, heating and cooling in hospitals, semiconductor factories, cold water production plants in the petrochemical industry, and the like.
 遠心式冷凍機としては、低圧型、高圧型のいずれであってもよいが、低圧型の遠心冷凍機であることが好ましい。なお、低圧型とは、例えば、CFC-11、HCFC-123、HFC-245faのような高圧ガス保安法の適用を受けない作動媒体、すなわち、「常用の温度において、圧力0.2MPa以上となる液化ガスで現にその圧力が0.2MPa以上であるもの、または圧力が0.2MPa以上となる場合の温度が35℃以下である液化ガス」に該当しない作動媒体を用いた遠心式冷凍機をいう。 The centrifugal refrigerator may be either a low pressure type or a high pressure type, but is preferably a low pressure type centrifugal refrigerator. The low-pressure type is a working medium that is not subject to the High Pressure Gas Safety Act such as CFC-11, HCFC-123, HFC-245fa, that is, "The pressure is 0.2 MPa or more at ordinary temperature. A centrifugal refrigerator that uses a working medium that does not correspond to a liquefied gas that is currently at a pressure of 0.2 MPa or more, or at a temperature of 35 ° C. or less when the pressure is 0.2 MPa or more .
 なお、熱サイクルシステムの稼働に際しては、水分の混入や、酸素等の不凝縮性気体の混入による不具合の発生を避けるために、これらの混入を抑制する手段を設けることが好ましい。 In addition, in order to avoid generation | occurrence | production of the malfunction by mixing of water, and mixing of noncondensable gas, such as oxygen, it is preferable to provide the means to suppress these mixing in the case of operation | movement of a thermal cycle system.
 熱サイクルシステム内に水分が混入すると、特に低温で使用される際に問題が生じる場合がある。例えば、キャピラリーチューブ内での氷結、作動媒体や冷凍機油の加水分解、サイクル内で発生した酸成分による材料劣化、コンタミナンツの発生等の問題が発生する。特に、冷凍機油がポリアルキレングリコール、ポリオールエステル等である場合は、吸湿性が極めて高く、また、加水分解反応を生じやすく、冷凍機油としての特性が低下し、圧縮機の長期信頼性を損なう大きな原因となる。したがって、冷凍機油の加水分解を抑えるためには、熱サイクルシステム内の水分濃度を制御する必要がある。 The inclusion of moisture in the thermal cycling system can cause problems, especially when used at low temperatures. For example, problems such as freezing in a capillary tube, hydrolysis of a working medium or refrigeration oil, material deterioration due to an acid component generated in a cycle, generation of contamination, etc. occur. In particular, when the refrigerator oil is a polyalkylene glycol, polyol ester or the like, the hygroscopicity is extremely high, and a hydrolysis reaction is likely to occur, and the characteristics as a refrigerator oil are degraded, and the long-term reliability of the compressor is impaired. It becomes a cause. Therefore, in order to suppress the hydrolysis of refrigeration oil, it is necessary to control the moisture concentration in the thermal cycle system.
 熱サイクルシステム内の水分濃度を制御する方法としては、乾燥剤(シリカゲル、活性アルミナ、ゼオライト等)等の水分除去手段を用いる方法が挙げられる。乾燥剤は、液状の熱サイクルシステム用組成物と接触させることが、脱水効率の点で好ましい。例えば、凝縮器の出口、または蒸発器の入口に乾燥剤を配置して、熱サイクルシステム用組成物と接触させることが好ましい。 As a method of controlling the water concentration in the heat cycle system, a method using a water removing means such as a desiccant (silica gel, activated alumina, zeolite, etc.) can be mentioned. It is preferable in terms of dewatering efficiency that the desiccant be brought into contact with the liquid thermal cycle system composition. For example, it is preferable to place a desiccant at the outlet of the condenser or at the inlet of the evaporator to contact the composition for the thermal cycle system.
 乾燥剤としては、乾燥剤と熱サイクルシステム用組成物との化学反応性、乾燥剤の吸湿能力の点から、ゼオライト系乾燥剤が好ましい。 As the desiccant, a zeolitic desiccant is preferable from the viewpoint of the chemical reactivity between the desiccant and the composition for a heat cycle system and the moisture absorption capacity of the desiccant.
 ゼオライト系乾燥剤としては、従来の鉱物系冷凍機油に比べて吸湿量の高い冷凍機油を用いる場合には、吸湿能力に優れる点から、下式(C)で表される化合物を主成分とするゼオライト系乾燥剤が好ましい。 When a refrigeration oil having a high moisture absorption amount is used as a zeolite-based desiccant compared to a conventional mineral-based refrigeration oil, the compound represented by the following formula (C) is the main component from the viewpoint of excellent moisture absorption capacity. Zeolite based desiccants are preferred.
 M2/nO・Al・xSiO・yHO  …(C) M 2 / n O · Al 2 O 3 · x SiO 2 · y H 2 O (C)
 ただし、Mは、Na、K等の1族の元素またはCa等の2族の元素であり、nは、Mの原子価であり、x、yは、結晶構造にて定まる値である。Mを変化させることにより細孔径を調整できる。 However, M is an element of Group 1 such as Na and K or an element of Group 2 such as Ca, n is a valence of M, and x and y are values determined by the crystal structure. The pore size can be adjusted by changing M.
 乾燥剤の選定においては、細孔径および破壊強度が重要である。熱サイクルシステム用組成物が含有する作動媒体等の各種成分(以下、「作動媒体等」)の分子径よりも大きい細孔径を有する乾燥剤を用いた場合、作動媒体等が乾燥剤中に吸着され、その結果、作動媒体等と乾燥剤との化学反応が生じ、不凝縮性気体の生成、乾燥剤の強度の低下、吸着能力の低下等の好ましくない現象を生じることとなる。 The pore size and the breaking strength are important in the selection of the desiccant. When a desiccant having a pore size larger than the molecular diameter of various components (hereinafter, "working media etc.") such as working media contained in the composition for thermal cycle system is used, the working media etc. is adsorbed in the desiccant As a result, a chemical reaction between the working medium and the like and the desiccant occurs, which causes undesirable phenomena such as generation of noncondensable gas, reduction in strength of the desiccant, and reduction in adsorption capacity.
 したがって、乾燥剤としては、細孔径の小さいゼオライト系乾燥剤を用いることが好ましい。特に、細孔径が3.5オングストローム以下である、ナトリウム・カリウムA型の合成ゼオライトが好ましい。作動媒体等の分子径よりも小さい細孔径を有するナトリウム・カリウムA型合成ゼオライトを適用することによって、作動媒体等を吸着することなく、熱サイクルシステム内の水分のみを選択的に吸着除去できる。言い換えると、作動媒体等の乾燥剤への吸着が起こりにくいことから、熱分解が起こりにくくなり、その結果、熱サイクルシステムを構成する材料の劣化やコンタミナンツの発生を抑制できる。 Therefore, as the desiccant, it is preferable to use a zeolite-based desiccant with a small pore size. In particular, a sodium-potassium A-type synthetic zeolite having a pore size of 3.5 angstroms or less is preferable. By applying the sodium-potassium A-type synthetic zeolite having a pore diameter smaller than the molecular diameter of the working medium or the like, it is possible to selectively adsorb and remove only the water in the heat cycle system without adsorbing the working medium or the like. In other words, since adsorption to the desiccant such as the working medium does not easily occur, thermal decomposition hardly occurs, and as a result, it is possible to suppress the deterioration of the materials constituting the thermal cycle system and the generation of contaminants.
 ゼオライト系乾燥剤の大きさは、小さすぎると熱サイクルシステムの弁や配管細部への詰まりの原因となり、大きすぎると乾燥能力が低下するため、粒度の代表値として約0.5~5mmが好ましい。形状としては、粒状または円筒状が好ましい。 If the size of the zeolitic desiccant is too small, it will cause clogging in the valve and piping details of the thermal cycle system, and if it is too large, the drying ability will decrease, so a particle size of about 0.5 to 5 mm is preferable as a typical particle size. . The shape is preferably granular or cylindrical.
 ゼオライト系乾燥剤は、粉末状のゼオライトを結合剤(ベントナイト等)で固めることにより任意の形状とすることができる。ゼオライト系乾燥剤を主体とするかぎり、他の乾燥剤(シリカゲル、活性アルミナ等)を併用してもよい。 The zeolitic desiccant can be made into an arbitrary shape by solidifying powdered zeolite with a binder (bentonite or the like). Other desiccants (silica gel, activated alumina, etc.) may be used in combination as long as the zeolite-based desiccant is mainly used.
 さらに、熱サイクルシステム内に不凝縮性気体が混入すると、凝縮器や蒸発器における熱伝達の不良、作動圧力の上昇という悪影響をおよぼすため、極力混入を抑制する必要がある。特に、不凝縮性気体の一つである酸素は、作動媒体や冷凍機油と反応し、分解を促進する。 Furthermore, if the non-condensable gas is mixed in the thermal cycle system, it has an adverse effect of poor heat transfer in the condenser and the evaporator and an increase in operating pressure, so it is necessary to suppress the mixing as much as possible. In particular, oxygen, which is one of the non-condensable gases, reacts with the working medium and refrigerator oil to promote decomposition.
 不凝縮性気体濃度は、作動媒体の気相部において、作動媒体に対する容積割合で1.5体積%以下が好ましく、0.5体積%以下が特に好ましい。 The noncondensable gas concentration is preferably 1.5% by volume or less by volume ratio to the working medium in the gas phase portion of the working medium, and particularly preferably 0.5% by volume or less.
 以上、本実施形態の熱サイクルシステムについて説明したが本実施形態の熱サイクルシステムは上記に限定されるものではない。これらの実施形態は、本発明の趣旨および範囲を逸脱することなく、変更または変形することができる。 As mentioned above, although the thermal cycle system of this embodiment was demonstrated, the thermal cycle system of this embodiment is not limited above. These embodiments can be modified or changed without departing from the spirit and scope of the present invention.
 なお、本実施形態の熱サイクルシステムは、上記本実施形態の作動媒体を含む所定の熱サイクルシステム用組成物が用いられたものである。そのため、この作動媒体を含む熱サイクルシステム用組成物を用いた熱サイクルシステムは、上記のように良好なサイクル性能を有するとともに、ODPおよびGWPが充分に低いことで地球温暖化への影響が抑制されており、かつ、燃焼性が抑制され安全性の高い作動媒体の特性を発揮する優れたものである。特に、作動媒体の燃焼性が抑制されたことで、熱サイクルシステムに何らかのトラブルが生じた場合であっても、火災や爆発等の危険を回避し得る。 In the heat cycle system of the present embodiment, a predetermined composition for a heat cycle system including the working medium of the present embodiment is used. Therefore, the thermal cycle system using the composition for a thermal cycle system containing this working medium has good cycle performance as described above, and the effect on global warming is suppressed by sufficiently low ODP and GWP. It is an excellent material that exhibits the characteristics of a highly safe working medium with reduced flammability. In particular, by suppressing the flammability of the working medium, even if any trouble occurs in the thermal cycle system, it is possible to avoid dangers such as fire and explosion.
 以下、実施例により本発明を詳細に説明するが、本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to the following examples.
[例1-1~1-9]
 HCFO-1224yd(Z)およびHFO-1234ze(E)を表2に示す割合で混合した作動媒体を作製し、以下の方法で、温度勾配および冷凍サイクル性能(冷凍能力Qおよび成績係数COP)を測定した。
[Example 1-1 to 1-9]
A working medium was prepared by mixing HCFO-1224yd (Z) and HFO-1234ze (E) in the proportions shown in Table 2, and the temperature gradient and refrigeration cycle performance (refrigerating capacity Q and coefficient of performance COP) were measured by the following method did.
<温度勾配、冷凍サイクル性能の測定>
 温度勾配、冷凍サイクル性能(冷凍能力および成績係数)の測定は、図1に示す冷凍サイクルシステム10に作動媒体を適用して、図2に示す熱サイクル、すなわちAB過程で圧縮機11による断熱圧縮、BC過程で凝縮器12による等圧冷却、CD過程で膨張弁13による等エンタルピ膨張、DA過程で蒸発器14による等圧加熱を実施した場合について行った。
<Measurement of temperature gradient, refrigeration cycle performance>
The measurement of temperature gradient and refrigeration cycle performance (refrigeration capacity and coefficient of performance) applies the working medium to the refrigeration cycle system 10 shown in FIG. 1 and adiabatic compression by the compressor 11 in the thermal cycle shown in FIG. In the BC process, isobaric cooling by the condenser 12, isenthalpic expansion by the expansion valve 13 in the CD process, and isobaric heating by the evaporator 14 in the DA process.
 測定条件は、蒸発器14における作動媒体の蒸発温度(蒸発開始温度と蒸発完了温度の平均温度)を5℃、凝縮器12における作動媒体の凝縮完了温度(凝縮開始温度と凝縮完了温度の平均温度)を40℃、凝縮器12における作動媒体の過冷却度(SC)を5℃、蒸発器14における作動媒体の過熱度(SH)を0℃として実施した。また、圧縮機効率0.8、配管、熱交換器における圧力損失はないものとした。 Measurement conditions are the evaporation temperature of working medium in evaporator 14 (average temperature of evaporation start temperature and evaporation completion temperature) 5 ° C., condensation completion temperature of working medium in condenser 12 (average temperature of condensation start temperature and condensation completion temperature) C., the degree of subcooling (SC) of the working medium in the condenser 12 as 5.degree. C., and the degree of superheat (SH) of the working medium in the evaporator 14 as 0.degree. In addition, the compressor efficiency was 0.8, and there was no pressure loss in the piping and the heat exchanger.
 冷凍能力および成績係数は、作動媒体のA(蒸発後、高温低圧)、B(圧縮後、高温高圧)、C(凝縮後、低温高圧)、D(膨張後、低温低圧)の各状態のエンタルピhを用いて、上記式(A)、(B)から求めた。 The refrigeration capacity and coefficient of performance are the enthalpy of each state of the working medium A (evaporation, high temperature and low pressure), B (compression, high temperature and high pressure after compression), C (condensed, low temperature and high pressure after condensation), and D (low temperature, low pressure after expansion). It calculated | required from said Formula (A), (B) using h.
 冷凍サイクル性能の算出に必要となる熱力学性質は、対応状態原理に基づく一般化状態方程式(Soave-Redlich-Kwong式)、および熱力学諸関係式に基づき算出した。特性値が入手できない場合は、原子団寄与法に基づく推算手法を用い算出を行った。 The thermodynamic properties required to calculate the refrigeration cycle performance were calculated based on the generalized equation of state (Soave-Redlich-Kwong equation) based on the corresponding state principle, and thermodynamic relations. When characteristic values were not available, calculation was performed using the estimation method based on the group contribution method.
 冷凍能力および成績係数は、上記と同様に測定されたHCFC-1224yd(Z)の冷凍能力および成績係数をそれぞれ、1.00とした場合の相対比として求めた。温度勾配は、図2におけるTとTの差として求めた。また、作動媒体のGWPを、表1に示す個々の化合物のGWPをもとに、組成質量による加重平均として求めた。すなわち、作動媒体を構成する各化合物の質量%とGWPの積を合計した値を100で除すことで該作動媒体のGWPを求めた。なお、例1-1~1-9の作動媒体は、いずれもODPは0である。 The refrigerating capacity and the coefficient of performance were determined as relative ratios when the refrigerating capacity and coefficient of performance of HCFC-1224 yd (Z) measured in the same manner as described above were respectively 1.00. The temperature gradient was determined as the difference between T 1 and T 2 in FIG. Also, the GWP of the working fluid was determined based on the GWP of each compound shown in Table 1 as a weighted average by composition mass. That is, the GWP of the working medium was determined by dividing the sum of the product of the mass% of each compound constituting the working medium and the GWP by 100. The working media of Examples 1-1 to 1-9 all have an ODP of 0.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[例2-1~2-8]
 HCFO-1224yd(Z)およびHFO-1234yfを表3に示す割合で混合した作動媒体を作製し、上記例1と同様の方法で、温度勾配および冷凍サイクル性能(冷凍能力Qおよび成績係数COP)を測定した。なお、例2-1~2-8の作動媒体は、いずれもODPは0である。
[Examples 2-1 to 2-8]
A working medium was prepared by mixing HCFO-1224yd (Z) and HFO-1234yf in the proportions shown in Table 3, and temperature gradient and refrigeration cycle performance (refrigerating capacity Q and coefficient of performance COP) were prepared in the same manner as in Example 1 above. It was measured. The working media of Examples 2-1 to 2-8 all have an ODP of 0.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[例3-1~3-15]
 HCFO-1224yd(Z)、HFO-1234ze(E)およびHFO-1234yfを表4に示す割合で混合した作動媒体を作製し、上記例1と同様の方法で、温度勾配および冷凍サイクル性能(冷凍能力Qおよび成績係数COP)を測定した。なお、例3-1~3-15の作動媒体は、いずれもODPは0である。
[Example 3-1 to 3-15]
A working medium was prepared by mixing HCFO-1224yd (Z), HFO-1234ze (E) and HFO-1234yf in the proportions shown in Table 4, and in the same manner as Example 1 above, the temperature gradient and the refrigeration cycle performance (refrigerating capacity Q and coefficient of performance COP were measured. The working media of Examples 3-1 to 3-15 all have an ODP of 0.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[例4-1~4-9]
 HCFO-1224yd(Z)およびHFO-1234ze(Z)を表5に示す割合で混合した作動媒体を作製し、上記例1と同様の方法で、温度勾配および冷凍サイクル性能(冷凍能力Qおよび成績係数COP)を測定した。なお、例4-1~4-9の作動媒体は、いずれもODPは0である。
[Examples 4-1 to 4-9]
A working medium was prepared by mixing HCFO-1224yd (Z) and HFO-1234ze (Z) in the proportions shown in Table 5, and in the same manner as in Example 1 above, temperature gradient and refrigeration cycle performance (refrigerant capacity Q and coefficient of performance) COP) was measured. The working media of Examples 4-1 to 4-9 all have an ODP of 0.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2~5からわかるように、実施例である例1-1~1-9、例2-1~2-8および例3-1~3-15の各作動媒体は、いずれもHCFO-1224yd(Z)単独の作動媒体、またはHCFO-1224yd(Z)およびHFO-1234ze(Z)を混合した作動媒体を用いた例4-1~4-9と比べて、冷凍能力に優れ、成績係数はほぼ同等であり、充分なサイクル性能を有するとともに、ODPおよびGWPが充分に低いことで地球温暖化への影響が充分に抑制された熱サイクル用の作動媒体である。 As can be seen from Tables 2 to 5, all working media of Examples 1-1 to 1-9, Examples 2-1 to 2-8, and Examples 3-1 to 3-15, which are Examples, are HCFO-1224yd. (Z) Superior in refrigeration capacity and coefficient of performance compared to Examples 4-1 to 4-9 using a single working medium or a working medium in which HCFO-1224yd (Z) and HFO-1234ze (Z) are mixed. It is a working medium for thermal cycling that is almost equivalent and has sufficient cycle performance, and the effects on global warming are sufficiently suppressed by sufficiently low ODP and GWP.
<燃焼性試験>
 次に、例1-6~1-9、例2-6~2-8で得られた混合物からなる熱サイクル用作動媒体と、さらに、HCFO-1224yd(Z)が10質量%、HFO-1234ze(E)が90質量%の混合物からなる熱サイクル用作動媒体(例1-10)、HCFO-1224yd(Z)が20質量%、HFO-1234yfが80質量%の混合物からなる熱サイクル用作動媒体(例2-9)、について、各作動媒体を空気に対して10~90質量%の間の1質量%おきの比率で空気と混合して平衡状態に到達したときの燃焼性を評価した。
<Flammability test>
Next, a working fluid for thermal cycle comprising the mixture obtained in Examples 1-6 to 1-9 and Examples 2-6 to 2-8, and further, 10% by mass of HCFO-1224yd (Z), HFO-1234ze Thermal cycle working medium (Example 1-10) consisting of a mixture of 90% by weight of (E), thermal cycle working medium consisting of a mixture of 20% by weight of HCFO-1224yd (Z) and 80% by weight of HFO-1234yf With regard to (Examples 2-9), each working medium was mixed with air at a ratio of every 10% to 90% by mass with respect to air to evaluate the flammability when it reached an equilibrium state.
 燃焼性の評価は、ASTM E-681に規定された設備を用いて、次のように実施した。58.0~59.0℃に温度制御された恒温槽内に設置された内容積12リットルのフラスコ内を真空排気した後、上記比率で空気と混合された各作動媒体を大気圧力まで封入した。その後、該フラスコ内の中心付近の気相において、15kV、30mAで0.4秒間放電着火させた後、火炎の広がりを目視にて確認した。上方への火炎の広がりの角度が90度以上である場合を燃焼性あり、90度未満の場合を燃焼性なし、と判断した。その結果を表6および表7に示した。 The flammability evaluation was performed as follows using the equipment specified in ASTM E-681. After evacuating the inside of a 12-liter flask installed in a thermostat controlled at 58.0-59.0 ° C, each working medium mixed with air at the above ratio was sealed up to atmospheric pressure . Thereafter, in the gas phase near the center in the flask, discharge ignition was performed at 15 kV and 30 mA for 0.4 seconds, and the spread of the flame was visually confirmed. It was judged to be combustible when the angle of the flame spread upward was 90 degrees or more, and not combustible when it was less than 90 degrees. The results are shown in Tables 6 and 7.
 なお、ここで使用した作動媒体について、その構成する化合物を表2~3にまとめて示している。表2~3に示した作動媒体は、燃焼性の無い範囲の作動媒体であり、作動媒体についての冷凍サイクル性能の評価、地球温暖化係数(GWP)の評価についても併せて示した。 The compounds constituting the working medium used here are summarized in Tables 2-3. The working media shown in Tables 2 to 3 are working media in the non-combustible range, and are also shown together with the evaluation of the refrigeration cycle performance of the working media and the evaluation of the global warming potential (GWP).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 以上の結果から、HCFO-1224yd(Z)とHFO-1234ze(E)の混合物からなる熱サイクル用作動媒体は、HCFO-1224yd(Z)が20質量%以上含まれていれば、燃焼性が充分に抑えられ、作動媒体として安全性の高いものとできることがわかった。 From the above results, it is found that the thermal cycle working medium consisting of a mixture of HCFO-1224yd (Z) and HFO-1234ze (E) has sufficient combustibility if 20% by mass or more of HCFO-1224yd (Z) is contained. It has been found that it is possible to make it a highly safe working medium.
 また、HCFO-1224yd(Z)とHFO-1234yfの混合物からなる熱サイクル用作動媒体は、HCFO-1224yd(Z)が30質量%以上含まれていれば、燃焼性が充分に抑えられ、作動媒体として安全性の高いものとできることがわかった。 In addition, the thermal cycle working medium consisting of a mixture of HCFO-1224yd (Z) and HFO-1234yf is sufficiently reduced in flammability as long as HCFO-1224yd (Z) is contained in an amount of 30% by mass or more. It turned out that it can be considered as highly safe.
 本実施形態の作動媒体およびこれを含む熱サイクルシステム用組成物、ならびに該組成物を用いた熱サイクルシステムは、冷凍・冷蔵機器(内蔵型ショーケース、別置型ショーケース、業務用冷凍・冷蔵庫、自動販売機、製氷機等)、空調機器(ルームエアコン、店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン、熱源機器チリングユニット、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置等)、発電システム(廃熱回収発電等)、熱輸送装置(ヒートパイプ等)、二次冷却機に利用できる。 The working medium of the present embodiment, a composition for a thermal cycle system including the same, and a thermal cycle system using the composition can be used as a refrigerating / refrigerating device (built-in showcase, separate showcase, freezer / refrigerator for business use, Vending machines, ice makers, etc., air conditioners (room air conditioners, package air conditioners for stores, package air conditioners for buildings, equipment package air conditioners, heat source equipment chilling units, gas engine heat pumps, air conditioners for trains, air conditioners for automobiles, etc.) It can be used for power generation systems (such as waste heat recovery power generation), heat transport devices (such as heat pipes), and secondary coolers.
 10…冷凍サイクルシステム、11…圧縮機、12…凝縮器、13…膨張弁、14…蒸発器、15,16…ポンプ。 DESCRIPTION OF SYMBOLS 10 ... Refrigeration cycle system, 11 ... Compressor, 12 ... Condenser, 13 ... Expansion valve, 14 ... Evaporator, 15, 16 ... Pump.

Claims (10)

  1.  1-クロロ-2,3,3,3-テトラフルオロプロペンと(E)-1,3,3,3-テトラフルオロプロペンを含む熱サイクル用作動媒体であって、
     前記熱サイクル用作動媒体中に含まれる、前記1-クロロ-2,3,3,3-テトラフルオロプロペンと前記(E)-1,3,3,3-テトラフルオロプロペンの合計含有量が50質量%以上であり、かつ、1-クロロ-2,3,3,3-テトラフルオロプロペン:(E)-1,3,3,3-テトラフルオロプロペンで表される割合が、質量基準で、20:80~99:1であることを特徴とする熱サイクル用作動媒体。
    A working medium for thermal cycling comprising 1-chloro-2,3,3,3-tetrafluoropropene and (E) -1,3,3,3-tetrafluoropropene,
    The total content of the 1-chloro-2,3,3,3-tetrafluoropropene and the (E) -1,3,3,3-tetrafluoropropene contained in the thermal cycle working medium is 50 % Or more, and the ratio of 1-chloro-2,3,3,3-tetrafluoropropene: (E) -1,3,3,3-tetrafluoropropene is on a mass basis, 20. A working medium for thermal cycling characterized in that it is 20: 80 to 99: 1.
  2.  1-クロロ-2,3,3,3-テトラフルオロプロペンと2,3,3,3-テトラフルオロプロペンとを含む熱サイクル用作動媒体であって、
     前記熱サイクル用作動媒体中に含まれる、前記1-クロロ-2,3,3,3-テトラフルオロプロペンと前記2,3,3,3-テトラフルオロプロペンの合計含有量が50質量%以上であり、かつ、1-クロロ-2,3,3,3-テトラフルオロプロペン:2,3,3,3-テトラフルオロプロペンで表される割合が、質量基準で、30:70~99:1であることを特徴とする熱サイクル用作動媒体。
    A working medium for thermal cycling, comprising 1-chloro-2,3,3,3-tetrafluoropropene and 2,3,3,3-tetrafluoropropene,
    The total content of the 1-chloro-2,3,3,3-tetrafluoropropene and the 2,3,3,3-tetrafluoropropene contained in the thermal cycle working medium is 50% by mass or more And the ratio of 1-chloro-2,3,3,3-tetrafluoropropene represented by 2,3,3,3-tetrafluoropropene is from 30:70 to 99: 1 on a mass basis. A working fluid for thermal cycling, characterized in that
  3.  前記1-クロロ-2,3,3,3-テトラフルオロプロペンは、(E)-1-クロロ-2,3,3,3-テトラフルオロプロペン:(Z)-1-クロロ-2,3,3,3-テトラフルオロプロペンで表される割合が、質量基準で、50:50~0.01:99.99である請求項1または2に記載の熱サイクル用作動媒体。 The 1-chloro-2,3,3,3-tetrafluoropropene is (E) -1-chloro-2,3,3,3-tetrafluoropropene: (Z) -1-chloro-2,3, The working fluid for thermal cycling according to claim 1 or 2, wherein the ratio represented by 3, 3-tetrafluoropropene is 50: 50 to 0.01: 99.99 on a mass basis.
  4.  請求項1~3のいずれか1項に記載の熱サイクル用作動媒体を含む熱サイクルシステム用組成物。 A composition for a thermal cycle system comprising the thermal cycle working medium according to any one of claims 1 to 3.
  5.  潤滑油を含む請求項4に記載の熱サイクルシステム用組成物。 The composition for a heat cycle system according to claim 4, comprising a lubricating oil.
  6.  前記熱サイクル用作動媒体の劣化を抑制する安定剤を含む請求項4または5に記載の熱サイクルシステム用組成物。 The composition for a heat cycle system according to claim 4 or 5, further comprising a stabilizer that suppresses the deterioration of the heat cycle working medium.
  7.  請求項4~6のいずれか1項に記載の熱サイクルシステム用組成物を用いた、熱サイクルシステム。 A thermal cycle system using the composition for a thermal cycle system according to any one of claims 4 to 6.
  8.  前記熱サイクルシステムが冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機である請求項7に記載の熱サイクルシステム。 The heat cycle system according to claim 7, wherein the heat cycle system is a refrigeration / refrigerator, an air conditioner, a power generation system, a heat transport device or a secondary cooler.
  9.  前記熱サイクルシステムが遠心式冷凍機である請求項7または8に記載の熱サイクルシステム。 The heat cycle system according to claim 7 or 8, wherein the heat cycle system is a centrifugal refrigerator.
  10.  前記熱サイクルシステムが低圧型遠心式冷凍機である請求項7~9のいずれか1項に記載の熱サイクルシステム。 The thermal cycle system according to any one of claims 7 to 9, wherein the thermal cycle system is a low pressure centrifugal refrigerator.
PCT/JP2018/027902 2017-07-26 2018-07-25 Working medium for heat cycle, composition for heat cycle system, and heat cycle system WO2019022138A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880046066.0A CN110869462A (en) 2017-07-26 2018-07-25 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP2019532834A JP7060017B2 (en) 2017-07-26 2018-07-25 Working medium for thermal cycles, compositions for thermal cycle systems and thermal cycle systems
JP2022057395A JP7226623B2 (en) 2017-07-26 2022-03-30 Working fluid for heat cycle, composition for heat cycle system, and heat cycle system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017144770 2017-07-26
JP2017-144770 2017-07-26

Publications (1)

Publication Number Publication Date
WO2019022138A1 true WO2019022138A1 (en) 2019-01-31

Family

ID=65041269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027902 WO2019022138A1 (en) 2017-07-26 2018-07-25 Working medium for heat cycle, composition for heat cycle system, and heat cycle system

Country Status (3)

Country Link
JP (2) JP7060017B2 (en)
CN (1) CN110869462A (en)
WO (1) WO2019022138A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220162489A1 (en) * 2020-10-22 2022-05-26 Rpl Holdings Limited Thermal pump refrigerants
US11459497B2 (en) 2017-11-27 2022-10-04 Rpl Holdings Limited Low GWP refrigerant blends
EP3978731A4 (en) * 2019-05-30 2023-06-14 Zhejiang Research Institute of Chemical Industry Co., Ltd. Environment-friendly heat pipe working fluid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316904A (en) * 2020-10-12 2022-04-12 浙江省化工研究院有限公司 Environment-friendly heat transfer composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157763A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
JP2014504675A (en) * 2011-02-04 2014-02-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Azeotropic and azeotrope-like compositions containing certain haloolefins and their use
WO2016171264A1 (en) * 2015-04-24 2016-10-27 旭硝子株式会社 Composition for use in heat cycle system, and heat cycle system
WO2016171256A1 (en) * 2015-04-24 2016-10-27 旭硝子株式会社 Composition for use in heat cycle system, and heat cycle system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504675A (en) * 2011-02-04 2014-02-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Azeotropic and azeotrope-like compositions containing certain haloolefins and their use
WO2012157763A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
WO2016171264A1 (en) * 2015-04-24 2016-10-27 旭硝子株式会社 Composition for use in heat cycle system, and heat cycle system
WO2016171256A1 (en) * 2015-04-24 2016-10-27 旭硝子株式会社 Composition for use in heat cycle system, and heat cycle system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11459497B2 (en) 2017-11-27 2022-10-04 Rpl Holdings Limited Low GWP refrigerant blends
EP3978731A4 (en) * 2019-05-30 2023-06-14 Zhejiang Research Institute of Chemical Industry Co., Ltd. Environment-friendly heat pipe working fluid
US20220162489A1 (en) * 2020-10-22 2022-05-26 Rpl Holdings Limited Thermal pump refrigerants
WO2022084488A3 (en) * 2020-10-22 2022-07-07 Rpl Holdings Limited Thermal pump refrigerants
US11827834B2 (en) * 2020-10-22 2023-11-28 Rpl Holdings Limited Thermal pump refrigerants

Also Published As

Publication number Publication date
CN110869462A (en) 2020-03-06
JP7226623B2 (en) 2023-02-21
JP7060017B2 (en) 2022-04-26
JP2022087163A (en) 2022-06-09
JPWO2019022138A1 (en) 2020-07-27

Similar Documents

Publication Publication Date Title
US11447676B2 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
US11746272B2 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
JP6950765B2 (en) Working media for thermal cycles, compositions for thermal cycle systems and thermal cycle systems
JP6524995B2 (en) Working medium for thermal cycling, composition for thermal cycling system and thermal cycling system
US20170058173A1 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
WO2016194847A1 (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
US20170058171A1 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
WO2015125534A1 (en) Composition for heat cycle system, and heat cycle system
WO2015141676A1 (en) Working medium for heat cycles, composition for heat-cycle systems, and heat-cycle system
JP7226623B2 (en) Working fluid for heat cycle, composition for heat cycle system, and heat cycle system
US20180371958A1 (en) Heat cycle system and heat cycle method using the same
US11149178B2 (en) Azeotropic or azeotrope-like composition, working fluid for heat cycle, and heat cycle system
WO2019022139A1 (en) Azeotropic composition, working medium for heat cycle, and heat cycle system
WO2019039510A1 (en) 1-chloro-2,3,3-trifluoropropene-containing working medium for thermal cycling, composition for thermal cycling system, and thermal cycling system
WO2019022140A1 (en) Heat cycle system and heat cycle method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532834

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838232

Country of ref document: EP

Kind code of ref document: A1