WO2019022120A1 - Singlet fission material, triplet sensitizer, compound, and thin film - Google Patents

Singlet fission material, triplet sensitizer, compound, and thin film Download PDF

Info

Publication number
WO2019022120A1
WO2019022120A1 PCT/JP2018/027847 JP2018027847W WO2019022120A1 WO 2019022120 A1 WO2019022120 A1 WO 2019022120A1 JP 2018027847 W JP2018027847 W JP 2018027847W WO 2019022120 A1 WO2019022120 A1 WO 2019022120A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
compound
triplet
layer
general formula
Prior art date
Application number
PCT/JP2018/027847
Other languages
French (fr)
Japanese (ja)
Inventor
弘典 梶
功將 志津
壮太郎 檜垣
安達 千波矢
憲一 合志
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2019532824A priority Critical patent/JP7214142B2/en
Publication of WO2019022120A1 publication Critical patent/WO2019022120A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/38Polycyclic condensed hydrocarbons containing four rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to compounds useful as singlet fission materials and triplet sensitizers.
  • acenes having a structure in which a plurality of benzene rings are linearly condensed have a wide ⁇ conjugated system
  • applications as functional materials of organic devices such as organic semiconductor materials and light emitting materials are expected, and useful applications are Research is in progress to find out.
  • a compound having a tetracene skeleton is used as a material of an organic light emitting device.
  • Patent Document 1 describes an example in which this compound is used as a dopant of a light emitting layer
  • Patent Document 2 describes an example in which this compound is used in a hole transport layer ing.
  • the compound having a tetracene skeleton is known to be used as a dopant of a light emitting layer of an organic light emitting device or a hole transporting material.
  • the properties of the compound having a tetracene skeleton have not been sufficiently studied, and it is considered that many untouched areas remain for its usefulness. Therefore, in order to develop new materials having higher utility, it is required to conduct further research on compounds having a tetracene skeleton. Under these circumstances, we investigated the characteristics and usefulness of the compound having a tetracene skeleton, and conducted intensive studies for the purpose of finding out new applications.
  • tetracene compounds having a specific structure have useful properties of causing singlet splitting and increasing the number of triplet excitons. And it came to the thought that the organic device with high efficiency will be realized by utilizing the characteristic of the tetracene compound.
  • the present invention has been proposed based on these findings, and specifically has the following configuration.
  • a singlet fission material comprising a compound represented by the following general formula (1).
  • R 1 represents a substituted or unsubstituted aryl group.
  • One of R 2 and R 3 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group.
  • R 1 and R 2 are each independently an unsubstituted aryl group.
  • R 3 The singlet fission material according to [1] or [2], wherein R 1 and R 2 are the same.
  • a triplet sensitizer comprising the compound represented by the following general formula (1).
  • R 1 represents a substituted or unsubstituted aryl group.
  • One of R 2 and R 3 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group.
  • [5] The triplet sensitizer described in [4], wherein R 1 and R 2 are each independently an unsubstituted aryl group.
  • [6] The triplet sensitizer according to [4] or [5], wherein R 1 and R 2 are the same.
  • one of R 4 and R 5 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group.
  • R 6 and R 7 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group. n is 0 or 1.
  • R 4 and R 6 are each independently an unsubstituted aryl group.
  • R 4 and R 6 are the same.
  • the compounds in the present invention are useful as singlet fission materials and triplet sensitizers. High efficiency can be realized by using the singlet fission material or the triplet sensitizer of the present invention as the functional material of the organic device.
  • FIG. 10 shows the emission spectra of respective toluene solutions containing Compound 1, Compound 3 or Compound 4.
  • FIG. It is an emission spectrum of each thin film in which the concentration of compound 1 is 0% by weight, 6% by weight, 30% by weight or 100% by weight. It is a transient absorption decay curve at 530 nm of a chloroform solution in which the concentration of Compound 1 is 5 ⁇ 10 ⁇ 2 mol / L.
  • the concentration of the compound 1 is 1 ⁇ 10 ⁇ 3 mol / L, 1 ⁇ 10 ⁇ 2 mol / L, 2.5 ⁇ 10 ⁇ 2 mol / L, 5 ⁇ 10 ⁇ 2 mol / L, or 1 ⁇ 10 ⁇ 1 mol
  • FIG. 6 is a correlation diagram in which the amount of change in absorbance ⁇ ABS at 530 nm is plotted on the vertical axis and the intensity of excitation light on the horizontal axis for certain chloroform solutions.
  • 5 is a graph showing the concentration dependency of the triplet exciton generation efficiency IS ISC of Compound 1.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all hydrogen atoms in the molecule may be 1 H, or some or all of the hydrogen atoms may be 2 H (Deuterium D) may be used.
  • the “fluorescent material” is a light emitting material in which the emission intensity of fluorescence is higher than that of phosphorescence when light emission is observed at 20 ° C.
  • the “phosphorescent material” is When light emission is observed at 20 ° C., it is a light emitting material in which the light emission intensity of phosphorescence is higher than the light emission intensity of fluorescence.
  • the “delayed fluorescent material” is a material in which both fluorescence having a short emission lifetime at 20 ° C. and fluorescence having a long emission lifetime (delayed fluorescence) are observed.
  • a light emitting organic compound other than the organometallic complex is usually a fluorescent material or a delayed fluorescent material.
  • thin film means a film having a thickness of 1000 nm or less, preferably 500 nm or less, and more preferably 100 nm or less.
  • R 1 represents a substituted or unsubstituted aryl group.
  • One of R 2 and R 3 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group.
  • the substituted or unsubstituted aryl group represented by one of R 2 and R 3 and the substituted or unsubstituted aryl group represented by R 1 may be the same as or different from each other, but are preferably the same.
  • the aryl group (a part excluding a substituent in the case of a substituted aryl group) in the "substituted or unsubstituted aryl group" preferably has 6 to 26 ring atoms, more preferably 6 to 22 and more preferably 6 to 18 Is more preferred.
  • Specific examples of the aryl group include phenyl group, 1-naphthalenyl group, 2-naphthalenyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 1-tetracenyl group, 2-tetracenyl group, 5-tetracenyl group, 1-pyrenyl group and 2-pyrenyl group can be mentioned.
  • the aryl group that can be taken by R 1 to R 3 may be substituted or unsubstituted with a substituent, but at least one of R 1 to R 3 is preferably an unsubstituted aryl group It is preferable that all of the substituted or unsubstituted aryl groups that R 1 to R 3 can be substituted be unsubstituted aryl groups.
  • the substituent is preferably an alkyl group or an aryl group.
  • the alkyl group may be linear, branched or cyclic.
  • the preferred carbon number is 1 to 20, more preferably 1 to 10, and still more preferably 1 to 6.
  • methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group and the like can be exemplified.
  • the preferable range and specific example of the aryl group the preferable range and specific example of the aryl group in the above-mentioned "substituted or unsubstituted aryl group" can be referred to.
  • the alkyl group and aryl group which are substituents may be further substituted, and an alkyl group and an aryl group can be mentioned preferably as a substituent in that case.
  • the total carbon number of the substituted or unsubstituted aryl group that can be taken by R 1 to R 3 is preferably 6 to 32, more preferably 6 to 28, and still more preferably 6 to 24.
  • substituted aryl groups that R 1 to R 3 may be include alkylphenyl group (tolyl group, tert-butylphenyl group etc.), biphenyl group, alkylbiphenyl group (methylbiphenyl group, tert-butylbiphenyl group etc.), ter Phenyl group, alkyl terphenyl group (methyl terphenyl group, tert-butyl terphenyl group etc.), phenyl naphthyl group, alkyl naphthyl group (methyl naphthyl group, tert-butyl naphthyl group etc.), phenyl anthracenyl group, naphthyl anthracene Cenyl group, alkyl an
  • the compound represented by the following general formula (2) is a novel compound.
  • one of R 4 and R 5 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group.
  • One of R 6 and R 7 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group.
  • n is 0 or 1.
  • the description and the preferred range of the substituted or unsubstituted aryl group in the general formula (2) and the specific examples can be referred to the description of the substituted or unsubstituted aryl group in the general formula (1).
  • the substituted or unsubstituted aryl group represented by one of R 4 and R 5 and the substituted or unsubstituted aryl group represented by one of R 6 and R 7 may be the same or different.
  • Preferred examples of the compound represented by the general formula (2) include compounds wherein R 4 and R 6 are each independently a substituted or unsubstituted aryl group, and R 5 and R 7 are a hydrogen atom. .
  • R in the above reaction formula the description of the substituted or unsubstituted aryl group in the general formula (2) can be referred to.
  • the bitetracenone used here may be either cis or trans, or a mixture of cis and trans.
  • the details of the above reaction can be referred to the synthesis examples described below.
  • the compound represented by General formula (2) can also be synthesize
  • the compounds represented by the general formula (1) are useful as singlet fission materials.
  • “singlet splitting” refers to a phenomenon in which a singlet exciton is split into two triplet excitons
  • “singlet splitting material” in the present invention means an excited singlet state S.
  • the fact that it is a singlet fission material means, for example, that each thin film formed by adding the compound represented by General Formula (1) in different concentrations to the host material was irradiated with excitation light to measure the photoluminescence quantum yield Sometimes, it can be confirmed by the correlation that the photoluminescence quantum yield decreases as the concentration of the compound increases.
  • the compound represented by the general formula (1) which is a singlet fission material
  • the “triplet sensitizer” in the present invention means the material to increase the number of causing the singlet fission triplet excitons when excited to an excited singlet state S 1.
  • the effect of increasing the number of triplet excitons by singlet splitting may be referred to as "triplet exciton sensitization effect”.
  • the fact that it is a triplet sensitizer means that the solution containing the compounds represented by the general formula (1) in different concentrations is irradiated with pump light as excitation light, and immediately thereafter, the change in absorbance to the probe light when measuring the amount .DELTA.ABS, confirmed by from the .DELTA.ABS using the following formula (I) is a triplet exciton generation efficiency [Phi ISC obtained, correlation increases with the concentration of the compound is high is observed can do.
  • ⁇ ABS absorbance change amount
  • IS ISC indicates the triplet exciton generation efficiency
  • I 0 indicates the intensity of pump light (excitation light intensity) irradiated to the solution
  • ⁇ ABS indicates the change in absorbance
  • ⁇ T denotes the molar absorption coefficient of the target compound at the probe light wavelength
  • c denotes the concentration of the target compound in the solution
  • L denotes the measurement
  • the optical path length (1 mm) of the used cell is shown.
  • light of 337 nm in the absorption band of the target compound can be used as pump light, and light of 510-540 nm in the absorption band of the target compound can be used as probe light.
  • a triplet sensitizer composed of the compound represented by the general formula (1) for the material of the organic device the efficiency can be dramatically improved.
  • a triplet sensitizer composed of a compound represented by the general formula (1) as a material of the organic semiconductor layer of the organic solar cell, light irradiated to the organic semiconductor layer in the organic solar cell is
  • the compound represented by the general formula (1) can be absorbed to form a singlet exciton, and a triplet amplification system can be realized in which the singlet exciton is split into two triplet excitons.
  • triplet excitons are efficiently generated by light irradiation, and since the triplet excitons have a long lifetime, triplet excitation is generated at the p / n junction interface of the organic semiconductor layer.
  • the probability of charge arrival and separation of charge is high, and holes and electrons can be efficiently extracted to the electrode. Therefore, compared with the organic solar cell which does not contain a triplet sensitizer, high photoelectric conversion efficiency can be obtained.
  • the organic light emitting device was formed with the host material of an excited singlet state It is possible to realize an excited triplet energy amplification system in which a singlet exciton is split into two triplet excitons and their excited triplet energy is transferred to the light emitting material by the Dexter transfer mechanism.
  • the excitation triplet energy is efficiently generated by the excitation of the host material and supplied to the light emitting material, so that the host material does not have the triplet exciton sensitizing effect. In comparison, high luminous efficiency can be obtained.
  • the light emitting material may be any phosphorescent material that can emit light upon receiving excitation triplet energy from the host material, and may emit light by radiative relaxation from the excitation triplet state, or the excitation triplet state It may be a delayed fluorescent material which emits light by radiative relaxation from the excited singlet state after producing an inverse intersystem crossing from the light emitting element to the excited singlet state.
  • a triplet sensitizer of the present invention as a host material of the light emitting layer, in order to obtain higher luminous efficiency, transfer of excited triplet energy from the host material to the light emitting material is facilitated. It is preferable to confine the excited triplet energy received by the light emitting material in the molecule of the light emitting material.
  • the host material preferably has a lowest excitation triplet energy level higher than the lowest excitation triplet energy level of the light emitting material. Furthermore, in order to confine the excited singlet energy generated in the light emitting material in the molecule of the light emitting material, the host material is required to have its lowest singlet excitation energy level higher than the lowest singlet excitation energy level of the light emitting material preferable.
  • a singlet sensitizing layer containing a singlet sensitizer may be provided next to the light emitting layer in the organic light emitting device using the triplet sensitizer of the present invention as a host material of the light emitting layer, and further An electron and triplet exciton blocking layer may be provided between the light emitting layer and the singlet sensitizing layer.
  • the “singlet sensitizer” refers to a material having a generation probability [S 1 / (S 1 + T 1 )] of the excited singlet state S 1 generated by current excitation larger than 25%, for example A delayed fluorescent material can be used.
  • the singlet sensitizer preferably has a lowest excited singlet energy level higher than the lowest excited singlet energy level of the host material, and the lowest excited singlet energy level and the lowest excited triplet energy level
  • the difference ⁇ E ST is preferably 0.3 eV or less.
  • ACRXTN mentioned later can be mentioned.
  • the “electron and triplet exciton blocking layer” refers to a layer having a function of blocking the transfer of electrons and triplet excitons from the singlet sensitizing layer to the light emitting layer.
  • the triplet sensitizer which consists of a compound represented by General formula (1) can be used also as an assist dopant of the light emitting layer of an organic light emitting element.
  • assist dopant has a function of receiving excited singlet energy from a host material, converting it into excited triplet energy, and transferring the excited triplet energy to a light emitting material.
  • a light emitting material which receives excitation triplet energy from the assist dopant is excited by the energy to emit light.
  • a triplet sensitizer composed of a compound represented by the general formula (1) is used as such an assist dopant, singlet excitons generated when the assist dopant receives excited singlet energy become two triplet excitons.
  • the light emitting material can be more efficiently supplied with excitation triplet energy. Therefore, higher luminous efficiency can be obtained as compared with the case of using an assist dopant having no triplet exciton sensitization effect.
  • a usual host material can be used as a host material, but it is preferable to use a delayed fluorescent material because it can efficiently generate excited singlet energy.
  • the light-emitting material may be any material as long as it can emit light by receiving excitation triplet energy from the assist dopant, and a phosphorescent material or a delayed fluorescent material can be used.
  • the host material in order to obtain higher luminous efficiency, transfer of excited singlet energy from the host material to the assist dopant, transfer from the assist dopant to the light emitting material It is preferable to facilitate the transfer of the excited triplet energy and to confine the excited triplet energy received by the light emitting material in the molecule of the light emitting material. Therefore, the host material preferably has a lowest excited singlet energy level higher than the lowest excited singlet energy level of the assist dopant, and a lowest excited triplet energy level corresponds to the lowest excited triplet energy quasi of the assist dopant. And higher than the lowest excitation triplet energy level of the luminescent material.
  • the assist dopant preferably has a lowest excitation triplet energy level higher than the lowest excitation triplet energy level of the light emitting material. Furthermore, in order to confine the excited singlet energy generated in the light emitting material in the molecule of the light emitting material, the host material and the assist dopant have their lowest singlet excitation energy level higher than the lowest singlet excitation energy level of the light emitting material Higher is more preferred.
  • the compound represented by the general formula (1) causes singlet splitting to increase the number of triplet excitons, an organic device other than the organic solar cell and the organic light emitting element, for example, an organic imaging element Even when used as a material for a vein authentication apparatus, a blood glucose level monitor, etc., it contributes to the improvement of the efficiency, and can be effectively used as a functional material of various organic devices.
  • the compound represented by the general formula (1) is also characterized in that it can be formed as an amorphous solid. Therefore, destruction of the organic film structure due to repeated driving and property deterioration which would be a problem in an organic device using a crystalline singlet fission material can be avoided, and an organic device having high stability can be realized.
  • the layer configuration of the organic light emitting element and the material used for each layer will be described.
  • the triplet sensitizer consisting of the compound represented by the general formula (1) of the present invention can be effectively used as a host material or an assist dopant of the light emitting layer of the organic light emitting device.
  • An excellent organic light emitting device such as an EL device
  • the organic photoluminescent device has a structure in which at least a light emitting layer is formed on a substrate.
  • the organic electroluminescent device has a structure in which an organic layer is formed at least an anode, a cathode, and between the anode and the cathode.
  • the organic layer includes at least a light emitting layer, and may be formed only of the light emitting layer, or may have one or more organic layers in addition to the light emitting layer.
  • a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, an exciton blocking layer and the like can be mentioned.
  • the hole transport layer may be a hole injection transport layer having a hole injection function
  • the electron transport layer may be an electron injection transport layer having an electron injection function.
  • FIG. 1 A specific structural example of the organic electroluminescent device is shown in FIG.
  • 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is a light emitting layer
  • 6 is an electron transport layer
  • 7 is a cathode.
  • Each member and each layer of an organic electroluminescent element are demonstrated below.
  • the description of the substrate and the light emitting layer also applies to the substrate and the light emitting layer of the organic photoluminescence device.
  • the organic electroluminescent device of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited as long as it is conventionally used conventionally in organic electroluminescent devices, and for example, those made of glass, transparent plastic, quartz, silicon or the like can be used.
  • anode As an anode in an organic electroluminescent element, what makes an electrode material the large (4 eV or more) metal of a work function, an alloy, an electrically conductive compound, and these mixtures is used preferably.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • ITO indium tin oxide
  • ZnO ZnO
  • an amorphous material such as IDIXO (In 2 O 3 -ZnO) which can be used to form a transparent conductive film may be used.
  • the anode may form a thin film by depositing or sputtering these electrode materials, and may form a pattern of a desired shape by photolithography, or if it does not require much pattern accuracy (about 100 ⁇ m or more). ), A pattern may be formed through a mask of a desired shape during deposition or sputtering of the electrode material. Or when using the material which can be apply
  • cathode one having a metal having a small work function (4 eV or less) (referred to as electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O) 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals etc. may be mentioned.
  • a mixture of an electron-injectable metal and a second metal which is a stable metal having a larger work function value such as a magnesium / silver mixture, Magnesium / aluminium mixtures, magnesium / indium mixtures, aluminum / aluminium oxide (Al 2 O 3 ) mixtures, lithium / aluminium mixtures, aluminum etc. are preferred.
  • the cathode can be produced by forming a thin film of such an electrode material by a method such as vapor deposition or sputtering. Further, the sheet resistance as the cathode is preferably several hundred ohms / square or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the light emitting layer is a layer which emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and contains a host material and a light emitting material, or a host material and an assist material. It contains a dopant and a light emitting material.
  • the light emitting layer contains a host material and a light emitting material
  • the host material one or two or more selected from the compound group represented by General Formula (1), which is a triplet sensitizer of the present invention It can be used.
  • a light-emitting material one which can emit light upon being excited by excited triplet energy transferred from a host material is used.
  • the light emitting layer contains such a host material and a light emitting material
  • excited triplet energy is efficiently generated by the triplet exciton sensitizing effect of the host material and is utilized for light emission of the light emitting material, so that high light emission Efficiency can be obtained.
  • organic light emitting device organic photoluminescent device and electroluminescent device
  • light emission is generated from the light emitting material contained in the light emitting layer.
  • This light emission may be either phosphorescence light emission or delayed fluorescence light emission, may include both light emission, and may include normal fluorescence light emission.
  • part or part of light emission may be emitted from the host material.
  • the amount of the light emitting material contained in the light emitting layer is preferably 0.1% by weight or more, more preferably 1% by weight or more, The content is preferably 50% by weight or less, more preferably 20% by weight or less, and still more preferably 10% by weight or less.
  • the light emitting layer contains a host material, an assist dopant, and a light emitting material
  • the assist dopant one or two selected from the compound group represented by General Formula (1) which is a triplet sensitizer of the present invention More than species can be used.
  • the host material one which can transfer the excited singlet energy generated in the host material to the assist dopant is used, and the light emitting material receives the excited triplet energy transferred from the assist dopant and emits light. Use what you get.
  • the host material and the light emitting material used here and the description of the energy levels of the host material, the assist dopant, and the light emitting material, the corresponding description in the column of [Utility of compound represented by General Formula (1)] Can be referenced.
  • the excited singlet energy generated in the host material is efficiently converted to the excited triplet energy by the triplet exciton sensitizing effect of the assist dopant to emit light. Since it is used for light emission of the material, high light emission efficiency can be obtained.
  • light emission is generated from the light emitting material contained in the light emitting layer.
  • This light emission may be either phosphorescence light emission or delayed fluorescence light emission, may include both light emission, and may include normal fluorescence light emission.
  • part or part of light emission may be emitted from the host material or the assist dopant.
  • the content of the assist dopant is less than the content of the host material and more than the content of the light emitting material, that is, “the content of the light emitting material It is preferable to satisfy the relationship of ⁇ content of assist dopant ⁇ content of host material>.
  • the content of the assist dopant in the light emitting layer is preferably less than 50% by weight.
  • the upper limit value of the content of the assist dopant is preferably less than 40% by weight, and the upper limit value of the content may be, for example, less than 30% by weight, less than 20% by weight, and less than 10% by weight.
  • the lower limit is preferably 0.1% by weight or more, and may be, for example, more than 1% by weight and more than 3% by weight.
  • the injection layer is a layer provided between the electrode and the organic layer to lower the driving voltage and improve the luminance, and includes the hole injection layer and the electron injection layer, and between the anode and the light emitting layer or the hole transport layer, And between the cathode and the light emitting layer or the electron transport layer.
  • An injection layer can be provided as needed.
  • the blocking layer is a layer capable of blocking the diffusion of charges (electrons or holes) present in the light emitting layer and / or excitons out of the light emitting layer.
  • An electron blocking layer can be disposed between the light emitting layer and the hole transport layer to block electrons from passing through the light emitting layer towards the hole transport layer.
  • a hole blocking layer can be disposed between the light emitting layer and the electron transport layer to block holes from passing through the light emitting layer towards the electron transport layer.
  • the blocking layer can also be used to block the diffusion of excitons out of the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also have the function as an exciton blocking layer.
  • the electron blocking layer or the exciton blocking layer as used herein is used in a sense including one layer having a function of the electron blocking layer and the exciton blocking layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer plays the role of transporting electrons and blocking the arrival of holes to the electron transporting layer, which can improve the recombination probability of electrons and holes in the light emitting layer.
  • the material of the hole blocking layer the material of the electron transport layer described later can be used as needed.
  • the electron blocking layer has a function of transporting holes in a broad sense.
  • the electron blocking layer plays the role of transporting holes and blocking the arrival of electrons to the hole transport layer, which can improve the probability of recombination of electrons and holes in the light emitting layer. .
  • the exciton blocking layer is a layer for blocking the diffusion of excitons generated by the recombination of holes and electrons in the light emitting layer into the charge transport layer, and the insertion of this layer results in the formation of excitons.
  • the light can be efficiently confined in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both of them can be simultaneously inserted.
  • the layer when an exciton blocking layer is provided on the anode side, the layer can be inserted between the hole transport layer and the light emitting layer adjacent to the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode And the light emitting layer may be inserted adjacent to the light emitting layer.
  • a hole injection layer or an electron blocking layer can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the cathode and the excitation adjacent to the cathode side of the light emitting layer.
  • an electron injecting layer, an electron transporting layer, a hole blocking layer, and the like can be provided.
  • the blocking layer is disposed, at least one of the excitation singlet energy and the excitation triplet energy of the material used as the blocking layer is preferably higher than the excitation singlet energy and the excitation triplet energy of the light emitting material.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material is one having either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • Examples of known hole transport materials that can be used include triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Amino substituted chalcone derivatives, oxazole derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers, etc., but porphyrin compounds, aroma Group tertiary amine compounds and styrylamine compounds are preferred, and aromatic tertiary amine compounds are more preferred.
  • the electron transporting layer is made of a material having a function of transporting electrons, and the electron transporting layer can be provided in a single layer or a plurality of layers.
  • the electron transporting material (which may also be a hole blocking material) may have a function of transferring electrons injected from the cathode to the light emitting layer.
  • Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, flareylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like.
  • a thiadiazole derivative h wherein the oxygen atom of the oxadiazole ring is substituted by a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. It can. Furthermore, it is also possible to use a polymer material in which these materials are introduced into a polymer chain, or in which these materials are used as a polymer main chain.
  • the triplet sensitizer of the present invention may be used not only in the light emitting layer but also in layers other than the light emitting layer.
  • the triplet sensitizer used in the light emitting layer and the triplet sensitizer used in layers other than the light emitting layer may be the same or different.
  • a triplet sensitizer may be used for the above-mentioned injection layer, blocking layer, hole blocking layer, electron blocking layer, exciton blocking layer, hole transporting layer, electron transporting layer, and the like.
  • the film forming method of these layers is not particularly limited, and may be produced by either a dry process or a wet process.
  • the preferable material which can be used for an organic electroluminescent element is illustrated concretely.
  • the materials that can be used in the present invention are not limitedly interpreted by the following exemplified compounds. Moreover, even if it is the compound illustrated as a material which has a specific function, it is also possible to divert it as a material which has another function.
  • a compound example of the delayed fluorescence material is mentioned.
  • Unexamined-Japanese-Patent 2013-253121, WO2013 / 133359, WO2014 / 034535, WO2014 / 115743, WO2014 / 122895, WO2014 / 126200, WO2014 / 136758, WO2014 / 133121 are included.
  • WO 2014/136860 WO 2014/196585, WO 2014/189122, WO 2014/168101, WO 2015/008580, WO 2014/203840, WO 2015/002213, WO 2015/016200, WO 2015/019725, WO 2015/072470, WO 2015/108049, WO 2015 / 80182, WO2015 / 072537, WO2015 / 080183, JP2015-129240, WO2015 / 129714, WO2015 / 129715, WO2015 / 133501, WO2015 / 136880, WO2015 / No.
  • Ar represents an aryl group.
  • the light emitting layer contains a host material, an assist dopant and a light emitting material, preferable compounds which can be used as the host material are listed.
  • a delayed fluorescence material can be preferably used as the host material in this case.
  • compounds of delayed fluorescence materials that can be used as host materials reference can be made to the examples of compounds of delayed fluorescence materials given as preferable examples of light emitting materials.
  • ACRXTN used in the examples can also be preferably used as a host material.
  • the organic electroluminescent device produced by the above-mentioned method emits light by applying an electric field between the anode and the cathode of the obtained device.
  • light emission by excited singlet energy light of a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission.
  • a wavelength corresponding to the energy level is confirmed as phosphorescence. Since the ordinary fluorescence has a shorter fluorescence lifetime than the delayed fluorescence, the emission lifetime can be distinguished by the fluorescence and the delayed fluorescence.
  • the excitation triplet energy in the case of ordinary organic compounds, the excitation triplet energy is unstable and converted to heat, etc., and its lifetime is short and it is immediately inactivated, so it can hardly be observed at room temperature.
  • the excited triplet energy of a normal organic compound it can be measured by observing the light emission under conditions of extremely low temperature.
  • the organic electroluminescent device can be applied to any of a single device, a device having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix.
  • an organic light-emitting device whose emission efficiency is greatly improved by containing a triplet sensitizer comprising the compound represented by the general formula (1) as a host material or assist dopant for the light-emitting layer is provided. can get.
  • the organic light emitting device such as the organic electroluminescent device using the triplet sensitizer of the present invention can be applied to various applications.
  • organic electroluminescent display device it is possible to manufacture an organic electroluminescent display device using this organic electroluminescent device, and for details, see “Organic EL Display” (Ohm Corporation) by Shiho Tokishi, Chika Adachi, Hideyuki Murata You can refer to it. Furthermore, in particular, this organic electroluminescent device can also be applied to organic electroluminescent illumination and back light which are in high demand.
  • source meter made by Keithley: 2400 series
  • semiconductor parameter analyzer manufactured by Agilent Technologies: E5273A
  • optical power meter measuring device manufactured by Newport: 1930C
  • optical spectroscope Ocean Optics, Inc .: USB 2000
  • a spectroradiometer Topcon, SR: 3
  • a streak camera Hamamatsu Photonics Co., Ltd., C4334 type
  • the measurement of absorbance change amount ⁇ ABS is performed using Quasi-CW laser (made by IPG Photonics Co., Ltd.) as a probe light source, an absorbance detection system having a monochromator and a detector, and excitation with a nitrogen laser (wavelength The light irradiation system was used, and the solution of the target compound was injected into a quartz cell with an optical path length of 1 mm.
  • Quasi-CW laser made by IPG Photonics Co., Ltd.
  • Tetracene-5,12-dione (1.50 g, 5.80 mmol) and tin powder (3.00 g) were placed in a 100 mL Schlenk tube, 35 mL of acetic acid was added, and the mixture was stirred for 1 hour while heating to 120 ° C.
  • Hydrochloric acid (35%, 11.5 M, 4 mL) was added and filtered while keeping the reaction solution at high temperature, then the filtrate was concentrated to half volume and allowed to cool to room temperature.
  • the resulting precipitate was collected by filtration and washed with pure water to obtain a pale yellow solid. By subjecting this pale yellow solid to recrystallization from hot ethanol, Intermediate 1 (5-tetracenone) as an ocher needle-like crystal was obtained in a yield of 894 mg (3.66 mmol) in a yield of 63%.
  • Example 1 Evaluation of Singlet Splitting Performance and Triplet Sensitizing Performance of Compound 1 Evaluation by Photoluminescence Quantum Yield A thin film of Compound 1 (the concentration of Compound 1 is 100% by weight on a quartz substrate by spin coating) And a thin film of ACRXTN (a thin film in which the concentration of Compound 1 is 0% by weight). Also, separately from this, various thin films were also formed by changing the concentration of Compound 1 to 6 wt%, 10 wt%, 20 wt%, 30 wt%, and 60 wt% by spin coating. The emission spectrum of each thin film formed by 371 nm excitation light is shown in FIG.
  • the photoluminescence quantum yield of the thin film of ACRXTN (the thin film with a concentration of 0 wt% of compound 1) was as high as 70%, whereas It was confirmed that the photoluminescence quantum yield decreases as the concentration is increased to 6 to 100% by weight. This is considered to be because the increase in the concentration of Compound 1 reduces the distance between the molecules of Compound 1 and promotes singlet division occurring between the molecules of Compound 1. Thus, this result indicates that Compound 1 is a singlet fission material, and indicates the usefulness as a triplet sensitizer.
  • the absorbance change amount ⁇ ABS is a value obtained by subtracting the absorbance ABS 0 of the solution before pump light irradiation from the absorbance ABS EX of the solution after pump light irradiation.
  • FIG. 5 shows that when a chloroform solution containing compound 1 at a concentration of 5 ⁇ 10 ⁇ 2 mol / L is irradiated with pump light at 10 ⁇ J / pulse, 15 ⁇ J / pulse or 20 ⁇ J / pulse.
  • FIG. 7 shows that Compound 1 is 1 ⁇ 10 ⁇ 3 mol / L, 1 ⁇ 10 ⁇ 2 mol / L, 2.5 ⁇ 10 ⁇ 2 mol / L, 5 ⁇ 10 ⁇ 2.
  • a transient absorption decay curve is shown when pump light is irradiated at 15 ⁇ J / pulse to each chloroform solution contained at a concentration of mol / L or 1 ⁇ 10 ⁇ 1 mol / L.
  • Compound 1 is 1 ⁇ 10 ⁇ 3 mol / L, 1 ⁇ 10 ⁇ 2 mol / L, 2.5 ⁇ 10 ⁇ 2
  • the absorbance change amount ⁇ ABS at 530 nm is the vertical axis
  • the excitation light intensity is the horizontal axis
  • the plotted correlation diagram is shown in FIG.
  • the triplet exciton generation efficiency IS ISC was calculated by setting the molar absorption coefficient ⁇ for pump light to 2793 L / (mol cm) and setting the optical path length L of the cell to 1 mm.
  • the scale of the vertical axis in FIG. 10 indicates the relative value obtained by standardizing ⁇ ISC at each concentration with ⁇ ISC at 1 ⁇ 10 ⁇ 3 mol / L as 1. As shown in FIG.
  • the triplet exciton generation efficiency ⁇ ISC of compound 1 improves as the compound concentration increases, and at the probe light wavelength of 530 nm, the triplet exciton at 1 ⁇ 10 ⁇ 1 mol / L generation efficiency [Phi ISC reached approximately 10 times the triplet exciton generation efficiency [Phi ISC at 1 ⁇ 10 -3 mol / L.
  • the fact that the triplet exciton generation efficiency IS ISC has been improved depending on the concentration of Compound 1 is that the intermolecular distance of Compound 1 becomes short due to the increase of the concentration of Compound 1 and occurs between molecules It shows that singlet splitting process (electron transfer) and triplet exciton generation via the singlet splitting process are promoted. From this, it could be confirmed that Compound 1 is useful as a singlet fission material and a triplet sensitizer.
  • the compounds of the present invention are useful as singlet fission materials and triplet sensitizers.
  • the triplet sensitizer of the present invention the efficiency of an organic device such as an organic light emitting element or an organic solar cell can be dramatically improved. For this reason, the present invention has high industrial applicability.

Abstract

The compound represented by general formula (1) is useful as a singlet fission material and as a triplet sensitizer. R1 in general formula (1) represents a substituted or unsubstituted aryl group. One of R2and R3 is a hydrogen atom, while the other represents a substituted or unsubstituted aryl group.

Description

一重項分裂材料、三重項増感剤、化合物および薄膜Singlet fission materials, triplet sensitizers, compounds and thin films
 本発明は、一重項分裂材料および三重項増感剤として有用な化合物に関する。 The present invention relates to compounds useful as singlet fission materials and triplet sensitizers.
 複数のベンゼン環が直線状に縮合した構造を有するアセン類は、広いπ共役系を有することから、有機半導体材料や発光材料等の有機デバイスの機能材料としての用途が期待され、有用な用途を見出すことを目指して研究が進められている。その中には、テトラセン骨格を有する化合物を有機発光素子の材料に用いた例も幾つか見受けられる。 Since acenes having a structure in which a plurality of benzene rings are linearly condensed have a wide π conjugated system, applications as functional materials of organic devices such as organic semiconductor materials and light emitting materials are expected, and useful applications are Research is in progress to find out. Among them, there are some examples in which a compound having a tetracene skeleton is used as a material of an organic light emitting device.
 例えば、下記の構造を有する化合物について、特許文献1には、この化合物を発光層のドーパントとして用いた例が記載され、特許文献2には、この化合物をホール輸送層に用いた例が記載されている。 For example, for a compound having the following structure, Patent Document 1 describes an example in which this compound is used as a dopant of a light emitting layer, and Patent Document 2 describes an example in which this compound is used in a hole transport layer ing.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
特開2006-114844号公報Japanese Patent Application Laid-Open No. 2006-114844 特開2007-258462号公報JP 2007-258462 A
 上記のように、テトラセン骨格を有する化合物については、有機発光素子の発光層のドーパントやホール輸送材料としての用途が知られている。しかしながら、テトラセン骨格を有する化合物の特性については十分な検討がなされておらず、その有用性についても手つかずの領域が多く残されていると考えられる。そのため、より有用性が高い新たな材料を開発すべく、テトラセン骨格を有する化合物について、さらに研究を行うことが求められる。
 このような状況の中で、テトラセン骨格を有する化合物の特性と有用性を解明し、その新たな用途を見いだすことを目的として鋭意検討を進めた。
As described above, the compound having a tetracene skeleton is known to be used as a dopant of a light emitting layer of an organic light emitting device or a hole transporting material. However, the properties of the compound having a tetracene skeleton have not been sufficiently studied, and it is considered that many untouched areas remain for its usefulness. Therefore, in order to develop new materials having higher utility, it is required to conduct further research on compounds having a tetracene skeleton.
Under these circumstances, we investigated the characteristics and usefulness of the compound having a tetracene skeleton, and conducted intensive studies for the purpose of finding out new applications.
 鋭意検討を進めた結果、本発明者らは、特定の構造を有するテトラセン化合物が一重項分裂を起こして三重項励起子の数を増加させるという、有用な特性を有することを見出した。そして、そのテトラセン化合物の特性を利用することにより、効率が高い有機デバイスが実現するとの考えに至った。本発明は、これらの知見に基づいて提案されたものであり、具体的に以下の構成を有する。 As a result of intensive studies, the present inventors have found that tetracene compounds having a specific structure have useful properties of causing singlet splitting and increasing the number of triplet excitons. And it came to the thought that the organic device with high efficiency will be realized by utilizing the characteristic of the tetracene compound. The present invention has been proposed based on these findings, and specifically has the following configuration.
[1] 下記一般式(1)で表される化合物からなる一重項分裂材料。
Figure JPOXMLDOC01-appb-C000006
[一般式(1)において、Rは置換もしくは無置換のアリール基を表す。RおよびRの一方は水素原子で、他方は置換もしくは無置換のアリール基を表す。]
[2] RとRが各々独立に無置換のアリール基である、[1]に記載の一重項分裂材料。
[3] RとRが同一である、[1]または[2]に記載の一重項分裂材料。
[4] 下記一般式(1)で表される化合物からなる三重項増感剤。
Figure JPOXMLDOC01-appb-C000007
[一般式(1)において、Rは置換もしくは無置換のアリール基を表す。RおよびRの一方は水素原子で、他方は置換もしくは無置換のアリール基を表す。]
[5] RとRが各々独立に無置換のアリール基である、[4]に記載の三重項増感剤。
[6] RとRが同一である、[4]または[5]に記載の三重項増感剤。
[7] 下記一般式(2)で表される化合物。
Figure JPOXMLDOC01-appb-C000008
[一般式(2)において、RおよびRの一方は水素原子で、他方は置換もしくは無置換のアリール基を表す。RおよびRの一方は水素原子で、他方は置換もしくは無置換のアリール基を表す。nは0または1である。]
[8] RとRが各々独立に無置換のアリール基である、[7]に記載の化合物。
[9] RとRが同一である、[7]または[8]に記載の化合物。
[10] 上記一般式(2)で表される化合物を含む薄膜。
[1] A singlet fission material comprising a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000006
[In the general formula (1), R 1 represents a substituted or unsubstituted aryl group. One of R 2 and R 3 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group. ]
[2] The singlet fission material according to [1], wherein R 1 and R 2 are each independently an unsubstituted aryl group.
[3] The singlet fission material according to [1] or [2], wherein R 1 and R 2 are the same.
[4] A triplet sensitizer comprising the compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
[In the general formula (1), R 1 represents a substituted or unsubstituted aryl group. One of R 2 and R 3 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group. ]
[5] The triplet sensitizer described in [4], wherein R 1 and R 2 are each independently an unsubstituted aryl group.
[6] The triplet sensitizer according to [4] or [5], wherein R 1 and R 2 are the same.
[7] A compound represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000008
[In the general formula (2), one of R 4 and R 5 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group. One of R 6 and R 7 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group. n is 0 or 1. ]
[8] The compound according to [7], wherein R 4 and R 6 are each independently an unsubstituted aryl group.
[9] The compound according to [7] or [8], wherein R 4 and R 6 are the same.
[10] A thin film containing the compound represented by the above general formula (2).
 本発明における化合物は、一重項分裂材料および三重項増感剤として有用である。本発明の一重項分裂材料や三重項増感剤を有機デバイスの機能材料として用いることにより、高い効率を実現しうる。 The compounds in the present invention are useful as singlet fission materials and triplet sensitizers. High efficiency can be realized by using the singlet fission material or the triplet sensitizer of the present invention as the functional material of the organic device.
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。It is a schematic sectional drawing which shows the layer structural example of an organic electroluminescent element. 化合物1または化合物2を含む各トルエン溶液の光吸収スペクトルと、ACRXTNとmCBPの薄膜の発光スペクトルである。It is the light absorption spectrum of each toluene solution containing the compound 1 or the compound 2, and the emission spectrum of the thin film of ACRXTN and mCBP. 化合物1、化合物3または化合物4を含む各トルエン溶液の発光スペクトルである。FIG. 10 shows the emission spectra of respective toluene solutions containing Compound 1, Compound 3 or Compound 4. FIG. 化合物1の濃度が0重量%、6重量%、30重量%または100重量%である各薄膜の発光スペクトルである。It is an emission spectrum of each thin film in which the concentration of compound 1 is 0% by weight, 6% by weight, 30% by weight or 100% by weight. 化合物1の濃度が5×10-2mol/Lであるクロロホルム溶液の530nmでの過渡吸収減衰曲線である。It is a transient absorption decay curve at 530 nm of a chloroform solution in which the concentration of Compound 1 is 5 × 10 −2 mol / L. 化合物1の濃度が1×10-1mol/Lであるクロロホルム溶液の530nmでの過渡吸収減衰曲線である。It is a transient absorption decay curve at 530 nm of a chloroform solution in which the concentration of Compound 1 is 1 × 10 −1 mol / L. 化合物1の濃度が1×10-3mol/L、1×10-2mol/L、2.5×10-2mol/L、5×10-2mol/L、または1×10-1mol/Lである各クロロホルム溶液の530nmでの過渡吸収減衰曲線である。The concentration of the compound 1 is 1 × 10 −3 mol / L, 1 × 10 −2 mol / L, 2.5 × 10 −2 mol / L, 5 × 10 −2 mol / L, or 1 × 10 −1 mol It is a transient absorption decay curve in 530 nm of each chloroform solution which is / L. 化合物1の濃度が1×10-3mol/L、1×10-2mol/L、または2.5×10-2mol/Lである各クロロホルム溶液について、520nmでの吸光度変化量ΔABSを縦軸、励起光強度を横軸としてプロットした相関図である。For each chloroform solution in which the concentration of Compound 1 is 1 × 10 −3 mol / L, 1 × 10 −2 mol / L, or 2.5 × 10 −2 mol / L, change in absorbance ΔABS at 520 nm It is a correlation diagram which plotted the axis and excitation light intensity as a horizontal axis. 化合物1の濃度が1×10-3mol/L、1×10-2mol/L、2.5×10-2mol/L、5×10-2mol/L、または1×10-1である各クロロホルム溶液について、530nmでの吸光度変化量ΔABSを縦軸、励起光強度を横軸としてプロットした相関図である。The concentration of the compound 1 is 1 × 10 −3 mol / L, 1 × 10 −2 mol / L, 2.5 × 10 −2 mol / L, 5 × 10 −2 mol / L, or 1 × 10 −1 FIG. 6 is a correlation diagram in which the amount of change in absorbance ΔABS at 530 nm is plotted on the vertical axis and the intensity of excitation light on the horizontal axis for certain chloroform solutions. 化合物1の三重項励起子生成効率ΦISCの濃度依存性を示すグラフである。5 is a graph showing the concentration dependency of the triplet exciton generation efficiency IS ISC of Compound 1. FIG.
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、本発明に用いられる化合物の分子内に存在する水素原子の同位体種は特に限定されず、例えば分子内の水素原子がすべてHであってもよいし、一部または全部がH(デューテリウムD)であってもよい。
 また、本明細書中において、「蛍光材料」とは、20℃で発光を観測したとき、燐光の発光強度よりも蛍光の発光強度の方が高い発光材料であり、「燐光材料」とは、20℃で発光を観測したとき、蛍光の発光強度よりも燐光の発光強度の方が高い発光材料である。また、「遅延蛍光材料」とは、20℃で発光寿命が短い蛍光と、発光寿命が長い蛍光(遅延蛍光)の両方が観測される材料である。通常の蛍光(遅延蛍光ではない蛍光)は、発光寿命がnsオーダーであり、燐光は、通常、発光寿命がmsオーダーであるため、蛍光と燐光とは発光寿命により区別することができる。また、有機金属錯体以外の発光性の有機化合物は、通常蛍光材料または遅延蛍光材料である。さらに、本明細書中において「薄膜」とは、厚みが1000nm以下の膜を意味し、厚みは500nm以下であることが好ましく、100nm以下であることがより好ましい。
Hereinafter, the contents of the present invention will be described in detail. Although the description of the configuration requirements described below may be made based on typical embodiments and examples of the present invention, the present invention is not limited to such embodiments and examples. In the present specification, a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value. Also, the isotope species of the hydrogen atom present in the molecule of the compound used in the present invention is not particularly limited. For example, all hydrogen atoms in the molecule may be 1 H, or some or all of the hydrogen atoms may be 2 H (Deuterium D) may be used.
Furthermore, in the present specification, the “fluorescent material” is a light emitting material in which the emission intensity of fluorescence is higher than that of phosphorescence when light emission is observed at 20 ° C. The “phosphorescent material” is When light emission is observed at 20 ° C., it is a light emitting material in which the light emission intensity of phosphorescence is higher than the light emission intensity of fluorescence. The “delayed fluorescent material” is a material in which both fluorescence having a short emission lifetime at 20 ° C. and fluorescence having a long emission lifetime (delayed fluorescence) are observed. Normal fluorescence (fluorescence that is not delayed fluorescence) has an emission lifetime on the order of ns, and phosphorescence generally has an emission lifetime on the order of ms, so that fluorescence and phosphorescence can be distinguished by the emission lifetime. In addition, a light emitting organic compound other than the organometallic complex is usually a fluorescent material or a delayed fluorescent material. Furthermore, in the present specification, “thin film” means a film having a thickness of 1000 nm or less, preferably 500 nm or less, and more preferably 100 nm or less.
[一般式(1)で表される化合物]
 本発明の一重項分裂材料および三重項増感剤は、下記一般式(1)で表される化合物からなることを特徴とする。
Figure JPOXMLDOC01-appb-C000009
[Compound represented by General Formula (1)]
The singlet fission material and the triplet sensitizer of the present invention are characterized by comprising the compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000009
 一般式(1)において、Rは置換もしくは無置換のアリール基を表す。RおよびRの一方は水素原子で、他方は置換もしくは無置換のアリール基を表す。RおよびRの一方が表す置換もしくは無置換のアリール基とRが表す置換もしくは無置換のアリール基は、互いに同一であっても異なっていてもよいが、同一であることが好ましい。「置換もしくは無置換のアリール基」でいうアリール基(置換アリール基の場合は置換基を除く部分)は、環骨格構成原子数が6~26が好ましく、6~22がより好ましく、6~18がさらに好ましい。アリール基の具体例として、フェニル基、1-ナフタレニル基、2-ナフタレニル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-テトラセニル基、2-テトラセニル基、5-テトラセニル基、1-ピレニル基、2-ピレニル基を挙げることができる。
 R~Rがとりうるアリール基は、置換基で置換されていても、無置換であってもよいが、R~Rの少なくとも一つは無置換のアリール基であることが好ましく、R~Rがとりうる置換もしくは無置換のアリール基のすべてが無置換のアリール基であることが好ましい。アリール基が置換基を有する場合の置換基は、アルキル基またはアリール基が好ましい。アルキル基は、直鎖状、分枝状、環状のいずれであってもよい。好ましい炭素数は1~20であり、より好ましくは1~10であり、さらに好ましくは1~6である。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などを例示することができる。アリール基の好ましい範囲と具体例については、上記の「置換もしくは無置換のアリール基」でいうアリール基の好ましい範囲と具体例を参照することができる。また、置換基であるアルキル基やアリール基は、さらに置換されていてもよく、その場合の置換基としてはアルキル基やアリール基を好ましく挙げることができる。
 R~Rがとりうる置換もしくは無置換のアリール基の総炭素数は、6~32であることが好ましく、6~28であることがより好ましく、6~24であることがさらに好ましい。R~Rがとりうる置換アリール基の例として、アルキルフェニル基(トリル基、tert-ブチルフェニル基等),ビフェニル基、アルキルビフェニル基(メチルビフェニル基、tert-ブチルビフェニル基等)、テルフェニル基、アルキルテルフェニル基(メチルテルフェニル基、tert-ブチルテルフェニル基等)、フェニルナフチル基、アルキルナフチル基(メチルナフチル基、tert-ブチルナフチル基等)、フェニルアントラセニル基、ナフチルアントラセニル基、アルキルアントラセニル基(メチルアントラセニル基、tert-ブチルアントラセニル基等)、フェニルテトラセニル基、ナフチルテトラセニル基、アルキルテトラセニル基(メチルテトラセニル基、tert-ブチルテトラセニル基等)、フェニルピレニル基、ナフチルピレニル基、アルキルピレニル基(メチルピレニル基、tert-ブチルピレニル基等)を挙げることができる。
In the general formula (1), R 1 represents a substituted or unsubstituted aryl group. One of R 2 and R 3 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group. The substituted or unsubstituted aryl group represented by one of R 2 and R 3 and the substituted or unsubstituted aryl group represented by R 1 may be the same as or different from each other, but are preferably the same. The aryl group (a part excluding a substituent in the case of a substituted aryl group) in the "substituted or unsubstituted aryl group" preferably has 6 to 26 ring atoms, more preferably 6 to 22 and more preferably 6 to 18 Is more preferred. Specific examples of the aryl group include phenyl group, 1-naphthalenyl group, 2-naphthalenyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 1-tetracenyl group, 2-tetracenyl group, 5-tetracenyl group, 1-pyrenyl group and 2-pyrenyl group can be mentioned.
The aryl group that can be taken by R 1 to R 3 may be substituted or unsubstituted with a substituent, but at least one of R 1 to R 3 is preferably an unsubstituted aryl group It is preferable that all of the substituted or unsubstituted aryl groups that R 1 to R 3 can be substituted be unsubstituted aryl groups. When the aryl group has a substituent, the substituent is preferably an alkyl group or an aryl group. The alkyl group may be linear, branched or cyclic. The preferred carbon number is 1 to 20, more preferably 1 to 10, and still more preferably 1 to 6. For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group and the like can be exemplified. For the preferable range and specific example of the aryl group, the preferable range and specific example of the aryl group in the above-mentioned "substituted or unsubstituted aryl group" can be referred to. Moreover, the alkyl group and aryl group which are substituents may be further substituted, and an alkyl group and an aryl group can be mentioned preferably as a substituent in that case.
The total carbon number of the substituted or unsubstituted aryl group that can be taken by R 1 to R 3 is preferably 6 to 32, more preferably 6 to 28, and still more preferably 6 to 24. Examples of substituted aryl groups that R 1 to R 3 may be include alkylphenyl group (tolyl group, tert-butylphenyl group etc.), biphenyl group, alkylbiphenyl group (methylbiphenyl group, tert-butylbiphenyl group etc.), ter Phenyl group, alkyl terphenyl group (methyl terphenyl group, tert-butyl terphenyl group etc.), phenyl naphthyl group, alkyl naphthyl group (methyl naphthyl group, tert-butyl naphthyl group etc.), phenyl anthracenyl group, naphthyl anthracene Cenyl group, alkyl anthracenyl group (methyl anthracenyl group, tert-butyl anthracenyl group, etc.), phenyl tetracenyl group, naphthyl tetracenyl group, alkyl tetracenyl group (methyl tetracenyl group, (tert-butyl tetracenyl group etc.), phenyl pyrenyl group, naphthyl pyrenyl group, Rukirupireniru group (Mechirupireniru group, tert- Buchirupireniru group) can be exemplified.
 以下において、一般式(1)で表される化合物の具体例を例示する。ただし、本発明において用いることができる一般式(1)で表される化合物はこれらの具体例によって限定的に解釈されるべきものではない。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Below, the specific example of a compound represented by General formula (1) is illustrated. However, the compounds represented by the general formula (1) which can be used in the present invention should not be construed as being limited by these specific examples.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
[一般式(2)で表される化合物]
 一般式(1)で表される化合物のうち、下記一般式(2)で表される化合物は新規化合物である。
Figure JPOXMLDOC01-appb-C000016
 一般式(2)において、RおよびRの一方は水素原子で、他方は置換もしくは無置換のアリール基を表す。RおよびRの一方は水素原子で、他方は置換もしくは無置換のアリール基を表す。nは0または1である。一般式(2)における置換もしくは無置換のアリール基の説明と好ましい範囲、具体例については、一般式(1)における置換もしくは無置換のアリール基の説明を参照することができる。RおよびRの一方が表す置換もしくは無置換のアリール基と、RおよびRの一方が表す置換もしくは無置換のアリール基は、同一であっても異なっていてもよい。
 一般式(2)で表される化合物として、例えばRおよびRが各々独立に置換もしくは無置換のアリール基であり、RおよびRが水素原子である化合物を好ましく例示することができる。
[Compound represented by General Formula (2)]
Among the compounds represented by the general formula (1), the compound represented by the following general formula (2) is a novel compound.
Figure JPOXMLDOC01-appb-C000016
In the general formula (2), one of R 4 and R 5 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group. One of R 6 and R 7 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group. n is 0 or 1. The description and the preferred range of the substituted or unsubstituted aryl group in the general formula (2) and the specific examples can be referred to the description of the substituted or unsubstituted aryl group in the general formula (1). The substituted or unsubstituted aryl group represented by one of R 4 and R 5 and the substituted or unsubstituted aryl group represented by one of R 6 and R 7 may be the same or different.
Preferred examples of the compound represented by the general formula (2) include compounds wherein R 4 and R 6 are each independently a substituted or unsubstituted aryl group, and R 5 and R 7 are a hydrogen atom. .
[一般式(2)で表される化合物の合成方法]
 一般式(2)で表される化合物は、既知の反応を組み合わせることによって合成することができる。例えば、一般式(2)のnが0であり、RとRが同一のアリール基である化合物は、下記反応式で示す反応により合成することが可能である。
[Synthesis Method of Compound Represented by General Formula (2)]
The compounds represented by the general formula (2) can be synthesized by combining known reactions. For example, a compound in which n in the general formula (2) is 0 and R 4 and R 6 are the same aryl group can be synthesized by the reaction shown in the following reaction formula.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記の反応式におけるRの説明については、一般式(2)における置換もしくは無置換のアリール基の記載を参照することができる。ここで用いるビテトラセノンは、シス体およびトランス体の一方であってもよいし、シス体とトランス体の混合物であってもよい。上記の反応の詳細については、後述の合成例を参考にすることができる。また、一般式(2)で表される化合物は、その他の公知の合成反応を組み合わせることによっても合成することができる。 For the explanation of R in the above reaction formula, the description of the substituted or unsubstituted aryl group in the general formula (2) can be referred to. The bitetracenone used here may be either cis or trans, or a mixture of cis and trans. The details of the above reaction can be referred to the synthesis examples described below. Moreover, the compound represented by General formula (2) can also be synthesize | combined by combining other well-known synthetic | combination reaction.
[一般式(1)で表される化合物の有用性]
 一般式(1)で表される化合物は、一重項分裂材料として有用である。
 本明細書中における「一重項分裂」とは、一重項励起子が2つの三重項励起子に分裂する現象のことをいい、本発明における「一重項分裂材料」とは、励起一重項状態Sに励起されたときに一重項分裂を起こす材料のことをいう。一重項分裂材料であることは、例えばホスト材料に一般式(1)で表される化合物を異なる濃度で添加して構成した各薄膜に、励起光を照射してフォトルミネッセンス量子収率を測定したとき、その化合物の濃度が高くなるのに伴ってフォトルミネッセンス量子収率が低下する相関関係が見られることにより確認することができる。
 ここで、化合物が一重項分裂を起こすと、結果として三重項励起子の数が増加する。よって、一重項分裂材料である一般式(1)で表される化合物は三重項増感剤としても有用である。すなわち、本発明でいう「三重項増感剤」とは、励起一重項状態Sに励起されたときに一重項分裂を起こして三重項励起子の数を増加させる材料のことを意味する。また、以下の説明では、一重項分裂により三重項励起子の数が増加する効果を「三重項励起子増感効果」ということがある。三重項増感剤であることは、一般式(1)で表される化合物を異なる濃度で含有させた溶液に励起光としてのポンプ光を照射して、その直後に、プローブ光に対する吸光度の変化量ΔABSを測定したとき、そのΔABSから下記式(I)を用いて求めた三重項励起子生成効率ΦISCが、化合物の濃度が高くなるのに伴って増加する相関関係が見られることにより確認することができる。「吸光度変化量ΔABS」は、ポンプ光照射前のプローブ光に対する吸光度ABSを基準にした吸光度の変化量を意味し、ここでは、ポンプ光を照射した直後に測定したプローブ光に対する吸光度ABSEXからABSを引いた値のことをいう。ΔABSの測定方法の詳細については、実施例の欄の記載を参照することができる。
[Utility of Compound Represented by General Formula (1)]
The compounds represented by the general formula (1) are useful as singlet fission materials.
In the present specification, “singlet splitting” refers to a phenomenon in which a singlet exciton is split into two triplet excitons, and “singlet splitting material” in the present invention means an excited singlet state S. A material that causes singlet splitting when excited to one. The fact that it is a singlet fission material means, for example, that each thin film formed by adding the compound represented by General Formula (1) in different concentrations to the host material was irradiated with excitation light to measure the photoluminescence quantum yield Sometimes, it can be confirmed by the correlation that the photoluminescence quantum yield decreases as the concentration of the compound increases.
Here, when the compound undergoes singlet splitting, as a result, the number of triplet excitons increases. Thus, the compound represented by the general formula (1), which is a singlet fission material, is also useful as a triplet sensitizer. That is, the "triplet sensitizer" in the present invention means the material to increase the number of causing the singlet fission triplet excitons when excited to an excited singlet state S 1. In the following description, the effect of increasing the number of triplet excitons by singlet splitting may be referred to as "triplet exciton sensitization effect". The fact that it is a triplet sensitizer means that the solution containing the compounds represented by the general formula (1) in different concentrations is irradiated with pump light as excitation light, and immediately thereafter, the change in absorbance to the probe light when measuring the amount .DELTA.ABS, confirmed by from the .DELTA.ABS using the following formula (I) is a triplet exciton generation efficiency [Phi ISC obtained, correlation increases with the concentration of the compound is high is observed can do. “Absorbance change amount ΔABS” means the change amount of absorbance based on the absorbance ABS 0 with respect to probe light before pump light irradiation, and here, from absorbance ABS EX with respect to probe light measured immediately after pump light irradiation ABS The value minus 0 . For the details of the measurement method of ΔABS, the description in the column of Examples can be referred to.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 式(I)において、ΦISCは三重項励起子生成効率を示し、Iは溶液に照射するポンプ光の強度(励起光強度)を示し、ΔABSは吸光度変化量(ABSEX-ABS)を示し、εはポンプ光波長での対象化合物のモル吸光係数を示し、εはプローブ光波長での対象化合物のモル吸光係数を示し、cは溶液における対象化合物の濃度を示し、Lは測定に使用したセルの光路長(1mm)を示す。
 ここで、ポンプ光には、対象化合物の吸収帯域のうち337nmの光を用いることができ、プローブ光には、対象化合物の吸収帯域のうち510-540nmの光を用いることができる。
 一般式(1)で表される化合物からなる三重項増感剤を有機デバイスの材料に用いることにより、その効率を飛躍的に向上させることができる。
In the formula (I), IS ISC indicates the triplet exciton generation efficiency, I 0 indicates the intensity of pump light (excitation light intensity) irradiated to the solution, and ΔABS indicates the change in absorbance (ABS EX -ABS 0 ) Denotes the molar absorption coefficient of the target compound at the pump light wavelength, ε T denotes the molar absorption coefficient of the target compound at the probe light wavelength, c denotes the concentration of the target compound in the solution, and L denotes the measurement The optical path length (1 mm) of the used cell is shown.
Here, light of 337 nm in the absorption band of the target compound can be used as pump light, and light of 510-540 nm in the absorption band of the target compound can be used as probe light.
By using a triplet sensitizer composed of the compound represented by the general formula (1) for the material of the organic device, the efficiency can be dramatically improved.
 例えば、一般式(1)で表される化合物からなる三重項増感剤を有機太陽電池の有機半導体層の材料に用いることにより、その有機太陽電池において、有機半導体層に照射された光を、一般式(1)で表される化合物が吸収して一重項励起子を生成し、その一重項励起子が2つの三重項励起子に分裂する三重項増幅系を実現することができる。こうした有機太陽電池では、光が照射されることで三重項励起子が効率よく生成し、且つ、その三重項励起子が長寿命であるため、有機半導体層のp/n接合界面に三重項励起子が到達して電荷分離する確率が高く、正孔と電子を効率よく電極へ取り出すことができる。そのため、三重項増感剤を含まない有機太陽電池に比べて、高い光電変換効率を得ることができる。 For example, by using a triplet sensitizer composed of a compound represented by the general formula (1) as a material of the organic semiconductor layer of the organic solar cell, light irradiated to the organic semiconductor layer in the organic solar cell is The compound represented by the general formula (1) can be absorbed to form a singlet exciton, and a triplet amplification system can be realized in which the singlet exciton is split into two triplet excitons. In such an organic solar cell, triplet excitons are efficiently generated by light irradiation, and since the triplet excitons have a long lifetime, triplet excitation is generated at the p / n junction interface of the organic semiconductor layer. The probability of charge arrival and separation of charge is high, and holes and electrons can be efficiently extracted to the electrode. Therefore, compared with the organic solar cell which does not contain a triplet sensitizer, high photoelectric conversion efficiency can be obtained.
 また、一般式(1)で表される化合物からなる三重項増感剤を有機発光素子の発光層のホスト材料として用いることにより、その有機発光素子において、励起一重項状態のホスト材料で生成した一重項励起子が2つの三重項励起子に分裂し、それらの励起三重項エネルギーが発光材料へデクスター移動機構で移動する励起三重項エネルギー増幅系を実現することができる。このような有機発光素子では、ホスト材料が励起されることで励起三重項エネルギーが効率よく生じて発光材料に供給されるため、ホスト材料が三重項励起子増感効果を有しない有機発光素子に比べて、高い発光効率を得ることができる。ここで、発光材料は、ホスト材料から励起三重項エネルギーを受け取って発光しうるものであればよく、励起三重項状態からの放射緩和により発光する燐光材料であってもよいし、励起三重項状態から励起一重項状態への逆項間交差を生じた後、その励起一重項状態からの放射緩和により発光する遅延蛍光材料であってもよい。
 こうした本発明の三重項増感剤を発光層のホスト材料に用いる有機発光素子において、より高い発光効率を得るには、ホスト材料から発光材料への励起三重項エネルギーの移動を容易にするとともに、発光材料が受け取った励起三重項エネルギーを発光材料の分子内に閉じ込めることが好ましい。そのため、ホスト材料は、その最低励起三重項エネルギー準位が発光材料の最低励起三重項エネルギー準位よりも高いことが好ましい。さらに、発光材料で生じた励起一重項エネルギーを発光材料の分子内に閉じ込めるため、ホスト材料は、その最低励起一重項エネルギー準位が発光材料の最低励起一重項エネルギー準位よりも高いことがより好ましい。
 また、本発明の三重項増感剤を発光層のホスト材料に用いる有機発光素子には、発光層の隣に、一重項増感剤を含む一重項増感層を設けてもよいし、さらに、その発光層と一重項増感層の間に、電子および三重項励起子ブロック層を設けてもよい。ここで、「一重項増感剤」とは、電流励起により生じる励起一重項状態Sの生成確率[S/(S+T)]が25%よりも大きい材料のことをいい、例えば遅延蛍光材料を用いることができる。一重項増感剤は、その最低励起一重項エネルギー準位がホスト材料の最低励起一重項エネルギー準位よりも高いことが好ましく、その最低励起一重項エネルギー準位と最低励起三重項エネルギー準位との差ΔESTが0.3eV以下であることが好ましい。一重項増感剤の具体例として、後掲のACRXTNを挙げることができる。また、「電子および三重項励起子ブロック層」とは、一重項増感層から発光層への電子および三重項励起子の移動をブロックする機能を有する層のことをいう。これらの層を設けることにより、一重項増感層にて励起一重項エネルギーが効率よく生成されて、発光層のホスト材料(三重項増感剤)へ供給されるため、三重項励起子の生成効率がさらに高くなり、より高い発光効率が得られるようになる。
In addition, by using a triplet sensitizer composed of a compound represented by the general formula (1) as a host material of the light emitting layer of the organic light emitting device, the organic light emitting device was formed with the host material of an excited singlet state It is possible to realize an excited triplet energy amplification system in which a singlet exciton is split into two triplet excitons and their excited triplet energy is transferred to the light emitting material by the Dexter transfer mechanism. In such an organic light emitting device, the excitation triplet energy is efficiently generated by the excitation of the host material and supplied to the light emitting material, so that the host material does not have the triplet exciton sensitizing effect. In comparison, high luminous efficiency can be obtained. Here, the light emitting material may be any phosphorescent material that can emit light upon receiving excitation triplet energy from the host material, and may emit light by radiative relaxation from the excitation triplet state, or the excitation triplet state It may be a delayed fluorescent material which emits light by radiative relaxation from the excited singlet state after producing an inverse intersystem crossing from the light emitting element to the excited singlet state.
In the organic light emitting device using such a triplet sensitizer of the present invention as a host material of the light emitting layer, in order to obtain higher luminous efficiency, transfer of excited triplet energy from the host material to the light emitting material is facilitated. It is preferable to confine the excited triplet energy received by the light emitting material in the molecule of the light emitting material. Therefore, the host material preferably has a lowest excitation triplet energy level higher than the lowest excitation triplet energy level of the light emitting material. Furthermore, in order to confine the excited singlet energy generated in the light emitting material in the molecule of the light emitting material, the host material is required to have its lowest singlet excitation energy level higher than the lowest singlet excitation energy level of the light emitting material preferable.
In addition, a singlet sensitizing layer containing a singlet sensitizer may be provided next to the light emitting layer in the organic light emitting device using the triplet sensitizer of the present invention as a host material of the light emitting layer, and further An electron and triplet exciton blocking layer may be provided between the light emitting layer and the singlet sensitizing layer. Here, the “singlet sensitizer” refers to a material having a generation probability [S 1 / (S 1 + T 1 )] of the excited singlet state S 1 generated by current excitation larger than 25%, for example A delayed fluorescent material can be used. The singlet sensitizer preferably has a lowest excited singlet energy level higher than the lowest excited singlet energy level of the host material, and the lowest excited singlet energy level and the lowest excited triplet energy level The difference ΔE ST is preferably 0.3 eV or less. As a specific example of a singlet sensitizer, ACRXTN mentioned later can be mentioned. The “electron and triplet exciton blocking layer” refers to a layer having a function of blocking the transfer of electrons and triplet excitons from the singlet sensitizing layer to the light emitting layer. By providing these layers, excited singlet energy is efficiently generated in the singlet sensitizing layer and supplied to the host material (triplet sensitizer) of the light emitting layer, so that triplet excitons are generated. The efficiency is further enhanced, and higher luminous efficiency can be obtained.
 また、一般式(1)で表される化合物からなる三重項増感剤は、有機発光素子の発光層のアシストドーパントとしても用いることができる。ここで、「アシストドーパント」とは、ホスト材料から励起一重項エネルギーを受け取って励起三重項エネルギーに変換し、その励起三重項エネルギーを発光材料に渡す機能を有するものである。アシストドーパントから励起三重項エネルギーを受け取った発光材料は、そのエネルギーにより励起されて発光する。こうしたアシストドーパントとして一般式(1)で表される化合物からなる三重項増感剤を用いると、アシストドーパントが励起一重項エネルギーを受け取ることで生成した一重項励起子が2つの三重項励起子に分裂し、これにより三重項励起子の数が増加するため、発光材料に、より効率よく励起三重項エネルギーを供給することができる。そのため、三重項励起子増感効果を有しないアシストドーパントを用いる場合に比べて高い発光効率を得ることができる。このアシストドーパントを用いる系において、ホスト材料としては、通常のホスト材料を用いることができるが、励起一重項エネルギーを効率よく生成しうることから遅延蛍光材料を用いることが好ましい。また、発光材料は、アシストドーパントから励起三重項エネルギーを受け取って発光しうるものであればよく、燐光材料、遅延蛍光材料を用いることができる。
 また、本発明の三重項増感剤をアシストドーパントに用いる有機発光素子において、より高い発光効率を得るには、ホスト材料からアシストドーパントへの励起一重項エネルギーの移動、アシストドーパントから発光材料への励起三重項エネルギーの移動を容易にするとともに、発光材料が受け取った励起三重項エネルギーを発光材料の分子内に閉じ込めることが好ましい。そのため、ホスト材料は、その最低励起一重項エネルギー準位がアシストドーパントの最低励起一重項エネルギー準位よりも高いことが好ましく、その最低励起三重項エネルギー準位がアシストドーパントの最低励起三重項エネルギー準位および発光材料の最低励起三重項エネルギー準位よりも高いことが好ましい。また、アシストドーパントは、その最低励起三重項エネルギー準位が発光材料の最低励起三重項エネルギー準位よりも高いことが好ましい。さらに、発光材料で生じた励起一重項エネルギーを発光材料の分子内に閉じ込めるため、ホスト材料およびアシストドーパントは、それらの最低励起一重項エネルギー準位が発光材料の最低励起一重項エネルギー準位よりも高いことがより好ましい。
Moreover, the triplet sensitizer which consists of a compound represented by General formula (1) can be used also as an assist dopant of the light emitting layer of an organic light emitting element. Here, “assist dopant” has a function of receiving excited singlet energy from a host material, converting it into excited triplet energy, and transferring the excited triplet energy to a light emitting material. A light emitting material which receives excitation triplet energy from the assist dopant is excited by the energy to emit light. When a triplet sensitizer composed of a compound represented by the general formula (1) is used as such an assist dopant, singlet excitons generated when the assist dopant receives excited singlet energy become two triplet excitons. Since the light is split and thereby the number of triplet excitons is increased, the light emitting material can be more efficiently supplied with excitation triplet energy. Therefore, higher luminous efficiency can be obtained as compared with the case of using an assist dopant having no triplet exciton sensitization effect. In the system using this assist dopant, a usual host material can be used as a host material, but it is preferable to use a delayed fluorescent material because it can efficiently generate excited singlet energy. The light-emitting material may be any material as long as it can emit light by receiving excitation triplet energy from the assist dopant, and a phosphorescent material or a delayed fluorescent material can be used.
Moreover, in the organic light emitting device using the triplet sensitizer of the present invention as the assist dopant, in order to obtain higher luminous efficiency, transfer of excited singlet energy from the host material to the assist dopant, transfer from the assist dopant to the light emitting material It is preferable to facilitate the transfer of the excited triplet energy and to confine the excited triplet energy received by the light emitting material in the molecule of the light emitting material. Therefore, the host material preferably has a lowest excited singlet energy level higher than the lowest excited singlet energy level of the assist dopant, and a lowest excited triplet energy level corresponds to the lowest excited triplet energy quasi of the assist dopant. And higher than the lowest excitation triplet energy level of the luminescent material. The assist dopant preferably has a lowest excitation triplet energy level higher than the lowest excitation triplet energy level of the light emitting material. Furthermore, in order to confine the excited singlet energy generated in the light emitting material in the molecule of the light emitting material, the host material and the assist dopant have their lowest singlet excitation energy level higher than the lowest singlet excitation energy level of the light emitting material Higher is more preferred.
 以上のように、一般式(1)で表される化合物は、一重項分裂を起こして三重項励起子の数を増加させるため、有機太陽電池および有機発光素子以外の有機デバイス、例えば有機撮像素子、静脈認証装置、血糖値モニター等の材料に用いた場合にも、その効率向上に貢献し、各種有機デバイスの機能材料として効果的に用いることができる。
 また、この一般式(1)で表される化合物は、非晶質状の固体として形成できるという特徴も有する。そのため、結晶性の一重項分裂材料を用いた有機デバイスで問題になる、繰り返し駆動による有機膜構造の破壊、特性劣化が回避され、安定性が高い有機デバイスを実現することができる。
 次に、本発明の三重項増感剤を用いる有機デバイスの代表例として、有機発光素子の層構成および各層に用いる材料について説明する。
As described above, since the compound represented by the general formula (1) causes singlet splitting to increase the number of triplet excitons, an organic device other than the organic solar cell and the organic light emitting element, for example, an organic imaging element Even when used as a material for a vein authentication apparatus, a blood glucose level monitor, etc., it contributes to the improvement of the efficiency, and can be effectively used as a functional material of various organic devices.
In addition, the compound represented by the general formula (1) is also characterized in that it can be formed as an amorphous solid. Therefore, destruction of the organic film structure due to repeated driving and property deterioration which would be a problem in an organic device using a crystalline singlet fission material can be avoided, and an organic device having high stability can be realized.
Next, as a representative example of the organic device using the triplet sensitizer of the present invention, the layer configuration of the organic light emitting element and the material used for each layer will be described.
[有機発光素子]
 上記のように、本発明の一般式(1)で表される化合物からなる三重項増感剤は、有機発光素子の発光層のホスト材料やアシストドーパントとして効果的に用いることができる。本発明の一般式(1)で表される化合物からなる三重項増感剤を発光層のホスト材料やアシストドーパントとして用いることにより、有機フォトルミネッセンス素子(有機PL素子)や有機エレクトロルミネッセンス素子(有機EL素子)などの優れた有機発光素子を提供することができる。
 有機フォトルミネッセンス素子は、基板上に少なくとも発光層を形成した構造を有する。有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および陽極と陰極の間に有機層を形成した構造を有する。有機層は、少なくとも発光層を含むものであり、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層として、正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。具体的な有機エレクトロルミネッセンス素子の構造例を図1に示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表わす。
 以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。
[Organic light emitting device]
As described above, the triplet sensitizer consisting of the compound represented by the general formula (1) of the present invention can be effectively used as a host material or an assist dopant of the light emitting layer of the organic light emitting device. An organic photoluminescence device (organic PL device) or an organic electroluminescence device (organic compound) by using a triplet sensitizer comprising the compound represented by the general formula (1) of the present invention as a host material or assist dopant of a light emitting layer An excellent organic light emitting device such as an EL device) can be provided.
The organic photoluminescent device has a structure in which at least a light emitting layer is formed on a substrate. The organic electroluminescent device has a structure in which an organic layer is formed at least an anode, a cathode, and between the anode and the cathode. The organic layer includes at least a light emitting layer, and may be formed only of the light emitting layer, or may have one or more organic layers in addition to the light emitting layer. As such another organic layer, a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, an exciton blocking layer and the like can be mentioned. The hole transport layer may be a hole injection transport layer having a hole injection function, and the electron transport layer may be an electron injection transport layer having an electron injection function. A specific structural example of the organic electroluminescent device is shown in FIG. In FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is an electron transport layer, and 7 is a cathode.
Each member and each layer of an organic electroluminescent element are demonstrated below. The description of the substrate and the light emitting layer also applies to the substrate and the light emitting layer of the organic photoluminescence device.
(基板)
 本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
(substrate)
The organic electroluminescent device of the present invention is preferably supported on a substrate. The substrate is not particularly limited as long as it is conventionally used conventionally in organic electroluminescent devices, and for example, those made of glass, transparent plastic, quartz, silicon or the like can be used.
(陽極)
 有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
(anode)
As an anode in an organic electroluminescent element, what makes an electrode material the large (4 eV or more) metal of a work function, an alloy, an electrically conductive compound, and these mixtures is used preferably. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 -ZnO) which can be used to form a transparent conductive film may be used. The anode may form a thin film by depositing or sputtering these electrode materials, and may form a pattern of a desired shape by photolithography, or if it does not require much pattern accuracy (about 100 μm or more). ), A pattern may be formed through a mask of a desired shape during deposition or sputtering of the electrode material. Or when using the material which can be apply | coated like an organic conductive compound, the wet film-forming methods, such as a printing method and a coating method, can also be used. In the case of taking out light emission from this anode, it is desirable to make the transmittance larger than 10%, and the sheet resistance as the anode is preferably several hundreds Ω / sq or less. Furthermore, the film thickness depends on the material, but is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
(陰極)
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
 また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
(cathode)
On the other hand, as the cathode, one having a metal having a small work function (4 eV or less) (referred to as electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O) 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals etc. may be mentioned. Among them, a mixture of an electron-injectable metal and a second metal which is a stable metal having a larger work function value, such as a magnesium / silver mixture, Magnesium / aluminium mixtures, magnesium / indium mixtures, aluminum / aluminium oxide (Al 2 O 3 ) mixtures, lithium / aluminium mixtures, aluminum etc. are preferred. The cathode can be produced by forming a thin film of such an electrode material by a method such as vapor deposition or sputtering. Further, the sheet resistance as the cathode is preferably several hundred ohms / square or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In addition, in order to permeate | transmit the light-emitting light, if either one of the anode of an organic electroluminescent element or a cathode is transparent or semi-transparent, a light emission luminance will improve and it is convenient.
In addition, by using the conductive transparent material mentioned in the description of the anode for the cathode, a transparent or translucent cathode can be produced, and by applying this, an element in which both the anode and the cathode are transparent can be produced. It can be made.
(発光層)
 発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層であり、ホスト材料と発光材料を含有するか、ホスト材料とアシストドーパントと発光材料を含有する。
(Emitting layer)
The light emitting layer is a layer which emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and contains a host material and a light emitting material, or a host material and an assist material. It contains a dopant and a light emitting material.
 発光層が、ホスト材料と発光材料を含有する場合、ホスト材料としては、本発明の三重項増感剤である一般式(1)で表される化合物群から選ばれる1種または2種以上を用いることができる。また、発光材料としては、ホスト材料から移動してきた励起三重項エネルギーにより励起されて発光し得るものを使用する。ここで用いる発光材料の説明と、ホスト材料と発光材料のエネルギー準位の説明については、[一般式(1)で表される化合物の有用性]の欄の対応する記載を参照することができる。このようなホスト材料と発光材料を発光層が含有することにより、ホスト材料の三重項励起子増感効果により励起三重項エネルギーが効率よく生成されて発光材料の発光に利用されるため、高い発光効率を得ることができる。
 本発明の三重項増感剤をホスト材料に用いる有機発光素子(有機フォトルミネッセンス素子およびエレクトロルミネッセンス素子)において、発光は発光層に含まれる発光材料から生じる。この発光は燐光発光、遅延蛍光発光のいずれでもよく、両方の発光を含んでいてもよいし、通常の蛍光発光を含んでいてよい。また、発光の一部或いは部分的にホスト材料からの発光があってもかまわない。
 本発明の三重項増感剤をホスト材料として用いる場合、発光材料が発光層中に含有される量は0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、また、50重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。
When the light emitting layer contains a host material and a light emitting material, as the host material, one or two or more selected from the compound group represented by General Formula (1), which is a triplet sensitizer of the present invention It can be used. In addition, as a light-emitting material, one which can emit light upon being excited by excited triplet energy transferred from a host material is used. For the explanation of the light emitting material used here and the explanation of the energy levels of the host material and the light emitting material, reference can be made to the corresponding description in the column of [Utility of compound represented by General Formula (1)]. . When the light emitting layer contains such a host material and a light emitting material, excited triplet energy is efficiently generated by the triplet exciton sensitizing effect of the host material and is utilized for light emission of the light emitting material, so that high light emission Efficiency can be obtained.
In the organic light emitting device (organic photoluminescent device and electroluminescent device) using the triplet sensitizer of the present invention as a host material, light emission is generated from the light emitting material contained in the light emitting layer. This light emission may be either phosphorescence light emission or delayed fluorescence light emission, may include both light emission, and may include normal fluorescence light emission. In addition, part or part of light emission may be emitted from the host material.
When the triplet sensitizer of the present invention is used as a host material, the amount of the light emitting material contained in the light emitting layer is preferably 0.1% by weight or more, more preferably 1% by weight or more, The content is preferably 50% by weight or less, more preferably 20% by weight or less, and still more preferably 10% by weight or less.
 発光層が、ホスト材料とアシストドーパントと発光材料を含有する場合、アシストドーパントとしては、本発明の三重項増感剤である一般式(1)で表される化合物群から選ばれる1種または2種以上を用いることができる。また、ホスト材料には、そのホスト材料で生じた励起一重項エネルギーをアシストドーパントへ渡すことができるものを使用し、発光材料には、アシストドーパントから移動してきた励起三重項エネルギーを受け取って発光し得るものを使用する。ここで用いるホスト材料および発光材料の説明と、ホスト材料とアシストドーパントと発光材料のエネルギー準位の説明については、[一般式(1)で表される化合物の有用性]の欄の対応する記載を参照することができる。こうしたホスト材料とアシストドーパントと発光材料を発光層が含有することにより、ホスト材料で生じた励起一重項エネルギーがアシストドーパントの三重項励起子増感効果により効率よく励起三重項エネルギーに変換されて発光材料の発光に利用されるため、高い発光効率を得ることができる。
 本発明の三重項増感剤をアシストドーパントに用いる有機発光素子(有機フォトルミネッセンス素子およびエレクトロルミネッセンス素子)において、発光は発光層に含まれる発光材料から生じる。この発光は燐光発光、遅延蛍光発光のいずれでもよく、両方の発光を含んでいてもよいし、通常の蛍光発光を含んでいてよい。また、発光の一部或いは部分的にホスト材料やアシストドーパントからの発光があってもかまわない。
 本発明の三重項増感剤をアシストドーパントとして用いる場合、そのアシストドーパントの含有量は、ホスト材料の含有量よりも少なく、発光材料の含有量よりも多いこと、すなわち、「発光材料の含有量<アシストドーパントの含有量<ホスト材料の含有量」の関係を満たすことが好ましい。具体的には、発光層におけるアシストドーパントの含有量は、50重量%未満とすることが好ましい。さらに、アシストドーパントの含有量の上限値は40重量%未満とすることが好ましく、また、含有量の上限値は例えば30重量%未満、20重量%未満、10重量%未満とすることもできる。下限値は0.1重量%以上とすることが好ましく、例えば1重量%超、3重量%超とすることもできる。
When the light emitting layer contains a host material, an assist dopant, and a light emitting material, as the assist dopant, one or two selected from the compound group represented by General Formula (1) which is a triplet sensitizer of the present invention More than species can be used. In addition, as the host material, one which can transfer the excited singlet energy generated in the host material to the assist dopant is used, and the light emitting material receives the excited triplet energy transferred from the assist dopant and emits light. Use what you get. For the description of the host material and the light emitting material used here, and the description of the energy levels of the host material, the assist dopant, and the light emitting material, the corresponding description in the column of [Utility of compound represented by General Formula (1)] Can be referenced. By including the host material, the assist dopant, and the light emitting material in the light emitting layer, the excited singlet energy generated in the host material is efficiently converted to the excited triplet energy by the triplet exciton sensitizing effect of the assist dopant to emit light. Since it is used for light emission of the material, high light emission efficiency can be obtained.
In the organic light emitting device (organic photoluminescent device and electroluminescent device) using the triplet sensitizer of the present invention as the assist dopant, light emission is generated from the light emitting material contained in the light emitting layer. This light emission may be either phosphorescence light emission or delayed fluorescence light emission, may include both light emission, and may include normal fluorescence light emission. In addition, part or part of light emission may be emitted from the host material or the assist dopant.
When the triplet sensitizer of the present invention is used as an assist dopant, the content of the assist dopant is less than the content of the host material and more than the content of the light emitting material, that is, “the content of the light emitting material It is preferable to satisfy the relationship of <content of assist dopant <content of host material>. Specifically, the content of the assist dopant in the light emitting layer is preferably less than 50% by weight. Further, the upper limit value of the content of the assist dopant is preferably less than 40% by weight, and the upper limit value of the content may be, for example, less than 30% by weight, less than 20% by weight, and less than 10% by weight. The lower limit is preferably 0.1% by weight or more, and may be, for example, more than 1% by weight and more than 3% by weight.
(注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
(Injection layer)
The injection layer is a layer provided between the electrode and the organic layer to lower the driving voltage and improve the luminance, and includes the hole injection layer and the electron injection layer, and between the anode and the light emitting layer or the hole transport layer, And between the cathode and the light emitting layer or the electron transport layer. An injection layer can be provided as needed.
(阻止層)
 阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
(Blocking layer)
The blocking layer is a layer capable of blocking the diffusion of charges (electrons or holes) present in the light emitting layer and / or excitons out of the light emitting layer. An electron blocking layer can be disposed between the light emitting layer and the hole transport layer to block electrons from passing through the light emitting layer towards the hole transport layer. Similarly, a hole blocking layer can be disposed between the light emitting layer and the electron transport layer to block holes from passing through the light emitting layer towards the electron transport layer. The blocking layer can also be used to block the diffusion of excitons out of the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also have the function as an exciton blocking layer. The electron blocking layer or the exciton blocking layer as used herein is used in a sense including one layer having a function of the electron blocking layer and the exciton blocking layer.
(正孔阻止層)
 正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
(Hole blocking layer)
The hole blocking layer has a function of an electron transport layer in a broad sense. The hole blocking layer plays the role of transporting electrons and blocking the arrival of holes to the electron transporting layer, which can improve the recombination probability of electrons and holes in the light emitting layer. As the material of the hole blocking layer, the material of the electron transport layer described later can be used as needed.
(電子阻止層)
 電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
(Electron blocking layer)
The electron blocking layer has a function of transporting holes in a broad sense. The electron blocking layer plays the role of transporting holes and blocking the arrival of electrons to the hole transport layer, which can improve the probability of recombination of electrons and holes in the light emitting layer. .
(励起子阻止層)
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
(Exciton blocking layer)
The exciton blocking layer is a layer for blocking the diffusion of excitons generated by the recombination of holes and electrons in the light emitting layer into the charge transport layer, and the insertion of this layer results in the formation of excitons. The light can be efficiently confined in the light emitting layer, and the light emission efficiency of the device can be improved. The exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both of them can be simultaneously inserted. That is, when an exciton blocking layer is provided on the anode side, the layer can be inserted between the hole transport layer and the light emitting layer adjacent to the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode And the light emitting layer may be inserted adjacent to the light emitting layer. In addition, a hole injection layer or an electron blocking layer can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the cathode and the excitation adjacent to the cathode side of the light emitting layer Between the electron blocking layer, an electron injecting layer, an electron transporting layer, a hole blocking layer, and the like can be provided. When the blocking layer is disposed, at least one of the excitation singlet energy and the excitation triplet energy of the material used as the blocking layer is preferably higher than the excitation singlet energy and the excitation triplet energy of the light emitting material.
(正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
(Hole transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
The hole transport material is one having either hole injection or transport or electron barrier properties, and may be either organic or inorganic. Examples of known hole transport materials that can be used include triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Amino substituted chalcone derivatives, oxazole derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers, etc., but porphyrin compounds, aroma Group tertiary amine compounds and styrylamine compounds are preferred, and aromatic tertiary amine compounds are more preferred.
(電子輸送層)
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
 電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導h体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
(Electron transport layer)
The electron transporting layer is made of a material having a function of transporting electrons, and the electron transporting layer can be provided in a single layer or a plurality of layers.
The electron transporting material (which may also be a hole blocking material) may have a function of transferring electrons injected from the cathode to the light emitting layer. Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, flareylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like. Furthermore, in the above-mentioned oxadiazole derivative, a thiadiazole derivative h wherein the oxygen atom of the oxadiazole ring is substituted by a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. it can. Furthermore, it is also possible to use a polymer material in which these materials are introduced into a polymer chain, or in which these materials are used as a polymer main chain.
 有機エレクトロルミネッセンス素子を作製する際には、本発明の三重項増感剤を発光層に用いるだけでなく、発光層以外の層にも用いてもよい。その際、発光層に用いる三重項増感剤と、発光層以外の層に用いる三重項増感剤は、同一であっても異なっていてもよい。例えば、上記の注入層、阻止層、正孔阻止層、電子阻止層、励起子阻止層、正孔輸送層、電子輸送層などにも三重項増感剤を用いてもよい。これらの層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。 When the organic electroluminescent element is produced, the triplet sensitizer of the present invention may be used not only in the light emitting layer but also in layers other than the light emitting layer. At this time, the triplet sensitizer used in the light emitting layer and the triplet sensitizer used in layers other than the light emitting layer may be the same or different. For example, a triplet sensitizer may be used for the above-mentioned injection layer, blocking layer, hole blocking layer, electron blocking layer, exciton blocking layer, hole transporting layer, electron transporting layer, and the like. The film forming method of these layers is not particularly limited, and may be produced by either a dry process or a wet process.
 以下に、有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示する。ただし、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。
 まず、発光層に用いることができる発光材料の好ましい例として、遅延蛍光材料の化合物例を挙げる。
Below, the preferable material which can be used for an organic electroluminescent element is illustrated concretely. However, the materials that can be used in the present invention are not limitedly interpreted by the following exemplified compounds. Moreover, even if it is the compound illustrated as a material which has a specific function, it is also possible to divert it as a material which has another function.
First, as a preferable example of the light emitting material which can be used for the light emitting layer, a compound example of the delayed fluorescence material is mentioned.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 好ましい遅延蛍光材料として、WO2013/154064号公報の段落0008~0048および0095~0133、WO2013/011954号公報の段落0007~0047および0073~0085、WO2013/011955号公報の段落0007~0033および0059~0066、WO2013/081088号公報の段落0008~0071および0118~0133、特開2013-256490号公報の段落0009~0046および0093~0134、特開2013-116975号公報の段落0008~0020および0038~0040、WO2013/133359号公報の段落0007~0032および0079~0084、WO2013/161437号公報の段落0008~0054および0101~0121、特開2014-9352号公報の段落0007~0041および0060~0069、特開2014-9224号公報の段落0008~0048および0067~0076に記載される一般式に包含される化合物、特に例示化合物であって、遅延蛍光を放射するものを挙げることができる。また、特開2013-253121号公報、WO2013/133359号公報、WO2014/034535号公報、WO2014/115743号公報、WO2014/122895号公報、WO2014/126200号公報、WO2014/136758号公報、WO2014/133121号公報、WO2014/136860号公報、WO2014/196585号公報、WO2014/189122号公報、WO2014/168101号公報、WO2015/008580号公報、WO2014/203840号公報、WO2015/002213号公報、WO2015/016200号公報、WO2015/019725号公報、WO2015/072470号公報、WO2015/108049号公報、WO2015/080182号公報、WO2015/072537号公報、WO2015/080183号公報、特開2015-129240号公報、WO2015/129714号公報、WO2015/129715号公報、WO2015/133501号公報、WO2015/136880号公報、WO2015/137244号公報、WO2015/137202号公報、WO2015/137136号公報、WO2015/146541号公報、WO2015/159541号公報に記載される発光材料であって、遅延蛍光を放射するものも好ましく採用することができる。なお、この段落に記載される上記の公報は、本明細書の一部としてここに引用している。 As preferred delayed fluorescence materials, paragraphs 0008 to 0048 and 0095 to 0133 of WO 2013/154064, paragraphs 0007 to 0047 and 0073 to 0085 of WO 2013/011954, paragraphs 0007 to 0033 and 0059 to 0066 of WO 2013/011955. Paragraphs 0008 to 0071 and 0118 to 0133 of WO 2013/0810 88, paragraphs 0009 to 0046 and 0093 to 0134 of JP 2013-256490 A, paragraphs 0008 to 0020 and 0038 to 0040 of JP 2013-116975 A, Paragraphs 0007 to 0032 and 0079 to 0084 of WO 2013/133359, paragraphs 0008 to 0054 of WO 2013/161437 and 101 to 0121, paragraphs 0007 to 0041 and 0060 to 0069 of JP 2014-9352 A, compounds included in the general formulas described in paragraphs 0008 to 0048 and 0067 to 0076 of JP 2014-9224 A, in particular, It is an exemplary compound which emits delayed fluorescence. Moreover, Unexamined-Japanese-Patent 2013-253121, WO2013 / 133359, WO2014 / 034535, WO2014 / 115743, WO2014 / 122895, WO2014 / 126200, WO2014 / 136758, WO2014 / 133121 are included. WO 2014/136860, WO 2014/196585, WO 2014/189122, WO 2014/168101, WO 2015/008580, WO 2014/203840, WO 2015/002213, WO 2015/016200, WO 2015/019725, WO 2015/072470, WO 2015/108049, WO 2015 / 80182, WO2015 / 072537, WO2015 / 080183, JP2015-129240, WO2015 / 129714, WO2015 / 129715, WO2015 / 133501, WO2015 / 136880, WO2015 / No. 137244, WO2015 / 137202, WO2015 / 137136, WO2015 / 146541, WO2015 / 159541, and a light emitting material that emits delayed fluorescence can be preferably employed. . In addition, the above-mentioned gazette described in this paragraph is quoted here as a part of this specification.
 次に、発光層の発光材料として用いることができる燐光材料の化合物例を挙げる。下記式において、Arはアリール基を表す。 Next, examples of compounds of phosphorescent materials that can be used as a light emitting material of a light emitting layer are given. In the following formulae, Ar represents an aryl group.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 次に、発光層がホスト材料とアシストドーパントと発光材料を含有する場合に、ホスト材料として用いることができる好ましい化合物を挙げる。また、この場合のホスト材料には、遅延蛍光材料を好ましく用いることができる。ホスト材料として用いることができる遅延蛍光材料の化合物例については、発光材料の好ましい例として挙げた遅延蛍光材料の化合物例を参照することができる。また、実施例で使用しているACRXTNもホスト材料として好ましく用いることができる。 Next, when the light emitting layer contains a host material, an assist dopant and a light emitting material, preferable compounds which can be used as the host material are listed. Further, as the host material in this case, a delayed fluorescence material can be preferably used. For examples of compounds of delayed fluorescence materials that can be used as host materials, reference can be made to the examples of compounds of delayed fluorescence materials given as preferable examples of light emitting materials. In addition, ACRXTN used in the examples can also be preferably used as a host material.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 次に、正孔注入材料として用いることができる好ましい化合物例を挙げる。 Next, examples of preferable compounds that can be used as a hole injection material are given.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 次に、正孔輸送材料として用いることができる好ましい化合物例を挙げる。 Next, examples of preferable compounds that can be used as a hole transport material are given.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 次に、電子阻止材料として用いることができる好ましい化合物例を挙げる。 Next, examples of preferable compounds that can be used as the electron blocking material are given.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 次に、正孔阻止材料として用いることができる好ましい化合物例を挙げる。 Next, examples of preferable compounds that can be used as a hole blocking material are given.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 次に、電子輸送材料として用いることができる好ましい化合物例を挙げる。 Next, examples of preferable compounds that can be used as an electron transport material are listed.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。 Next, examples of preferable compounds that can be used as the electron injecting material are given.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 さらに添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。 Further, examples of preferable compounds as materials which can be added will be mentioned. For example, addition as a stabilization material etc. can be considered.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 上述の方法により作製された有機エレクトロルミネッセンス素子は、得られた素子の陽極と陰極の間に電界を印加することにより発光する。このとき、励起一重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長の光が、蛍光発光および遅延蛍光発光として確認される。また、励起三重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長が、燐光として確認される。通常の蛍光は、遅延蛍光発光よりも蛍光寿命が短いため、発光寿命は蛍光と遅延蛍光で区別できる。
 一方、りん光については、通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
The organic electroluminescent device produced by the above-mentioned method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, in the case of light emission by excited singlet energy, light of a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. Moreover, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since the ordinary fluorescence has a shorter fluorescence lifetime than the delayed fluorescence, the emission lifetime can be distinguished by the fluorescence and the delayed fluorescence.
On the other hand, with regard to phosphorescence, in the case of ordinary organic compounds, the excitation triplet energy is unstable and converted to heat, etc., and its lifetime is short and it is immediately inactivated, so it can hardly be observed at room temperature. In order to measure the excited triplet energy of a normal organic compound, it can be measured by observing the light emission under conditions of extremely low temperature.
 有機エレクトロルミネッセンス素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明によれば、発光層のホスト材料やアシストドーパントとして、一般式(1)で表される化合物からなる三重項増感剤を含有させることにより、発光効率が大きく改善された有機発光素子が得られる。本発明の三重項増感剤を用いた有機エレクトロルミネッセンス素子などの有機発光素子は、さらに様々な用途へ応用することが可能である。例えば、この有機エレクトロルミネッセンス素子を用いて、有機エレクトロルミネッセンス表示装置を製造することが可能であり、詳細については、時任静士、安達千波矢、村田英幸共著「有機ELディスプレイ」(オーム社)を参照することができる。また、特に、この有機エレクトロルミネッセンス素子は、需要が大きい有機エレクトロルミネッセンス照明やバックライトに応用することもできる。 The organic electroluminescent device can be applied to any of a single device, a device having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix. According to the present invention, an organic light-emitting device whose emission efficiency is greatly improved by containing a triplet sensitizer comprising the compound represented by the general formula (1) as a host material or assist dopant for the light-emitting layer is provided. can get. The organic light emitting device such as the organic electroluminescent device using the triplet sensitizer of the present invention can be applied to various applications. For example, it is possible to manufacture an organic electroluminescent display device using this organic electroluminescent device, and for details, see “Organic EL Display” (Ohm Corporation) by Shiho Tokishi, Chika Adachi, Hideyuki Murata You can refer to it. Furthermore, in particular, this organic electroluminescent device can also be applied to organic electroluminescent illumination and back light which are in high demand.
 以下に合成例および実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。なお、発光特性の評価は、ソースメータ(ケースレー社製:2400シリーズ)、半導体パラメータ・アナライザ(アジレント・テクノロジー社製:E5273A)、光パワーメータ測定装置(ニューポート社製:1930C)、光学分光器(オーシャンオプティクス社製:USB2000)、分光放射計(トプコン社製:SR-3)およびストリークカメラ(浜松ホトニクス(株)製C4334型)を用いて行った。また、吸光度変化量ΔABSの測定は、プローブ光源としてのQuasi-CWレーザ(IPGフォトニクス社製)、モノクロメータおよび検出器を有する吸光度検出系と、ポンプ光源としての窒素レーザ(波長337nm)を有する励起光照射系を用い、光路長1mmの石英セルに対象化合物の溶液を注入して行った。 The characteristics of the present invention will be more specifically described below by referring to synthesis examples and examples. Materials, processing contents, processing procedures, and the like described below can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as limited by the specific examples shown below. In addition, evaluation of the light emission characteristic, source meter (made by Keithley: 2400 series), semiconductor parameter analyzer (manufactured by Agilent Technologies: E5273A), optical power meter measuring device (manufactured by Newport: 1930C), optical spectroscope (Ocean Optics, Inc .: USB 2000), a spectroradiometer (Topcon, SR: 3) and a streak camera (Hamamatsu Photonics Co., Ltd., C4334 type) were used. In addition, the measurement of absorbance change amount ΔABS is performed using Quasi-CW laser (made by IPG Photonics Co., Ltd.) as a probe light source, an absorbance detection system having a monochromator and a detector, and excitation with a nitrogen laser (wavelength The light irradiation system was used, and the solution of the target compound was injected into a quartz cell with an optical path length of 1 mm.
(合成例1) 化合物3の合成
[1]中間体1の合成工程
Figure JPOXMLDOC01-appb-C000044
Synthesis Example 1 Synthesis of Compound 3 Synthesis Process of Intermediate 1
Figure JPOXMLDOC01-appb-C000044
 テトラセン-5,12-ジオン(1.50g,5.80mmol)とスズ粉末(3.00g)を100mLのシュレンク管に入れ、酢酸35mLを加えて120oCに加熱しながら1時間撹拌した。この反応液を高温に保持した状態で、塩酸(35%,11.5M,4mL)を加えてろ過した後、ろ液を半分量になるまで濃縮し、室温まで放冷した。得られた析出物をろ過により回収し、純水で洗浄することにより淡黄色固体を得た。この淡黄色固体に熱エタノールによる再結晶を行うことで、黄土色針状結晶としての中間体1(5-テトラセノン)を収量894mg(3.66mmol)、収率63%で得た。 Tetracene-5,12-dione (1.50 g, 5.80 mmol) and tin powder (3.00 g) were placed in a 100 mL Schlenk tube, 35 mL of acetic acid was added, and the mixture was stirred for 1 hour while heating to 120 ° C. Hydrochloric acid (35%, 11.5 M, 4 mL) was added and filtered while keeping the reaction solution at high temperature, then the filtrate was concentrated to half volume and allowed to cool to room temperature. The resulting precipitate was collected by filtration and washed with pure water to obtain a pale yellow solid. By subjecting this pale yellow solid to recrystallization from hot ethanol, Intermediate 1 (5-tetracenone) as an ocher needle-like crystal was obtained in a yield of 894 mg (3.66 mmol) in a yield of 63%.
[2]中間体2の合成工程
Figure JPOXMLDOC01-appb-C000045
[2] Synthetic process of intermediate 2
Figure JPOXMLDOC01-appb-C000045
 中間体1(871mg,3.56mmol)を300mLの2口ナスフラスコに入れ、ピリジン(40mL)とピペリジン(4mL)を加えて溶解させ、さらに、ピリジン N-オキシド(4.00g,42.0mmol)および硫酸鉄(II)の七水和物(102mg,0.36mmol)を加えて、100oCで5時間撹拌した。この反応液を室温まで冷却した後、氷水で冷やしながら塩酸(6M,20mL)を加え、発煙および発熱が収まるまで撹拌した。得られた析出物をろ過により回収し、氷水で洗浄し、クロロホルムに溶解させた。この溶液を、硫酸ナトリウムで乾燥させた後、ろ過し、ろ液を濃縮することで暗褐色固体としての中間体2(トランス体を主体とするビテトラセノンのシス‐トランス異性体混合物)を収量560mgで得た。 Intermediate 1 (871 mg, 3.56 mmol) is placed in a 300 mL two-necked eggplant flask, and pyridine (40 mL) and piperidine (4 mL) are added and dissolved, and then pyridine N-oxide (4.00 g, 42.0 mmol) And heptahydrate of iron (II) sulfate (102 mg, 0.36 mmol) were added and stirred at 100 ° C. for 5 hours. The reaction solution was cooled to room temperature, hydrochloric acid (6 M, 20 mL) was added while cooling with ice water, and the mixture was stirred until smoke and heat ceased. The resulting precipitate was collected by filtration, washed with ice water, and dissolved in chloroform. The solution is dried over sodium sulfate, filtered, and the filtrate is concentrated to give 560 mg of Intermediate 2 (a mixture of cis-trans isomers of bitetracenone based on trans) as a dark brown solid. Obtained.
[3]中間体3の合成工程
Figure JPOXMLDOC01-appb-C000046
[3] Synthetic process of intermediate 3
Figure JPOXMLDOC01-appb-C000046
 ブロモベンゼン(0.24mL,2.27mmol)と脱水テトラヒドロフラン(2.5mL)を、Ar雰囲気下で100mLの2口ナスフラスコに入れ、-78oCに冷却しながら、1.6Mのn-ブチルリチウムのヘキサン溶液(1.7mL,2.72mmol)をゆっくり加え、-78℃に保ちながら2時間攪拌した。この反応液を冷却した状態のまま、それに、中間体2(550mg,1.13mmol)と脱水テトラヒドロフラン(25mL)の懸濁液を滴下し、ゆっくりと室温まで昇温しながら一晩攪拌した。この反応液に食塩水を加え、ジクロロメタンによる抽出を行い、硫酸ナトリウムで乾燥させた後、ろ過し、ろ液を濃縮することで、褐色固体としての中間体3を収量562mgで得た。 Bromobenzene (0.24 mL, 2.27 mmol) and dehydrated tetrahydrofuran (2.5 mL) are placed in a 100 mL two-necked eggplant flask under Ar atmosphere and cooled to −78 ° C. with 1.6 M n-butyllithium A hexane solution (1.7 mL, 2.72 mmol) was slowly added and stirred for 2 hours while keeping at -78.degree. While the reaction solution was cooled, a suspension of Intermediate 2 (550 mg, 1.13 mmol) and dehydrated tetrahydrofuran (25 mL) was added dropwise thereto, and the mixture was stirred overnight while slowly warming to room temperature. To the reaction solution was added brine, and extracted with dichloromethane, dried over sodium sulfate, and filtered. The filtrate was concentrated to give Intermediate 3 as a brown solid in a yield of 562 mg.
[4] 化合物3の合成工程
Figure JPOXMLDOC01-appb-C000047
[4] Synthesis process of compound 3
Figure JPOXMLDOC01-appb-C000047
 中間体3、ヨウ化ナトリウム(1.33g,8.87mmol)およびホスフィン酸ナトリウム一水和物(1.15g,10.8mmol)を300mLの2口フラスコに入れ、酢酸(100mL)を加えて120oCで2時間半攪拌した。この反応液を氷水に注ぎ、得られた析出物を吸引ろ過し、ろ物を純水で洗浄した後、ジクロロメタンに溶解させた。この溶液に硫酸ナトリウムを加えて乾燥させた後、ろ過し、ろ液を濃縮することで赤褐色固体を得た。この固体を、ジクロロメタン:ヘキサン=1:3の混合溶媒を展開溶媒に用いて、シリカゲルカラムクロマトグラフィーにより精製し、濃縮することで橙色固体としての化合物3(12,12’-ジフェニル-5,5’-ビテトラセン)を、収量220mg(0.36mmol)で得た。この合成経路全体での化合物3の収率は15.2%であった。
H NMR(600mHz,CDCl):δ 8.45(s,2H),7.89(d,J=6.0Hz,2H),7.85(s,2H),7.70-7.83(m,14H),7.57(d,J=6.0Hz,2H),7.34-7.36(m,2H),7.29-7.32(m,2H),7.19-7.22(m,2H),7.13-7.16(m,2H),7.03(d,J=6.0Hz,2H).
Intermediate 3, sodium iodide (1.33 g, 8.87 mmol) and sodium phosphinate monohydrate (1.15 g, 10.8 mmol) are placed in a 300 mL two-necked flask, and acetic acid (100 mL) is added to give 120 ° C. And stirred for 2 and a half hours. The reaction solution was poured into ice water, the resulting precipitate was suction filtered, and the filtrate was washed with pure water and then dissolved in dichloromethane. The solution was dried by adding sodium sulfate and filtered, and the filtrate was concentrated to obtain a reddish brown solid. The solid is purified by silica gel column chromatography using a mixed solvent of dichloromethane: hexane = 1: 3 as a developing solvent, and concentrated to give compound 3 (12,12′-diphenyl-5,5 as an orange solid). '-Bitetracene) was obtained in a yield of 220 mg (0.36 mmol). The yield of compound 3 throughout this synthetic route was 15.2%.
1 H NMR (600 mHz, CDCl 3 ): δ 8.45 (s, 2 H), 7.89 (d, J = 6.0 Hz, 2 H), 7.85 (s, 2 H), 7.75-7. 83 (m, 14 H), 7.57 (d, J = 6.0 Hz, 2 H), 7.34-7.36 (m, 2 H), 7.29-7.32 (m, 2 H), 7. 19-7.22 (m, 2 H), 7.13-7. 16 (m, 2 H), 7.03 (d, J = 6.0 Hz, 2 H).
(合成例2) 化合物4の合成
Figure JPOXMLDOC01-appb-C000048
Synthesis Example 2 Synthesis of Compound 4
Figure JPOXMLDOC01-appb-C000048
 工程[3]におけるブロモベンゼンの代わりに2-ブロモナフタレンを用い、工程[4]におけるシリカゲルクロマトグラフィーの代わりにゲル浸透クロマトグラフィーを行ったこと以外は、合成例1と同様の反応を用い、橙色固体としての化合物4(12,12’-ジナフチル-5,5’-ビテトラセン)を合成した。
H NMR(600mHz,Acetone-D6):δ 8.60(s,2H),8.32-8.36(m,4H),8.21-8.24(m,2H),8.17(t,J=6.0Hz,2H),8.03(d,J=3.0Hz,2H),7.95-7.97(dd,J=6.0Hz,1H),7.85-7.92(m, 5H), 7.72-7.76(m, 4H), 7.51(dd, J = 6.0Hz,2H),7.34-7.37(m,2H),7.30(t,J=9.0Hz,2H),7.16-7.25(m,6H).
Orange was used in the same manner as in Synthesis Example 1 except that gel permeation chromatography was performed instead of silica gel chromatography in step [4] using 2-bromonaphthalene instead of bromobenzene in step [3]. Compound 4 (12,12′-dinaphthyl-5,5′-bitetracene) was synthesized as a solid.
1 H NMR (600 mHz, Acetone-D6): δ 8.60 (s, 2 H), 8.32 to 8.36 (m, 4 H), 8.21 to 8.24 (m, 2 H), 8.17 (T, J = 6.0 Hz, 2 H), 8.03 (d, J = 3.0 Hz, 2 H), 7.95 to 7.97 (dd, J = 6.0 Hz, 1 H), 7.85 7. 92 (m, 5 H), 7.72-7. 76 (m, 4 H), 7.51 (dd, J = 6.0 Hz, 2 H), 7.34-7. 37 (m, 2 H), 7.30 (t, J = 9.0 Hz, 2H), 7.16-7.25 (m, 6H).
(実験例1) 化合物1、化合物2と組み合わせるホスト材料の検討
 Ar雰囲気のグローブボックス中で化合物1または化合物2を含有する各トルエン溶液を調製した。このとき、トルエン溶液における各化合物の濃度は、それぞれ1×10-5mol/Lとした。
 調製した各トルエン溶液の光吸収スペクトルを図2に示す。
 図2から、化合物1または化合物2の各トルエン溶液の吸収ピークは、ACRXTNとmCBPの薄膜の発光ピークと大きく重なっていることがわかる。このことから、ACRXTNで生じた励起一重項エネルギーは、フェルスターエネルギー移動機構により、化合物1、化合物2へ移動しうることが示され、ACRXTNは化合物1、化合物2と組み合わせるホスト材料として使用できることがわかった。
Experimental Example 1 Study of Host Material to be Combined with Compound 1 and Compound 2 Each toluene solution containing Compound 1 or Compound 2 was prepared in a glove box under an Ar atmosphere. At this time, the concentration of each compound in the toluene solution was 1 × 10 −5 mol / L, respectively.
The light absorption spectrum of each prepared toluene solution is shown in FIG.
It can be seen from FIG. 2 that the absorption peak of each toluene solution of Compound 1 or Compound 2 largely overlaps with the emission peak of the thin film of ACRXTN and mCBP. This indicates that the excited singlet energy generated in ACRXTN can be transferred to Compound 1 and Compound 2 by the Forster energy transfer mechanism, and that ACRXTN can be used as a host material in combination with Compound 1 and Compound 2. all right.
(実験例2) 化合物1、化合物3、化合物4の発光特性の評価
 Ar雰囲気のグローブボックス中で化合物1、化合物3または化合物4を含有する各トルエン溶液を調製した。このとき、トルエン溶液における各化合物の濃度は、それぞれ1×10-5mol/Lとした。調製した各トルエン溶液の435、470、468nm励起光による発光スペクトルを図3に示す。
 各トルエン溶液の発光ピークはほぼ一致しており、化合物1、化合物3、化合物4が極めて近い発光特性を有することがわかった。
Experimental Example 2 Evaluation of Luminescent Properties of Compound 1, Compound 3, and Compound 4 Each toluene solution containing Compound 1, Compound 3, or Compound 4 was prepared in a glove box under an Ar atmosphere. At this time, the concentration of each compound in the toluene solution was 1 × 10 −5 mol / L, respectively. The emission spectra of each of the prepared toluene solutions at 435, 470 and 468 nm excitation light are shown in FIG.
It was found that the emission peaks of the respective toluene solutions were almost identical, and that the compound 1, the compound 3 and the compound 4 had very similar emission characteristics.
(実施例1) 化合物1の一重項分裂性能および三重項増感性能の評価
 フォトルミネッセンス量子収率による評価
 石英基板上にスピンコート法にて、化合物1の薄膜(化合物1の濃度が100重量%である薄膜)およびACRXTNの薄膜(化合物1の濃度が0重量%である薄膜)を形成した。
 また、これとは別に、スピンコート法にて、化合物1の濃度を6重量%、10重量%、20重量%、30重量%、60重量%に変えた各種薄膜も形成した。
 形成した各薄膜の371nm励起光による発光スペクトルを図4に示す。また、各薄膜のフォトルミネッセンス量子収率を測定したところ、ACRXTNの薄膜(化合物1の濃度が0重量%の薄膜)のフォトルミネッセンス量子収率が70%と高かったのに対して、化合物1の濃度を6~100重量%へ高くするにしたがってフォトルミネッセンス量子収率が低下することが確認された。これは、化合物1の濃度が高くなることで、化合物1の分子間の距離が減少して、化合物1の分子間で生じる一重項分裂が促進されたことによると考えられる。よって、この結果は、化合物1が一重項分裂材料であることを示しており、三重項増感剤としての有用性を示唆するものである。
Example 1 Evaluation of Singlet Splitting Performance and Triplet Sensitizing Performance of Compound 1 Evaluation by Photoluminescence Quantum Yield A thin film of Compound 1 (the concentration of Compound 1 is 100% by weight on a quartz substrate by spin coating) And a thin film of ACRXTN (a thin film in which the concentration of Compound 1 is 0% by weight).
Also, separately from this, various thin films were also formed by changing the concentration of Compound 1 to 6 wt%, 10 wt%, 20 wt%, 30 wt%, and 60 wt% by spin coating.
The emission spectrum of each thin film formed by 371 nm excitation light is shown in FIG. In addition, when the photoluminescence quantum yield of each thin film was measured, the photoluminescence quantum yield of the thin film of ACRXTN (the thin film with a concentration of 0 wt% of compound 1) was as high as 70%, whereas It was confirmed that the photoluminescence quantum yield decreases as the concentration is increased to 6 to 100% by weight. This is considered to be because the increase in the concentration of Compound 1 reduces the distance between the molecules of Compound 1 and promotes singlet division occurring between the molecules of Compound 1. Thus, this result indicates that Compound 1 is a singlet fission material, and indicates the usefulness as a triplet sensitizer.
 三重項励起子生成効率Φ ISC による評価
 Ar雰囲気のグローブボックス中で化合物1を含有するクロロホルム溶液を、1×10-3mol/L、1×10-2mol/L、2.5×10-2mol/L、5×10-2mol/L、または1×10-1mol/Lの各濃度で調製した。
 調製した各クロロホルム溶液に337nmのポンプ光(励起光)を照射し、530nmのプローブ光に対する吸光度変化量ΔABSの過渡減衰曲線を測定した。その結果を図5~7に示す。ここで、吸光度変化量ΔABSは、ポンプ光照射後の溶液の吸光度ABSEXからポンプ光照射前の溶液の吸光度ABSを引いた値である。図5~7のうち、図5は、化合物1を5×10-2mol/Lの濃度で含有するクロロホルム溶液に、10μJ/パルス、15μJ/パルス、または20μJ/パルスでポンプ光を照射したときの過渡吸収減衰曲線を示し、図6は、化合物1を1×10-1mol/Lの濃度で含有するクロロホルム溶液に、10μJ/パルス、15μJ/パルス、または20μJ/パルスでポンプ光を照射したときの過渡吸収減衰曲線を示し、図7は、化合物1を1×10-3mol/L、1×10-2mol/L、2.5×10-2mol/L、5×10-2mol/L、または1×10-1mol/Lの濃度で含有する各クロロホルム溶液に、15μJ/パルスでポンプ光を照射したときの過渡吸収減衰曲線を示す。図5および図6において、白丸は、フィッティング曲線を形成するプロットを示す。
 また、化合物1を1×10-3mol/L、1×10-2mol/L、または2.5×10-2mol/Lの濃度で含有する各クロロホルム溶液について、520nmでの吸光度変化量ΔABSを縦軸、励起光強度を横軸としてプロットした相関図を図8に示し、化合物1を1×10-3mol/L、1×10-2mol/L、2.5×10-2mol/L、5×10-2mol/L、または1×10-1mol/Lの濃度で含有する各クロロホルム溶液について、530nmでの吸光度変化量ΔABSを縦軸、励起光強度を横軸としてプロットした相関図を図9に示す。図8および図9における吸光度変化量ΔABSは、337nmのポンプ光を照射した直後に測定した溶液の吸光度ABSEXから、励起光照射前の溶液の吸光度ABSを引いた値である。
 また、図8および図9にプロットしたデータのうち、337nmのポンプ光を照射した直後に測定したΔABSの値から、上記の式(I)を用いて三重項励起子生成効率ΦISCを求めた。化合物1の三重項励起子生成効率ΦISCの濃度依存性を調べた結果を図10に示す。ここで、三重項励起子生成効率ΦISCは、ポンプ光に対するモル吸光係数εを2793L/(molcm)とし、セルの光路長Lを1mmとして計算した。図10中の縦軸の目盛は、各濃度でのΦISCを、1×10-3mol/LでのΦISCを1として標準化した相対値を示す。
 図10から示されるように、化合物1の三重項励起子生成効率ΦISCは、化合物濃度が増加するにつれて向上し、プローブ光波長530nmでは、1×10-1mol/Lでの三重項励起子生成効率ΦISCが1×10-3mol/Lでの三重項励起子生成効率ΦISCのおよそ10倍に達した。このように、三重項励起子生成効率ΦISCが化合物1の濃度に依存して向上したことは、化合物1の濃度が増加することによって、化合物1の分子間距離が短くなり、分子間で生じる一重項分裂過程(電子移動)、および、一重項分裂過程を経由する三重項励起子生成が促進されたことを示す。このことから、化合物1が一重項分裂材料および三重項増感剤として有用であることを確認することができた。
Triplet exciton formation efficiency 効率 ISC evaluation Chloroform solution containing Compound 1 in a glove box of an Ar atmosphere, 1 × 10 −3 mol / L, 1 × 10 −2 mol / L, 2.5 × 10 It prepared at each concentration of 2 mol / L, 5 × 10 −2 mol / L, or 1 × 10 −1 mol / L.
Each prepared chloroform solution was irradiated with 337 nm pump light (excitation light), and a transient decay curve of absorbance change amount ΔABS with respect to 530 nm probe light was measured. The results are shown in FIGS. Here, the absorbance change amount ΔABS is a value obtained by subtracting the absorbance ABS 0 of the solution before pump light irradiation from the absorbance ABS EX of the solution after pump light irradiation. Among FIGS. 5 to 7, FIG. 5 shows that when a chloroform solution containing compound 1 at a concentration of 5 × 10 −2 mol / L is irradiated with pump light at 10 μJ / pulse, 15 μJ / pulse or 20 μJ / pulse. Absorption and decay curve, and Figure 6 shows that a chloroform solution containing Compound 1 at a concentration of 1 × 10 -1 mol / L was irradiated with pump light at 10 μJ / pulse, 15 μJ / pulse or 20 μJ / pulse. FIG. 7 shows that Compound 1 is 1 × 10 −3 mol / L, 1 × 10 −2 mol / L, 2.5 × 10 −2 mol / L, 5 × 10 −2. A transient absorption decay curve is shown when pump light is irradiated at 15 μJ / pulse to each chloroform solution contained at a concentration of mol / L or 1 × 10 −1 mol / L. In FIG. 5 and FIG. 6, white circles indicate plots that form a fitting curve.
In addition, for each chloroform solution containing Compound 1 at a concentration of 1 × 10 −3 mol / L, 1 × 10 −2 mol / L, or 2.5 × 10 −2 mol / L, the amount of change in absorbance at 520 nm A correlation diagram in which ΔABS is plotted on the vertical axis and excitation light intensity is plotted on the horizontal axis is shown in FIG. 8. Compound 1 is 1 × 10 −3 mol / L, 1 × 10 −2 mol / L, 2.5 × 10 −2 For each chloroform solution containing a concentration of mol / L, 5 × 10 -2 mol / L, or 1 × 10 -1 mol / L, the absorbance change amount ΔABS at 530 nm is the vertical axis, and the excitation light intensity is the horizontal axis The plotted correlation diagram is shown in FIG. The absorbance change amount ΔABS in FIGS. 8 and 9 is a value obtained by subtracting the absorbance ABS 0 of the solution before the excitation light irradiation from the absorbance ABS EX of the solution measured immediately after the irradiation of the pump light of 337 nm.
Further, among the data plotted in FIG. 8 and FIG. 9, the triplet exciton generation efficiency IS ISC was determined from the value of ΔABS measured immediately after irradiation with the pump light of 337 nm using the above formula (I) . The results of examining the concentration dependency of the triplet exciton generation efficiency IS ISC of compound 1 are shown in FIG. Here, the triplet exciton generation efficiency IS ISC was calculated by setting the molar absorption coefficient ε for pump light to 2793 L / (mol cm) and setting the optical path length L of the cell to 1 mm. The scale of the vertical axis in FIG. 10 indicates the relative value obtained by standardizing Φ ISC at each concentration with Φ ISC at 1 × 10 −3 mol / L as 1.
As shown in FIG. 10, the triplet exciton generation efficiency Φ ISC of compound 1 improves as the compound concentration increases, and at the probe light wavelength of 530 nm, the triplet exciton at 1 × 10 −1 mol / L generation efficiency [Phi ISC reached approximately 10 times the triplet exciton generation efficiency [Phi ISC at 1 × 10 -3 mol / L. Thus, the fact that the triplet exciton generation efficiency IS ISC has been improved depending on the concentration of Compound 1 is that the intermolecular distance of Compound 1 becomes short due to the increase of the concentration of Compound 1 and occurs between molecules It shows that singlet splitting process (electron transfer) and triplet exciton generation via the singlet splitting process are promoted. From this, it could be confirmed that Compound 1 is useful as a singlet fission material and a triplet sensitizer.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 本発明における化合物は一重項分裂材料および三重項増感剤として有用である。本発明の三重項増感剤を用いることにより、有機発光素子や有機太陽電池のような有機デバイスの効率を飛躍的に向上させることができる。このため、本発明は産業上の利用可能性が高い。 The compounds of the present invention are useful as singlet fission materials and triplet sensitizers. By using the triplet sensitizer of the present invention, the efficiency of an organic device such as an organic light emitting element or an organic solar cell can be dramatically improved. For this reason, the present invention has high industrial applicability.
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極
1 substrate 2 anode 3 hole injection layer 4 hole transport layer 5 light emitting layer 6 electron transport layer 7 cathode

Claims (10)

  1.  下記一般式(1)で表される化合物からなる一重項分裂材料。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)において、Rは置換もしくは無置換のアリール基を表す。RおよびRの一方は水素原子で、他方は置換もしくは無置換のアリール基を表す。]
    The singlet fission material which consists of a compound represented by following General formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In the general formula (1), R 1 represents a substituted or unsubstituted aryl group. One of R 2 and R 3 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group. ]
  2.  RとRが各々独立に無置換のアリール基である、請求項1に記載の一重項分裂材料。 The singlet fission material according to claim 1, wherein R 1 and R 2 are each independently an unsubstituted aryl group.
  3.  RとRが同一である、請求項1または2に記載の一重項分裂材料。 The singlet fission material according to claim 1 or 2, wherein R 1 and R 2 are identical.
  4.  下記一般式(1)で表される化合物からなる三重項増感剤。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(1)において、Rは置換もしくは無置換のアリール基を表す。RおよびRの一方は水素原子で、他方は置換もしくは無置換のアリール基を表す。]
    The triplet sensitizer which consists of a compound represented by following General formula (1).
    Figure JPOXMLDOC01-appb-C000002
    [In the general formula (1), R 1 represents a substituted or unsubstituted aryl group. One of R 2 and R 3 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group. ]
  5.  RとRが各々独立に無置換のアリール基である、請求項4に記載の三重項増感剤。 The triplet sensitizer according to claim 4, wherein R 1 and R 2 are each independently an unsubstituted aryl group.
  6.  RとRが同一である、請求項4または5に記載の三重項増感剤。 The triplet sensitizer according to claim 4 or 5, wherein R 1 and R 2 are the same.
  7.  下記一般式(2)で表される化合物。
    Figure JPOXMLDOC01-appb-C000003
    [一般式(2)において、RおよびRの一方は水素原子で、他方は置換もしくは無置換のアリール基を表す。RおよびRの一方は水素原子で、他方は置換もしくは無置換のアリール基を表す。nは0または1である。]
    The compound represented by following General formula (2).
    Figure JPOXMLDOC01-appb-C000003
    [In the general formula (2), one of R 4 and R 5 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group. One of R 6 and R 7 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group. n is 0 or 1. ]
  8.  RとRが各々独立に無置換のアリール基である、請求項7に記載の化合物。 The compound according to claim 7, wherein R 4 and R 6 are each independently an unsubstituted aryl group.
  9.  RとRが同一である、請求項7または8に記載の化合物。 9. A compound according to claim 7 or 8 wherein R 4 and R 6 are identical.
  10.  下記一般式(2)で表される化合物を含む薄膜。
    Figure JPOXMLDOC01-appb-C000004
    [一般式(2)において、RおよびRの一方は水素原子で、他方は置換もしくは無置換のアリール基を表す。RおよびRの一方は水素原子で、他方は置換もしくは無置換のアリール基を表す。nは0または1である。]
     
    The thin film containing the compound represented by following General formula (2).
    Figure JPOXMLDOC01-appb-C000004
    [In the general formula (2), one of R 4 and R 5 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group. One of R 6 and R 7 is a hydrogen atom, and the other is a substituted or unsubstituted aryl group. n is 0 or 1. ]
PCT/JP2018/027847 2017-07-25 2018-07-25 Singlet fission material, triplet sensitizer, compound, and thin film WO2019022120A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019532824A JP7214142B2 (en) 2017-07-25 2018-07-25 Singlet fission materials, triplet sensitizers, compounds and thin films

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017144035 2017-07-25
JP2017-144035 2017-07-25

Publications (1)

Publication Number Publication Date
WO2019022120A1 true WO2019022120A1 (en) 2019-01-31

Family

ID=65040170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027847 WO2019022120A1 (en) 2017-07-25 2018-07-25 Singlet fission material, triplet sensitizer, compound, and thin film

Country Status (2)

Country Link
JP (1) JP7214142B2 (en)
WO (1) WO2019022120A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250979A1 (en) * 2019-06-14 2020-12-17 株式会社Kyulux Organic light emission element, lamination body, and light emission method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111458A (en) * 1997-09-29 1999-04-23 Toyo Ink Mfg Co Ltd Organic electroluminescent element material and organic electroluminescent element using the same
JP2006114844A (en) * 2004-10-18 2006-04-27 Tdk Corp Selecting method of organic el device material, organic el device and manufacturing method thereof
JP2010537407A (en) * 2007-08-13 2010-12-02 ユニバーシティ オブ サザン カリフォルニア Organic photosensitive optoelectronic equipment using triplet harvesting
JP2015536050A (en) * 2012-09-26 2015-12-17 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン Exciton energy transfer increases the efficiency of inorganic solar cells
WO2016009203A1 (en) * 2014-07-15 2016-01-21 Cambridge Enterprise Limited Composite light harvesting material and device
WO2016100754A1 (en) * 2014-12-17 2016-06-23 The Trustees Of Columbia University In The City Of New York Quantitative intramolecular fission in oligoacenes, materials, and methods of use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111458A (en) * 1997-09-29 1999-04-23 Toyo Ink Mfg Co Ltd Organic electroluminescent element material and organic electroluminescent element using the same
JP2006114844A (en) * 2004-10-18 2006-04-27 Tdk Corp Selecting method of organic el device material, organic el device and manufacturing method thereof
JP2010537407A (en) * 2007-08-13 2010-12-02 ユニバーシティ オブ サザン カリフォルニア Organic photosensitive optoelectronic equipment using triplet harvesting
JP2015536050A (en) * 2012-09-26 2015-12-17 ザ リージェンツ オブ ザ ユニヴァシティ オブ ミシガン Exciton energy transfer increases the efficiency of inorganic solar cells
WO2016009203A1 (en) * 2014-07-15 2016-01-21 Cambridge Enterprise Limited Composite light harvesting material and device
WO2016100754A1 (en) * 2014-12-17 2016-06-23 The Trustees Of Columbia University In The City Of New York Quantitative intramolecular fission in oligoacenes, materials, and methods of use thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LIU, HEYUAN ET AL.: "A Covalently Linked Tetracene Trimer: Synthesis and Singlet Exciton Fission Property", ORGANIC LETTERS, vol. 19, 26 January 2017 (2017-01-26), pages 580 - 583, XP055566973, ISSN: 1523-7060 *
MASTRON, J. N. ET AL.: "Aqueous Colloidal Acene Nanoparticles: A New Platform for Studying Singlet Fission", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 117, 2013, pages 15519 - 15526, XP055567054, ISSN: 1520-6106 *
MOU, WEIWEI ET AL.: "Nanoscopic mechanisms of singlet fission in amorphous molecular solid", APPLIED PHYSICS LETTERS, vol. 102, 2013, pages 173301, XP012172777, ISSN: 0003-6951 *
ROBERTS, S. T. ET AL.: "Efficient Singlet Fission Discovered in a Disordered Acene Film", JOURNAL OF THE AMERICAN CHEMICAL SOCEITY, vol. 134, 2012, pages 6388 - 6400, XP055566978, ISSN: 1520-5126 *
THOMPSON, N. J. ET AL.: "Magnetic field dependence of singlet fission in solutions of diphenyl tetracene", PHILOSOPHICAL TRANSACTIONS A, MATHEMATICAL , PHYSICAL AND ENGINEERING SCIENCES, vol. 373, no. 2044, 23 March 2014 (2014-03-23), pages 1 - 7, XP055566984, ISSN: 1364-503X *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250979A1 (en) * 2019-06-14 2020-12-17 株式会社Kyulux Organic light emission element, lamination body, and light emission method
JP2020205318A (en) * 2019-06-14 2020-12-24 株式会社Kyulux Organic light emitting element, laminate, and light emitting method
CN113795938A (en) * 2019-06-14 2021-12-14 九州有机光材股份有限公司 Organic light-emitting element, laminate, and light-emitting method
JP7337369B2 (en) 2019-06-14 2023-09-04 株式会社Kyulux Organic light emitting device, laminate and light emitting method

Also Published As

Publication number Publication date
JP7214142B2 (en) 2023-01-30
JPWO2019022120A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP6493220B2 (en) Luminescent material, organic light emitting device and compound
JP6526625B2 (en) Luminescent material, organic light emitting device and compound
JP6530318B2 (en) Luminescent material, organic light emitting device and compound
JP5669163B1 (en) Organic electroluminescence device
JP6466913B2 (en) Luminescent materials, organic light emitting devices and compounds
JP6441896B2 (en) Organic light emitting device, host material, light emitting material and compound
JP6430370B2 (en) Luminescent materials, organic light emitting devices and compounds
JP6284370B2 (en) Luminescent materials, organic light emitting devices and compounds
JP6383538B2 (en) Luminescent materials, organic light emitting devices and compounds
WO2014189122A1 (en) Compound, light-emitting material, and organic light-emitting element
WO2014136860A1 (en) Compound, luminescent material and organic luminescent element
KR20150005583A (en) Organic light emitting element, and light emitting material and compound used in same
KR20160035062A (en) Compound, light-emitting material, and organic light-emitting element
TWI738859B (en) Organic light-emitting element and its light-emitting material and compound
JP6647514B2 (en) Organic light emitting device and light emitting material and compound used therefor
JP6567504B2 (en) Organic light emitting device
WO2019004254A1 (en) Light-emitting material, compound, long-persistent phosphor and light-emitting element
JP6622484B2 (en) Luminescent materials, organic light emitting devices and compounds
JP6534250B2 (en) Host material for delaying phosphor, organic light emitting device and compound
JP7214142B2 (en) Singlet fission materials, triplet sensitizers, compounds and thin films
WO2014185408A1 (en) Compound, luminescent material, and organic luminescent element
WO2016111216A1 (en) Organic electroluminescent device, organic-electroluminescent-device driving method, and illumination device
JPWO2005062677A1 (en) Luminescent system, luminescent method and luminescent chemical substance
JP2018111751A (en) Light emitting material, compound and organic light emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532824

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18839385

Country of ref document: EP

Kind code of ref document: A1