WO2019022037A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
WO2019022037A1
WO2019022037A1 PCT/JP2018/027583 JP2018027583W WO2019022037A1 WO 2019022037 A1 WO2019022037 A1 WO 2019022037A1 JP 2018027583 W JP2018027583 W JP 2018027583W WO 2019022037 A1 WO2019022037 A1 WO 2019022037A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
refrigerant
suction pipe
fixed scroll
closed container
Prior art date
Application number
PCT/JP2018/027583
Other languages
English (en)
French (fr)
Inventor
悠介 今井
二上 義幸
淳 作田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880049347.1A priority Critical patent/CN110998094B/zh
Priority to JP2019532618A priority patent/JP6934612B2/ja
Publication of WO2019022037A1 publication Critical patent/WO2019022037A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present disclosure relates to scroll compressors.
  • a partition plate is provided in the compression container, and a compression element having a fixed scroll and a orbiting scroll in a low pressure side space partitioned by the partition plate, and an electric element for driving the orbiting scroll to rotate Have.
  • Patent Document 1 is configured to compress the refrigerant drawn from the suction pipe with a compression element, and discharge the compressed refrigerant into the high-pressure space partitioned by the partition plate through the discharge port of the fixed scroll. Proposed a closed type scroll compressor.
  • FIG. 12 shows a scroll compressor described in Patent Document 1.
  • the refrigerant is supplied to the low pressure space 201 inside the sealed container via the suction pipe 200.
  • the refrigerant collides with the flow straightening plate 202 provided at a portion facing the opening on the closed container side of the suction pipe 200 and is branched. Some of the refrigerant cools the electrically powered element, and the remaining refrigerant is drawn into the compression element and compressed.
  • the flow of the refrigerant from the straightening vane 202 is directed in a direction parallel to the rotation axis (vertical direction in the figure).
  • the refrigerant flowing from the straightening vane 202 in the opposite direction to the electric element collides with the partition plate 203.
  • the partition plate 203 has a high temperature to contact the high pressure space 204.
  • the refrigerant is heated by contacting the partition plate 203.
  • the density of refrigerant drawn into the compression mechanism portion 205 is reduced, and the volumetric efficiency is reduced.
  • An object of the present disclosure is to provide a highly efficient scroll compressor by preventing a decrease in efficiency due to suction heating.
  • the straightening vane is configured such that the upper end face in the rotation axis direction is located between the lower end and the upper end of the inner diameter of the opening on the closed container side of the suction pipe.
  • FIG. 1 is a longitudinal cross-sectional view showing the configuration of a scroll compressor according to an embodiment of the present disclosure.
  • FIG. 2 is a longitudinal sectional view showing the main part of the scroll compressor according to the embodiment.
  • FIG. 3 is a longitudinal sectional view showing the main part of the scroll compressor according to the embodiment.
  • FIG. 4A is a side view showing the orbiting scroll of the scroll compressor according to the embodiment.
  • FIG. 4B is a cross-sectional view taken along line 4B-4B of FIG. 4A.
  • FIG. 5 is a bottom view showing a fixed scroll of the scroll compressor according to the embodiment.
  • FIG. 6 is a perspective view of the fixed scroll according to the embodiment as viewed from the bottom.
  • FIG. 7 is a perspective view of the fixed scroll according to the embodiment as viewed from above.
  • FIG. 1 is a longitudinal cross-sectional view showing the configuration of a scroll compressor according to an embodiment of the present disclosure.
  • FIG. 2 is a longitudinal sectional view showing the main part of the scroll
  • FIG. 8 is a perspective view showing a main bearing of the scroll compressor according to the embodiment.
  • FIG. 9 is a top view showing a rotation suppression member of the scroll compressor according to the embodiment.
  • FIG. 10 is a cross-sectional view of an essential part showing the partition plate and the fixed scroll of the scroll compressor according to the embodiment.
  • FIG. 11 is a partial cross-sectional perspective view showing the main part of the scroll compressor according to the embodiment.
  • FIG. 12 is a longitudinal sectional view of a conventional scroll compressor.
  • a partition plate for dividing the inside of the container into a high pressure space and a low pressure space, a fixed scroll adjacent to the partition plate, and a fixed scroll engaged with the fixed scroll to form a compression chamber. It has a scroll, a rotation suppression member that prevents rotation of the orbiting scroll, and a main bearing that supports the orbiting scroll.
  • the compression mechanism unit including the fixed scroll, the orbiting scroll, and the rotation suppressing member, and the main bearing are disposed in the low pressure space.
  • the stationary scroll and the orbiting scroll are disposed between the partition plate and the main bearing.
  • a refrigerant suction pipe is opened in the low pressure space, and a straightening vane for refrigerant flow is provided on the closed container side of the suction pipe.
  • the straightening vane is configured such that the upper end face in the rotation axis direction is located between the lower end and the upper end of the inner diameter of the opening on the closed container side of the suction pipe.
  • a part of the refrigerant from the suction pipe is distributed to the motorized element that collides with the straightening vane and drives the compression mechanism to cool the motored element.
  • the remaining refrigerant flows directly to the compression mechanism, so that the efficiency loss due to suction heating can be prevented.
  • the contact of the refrigerant to the partition plate can be suppressed, and the efficiency reduction due to the suction heating can be prevented.
  • the opening on the closed container side of the suction pipe faces the suction portion of the compression mechanism.
  • the suction refrigerant can be linearly sucked into the suction portion of the compression mechanism portion. For this reason, it is possible to suppress the decrease in the refrigerant density by making the contact with the partition plate smaller than in the first aspect. As a result, the efficiency can be improved.
  • the straightening vane covers the opening on the closed container side of the suction pipe by 50% or more in the circumferential direction of the closed container.
  • the refrigerant supplied into the closed container is efficiently divided into the compression mechanism side and the electric element side while suppressing the flow from being divided in the circumferential direction of the closed container.
  • the refrigerant can be efficiently introduced to the suction portion of the compression mechanism portion.
  • it is possible to improve the efficiency by reducing the contact of the refrigerant to the partition plate to suppress the decrease in the refrigerant density.
  • the distance L between the straightening vane and the inner wall of the hermetic container is d / 4 ⁇ L.
  • the relationship of ⁇ d is satisfied.
  • the straightening vane is attached to the inner wall of the closed container.
  • the fixed scroll of the compression mechanism portion is a scroll compressor that moves in the axial direction
  • the positional relationship between the opening on the closed container side of the suction pipe and the current plate is always kept constant. it can.
  • the refrigerant can be more stably guided to the compression mechanism portion, as compared to the case where the current plate is fixed to the fixed scroll.
  • the efficiency can be stably improved.
  • FIG. 1 is a longitudinal sectional view of a scroll compressor according to the present embodiment.
  • 2 and 3 are longitudinal sectional views showing the main parts of the scroll compressor according to the present embodiment.
  • the compressor 1 has a cylindrical sealed container 10 having a longitudinal direction in the vertical direction as an outer shell.
  • the vertical direction is the Z-axis direction in FIGS. 1 to 3, that is, the rotation axis direction of the electric element.
  • the compressor 1 is a sealed scroll compressor including a compression mechanism portion 170 for compressing a refrigerant and an electric element 80 for driving the compression mechanism portion 170 inside the sealed container 10.
  • the compression mechanism portion 170 includes a fixed scroll 30, a orbiting scroll 40, a main bearing 60, and an Oldham ring 90.
  • a partition plate 20 is provided which divides the inside of the closed container 10 up and down.
  • the partition plate 20 divides the inside of the closed container 10 into a high pressure space 11 and a low pressure space 12.
  • the high pressure space 11 is a space filled with the high pressure refrigerant compressed in the compression mechanism section 170.
  • the low pressure space 12 is a space filled with a low pressure refrigerant before being compressed in the compression mechanism section 170.
  • an oil reservoir 15 At the bottom of the low pressure space 12 is formed an oil reservoir 15 in which the lubricating oil is stored.
  • the closed container 10 includes a suction pipe 13 which connects the outside of the closed container 10 with the low pressure space 12, and a discharge pipe 14 which connects the outside of the closed container 10 with the high pressure space 11.
  • a low pressure refrigerant is supplied to the low pressure space 12 from a refrigeration cycle circuit (not shown) provided outside the closed container 10 via the suction pipe 13.
  • the high-pressure refrigerant compressed in the compression mechanism section 170 moves to the high-pressure space 11 and is then discharged from the high-pressure space 11 via the discharge pipe 14 to the refrigeration cycle circuit.
  • a flow control plate 160 is attached to the inner wall of the sealed container 10 so as to face the opening 13 a on the sealed container side of the suction pipe 13.
  • the baffle plate 160 closes the upper partition plate 20 side, and is attached to the inner wall of the closed vessel 10.
  • a portion of the refrigerant flowing from the suction pipe 13 flows toward the compression mechanism section 170 without colliding with the flow straightening plate 160, and the remaining refrigerant collides with the flow straightening plate 160 and flows toward the electric element 80,
  • the plate 160 and the suction pipe 13 are configured.
  • the current plate 160 is provided such that the upper end face in the rotational axis direction (vertical direction in FIG. 1) is positioned between the lower end and the upper end of the inner diameter of the opening 13a. .
  • the opening 13 a faces the suction portion 301 of the fixed scroll 30.
  • the baffle plate 160 covers the opening 13a by 50% or more in the Y-axis direction (the circumferential direction of the sealed container).
  • the height H of the upper end face of the rectifying plate 160 based on the lower end of the inner diameter of the opening 13 a satisfies d / 4 ⁇ H ⁇ 3 d / 4.
  • the compressor 1 includes the fixed scroll 30 and the orbiting scroll 40 of the compression mechanism unit 170 in the low pressure space 12.
  • the fixed scroll 30 is a non-orbiting scroll in the present embodiment.
  • the fixed scroll 30 is disposed adjacent to the lower side of the partition plate 20.
  • the orbiting scroll 40 is disposed below the fixed scroll 30 in mesh with the fixed scroll 30.
  • the fixed scroll 30 includes a disk-shaped fixed scroll end plate 31 and a spiral fixed spiral wrap (Lap) 32 provided on the lower surface of the fixed scroll end plate 31.
  • Lap spiral fixed spiral wrap
  • the orbiting scroll 40 includes a disc-shaped orbiting scroll end plate 41, a spiral orbiting scroll wrap 42 provided on the upper surface of the orbiting scroll end plate 41, and a lower boss portion 43.
  • the lower boss portion 43 is a cylindrical protrusion formed substantially at the center of the lower surface of the orbiting scroll end plate 41.
  • a compression chamber 50 is formed between the orbiting scroll 40 and the fixed scroll 30 by meshing the orbiting spiral wrap 42 of the orbiting scroll 40 and the fixed spiral wrap 32 of the fixed scroll 30.
  • the compression chamber 50 is formed on the inner wall side and the outer wall side of the swirling and spiral wrap 42. The swirling spiral wrap 42 will be described later.
  • the main bearing 60 for supporting the orbiting scroll 40 is provided below the fixed scroll 30 and the orbiting scroll 40.
  • the main bearing 60 includes a boss housing portion 62 provided substantially at the center of the upper surface, and a bearing portion 61 provided below the boss housing portion 62.
  • the boss accommodating portion 62 is a recess for accommodating the lower boss portion 43.
  • the bearing portion 61 is a through hole whose upper end is open in the boss accommodating portion 62 and whose lower end is open toward the low pressure space 12.
  • the main bearing 60 supports the orbiting scroll 40 on its upper surface, and supports the rotating shaft 70 by the bearing 61.
  • the rotation axis 70 is an axis arranged in the vertical direction.
  • One end of the rotating shaft 70 is pivotally supported by the bearing portion 61, and the other end of the rotating shaft 70 is pivotally supported by the auxiliary bearing 16.
  • the auxiliary bearing 16 is provided below the low pressure space 12, preferably in the oil reservoir 15.
  • An eccentric shaft 71 eccentric to the axis of the rotating shaft 70 is provided at the upper end of the rotating shaft 70.
  • the eccentric shaft 71 is slidably inserted into the lower boss portion 43 via the swing bush 78 and the pivot bearing 79.
  • the lower boss portion 43 is rotationally driven by the eccentric shaft 71.
  • An oil passage 72 through which the lubricating oil passes is formed in the rotating shaft 70.
  • the oil passage 72 is a through hole formed in the axial direction of the rotating shaft 70.
  • One end of the oil passage 72 opens in the oil reservoir 15 as a suction port 73 provided at the lower end of the rotating shaft 70.
  • a paddle 74 is provided at an upper portion of the suction port 73 to pump the lubricating oil from the suction port 73 to the oil passage 72.
  • the rotating shaft 70 is coupled to the motorized element 80.
  • the electric element 80 is disposed between the main bearing 60 and the sub bearing 16.
  • the electric element 80 includes a stator 81 fixed to the closed vessel 10 and a rotor 82 disposed inside the stator 81.
  • the rotating shaft 70 is fixed to the rotor 82.
  • the rotating shaft 70 includes a balance weight 17 a provided above the rotor 82 and a balance weight 17 b provided below the rotor 82.
  • the balance weights 17 a and 17 b are arranged at positions shifted by 180 ° in the circumferential direction of the rotation shaft 70.
  • the rotating shaft 70 rotates while maintaining balance by the centrifugal force by the balance weights 17 a and 17 b and the centrifugal force generated by the revolving motion of the orbiting scroll 40.
  • the balance weights 17 a and 17 b may be provided on the rotor 82.
  • an Oldham ring 90 which is a rotation suppressing member is provided.
  • the Oldham ring 90 prevents rotation of the orbiting scroll 40.
  • the orbiting scroll 40 pivots with respect to the fixed scroll 30 without rotating.
  • the fixed scroll 30, the orbiting scroll 40, the electric element 80, the oldham ring 90, and the main bearing 60 are disposed in the low pressure space 12.
  • the fixed scroll 30 and the orbiting scroll 40 are disposed between the partition plate 20 and the main bearing 60.
  • the partition plate 20 and the main bearing 60 are fixed to the closed container 10.
  • at least one of the elastic bodies (not shown) has an axis between the partition plate 20 and the orbiting scroll 40 or between the fixed scroll 30 and the main bearing 60. It is provided movable in the direction.
  • the fixed scroll 30 is provided movably in the axial direction (vertical direction in FIG. 1) with respect to the columnar member 100 provided in the main bearing 60.
  • the lower end portion of the columnar member 100 is inserted into and fixed to the bearing side hole portion 102, and the upper end portion of the columnar member 100 is slidably inserted into the scroll side hole portion 101.
  • the columnar member 100 regulates rotation and radial movement of the fixed scroll 30 and allows axial movement of the fixed scroll 30. That is, the fixed scroll 30 is supported by the main bearing 60 by the columnar member 100 and moves in the axial direction between the partition plate 20 and the orbiting scroll 40.
  • a plurality of columnar members 100 are arranged at predetermined intervals in the circumferential direction. It is desirable that the plurality of columnar members 100 be arranged approximately equally in the circumferential direction.
  • the columnar member 100 may be provided on the fixed scroll 30. That is, the columnar member 100 may be fixed such that the lower end portion is slidably inserted into the bearing side hole portion 102 and the upper end portion is inserted into the scroll side hole portion 101.
  • the rotating shaft 70 is driven by the motorized element 80 and rotates with the rotor 82.
  • the eccentric shaft 71 and the Oldham ring 90 By means of the eccentric shaft 71 and the Oldham ring 90, the orbiting scroll 40 pivots around the central axis of the rotating shaft 70 without rotating. As a result, the volume of the compression chamber 50 is reduced, and the refrigerant in the compression chamber 50 is compressed.
  • the refrigerant is supplied from the suction pipe 13 to the low pressure space 12.
  • the refrigerant supplied to the low pressure space 12 collides with the current plate 160 and is branched.
  • the upper end surface of the straightening vane 160 in the rotational axis direction is located between the lower end and the upper end of the inner diameter of the opening 13a.
  • a part of the refrigerant supplied from the suction pipe 13 collides with the straightening vane 160 and is diverted to the electric element 80.
  • the remaining refrigerant flows directly to the compression mechanism portion 170 through the upper portion of the straightening vane 160. That is, the amount of refrigerant necessary for cooling the electric element 80 flows to the electric element 80.
  • the remaining refrigerant flows directly toward the suction portion 301 of the fixed scroll 30 in the compression mechanism portion 170.
  • the refrigerant flowing toward the compression mechanism portion 170 flows to the suction portion 301 of the compression mechanism portion 170 without colliding with the partition plate 20 which has a relatively high temperature. Therefore, the suction refrigerant is not heated by the partition plate 20, and the reduction of the refrigerant density due to the heating can be suppressed to improve the efficiency.
  • the opening 13 a faces the suction portion 301 of the fixed scroll 30.
  • the refrigerant passing through the upper portion of the straightening vane 160 linearly advances to the suction portion 301 of the compression mechanism portion 170, and the refrigerant is more directly introduced into the compression chamber 50.
  • the contact with the partition plate 20 can be reduced, the decrease in the refrigerant density can be suppressed, and the efficiency can be improved.
  • the straightening vane 160 covers the opening 13a by 50% or more in the Y-axis direction (the circumferential direction of the sealed container).
  • the refrigerant which has flowed into the closed container 10 is diverted mainly in the lower direction of the rotation shaft, not in the circumferential direction of the closed container 10. Therefore, the flow resistance is small, and the flow can be efficiently diverted to the suction portion 301 or the electric element 80 of the fixed scroll 30.
  • the distance L between the straightening vane 160 and the inner wall of the sealed container 10 satisfies the relationship of d / 4 ⁇ L ⁇ d, where d is the diameter of the inner diameter of the opening 13a.
  • the height H of the upper end face of the rectifying plate 160 based on the lower end of the inner diameter of the opening 13a satisfies d / 4 ⁇ H ⁇ 3d / 4.
  • the minimum flow of refrigerant necessary for cooling the motorized element 80 flows to the motorized element 80 by being branched by the rectifying plate 160.
  • the other refrigerant flows directly into the suction portion 301 of the fixed scroll 30. This can further enhance the volumetric efficiency.
  • the fixed scroll 30 is pressed against the orbiting scroll 40 by the pressure from the discharge space 30H (see FIG. 10), thereby minimizing the gap between the stationary scroll 30 and the orbiting scroll 40 and leaking refrigerant during compression. To prevent. Therefore, in this configuration, the fixed scroll 30 moves up and down along the rotation axis between the partition plate 20 and the main bearing 60.
  • the straightening vane 160 is attached to the inner wall of the closed vessel 10. Therefore, the positional relationship between the suction pipe 13 and the straightening vane 160 is always maintained constant. Thus, the refrigerant can be stably supplied to the compression chamber 50.
  • the refrigerant supplied to the compression chamber 50 of the compression mechanism section 170 and compressed in the compression chamber 50 is discharged from the discharge pipe 14 via the high pressure space 11.
  • the lubricating oil stored in the oil reservoir 15 is pumped up from the suction port 73 along the paddle 74 to above the oil passage 72 by the rotation of the rotary shaft 70.
  • the pumped lubricating oil is supplied from the first fuel inlet 75, the second fuel inlet 76, and the third fuel inlet 77 to the bearing portion 61, the auxiliary bearing 16, and the boss housing portion 62.
  • the lubricating oil pumped up to the boss accommodating portion 62 is guided to the sliding surface between the main bearing 60 and the orbiting scroll 40, is discharged through the return path 63 (see FIG. 8), and returns to the oil reservoir 15 again.
  • FIG. 4A is a side view of the orbiting scroll of the scroll compressor according to the present embodiment.
  • FIG. 4B is a cross-sectional view taken along line 4B-4B of FIG. 4A.
  • the orbiting spiral wrap 42 is a wall having an involute curved cross section whose radius gradually increases from the start end 42 a located at the center of the orbiting scroll end plate 41 to the end end 42 b located near the outer periphery.
  • the swirl wrap 42 has a predetermined height and thickness.
  • the lower surface of the orbiting scroll end plate 41 is provided with a pair of first key grooves 91 having a longitudinal direction from the outer periphery toward the center.
  • FIG. 5 is a bottom view showing the fixed scroll of the scroll compressor according to the present embodiment.
  • FIG. 6 is a perspective view of the fixed scroll as viewed from the bottom side.
  • FIG. 7 is an exploded perspective view of the fixed scroll as viewed from the top side.
  • the fixed spiral wrap 32 is an involute curve having a radius gradually increasing from the start end 32 a located at the center of the fixed scroll end plate 31 to the end end 32 c located near the outer periphery. It is a wall having a cross section.
  • the height and thickness of the fixed spiral wrap 32 are equal to the height and thickness of the swirling spiral wrap 42, respectively.
  • the fixed spiral wrap 32 has an inner wall and an outer wall from the start end 32a to the middle portion 32b, and only an inner wall from the middle portion 32b to the end end 32c.
  • the inner wall is a wall surface on the center side
  • the outer wall is a wall surface on the outer peripheral side.
  • a first discharge port 35 is formed substantially at the center of the fixed scroll end plate 31.
  • the fixed scroll end plate 31 is formed with a bypass port 36 and an intermediate pressure port 37.
  • the bypass port 36 is disposed in the vicinity of the first discharge port 35 in the region where the refrigerant of high pressure just before completion of compression is present.
  • the swirl and wrap wrap 42 is provided with two sets of bypass ports 36.
  • One set of bypass ports 36 consists of three small holes.
  • a pair of bypass ports 36 in communication with the compression chamber 50 are formed on the outer wall side of the orbiting spiral wrap 42.
  • Another pair of bypass ports 36 communicating with the compression chamber 50 is formed on the inner wall side of the orbiting and swirling wrap 42.
  • the medium pressure port 37 is disposed in the vicinity of the middle portion 32 b in the region where the refrigerant in the middle of compression exists.
  • a pair of first flanges 34 a and a pair of second flanges 34 b protruding in the radial direction from the peripheral wall 33 are provided on the outer peripheral portion of the fixed scroll 30.
  • the first flange 34 a and the second flange 34 b are provided below the fixed scroll end plate 31 (on the side of the orbiting scroll 40).
  • the second flange 34 b is provided below the first flange 34 a, and the lower surface (the surface on the side of the orbiting scroll 40) is positioned substantially flush with the tip surface of the fixed spiral wrap 32.
  • the pair of first flanges 34 a are arranged substantially equally in the circumferential direction of the rotating shaft 70 at a predetermined interval.
  • the pair of second flanges 34 b are arranged substantially equally in the circumferential direction of the rotating shaft 70 at a predetermined interval.
  • a suction portion 301 for taking the refrigerant into the compression chamber 50 is formed on the peripheral wall 33 of the fixed scroll 30.
  • the first flange 34 a is provided with the scroll side hole 101 into which the upper end of the columnar member 100 is inserted.
  • One scroll side hole portion 101 is provided in each of the pair of first flanges 34 a.
  • the scroll side hole portion 101 is a receiving portion in the present embodiment.
  • the two scroll side holes 101 are arranged at predetermined intervals in the circumferential direction. It is desirable that the two scroll side holes 101 be arranged uniformly in the circumferential direction.
  • the scroll side hole portion 101 may not be a through hole but a downward concave portion.
  • the scroll side hole portion 101 communicates with the outside of the fixed scroll 30, that is, the low pressure space 12 through a communication hole (not shown).
  • the second flange 34b is provided with a second key groove 92.
  • the second key groove 92 is a pair of grooves which are provided in each of the pair of second flanges 34 b and have a longitudinal direction in the radial direction.
  • an upper boss 39 is provided at the center of the upper surface (the surface on the side of the partition plate 20) of the fixed scroll 30.
  • the upper boss portion 39 is a cylindrical protrusion that protrudes from the upper surface of the fixed scroll 30.
  • the first discharge port 35 and the bypass port 36 open at the upper surface of the upper boss portion 39.
  • a discharge space 30H is formed between the upper surface side of the upper boss portion 39 and the partition plate 20 (see FIG. 10).
  • the first discharge port 35 and the bypass port 36 communicate with the discharge space 30H.
  • a ring-shaped convex portion 310 is provided on the outer peripheral side of the upper boss portion 39 on the upper surface of the fixed scroll 30.
  • a recess is formed on the upper surface of the fixed scroll 30 by the upper boss 39 and the ring-shaped protrusion 310.
  • the recess forms an intermediate pressure space 30M (see FIG. 10).
  • the medium pressure port 37 opens at the upper surface (bottom surface of the recess) of the fixed scroll 30 and communicates with the medium pressure space 30M.
  • the hole diameter of the medium pressure port 37 is smaller than the thickness of the swirl wrap 42. Accordingly, it is possible to prevent the compression chamber 50 formed on the inner wall side of the swirl and wrap wrap 42 from communicating with the compression chamber 50 formed on the outer wall side of the swirl and wrap wrap 42.
  • a bypass check valve 121 for opening and closing the bypass port 36 and a bypass check valve stop 122 for preventing excessive deformation of the bypass check valve 121 are provided on the upper surface of the upper boss portion 39.
  • bypass check valve 121 By using a V-shaped reed valve as the bypass check valve 121, a bypass port 36 in communication with the compression chamber 50 formed on the outer wall side of the orbiting spiral wrap 42 by one reed valve, and The bypass port 36 communicating with the compression chamber 50 formed on the inner wall side can be closed.
  • a medium pressure non-return valve (not shown) that allows the medium pressure port 37 to be opened and closed, and a medium pressure nonreturn valve that prevents excessive deformation of the medium pressure check valve on the upper surface (bottom surface of the recess) of the fixed scroll 30
  • a valve stop (not shown) is provided.
  • the medium pressure check valve can also be configured by a ball valve and a spring.
  • FIG. 8 is a perspective view of the main bearing of the scroll compressor according to the present embodiment as viewed from the top side.
  • a bearing side hole portion 102 into which the lower end portion of the columnar member 100 is inserted is provided on the outer peripheral portion of the main bearing 60.
  • the two bearing side holes 102 are arranged at predetermined intervals in the circumferential direction. It is desirable that the two bearing side holes 102 be arranged evenly in the circumferential direction.
  • the bearing side hole 102 may not be a through hole, but may be an upward concave.
  • the main bearing 60 is formed with a return path 63 having one end opened at the boss accommodating portion 62 and the other end opened at the lower surface of the main bearing 60.
  • One end of the return path 63 may open at the upper surface of the main bearing 60.
  • the other end of the return path 63 may open at the side surface of the main bearing 60.
  • the return path 63 also communicates with the bearing side hole 102. For this reason, lubricating oil is supplied to the bearing side hole 102 through the return path 63.
  • FIG. 9 is a top view showing the Oldham ring 90 of the scroll compressor according to the present embodiment.
  • the Oldham ring 90 includes a substantially annular ring portion 95, and a pair of first keys 93 and a pair of second keys 94 protruding from the upper surface of the ring portion 95.
  • the first key 93 and the second key 94 are provided such that the straight line connecting the two first keys 93 is orthogonal to the straight line connecting the two second keys 94.
  • the first key 93 engages with the first key groove 91 of the orbiting scroll 40.
  • the second key 94 engages with the second key groove 92 of the fixed scroll 30. Thereby, the orbiting scroll 40 can perform the orbiting motion with respect to the fixed scroll 30 without rotating.
  • the fixed scroll 30, the orbiting scroll 40, and the Oldham ring 90 are disposed in this order from above in the axial direction of the rotation shaft 70. Therefore, the first key 93 and the second key 94 are formed in the same plane as the ring portion 95.
  • FIG. 10 is a cross-sectional view of an essential part of the scroll compressor according to the present embodiment.
  • FIG. 11 is a cross-sectional perspective view of the main part of the hermetic scroll compressor according to the present embodiment.
  • the second discharge port 21 is provided at the center of the partition plate 20.
  • a discharge check valve 131 for opening and closing the second discharge port 21 and a discharge check valve stop 132 for preventing excessive deformation of the discharge check valve 131 are provided on the top surface of the partition plate 20.
  • a discharge space 30H is formed between the partition plate 20 and the fixed scroll 30.
  • the discharge space 30H communicates with the compression chamber 50 through the first discharge port 35 and the bypass port 36, and communicates with the high pressure space 11 through the second discharge port 21.
  • the discharge space 30 ⁇ / b> H communicates with the high pressure space 11 via the second discharge port 21, so that a back pressure is applied to the upper surface side of the fixed scroll 30.
  • the fixed scroll 30 is pressed against the orbiting scroll 40 by applying a high pressure to the discharge space 30H. Therefore, the gap between the fixed scroll 30 and the orbiting scroll 40 can be eliminated. As a result, the compressor 1 can be operated at high efficiency.
  • the thickness of the discharge check valve 131 is thicker than the thickness of the bypass check valve 121.
  • the bypass check valve 121 always opens earlier than the discharge check valve 131.
  • the volume of the second discharge port 21 is larger than the volume of the first discharge port 35. Thereby, the pressure loss of the refrigerant discharged from the compression chamber 50 can be reduced.
  • a taper may be formed on the inflow side of the second discharge port 21. Thereby, pressure loss can be reduced.
  • a projecting portion 22 which protrudes in an annular shape around the second discharge port 21 is provided.
  • the projecting portion 22 is provided with a plurality of holes 221 into which a part of the closing member 150 is inserted.
  • the closing member 150 will be described later.
  • the projecting portion 22 is provided with a first seal member 141 and a second seal member 142.
  • the first seal member 141 is a ring-shaped seal member that protrudes from the protrusion 22 toward the center of the partition plate 20.
  • the tip of the first seal member 141 contacts the side surface of the upper boss 39. That is, the first seal member 141 is disposed on the outer periphery of the discharge space 30H between the partition plate 20 and the fixed scroll 30.
  • the second seal member 142 is a ring-shaped seal member that protrudes from the protrusion 22 toward the outer periphery of the partition plate 20.
  • the second seal member 142 is disposed outside the first seal member 141.
  • the tip of the second seal member 142 is in contact with the inner side surface of the ring-shaped convex portion 310. That is, the second seal member 142 is disposed on the inner periphery of the intermediate pressure space 30M between the partition plate 20 and the fixed scroll 30.
  • the discharge space 30H and the medium pressure space 30M are formed between the partition plate 20 and the fixed scroll 30 by the first seal member 141 and the second seal member 142.
  • the ejection space 30H is a space formed above the upper boss portion 39.
  • the medium pressure space 30M is a space formed around the upper boss portion 39.
  • the first seal member 141 divides the discharge space 30H and the medium pressure space 30M.
  • the second seal member 142 divides the medium pressure space 30M and the low pressure space 12 from each other.
  • first seal member 141 and the second seal member 142 for example, polytetrafluoroethylene, which is a fluorocarbon resin, is suitable in terms of sealability and assembly.
  • first seal member 141 and the second seal member 142 are made of a fluorine resin mixed with a fiber material, the reliability of the seal is improved.
  • the first seal member 141 and the second seal member 142 are sandwiched between the closing member 150 and the protrusion 22. Therefore, after the first seal member 141, the second seal member 142, and the closing member 150 are attached to the partition plate 20, the partition plate 20 to which these members are attached can be disposed in the sealed container 10. As a result, the number of parts can be reduced, and the assembly of the scroll compressor can be facilitated.
  • the closing member 150 includes a ring-shaped portion 151 disposed to face the protruding portion 22 of the partition plate 20, and a plurality of protruding portions 152 protruding from the ring-shaped portion 151.
  • the outer peripheral side of the first seal member 141 is sandwiched between the inner peripheral side of the upper surface of the ring-shaped portion 151 and the lower surface of the projecting portion 22.
  • the inner peripheral side of the second seal member 142 is sandwiched between the outer peripheral side of the upper surface of the ring-shaped portion 151 and the lower surface of the projecting portion 22.
  • the ring-shaped portion 151 is opposed to the lower surface of the projecting portion 22 of the partition plate 20 via the first seal member 141 and the second seal member 142.
  • the plurality of protrusions 152 are inserted into the plurality of holes 221 formed in the protrusions 22.
  • the upper end of the protrusion 152 is crimped in a state where the ring-shaped portion 151 presses the lower surface of the protrusion 22. That is, when the upper end of the protrusion 152 is deformed in a flat plate shape and the closing member 150 is fixed to the partition plate 20, the ring-shaped portion 151 is pressed against the lower surface of the protrusion 22.
  • the closing member 150 is made of an aluminum material, the upper end of the protrusion 152 can be easily crimped.
  • the inner peripheral portion of the first seal member 141 is the outer periphery of the upper boss portion 39 of the fixed scroll 30.
  • the outer peripheral portion of the second seal member 142 is pressed against the inner peripheral surface of the ring-shaped convex portion 310 of the fixed scroll 30.
  • the medium pressure space 30 ⁇ / b> M communicates with the region of the compression chamber 50 in which the refrigerant in the middle of compression exists through the medium pressure port 37. For this reason, the pressure of the medium pressure space 30M is lower than the pressure of the discharge space 30H and higher than the pressure of the low pressure space 12.
  • the present disclosure it is possible to prevent the efficiency decrease due to the suction heating in the partition plate while securing the cooling of the electric element, and it is possible to provide a scroll compressor with high efficiency.
  • the present disclosure is applicable to a compressor used for a hot water heater, a hot water heater, an air conditioner, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

吸入管(13)から供給された冷媒を分流する整流板(160)を設け、整流板(160)の上端面は吸入管(13)の密閉容器側の開口部(13a)の下端と上端との間に位置する。これにより、吸入管(13)から流れる冷媒は、電動要素(80)を冷却するのに必要な量だけ電動要素(80)の方に分流するとともに、残りの冷媒は、直接、圧縮機構部(170)に流れるため、吸入加熱による効率低下を抑制することができる。すなわち、冷媒の仕切板(20)への接触を抑制して、吸入加熱による効率低下を防ぐことができる。

Description

スクロール圧縮機
 本開示は、スクロール圧縮機に関する。
 近年、密閉型スクロール圧縮機が知られている。密閉型スクロール圧縮機は、圧縮容器内に仕切板を設けるとともに、この仕切板で仕切られた低圧側の空間に固定スクロールおよび旋回スクロールを有する圧縮要素と、この旋回スクロールを旋回駆動する電動要素とを有する。
 特許文献1は、吸入管から吸引した冷媒を圧縮要素で圧縮し、圧縮された冷媒を、固定スクロールの吐出ポートを介して、仕切板で仕切られた高圧側の空間に吐出するように構成された密閉型スクロール圧縮機を提案している。
 図12は、特許文献1に記載されたスクロール圧縮機を示す。冷媒は、吸入管200を介して、密閉容器の内部の低圧空間201に供給される。このスクロール圧縮機では、吸入管200の密閉容器側の開口と対向する部分に設けられた整流板202に、冷媒が衝突して分流する。一部の冷媒は電動要素を冷却し、残りの冷媒は圧縮要素に吸引されて圧縮される。
特開平4-255595号公報
 しかしながら、上記従来の整流板202に冷媒が衝突して分流すると、整流板202からの冷媒の流れは、回転軸と平行(図では上下方向)な方向に向かう。整流板202から電動要素とは反対方向に流れる冷媒は仕切板203に衝突する。
 仕切板203は、高圧空間204と接触するため高温である。冷媒は仕切板203に接触することで加熱される。圧縮機構部205に吸入される冷媒密度が低下し、体積効率が低下する。
 本開示は、吸入加熱による効率低下を防止することで、高効率なスクロール(Scroll)圧縮機を提供することを目的とする。
 上記目的を達成するため、本開示では、整流板が、回転軸方向の上端面が吸入管の密閉容器側の開口部の内径の下端と上端との間に位置するように構成される。
 これにより、吸入管から流れる冷媒の一部は、整流板に衝突して電動要素の方に分流し、電動要素を冷却する。残りの冷媒は、圧縮機構部に直接流れる。
 本開示によれば、電動要素の冷却を確保しつつ、仕切板における吸入加熱による効率低下を防ぐことができ、効率の高いスクロール圧縮機を提供することができる。
図1は、本開示の実施の形態に係るスクロール圧縮機の構成を示す縦断面図である。 図2は、実施の形態に係るスクロール圧縮機の要部を示す縦断面図である。 図3は、実施の形態に係るスクロール圧縮機の要部を示す縦断面図である。 図4Aは、実施の形態に係るスクロール圧縮機の旋回スクロールを示す側面図である。 図4Bは、図4Aの4B-4B線断面図である。 図5は、実施の形態に係るスクロール圧縮機の固定スクロールを示す底面図である。 図6は、実施の形態に係る固定スクロールを底面から見た斜視図である。 図7は、実施の形態に係る固定スクロールを上面から見た斜視図である。 図8は、実施の形態に係るスクロール圧縮機の主軸受を示す斜視図である。 図9は、実施の形態に係るスクロール圧縮機の自転抑制部材を示す上面図である。 図10は、実施の形態に係るスクロール圧縮機の仕切板と固定スクロールを示す要部断面図である。 図11は、実施の形態に係るスクロール圧縮機の要部を示す一部断面斜視図である。 図12は、従来のスクロール圧縮機の縦断面図である。
 本開示の第1の態様のスクロール圧縮機は、容器内を高圧空間と低圧空間とに区画する仕切板と、仕切板に隣接する固定スクロールと、固定スクロールと噛み合わされて圧縮室を形成する旋回スクロールと、旋回スクロールの自転を防止する自転抑制部材と、旋回スクロールを支持する主軸受とを有する。
 固定スクロール、旋回スクロール、自転抑制部材からなる圧縮機構部と、主軸受とは低圧空間に配置される。固定スクロールおよび旋回スクロールは、仕切板と主軸受との間に配置される。低圧空間に冷媒の吸入管を開口させるとともに、吸入管の密閉容器側に冷媒分流用の整流板が設けられる。整流板は、回転軸方向の上端面が吸入管の密閉容器側の開口部の内径の下端と上端との間に位置するように構成される。
 本態様によれば、吸入管からの冷媒の一部が、整流板に衝突して圧縮機構部を駆動する電動要素の方に分流し、電動要素を冷却する。残りの冷媒は、圧縮機構部に直接流れるので、吸入加熱による効率低下を防ぐことができる。その結果、冷媒の仕切板への接触を抑制して、吸入加熱による効率低下を防ぐことができる。
 本開示の第2の態様のスクロール圧縮機では、第1の態様に加えて、吸入管の密閉容器側の開口部が、圧縮機構部の吸入部と対向する。
 本態様によれば、吸入冷媒を、圧縮機構部の吸入部に直線的に吸入させることができる。このため、第1態様よりも仕切板との接触をより少なくして、冷媒密度の低下を抑制することができる。その結果、効率を向上させることができる。
 本開示の第3の態様のスクロール圧縮機では、第1の態様に加えて、整流板が、吸入管の密閉容器側の開口部を、密閉容器の円周方向に50%以上覆う。
 本態様によれば、密閉容器内に供給された冷媒が、密閉容器の周方向に分流されるのを抑制して、圧縮機構部側と電動要素側に効率よく分流される。これにより、効率的に冷媒を圧縮機構部の吸入部へと導くことができる。その結果、冷媒の仕切板への接触をより少なくして冷媒密度の低下を抑制して、効率を向上させることができる。
 本開示の第4の態様のスクロール圧縮機では、第1の態様に加えて、吸入管の内径の直径をdとすると、整流板と密閉容器の内壁との距離Lが、d/4≦L≦dの関係を満たす。
 本態様によれば、整流板と密閉容器の内壁との間を流れる冷媒の圧力損失を低減しつつ、電動要素側と圧縮機構部側とへの分流を促進することができる。
 本開示の第5の態様のスクロール圧縮機では、第1の態様に加えて、吸入管の内径の直径をdとすると、吸入管の密閉容器側の開口部の内径の下端を基準とした整流板の上端面の高さHが、d/4≦H≦3d/4の関係を満たす。
 本態様によれば、電動要素の冷却に必要な最小限の冷媒を整流板に衝突させて電動要素に供給し、それ以外の冷媒を圧縮機構部に直接供給することができる。これにより、効率よく電動要素を冷却することができ、圧縮機構部の効率を向上させることができる。
 本開示の第6の態様のスクロール圧縮機では、第1の態様に加えて、整流板が密閉容器の内壁に取り付けられる。
 本態様によれば、圧縮機構部の固定スクロールが軸方向に移動するスクロール圧縮機であっても、吸入管の密閉容器側の開口部と整流板との位置関係を常に一定に維持することができる。これにより、整流板を固定スクロールに固定する場合などに比べ、冷媒をより安定的に圧縮機構部に導くことができる。その結果、効率を安定的に向上させることができる。
 以下、本開示の実施形態について、図面を参照しながら説明する。
 図1は、本実施の形態に係るスクロール圧縮機の縦断面図である。図2、図3は、本実施の形態に係るスクロール圧縮機の要部を示す縦断面図である。
 図1に示すように、圧縮機1は、外殻として上下方向に長手方向を有する円筒状の密閉容器10を有する。本明細書において、上下方向とは、図1~図3におけるZ軸方向、すなわち、電動要素の回転軸方向である。
 圧縮機1は、密閉容器10の内部に、冷媒を圧縮する圧縮機構部170と、圧縮機構部170を駆動する電動要素80とを備えた密閉型スクロール圧縮機である。圧縮機構部170は、固定スクロール30、旋回スクロール40、主軸受60、オルダムリング(Oldham ring)90を含む。
 密閉容器10内の上部には、密閉容器10の内部を上下に仕切る仕切板20が設けられる。仕切板20は、密閉容器10の内部を、高圧空間11と低圧空間12とに区画する。
 高圧空間11には、圧縮機構部170と電動要素80とが配置される。高圧空間11は、圧縮機構部170において圧縮された高圧の冷媒で満たされる空間である。低圧空間12は、圧縮機構部170において圧縮される前の低圧の冷媒で満たされる空間である。低圧空間12の底部には、潤滑油が貯留される油溜まり15が形成される。
 密閉容器10は、密閉容器10の外部と低圧空間12とを連通させる吸入管13と、密閉容器10の外部と高圧空間11とを連通させる吐出管14とを備える。
 圧縮機1は、吸入管13を介して、密閉容器10の外部に設けられた冷凍サイクル回路(図示せず)から、低圧空間12に低圧の冷媒が供給される。圧縮機構部170において圧縮された高圧の冷媒は、高圧空間11に移動し、その後、高圧空間11から吐出管14を介して、冷凍サイクル回路に吐出される。
 密閉容器10の内壁には、吸入管13の密閉容器側の開口部13aと対向するように、整流板160が取り付けられる。整流板160は、上部の仕切板20側を閉塞し、密閉容器10の内壁に取り付けられる。
 吸入管13から流入した冷媒の一部が整流板160に衝突することなく圧縮機構部170の方に流れ、残りの冷媒が整流板160に衝突して電動要素80の方に流れるように、整流板160と吸入管13とが構成される。
 具体的には、図1に示すように、回転軸方向(図1では上下方向)の上端面が開口部13aの内径の下端と上端との間に位置するように、整流板160が設けられる。
 本実施の形態では、開口部13aは、固定スクロール30の吸入部301と対向する。整流板160は、開口部13aをY軸方向(密閉容器の円周方向)に50%以上覆う。
 図2に示すように、整流板160と密閉容器10の内壁との距離Lは、開口部13aの内径の直径をdとしたとき、d/4≦L≦dの関係を満たす。
 図3に示すように、開口部13aの内径の下端を基準とした、整流板160の上端面の高さHは、d/4≦H≦3d/4を満たす。
 圧縮機1は、低圧空間12内に、圧縮機構部170の固定スクロール30と旋回スクロール40とを備える。固定スクロール30は、本実施の形態における非旋回スクロールである。固定スクロール30は、仕切板20の下方に隣接して配置される。旋回スクロール40は、固定スクロール30の下方に、固定スクロール30と噛み合わされて配置される。
 固定スクロール30は、円板状の固定スクロール端板31と、固定スクロール端板31の下面に設けられた渦巻状の固定渦巻きラップ(Lap)32とを備える。
 旋回スクロール40は、円板状の旋回スクロール端板41と、旋回スクロール端板41の上面に設けられた渦巻状の旋回渦巻きラップ42と、下方ボス部43とを備える。下方ボス部43は、旋回スクロール端板41の下面の略中央に形成された円筒状の突起である。
 旋回スクロール40の旋回渦巻きラップ42と固定スクロール30の固定渦巻きラップ32とを噛み合わせることで、旋回スクロール40と固定スクロール30との間に、圧縮室50が形成される。圧縮室50は、旋回渦巻きラップ42の内壁側と外壁側とに形成される。旋回渦巻きラップ42については後述する。
 固定スクロール30および旋回スクロール40の下方には、旋回スクロール40を支持する主軸受60が設けられる。主軸受60は、上面の略中央に設けられたボス収容部62と、ボス収容部62の下方に設けられた軸受部61とを備える。ボス収容部62は、下方ボス部43を収納するための凹部である。軸受部61は、上端がボス収容部62において開口し、下端が低圧空間12に向かって開口する貫通孔である。
 主軸受60は、上面で旋回スクロール40を支持するとともに、軸受部61により回転軸70を軸支する。
 図1に示すように、回転軸70は、上下方向に配置された軸である。回転軸70の一端は、軸受部61により軸支され、回転軸70の他端は、副軸受16により軸支される。副軸受16は、低圧空間12の下方、望ましくは、油溜まり15内に設けられる。
 回転軸70の上端には、回転軸70の軸心に対して偏心した偏心軸71が設けられる。偏心軸71は、スイングブッシュ78および旋回軸受79を介して、下方ボス部43に摺動自在に挿入される。下方ボス部43は、偏心軸71によって、旋回駆動される。
 回転軸70の内部には、潤滑油が通過する油路72が形成される。油路72は、回転軸70の軸方向に形成された貫通孔である。油路72の一端は、回転軸70の下端に設けられた吸込口73として、油溜まり15内において開口する。吸込口73の上部には、吸込口73から油路72に潤滑油を汲み上げるパドル(Paddle)74が設けられる。
 回転軸70は、電動要素80に連結される。電動要素80は、主軸受60と副軸受16の間に配置される。電動要素80は、密閉容器10に固定されたステータ(Stator)81と、ステータ81の内側に配置されたロータ(Rotor)82とを備える。
 回転軸70は、ロータ82に固定される。回転軸70は、ロータ82の上方に設けられたバランスウェイト(Balance weight)17aと、ロータ82の下方に設けられたバランスウェイト17bとを備える。バランスウェイト17a、17bは、回転軸70の周方向に180°ずれた位置に配置される。
 回転軸70は、バランスウェイト17a、17bによる遠心力と、旋回スクロール40の公転運動により発生する遠心力とにより、バランスを保ちながら回転する。バランスウェイト17a、17bは、ロータ82に設けられてもよい。
 旋回スクロール40と主軸受60との間には、自転抑制部材であるオルダムリング90が設けられる。オルダムリング90は、旋回スクロール40の自転を防止する。旋回スクロール40は自転することなく、固定スクロール30に対して旋回運動を行う。
 固定スクロール30、旋回スクロール40、電動要素80、オルダムリング90、主軸受60は、低圧空間12に配置される。固定スクロール30および旋回スクロール40は、仕切板20と主軸受60との間に配置される。
 仕切板20および主軸受60は、密閉容器10に固定される。固定スクロール30、旋回スクロール40のうちの、少なくとも弾性体(図示せず)を有する一方は、仕切板20と旋回スクロール40との間、または、固定スクロール30と主軸受60との間を、軸方向に移動自在に設けられる。
 より具体的には、固定スクロール30は、主軸受60に設けられた柱状部材100に対して、軸方向(図1において上下方向)に移動自在に設けられる。柱状部材100の下端部は軸受側孔部102に挿入されて固定され、柱状部材100の上端部はスクロール側孔部101に摺動自在に挿入される。
 柱状部材100は、固定スクロール30の自転と半径方向の動きとを規制し、固定スクロール30の軸方向の動きを許容する。すなわち、固定スクロール30は、柱状部材100によって主軸受60で支持され、仕切板20と旋回スクロール40との間で軸方向に動く。
 複数の柱状部材100が、周方向に所定の間隔をあけて配置される。複数の柱状部材100は、周方向におおよそ均等に配置されるのが望ましい。
 柱状部材100は、固定スクロール30に設けられてもよい。すなわち、下端部が軸受側孔部102に摺動自在に挿入され、上端部がスクロール側孔部101に挿入されるように、柱状部材100が固定されてもよい。
 以上のように構成されたスクロール圧縮機について、以下その動作、作用について説明する。
 回転軸70は、電動要素80に駆動されて、ロータ82とともに回転する。偏心軸71とオルダムリング90とによって、旋回スクロール40は自転することなく、回転軸70の中心軸を中心に旋回運動を行う。これによって、圧縮室50の容積が縮小し、圧縮室50内の冷媒が圧縮される。
 冷媒は、吸入管13から低圧空間12に供給される。低圧空間12に供給された冷媒は、整流板160に衝突して分流する。
 本実施の形態では、整流板160の回転軸方向の上端面が、開口部13aの内径の下端と上端との間に位置する。
 従って、吸入管13から供給された冷媒の一部は、整流板160に衝突して電動要素80の方に分流する。残りの冷媒は、整流板160の上部を通過して圧縮機構部170の方に直接流れる。すなわち、電動要素80へは、電動要素80の冷却に必要な量の冷媒が流れる。残りの冷媒は、直接、圧縮機構部170における固定スクロール30の吸入部301に向かって流れる。
 従って、圧縮機構部170の方に流れる冷媒は、比較的高温になった仕切板20に衝突することなく圧縮機構部170の吸入部301に流れる。そのため、吸入冷媒が、仕切板20によって加熱されることがなく、加熱による冷媒密度の低下を抑制して、効率を向上させることができる。
 本実施の形態では、開口部13aは、固定スクロール30の吸入部301と対向する。これにより、整流板160の上部を通過する冷媒は直線的に圧縮機構部170の吸入部301に向かい、より直接的に圧縮室50内に冷媒が導かれる。これにより、仕切板20との接触を低減して冷媒密度の低下を抑制し、効率を向上させることができる。
 本実施の形態では、整流板160は、開口部13aをY軸方向(密閉容器の円周方向)に50%以上覆う。これにより、密閉容器10内に流入した冷媒は、密閉容器10の周方向ではなく、主に回転軸の下方向に分流される。このため、流動抵抗が少なく、固定スクロール30の吸入部301または電動要素80に効率よく分流させることができる。
 本実施の形態では、整流板160と密閉容器10の内壁との距離Lは、開口部13aの内径の直径をdとしたとき、d/4≦L≦dの関係を満たす。
 これにより、冷媒の流動抵抗を必要最小限に抑えつつ、吸入冷媒を効率よく分流することができる。すなわち、整流板160と密閉容器10の内壁との距離をd/4より大きくすることにより、整流板160と密閉容器10の内壁との間での冷媒の圧力損失を低減することができる。
 整流板160と密閉容器10の内壁との距離をdより小さくすることにより、整流板160による吸入冷媒の電動要素80側への分流を促進することができる。
 本実施の形態では、開口部13aの内径の下端を基準とした、整流板160の上端面の高さHは、d/4≦H≦3d/4を満たす。
 その結果、整流板160により分流されることによって、電動要素80の冷却に必要な最小限の冷媒が電動要素80に流れる。それ以外の冷媒は、固定スクロール30の吸入部301に直接流れ込む。これにより、体積効率をさらに高めることができる。
 本実施の形態では、吐出空間30H(図10参照)からの圧力によって、固定スクロール30を旋回スクロール40に押し付けることで、固定スクロール30と旋回スクロール40との隙間を最小化し、圧縮時の冷媒漏れを防止する。そのため、この構成では、固定スクロール30が、仕切板20と主軸受60との間で回転軸に沿って上下方向に動く。
 従って、整流板160を固定スクロール30に取り付けた場合、吸入管13と整流板160との位置関係が変化してしまい、効率的に冷媒を圧縮室50に供給することができない。
 しかしながら、本実施の形態では、整流板160が密閉容器10の内壁に取り付けられる。そのため、吸入管13と整流板160との位置関係は常に一定に維持される。これにより、安定的に冷媒を圧縮室50に供給することが可能となる。
 このようにして、圧縮機構部170の圧縮室50に供給され、圧縮室50で圧縮された冷媒は、高圧空間11を経由して、吐出管14から吐出される。
 油溜まり15に貯留された潤滑油は、回転軸70の回転によって、吸込口73からパドル74に沿って、油路72の上方に汲み上げられる。汲み上げられた潤滑油は、第1給油口75、第2給油口76および第3給油口77から、軸受部61、副軸受16、ボス収容部62に供給される。
 ボス収容部62まで汲み上げられた潤滑油は、主軸受60と旋回スクロール40との摺動面に導かれ、返送経路63(図8参照)を通して排出され、再び油溜まり15に戻る。
 圧縮機1の詳細な構成について、さらに説明する。
 図4Aは、本実施の形態に係るスクロール圧縮機の旋回スクロールの側面図である。図4Bは、図4Aの4B-4B線断面図である。
 旋回渦巻きラップ42は、旋回スクロール端板41の中心に位置する始端42aから、外周付近に位置する終端42bに向かって徐々に半径が拡大するインボリュート曲線状の断面を有する壁である。旋回渦巻きラップ42は、所定の高さおよび厚さを有する。
 旋回スクロール端板41の下面には、外周から中心に向かう長手方向を有する一対の第1のキー溝91が設けられる。
 図5は、本実施の形態に係るスクロール圧縮機の固定スクロールを示す底面図である。図6は、固定スクロールを底面側から見た斜視図である。図7は、固定スクロールを上面側から見た分解斜視図である。
 図5~図7に示すように、固定渦巻きラップ32は、固定スクロール端板31の中心に位置する始端32aから、外周付近に位置する終端32cに向かって徐々に半径が拡大するインボリュート曲線状の断面を有する壁である。固定渦巻きラップ32の高さおよび厚さは、旋回渦巻きラップ42の高さおよび厚さにそれぞれ等しい。
 固定渦巻きラップ32は、始端32aから中間部32bまでは内壁と外壁とを有し、中間部32bから終端32cまでは内壁のみを有する。内壁とは中心側の壁面であり、外壁とは外周側の壁面である。
 固定スクロール端板31の略中心部には、第1吐出ポート35が形成される。固定スクロール端板31には、バイパスポート36と中圧ポート37とが形成される。バイパスポート36は、第1吐出ポート35の近傍の、圧縮完了直前の高圧圧力の冷媒が存在する領域に配置される。
 旋回渦巻きラップ42には、二組のバイパスポート36が設けられる。一組のバイパスポート36は三つの小孔で構成される。旋回渦巻きラップ42の外壁側に、圧縮室50と連通する一組のバイパスポート36が形成される。旋回渦巻きラップ42の内壁側に、圧縮室50と連通するもう一組のバイパスポート36が形成される。
 中圧ポート37は、中間部32bの近傍の、圧縮途中の冷媒が存在する領域に配置される。
 図6に示すように、固定スクロール30の外周部には、周壁33から半径方向に突出する一対の第1フランジ34aと一対の第2フランジ34bとが設けられる。第1フランジ34aおよび第2フランジ34bは、固定スクロール端板31よりも下方(旋回スクロール40側)に設けられる。第2フランジ34bは、第1フランジ34aよりも下方に設けられ、その下面(旋回スクロール40側の面)は、固定渦巻きラップ32の先端面と略同一平面上に位置する。
 一対の第1フランジ34aは、所定の間隔をあけて、回転軸70の周方向にほぼ均等に配置される。一対の第2フランジ34bは、所定の間隔をあけて、回転軸70の周方向にほぼ均等に配置される。
 固定スクロール30の周壁33には、冷媒を圧縮室50に取り込むための吸入部301が形成される。
 第1フランジ34aには、柱状部材100の上端部が挿入されるスクロール側孔部101が設けられる。一対の第1フランジ34aの各々に、一つのスクロール側孔部101が設けられる。スクロール側孔部101は、本実施の形態における受部である。二つのスクロール側孔部101は、周方向に所定の間隔をあけて配置される。二つのスクロール側孔部101は、周方向に均等に配置されるのが望ましい。スクロール側孔部101は、貫通孔ではなく、下向きの凹部であってもよい。
 スクロール側孔部101は、連通孔(図示せず)を介して、固定スクロール30の外部、すなわち、低圧空間12と連通する。
 第2フランジ34bには、第2のキー溝92が設けられる。第2のキー溝92は、一対の第2フランジ34bの各々に設けられた、半径方向に長手方向を有する一対の溝である。
 図7に示すように、固定スクロール30の上面(仕切板20側の面)には、中央に上方ボス部39が設けられる。上方ボス部39は、固定スクロール30の上面から突出する円柱状の突起である。
 第1吐出ポート35とバイパスポート36とは、上方ボス部39の上面において開口する。上方ボス部39の上面側と仕切板20との間には、吐出空間30Hが形成される(図10参照)。第1吐出ポート35とバイパスポート36とは、吐出空間30Hと連通する。
 固定スクロール30の上面には、上方ボス部39の外周側に、リング状凸部310が設けられる。上方ボス部39とリング状凸部310とによって、固定スクロール30の上面に凹部が形成される。この凹部は中圧空間30Mを形成する(図10参照)。中圧ポート37は、固定スクロール30の上面(凹部の底面)において開口し、中圧空間30Mと連通する。
 中圧ポート37の孔径は、旋回渦巻きラップ42の厚さより小さい。これにより、旋回渦巻きラップ42の内壁側に形成される圧縮室50が、旋回渦巻きラップ42の外壁側に形成される圧縮室50と連通するのを防止することができる。
 上方ボス部39の上面には、バイパスポート36を開閉自在とするバイパス逆止弁121と、バイパス逆止弁121の過度な変形を防止するバイパス逆止弁ストップ122とが設けられる。バイパス逆止弁121にリードバルブを用いることで、高さ方向の寸法をコンパクトにすることができる。
 バイパス逆止弁121にV字型のリードバルブを用いることで、一つのリードバルブで、旋回渦巻きラップ42の外壁側に形成される圧縮室50と連通するバイパスポート36と、旋回渦巻きラップ42の内壁側に形成される圧縮室50と連通するバイパスポート36とを閉じることができる。
 固定スクロール30の上面(凹部の底面)には、中圧ポート37を開閉自在とする中圧逆止弁(図示せず)と、中圧逆止弁の過度な変形を防止する中圧逆止弁ストップ(図示せず)とが設けられる。中圧逆止弁にリードバルブを用いることで、高さ方向の寸法をコンパクトにすることができる。中圧逆止弁は、ボールバルブとバネとで構成することもできる。
 図8は、本実施の形態に係るスクロール圧縮機の主軸受を上面側から見た斜視図である。
 主軸受60の外周部には、柱状部材100の下端部が挿入される軸受側孔部102が設けられる。二つの軸受側孔部102が、周方向に所定の間隔をあけて配置される。二つの軸受側孔部102は、周方向に均等に配置されるのが望ましい。軸受側孔部102は、貫通孔ではなく、上向きの凹部であってもよい。
 主軸受60には、一端がボス収容部62において開口し、他端が主軸受60の下面において開口する返送経路63が形成される。返送経路63の一端は、主軸受60の上面において開口してもよい。返送経路63の他端は、主軸受60の側面において開口してもよい。
 返送経路63は、軸受側孔部102とも連通する。このため、軸受側孔部102には、返送経路63を介して潤滑油が供給される。
 図9は、本実施の形態に係るスクロール圧縮機のオルダムリング90を示す上面図である。オルダムリング90は、略円環状のリング部95と、リング部95の上面から突出する一対の第1のキー93および一対の第2のキー94とを備える。第1のキー93および第2のキー94は、二つの第1のキー93を結ぶ直線が、二つの第2のキー94を結ぶ直線と直交するように設けられる。
 第1のキー93は、旋回スクロール40の第1のキー溝91と係合する。第2のキー94は、固定スクロール30の第2のキー溝92と係合する。これにより、旋回スクロール40は自転することなく、固定スクロール30に対して旋回運動を行うことができる。
 本実施の形態では、固定スクロール30、旋回スクロール40、オルダムリング90が、回転軸70の軸方向に上方からこの順に配置される。このため、第1のキー93と第2のキー94とは、リング部95と同一平面に形成される。
 これにより、オルダムリング90の作成時に、第1のキー93と第2のキー94を同一方向から加工することが可能となり、加工装置からオルダムリング90を脱着する回数を減らすことができる。その結果、オルダムリング90の加工精度の向上および加工費の削減が可能となる。
 図10は、本実施の形態に係るスクロール圧縮機の要部断面図である。図11は、本実施の形態に係る密閉型スクロール圧縮機の要部断面斜視図である。
 図10、図11に示すように、仕切板20の中心部には、第2吐出ポート21が設けられる。仕切板20の上面には、第2吐出ポート21を開閉自在とする吐出逆止弁131と、吐出逆止弁131の過度な変形を防止する吐出逆止弁ストップ132とが設けられる。
 仕切板20と固定スクロール30との間には、吐出空間30Hが形成される。吐出空間30Hは、第1吐出ポート35およびバイパスポート36を介して圧縮室50と連通し、第2吐出ポート21を介して高圧空間11と連通する。
 吐出空間30Hは、第2吐出ポート21を介して高圧空間11と連通するため、固定スクロール30の上面側には背圧が加わる。吐出空間30Hに高圧圧力が加わることで、固定スクロール30は、旋回スクロール40に押し付けられる。このため、固定スクロール30と旋回スクロール40との間の隙間を無くすことができる。その結果、圧縮機1は、高効率で運転することができる。
 吐出逆止弁131の厚さは、バイパス逆止弁121の厚さより厚い。これにより、バイパス逆止弁121は、必ず吐出逆止弁131より先に開く。
 第2吐出ポート21の容積は、第1吐出ポート35の容積よりも大きい。これにより、圧縮室50から吐出される冷媒の圧力損失を低減することができる。
 第2吐出ポート21の流入側に、テーパを形成してもよい。これにより、圧力損失を低減することができる。
 仕切板20の下面には、第2吐出ポート21の周りに円環状に突出する突出部22が設けられる。突出部22には、閉塞部材150の一部が挿入される複数の孔221が設けられる。閉塞部材150については後述する。
 突出部22には、第1シール部材141と、第2シール部材142とが設けられる。第1シール部材141は、突出部22から仕切板20の中心側に突出するリング状のシール部材である。第1シール部材141の先端は、上方ボス部39の側面に接する。すなわち、第1シール部材141は、仕切板20と固定スクロール30との間の、吐出空間30Hの外周に配置される。
 第2シール部材142は、突出部22から仕切板20の外周側に突出するリング状のシール部材である。第2シール部材142は、第1シール部材141の外側に配置される。第2シール部材142の先端は、リング状凸部310の内側面に接する。すなわち、第2シール部材142は、仕切板20と固定スクロール30との間の、中圧空間30Mの内周に配置される。
 換言すると、第1シール部材141および第2シール部材142によって、仕切板20と固定スクロール30との間には、吐出空間30Hと中圧空間30Mとが形成される。吐出空間30Hは、上方ボス部39の上方に形成される空間である。中圧空間30Mは、上方ボス部39の周囲に形成される空間である。
 第1シール部材141は、吐出空間30Hと中圧空間30Mとを区画する。第2シール部材142は、中圧空間30Mと低圧空間12とを区画する。
 第1シール部材141および第2シール部材142には、例えばフッ素樹脂であるポリテトラフルオロエチレンが、シール性と組み立て性の面で適する。第1シール部材141および第2シール部材142を、繊維材を混合させたフッ素樹脂で作製すると、シールの信頼性が向上する。
 第1シール部材141および第2シール部材142は、閉塞部材150と突出部22との間に挟み込まれる。このため、仕切板20に、第1シール部材141、第2シール部材142、閉塞部材150を取り付けた後に、これら部材が取り付けられた仕切板20を密閉容器10内に配置することができる。これにより、部品点数を削減することができるとともに、スクロール圧縮機の組み立てが容易になる。
 より詳細には、閉塞部材150は、仕切板20の突出部22に対向するように配置されたリング状部151と、リング状部151から突出する複数の突出部152とを備える。
 第1シール部材141の外周側は、リング状部151の上面の内周側と突出部22の下面とで挟み込まれる。第2シール部材142の内周側は、リング状部151の上面の外周側と突出部22の下面とで挟み込まれる。
 すなわち、リング状部151は、第1シール部材141と第2シール部材142とを介して、仕切板20の突出部22の下面に対向する。
 複数の突出部152が、突出部22に形成された複数の孔221に挿入される。突出部152の上端は、リング状部151が突出部22の下面を押圧した状態で、かしめられる。すなわち、突出部152の上端を平板状に変形させて、閉塞部材150を仕切板20に固定すると、リング状部151が突出部22の下面に押圧された状態となる。閉塞部材150をアルミニウム材で作製すると、突出部152の上端を容易にかしめることができる。
 仕切板20に第1シール部材141および第2シール部材142を取り付けた状態では、第1シール部材141の内周部は、リング状部151から仕切板20の中心側に突出し、第2シール部材142の外周部は、リング状部151から仕切板20の外周側に突出する。
 第1シール部材141および第2シール部材142を取り付けた仕切板20を、密閉容器10内に装着することで、第1シール部材141の内周部は、固定スクロール30の上方ボス部39の外周面に押圧され、第2シール部材142の外周部は、固定スクロール30のリング状凸部310の内周面に押圧される。
 中圧空間30Mは、中圧ポート37を介して、圧縮途中の冷媒が存在する圧縮室50の領域と連通する。このため、中圧空間30Mの圧力は、吐出空間30Hの圧力より低く、低圧空間12の圧力よりも高い。
 このように、仕切板20と固定スクロール30との間に、吐出空間30H以外に、中圧空間30Mを形成することで、固定スクロール30を旋回スクロール40に押し付ける力を調整することが容易となる。
 第1シール部材141と第2シール部材142とで中圧空間30Mを区画するため、吐出空間30Hから中圧空間30Mへの冷媒の漏れや、中圧空間30Mから低圧空間12への冷媒の漏れを低減することができる。
 本開示によれば、電動要素の冷却を確保しつつ、仕切板における吸入加熱による効率低下を防ぐことができ、効率の高いスクロール圧縮機を提供することができる。本開示は、給湯機、温水暖房装置、空気調和装置などに用いられる圧縮機に適用可能である。
 1 圧縮機
 10 密閉容器
 11、204 高圧空間
 12、201 低圧空間
 13、200 吸入管
 13a 開口部
 14 吐出管
 16 副軸受
 17a、17b バランスウェイト
 20、203 仕切板
 21 第2吐出ポート
 22、152 突出部
 30 固定スクロール
 30H 吐出空間
 30M 中圧空間
 31 固定スクロール端板
 32 固定渦巻きラップ
 32a 始端
 32b 中間部
 32c 終端
 33 周壁
 34a 第1フランジ
 34b 第2フランジ
 35 吐出ポート
 36 バイパスポート
 37 中圧ポート
 39 上方ボス部
 40 旋回スクロール
 41 旋回スクロール端板
 42 旋回渦巻きラップ
 42a 始端
 42b 終端
 43 下方ボス部
 50 圧縮室
 60 主軸受
 61 軸受部
 62 ボス収容部
 63 返送経路
 70 回転軸
 71 偏心軸
 72 油路
 73 吸込口
 74 パドル
 75 給油口
 76 給油口
 77 給油口
 78 スイングブッシュ
 79 旋回軸受
 80 電動要素
 81 ステータ
 82 ロータ
 90 オルダムリング
 91、92 キー溝
 93、94 キー
 95 リング部
 100 柱状部材
 101 スクロール側孔部
 102 軸受側孔部
 121 バイパス逆止弁
 122 バイパス逆止弁ストップ
 131 吐出逆止弁
 132 吐出逆止弁ストップ
 141、142 シール部材
 150 閉塞部材
 151 リング状部
 160、202 整流板
 170、205 圧縮機構部
 221 孔
 301 吸入部
 310 リング状凸部

Claims (6)

  1.  密閉容器内を高圧空間と低圧空間とに区画する仕切板と、
     前記仕切板に隣接する固定スクロールと、
     前記固定スクロールと噛み合わされて圧縮室を形成する旋回スクロールと、
     前記旋回スクロールの自転を防止する自転抑制部材と、
     前記旋回スクロールを支持する主軸受とを有し、
     前記固定スクロール、前記旋回スクロール、前記自転抑制部材を有する圧縮機構部と、前記主軸受とが前記低圧空間に配置され、
     前記固定スクロールおよび前記旋回スクロールが、前記仕切板と前記主軸受との間に配置されたスクロール圧縮機であって、
     前記低圧空間において冷媒の吸入管を開口させるとともに、前記吸入管の前記密閉容器側に冷媒分流用の整流板が設けられ、
     前記整流板は、回転軸方向の上端面が、前記吸入管の前記密閉容器側の開口部の内径の下端と上端との間に位置するように構成されたスクロール圧縮機。
  2.  前記吸入管の前記密閉容器側の開口部が前記圧縮機構部の吸入部と対向する、請求項1に記載のスクロール圧縮機。
  3.  前記整流板が、前記吸入管の前記密閉容器側の開口部を、前記密閉容器の円周方向に50%以上覆う、請求項1に記載のスクロール圧縮機。
  4.  前記吸入管の内径の直径をdとすると、前記整流板と前記密閉容器の内壁との距離Lが、d/4≦L≦dの関係を満たす、請求項1に記載のスクロール圧縮機。
  5.  前記吸入管の内径の直径をdとすると、前記吸入管の前記密閉容器側の開口部の内径の下端を基準とした前記整流板の上端面の高さHが、d/4≦H≦3d/4の関係を満たす、請求項1に記載のスクロール圧縮機。
  6.  前記整流板が前記密閉容器の内壁に取り付けられた、請求項1に記載のスクロール圧縮機。
PCT/JP2018/027583 2017-07-27 2018-07-24 スクロール圧縮機 WO2019022037A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880049347.1A CN110998094B (zh) 2017-07-27 2018-07-24 涡旋式压缩机
JP2019532618A JP6934612B2 (ja) 2017-07-27 2018-07-24 スクロール圧縮機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-145076 2017-07-27
JP2017145076 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019022037A1 true WO2019022037A1 (ja) 2019-01-31

Family

ID=65039703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027583 WO2019022037A1 (ja) 2017-07-27 2018-07-24 スクロール圧縮機

Country Status (3)

Country Link
JP (1) JP6934612B2 (ja)
CN (1) CN110998094B (ja)
WO (1) WO2019022037A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021363A (ja) * 2019-07-29 2021-02-18 パナソニックIpマネジメント株式会社 圧縮機
EP4339461A1 (en) * 2022-09-13 2024-03-20 MAHLE International GmbH Electric compressor with a multicavity pulsation muffler system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253090A (ja) * 1993-12-13 1995-10-03 Carrier Corp 低圧側密閉式圧縮機
JP2004218536A (ja) * 2003-01-15 2004-08-05 Mitsubishi Heavy Ind Ltd 電動圧縮機
JP2014066472A (ja) * 2012-09-27 2014-04-17 Fujitsu General Ltd 空気調和装置及びそれに用いられる圧縮機
US9057270B2 (en) * 2012-07-10 2015-06-16 Emerson Climate Technologies, Inc. Compressor including suction baffle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334250B1 (ko) * 2007-07-30 2013-11-29 엘지전자 주식회사 스크롤 압축기의 유분리 장치
KR102056371B1 (ko) * 2013-05-21 2019-12-16 엘지전자 주식회사 스크롤 압축기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253090A (ja) * 1993-12-13 1995-10-03 Carrier Corp 低圧側密閉式圧縮機
JP2004218536A (ja) * 2003-01-15 2004-08-05 Mitsubishi Heavy Ind Ltd 電動圧縮機
US9057270B2 (en) * 2012-07-10 2015-06-16 Emerson Climate Technologies, Inc. Compressor including suction baffle
JP2014066472A (ja) * 2012-09-27 2014-04-17 Fujitsu General Ltd 空気調和装置及びそれに用いられる圧縮機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021363A (ja) * 2019-07-29 2021-02-18 パナソニックIpマネジメント株式会社 圧縮機
JP7369934B2 (ja) 2019-07-29 2023-10-27 パナソニックIpマネジメント株式会社 圧縮機
EP4339461A1 (en) * 2022-09-13 2024-03-20 MAHLE International GmbH Electric compressor with a multicavity pulsation muffler system

Also Published As

Publication number Publication date
JPWO2019022037A1 (ja) 2020-07-16
CN110998094B (zh) 2022-03-25
JP6934612B2 (ja) 2021-09-15
CN110998094A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
JP6344573B2 (ja) スクロール圧縮機
EP3418575B1 (en) Compressor having integrated flow path structure
JP6300829B2 (ja) 回転式圧縮機
CN106062369B (zh) 涡旋式压缩机
JP6555543B2 (ja) スクロール圧縮機
CN113994098B (zh) 涡旋式压缩机
WO2019022037A1 (ja) スクロール圧縮機
JP6757898B2 (ja) スクロール圧縮機
JP7022902B2 (ja) スクロール圧縮機
KR102566589B1 (ko) 스크롤형 압축기
WO2018021058A1 (ja) スクロール圧縮機
US11933304B2 (en) Scroll compressor including hub lubricant passage
JP6767640B2 (ja) スクロール圧縮機
CN113454341B (zh) 涡旋式压缩机
JP2022152796A (ja) スクロール型圧縮機
KR20240014320A (ko) 스크롤 압축기
EP4396462A1 (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532618

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838601

Country of ref document: EP

Kind code of ref document: A1