WO2019021778A1 - 電池モジュール及びこれを装備する車両 - Google Patents

電池モジュール及びこれを装備する車両 Download PDF

Info

Publication number
WO2019021778A1
WO2019021778A1 PCT/JP2018/025430 JP2018025430W WO2019021778A1 WO 2019021778 A1 WO2019021778 A1 WO 2019021778A1 JP 2018025430 W JP2018025430 W JP 2018025430W WO 2019021778 A1 WO2019021778 A1 WO 2019021778A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery module
end plate
expansion
stack
Prior art date
Application number
PCT/JP2018/025430
Other languages
English (en)
French (fr)
Inventor
憲吾 石橋
伸一 三堀
忍 寺内
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2019021778A1 publication Critical patent/WO2019021778A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module formed by connecting end plates formed at both ends of a battery stack in which a plurality of rectangular battery cells are stacked by a bind bar, and a vehicle equipped with the battery module.
  • a typical battery module includes a battery stack including a plurality of rectangular battery cells, a pair of end plates disposed on both end surfaces of the battery stack, and a bind bar connecting the pair of end plates (see FIG. Patent Document 1).
  • the battery stack including the plurality of rectangular battery cells can be aggregated by restraining the battery stack by the end plate and the bind bar.
  • the dimensional change associated with charge and discharge or deterioration tends to be large.
  • the load applied to the bind bar and the end plate is due to the amount of expansion of the rectangular battery cell. Therefore, when using a rectangular battery cell with a large dimensional change, in the battery module configuration of Patent Document 1, the end plate or bind bar is used. A large load is applied, and the end plate and the binding bar may be deformed or broken.
  • the present invention has been developed for the purpose of solving the above-mentioned drawbacks, and an important object of the present invention is to construct an end plate while collecting a plurality of prismatic battery cells. It is an object of the present invention to provide a technology capable of reducing such a load.
  • a battery module includes a battery stack 2 formed by stacking a plurality of rectangular battery cells 1 in the thickness direction, and a pair of end plates disposed on both end surfaces of the battery stack 2 in the stacking direction. 3 and a bind bar 4 connected to the pair of end plates 3.
  • the end plate 3 is provided with the expansion allowing recess 11 of the battery stack 2 which becomes deeper toward the central portion on the surface facing the battery stack 2.
  • the vehicle provided with the battery module of the above component is also effective as an aspect of this invention.
  • the above battery module charges and discharges the rectangular battery cell, and the battery stack is caused by the expansion of the rectangular battery cell by the expansion allowing recess provided on the battery opposing surface which is the opposite surface to the battery stack of the end plate. Since the body can be allowed to expand, the load on the end plate can be reduced. In particular, since the above battery module is provided with an expansion permitting recess which becomes deeper toward the central portion of the end plate, the outer peripheral edge of the end plate is brought into close contact with the outer peripheral edge of the battery stack to displace the square battery cell Not be held in place.
  • FIG. 2 is a block diagram showing an example in which a battery module is mounted on a hybrid vehicle traveling by an engine and a motor. It is a block diagram which shows the example which mounts a battery module in the electric vehicle which drive
  • end plates are disposed on both end faces of a battery stack in which a plurality of rectangular battery cells are stacked, and a pair of end plates are connected by a bind bar. It fixes in the state pressurized in a lamination direction.
  • this battery module since both ends of the battery stack are fixed in a pressurized state by a pair of end plates, sufficient strength is required of the end plates.
  • the rectangular battery cells to be charged and discharged expand and receive cell reaction force from the inner surface.
  • the end plate Since the end plate is pressed from the inner surface by the battery stack that expands, it receives a cell reaction force that is proportional to the product of the area of the battery stack and the pressure that the battery stack presses. Therefore, in a rectangular battery cell having a large dimensional change due to charge and discharge, a cell reaction force having a size corresponding to the amount of expansion acts on the end plate. Therefore, if it is intended to suppress the expansion of the rectangular battery cell to such an extent that the dimensions do not substantially change, the cell reaction force acting on the end plate is, for example, several in the battery module for power supply for driving the traveling motor of the vehicle. It will be extremely large.
  • One of the objects of the structure which connects a pair of end plates with a bind bar and fixes the battery stack in a state of pressing in the stacking direction is to suppress the dimensional variation of the battery module.
  • the dimensional variation of the battery module may cause problems such as the battery module not being able to be arranged in a designated space when mounting the battery module in a vehicle etc., so the dimensional variation of the battery module is suppressed
  • a battery stack composed of a plurality of battery cells is assembled. Therefore, if dimensional variations of the battery module can be suppressed while permitting expansion of the rectangular battery cell, the load on the end plate can be reduced while maintaining the performance as the battery module.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and one member is used in common as a plurality of elements, or conversely the function of one member is realized by a plurality of members It can be shared and realized.
  • the contents described in some examples and embodiments may be applicable to other examples and embodiments.
  • the vertical direction is specified in the drawings.
  • FIG. 1 and 2 show a battery module 10 according to a first embodiment.
  • FIG. 1 shows a perspective view of the battery module
  • FIG. 2 shows a schematic horizontal sectional view of the battery module.
  • a battery module 10 shown in these figures is a battery stack 2 in which a plurality of rectangular battery cells 1 are stacked with a separator 6 of insulating material interposed therebetween, and both end surfaces of the battery stack 2.
  • a pair of end plates 3 held in a fixed position from the surface, a bind bar 4 connecting the pair of end plates 3, and bolts 5 A of fixing pins 5 for fixing the bind bars to the end plate 3 Have.
  • the above battery module 10 has an elongated box shape as a whole, as shown in FIG. 1, and a large number of rectangular battery cells 1 are stacked to form a battery stack 2, and the battery stack 2 is endplate 3 from both end faces in the stacking direction. , And the end plates 3 at both ends are connected by the bind bar 4 to fix the battery stack 2 in a pressurized state.
  • the battery stack 2 connects the stacked rectangular battery cells 1 in series, in parallel, or in series and parallel via bus bars (not shown) of metal plates.
  • the opening of the outer case which has a rectangular outer shape thinner than the width, is closed with a sealing plate, the positive and negative electrode terminals are provided on the sealing plate, and the bus bar is connected to the electrode terminals doing.
  • the battery module in which the rectangular battery cells 1 are connected in series with each other can increase the output voltage to increase the output, and the battery modules connected in parallel can increase the current capacity.
  • the rectangular battery cell 1 is a non-aqueous electrolytic solution secondary battery such as a lithium ion secondary battery.
  • the prismatic battery cell may be any secondary battery currently used or to be developed, such as a nickel hydrogen battery or a nickel cadmium battery.
  • a pair of end plates 3 disposed at both ends of the battery stack 2 is connected to the bind bar 4 and holds the battery stack 2 in a pressurized state to receive a cell reaction force by expansion of the rectangular battery cell 1.
  • the end plate 3 shown in FIG. 2 is provided with the expansion allowing recess 11 in the battery facing surface 3A which is a surface facing the battery stack 2 in order to reduce the cell reaction force.
  • the rectangular battery cell 1 is charged and discharged to expand, but the amount of expansion increases at the central portion. Since the battery stack 2 is formed by stacking a plurality of rectangular battery cells 1, when the central portion of the rectangular battery cell 1 expands, expansion of the central portion of the battery laminate 2 in which the battery cells are stacked increases at the end face .
  • the end plate 3 is provided on the surface facing the battery stack 2 with an expansion allowing recess 11 having a central portion as a recess.
  • the end plate 3 can be provided with the expansion allowing recess 11 to significantly reduce the cell reaction force. By allowing the expansion, the pressure with which the end face of the battery stack 2 presses the inner surface of the end plate 3 is significantly reduced.
  • the depth of the expansion allowing recess 11 is set to an optimum value in consideration of the dimension in the stacking direction of the battery stack 2.
  • the end plate 3 can make the cell reaction force smaller by deepening the expansion allowing recess 11. Therefore, for example, the depth (d) of the expansion allowing recess 11 is 1/3000 or more, preferably 1/2000 or more, and more preferably 1/1000 or more of the thickness in the stacking direction of the battery stack 2. If the expansion allowing recess 11 is too deep, the amount of deformation of the rectangular battery cell 1 becomes large.
  • the depth (d) of the expansion allowing recess 11 is set to an optimum value taking into account the amount of deformation of the rectangular battery cell 1, and therefore, for example, 1/100 or less, preferably 1/200 or less, more preferably 1 / 300 or less.
  • the present invention does not specify the depth (d) of the expansion allowing recess 11 in the above range, and the depth (d) of the expansion allowing recess 11 indicates the expansion amount of the rectangular battery cell 1 and the end plate 3. It is set to an optimal value in consideration of the strength.
  • FIG. 3 shows an enlarged sectional view of the battery facing surface 3A of the end plate 3.
  • the end plate 3 in this figure is provided with a flat portion 12 of a predetermined width along the outer peripheral edge.
  • the flat portion 12 provided on the outer peripheral edge of the end plate 3 is in contact with the outer peripheral edge of the rectangular battery cell 1 in a surface contact state with a predetermined width, and displacement of the rectangular battery cell 1 can be prevented more reliably.
  • the shape of the boundary portion 13 between the flat portion 12 and the expansion allowing recess 11 is gradually inclined toward the central portion of the expansion allowing recess 11 ( ⁇ ) Is made larger.
  • central portion of the expansion allowing recess 11
  • a protruding line 14 that protrudes linearly and sharply toward the battery stack 2 is formed at the boundary between the flat portion 12 and the expansion allowing recess 11.
  • the end plate 3 in which the protruding line 14 protrudes toward the battery stack 2 may damage the surface of the rectangular battery cell 1 when the protruding line 14 locally presses the end face of the battery stack 2 linearly.
  • the end plate 3 shown in the enlarged cross sectional views of FIGS. 4 and 5 has the shape of the boundary portion 13 between the flat portion 12 and the expansion allowing concave portion 11 inclined downward toward the central portion in order to prevent this adverse effect.
  • the inclination angle ( ⁇ ) is increased.
  • the end plate 3 of FIG. 4 changes the inclination angle ( ⁇ ) of the downward slope stepwise, and the end plate 3 of FIG. 5 changes the inclination angle ( ⁇ ) continuously to make the boundary portion 13 a curved surface .
  • the end plate 3 of FIG. 4 divides the protruding lines 14 formed in the boundary portion 13 into a plurality of lines to prevent damage to the battery stack 2. By dividing the protruding line 14 into a plurality of rows, the tip angle of the protruding line 14 can be brought closer to a plane.
  • the end plate 3 of FIG. 5 prevents the battery stack 2 from being damaged, with the boundary 13 as a curved surface and without any protruding line.
  • the battery module 10 of this structure is characterized in that the elastic thermal conductive sheet 7 described later can be disposed between the battery stack 2 and the end plate 3 so that the elastic thermal conductive sheet 7 can be prevented from being damaged. This is because the protruding lines 14 do not locally damage the elastic heat conductive sheet 7 by pressing it.
  • the elastic thermal conductive sheet 7 is disposed between the battery facing surface 3A and the battery stack 2.
  • the elastic heat conductive sheet 7 is a sheet which is elastically deformed in the thickness direction by being pushed by a cell reaction force generated by expansion of the battery stack 2.
  • the elastic heat conductive sheet 7 is pressed by the cell reaction force and is thinly deformed.
  • a heat conductive powder such as metal or graphite or a heat conductive fiber such as metal fiber is added to a sheet-like heat conductive gel, a flexible rubber elastic body or an open cell plastic foam. Any sheet which is compressed and thin and elastically deformed can be used as the sheet.
  • the elastic heat conductive sheet 7 is in close contact with one end face of the end plate 3 and the other end is in contact with the end face of the battery stack 2.
  • the battery module 10 capable of thermally conducting the heat generation of the battery stack 2 to the end plate 3 through the elastic heat conductive sheet 7 reduces the temperature rise of the rectangular battery cells 1 disposed on the end face of the battery stack 2 to reduce the thermal runaway. Can be prevented.
  • the elastic thermal conductive sheet 7 in which both sides are in close contact with the battery stack 2 and the end plate 3 and thermally runaway in both the expanded and non-expanded states of the battery stack 2 always generates heat of the battery stack 2 as an end plate Heat transfer to 3 efficiently.
  • the elastic heat conductive sheet 7 preferably an insulating sheet is used.
  • the insulating elastic thermal conductive sheet 7 can be realized by laminating an insulating sheet on a thermal conductive sheet.
  • the insulating elastic thermal conductive sheet 7 in which the thermal conductive sheet and the insulating sheet are laminated is a sheet that elastically deforms either the thermal conductive sheet or the insulating sheet.
  • the elastic thermal conduction sheet 7 in which the thermal conduction sheet and the insulation sheet are laminated is an excellent thermal conduction characteristic and an insulation characteristic by laminating a thermal conduction sheet having an excellent thermal conduction characteristic and a sheet having an excellent insulation characteristic. Can be realized.
  • the battery facing surface 3A of the end plate 3 can be made of metal.
  • the surface facing the battery stack 2 can be a metal plate, or the entire end plate 3 can be made of a metal such as aluminum.
  • stacked the square battery cell 1 which insulates the surface with the insulation sheet does not use the elastic heat conduction sheet 7 as an insulation sheet, and is insulated with the conductive elastic heat conduction sheet 7
  • the exterior can of the rectangular battery cell 1 and the end plate 3 can be insulated without laminating the sheet.
  • the battery module 10 of FIG. 1 and FIG. 2 makes the end plate 3 whole the aluminum metal block.
  • the cell reaction force of the battery module 10 can be reduced by the expansion allowing recess 11 of the end plate 3 to reduce the weight of the end plate 3 as a mold made of aluminum.
  • the end plate 3 can use the end plate 3 whose surface facing the battery stack 2 is a metal plate of iron or iron alloy.
  • the end plate 3 having a metal plate opposite to the battery stack 2 has a structure in which a plurality of metal plates are stacked, or a structure in which a metal rod or a metal pipe is fixed to the surface of the metal plate, or It can be made a structure etc. which laminates a forming object.
  • the bind bar 4 is connected to the end plate 3 at both ends to fasten the battery stack 2 in a pressurized state.
  • the bind bar 4 in FIG. 1 is fixed by screwing both ends of the metal plate to both side surfaces of the end plate 3 with bolts 5A which are fixing pins 5.
  • the bind bar may be formed by bending both ends of the metal plate inward to provide a bent piece, and screwing and fixing the bent piece to the surface of the end plate.
  • the above battery module is most suitable for the power supply which supplies electric power to the motor which runs an electric vehicle.
  • a vehicle equipped with a battery module a hybrid vehicle or plug-in hybrid vehicle traveling with both an engine and a motor, an electric vehicle traveling only with a motor, or the like can be used, and is used as a power source for these vehicles.
  • a large-capacity, high-power power supply device 100 is constructed and mounted by connecting a number of the above-described battery modules in series or in parallel and further adding necessary control circuits. Indicates
  • FIG. 6 shows an example in which the power supply device is mounted on a hybrid vehicle traveling with both an engine and a motor.
  • a vehicle HV equipped with the power supply device shown in this figure includes a vehicle body 90, an engine 96 for traveling the vehicle body 90, a motor 93 for traveling, and wheels driven by the engine 96 and the motor 93 for traveling.
  • a power supply unit 100 supplies power to the motor 93, and a generator 94 charges the battery of the power supply unit 100.
  • the power supply device 100 is connected to the motor 93 and the generator 94 via a DC / AC inverter 95.
  • the vehicle HV travels with both the motor 93 and the engine 96 while charging and discharging the battery of the power supply device 100.
  • the motor 93 is driven in a region where the engine efficiency is low, for example, at the time of acceleration or low speed traveling to drive the vehicle.
  • the motor 93 is supplied with power from the power supply device 100 and is driven.
  • the generator 94 is driven by the engine 96 or driven by regenerative braking when the vehicle is braked to charge the battery of the power supply device 100.
  • FIG. 7 shows the example which mounts a power supply device in the electric vehicle which drive
  • the vehicle EV equipped with the power supply device shown in this figure supplies power to the vehicle body 90, a traveling motor 93 for traveling the vehicle body 90, wheels 97 driven by the motor 93, and the motor 93.
  • the power supply device 100 is connected to the motor 93 and the generator 94 via a DC / AC inverter 95.
  • the motor 93 is supplied with power from the power supply device 100 and is driven.
  • the generator 94 is driven by energy when regenerative braking the vehicle EV, and charges the battery of the power supply device 100.
  • the embodiment may be specified by the following configuration.
  • the battery stack 2 formed by stacking the plurality of rectangular battery cells 1 in the thickness direction and the battery stack 2 are disposed on both end surfaces in the stacking direction
  • the end plate 3 includes a pair of end plates 3 and a bind bar 4 connected to the pair of end plates 3.
  • the end plate 3 is formed on the surface facing the battery stack 2 so as to be deeper toward the central portion.
  • An expansion allowance recess 11 can be provided.
  • the above-described battery module has a feature that it is possible to reduce the cell reaction force that the rectangular battery cell expands and presses the end plate from the inner surface while having an extremely simple structure.
  • the above-described battery module is provided on the battery facing surface which is the surface facing the battery laminate of the end plate, which allows expansion of the battery stack due to the expansion of the rectangular battery cell.
  • the above battery module is provided with an expansion permitting recess which becomes deeper toward the central portion of the end plate, the outer peripheral edge of the end plate is brought into close contact with the outer peripheral edge of the battery stack to displace the square battery cell Not be held in place.
  • the above battery module allows expansion of the central portion of the battery stack while holding the plurality of rectangular battery cells stacked on one another at the outer peripheral edge to prevent misalignment. Since the rectangular battery cell has a large expansion at the central portion, the structure which holds the outer peripheral edge without positional deviation and allows the expansion of the central portion in the expansion permitting recess prevents the positional displacement of the rectangular battery cell to expand. Allows to reduce cell reaction force.
  • the above features are extremely important for a battery module charged / discharged with a large current, such as a battery module for driving a traveling motor of a vehicle. It is because the bus bar of a thick metal plate is fixed to the electrode terminal of the adjacent square battery cell arrange
  • a rectangular battery cell in which a thick metal plate bus bar is fixed to an electrode terminal has a disadvantage that an excessive stress acts on a connecting portion between the bus bar and the electrode terminal to cause breakage if the position is relatively shifted. This is because the bus bar of the thick metal plate can not absorb the relative positional deviation of the rectangular battery cell due to deformation.
  • the above battery module allows expansion to reduce the cell reaction force while preventing displacement of the rectangular battery cell, so a thick metal plate can be used for the bus bar, and the electrical resistance of the bus bar can be reduced, and a large current can be obtained.
  • the present invention also realizes the feature that the power loss of the bus bar during charging and discharging can be reduced to increase the power efficiency of the entire battery module.
  • the end plate is not required to have a strong structure that can withstand a strong cell reaction force, and the amount of deformation due to the cell reaction force while reducing the weight of the end plate This also realizes the feature that the rectangular battery cell can be arranged at a fixed position.
  • an elastic thermal conductive sheet 7 which is elastically deformed in the thickness direction by the cell reaction force of the battery stack 2 is disposed between the battery facing surface 3A of the end plate 3 and the battery stack 2
  • One surface of the elastic heat conductive sheet 7 can be in contact with the end plate 3 in a surface contact state, and the other surface can be in contact with the end surface of the battery stack 2.
  • the battery module can use the elastic heat conductive sheet 7 as an insulating sheet.
  • the battery module can provide the flat portion 12 with a predetermined width along the outer peripheral edge of the battery facing surface 3A of the end plate 3 and provide the expansion permitting recess 11 inside the flat portion 12.
  • the boundary portion between the flat portion 12 provided on the end plate 3 and the expansion allowing recess 11 is made to gradually increase the inclination angle ( ⁇ ) of the downward slope toward the central portion of the expansion allowing recess 11 be able to.
  • the boundary between the flat portion 12 of the end plate 3 and the expansion allowing recess 11 can be a curved surface whose inclination angle changes continuously.
  • the battery module 10 having any of the above configurations, the traveling motor 93 supplied with power from the battery module 10, the battery module 10 and the motor A vehicle body 90 having the C. 93 mounted thereon, and a wheel 97 driven by a motor 93 to travel the vehicle body 90 can be provided.
  • the battery module according to the present invention and the vehicle equipped with the same can be suitably used as a power supply device for hybrid cars, plug-in hybrid cars, electric cars and the like.
  • SYMBOLS 1 Rectangular battery cell, 2 ... Battery laminated body, 3 ... End plate, 3A ... Battery opposing surface, 4 ... Bind bar, 5 ... Fixing pin, 5A ... Bolt, 6 ... Separator, 7: Elastic thermal conductive sheet, 10 ... Battery module, 11: expansion acceptable recess, 12: flat portion, 13: boundary portion, 14: projecting line, 90: vehicle body, 93: motor, 94: generator, 95: DC / AC inverter, 96: engine, 97 ... wheel, 100 ... power supply device, HV ... vehicle, EV ... vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

簡単な構造で電池の膨張に起因するエンドプレートのセル反力を減少してエンドプレートを軽量化するために、電池モジュールは、複数の角形電池セル(1)を厚さ方向に積層してなる電池積層体(2)と、電池積層体(2)の積層方向の両端面に配置してなる一対のエンドプレート(3)と、一対のエンドプレート(3)に連結されるバインドバーとを備え、エンドプレート(3)は、電池積層体(2)との対向面に、中央部に向かって深くなる電池積層体(2)の膨張許容凹部(11)を設けている。

Description

電池モジュール及びこれを装備する車両
 本発明は、複数の角形電池セルを積層している電池積層体の両端に配置してなるエンドプレートをバインドバーで連結してなる電池モジュールとこれを装備する車両に関する。
 典型的な電池モジュールは、複数の角形電池セルからなる電池積層体と、電池積層体の両端面に配置される一対のエンドプレートと、一対のエンドプレートを連結するバインドバーとを備えている(特許文献1参照)。この電池モジュールは、電池積層体をエンドプレートとバインドバーにより拘束することで、複数の角形電池セルからなる電池積層体を集合化できるようになっている。
国際公開第2012/057322号
 特許文献1の電池モジュールは、バインドバーやエンドプレートを介して複数の角形電池セルからなる電池積層体が集合化されているため、電池積層体を構成する複数の角形電池セルの膨張が抑制されることになる。つまり、バインドバーやエンドプレートを介して、角形電池セルの膨張を抑制することになるため、バインドバーやエンドプレートに大きな力が加わる。
 一方で、角形電池セルは、体積あたりのエネルギー密度や重量あたりのエネルギー密度を高くしようとすると、充放電や劣化に伴う寸法変化が大きくなる傾向がある。バインドバーやエンドプレートにかかる負荷は、角形電池セルの膨張量に起因するため、寸法変化の大きい角形電池セルを用いる場合には、特許文献1の電池モジュールの構成では、エンドプレートやバインドバーに大きな負荷がかかり、エンドプレートやバインドバーが変形したり、破損したりするおそれがある。
 本発明は、以上の欠点を解決することを目的に開発されたもので、本発明の重要な目的は、エンドプレートを介して複数の角形電池セルを集合化する構成でありながら、エンドプレートにかかる負荷を低減することのできる技術を提供することにある。
 本発明のある態様の電池モジュールは、複数の角形電池セル1を厚さ方向に積層してなる電池積層体2と、電池積層体2の積層方向の両端面に配置してなる一対のエンドプレート3と、一対のエンドプレート3に連結されるバインドバー4とを備える。エンドプレート3は、電池積層体2との対向面に、中央部に向かって深くなる電池積層体2の膨張許容凹部11を設けている。
 なお、以上の構成要素の電池モジュールを備えた車両もまた、本発明の態様として有効である。
 以上の電池モジュールは、角形電池セルを充放電する際に、エンドプレートの電池積層体との対向面である電池対向面に設けられた膨張許容凹部により、角形電池セルの膨張に起因する電池積層体の膨張を許容することができるので、エンドプレートにかかる負荷を低減することができる。とくに、以上の電池モジュールは、エンドプレートの中央部に向かって深くなる膨張許容凹部を設けているので、エンドプレートの外周縁を電池積層体の外周縁に密着させて、角形電池セルを位置ずれしないように定位置に保持できる。
本発明の実施形態1に係る電池モジュールを示す斜視図である。 図1に示す電池モジュールの概略水平断面図である。 図2の電池モジュールのエンドプレートの要部拡大水平断面図である。 エンドプレートの他の一例を示す要部拡大水平断面図である。 エンドプレートの他の一例を示す要部拡大水平断面図である。 エンジンとモータで走行するハイブリッド自動車に電池モジュールを搭載する例を示すブロック図である。 モータのみで走行する電気自動車に電池モジュールを搭載する例を示すブロック図である。
 まず、本発明の一つの着目点について説明する。多数の角形電池セルを備える電池モジュールは、複数の角形電池セルを積層している電池積層体の両端面にエンドプレートを配置し、一対のエンドプレートをバインドバーで連結して、電池積層体を積層方向に加圧する状態で固定される。この電池モジュールは、一対のエンドプレートで電池積層体の両端を加圧状態に固定するので、エンドプレートに充分な強度が要求される。エンドプレートは、充放電される角形電池セルが膨張して内面からセル反力を受ける。エンドプレートは、膨張する電池積層体で内面から押圧されるので、電池積層体の面積と、電池積層体が押圧する圧力との積に比例するセル反力を受ける。そのため、充放電等に伴う寸法変化の大きい角形電池セルは、その膨張量に応じた大きさのセル反力がエンドプレートに作用することになる。そのため、実質的に寸法が変化しない程度まで、角形電池セルの膨張を抑制しようとすると、エンドプレートに作用するセル反力は、例えば、車両の走行モータを駆動する電源用の電池モジュールにおいては数トンと極めて大きくなる。
 一対のエンドプレートをバインドバーで連結して、電池積層体を積層方向に加圧する状態で固定する構成の目的の一つは、電池モジュールの寸法バラツキを抑制することにある。具体的には、電池モジュールの寸法バラツキは、車両等へ電池モジュールを搭載する際に、電池モジュールが指定のスペースに配置できなくなるなどの問題を招くことがあるため、電池モジュールの寸法バラツキを抑制するために、複数の電池セルからなる電池積層体を集合化するようになっている。
 従って、角形電池セルの膨張を許容しながら、電池モジュールの寸法バラツキを抑制することが可能であれば、電池モジュールとしての性能を維持しつつ、エンドプレートに係る負荷を低減することができる。
 以下、本発明の実施形態を図面に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための例示であって、本発明は以下のものに特定されない。また、本明細書は、特許請求の範囲に示される部材を、実施形態の部材に特定するものでは決してない。特に実施形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。さらにまた、明細書において上下方向は図面において特定するものとする。
(実施形態1)
 図1及び図2は、実施形態1に係る電池モジュール10を示している。図1は電池モジュールの斜視図を示し、図2は電池モジュールの概略水平断面図を示している。これらの図に示す電池モジュール10は、複数の角形電池セル1を絶縁材のセパレータ6を挟んで積層した電池積層体2と、電池積層体2の両端面にあって、電池積層体2を両端面から挟んで定位置に保持している一対のエンドプレート3と、一対のエンドプレート3を連結しているバインドバー4と、バインドバーをエンドプレート3に固定する固定ピン5のボルト5Aとを備えている。
 以上の電池モジュール10は、図1に示すように全体形状を細長い箱形とし、角形電池セル1を多数積層して電池積層体2とし、電池積層体2を積層方向の両端面からエンドプレート3で挟み、両端のエンドプレート3をバインドバー4で連結して電池積層体2を加圧状態に固定している。電池積層体2は、積層された角形電池セル1を金属板のバスバー(図示せず)を介して直列に、あるいは並列に、あるいはまた直列と並列に接続している。
 角形電池セル1は、外形を幅よりも厚さを薄くした角形とする外装缶の開口部を封口板で閉塞して、封口板に正負の電極端子を設けて、この電極端子にバスバーを接続している。角形電池セル1を互いに直列に接続する電池モジュールは、出力電圧を高くして出力を大きくでき、並列に接続する電池モジュールは電流容量を大きくできる。角形電池セル1は、リチウムイオン二次電池などの非水系電解液二次電池である。ただし、角形電池セルは、ニッケル水素電池やニッケルカドミウム電池等、現在使用され、あるいはこれから開発される全ての二次電池とすることもできる。
 電池積層体2の両端に配置される一対のエンドプレート3は、バインドバー4に連結されて、電池積層体2を加圧する状態に保持して角形電池セル1の膨張によってセル反力を受ける。図2に示すエンドプレート3は、セル反力を減少するために、電池積層体2との対向面である電池対向面3Aに膨張許容凹部11を設けている。角形電池セル1は充放電されて膨張するが、その膨張量は中央部において大きくなる。電池積層体2は、複数の角形電池セル1を積層しているので、角形電池セル1の中央部が膨張すると、これを積層している電池積層体2は端面において中央部の膨張が大きくなる。角形電池セル1の膨張を許容するためにエンドプレート3は、電池積層体2との対向面に、中央部を凹部とする膨張許容凹部11を設けている。エンドプレート3は、膨張許容凹部11を設けてセル反力を著しく減少できる。膨張を許容することによって、電池積層体2の端面がエンドプレート3内面を押圧する圧力が著しく低下するからである。
 膨張許容凹部11の深さは、電池積層体2の積層方向の寸法を考慮して最適値に設定される。エンドプレート3は、膨張許容凹部11を深くしてセル反力を小さくできる。従って、たとえば膨張許容凹部11の深さ(d)は、電池積層体2の積層方向の厚さの1/3000以上、好ましくは1/2000以上、さらに好ましくは1/1000以上とする。膨張許容凹部11は、深すぎると角形電池セル1の変形量が大きくなる。したがって、膨張許容凹部11の深さ(d)は、角形電池セル1の変形量も考慮して最適値に設定されるので、たとえば1/100以下、好ましくは1/200以下、さらに好ましくは1/300以下とする。ただし、本発明は膨張許容凹部11の深さ(d)を以上の範囲に特定するものでなく、膨張許容凹部11の深さ(d)は、角形電池セル1が膨張量とエンドプレート3の強度とを考慮して最適値に設定される。
 図3はエンドプレート3の電池対向面3Aの拡大断面図を示している。この図のエンドプレート3は、外周縁に沿って所定の幅の平面部12を設けている。エンドプレート3の外周縁に設けた平面部12は、角形電池セル1の外周縁に所定の幅で面接触状態に接触して、角形電池セル1の位置ずれをより確実に阻止できる。さらに、図4の拡大断面図に示すエンドプレート3は、平面部12と膨張許容凹部11との境界部13の形状を、膨張許容凹部11の中央部に向かって次第に下り勾配の傾斜角(α)を大きくする形状としている。図3のエンドプレート3は、平面部12と膨張許容凹部11との境界線に、電池積層体2に向かって線状に尖って突出する突出ライン14ができる。突出ライン14が電池積層体2に向かって突出するエンドプレート3は、突出ライン14が電池積層体2の端面を局部的に線状に押圧すると角形電池セル1の表面を損傷する虞がある。図4と図5の拡大断面図に示すエンドプレート3は、この弊害を防止するために、平面部12と膨張許容凹部11との境界部13の形状を、中央部に向かって下り勾配に傾斜する傾斜角(α)を大きくしている。図4のエンドプレート3は、段階的に下り勾配の傾斜角(α)を変化し、図5のエンドプレート3は傾斜角(α)を連続的に変化させて境界部13を湾曲面としている。
 図4のエンドプレート3は、境界部13にできる突出ライン14を複数列に分割して電池積層体2の損傷を防止する。突出ライン14を複数列に分割することで、突出ライン14の先端角を平面に近づけられるからである。図5のエンドプレート3は、境界部13を湾曲面として突出ラインを皆無にして、電池積層体2の損傷を防止する。さらに、この構造の電池モジュール10は、電池積層体2とエンドプレート3との間に、後述する弾性熱伝導シート7を配置して、この弾性熱伝導シート7の損傷も防止できる特徴がある。突出ライン14が弾性熱伝導シート7を局部的に押圧して損傷しないからである。
 図2の断面図に示す電池モジュール10は、電池対向面3Aと電池積層体2との間に弾性熱伝導シート7を配置している。弾性熱伝導シート7は、電池積層体2が膨張して発生するセル反力に押されて厚さ方向に弾性変形するシートである。この弾性熱伝導シート7はセル反力で押圧されて薄く変形する。弾性熱伝導シート7には、たとえばシート状の熱伝導ゲル、柔軟なゴム状弾性体又は連続気泡のプラスチック発泡体に、金属やグラファイトなどの熱伝導粉末や金属繊維などの熱伝導繊維を添加したシートなどで、圧縮されて薄く弾性変形する全てのシートが使用できる。
 弾性熱伝導シート7は、一方の面をエンドプレート3に面接触状態で密着して、他方の面を電池積層体2の端面に接触している。両面を電池積層体2の端面とエンドプレート3とに密着する弾性熱伝導シート7は、発熱する電池積層体2の熱エネルギーをエンドプレート3に熱伝導する。弾性熱伝導シート7を介して、電池積層体2の発熱をエンドプレート3に熱伝導できる電池モジュール10は、電池積層体2の端面に配置する角形電池セル1の温度上昇を少なくして熱暴走を防止できる。電池積層体2が膨張する状態と、膨張しない状態の両方で両面を電池積層体2とエンドプレート3に密着して熱暴走する弾性熱伝導シート7は、常に電池積層体2の発熱をエンドプレート3に効率よく熱伝導する。
 弾性熱伝導シート7は、好ましくは絶縁性のシートが使用される。絶縁性の弾性熱伝導シート7は、熱伝導シートに絶縁シートを積層して実現できる。熱伝導シートと絶縁シートとを積層している絶縁性の弾性熱伝導シート7は、熱伝導シートと絶縁シートのいずれか、または一方を弾性変形するシートとする。熱伝導シートと絶縁シートとを積層している弾性熱伝導シート7は、優れた熱伝導特性の熱伝導のシートと、絶縁特性に優れたシートを積層して、優れた熱伝導特性と絶縁特性とを実現できる。
 電池積層体2とエンドプレート3との間に、絶縁性の弾性熱伝導シート7を配置する電池モジュール10は、エンドプレート3の電池対向面3Aを金属で構成できる。この電池モジュール10は、電池積層体2との対向面を金属板とし、あるいはエンドプレート3全体をアルミニウム等の金属製とすることができる。また、表面を絶縁シートで絶縁している角形電池セル1を積層している電池積層体2は、弾性熱伝導シート7を絶縁シートとすることなく、また導電性の弾性熱伝導シート7と絶縁シートとを積層することなく、角形電池セル1の外装缶とエンドプレート3とを絶縁できる。
 図1と図2の電池モジュール10は、エンドプレート3全体をアルミニウム製の金属ブロックとする。この電池モジュール10は、エンドプレート3の膨張許容凹部11でセル反力を減少して、エンドプレート3を金型で成形したアルミニウム製として軽量化できる。図示しないが、エンドプレート3は、電池積層体2との対向面を鉄や鉄合金の金属板とするエンドプレート3が使用できる。電池積層体2との対向面を金属板とするエンドプレート3は、複数の金属板を積層する構造、あるいは金属板の表面に金属ロッドや金属パイプを固定する構造、あるいはまた、金属板にプラスチック成形体を積層する構造などとすることができる。
 バインドバー4は、両端をエンドプレート3に連結して、電池積層体2を加圧状態に締結する。図1のバインドバー4は、金属板の両端をエンドプレート3の両側面に固定ピン5であるボルト5Aでネジ止めして固定している。図示しないが、バインドバーは、金属板の両端を内側に折曲して折曲片を設け、この折曲片をエンドプレートの表面にネジ止めして固定することもできる。
(電池モジュールを装備する車両)
 以上の電池モジュールは、電動車両を走行させるモータに電力を供給する電源に最適である。電池モジュールを搭載する車両としては、エンジンとモータの両方で走行するハイブリッド車やプラグインハイブリッド車、あるいはモータのみで走行する電気自動車等が利用でき、これらの車両の電源として使用される。なお、車両を駆動する電力を得るために、上述した電池モジュールを直列や並列に多数接続して、さらに必要な制御回路を付加した大容量、高出力の電源装置100を構築して搭載する例を示す。
 図6は、エンジンとモータの両方で走行するハイブリッド車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両HVは、車両本体90と、この車両本体90を走行させるエンジン96及び走行用のモータ93と、これらのエンジン96及び走行用のモータ93で駆動される車輪97と、モータ93に電力を供給する電源装置100と、電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。車両HVは、電源装置100の電池を充放電しながらモータ93とエンジン96の両方で走行する。モータ93は、エンジン効率の悪い領域、例えば加速時や低速走行時に駆動されて車両を走行させる。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、エンジン96で駆動され、あるいは車両にブレーキをかけるときの回生制動で駆動されて、電源装置100の電池を充電する。
 また、図7は、モータのみで走行する電気自動車に電源装置を搭載する例を示す。この図に示す電源装置を搭載した車両EVは、車両本体90と、この車両本体90を走行させる走行用のモータ93と、このモータ93で駆動される車輪97と、このモータ93に電力を供給する電源装置100と、この電源装置100の電池を充電する発電機94とを備えている。電源装置100は、DC/ACインバータ95を介してモータ93と発電機94に接続している。モータ93は、電源装置100から電力が供給されて駆動する。発電機94は、車両EVを回生制動する時のエネルギーで駆動されて、電源装置100の電池を充電する。
 なお、実施の形態は、以下の構成によって特定されてもよい。
 本発明の一の側面にかかる電池モジュールによれば、複数の角形電池セル1を厚さ方向に積層してなる電池積層体2と、電池積層体2の積層方向の両端面に配置してなる一対のエンドプレート3と、一対のエンドプレート3に連結されるバインドバー4とを備え、エンドプレート3は、電池積層体2との対向面に、中央部に向かって深くなる電池積層体2の膨張許容凹部11を備えることができる。
 以上の電池モジュールは、極めて簡単な構造としながら、角形電池セルが膨張してエンドプレートを内面から押圧するセル反力を低減できる特徴がある。それは、以上の電池モジュールが、角形電池セルの膨張に起因する電池積層体の膨張を許容する膨張許容凹部をエンドプレートの電池積層体との対向面である電池対向面に設けて、電池積層体の膨張を許容するからである。とくに、以上の電池モジュールは、エンドプレートの中央部に向かって深くなる膨張許容凹部を設けているので、エンドプレートの外周縁を電池積層体の外周縁に密着させて、角形電池セルを位置ずれしないように定位置に保持できる。
 したがって、以上の電池モジュールは、互いに積層している複数の角形電池セルを外周縁では保持して位置ずれを防止しながら、電池積層体中央部の膨張は許容する。角形電池セルは、中央部の膨張が大きいので、外周縁を位置ずれなく保持して、中央部の膨張を膨張許容凹部において許容する構造は、角形電池セルの位置ずれを防止して、膨張を許容してセル反力を減少できる。
 以上の特徴は、車両の走行モータを駆動する電池モジュールように、大電流で充放電される電池モジュールにとって極めて重要である。大電流の電池モジュールは、隣接して配置する隣の角形電池セルの電極端子に厚い金属板のバスバーを固定して、直列や並列に接続しているからである。厚い金属板のバスバーを電極端子に固定している角形電池セルは、相対的に位置ずれすると、バスバーと電極端子との連結部に無理な応力が作用して破損する欠点がある。角形電池セルの相対的な位置ずれを厚い金属板のバスバーが変形して吸収できないからである。以上の電池モジュールは、角形電池セルの位置ずれを防止しながら膨張を許容してセル反力を減少するので、バスバーには厚い金属板を使用して、バスバーの電気抵抗を小さくでき、大電流の充放電におけるバスバーの電力損失を小さくして、電池モジュール全体の電力効率を高くできる特徴も実現する。
 さらにまた、以上の電池モジュールは、エンドプレートのセル反力を減少できることから、強大なセル反力に耐える強靭な構造がエンドプレートに要求されず、エンドプレートを軽量化しながらセル反力による変形量を少なくして、角形電池セルを定位置に配置できる特徴も実現する。
 また、電池モジュールは、エンドプレート3の電池対向面3Aと電池積層体2との間に、電池積層体2のセル反力で厚さ方向に弾性変形する弾性熱伝導シート7を配置して、弾性熱伝導シート7の一方の面をエンドプレート3に面接触状態で接触し、他方の面を電池積層体2の端面に接触させることができる。さらに、電池モジュールは、弾性熱伝導シート7を絶縁シートとすることができる。
 さらに、電池モジュールは、エンドプレート3の電池対向面3Aの外周縁に沿って所定の幅の平面部12を設けて、平面部12の内側に膨張許容凹部11を設けることができる。
 さらにまた、電池モジュールは、エンドプレート3に設けている平面部12と膨張許容凹部11との境界部分を、膨張許容凹部11の中央部に向かって次第に下り勾配の傾斜角(α)を大きくすることができる。
 さらにまた、電池モジュールは、エンドプレート3の平面部12と膨張許容凹部11との境界部分を連続的に傾斜角が変化する湾曲面とすることができる。
 本発明の一の側面に係る電池モジュールを装備する車両によれば、上記何れかの構成を備える電池モジュール10と、電池モジュール10から電力供給される走行用のモータ93と、電池モジュール10及びモータ93を搭載してなる車両本体90と、モータ93で駆動されて車両本体90を走行させる車輪97とを備えることができる。
 本発明に係る電池モジュール及びこれを装備する車両は、ハイブリッドカー、プラグインハイブリッドカー、電気自動車等の電源装置として好適に利用できる。
 1…角形電池セル、2…電池積層体、3…エンドプレート、3A…電池対向面、4…バインドバー、5…固定ピン、5A…ボルト、6…セパレータ、7…弾性熱伝導シート、10…電池モジュール、11…膨張許容凹部、12…平面部、13…境界部、14…突出ライン、90…車両本体、93…モータ、94…発電機、95…DC/ACインバータ、96…エンジン、97…車輪、100…電源装置、HV…車両、EV…車両。

Claims (7)

  1.  複数の角形電池セルを厚さ方向に積層してなる電池積層体と、
     前記電池積層体の積層方向の両端面に配置してなる一対のエンドプレートと、
     一対の前記エンドプレートに連結されるバインドバーとを備え、
     前記エンドプレートは、前記電池積層体との対向面に、中央部に向かって深くなる前記電池積層体の膨張許容凹部を設けてなることを特徴とする電池モジュール。
  2.  請求項1に記載される電池モジュールであって、
     前記エンドプレートの電池対向面と前記電池積層体との間に、電池積層体のセル反力で厚さ方向に弾性変形する弾性熱伝導シートを配置しており、この弾性熱伝導シートの一方の面がエンドプレートに面接触状態で接触し、他方の面が電池積層体の端面に接触してなることを特徴とする電池モジュール。
  3.  請求項2に記載される電池モジュールであって、
     前記弾性熱伝導シートが絶縁シートであることを特徴とする電池モジュール。
  4.  請求項1ないし3のいずれかに記載される電池モジュールであって、
     前記エンドプレートの電池対向面が、外周縁に沿って所定の幅の平面部を有し、前記平面部の内側に前記膨張許容凹部を設けてなることを特徴とする電池モジュール。
  5.  請求項4に記載される電池モジュールであって、
     前記エンドプレートに設けてなる前記平面部と前記膨張許容凹部との境界部分において、前記膨張許容凹部の中央部に向かって次第に下り勾配の傾斜角(α)を大きくしてなることを特徴とする電池モジュール。
  6.  請求項5に記載される電池モジュールであって、
     前記エンドプレートが、前記平面部と前記膨張許容凹部との境界部分を連続的に傾斜角が変化する湾曲面としてなることを特徴とする電池モジュール。
  7.  請求項1ないし6のいずれかに記載の電池モジュールを装備する車両であって、
     前記電池モジュールと、該電池モジュールから電力供給される走行用のモータと、前記電池モジュール及び前記モータを搭載してなる車両本体と、前記モータで駆動されて前記車両本体を走行させる車輪とを備える車両。
PCT/JP2018/025430 2017-07-27 2018-07-05 電池モジュール及びこれを装備する車両 WO2019021778A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-145918 2017-07-27
JP2017145918A JP2020161211A (ja) 2017-07-27 2017-07-27 電池モジュール及びこれを装備する車両

Publications (1)

Publication Number Publication Date
WO2019021778A1 true WO2019021778A1 (ja) 2019-01-31

Family

ID=65040080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025430 WO2019021778A1 (ja) 2017-07-27 2018-07-05 電池モジュール及びこれを装備する車両

Country Status (2)

Country Link
JP (1) JP2020161211A (ja)
WO (1) WO2019021778A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194930A1 (ja) * 2019-03-28 2020-10-01 三洋電機株式会社 電源装置及びこれを用いた電動車両並びに蓄電装置
WO2020194937A1 (ja) * 2019-03-28 2020-10-01 三洋電機株式会社 電源装置及びこれを用いた電動車両並びに蓄電装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220053251A (ko) * 2020-10-22 2022-04-29 주식회사 엘지에너지솔루션 전지 모듈 및 이를 포함하는 전지 팩

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111493A (ja) * 2012-03-28 2015-06-18 三洋電機株式会社 電源装置及びこれを備える車両並びに蓄電装置
JP2015187911A (ja) * 2012-08-09 2015-10-29 三洋電機株式会社 車両用のバッテリシステム及びバッテリシステムを備える電動車両
JP2016091916A (ja) * 2014-11-10 2016-05-23 株式会社豊田自動織機 電池モジュール
WO2016166972A1 (ja) * 2015-04-16 2016-10-20 パナソニックIpマネジメント株式会社 組電池
JP2018026271A (ja) * 2016-08-10 2018-02-15 株式会社豊田自動織機 電池モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015111493A (ja) * 2012-03-28 2015-06-18 三洋電機株式会社 電源装置及びこれを備える車両並びに蓄電装置
JP2015187911A (ja) * 2012-08-09 2015-10-29 三洋電機株式会社 車両用のバッテリシステム及びバッテリシステムを備える電動車両
JP2016091916A (ja) * 2014-11-10 2016-05-23 株式会社豊田自動織機 電池モジュール
WO2016166972A1 (ja) * 2015-04-16 2016-10-20 パナソニックIpマネジメント株式会社 組電池
JP2018026271A (ja) * 2016-08-10 2018-02-15 株式会社豊田自動織機 電池モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194930A1 (ja) * 2019-03-28 2020-10-01 三洋電機株式会社 電源装置及びこれを用いた電動車両並びに蓄電装置
WO2020194937A1 (ja) * 2019-03-28 2020-10-01 三洋電機株式会社 電源装置及びこれを用いた電動車両並びに蓄電装置

Also Published As

Publication number Publication date
JP2020161211A (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
KR102094445B1 (ko) 배터리 모듈, 배터리 모듈을 포함하는 배터리 팩 및 배터리 팩을 포함하는 자동차
JP7187463B2 (ja) 電池モジュール及びこれを装備する車両
JP7207814B2 (ja) 電源装置と電源装置を備える電動車両
WO2014034057A1 (ja) バッテリシステム及びバッテリシステムを備える電動車両並びに蓄電装置
JP6184959B2 (ja) バッテリシステム及びバッテリシステムを備える車両並びに蓄電装置
WO2014024432A1 (ja) 車両用のバッテリシステム及びバッテリシステムを備える電動車両
KR20120053589A (ko) 안전성이 향상된 전지모듈
WO2012125115A1 (en) Battery module, vehicle, electric device and method
JP2010040295A (ja) 蓄電装置
WO2019021778A1 (ja) 電池モジュール及びこれを装備する車両
JP6271178B2 (ja) バッテリ装置とこのバッテリ装置を備える電動車両及び蓄電装置
US11929479B2 (en) Power supply device, vehicle having same, and buffer
CN114207912A (zh) 电源装置和使用该电源装置的电动车辆以及蓄电装置
CN113632300A (zh) 电源装置和使用该电源装置的电动车辆以及蓄电装置
EP4187702A1 (en) Battery pack and vehicle comprising same
JP2020177747A (ja) 電池モジュール
WO2021199545A1 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置
JPWO2019021777A1 (ja) 電池モジュール及びこれを装備する車両
JP7286668B2 (ja) バッテリシステムとバッテリシステムを備える車両及び蓄電装置
KR20200104620A (ko) 다면 열전달 경로를 구비하는 배터리 모듈
CN115149162B (zh) 蓄电装置
WO2021157139A1 (ja) 電源装置及びこれを用いた電動車両並びに蓄電装置
JP2022156913A (ja) 蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP