WO2019021574A1 - 無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム - Google Patents

無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム Download PDF

Info

Publication number
WO2019021574A1
WO2019021574A1 PCT/JP2018/018286 JP2018018286W WO2019021574A1 WO 2019021574 A1 WO2019021574 A1 WO 2019021574A1 JP 2018018286 W JP2018018286 W JP 2018018286W WO 2019021574 A1 WO2019021574 A1 WO 2019021574A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless
communication
wireless communication
wireless transmission
transmission method
Prior art date
Application number
PCT/JP2018/018286
Other languages
English (en)
French (fr)
Inventor
義一 鹿倉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2019532384A priority Critical patent/JP7052795B2/ja
Priority to US16/633,022 priority patent/US11323215B2/en
Publication of WO2019021574A1 publication Critical patent/WO2019021574A1/ja
Priority to JP2021192895A priority patent/JP7400794B2/ja
Priority to US17/725,760 priority patent/US11962521B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies

Definitions

  • the present invention relates to a wireless communication device, method, program, non-transitory storage medium readable by a computer, and system.
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • IFFT Inverse Fast Fourier Transform
  • OFDM Orthogonal Frequency Division Multiplexing
  • Patent Document 1 discloses a technique using DFT-S-OFDM and Clustered-DFT-S-OFDM.
  • 3GPP TS 36.211 V8.6.0
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • 3GPP TR 38.802 V 1.3.0 “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on New Radio (NR) Access Technology; Physical Layer Aspects (Release 14)”, February 2017.
  • OFDM transmission and DFT-S-OFDM transmission may be mixed within the same transmission time interval.
  • a mixture of such wireless transmission schemes without any limitation can make control over wireless communication difficult or inefficient.
  • An object of the present invention is to provide a wireless communication device, method, program, computer readable non-transitory recording medium, and system that enables more appropriate control regarding wireless communication when wireless transmission methods coexist. It is to provide.
  • a wireless communication apparatus includes a wireless communication processing unit that performs communication using a first wireless transmission scheme in a frequency band, and the wireless communication processing unit is configured to Communication using the second wireless transmission method is performed within a partial band to which wireless resources can be allocated for communication using the second wireless transmission method.
  • a method comprises performing communication using a first wireless transmission scheme within a frequency band, and wireless communication for communication using a second wireless transmission scheme of the frequency bands. Performing communication using the second wireless transmission scheme within a sub-band to which resources can be allocated.
  • a program according to an aspect of the present invention includes performing communication using a first wireless transmission method in a frequency band, and wireless communication for communication using a second wireless transmission method in the frequency band. Communication using the second wireless transmission scheme is performed in a sub-band to which resources can be allocated.
  • a non-transitory recording medium readable by a computer performs communication using a first wireless transmission method in a frequency band, and a second wireless transmission in the frequency band.
  • a program that causes the processor to execute communication using the second wireless transmission method in a partial band to which wireless resources can be allocated for communication using the method is recorded.
  • a system includes a base station and a terminal device, wherein the base station performs communication using a first wireless transmission scheme within a frequency band, and The communication using the second wireless transmission method is performed in a partial band to which a wireless resource can be allocated for the communication using the second wireless transmission method, and the terminal apparatus performs the second communication in the frequency band. Communication is performed using the first wireless transmission method, and communication using the second wireless transmission method is performed within the partial band.
  • FIG. 1 is a block diagram of DFT-S-OFDM signal generation.
  • DFT discrete Fourier transform
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • DFT-S-OFDM With DFT-S-OFDM, by limiting the mapping from DFT output to IFFT input to consecutive subcarriers on the frequency axis, a single carrier signal with low peak power can be generated, and wide coverage can be realized.
  • FIG. 2 is a block diagram of signal generation of OFDM.
  • subcarrier mapping (21), inverse fast Fourier transform (IFFT) (23), and cyclic prefix (CP) addition (25) are performed on the modulated signal.
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • OFDM is a multicarrier transmission scheme, in which discontinuous radio resources are allocated on the frequency axis, so that the flexibility of allocation is high.
  • the peak power is high compared to the single carrier transmission method, and the coverage is narrowed.
  • each base station mixes OFDM transmission and DFT-S-OFDM transmission on an occasional basis, interference control or coordinated multi-point transmission / reception (CoMP) between base stations may be difficult.
  • CoMP coordinated multi-point transmission / reception
  • discrete radio resources are allocated on the frequency axis to transmit OFDM, which is a multicarrier transmission scheme, and discrete fine radio resources remain, and as a result, DFT-S, which is a single carrier transmission scheme.
  • DFT-S which is a single carrier transmission scheme.
  • allocation of radio resources to DFT-S-OFDM transmission may be limited. Specifically, for example, as shown in FIG. 3, RB (Resource Block) # 0, RB # 1, RB # 4 and RB # 6 are allocated to UEs using OFDM, and RB # 2 and RB # 3, RB # 5 and RB # 7 remain.
  • DFT-S-OFDM transmission is limited, if there is no restriction on radio resources allocated to DFT-S-OFDM, the amount of information of resource allocation information is maintained. , Signaling may be inefficient.
  • a wireless communication apparatus performs communication using a first wireless transmission scheme (for example, OFDM) within a frequency band. Further, the wireless communication apparatus (base station / terminal apparatus) is a part to which a wireless resource can be allocated for communication using the second wireless transmission method (for example, DFT-S-OFDM) in the above-mentioned frequency band. Communication using the second wireless transmission method is performed in the band.
  • a first wireless transmission scheme for example, OFDM
  • the wireless communication apparatus base station / terminal apparatus
  • the second wireless transmission method for example, DFT-S-OFDM
  • FIG. 4 is an explanatory view showing an example of a schematic configuration of the system 1 according to the first embodiment.
  • system 1 includes a base station 100 and a terminal device 200.
  • terminal device 200A and terminal device 200B are shown in FIG. 4, the system 1 may include three or more terminal devices 200.
  • the terminal device 200A and the terminal device 200B are described when it is necessary to distinguish between the two terminal devices 200, but when it is not necessary to distinguish the two terminal devices 200, they are simply described as the terminal device 200. .
  • the system 1 is a system conforming to the standard / specification of the 3rd Generation Partnership Project (3GPP). More specifically, for example, the system 1 may be a system conforming to the fifth generation (5G) / NR (New Radio) standard / specification. Of course, system 1 is not limited to these examples.
  • 3GPP 3rd Generation Partnership Project
  • NR New Radio
  • the base station 100 is a node of a radio access network (RAN), and performs wireless communication with a terminal device (for example, the terminal device 200) located in a coverage area.
  • RAN radio access network
  • the base station 100 may be gNB (generation Node B) in 5G.
  • Base station 100 may include multiple units (or multiple nodes).
  • the plurality of units (or a plurality of nodes) include a first unit (or a first node) that performs processing of the upper protocol layer and a second unit (or a second node) that performs processing of the lower protocol layer. May be included.
  • the first unit may be referred to as a center / central unit (CU), and the second unit may be a distributed unit (DU) or an access unit (AU). It may be called.
  • the first unit may be referred to as a digital unit (DU), and the second unit may be a radio unit (RU) or a remote unit (RU).
  • the DU Digital Unit
  • the RU may be an RRH (Remote Radio Head) or an RRU (Remote Radio Unit).
  • the names of the first unit (or first node) and the second unit (or second node) are not limited to this example.
  • base station 100 may be a single unit (or single node).
  • the base station 100 may be one of the plurality of units (for example, one of the first unit and the second unit), and the other unit of the plurality of units ( For example, it may be connected to the other of the first unit and the second unit).
  • Terminal device 200 The terminal device 200 performs wireless communication with a base station. For example, when the terminal device 200 is located within the coverage area of the base station 100, the terminal device 200 performs wireless communication with the base station 100.
  • the terminal device 200 is a UE (User Equipment).
  • FIG. 5 is a block diagram showing an example of a schematic configuration of the base station 100 according to the first embodiment.
  • the base station 100 includes a wireless communication unit 110, a network communication unit 120, a storage unit 130, and a processing unit 140.
  • the wireless communication unit 110 wirelessly transmits and receives signals.
  • the wireless communication unit 110 receives a signal from a terminal device and transmits a signal to the terminal device.
  • Network communication unit 120 The network communication unit 120 receives a signal from the network and transmits the signal to the network.
  • Storage unit 130 The storage unit 130 temporarily or permanently stores programs (instructions) and parameters for operation of the base station 100 and various data.
  • the program includes one or more instructions for the operation of the base station 100.
  • the processing unit 140 provides various functions of the base station 100.
  • the processing unit 140 includes a wireless communication processing unit 141 and a network communication processing unit 143.
  • the processing unit 140 may further include other components other than these components. That is, the processing unit 140 can also perform operations other than the operations of these components. Specific operations of the wireless communication processing unit 141 and the network communication processing unit 143 will be described in detail later.
  • the processing unit 140 communicates with the terminal device (for example, the terminal device 200) via the wireless communication unit 110.
  • the processing unit 140 (network communication processing unit 143) communicates with another network node (for example, another base station or core network node) via the network communication unit 120.
  • the wireless communication unit 110 may be mounted by an antenna, a radio frequency (RF) circuit, or the like, and the antenna may be a directional antenna.
  • the network communication unit 120 may be implemented by a network adapter and / or a network interface card or the like.
  • the storage unit 130 may be implemented by a memory (for example, a non-volatile memory and / or a volatile memory) and / or a hard disk or the like.
  • the processing unit 140 may be implemented by one or more processors, such as a Baseband (BB) processor and / or other types of processors.
  • the wireless communication processing unit 141 and the network communication processing unit 143 may be implemented by the same processor, or may be implemented by different processors.
  • the memory (storage unit 130) may be included in the one or more processors, or may be outside the one or more processors.
  • the base station 100 may include a memory that stores a program (instruction) and one or more processors that can execute the program (instruction).
  • the one or more processors may execute the program and perform the operation of the processing unit 140 (the operation of the wireless communication processing unit 141 and the network communication processing unit 143).
  • the program may be a program that causes the processor to execute the operation of the processing unit 140 (the operation of the wireless communication processing unit 141 and the network communication processing unit 143).
  • Base station 100 may be virtualized. That is, the base station 100 may be implemented as a virtual machine. In this case, the base station 100 (virtual machine) may operate as a virtual machine on a physical machine (hardware) including a processor, a memory, and the like and a hypervisor.
  • a virtual machine may operate as a virtual machine on a physical machine (hardware) including a processor, a memory, and the like and a hypervisor.
  • FIG. 6 is a block diagram showing an example of a schematic configuration of the terminal device 200 according to the first embodiment.
  • the terminal device 200 includes a wireless communication unit 210, a storage unit 220, and a processing unit 230.
  • the wireless communication unit 210 wirelessly transmits and receives signals. For example, the wireless communication unit 210 receives a signal from a base station and transmits a signal to the base station.
  • Storage unit 220 The storage unit 220 temporarily or permanently stores programs (instructions) and parameters for the operation of the terminal device 200 and various data.
  • the program includes one or more instructions for the operation of the terminal device 200.
  • Processing unit 230 provides various functions of the terminal device 200.
  • the processing unit 230 includes a wireless communication processing unit 231.
  • the processing unit 230 may further include other components other than the components. That is, the processing unit 230 can also perform operations other than the operation of this component. The specific operation of the wireless communication processing unit 231 will be described in detail later.
  • the processing unit 230 communicates with a base station (for example, the base station 100) via the wireless communication unit 210.
  • the wireless communication unit 210 may be implemented by an antenna, a radio frequency (RF) circuit, or the like.
  • the storage unit 220 may be implemented by a memory (for example, a non-volatile memory and / or a volatile memory) and / or a hard disk or the like.
  • the processing unit 230 may be implemented by one or more processors, such as a baseband (BB) processor and / or other types of processors.
  • the memory (storage 220) may be contained within the one or more processors, or may be external to the one or more processors.
  • the processing unit 230 may be implemented in a SoC (System on Chip).
  • the terminal device 200 may include a memory for storing a program (instruction) and one or more processors capable of executing the program (instruction).
  • the one or more processors may execute the program and perform the operation of the processing unit 230 (the operation of the wireless communication processing unit 231).
  • the program may be a program that causes the processor to execute the operation of the processing unit 230 (the operation of the wireless communication processing unit 231).
  • the base station 100 performs communication using the first wireless transmission method within the frequency band.
  • the base station 100 (the wireless communication processing unit 141) is configured to transmit the second wireless signal in a partial band to which a wireless resource can be allocated for communication using the second wireless transmission method in the frequency band. Communication is performed using a transmission method.
  • the terminal device 200 (wireless communication processing unit 231) performs communication using the first wireless transmission method in the frequency band. In addition, the terminal device 200 (wireless communication processing unit 231) performs communication using the second wireless transmission method within the partial band.
  • the first wireless transmission method is a multicarrier transmission method
  • the second wireless transmission method is a single carrier transmission method.
  • the first wireless transmission method is a first multiplexing method
  • the second wireless transmission method is a second multiplexing method
  • the first wireless transmission scheme is OFDM
  • the second wireless transmission scheme is DFT-S-OFDM.
  • the communication using the first wireless transmission method and the communication using the second wireless transmission method are data channel communication.
  • the communication using the first wireless transmission scheme and the communication using the second wireless transmission scheme are uplink communications.
  • the data channel is a physical uplink shared channel (PUSCH).
  • the above-mentioned frequency band is a frequency band of a cellular system (or mobile communication system).
  • the frequency band is a system band or component carrier of a cellular system.
  • the partial band has a bandwidth of 2 resource blocks or more.
  • the partial band includes two or more consecutive resource blocks.
  • the partial band may have a bandwidth of six resource blocks.
  • the partial band may be referred to as a narrow band.
  • the partial band is a band to which radio resources can not be allocated for communication of the first radio transmission scheme. That is, the base station 100 (the wireless communication processing unit 141) and the terminal device 200 (the wireless communication processing unit 231) perform communication using the first wireless transmission method in the area other than the partial band in the frequency band. In the partial band, communication using the first wireless transmission method is not performed.
  • FIG. 7 is an explanatory diagram for describing an example of a partial band according to the first embodiment.
  • a frequency band including eight resource blocks (RB # 0 to # 7) is shown.
  • a band including RBs # 2 to # 5 is designated as a partial band to which radio resources can be allocated for communication using DFT-S-OFDM. That is, in this example, base station 100 performs communication using DFT-S-OFDM in a sub band including RBs # 2 to # 5.
  • the terminal device 200 also performs communication using DFT-S-OFDM in the corresponding partial band.
  • radio resources can be allocated to the band including RBs # 0 to # 1 and the band including RBs # 6 to # 7 for communication using OFDM. That is, in this example, the base station 100 performs communication using OFDM within the band including RBs # 0 to # 1 and the band including RBs # 6 to # 7.
  • the terminal device 200 also performs communication using OFDM in these bands. As an example, in a certain subframe, terminal apparatus 200A performs communication using DFT-S-OFDM in a partial band (RB # 2 to # 5), and terminal apparatus 200B transmits the signal to another area (RB # 0). , # 1, # 6, # 7) perform communication using OFDM.
  • a plurality of partial bands to which radio resources can be allocated for communication using the second radio transmission scheme may be designated.
  • the radio resource for the communication using DFT-S-OFDM is the band including RBs # 0 to # 1 and the band including RBs # 6 to # 7. It may be designated as two assignable partial bands.
  • the partial band may have a bandwidth greater than 1.4 MHz (rather than two resource blocks).
  • the partial band is a band to which a radio resource can be allocated for communication using the second radio transmission scheme among the frequency bands, in other words, the second radio It can be said that the band is reserved for communication using a transmission scheme.
  • the sub-bands may be referred to by other names such as, but not limited to, "frequency domain” or "radio resource domain”.
  • the base station 100 (wireless communication processing unit 141) transmits, to the terminal device 200, first control information indicating the partial band. Then, the terminal device 200 (wireless communication processing unit 231) receives the first control information from the base station 100.
  • the base station 100 (wireless communication processing unit 141) transmits an RRC (Radio Resource Control) message including the first control information to the terminal device 200. Then, the terminal device 200 (wireless communication processing unit 231) receives the RRC message.
  • the RRC message may be system information or may be a dedicated message.
  • the base station 100 may transmit a MAC (Medium Access Control) control element including the first control information to the terminal device 200.
  • the terminal device 200 wireless communication processing unit 231 may receive the MAC control element.
  • the terminal device 200 can know the partial band. Furthermore, as described later, for example, overhead of resource allocation information can be reduced. Also, for example, the partial band can be changed.
  • the first control information includes identification information (# 2 in the example of FIG. 4) of the first RB among RBs included in the partial band, and information indicating the number of RBs included in the partial band (4 in the example of FIG. 4).
  • identification information may be added to an area composed of a plurality of RBs, and the first control information may include identification information of an area included in the partial band.
  • # 0 is added as identification information to the area consisting of RB # 0 and RB # 1
  • # 1 is added as identification information to the area consisting of RB # 2 and RB # 3.
  • # 2 may be assigned as identification information to the area consisting of RB # 4 and RB # 5
  • # 3 may be assigned as identification information to the area consisting of RB # 6 and RB # 7.
  • the first control information may include # 1 and # 2 (identification information of the area included in the partial band).
  • the first control information may include identification information (# 1) of the first area included in the partial band and information (2) indicating the number of areas included in the partial band.
  • the base station 100 uses second control information indicating which of the first wireless transmission method and the second wireless transmission method to use. It transmits to the terminal device 200. Then, the terminal device 200 (wireless communication processing unit 231) receives the second control information from the base station 100.
  • the base station 100 transmits, to the terminal device 200, DCI (Downlink Control Information) including the second control information.
  • the base station 100 may transmit the MAC control element including the second control information to the terminal device 200.
  • the second control information is 1-bit information, 0 indicates using the first wireless transmission scheme, and 1 indicates using the second wireless transmission scheme.
  • the second control information may indicate that 0 is to use the second wireless transmission scheme, and 1 indicates that the first wireless transmission scheme is to be used.
  • the more preferable one of the first wireless transmission scheme and the second wireless transmission scheme it is possible to use the more preferable one of the first wireless transmission scheme and the second wireless transmission scheme.
  • DCI it is possible to dynamically switch the wireless transmission scheme for each subframe. This switching may be performed on a symbol or slot basis.
  • the base station 100 transmits, to the terminal device 200, resource assignment information indicating a wireless resource to be assigned to the terminal device 200. More specifically, for example, the base station 100 (wireless communication processing unit 141) transmits DCI including the resource allocation information to the terminal device 200.
  • the radio resource in the sub band has local identification information for identifying the radio resource locally in the sub band.
  • the base station 100 wireless communication processing unit 141 transmits the local identification information to the terminal device 200 as resource allocation information.
  • the terminal device 200 receives the local identification information from the base station 100 as resource allocation information.
  • radio resources in an area other than the sub-band in the frequency band may also have additional local identification information for identifying the radio resource locally in the area.
  • the base station 100 wireless communication processing unit 141 may transmit the additional local identification information as the resource allocation information to the terminal device 200.
  • the terminal device 200 wireless communication processing unit 231) may receive the above-mentioned additional local identification information from the base station 100 as resource allocation information.
  • FIG. 10 is an explanatory diagram for describing an example of the local identification information according to the first embodiment.
  • a frequency band including eight resource blocks (RB # 0 to # 7) is shown.
  • the band including RBs # 2 to # 5 is a partial band to which radio resources can be allocated for communication using DFT-S-OFDM.
  • RBs # 2 to # 5 in the above-mentioned sub-bands have local identification information of # 0 to # 3, respectively.
  • resource allocation information for the terminal device 200A local identification information of the first RB among the allocated RBs and information indicating the number of RBs allocated (or local identification of the last RB among the allocated RBs) Information) is transmitted to the terminal device 200A. Furthermore, in this example, RBs # 0, # 1, # 6, and # 7 in areas other than the partial band also locally identify RBs # 0, # 1, # 6, and # 7 in the area. As the additional local identification information for this, # 0 to # 3 respectively. For example, the additional local identification information is transmitted to the terminal device 200B as resource allocation information for the terminal device 200B. This can reduce the amount of information of resource allocation information.
  • the local identification information is not limited to the information indicating individual RBs as described above.
  • the local identification information may be information indicating a combination of RBs.
  • the local identification information may be information indicating a combination of RBs.
  • FIG. 11 with the tree-based representation, combinations of consecutive RBs in RBs # 0 to # 7 can be identified by indexes 0 to 35.
  • radio resources (combination of consecutive RBs) in the partial band (RB # 2 to # 5) are indexes of 0 to 9
  • the information amount of resource allocation information decreases from 6 bits (for 0 to 35) to 4 bits (for 0 to 9).
  • the local identification information for example, it is possible to reduce the overhead of the resource allocation information.
  • the DCI may be transmitted on PDCCH (Physical Downlink Control Channel) or may be transmitted on MPDCCH (Machine Type Communications PDCCH).
  • PDCCH Physical Downlink Control Channel
  • MPDCCH Machine Type Communications PDCCH
  • the format of DCI may be Format 6-0A, 6-0B, 6-1A, 6-1B, or 6-2.
  • the DCI may include a repetition number of PDSCH or PUSCH.
  • the system may be configured to dynamically switch at least one of the first control information and the second control information for each subframe number corresponding to the repetition number.
  • the DCI may further include control information indicating that at least one of the first control information and the second control information is to be dynamically switched for each subframe number corresponding to the repetition number. Note that at least one of the first control information and the second control information may be different between subframes that are repeatedly transmitted, and control information indicating this may be included in the DCI.
  • the base station 100 (network communication processing unit 143) transmits third control information indicating the partial band to the other base station.
  • the base station 100 transmits a message including the third control information to another base station via the Xn interface.
  • the message may further include other information indicating the validity period and the like of the third control information.
  • the message may be a message for interference control or CoMP.
  • the communication using the first wireless transmission scheme and the communication using the second wireless transmission scheme are uplink communications.
  • the terminal device 200 wireless communication processing unit 231
  • the terminal device 200 wireless communication processing unit 231
  • an uplink reference signal for measurement in the partial band And not transmit the uplink reference signal outside the sub-band. That is, the transmission of the uplink reference signal is limited within the partial band (eg, RBs # 2 to # 5).
  • the measurement is measurement of channel quality by the base station 100. Thereby, for example, it is possible to improve the accuracy of measurement of channel quality by the base station 100.
  • FIG. 13 is a sequence diagram for explaining an example of a schematic flow of communication processing according to the first embodiment.
  • the base station 100 transmits, to the terminal device 200, first control information indicating a partial band (S301).
  • the terminal device 200 receives the first control information from the base station 100.
  • the base station 100 transmits an RRC message (or MAC control element) including the first control information.
  • the base station 100 transmits, to the terminal device 200, second control information indicating which of the first radio transmission scheme and the second radio transmission scheme is to be used, and resource allocation information (S303).
  • the terminal device 200 receives the second control information and the resource assignment information from the base station 100.
  • the base station 100 transmits DCI including the second control information and the resource allocation information.
  • the terminal device 200 transmits data to the base station 100 based on the first control information, the second control information, and the resource allocation information (S305).
  • the base station 100 receives the data.
  • the partial band is a band to which a radio resource can not be allocated for communication of the first radio transmission scheme.
  • the first embodiment is not limited to this example.
  • the partial band may be a band to which a radio resource can be allocated also for communication of the first radio transmission scheme. That is, the base station 100 (wireless communication processing unit 141) and the terminal device 200 (wireless communication processing unit 231) are not limited to the area other than the partial band in the frequency band, and the above-mentioned Communication may be performed using the wireless transmission method of 1.
  • the partial band may be a band to which a radio resource is preferentially allocated for communication of the second wireless transmission method rather than communication of the first wireless transmission method.
  • FIG. 14 is an explanatory diagram for explaining an example of resource allocation according to the first modified example of the first embodiment.
  • a frequency band including eight resource blocks (RB # 0 to # 7) is shown.
  • the band including RBs # 2 to # 5 is a partial band to which radio resources can be allocated for communication using DFT-S-OFDM.
  • the first modified example not only RBs # 0, # 1, # 6, and # 7, but all of RBs # 0 to # 7 can allocate radio resources for communication using OFDM.
  • RBs # 2 to # 5 are preferentially allocated for communication using DFT-S-OFDM.
  • the frequency band is a system band or component carrier of a cellular system.
  • the first embodiment is not limited to this example.
  • the frequency band may be part of a system band or a component carrier.
  • the part may be a band according to the maximum transmission bandwidth (or maximum reception bandwidth) of the terminal device 200.
  • the communication using the first wireless transmission method and the communication using the second wireless transmission method are uplink communication.
  • the first embodiment is not limited to this example.
  • the communication using the first wireless transmission scheme and the communication using the second wireless transmission scheme may be downlink communication.
  • the terminal device 200 (the wireless communication processing unit 231) measures the channel quality for the partial band, and does not measure the channel quality for another band in the frequency band. Good. That is, the band in which the terminal device 200 performs measurement is limited to the partial band (for example, RB # 2 to # 5). The terminal device 200 feeds back the result of the measurement in the partial band to the base station 100. Thereby, for example, it is possible to reduce the amount of calculation for measurement by the terminal device 200 and to reduce the overhead of feedback of measurement results.
  • the first embodiment has been described above. According to the first embodiment, for example, when wireless transmission methods are mixed, it is possible to more appropriately perform control regarding wireless communication.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a wireless communication apparatus 400 according to the second embodiment.
  • the wireless communication apparatus 400 includes a wireless communication processing unit 410.
  • the specific operation of the wireless communication processing unit 410 will be described later.
  • the wireless communication processing unit 410 may be implemented by one or more processors (such as a BB processor and / or other types of processors) and memory.
  • the memory may be contained within the one or more processors, or may be external to the one or more processors.
  • the wireless communication processing unit 410 may be implemented in the SoC.
  • the wireless communication device 400 may include a memory that stores a program (instruction), and one or more processors that can execute the program (instruction).
  • the one or more processors may execute the program to perform the operation of the wireless communication processing unit 410.
  • the program may be a program that causes the processor to execute the operation of the wireless communication processing unit 410.
  • the wireless communication device 400 may be virtualized. That is, the wireless communication device 400 may be implemented as a virtual machine. In this case, the wireless communication device 400 (virtual machine) may operate as a virtual machine on a physical machine (hardware) including a processor, a memory, and the like and a hypervisor.
  • a virtual machine may operate as a virtual machine on a physical machine (hardware) including a processor, a memory, and the like and a hypervisor.
  • the wireless communication apparatus 400 may further include components other than the wireless communication processing unit 410.
  • the wireless communication apparatus 400 may further include a wireless communication unit, a network communication unit (and a network communication processing unit), and / or a storage unit, and / or other configurations. It may further comprise an element.
  • the wireless communication device 400 (wireless communication processing unit 410) performs communication using the first wireless transmission method within the frequency band.
  • the wireless communication apparatus 400 (the wireless communication processing unit 410) is configured to, in the partial band to which a wireless resource can be allocated for communication using the second wireless transmission method, of the above-mentioned frequency bands. Communication is performed using a wireless transmission method.
  • the wireless communication device 400 is a base station.
  • the wireless communication apparatus 400 is the base station 100 according to the first embodiment.
  • the wireless communication apparatus 400 may be another base station.
  • the wireless communication device 400 may be a terminal device.
  • the wireless communication device 400 may be the terminal device 200 according to the first embodiment.
  • the wireless communication device 400 may be another terminal device.
  • the description of the flow of wireless transmission scheme, communication, frequency band, partial band, transmission of control information to terminal equipment, transmission of control information to another base station, measurement, and flow of processing is the first embodiment. It is the same as the explanation in the form. Therefore, duplicate explanations are omitted here.
  • the wireless communication processing unit 410 may operate in the same manner as the wireless communication processing unit 141 or the wireless communication processing unit 231 according to the first embodiment.
  • the second embodiment is not limited to this example.
  • the second embodiment has been described above. According to the second embodiment, for example, when wireless transmission methods are mixed, it is possible to more appropriately perform control regarding wireless communication.
  • the steps in the processes described herein may not necessarily be performed in chronological order according to the order described in the sequence diagram.
  • the steps in the process may be performed in an order different from the order described as the sequence diagram, or may be performed in parallel.
  • some of the steps in the process may be deleted and additional steps may be added to the process.
  • one of the devices for example, a plurality of devices (or units) configuring the base station
  • the components of the base station for example, the wireless communication processing unit and / or the network communication processing unit
  • An apparatus e.g., a module for a terminal device
  • includes the terminal device components e.g., a wireless communication processing unit
  • a method may be provided that includes the processing of the component, and a program that causes the processor to execute the processing of the component may be provided.
  • a non-transitory computer readable medium readable by a computer having recorded the program may be provided.
  • such an apparatus, module, method, program, and non-transitory storage medium readable by a computer are also included in the present invention.
  • a wireless communication processing unit for performing communication using a first wireless transmission method within a frequency band The wireless communication processing unit performs communication using the second wireless transmission method within a partial band to which a wireless resource can be allocated for communication using the second wireless transmission method among the frequency bands.
  • Do Wireless communication device.
  • the first wireless transmission method is a multicarrier transmission method.
  • the second wireless transmission method is a single carrier transmission method.
  • the wireless communication device according to appendix 1.
  • the first wireless transmission method is a first multiplexing method
  • the second wireless transmission method is a second multiplexing method.
  • the wireless communication device according to appendix 1 or 2.
  • the first wireless transmission method is Orthogonal Frequency Division Multiplexing (OFDM)
  • the second wireless transmission method is DFT-S-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing).
  • the wireless communication device according to any one of appendices 1 to 3.
  • the wireless communication apparatus transmits an RRC (Radio Resource Control) message or a MAC (Medium Access Control) control element including the first control information to a terminal device.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • the radio resource in the sub band has local identification information for identifying the radio resource locally in the sub band
  • the wireless communication processing unit transmits the local identification information to a terminal device as resource allocation information.
  • the wireless communication device according to appendix 9 or 10.
  • the wireless communication processing unit transmits, to the terminal device, second control information indicating which of the first wireless transmission method and the second wireless transmission method is used.
  • the wireless communication device according to.
  • the wireless communication apparatus according to any one of appendices 8 to 13, further comprising a network communication processing unit that transmits the third control information indicating the partial band to another base station.
  • the radio resource in the sub band has local identification information for identifying the radio resource locally in the sub band
  • the wireless communication processing unit receives the local identification information as resource allocation information from a base station.
  • the wireless communication device according to appendix 16.
  • the wireless communication processing unit receives, from a base station, second control information indicating which of the first wireless transmission scheme and the second wireless transmission scheme is to be used.
  • the wireless communication device according to.
  • the communication using the first wireless transmission scheme and the communication using the second wireless transmission scheme are uplink communications
  • the wireless communication processing unit transmits an uplink reference signal for measurement in the partial band when performing uplink communication using the second wireless transmission method in the partial band, and the partial band Not transmit the uplink reference signal outside,
  • the wireless communication device according to any one of supplementary notes 15 to 18.
  • the communication using the first wireless transmission scheme and the communication using the second wireless transmission scheme are downlink communications,
  • the wireless communication processing unit measures channel quality for the partial band, and does not measure channel quality for another band in the frequency band.
  • the wireless communication device according to any one of supplementary notes 15 to 18.
  • Appendix 25 The wireless communication device according to any one of appendices 1 to 24, wherein the partial band has a bandwidth greater than 1.4 MHz.
  • Appendix 26 The wireless communication device according to any one of appendices 1 to 25, wherein the frequency band is a frequency band of a cellular system.
  • Appendix 27 The radio communication apparatus according to any one of appendices 1 to 26, wherein the frequency band is a system band or a component carrier.
  • a base station, A terminal device, Including The base station is Perform communication using the first wireless transmission method within the frequency band, Communication using the second wireless transmission method is performed within a partial band to which a wireless resource can be allocated for communication using the second wireless transmission method in the frequency band, The terminal device is Performing communication using the first wireless transmission method within the frequency band; Communication using the second wireless transmission method is performed within the partial band, system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】無線伝送方式が混在する場合に無線通信に関する制御をより適切に行うことを可能にすること。 【解決手段】本発明の無線通信装置は、周波数帯域内で第1の無線伝送方式を用いた通信を行う無線通信処理部を備える。上記無線通信処理部は、上記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、上記第2の無線伝送方式を用いた通信を行う。

Description

無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム
 本発明は、無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステムに関する。
 3GPP(3rd Generation Partnership Project)で標準化されたLTE(Long Term Evolution)では、アップリンクのデータ送受信に用いる無線伝送方式としてDFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing)が採用されている(非特許文献1)。DFT-S-OFDMでは、DFT(Discrete Fourier Transform)出力からIFFT(Inverse Fast Fourier Transform)入力へのマッピングを、周波数軸上で連続するサブキャリアに限定することにより、ピーク電力の低いシングルキャリア信号が生成され、広いカバレッジを実現できる。
 一方、現在、3GPPでは、LTEよりさらに広帯域な周波数に対応するNR(New Radio)の標準化が行われている。NRでは、より柔軟な無線リソース割り当てを行うために、アップリンクのデータ送受信に用いる無線伝送方式として、OFDM(Orthogonal Frequency Division Multiplexing)が採用されている。OFDMはマルチキャリア伝送方式であり、周波数軸上で不連続な無線リソースが割り当てられるため、割り当ての柔軟性が高い。しかし、ピーク電力はシングルキャリア伝送方式と比べて高く、カバレッジが狭くなる。
 そこで、3GPPでは、カバレッジ拡大のため、NRのアップリンクデータ送受信に用いる無線伝送方式としてDFT-S-OFDMも併せて採用された(非特許文献2)。なお、特許文献1には、DFT-S-OFDMとClustered-DFT-S-OFDMとを用いる技術が開示されている。
 上述したように、OFDMとDFT-S-OFDMとの両方が無線伝送方式として採用されたので、同一の伝送時間間隔内で、OFDMの送信とDFT-S-OFDMの送信とが混在し得る。何の制限もなくこのような無線伝送方式が混在すると、無線通信に関する制御が困難に又は非効率的になり得る。
 本発明の目的は、無線伝送方式が混在する場合に無線通信に関する制御をより適切に行うことを可能にする無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステムを提供することにある。
 本発明の一態様に係る無線通信装置は、周波数帯域内で第1の無線伝送方式を用いた通信を行う無線通信処理部を備え、上記無線通信処理部は、上記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、上記第2の無線伝送方式を用いた通信を行う。
 本発明の一態様に係る方法は、周波数帯域内で第1の無線伝送方式を用いた通信を行うことと、上記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、上記第2の無線伝送方式を用いた通信を行うことと、を含む。
 本発明の一態様に係るプログラムは、周波数帯域内で第1の無線伝送方式を用いた通信を行うことと、上記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、上記第2の無線伝送方式を用いた通信を行うことと、をプロセッサに実行させる。
 本発明の一態様に係るコンピュータに読み取り可能な非一時的記録媒体は、周波数帯域内で第1の無線伝送方式を用いた通信を行うことと、上記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、上記第2の無線伝送方式を用いた通信を行うことと、をプロセッサに実行させるプログラムを記録する。
 本発明の一態様に係るシステムは、基地局と、端末装置と、を含み、上記基地局は、周波数帯域内で第1の無線伝送方式を用いた通信を行い、上記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、上記第2の無線伝送方式を用いた通信を行い、上記端末装置は、上記周波数帯域内で上記第1の無線伝送方式を用いた通信を行い、上記部分帯域内で上記第2の無線伝送方式を用いた通信を行う。
 本発明によれば、無線伝送方式が混在する場合に無線通信に関する制御をより適切に行うことが可能になる。なお、本発明により、当該効果の代わりに、又は当該効果とともに、他の効果が奏されてもよい。
DFT-S-OFDMの信号生成のブロック図である。 OFDMの信号生成のブロック図である。 リソースブロックの割当ての例を説明するための説明図である。 第1の実施形態に係るシステムの概略的な構成の例を示す説明図である。 第1の実施形態に係る基地局の概略的な構成の例を示すブロック図である。 第1の実施形態に係る端末装置の概略的な構成の例を示すブロック図である。 第1の実施形態に係る部分帯域の例を説明するための説明図である。 第1の実施形態に係る部分帯域の他の例を説明するための説明図である。 第1の実施形態に係る領域の識別情報の例を説明するための説明図である。 第1の実施形態に係る局所識別情報の例を説明するための説明図である。 ツリーベース表現による無線リソースの識別情報の例を説明するための説明図である。 第1の実施形態に係る局所識別情報の他の例を説明するための説明図である。 第1の実施形態に係る通信処理の概略的な流れの例を説明するためのシーケンス図である。 第1の実施形態の第1の変形例に係るリソース割当ての例を説明するための説明図である。 第2の実施形態に係る無線通信装置の概略的な構成の例を示すブロック図である。
 以下、添付の図面を参照して本発明の実施形態を詳細に説明する。なお、本明細書及び図面において、同様に説明されることが可能な要素については、同一の符号を付することにより重複説明が省略され得る。
 説明は、以下の順序で行われる。
 1.関連技術
 2.本発明の実施形態の概要
 3.第1の実施形態
  3.1.システムの構成
  3.2.基地局の構成
  3.3.端末装置の構成
  3.4.技術的特徴
  3.5.変形例
 4.第2の実施形態
  4.1.無線通信装置の構成
  4.2.技術的特徴
 <<1.関連技術>>
 本発明の実施形態に関連する技術として、DFT-S-OFDM及びOFDMを説明する。
 (1)DFT-S-OFDM
 図1は、DFT-S-OFDMの信号生成のブロック図である。図1を参照すると、変調信号について、離散フーリエ変換(DFT)(11)、サブキャリアマッピング(13)、逆高速フーリエ変換(IFFT)(15)、及びサイクリックプレフィクス(CP)の付加(17)が行われる。
 DFT-S-OFDMでは、DFT出力からIFFT入力へのマッピングを、周波数軸上で連続するサブキャリアに限定することにより、ピーク電力の低いシングルキャリア信号が生成され、広いカバレッジを実現できる。
 (2)OFDM
 図2は、OFDMの信号生成のブロック図である。図2を参照すると、変調信号について、サブキャリアマッピング(21)、逆高速フーリエ変換(IFFT)(23)、及びサイクリックプレフィクス(CP)の付加(25)が行われる。
 OFDMはマルチキャリア伝送方式であり、周波数軸上で不連続な無線リソースが割り当てられるため、割り当ての柔軟性が高い。しかし、ピーク電力はシングルキャリア伝送方式と比べて高く、カバレッジが狭くなる。
 <<2.本発明の実施形態の概要>>
 まず、本発明の実施形態の概要を説明する。
 (1)技術的課題
 3GPPでは、カバレッジ拡大のため、NRのアップリンクデータ送受信に用いる無線伝送方式としてOFDMだけではなくDFT-S-OFDMも採用された。このようにOFDMとDFT-S-OFDMとの両方が無線伝送方式として採用されたので、同一の伝送時間間隔内で、OFDMの送信とDFT-S-OFDMの送信とが混在し得る。何の制限もなくこのような無線伝送方式が混在すると、無線通信に関する制御が困難に又は非効率的になり得る。
 一例として、各基地局がOFDMの送信とDFT-S-OFDMの送信とを場当たり的に混在させると、基地局間での干渉制御又はCoMP(Coordinated Multi-point transmission/reception)が困難になり得る。
 別の例として、マルチキャリア伝送方式であるOFDMの送信に、周波数軸上で離散的な無線リソースが割り当てられ、離散的な細かい無線リソースが残り、その結果、シングルキャリア伝送方式であるDFT-S-OFDMの送信には、十分な無線リソースが割り当てられなくなり得る。即ち、DFT-S-OFDMの送信への無線リソースの割当てが限定的になり得る。具体的には、例えば、図3に示されるように、OFDMを用いるUEには、RB(Resource Block)#0、RB#1、RB#4及びRB#6が割り当てられ、RB#2、RB#3、RB#5及びRB#7が残る。一方、DFT-S-OFDMを用いるUEには周波数軸上で連続したRBのみが割り当て可能という制約があるので、このUEには最大でもRB#2及びRB#3の2RBしか割り当てられない。このように、DFT-S-OFDMの送信への無線リソースの割当てが限定的になり得る。
 さらに別の例として、DFT-S-OFDMの送信が限定的に行われるような場合には、DFT-S-OFDMに割り当てられる無線リソースに制限がないと、リソース割当情報の情報量は維持され、シグナリングが非効率的になり得る。
 したがって、無線伝送方式が混在する場合に無線通信に関する制御をより適切に行うことを可能にすることが望ましい。
 (2)技術的特徴
 本発明の実施形態では、例えば、無線通信装置(基地局/端末装置)は、周波数帯域内で第1の無線伝送方式(例えばOFDM)を用いた通信を行う。また、当該無線通信装置(基地局/端末装置)は、上記周波数帯域のうちの、第2の無線伝送方式(例えばDFT-S-OFDM)を用いた通信のために無線リソースが割り当て可能な部分帯域内で、上記第2の無線伝送方式を用いた通信を行う。
 これにより、例えば、無線伝送方式が混在する場合に無線通信に関する制御をより適切に行うことが可能になる。
 なお、上述した技術的特徴は本発明の実施形態の具体的な一例であり、当然ながら、本発明の実施形態は上述した技術的特徴に限定されない。
 <<3.第1の実施形態>>
 続いて、図4~図14を参照して、本発明の第1の実施形態を説明する。
 <3.1.システムの構成>
 まず、図4を参照して、第1の実施形態に係るシステム1の構成の例を説明する。図4は、第1の実施形態に係るシステム1の概略的な構成の例を示す説明図である。図4を参照すると、システム1は、基地局100及び端末装置200を含む。
 図4には、2つの端末装置200(端末装置200A及び端末装置200B)が示されているが、システム1は、3つ以上の端末装置200を含んでもよい。ここでは、2つの端末装置200の区別が必要な場合には、端末装置200A及び端末装置200Bと記載するが、2つの端末装置200の区別が不要な場合には、単に端末装置200と記載する。
 例えば、システム1は、3GPP(Third Generation Partnership Project)の規格(standard)/仕様(specification)に準拠したシステムである。より具体的には、例えば、システム1は、第5世代(5G)/NR(New Radio)の規格/仕様に準拠したシステムであってもよい。当然ながら、システム1は、これらの例に限定されない。
 (1)基地局100
 基地局100は、無線アクセスネットワーク(Radio Access Network:RAN)のノードであり、カバレッジエリア内に位置する端末装置(例えば、端末装置200)との無線通信を行う。
 例えば、基地局100は、5GにおけるgNB(generation Node B)であってもよい。基地局100は、複数のユニット(又は複数のノード)を含んでもよい。当該複数のユニット(又は複数のノード)は、上位のプロトコルレイヤの処理を行う第1ユニット(又は第1ノード)と、下位のプロトコルレイヤの処理を行う第2ユニット(又は第2ノード)とを含んでもよい。一例として、上記第1ユニットは、中央ユニット(Center/Central Unit:CU)と呼ばれてもよく、上記第2のユニットは、分散ユニット(Distributed Unit:DU)又はアクセスユニット(Access Unit:AU)と呼ばれてもよい。別の例として、上記第1ユニットは、デジタルユニット(Digital Unit:DU)と呼ばれてもよく、上記第2ユニットは、無線ユニット(Radio Unit:RU)又はリモートユニット(Remote Unit:RU)と呼ばれてもよい。上記DU(Digital Unit)は、BBU(Base Band Unit)であってもよく、上記RUは、RRH(Remote Radio Head)又はRRU(Remote Radio Unit)であってもよい。当然ながら、上記第1ユニット(又は第1のノード)及び上記第2ユニット(又は第2のノード)の呼称は、この例に限定されない。あるいは、基地局100は、単一のユニット(又は単一のノード)であってもよい。この場合に、基地局100は、上記複数のユニットのうちの1つ(例えば、上記第1ユニット及び上記第2ユニットの一方)であってもよく、上記複数のユニットのうちの他のユニット(例えば、上記第1ユニット及び上記第2ユニットの他方)と接続されていてもよい。
 (2)端末装置200
 端末装置200は、基地局との無線通信を行う。例えば、端末装置200は、基地局100のカバレッジエリア内に位置する場合に、基地局100との無線通信を行う。例えば、端末装置200は、UE(User Equipment)である。
 <3.2.基地局の構成>
 次に、図5を参照して、第1の実施形態に係る基地局100の構成の例を説明する。図5は、第1の実施形態に係る基地局100の概略的な構成の例を示すブロック図である。図5を参照すると、基地局100は、無線通信部110、ネットワーク通信部120、記憶部130及び処理部140を備える。
 (1)無線通信部110
 無線通信部110は、信号を無線で送受信する。例えば、無線通信部110は、端末装置からの信号を受信し、端末装置への信号を送信する。
 (2)ネットワーク通信部120
 ネットワーク通信部120は、ネットワークから信号を受信し、ネットワークへ信号を送信する。
 (3)記憶部130
 記憶部130は、基地局100の動作のためのプログラム(命令)及びパラメータ、並びに様々なデータを、一時的に又は恒久的に記憶する。当該プログラムは、基地局100の動作のための1つ以上の命令を含む。
 (4)処理部140
 処理部140は、基地局100の様々な機能を提供する。処理部140は、無線通信処理部141及びネットワーク通信処理部143を含む。なお、処理部140は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部140は、これらの構成要素の動作以外の動作も行い得る。無線通信処理部141及びネットワーク通信処理部143の具体的な動作は、後に詳細に説明する。
 例えば、処理部140(無線通信処理部141)は、無線通信部110を介して端末装置(例えば、端末装置200)と通信する。例えば、処理部140(ネットワーク通信処理部143)は、ネットワーク通信部120を介して他のネットワークノード(例えば、他の基地局又はコアネットワークノード)と通信する。
 (5)実装例
 無線通信部110は、アンテナ及び高周波(Radio Frequency:RF)回路等により実装されてもよく、当該アンテナは、指向性アンテナであってもよい。ネットワーク通信部120は、ネットワークアダプタ並びに/又はネットワークインタフェースカード等により実装されてもよい。記憶部130は、メモリ(例えば、不揮発性メモリ及び/若しくは揮発性メモリ)並びに/又はハードディスク等により実装されてもよい。処理部140は、ベースバンド(Baseband:BB)プロセッサ及び/又は他の種類のプロセッサ等の1つ以上のプロセッサにより実装されてもよい。無線通信処理部141及びネットワーク通信処理部143は、同一のプロセッサにより実装されてもよく、別々に異なるプロセッサにより実装されてもよい。上記メモリ(記憶部130)は、上記1つ以上のプロセッサ内に含まれていてもよく、又は、上記1つ以上のプロセッサ外にあってもよい。
 基地局100は、プログラム(命令)を記憶するメモリと、当該プログラム(命令)を実行可能な1つ以上のプロセッサとを含んでもよい。当該1つ以上のプロセッサは、上記プログラムを実行して、処理部140の動作(無線通信処理部141及びネットワーク通信処理部143の動作)を行ってもよい。上記プログラムは、処理部140の動作(無線通信処理部141及びネットワーク通信処理部143の動作)をプロセッサに実行させるプログラムであってもよい。
 なお、基地局100は、仮想化されていてもよい。即ち、基地局100は、仮想マシンとして実装されてもよい。この場合に、基地局100(仮想マシン)は、プロセッサ及びメモリ等を含む物理マシン(ハードウェア)及びハイパーバイザ上で仮想マシンとして動作してもよい。
 <3.3.端末装置の構成>
 次に、図6を参照して、第1の実施形態に係る端末装置200の構成の例を説明する。図6は、第1の実施形態に係る端末装置200の概略的な構成の例を示すブロック図である。図6を参照すると、端末装置200は、無線通信部210、記憶部220及び処理部230を備える。
 (1)無線通信部210
 無線通信部210は、信号を無線で送受信する。例えば、無線通信部210は、基地局からの信号を受信し、基地局への信号を送信する。
 (2)記憶部220
 記憶部220は、端末装置200の動作のためのプログラム(命令)及びパラメータ、並びに様々なデータを、一時的に又は恒久的に記憶する。当該プログラムは、端末装置200の動作のための1つ以上の命令を含む。
 (3)処理部230
 処理部230は、端末装置200の様々な機能を提供する。処理部230は、無線通信処理部231を含む。なお、処理部230は、この構成要素以外の他の構成要素をさらに含み得る。即ち、処理部230は、この構成要素の動作以外の動作も行い得る。無線通信処理部231の具体的な動作は、後に詳細に説明する。
 例えば、処理部230(無線通信処理部231)は、無線通信部210を介して基地局(例えば、基地局100)と通信する。
 (4)実装例
 無線通信部210は、アンテナ及び高周波(RF)回路等により実装されてもよい。記憶部220は、メモリ(例えば、不揮発性メモリ及び/若しくは揮発性メモリ)並びに/又はハードディスク等により実装されてもよい。処理部230は、ベースバンド(BB)プロセッサ及び/又は他の種類のプロセッサ等の1つ以上のプロセッサにより実装されてもよい。上記メモリ(記憶部220)は、上記1つ以上のプロセッサ内に含まれていてもよく、又は、上記1つ以上のプロセッサ外にあってもよい。一例として、処理部230は、SoC(System on Chip)内で実装されてもよい。
 端末装置200は、プログラム(命令)を記憶するメモリと、当該プログラム(命令)を実行可能な1つ以上のプロセッサとを含んでもよい。当該1つ以上のプロセッサは、上記プログラムを実行して、処理部230の動作(無線通信処理部231の動作)を行ってもよい。上記プログラムは、処理部230の動作(無線通信処理部231の動作)をプロセッサに実行させるプログラムであってもよい。
 <3.4.技術的特徴>
 次に、図7~図13を参照して、第1の実施形態に係る技術的特徴を説明する。
 基地局100(無線通信処理部141)は、周波数帯域内で第1の無線伝送方式を用いた通信を行う。また、基地局100(無線通信処理部141)は、上記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、上記第2の無線伝送方式を用いた通信を行う。
 端末装置200(無線通信処理部231)は、上記周波数帯域内で上記第1の無線伝送方式を用いた通信を行う。また、端末装置200(無線通信処理部231)は、上記部分帯域内で上記第2の無線伝送方式を用いた通信を行う。
 (1)無線伝送方式
 例えば、上記第1の無線伝送方式は、マルチキャリア伝送方式であり、上記第2の無線伝送方式は、シングルキャリア伝送方式である。
 また、例えば、上記第1の無線伝送方式は、第1の多重方式であり、上記第2の無線伝送方式は、第2の多重方式である。
 より具体的には、例えば、上記第1の無線伝送方式は、OFDMであり、上記第2の無線伝送方式は、DFT-S-OFDMである。
 (2)通信
 例えば、上記第1の無線伝送方式を用いた上記通信、及び上記第2の無線伝送方式を用いた上記通信は、データチャネルの通信である。
 例えば、上記第1の無線伝送方式を用いた上記通信、及び上記第2の無線伝送方式を用いた上記通信は、アップリンク通信である。この場合に、例えば、上記データチャネルは、物理アップリンク共有チャネル(Physical Uplink Shared Chanel:PUSCH)である。
 (3)周波数帯域
 例えば、上記周波数帯域は、セルラーシステム(又は移動体通信システム)の周波数帯域である。例えば、上記周波数帯域は、セルラーシステムのシステム帯域又はコンポーネントキャリアである。
 (4)部分帯域
 例えば、上記部分帯域は、2リソースブロック以上の帯域幅をもつ。換言すると、上記部分帯域は、連続する2つ以上のリソースブロックを含む。また、上記部分帯域は、6リソースブロックの帯域幅をもっていてもよい。この場合、上記部分帯域は、ナローバンド(狭帯域)と呼ばれてもよい。
 また、例えば、上記部分帯域は、上記第1の無線伝送方式の通信のために無線リソースが割り当て不能な帯域である。即ち、基地局100(無線通信処理部141)及び端末装置200(無線通信処理部231)は、上記周波数帯域のうちの上記部分帯域以外の領域内で上記第1の無線伝送方式を用いた通信を行い、上記部分帯域内では上記第1の無線伝送方式を用いた通信を行わない。
 図7は、第1の実施形態に係る部分帯域の一例を説明するための説明図である。図7を参照すると、8つのリソースブロック(RB#0~#7)を含む周波数帯域が示されている。この例では、RB#2~#5を含む帯域が、DFT-S-OFDMを用いた通信のために無線リソースが割り当て可能な部分帯域として指定されている。即ち、この例では、基地局100は、RB#2~#5を含む部分帯域内でDFT-S-OFDMを用いた通信を行う。また、端末装置200も、当該部分帯域内でDFT-S-OFDMを用いた通信を行う。一方、RB#0~#1を含む帯域と、RB#6~#7を含む帯域とが、OFDMを用いた通信のために無線リソースが割り当て可能である。即ち、この例では、基地局100は、RB#0~#1を含む帯域及びRB#6~#7を含む帯域内で、OFDMを用いた通信を行う。また、端末装置200も、これらの帯域内でOFDMを用いた通信を行う。一例として、あるサブフレーム内で、端末装置200Aは、部分帯域(RB#2~#5)内でDFT-S-OFDMを用いた通信を行い、端末装置200Bは、他の領域(RB#0、#1、#6、#7)内でOFDMを用いた通信を行う。
 この例によれば、DFT-S-OFDMを用いる端末装置に最大4RBを割り当てることが可能である。このように、第1の無線伝送方式(OFDM)の通信に起因して第2の無線伝送方式(DFT-S-OFDM)の送信に十分な無線リソースが割り当てられなくなることが、回避され得る。
 なお、上記第2の無線伝送方式(例えばDFT-S-OFDM)を用いた通信のために無線リソースが割り当て可能な複数の部分帯域が、指定されてもよい。例えば、図8に示される例のように、RB#0~#1を含む帯域と、RB#6~#7を含む帯域とが、DFT-S-OFDMを用いた通信のために無線リソースが割り当て可能な2つの部分帯域として指定されてもよい。
 また、上記部分帯域は、(2リソースブロック以上ではなく)1.4MHzよりも大きい帯域幅をもっていてもよい。
 上述したように、上記部分帯域は、上記周波数帯域のうちの、上記第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な帯域であるが、換言すると、上記第2の無線伝送方式を用いた通信のために確保(reserve)された帯域とも言え得る。また、上記部分帯域は、「周波数領域」又は「無線リソース領域」(これらに限られない)のように他の名称で呼ばれてもよい。
 (5)端末装置への制御情報の送信
 (5-1)部分帯域
 例えば、基地局100(無線通信処理部141)は、上記部分帯域を示す第1の制御情報を端末装置200へ送信する。そして、端末装置200(無線通信処理部231)は、上記第1の制御情報を基地局100から受信する。
 具体的には、例えば、基地局100(無線通信処理部141)は、上記第1の制御情報を含むRRC(Radio Resource Control)メッセージを端末装置200へ送信する。そして、端末装置200(無線通信処理部231)は、当該RRCメッセージを受信する。上記RRCメッセージは、システム情報であってもよく、又は専用メッセージ(dedicated message)であってもよい。
 あるいは、基地局100(無線通信処理部141)は、上記第1の制御情報を含むMAC(Medium Access Control)制御エレメントを端末装置200へ送信してもよい。そして、端末装置200(無線通信処理部231)は、当該MAC制御エレメントを受信してもよい。
 これにより、例えば、端末装置200が上記部分帯域を知ることが可能になる。さらに、後述するように、例えばリソース割当情報のオーバヘッドを削減することが可能になる。また、例えば、上記部分帯域を変更することが可能になる。
 一例として、上記第1の制御情報は、上記部分帯域に含まれるRBのうちの最初のRBの識別情報(図4の例では#2)と、上記部分帯域に含まれるRBの数を示す情報(図4の例では4)とを含む。
 別の例として、複数のRBからなる領域に識別情報が付与されてもよく、上記第1の制御情報は、上記部分帯域に含まれる領域の識別情報を含んでもよい。例えば、図9に示される例のように、RB#0及びRB#1からなる領域に#0が識別情報として付与され、RB#2及びRB#3からなる領域に#1が識別情報として付与され、RB#4及びRB#5からなる領域に#2が識別情報として付与され、RB#6及びRB#7からなる領域に#3が識別情報として付与されてもよい。この場合に、上記第1の制御情報は、#1及び#2(上記部分帯域に含まれる領域の識別情報)を含んでもよい。あるいは、上記第1の制御情報は、上記部分帯域に含まれる最初の領域の識別情報(#1)と、上記部分帯域に含まれる領域の数を示す情報(2)とを含んでもよい。
 (5-2)無線伝送方式
 例えば、基地局100(無線通信処理部141)は、上記第1の無線伝送方式及び上記第2の無線伝送方式のいずれを用いるかを示す第2の制御情報を端末装置200へ送信する。そして、端末装置200(無線通信処理部231)は、上記第2の制御情報を基地局100から受信する。
 具体的には、例えば、基地局100(無線通信処理部141)は、上記第2の制御情報を含むDCI(Downlink Control Information)を端末装置200へ送信する。あるいは、基地局100(無線通信処理部141)は、上記第2の制御情報を含むMAC制御エレメントを端末装置200へ送信してもよい。
 例えば、上記第2の制御情報は、1ビットの情報であり、0により上記第1の無線伝送方式を用いることを示し、1により上記第2の無線伝送方式を使用することを示す。あるいは、上記第2の制御情報は、0により上記第2の無線伝送方式を用いることを示し、1により上記第1の無線伝送方式を使用することを示してもよい。
 これにより、例えば、上記第1の無線伝送方式及び上記第2の無線伝送方式のうちのより好ましい方を使用することが可能になる。また、DCIを用いることにより、無線伝送方式をサブフレームごとに動的に切り替えることが可能になる。この切り替えは、シンボル又はスロット単位で行われてもよい。
 (5-3)無線リソース
 例えば、基地局100(無線通信処理部141)は、端末装置200に割り当てられる無線リソースを示すリソース割当情報を端末装置200へ送信する。より具体的には、例えば、基地局100(無線通信処理部141)は、当該リソース割当情報を含むDCIを端末装置200へ送信する。
 例えば、上記部分帯域内の無線リソースは、上記部分帯域内で局所的に当該無線リソースを識別するための局所識別情報を有する。この場合に、基地局100(無線通信処理部141)は、リソース割当情報として上記局所識別情報を端末装置200へ送信する。端末装置200(無線通信処理部231)は、リソース割当情報として上記局所識別情報を基地局100から受信する。
 さらに、上記周波数帯域のうちの上記部分帯域以外の領域内の無線リソースも、当該領域内で局所的に当該無線リソースを識別するためのさらなる局所識別情報を有してもよい。この場合に、基地局100(無線通信処理部141)は、リソース割当情報として上記さらなる局所識別情報を端末装置200へ送信してもよい。端末装置200(無線通信処理部231)は、リソース割当情報として上記さらなる局所識別情報を基地局100から受信してもよい。
 図10は、第1の実施形態に係る局所識別情報の一例を説明するための説明図である。図10を参照すると、図7の例と同様に、8つのリソースブロック(RB#0~#7)を含む周波数帯域が示されている。この例でも、図7の例と同様に、RB#2~#5を含む帯域が、DFT-S-OFDMを用いた通信のために無線リソースが割り当て可能な部分帯域である。括弧内に記載されているように、上記部分帯域内のRB#2~#5は、それぞれ#0~#3の局所識別情報を有する。例えば、端末装置200Aのためのリソース割当情報として、割り当てられるRBのうちの最初のRBの局所識別情報と、割り当てられるRBの数を示す情報(又は割り当てられるRBのうちの最後のRBの局所識別情報)とが、端末装置200Aへ送信される。さらに、この例では、上記部分帯域以外の領域内のRB#0、#1、#6、#7も、当該領域内で局所的にRB#0、#1、#6、#7を識別するためのさらなる局所識別情報として、それぞれ#0~#3を有する。例えば、端末装置200Bのためのリソース割当情報として、当該さらなる局所識別情報が端末装置200Bへ送信される。これにより、リソース割当情報の情報量が減少し得る。
 なお、上記局所識別情報は、上述したように個々のRBを示す情報に限られない。例えば、上記局所識別情報は、RBの組合せを示す情報であってもよい。例えば、図11に示されるように、ツリーベースの表現を用いると、RB#0~#7内の連続するRBの組合せは、0~35のインデックスにより識別可能である。このようなツリーベースの表現を用いる場合に、例えば、図12に示されるように、部分帯域(RB#2~#5)内の無線リソース(連続するRBの組合せ)は、0~9のインデックスのうちの1つを局所識別情報として有してもよい。これにより、例えば、リソース割当情報の情報量は、(0~35のための)6ビットから(0~9のための)4ビットへ減少する。
 以上のように、局所識別情報を用いることにより、例えば、リソース割当情報のオーバヘッドを削減することが可能になる。
 上記DCIは、PDCCH(Physical Downlink Control Channel)で送信されてもよく、又は、MPDCCH(Machine Type Communications PDCCH)で送信されてもよい。
 例えばDCIのフォーマットは、Format6-0A、6-0B、6-1A、6-1B、又は6-2であってもよい。この場合、DCIは、PDSCH又はPUSCHのrepetition numberを含んでもよい。
 またDCIがrepetition numberを含む場合、第1の制御情報及び第2の制御情報の少なくとも一方を、repetition numberに対応するサブフレーム数ごとに動的に切り替えるように、システムが設定されてもよい。さらにDCIが、第1の制御情報及び第2の制御情報の少なくとも一方をrepetition numberに対応するサブフレーム数ごとに動的に切り替えることを示す制御情報を含んでもよい。なお第1の制御情報及び第2の制御情報の少なくとも一方は、繰り返し送信されるサブフレーム同士で異なってもよく、これを示す制御情報がDCIに含まれていてもよい。
 (6)他の基地局への制御情報の送信
 例えば、基地局100(ネットワーク通信処理部143)は、上記部分帯域を示す第3の制御情報を他の基地局へ送信する。
 より具体的には、例えば、基地局100(ネットワーク通信処理部143)は、上記第3の制御情報を含むメッセージを、Xnインターフェースを介して他の基地局へ送信する。当該メッセージは、上記第3の制御情報の有効期間等を示す他の情報をさらに含んでもよい。また、当該メッセージは、干渉制御又はCoMPのためのメッセージであってもよい。
 これにより、例えば、2つの無線伝送方式が混在する場合でも基地局間での干渉制御又はCoMPをより適切に行うことが可能になる。
 (7)測定
 上述したように、例えば、上記第1の無線伝送方式を用いた上記通信、及び上記第2の無線伝送方式を用いた上記通信は、アップリンク通信である。
 例えば、端末装置200(無線通信処理部231)は、上記部分帯域内で上記第2の無線伝送方式を用いたアップリンク通信を行う場合に、上記部分帯域内で測定のためのアップリンクリファレンス信号を送信し、上記部分帯域外で当該アップリンクリファレンス信号を送信しない。即ち、アップリンクリファレンス信号の送信は、上記部分帯域(例えばRB#2~#5)内に制限される。例えば、上記測定は、基地局100による伝搬路品質の測定である。これにより、例えば、基地局100による伝搬路品質の測定の精度を向上させることが可能になる。
 (8)処理の流れ
 図13を参照して、第1の実施形態に係る通信処理の例を説明する。図13は、第1の実施形態に係る通信処理の概略的な流れの例を説明するためのシーケンス図である。
 基地局100は、部分帯域を示す第1の制御情報を端末装置200へ送信する(S301)。端末装置200は、上記第1の制御情報を基地局100から受信する。例えば、基地局100は、上記第1の制御情報を含むRRCメッセージ(又はMAC制御エレメント)を送信する。
 基地局100は、第1の無線伝送方式及び第2の無線伝送方式のいずれを用いるかを示す第2の制御情報、及びリソース割当情報を、端末装置200へ送信する(S303)。端末装置200は、上記第2の制御情報及び上記リソース割当情報を基地局100から受信する。例えば、基地局100は、上記第2の制御情報及び上記リソース割当情報を含むDCIを送信する。
 端末装置200は、上記第1の制御情報、上記第2の制御情報及び上記リソース割当情報に基づいて、データを基地局100へ送信する(S305)。基地局100は、当該データを受信する。
 <3.5.変形例>
 次に、図14を参照して、第1の実施形態の変形例を説明する。
 (1)第1の変形例
 上述したように、例えば、上記部分帯域は、上記第1の無線伝送方式の通信のために無線リソースが割り当て不能な帯域である。しかし、第1の実施形態はこの例に限定されない。
 第1の実施形態の第1の変形例として、上記部分帯域は、上記第1の無線伝送方式の通信のためにも無線リソースが割り当て可能な帯域であってもよい。即ち、基地局100(無線通信処理部141)及び端末装置200(無線通信処理部231)は、上記周波数帯域のうちの上記部分帯域以外の領域内に限られず、上記部分帯域内でも、上記第1の無線伝送方式を用いた通信を行ってもよい。この場合に、例えば、上記部分帯域は、上記第1の無線伝送方式の通信よりも上記第2の無線伝送方式の通信のために無線リソースが優先的に割り当てられる帯域であってもよい。
 図14は、第1の実施形態の第1の変形例に係るリソース割当ての一例を説明するための説明図である。図14を参照すると、図7の例と同様に、8つのリソースブロック(RB#0~#7)を含む周波数帯域が示されている。この例でも、図7の例と同様に、RB#2~#5を含む帯域が、DFT-S-OFDMを用いた通信のために無線リソースが割り当て可能な部分帯域である。とりわけ、第1の変形例では、RB#0、#1、#6、#7のみではなく、RB#0~#7全体が、OFDMを用いた通信のために無線リソースが割り当て可能である。ただし、RB#2~#5は、DFT-S-OFDMを用いた通信のために優先的に割り当てられる。
 これにより、例えば、無線リソースをより無駄なく使用することが可能になる。
 (2)第2の変形例
 上述したように、例えば、上記周波数帯域は、セルラーシステムのシステム帯域又はコンポーネントキャリアである。しかし、第1の実施形態はこの例に限定されない。
 第1の実施形態の第2の変形例として、上記周波数帯域は、システム帯域又はコンポーネントキャリアの一部であってもよい。当該一部は、端末装置200の最大送信帯域幅(又は最大受信帯域幅)に応じた帯域であってもよい。
 (3)第3の変形例
 上述したように、例えば、上記第1の無線伝送方式を用いた上記通信、及び上記第2の無線伝送方式を用いた上記通信は、アップリンク通信である。しかし、第1の実施形態はこの例に限定されない。
 第1の実施形態の第3の変形例として、上記第1の無線伝送方式を用いた上記通信、及び上記第2の無線伝送方式を用いた上記通信は、ダウンリンク通信であってもよい。
 この場合に、例えば、端末装置200(無線通信処理部231)は、上記部分帯域についての伝搬路品質を測定し、上記周波数帯域のうちの他の帯域についての伝搬路品質を測定しなくてもよい。即ち、端末装置200が測定を行う帯域は、上記部分帯域(例えばRB#2~#5)内に制限される。端末装置200は、上記部分帯域内の測定の結果を基地局100にフィードバックする。これにより、例えば、端末装置200による測定のための演算量を削減し、測定結果のフィードバックのオーバヘッドを削減することが可能になる。
 以上、第1の実施形態を説明した。第1の実施形態によれば、例えば、無線伝送方式が混在する場合に無線通信に関する制御をより適切に行うことが可能になる。
 <<4.第2の実施形態>>
 続いて、図15を参照して、本発明の第2の実施形態を説明する。上述した第1の実施形態は、具体的な実施形態であるが、第2の実施形態は、より一般化された実施形態である。
 <4.1.無線通信装置の構成>
 まず、図15を参照して、第2の実施形態に係る無線通信装置400の構成の例を説明する。図15は、第2の実施形態に係る無線通信装置400の概略的な構成の例を示すブロック図である。図15を参照すると、無線通信装置400は、無線通信処理部410を備える。
 無線通信処理部410の具体的な動作は、後に説明する。
 無線通信処理部410は、1つ以上のプロセッサ(BBプロセッサ及び/又は他の種類のプロセッサ等)及びメモリにより実装されてもよい。当該メモリは、当該1つ以上のプロセッサ内に含まれていてもよく、又は、上記1つ以上のプロセッサ外にあってもよい。一例として、無線通信処理部410は、SoC内で実装されてもよい。
 無線通信装置400は、プログラム(命令)を記憶するメモリと、当該プログラム(命令)を実行可能な1つ以上のプロセッサとを含んでもよい。当該1つ以上のプロセッサは、上記プログラムを実行して、無線通信処理部410の動作を行ってもよい。上記プログラムは、無線通信処理部410の動作をプロセッサに実行させるプログラムであってもよい。
 無線通信装置400は、仮想化されていてもよい。即ち、無線通信装置400は、仮想マシンとして実装されてもよい。この場合に、無線通信装置400(仮想マシン)は、プロセッサ及びメモリ等を含む物理マシン(ハードウェア)及びハイパーバイザ上で仮想マシンとして動作してもよい。
 なお、当然ながら、無線通信装置400は、無線通信処理部410以外の構成要素をさらに備えてもよい。例えば、無線通信装置400は、第1の実施形態と同様に、無線通信部、ネットワーク通信部(及びネットワーク通信処理部)並びに/若しくは記憶部をさらに備えてもよく、並びに/又は、他の構成要素をさらに備えてもよい。
 <4.2.技術的特徴>
 次に、第2の実施形態に係る技術的特徴を説明する。
 無線通信装置400(無線通信処理部410)は、周波数帯域内で第1の無線伝送方式を用いた通信を行う。また、無線通信装置400(無線通信処理部410)は、上記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、上記第2の無線伝送方式を用いた通信を行う。
 例えば、無線通信装置400は、基地局である。一例として、無線通信装置400は、第1の実施形態に係る基地局100である。当然ながら、無線通信装置400は、他の基地局であってもよい。
 あるいは、無線通信装置400は、端末装置であってもよい。一例として、無線通信装置400は、第1の実施形態に係る端末装置200であってもよい。当然ながら、無線通信装置400は、他の端末装置であってもよい。
 一例として、無線伝送方式、通信、周波数帯域、部分帯域、端末装置への制御情報の送信、他の基地局への制御情報の送信、測定、及び処理の流れについての説明は、第1の実施形態における説明と同じである。よって、ここでは重複説明を省略する。なお、この場合には、無線通信処理部410は、第1の実施形態の無線通信処理部141又は無線通信処理部231と同様に動作してもよい。
 当然ながら、第2の実施形態はこの例に限定されない。
 以上、第2の実施形態を説明した。第2の実施形態によれば、例えば、無線伝送方式が混在する場合に無線通信に関する制御をより適切に行うことが可能になる。
 以上、本発明の実施形態を説明したが、本発明はこれらの実施形態に限定されるものではない。これらの実施形態は例示にすぎないということ、及び、本発明のスコープ及び精神から逸脱することなく様々な変形が可能であるということは、当業者に理解されるであろう。
 例えば、本明細書に記載されている処理におけるステップは、必ずしもシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、処理におけるステップは、シーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、処理におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。
 また、本明細書において説明した基地局の構成要素(例えば、無線通信処理部及び/又はネットワーク通信処理部)を備える装置(例えば、基地局を構成する複数の装置(又はユニット)のうちの1つ以上の装置(又はユニット)、又は上記複数の装置(又はユニット)のうちの1つのためのモジュール)が提供されてもよい。本明細書において説明した端末装置の構成要素(例えば、無線通信処理部)を備える装置(例えば、端末装置のためのモジュール)が提供されてもよい。また、上記構成要素の処理を含む方法が提供されてもよく、上記構成要素の処理をプロセッサに実行させるプログラムが提供されてもよい。また、当該プログラムを記録したコンピュータに読み取り可能な非一時的記録媒体(Non-transitory computer readable medium)が提供されてもよい。当然ながら、このような装置、モジュール、方法、プログラム、及びコンピュータに読み取り可能な非一時的記録媒体も本発明に含まれる。
 上記実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
 周波数帯域内で第1の無線伝送方式を用いた通信を行う無線通信処理部
を備え、
 前記無線通信処理部は、前記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、前記第2の無線伝送方式を用いた通信を行う、
無線通信装置。
(付記2)
 前記第1の無線伝送方式は、マルチキャリア伝送方式であり、
 前記第2の無線伝送方式は、シングルキャリア伝送方式である、
付記1に記載の無線通信装置。
(付記3)
 前記第1の無線伝送方式は、第1の多重方式であり、
 前記第2の無線伝送方式は、第2の多重方式である、
付記1又は2に記載の無線通信装置。
(付記4)
 前記第1の無線伝送方式は、OFDM(Orthogonal Frequency Division Multiplexing)であり、
 前記第2の無線伝送方式は、DFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing)である、
付記1~3のいずれか1項に記載の無線通信装置。
(付記5)
 前記部分帯域は、前記第1の無線伝送方式の通信のために無線リソースが割り当て不能な帯域である、付記1~4のいずれか1項に記載の無線通信装置。
(付記6)
 前記部分帯域は、前記第1の無線伝送方式の通信のためにも無線リソースが割り当て可能な帯域である、付記1~4のいずれか1項に記載の無線通信装置。
(付記7)
 前記部分帯域は、前記第1の無線伝送方式の通信よりも前記第2の無線伝送方式の通信のために無線リソースが優先的に割り当てられる帯域である、付記6に記載の無線通信装置。
(付記8)
 前記無線通信装置は基地局である、付記1~7のいずれか1項に記載の無線通信装置。
(付記9)
 前記無線通信処理部は、前記部分帯域を示す第1の制御情報を端末装置へ送信する、付記8に記載の無線通信装置。
(付記10)
 前記無線通信処理部は、前記第1の制御情報を含むRRC(Radio Resource Control)メッセージ又はMAC(Medium Access Control)制御エレメントを端末装置へ送信する、付記9に記載の無線通信装置。
(付記11)
 前記部分帯域内の無線リソースは、前記部分帯域内で局所的に当該無線リソースを識別するための局所識別情報を有し、
 前記無線通信処理部は、リソース割当情報として前記局所識別情報を端末装置へ送信する、
付記9又は10に記載の無線通信装置。
(付記12)
 前記無線通信処理部は、前記第1の無線伝送方式及び前記第2の無線伝送方式のいずれを用いるかを示す第2の制御情報を端末装置へ送信する、付記8~11のいずれか1項に記載の無線通信装置。
(付記13)
 前記無線通信処理部は、前記第2の制御情報を含むDCI(Downlink Control Information)を端末装置へ送信する、付記12に記載の無線通信装置。
(付記14)
 前記部分帯域を示す第3の制御情報を他の基地局へ送信するネットワーク通信処理部をさらに備える、付記8~13のいずれか1項に記載の無線通信装置。
(付記15)
 前記無線通信装置は端末装置である、付記1~7のいずれか1項に記載の無線通信装置。
(付記16)
 前記無線通信処理部は、前記部分帯域を示す第1の制御情報を基地局から受信する、付記15に記載の無線通信装置。
(付記17)
 前記部分帯域内の無線リソースは、前記部分帯域内で局所的に当該無線リソースを識別するための局所識別情報を有し、
 前記無線通信処理部は、リソース割当情報として前記局所識別情報を基地局から受信する、
付記16に記載の無線通信装置。
(付記18)
 前記無線通信処理部は、前記第1の無線伝送方式及び前記第2の無線伝送方式のいずれを用いるかを示す第2の制御情報を基地局から受信する、付記15~17のいずれか1項に記載の無線通信装置。
(付記19)
 前記第1の無線伝送方式を用いた前記通信、及び前記第2の無線伝送方式を用いた前記通信は、アップリンク通信であり、
 前記無線通信処理部は、前記部分帯域内で前記第2の無線伝送方式を用いたアップリンク通信を行う場合に、前記部分帯域内で測定のためのアップリンクリファレンス信号を送信し、前記部分帯域外で当該アップリンクリファレンス信号を送信しない、
付記15~18のいずれか1項に記載の無線通信装置。
(付記20)
 前記第1の無線伝送方式を用いた前記通信、及び前記第2の無線伝送方式を用いた前記通信は、ダウンリンク通信であり、
 前記無線通信処理部は、前記部分帯域についての伝搬路品質を測定し、前記周波数帯域のうちの他の帯域についての伝搬路品質を測定しない、
付記15~18のいずれか1項に記載の無線通信装置。
(付記21)
 前記第1の無線伝送方式を用いた前記通信、及び前記第2の無線伝送方式を用いた前記通信は、アップリンク通信である、付記1~18のいずれか1項に記載の無線通信装置。
(付記22)
 前記第1の無線伝送方式を用いた前記通信、及び前記第2の無線伝送方式を用いた前記通信は、ダウンリンク通信である、付記1~18のいずれか1項に記載の無線通信装置。
(付記23)
 前記第1の無線伝送方式を用いた前記通信、及び前記第2の無線伝送方式を用いた前記通信は、データチャネルの通信である、付記1~22のいずれか1項に記載の無線通信装置。
(付記24)
 前記部分帯域は、2リソースブロック以上の帯域幅をもつ、付記1~23のいずれか1項に記載の無線通信装置。
(付記25)
 前記部分帯域は、1.4MHzよりも大きい帯域幅をもつ、付記1~24のいずれか1項に記載の無線通信装置。
(付記26)
 前記周波数帯域は、セルラーシステムの周波数帯域である、付記1~25のいずれか1項に記載の無線通信装置。
(付記27)
 前記周波数帯域は、システム帯域又はコンポーネントキャリアである、付記1~26のいずれか1項に記載の無線通信装置。
(付記28)
 周波数帯域内で第1の無線伝送方式を用いた通信を行うことと、
 前記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、前記第2の無線伝送方式を用いた通信を行うことと、
を含む方法。
(付記29)
 周波数帯域内で第1の無線伝送方式を用いた通信を行うことと、
 前記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、前記第2の無線伝送方式を用いた通信を行うことと、
をプロセッサに実行させるプログラム。
(付記30)
 周波数帯域内で第1の無線伝送方式を用いた通信を行うことと、
 前記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、前記第2の無線伝送方式を用いた通信を行うことと、
をプロセッサに実行させるプログラムを記録したコンピュータに読み取り可能な非一時的記録媒体。
(付記31)
 基地局と、
 端末装置と、
を含み、
 前記基地局は、
  周波数帯域内で第1の無線伝送方式を用いた通信を行い、
  前記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、前記第2の無線伝送方式を用いた通信を行い、
 前記端末装置は、
  前記周波数帯域内で前記第1の無線伝送方式を用いた通信を行い、
  前記部分帯域内で前記第2の無線伝送方式を用いた通信を行う、
システム。
 この出願は、2017年7月25日に出願された日本出願特願2017-143394を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 移動体通信システム(セルラーシステム)において、無線伝送方式が混在する場合に無線通信に関する制御をより適切に行うことができる。
 1    システム
 100  基地局
 141  無線通信処理部
 143  ネットワーク通信処理部
 200  端末装置
 231  無線通信処理部
 400  無線通信装置
 410  無線通信処理部
 

 

Claims (31)

  1.  周波数帯域内で第1の無線伝送方式を用いた通信を行う無線通信処理部
    を備え、
     前記無線通信処理部は、前記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、前記第2の無線伝送方式を用いた通信を行う、
    無線通信装置。
  2.  前記第1の無線伝送方式は、マルチキャリア伝送方式であり、
     前記第2の無線伝送方式は、シングルキャリア伝送方式である、
    請求項1に記載の無線通信装置。
  3.  前記第1の無線伝送方式は、第1の多重方式であり、
     前記第2の無線伝送方式は、第2の多重方式である、
    請求項1又は2に記載の無線通信装置。
  4.  前記第1の無線伝送方式は、OFDM(Orthogonal Frequency Division Multiplexing)であり、
     前記第2の無線伝送方式は、DFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing)である、
    請求項1~3のいずれか1項に記載の無線通信装置。
  5.  前記部分帯域は、前記第1の無線伝送方式の通信のために無線リソースが割り当て不能な帯域である、請求項1~4のいずれか1項に記載の無線通信装置。
  6.  前記部分帯域は、前記第1の無線伝送方式の通信のためにも無線リソースが割り当て可能な帯域である、請求項1~4のいずれか1項に記載の無線通信装置。
  7.  前記部分帯域は、前記第1の無線伝送方式の通信よりも前記第2の無線伝送方式の通信のために無線リソースが優先的に割り当てられる帯域である、請求項6に記載の無線通信装置。
  8.  前記無線通信装置は基地局である、請求項1~7のいずれか1項に記載の無線通信装置。
  9.  前記無線通信処理部は、前記部分帯域を示す第1の制御情報を端末装置へ送信する、請求項8に記載の無線通信装置。
  10.  前記無線通信処理部は、前記第1の制御情報を含むRRC(Radio Resource Control)メッセージ又はMAC(Medium Access Control)制御エレメントを端末装置へ送信する、請求項9に記載の無線通信装置。
  11.  前記部分帯域内の無線リソースは、前記部分帯域内で局所的に当該無線リソースを識別するための局所識別情報を有し、
     前記無線通信処理部は、リソース割当情報として前記局所識別情報を端末装置へ送信する、
    請求項9又は10に記載の無線通信装置。
  12.  前記無線通信処理部は、前記第1の無線伝送方式及び前記第2の無線伝送方式のいずれを用いるかを示す第2の制御情報を端末装置へ送信する、請求項8~11のいずれか1項に記載の無線通信装置。
  13.  前記無線通信処理部は、前記第2の制御情報を含むDCI(Downlink Control Information)を端末装置へ送信する、請求項12に記載の無線通信装置。
  14.  前記部分帯域を示す第3の制御情報を他の基地局へ送信するネットワーク通信処理部をさらに備える、請求項8~13のいずれか1項に記載の無線通信装置。
  15.  前記無線通信装置は端末装置である、請求項1~7のいずれか1項に記載の無線通信装置。
  16.  前記無線通信処理部は、前記部分帯域を示す第1の制御情報を基地局から受信する、請求項15に記載の無線通信装置。
  17.  前記部分帯域内の無線リソースは、前記部分帯域内で局所的に当該無線リソースを識別するための局所識別情報を有し、
     前記無線通信処理部は、リソース割当情報として前記局所識別情報を基地局から受信する、
    請求項16に記載の無線通信装置。
  18.  前記無線通信処理部は、前記第1の無線伝送方式及び前記第2の無線伝送方式のいずれを用いるかを示す第2の制御情報を基地局から受信する、請求項15~17のいずれか1項に記載の無線通信装置。
  19.  前記第1の無線伝送方式を用いた前記通信、及び前記第2の無線伝送方式を用いた前記通信は、アップリンク通信であり、
     前記無線通信処理部は、前記部分帯域内で前記第2の無線伝送方式を用いたアップリンク通信を行う場合に、前記部分帯域内で測定のためのアップリンクリファレンス信号を送信し、前記部分帯域外で当該アップリンクリファレンス信号を送信しない、
    請求項15~18のいずれか1項に記載の無線通信装置。
  20.  前記第1の無線伝送方式を用いた前記通信、及び前記第2の無線伝送方式を用いた前記通信は、ダウンリンク通信であり、
     前記無線通信処理部は、前記部分帯域についての伝搬路品質を測定し、前記周波数帯域のうちの他の帯域についての伝搬路品質を測定しない、
    請求項15~18のいずれか1項に記載の無線通信装置。
  21.  前記第1の無線伝送方式を用いた前記通信、及び前記第2の無線伝送方式を用いた前記通信は、アップリンク通信である、請求項1~18のいずれか1項に記載の無線通信装置。
  22.  前記第1の無線伝送方式を用いた前記通信、及び前記第2の無線伝送方式を用いた前記通信は、ダウンリンク通信である、請求項1~18のいずれか1項に記載の無線通信装置。
  23.  前記第1の無線伝送方式を用いた前記通信、及び前記第2の無線伝送方式を用いた前記通信は、データチャネルの通信である、請求項1~22のいずれか1項に記載の無線通信装置。
  24.  前記部分帯域は、2リソースブロック以上の帯域幅をもつ、請求項1~23のいずれか1項に記載の無線通信装置。
  25.  前記部分帯域は、1.4MHzよりも大きい帯域幅をもつ、請求項1~24のいずれか1項に記載の無線通信装置。
  26.  前記周波数帯域は、セルラーシステムの周波数帯域である、請求項1~25のいずれか1項に記載の無線通信装置。
  27.  前記周波数帯域は、システム帯域又はコンポーネントキャリアである、請求項1~26のいずれか1項に記載の無線通信装置。
  28.  周波数帯域内で第1の無線伝送方式を用いた通信を行うことと、
     前記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、前記第2の無線伝送方式を用いた通信を行うことと、
    を含む方法。
  29.  周波数帯域内で第1の無線伝送方式を用いた通信を行うことと、
     前記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、前記第2の無線伝送方式を用いた通信を行うことと、
    をプロセッサに実行させるプログラム。
  30.  周波数帯域内で第1の無線伝送方式を用いた通信を行うことと、
     前記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、前記第2の無線伝送方式を用いた通信を行うことと、
    をプロセッサに実行させるプログラムを記録したコンピュータに読み取り可能な非一時的記録媒体。
  31.  基地局と、
     端末装置と、
    を含み、
     前記基地局は、
      周波数帯域内で第1の無線伝送方式を用いた通信を行い、
      前記周波数帯域のうちの、第2の無線伝送方式を用いた通信のために無線リソースが割り当て可能な部分帯域内で、前記第2の無線伝送方式を用いた通信を行い、
     前記端末装置は、
      前記周波数帯域内で前記第1の無線伝送方式を用いた通信を行い、
      前記部分帯域内で前記第2の無線伝送方式を用いた通信を行う、
    システム。

     
PCT/JP2018/018286 2017-07-25 2018-05-11 無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム WO2019021574A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019532384A JP7052795B2 (ja) 2017-07-25 2018-05-11 無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム
US16/633,022 US11323215B2 (en) 2017-07-25 2018-05-11 Radio communication apparatus, method, program, non-transitory computer readable recording medium, and system
JP2021192895A JP7400794B2 (ja) 2017-07-25 2021-11-29 無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム
US17/725,760 US11962521B2 (en) 2017-07-25 2022-04-21 Radio communication apparatus, method, program, non-transitory computer readable recording medium, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017143394 2017-07-25
JP2017-143394 2017-07-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/633,022 A-371-Of-International US11323215B2 (en) 2017-07-25 2018-05-11 Radio communication apparatus, method, program, non-transitory computer readable recording medium, and system
US17/725,760 Continuation US11962521B2 (en) 2017-07-25 2022-04-21 Radio communication apparatus, method, program, non-transitory computer readable recording medium, and system

Publications (1)

Publication Number Publication Date
WO2019021574A1 true WO2019021574A1 (ja) 2019-01-31

Family

ID=65040578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018286 WO2019021574A1 (ja) 2017-07-25 2018-05-11 無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム

Country Status (3)

Country Link
US (2) US11323215B2 (ja)
JP (2) JP7052795B2 (ja)
WO (1) WO2019021574A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023502761A (ja) * 2019-11-22 2023-01-25 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 無線通信の柔軟なフレーム構成

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050384A1 (ja) * 2008-10-29 2010-05-06 シャープ株式会社 マルチユーザmimoシステム、受信装置および送信装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7394864B2 (en) * 2001-07-06 2008-07-01 Conexant, Inc. Mixed waveform configuration for wireless communications
US7859985B2 (en) * 2004-03-22 2010-12-28 Texas Instruments Incorporated Control on at least one frequency selecting data carrier frequencies
DK2078402T3 (da) * 2006-11-01 2012-05-07 Qualcomm Inc Fællesbrug af multi-tid-bærer- og enkelt-bærer-multipleksnings-schemes til trådløs kommunikation
US9113491B2 (en) * 2009-07-22 2015-08-18 Qualcomm Incorporated Uplink control and data transmission in a mixed single and multiple carrier network
JP5528123B2 (ja) 2010-01-05 2014-06-25 シャープ株式会社 通信装置、通信装置の制御プログラムおよび集積回路
WO2011096062A1 (ja) 2010-02-04 2011-08-11 富士通株式会社 帯域調整方法、通信装置及び帯域調整装置
US20120320995A1 (en) * 2011-06-17 2012-12-20 Texas Instruments Incorporated Co-existence of multi-carrier and single carrier communication standards on shared plc channel
KR20150012705A (ko) * 2013-07-26 2015-02-04 주식회사 팬택 단말에서 전류 소모 감소를 위한 방법 및 장치
RU2711356C2 (ru) 2015-02-27 2020-01-16 Филипс Лайтинг Холдинг Б.В. Устройство и способ для параллельной подачи питания
CN110572830B (zh) 2015-03-06 2020-10-16 华为技术有限公司 一种使用无线接口技术的方法以及装置和通信系统
EP3627723A1 (en) * 2015-07-24 2020-03-25 Panasonic Intellectual Property Corporation of America Improved prose relay ue activation
CN106793101B (zh) * 2016-05-09 2019-06-04 展讯通信(上海)有限公司 用户设备、网络侧设备及用户设备的控制方法
US10945274B2 (en) * 2016-05-13 2021-03-09 Huawei Technologies Co., Ltd. System and method for bandwidth utilization
DK3618342T3 (da) * 2016-05-13 2020-11-16 Ericsson Telefon Ab L M Multi-underbærebølgesystem med flere numerologier
US10749644B2 (en) * 2016-08-12 2020-08-18 Huawei Technologies Co., Ltd. System and method for efficient bandwidth utilization
WO2018099568A1 (en) * 2016-12-01 2018-06-07 U-Blox Ag Intercepting an uplink signal to assist in timing or positioning calculations
EP3565296A4 (en) * 2016-12-28 2020-08-19 Sharp Kabushiki Kaisha TERMINAL DEVICE, BASE STATION DEVICE AND COMMUNICATION PROCESS
WO2018126441A1 (en) * 2017-01-06 2018-07-12 Qualcomm Incorporated Transmitting sounding reference signals in new radio
US11129203B2 (en) * 2017-03-23 2021-09-21 Ntt Docomo, Inc. User apparatus, and random access preamble transmission method
CN110999365B (zh) * 2017-08-10 2024-03-01 Oppo广东移动通信有限公司 传输数据的方法和终端设备
US11909849B2 (en) * 2018-09-11 2024-02-20 Stmicroelectronics S.R.L. Method of communicating information and corresponding device and system
US20230370212A1 (en) * 2022-05-16 2023-11-16 Qualcomm Incorporated Bit loading with dft-s-ofdm

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050384A1 (ja) * 2008-10-29 2010-05-06 シャープ株式会社 マルチユーザmimoシステム、受信装置および送信装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "NR UL scheduling mechanism", 3GPP DRAFT; R1-1707509, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, R1-1707509, 19 May 2017 (2017-05-19), France, XP051261857 *
ERICSSON: "On Resource Allocation in the Frequency Domain", 3GPP DRAFT; R1-1711499 ON RESOURCE ALLOCATION IN THE FREQUENCY DOMAIN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, R1-1711499 On Resource Allocation in the Frequency, 30 June 2017 (2017-06-30), France, XP051300684 *
NEC ET AL: "WF on UL Resource Allocation for PUSCH with DFT-s-OFDM waveform in NR", 3GPP DRAFT; R1-1711753 WF ON UL RESOURCE ALLOCATION FOR PUSCH WITH DFT-S-OFDM WAVEFORM IN NR_REV3, vol. RAN WG1, R1-1711753 WF on UL Resource Allocation for PUSCH , 30 June 2017 (2017-06-30), Qingdao, P.R. China, XP051306008 *
PANASONIC: "On default bandwidth part", 3GPP DRAFT; R1-1710787, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, R1-1710787, 30 June 2017 (2017-06-30), France, XP051299991 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023502761A (ja) * 2019-11-22 2023-01-25 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 無線通信の柔軟なフレーム構成
US11855918B2 (en) 2019-11-22 2023-12-26 Huawei Technologies Co., Ltd. Flexible frame structure for wireless communication

Also Published As

Publication number Publication date
US20200252174A1 (en) 2020-08-06
JPWO2019021574A1 (ja) 2020-07-02
JP7052795B2 (ja) 2022-04-12
US20220247524A1 (en) 2022-08-04
JP7400794B2 (ja) 2023-12-19
US11323215B2 (en) 2022-05-03
US11962521B2 (en) 2024-04-16
JP2022028882A (ja) 2022-02-16

Similar Documents

Publication Publication Date Title
CN110166209B (zh) 下行控制信息传输方法
JP7368549B2 (ja) システムメッセージの伝送方法及び装置
EP2793520B1 (en) Wireless communication method and communication apparatus
JP6874129B2 (ja) データ通信方法、端末、および基地局
JP6477997B1 (ja) 端末装置、及び基地局
CN108632193B (zh) 一种资源指示方法及网络设备、终端设备
TW201824908A (zh) 傳輸信息的方法、網絡設備和終端設備
CN109803371B (zh) 一种通信处理方法和装置
CN109996339B (zh) 一种通信方法及装置
JP7400794B2 (ja) 無線通信装置、方法、プログラム、コンピュータに読み取り可能な非一時的記録媒体、及びシステム
WO2019097828A1 (ja) 無線通信装置、方法、プログラム、及び記録媒体
WO2019214737A1 (zh) 一种通信方法及装置
US12010050B2 (en) Transmitting device, receiving device, transmitting method and receiving method
JP6062742B2 (ja) 基地局及び無線リソース割当方法
CN116055018B (zh) 一种物理上行控制信道的发送方法、接收方法及通信装置
JP7205632B2 (ja) 基地局、方法、プログラム、及び記録媒体
US20220131666A1 (en) Transmitting device, receiving device, transmitting method and receiving method
WO2023125761A1 (zh) 一种通信方法及装置
WO2024007913A1 (zh) 信号传输的方法和通信装置
WO2018193780A1 (ja) 基地局、端末装置、方法、プログラム、記録媒体及びシステム
CN117880988A (zh) 资源确定方法、装置及通信设备
CN117811710A (zh) 一种参考信号端口指示方法及装置
WO2018113045A1 (zh) 一种上行信息传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532384

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838947

Country of ref document: EP

Kind code of ref document: A1