WO2019021459A1 - 電波探知装置 - Google Patents
電波探知装置 Download PDFInfo
- Publication number
- WO2019021459A1 WO2019021459A1 PCT/JP2017/027448 JP2017027448W WO2019021459A1 WO 2019021459 A1 WO2019021459 A1 WO 2019021459A1 JP 2017027448 W JP2017027448 W JP 2017027448W WO 2019021459 A1 WO2019021459 A1 WO 2019021459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hypothesis
- unit
- feature
- feature amount
- pulse
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims description 48
- 230000005540 biological transmission Effects 0.000 claims abstract description 72
- 238000000605 extraction Methods 0.000 claims abstract description 72
- 238000000034 method Methods 0.000 claims description 39
- 238000011156 evaluation Methods 0.000 claims description 29
- 239000000284 extract Substances 0.000 claims description 8
- 230000002596 correlated effect Effects 0.000 claims description 4
- 230000002123 temporal effect Effects 0.000 claims description 2
- 238000012545 processing Methods 0.000 description 26
- 238000013500 data storage Methods 0.000 description 11
- 230000015654 memory Effects 0.000 description 9
- 238000004422 calculation algorithm Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000033001 locomotion Effects 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000007476 Maximum Likelihood Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/021—Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
- G01R29/0864—Measuring electromagnetic field characteristics characterised by constructional or functional features
- G01R29/0892—Details related to signal analysis or treatment; presenting results, e.g. displays; measuring specific signal features other than field strength, e.g. polarisation, field modes, phase, envelope, maximum value
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/285—Receivers
- G01S7/292—Extracting wanted echo-signals
- G01S7/2923—Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
- G01S7/4021—Means for monitoring or calibrating of parts of a radar system of receivers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/10—Pre-processing; Data cleansing
Definitions
- the present invention relates to a radio detection apparatus for detecting a transmission source transmitting radio waves.
- Non-Patent Document 1 discloses a radio wave detection device that detects a radio wave transmitted from a transmission source and detects a transmission source transmitting a radio wave based on the feature amount of an observation signal indicating the radio wave detected. It is done.
- the radio detection apparatus uses a method called MHT (Multiple Hypothesis Tracking) as a method of classifying pulses, which are radio waves repeatedly transmitted from a plurality of transmission sources, for each transmission source.
- MHT Multiple Hypothesis Tracking
- the MHT used by the conventional radio detection device generates a hypothesis based on feature quantities of pulses repeatedly transmitted from the transmission source.
- a detection failure occurs, which is a situation where some of the pulses transmitted repeatedly from the transmission source are not detected, an accurate hypothesis can not be generated, and a false detection of the transmission source transmitting the pulse occurs.
- the present invention has been made to solve the above-mentioned problems, and it is desirable to detect a transmission source transmitting a radio wave even if a situation occurs in which part of the radio wave repeatedly transmitted from the transmission source is not detected.
- the purpose is to obtain a radio detection device that can
- the radio wave detection device detects the radio wave transmitted from the transmission source and outputs the observation signal indicating the detected radio wave, and the observation signal is output every time the observation signal is output from the reception unit.
- the feature quantity extraction unit extracts feature quantities, the prediction unit predicts feature quantities that may be extracted in the future by the feature quantity extraction unit using the feature quantity prediction model, and the feature quantity extraction unit extracts the feature quantities
- a hypothesis generation unit that generates a hypothesis that assumes a transmission source of radio waves detected by the reception unit using the plurality of feature amounts and the feature amounts predicted by the prediction unit; and a plurality of extraction units extracted by the feature amount extraction unit From the distribution estimation unit that estimates the frequency distribution of the feature amounts, the likelihood of the hypothesis generated by the hypothesis generation unit from the plurality of feature amounts extracted by the feature amount extraction unit and the frequency distribution estimated by the distribution estimation unit Calculate the hypothesis confidence to represent
- the hypothesis selection unit selects a hypothesis having a relatively high hypothesis reliability calculated by the hypothesis evaluation unit from among one or more hypotheses already generated by the hypothesis generation unit. According to
- a prediction unit that predicts a feature that may be extracted in the future by the feature extraction unit using a feature amount prediction model, and a plurality of feature amounts extracted by the feature extraction unit
- a hypothesis generation unit that generates a hypothesis that assumes a transmission source of radio waves detected by the reception unit using the feature amounts predicted by the prediction unit, and a frequency distribution of a plurality of feature amounts extracted by the feature amount extraction unit
- Hypothesis reliability indicating the likelihood of the hypothesis generated by the hypothesis generation unit from the distribution estimation unit that estimates the probability, the plurality of feature quantities extracted by the feature extraction unit, and the frequency distribution estimated by the distribution estimation unit
- the hypothesis selection unit selects a hypothesis having a relatively high hypothesis reliability calculated by the hypothesis evaluation unit from among one or more hypotheses already generated by the hypothesis generation unit.
- the transmission source transmitting the radio wave detected by the receiving unit is detected based on the above, the radio wave is transmitted even if a situation in which a part of the radio wave repeatedly transmitted from the transmission source is not detected occurs. It has the effect of being able to detect certain sources.
- FIG. 1 It is a block diagram which shows the radio
- FIG. 6 is an explanatory drawing showing an example of the frequency distribution of feature quantities estimated by the distribution estimation unit 14; 5 is an explanatory view showing an example of a hypothesis generated by a hypothesis generation unit 15.
- FIG. It is explanatory drawing which shows an example of the hypothesis which does not contain the feature-value about the 2nd pulse. It is explanatory drawing which shows the hypothesis which includes the prediction feature-value in the hypothesis shown in FIG.
- FIG. 1 is a block diagram showing a radio detection device according to a first embodiment of the present invention.
- FIG. 2 is a hardware configuration diagram showing the radio detection device according to the first embodiment of the present invention.
- the sensor 1 is an apparatus such as a radar that receives a pulse which is a radio wave transmitted from a transmission source present in space. The sensor 1 outputs the received pulse to the radio detection device 2.
- the radio wave detection device 2 is a device for detecting a transmission source transmitting a pulse output from the sensor 1.
- the receiving unit 11 is realized by, for example, the receiving circuit 31 illustrated in FIG.
- the receiver 11 detects the pulse output from the sensor 1.
- the receiving unit 11 converts an observation signal indicating the detected pulse from an analog signal into a digital signal, and outputs a digital observation signal to the feature amount extraction unit 12.
- the feature quantity extraction unit 12 is realized by, for example, the feature quantity extraction circuit 32 shown in FIG. Every time a digital observation signal is output from the reception unit 11, the feature amount extraction unit 12 performs a process of extracting the feature amount of the observation signal. For example, the feature amount extraction unit 12 performs processing for suppressing unnecessary signals such as clutter, pulse detection processing, angle measurement processing such as MUSIC (MUltiple SIgnal Classification), and the like to the digital observation signal output from the reception unit 11. By implementing, the feature quantity of the observation signal is extracted.
- MUSIC MUltiple SIgnal Classification
- the data storage unit 13 is realized by, for example, the data storage circuit 33 shown in FIG.
- the data storage unit 13 stores information such as the average value and the variance value of the feature amounts of the observation signal, or the maximum target number as prior information.
- the distribution estimation unit 14 is realized by, for example, the distribution estimation circuit 34 shown in FIG.
- the distribution estimation unit 14 clusters the plurality of feature quantities extracted by the feature quantity extraction unit 12 using the appearance probability of the hidden variable output from the hypothesis selection unit 18 and the prior information stored by the data storage unit 13. Conduct.
- the distribution estimation unit 14 performs, for each class to which one or more feature quantities belong, a process of estimating the frequency distribution of one or more feature quantities belonging to the class.
- the appearance probability of the hidden variable output from the hypothesis selection unit 18 is a probability indicating from which transmission source the pulse detected by the reception unit 11 is a pulse transmitted.
- Hypothesis generation unit 15 is realized by, for example, hypothesis generation circuit 35 shown in FIG.
- the hypothesis generation unit 15 uses the plurality of feature quantities extracted by the feature quantity extraction unit 12 to execute a process of generating a hypothesis that assumes a transmission source of the pulse detected by the reception unit 11.
- the hypothesis generation unit 15 indicates that the determination result of the prediction unit 19 indicates that among the plurality of feature amounts extracted by the feature amount extraction unit 12, there is no feature amount having a correlation with the predicted feature amount.
- processing is performed to generate a hypothesis that assumes the transmission source of the pulse detected by the reception unit 11.
- the hypothesis generation unit 15 performs a process of generating a hypothesis using the frequency distribution of the feature amount estimated by the distribution estimation unit 14.
- Hypothesis evaluation unit 16 is realized by, for example, hypothesis evaluation circuit 36 shown in FIG.
- Hypothesis evaluation unit 16 is a hypothesis reliability indicating a certainty of the hypothesis generated by hypothesis generation unit 15 from the plurality of feature amounts extracted by feature amount extraction unit 12 and the frequency distribution estimated by distribution estimation unit 14.
- the prediction model estimation unit 17 is realized by, for example, a prediction model estimation circuit 37 shown in FIG.
- the prediction model estimation unit 17 performs a process of estimating a prediction model of the feature amount from the hypothesis selected by the hypothesis selection unit 18 and the hypothesis reliability calculated by the hypothesis evaluation unit 16.
- Hypothesis selection unit 18 is realized by, for example, hypothesis selection circuit 38 shown in FIG.
- the hypothesis selection unit 18 selects a hypothesis having a relatively high degree of hypothesis reliability calculated by the hypothesis evaluation unit 16 from among one or more hypotheses already generated by the hypothesis generation unit 15, and selects the selected hypothesis. Based on the processing, processing for detecting a transmission source transmitting a pulse detected by the reception unit 11 is performed.
- the prediction unit 19 is realized by, for example, the prediction circuit 39 shown in FIG.
- the prediction unit 19 uses the hypothesis selected by the hypothesis selection unit 18 and the prediction model of the feature quantity estimated by the prediction model estimation unit 17, and may be extracted by the feature quantity extraction unit 12 in the future. A process of predicting the quantity and outputting the predicted feature quantity to the hypothesis generation unit 15 is performed. In addition, the prediction unit 19 performs processing for determining the presence or absence of the correlation between the predicted feature amount and the feature amount at each time point extracted by the feature amount extraction unit 12.
- the display unit 20 is realized by, for example, the display circuit 40 shown in FIG. The display unit 20 performs a process of displaying the detection result of the hypothesis selection unit 18 and the like on the display.
- the receiver 11 which is a component of the radio wave detection apparatus, the feature extraction unit 12, the data storage unit 13, the distribution estimation unit 14, the hypothesis generation unit 15, the hypothesis evaluation unit 16, the prediction model estimation unit 17, and hypothesis selection
- each of the unit 18, the prediction unit 19 and the display unit 20 is realized by dedicated hardware as shown in FIG. That is, the reception circuit 31, the feature extraction circuit 32, the data storage circuit 33, the distribution estimation circuit 34, the hypothesis generation circuit 35, the hypothesis evaluation circuit 36, the prediction model estimation circuit 37, the hypothesis selection circuit 38, the prediction circuit 39, and the display circuit 40. It assumes what is realized by
- the data storage circuit 33 is, for example, non-volatile such as random access memory (RAM), read only memory (ROM), flash memory, erasable programmable read only memory (EPROM), electrically erasable programmable read only memory (EEPROM).
- RAM random access memory
- ROM read only memory
- EPROM erasable programmable read only memory
- EEPROM electrically erasable programmable read only memory
- volatile semiconductor memory magnetic disk, flexible disk, optical disk, compact disk, mini disk, or DVD (Digital Versatile Disc) is applicable.
- the reception circuit 31, the feature extraction circuit 32, the distribution estimation circuit 34, the hypothesis generation circuit 35, the hypothesis evaluation circuit 36, the prediction model estimation circuit 37, the hypothesis selection circuit 38, the prediction circuit 39, and the display circuit 40 are One circuit, a composite circuit, a programmed processor, a processor programmed in parallel, an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or a combination thereof is applicable.
- ASIC application specific integrated circuit
- FPGA field-programmable gate array
- the components excluding the receiver 11 of the radio detection apparatus are not limited to those realized by dedicated hardware, and the components excluding the receiver 11 of the radio detection apparatus may be software, firmware, or software It may be realized by a combination of the above and the firmware.
- the software or firmware is stored as a program in the memory of the computer.
- a computer means hardware that executes a program, and for example, a central processing unit (CPU), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a digital signal processor (DSP). Do.
- FIG. 3 is a hardware configuration diagram of the computer in the case where the components excluding the receiving unit 11 of the radio detection apparatus are realized by software or firmware.
- the data storage unit 13 is configured on the memory 51 of the computer, and the feature quantity extracting unit 12, the distribution estimating unit 14, the hypothesis A program for causing a computer to execute the processing procedure of generation unit 15, hypothesis evaluation unit 16, prediction model estimation unit 17, hypothesis selection unit 18, prediction unit 19, and display unit 20 is stored in memory 51, and processor 52 of the computer The program stored in the memory 51 may be executed.
- FIG. 4 is a flow chart showing the processing procedure of the radio detection device according to the first embodiment of the present invention.
- FIG. 2 shows an example in which each component of the radio detection apparatus is realized by dedicated hardware, and in FIG. 3, the components excluding the receiving unit 11 of the radio detection apparatus are realized by software, firmware or the like. Although an example is shown, some components of the radio detection apparatus may be realized by dedicated hardware, and the remaining components may be realized by software, firmware or the like.
- the sensor 1 receives pulses repeatedly transmitted from a transmission source present in the space, and outputs the received pulses to the radio detection device 2.
- the receiving unit 11 of the radio wave detection device 2 detects a pulse each time a pulse is output from the sensor 1 (step ST1 in FIG. 4).
- the receiving unit 11 converts an observation signal indicating the detected pulse from an analog signal into a digital signal, and outputs a digital observation signal to the feature amount extraction unit 12.
- the feature amount extraction unit 12 extracts a feature amount of the observation signal each time a digital observation signal is output from the reception unit 11 (step ST2 in FIG. 4).
- a feature amount of the observation signal extracted by the feature amount extraction unit 12 for example, a value indicating the frequency, azimuth, pulse width, TOA (Time Of Arrival), or amplitude of the received pulse can be considered.
- the feature extraction unit 12 performs processing for suppressing unnecessary signals such as clutter, pulse detection processing, and angle measurement processing such as MUSIC on the digital observation signal output from the reception unit 11. Extract the feature of observation signal.
- the feature quantity extraction unit 12 outputs the feature quantities of the extracted observation signal at each time to the distribution estimation unit 14, the hypothesis generation unit 15, and the prediction unit 19.
- the prediction unit 19 can be extracted in the future by the feature quantity extraction unit 12 using one or more hypotheses output from the hypothesis selection unit 18 and the prediction model of the feature quantity estimated by the prediction model estimation unit 17
- the feature quantities at a plurality of times having a sex are respectively predicted (step ST3 in FIG. 4).
- prediction processing of the feature amount by the prediction unit 19 for example, prediction processing performed in tracking processing of a transmission source using a known Kalman filter or MHT can be considered.
- the prediction process performed in the tracking process is disclosed in the following Non-Patent Document 2 and Non-Patent Document 3 in addition to Non-Patent Document 1 described above, so the details of the feature value prediction process by the prediction unit 19 are omitted. Do.
- Non-patent document 2 Maniwa Hisashi, Iwamoto Masafumi, Kobayashi Masaaki, Konomoto Tetsuro, "MHT-based radar pulse train separation method," Shingaku theory (B), vol. J84-B, no. 1, pp. 116-123, Jan. 2001
- Non-patent document 3 S. Blackman, R. Popoli, Design and Analysis of Modern Tracking Systems, Artech House, 1999.
- the prediction unit 19 performs gate determination processing to determine the presence or absence of a correlation between the predicted feature amount at each time and the feature amount at each time extracted by the feature amount extraction unit 12 (FIG. 4). Step ST4).
- the prediction unit 19 predicts the feature quantities of each predicted time (hereinafter referred to as predicted feature quantities) and the feature quantities of each time extracted by the feature quantity extraction unit 12 (hereinafter referred to as extracted feature quantities)
- the Maharashinos distance and the like are respectively calculated as the distance L between them.
- the prediction unit 19 compares the distance L between the predicted feature at a certain time and the extracted feature at a certain time with the distance threshold L th set in advance.
- the prediction unit 19 When the distance L is equal to or less than the distance threshold L th , the prediction unit 19 has a correlation between the predicted feature quantity at a certain time and the extracted feature quantity at a certain time, as shown by the following equation (1) It is determined that L ⁇ L th ⁇ There is a correlation (1) If the distance L is greater than the distance threshold L th , the prediction unit 19 has no correlation between the predicted feature at a certain time and the extracted feature at a certain time, as shown by the following equation (2). It is determined that L> L th ⁇ no correlation (2)
- FIG. 5 is an explanatory view showing a detection failure which is a situation where a part of the pulses repeatedly transmitted from the transmission source is not detected.
- the example of FIG. 5 shows a situation where a pulse is transmitted from the transmission source at a constant pulse repetition interval (PRI), but the second pulse is not detected.
- the first and third to fifth pulses are detected. Therefore, in the example of FIG. 5, the feature quantities of the first and third to fifth pulses are extracted by the feature quantity extraction unit 12, but the feature quantities of the second pulse are the feature quantity extraction unit 12.
- the predicted feature amount for the second pulse since the feature amount for the second pulse is not extracted by the feature amount extraction unit 12, the predicted feature amount for the second pulse does not have a corresponding extracted feature amount. Therefore, for the predicted feature amount of the second pulse, the distance L to the extracted feature amount of the ith pulse extracted by the feature amount extraction unit 12 is calculated. Since the distance L between the predicted feature for the second pulse and the extracted feature for the i-th pulse extracted by the feature extractor 12 is likely to be larger than the distance threshold L th , the correlation is high. There is a high possibility that it will be judged that there is no
- the prediction unit 19 extracts the future by the feature quantity extraction unit 12 using the hypothesis selected by the hypothesis selection unit 18 and the prediction model of the feature quantity estimated by the prediction model estimation unit 17.
- An example is shown in which each of the feature quantities at a plurality of possible time points is predicted.
- the prediction unit 19 specifies the PRI of the pulse detected by the reception unit 11 with reference to distribution information indicating the frequency distribution of the PRI as shown in FIG. 6, for example.
- the prediction unit 19 specifies the PRI with the highest frequency as the threshold or higher as the PRI of the pulse detected by the reception unit 11.
- 1000 [ ⁇ s] is specified as PRI of a pulse detected by the receiving unit 11.
- FIG. 6 is an explanatory drawing showing an example of the frequency distribution of PRI.
- the distribution information indicating the frequency distribution of the PRI is assumed to be held in the prediction unit 19 in advance, for example.
- the prediction unit 19 predicts feature quantities at times determined by the identified PRI. In the example of FIG. 6, the feature quantities for each pulse having a PRI of 1000 ⁇ s are predicted.
- the hypothesis generation unit 15 generates a hypothesis that assumes the transmission source of the pulse detected by the reception unit 11 using the feature quantities at each time point extracted by the feature quantity extraction unit 12 (step ST5 in FIG. 4). .
- hypothesis (1) assuming that the pulse related to the feature extracted by the feature extraction unit 12 is a pulse transmitted from the transmission source (1), and the feature extracted by the feature extraction unit 12 It is assumed that hypothesis (2) has already been generated, which assumes that the pulse pertaining to is the pulse transmitted from the transmission source (2).
- the hypothesis generation unit 15 newly extracts, for example, a process of including the feature quantity newly extracted by the feature quantity extraction unit 12 in the hypothesis (1) as a hypothesis generation process, and the feature quantity extraction unit 12 And the process of including the feature quantity in hypothesis (2).
- the hypothesis generation unit 15 generates hypothesis (3) assuming that the pulse is transmitted from the transmission source (3), and sets the feature quantity newly extracted by the feature quantity extraction unit 12 to hypothesis (3). Perform processing to include.
- the hypothesis generation unit 15 generates three hypotheses, but the pulse to be transmitted generates three hypotheses including a motion model for a fixed transmission source and the pulse to be transmitted.
- Three hypotheses may be generated that include a motion model for a transmission source whose PRI varies. In this case, a total of six hypotheses are generated.
- FIG. 8 is an explanatory view showing an example of a hypothesis generated by the hypothesis generation unit 15.
- FIG. 8 shows an example of a hypothesis generated when eight pulses are detected by the receiving unit 11.
- the filled pulse is a pulse transmitted from the transmission source (1)
- the unfilled pulse is a pulse transmitted from the transmission source (2).
- Hypothesis (2) shown in FIG. 8 includes a motion model for a transmission source in which the PRI of the pulse to be transmitted is a fixed source
- hypothesis (1) (3) shown in FIG. Contains a motion model for the source.
- the motion model for transmission sources with fixed PRI is the fixed PRI model
- the movement model for transmission sources with varying PRI is the staggered PRI model.
- FIG. 8 shows an example in which the motion model for the transmission source in which the PRI changes is a staggered PRI model
- the present invention is not limited thereto.
- a jitter PRI model may be used.
- FIG. 5 shows a situation in which the second pulse is not detected, and in this case, as shown in FIG. 8, a hypothesis including feature quantities for the second pulse is not generated.
- FIG. 9 is an explanatory diagram of an example of a hypothesis that does not include the feature amount of the second pulse.
- the hypotheses shown in FIG. 9 are not accurate hypotheses because they do not include feature quantities for the second pulse. Therefore, generating the incorrect hypothesis shown in FIG. 9 increases the probability of false detection of the transmission source transmitting the pulse.
- the hypothesis generation unit 15 further executes a hypothesis generation process as described below in order to reduce the probability of occurrence of false detection of a transmission source.
- the hypothesis generation unit 15 indicates that the determination result of the prediction unit 19 indicates that the feature quantity at each time extracted by the feature quantity extraction unit 12 has no feature quantity correlated with the predicted feature quantity. If so (step ST6 in FIG. 4: YES), a hypothesis is generated using the feature quantity predicted by the prediction unit 19 (step ST7 in FIG. 4).
- the hypothesis generation unit 15 determines that the determination result of the prediction unit 19 indicates that a feature amount having a correlation with the predicted feature amount is present in the feature amounts at each time point extracted by the feature amount extraction unit 12. If it is indicated (in the case of NO in step ST6 of FIG. 4), the feature amount predicted by the prediction unit 19 is not used to perform a process of generating a hypothesis.
- the hypothesis generation unit 15 specifies prediction feature amounts that have no correlation with all the extracted feature amounts extracted by the feature amount extraction unit 12 among the prediction feature amounts at each time predicted by the prediction unit 19.
- the predicted feature amount for the second pulse is specified as a predicted feature amount that has no correlation with all the extracted feature amounts.
- the hypothesis generation unit 15 generates a hypothesis including the identified prediction feature amount and the feature amount of each time point extracted by the feature amount extraction unit 12.
- FIG. 10 is an explanatory view showing a hypothesis in which a prediction feature quantity is included in the hypothesis shown in FIG.
- the extracted feature quantity for the second pulse is missing, a hypothesis is generated using the predicted feature quantity for the second pulse instead of the missing extracted feature quantity. .
- the hypothesis generation unit 15 specifies, among the predicted feature amounts at each time predicted by the prediction unit 19, a predicted feature amount that has no correlation with all the extracted feature amounts extracted by the feature amount extraction unit 12 An example is shown. This is merely an example, and for example, the hypothesis generation unit 15 uses the frequency distribution of feature amounts as shown in FIG. 7 estimated by the distribution estimation unit 14 to predict feature amounts that are not correlated with all extracted feature amounts. May be specified. Specifically, the hypothesis generation unit 15 refers to the frequency distribution of the feature quantities estimated by the distribution estimation unit 14 to identify feature quantities having a frequency equal to or higher than the threshold.
- FIG. 7 is an explanatory drawing showing an example of the frequency distribution of feature quantities estimated by the distribution estimation unit 14.
- FIG. 7 illustrates the frequency distribution of feature quantities belonging to the transmission source (1) as one class and the frequency distribution of feature quantities belonging to the transmission source (2) as one class.
- Hypothesis evaluation unit 16 is a hypothesis reliability indicating a certainty of the hypothesis generated by hypothesis generation unit 15 from the plurality of feature amounts extracted by feature amount extraction unit 12 and the frequency distribution estimated by distribution estimation unit 14. Is calculated (step ST8 in FIG. 4).
- the frequency distribution of the feature amount used by the hypothesis evaluation unit 16 is also the frequency distribution estimated at the previous time in step ST11 of FIG. 4.
- the calculation process of hypothesis reliability by the hypothesis evaluation unit 16 itself is a known technique, and thus detailed description is omitted. However, for example, the hypothesis reliability can be calculated by the following method.
- the hypothesis evaluation unit 16 assumes that the variation of PRI is small in the feature quantity of the pulse of fixed PRI, and assumes that the variation of PRI is large in the feature quantity of the pulse of variation PRI such as staggered pulse or jitter pulse. Then calculate the hypothesis confidence. Specifically, when using the frequency distribution of the feature amount for the transmission source (1) shown in FIG. 7, for example, the hypothesis evaluation unit 16 specifies, for example, the frequency ⁇ corresponding to the feature amount ⁇ according to the frequency distribution Do.
- the hypothesis evaluation unit 16 identifies the frequency corresponding to each feature amount for the transmission source (1) as well as the frequency ⁇ corresponding to the feature amount ⁇ , and based on the identified frequency, the transmission source (1) The variation of PRI of the feature amount for is calculated, and the hypothesis reliability is calculated from the variation of PRI.
- the prediction model estimation unit 17 estimates the prediction model of the feature amount from the hypothesis selected by the hypothesis selection unit 18 and the hypothesis reliability calculated by the hypothesis evaluation unit 16, and the estimated model thus estimated is a distribution estimation unit 14 It is output to the prediction unit 19.
- the estimation process of the prediction model by the prediction model estimation unit 17 is, for example, a known technique disclosed in the above non-patent document 2, and thus detailed description will be omitted.
- a fixed PRI model, a staggered PRI model, a jitter PRI model, or the like can be handled as a prediction model of the feature quantity.
- the PRI is estimated by the maximum likelihood method
- the position of the PRI and the stagger and the stagger ratio are estimated by the maximum likelihood method.
- the estimation process of the prediction model uses, for example, the hypothesis of the fixed PRI model, the staggered PRI model, and the jittered PRI model using the hypothesis selected by the hypothesis selecting unit 18 and the hypothesis reliability calculated by the hypothesis evaluating unit 16. The processing is performed to calculate the PRI model having the highest likelihood as the prediction model of the feature amount.
- the hypothesis selection unit 18 selects, from among one or more hypotheses already generated by the hypothesis generation unit 15, a hypothesis having a relatively high hypothesis reliability calculated by the hypothesis evaluation unit 16. Specifically, among the one or more hypotheses already generated by the hypothesis generation unit 15, the hypothesis selection unit 18 determines that the hypothesis reliability calculated by the hypothesis evaluation unit 16 is top N (N is 1 or more). (Integer of) to identify hypothesis. The hypothesis selection unit 18 outputs the identified top N hypotheses to the prediction unit 19.
- the hypothesis selection unit 18 normalizes the hypothesis reliability in the top N hypotheses such that the sum of hypothesis reliability in the top N hypotheses is 1.
- the hypothesis selection unit 18 calculates the appearance probability of the hidden variable from the top N hypotheses and the normalized hypothesis reliability. The calculation process itself of the appearance probability of the hidden variable is a known technique, and thus the detailed description will be omitted.
- the hypothesis selection unit 18 selects a hypothesis with the highest normalized hypothesis reliability (hereinafter referred to as the best hypothesis) from among the top N hypotheses (step ST9 in FIG. 4), and determines the hypothesis of the best hypothesis. If the degree of reliability is equal to or higher than the specified value, the calculated appearance probability of the hidden variable is output to the distribution estimation unit 14. Further, the hypothesis selection unit 18 outputs “a transmission source of the pulse detected by the reception unit 11” assumed by the best hypothesis to the display unit 20 as a detection result of the transmission source. The display unit 20 displays the detection result and the like output from the hypothesis selection unit 18 on the display (step ST10 in FIG. 4). The hypothesis selection unit 18 deletes the hypothesis whose hypothesis reliability is less than or equal to the threshold value calculated by the hypothesis evaluation unit 16 among one or more hypotheses already generated, so that the number of generated hypotheses increases too much. I will not.
- the distribution estimation unit 14 performs clustering of the feature quantities extracted by the feature quantity extraction unit 12 using the appearance probability of the hidden variable output from the hypothesis selection unit 18 and the a priori information stored by the data storage unit 13. Do. Further, the distribution estimation unit 14 estimates, for each class to which one or more feature quantities belong, the frequency distribution of one or more feature quantities belonging to the class (step ST11 in FIG. 4).
- the appearance probability of the hidden variable output from the hypothesis selection unit 18 is a probability indicating from which transmission source the pulse detected by the reception unit 11 is a pulse transmitted.
- an EM algorithm or a variational Bayesian algorithm using a mixed normal distribution can be used for the clustering process of the feature quantities.
- E step of calculating to which specification the pulse belongs and the average value and the dispersion value of frequency, pulse width, amplitude, orientation which are parameters of pulse feature amount By repeating the M step of estimation, it is possible to estimate the target to which the pulse belongs and the frequency distribution of the feature quantity.
- the feature of the radio pulse is the TOA feature
- using the fixed PRI model taking into consideration that the above step E belongs to which specification and the TOA feature changes with time.
- Non-Patent Document 5 By repeating M steps of estimating initial TOA and PRI, which are parameters of TOA feature quantities, using a known normal equation disclosed in Non-Patent Document 5 below, a target to which a pulse belongs and feature quantities The frequency distribution can be estimated.
- the appearance probability of the hidden variable is calculated by the following equation (3) from the reliability of the hypothesis. Assuming that a set of numbers of hypotheses that the feature amount data z n belongs to the transmission source j is C jn and a hypothesis reliability of the hypothesis number j is ⁇ j , the feature amount data z n is a hidden variable in the case of belonging to the transmission source i
- the appearance probability ⁇ in is calculated by the following equation (3).
- the setting of the initial value in the appearance probability of the hidden variable is not limited to the above method, and the method of generating from uniform random numbers and the above method are executed in parallel, and for each initial value, E step and M described later After repeating the steps, an initial value that maximizes the likelihood shown in the following equation (12) may be selected.
- n is accumulated feature data number to be processed
- n i is the feature amount data number belonging to source i
- z i is n i pieces of feature data of n i ⁇ 1 belonging to source i
- the feature amount data belonging to the transmission source i is feature amount data in which the appearance probability of the hidden variable is the largest at the transmission source i among the K transmission sources.
- h j is a matrix representing a basis function. For example, in consideration of only temporal primary changes in feature quantities, the normal matrix ⁇ is expressed by the following Expression (7), and the basis function h j is expressed by the following Expression (8).
- the occurrence probability ⁇ ij of the hidden variable is re-estimated by the following equation (11) using the parameters obtained in the M step.
- K is the transmission source number
- N (a; b, c) is the probability that the observed value a appears from the normal distribution of the average b and the standard deviation c.
- step E if the statistical distance between ⁇ ij and all feature amount data is equal to or greater than a certain value using gating processing shown in Non-Patent Document 3, it is assumed that ⁇ ij does not correlate with transmission source i. It may be determined and removed from feature amount data belonging to the transmission source i in the next M steps.
- Non-Patent Document 3 using GNN (Global Nearest Neighbor) processing shown in Non-Patent Document 3, using ⁇ ij , ⁇ i estimated in M steps, feature amount data z i having the smallest statistical distance from ⁇ ij is Feature amount data belonging to the transmission source i in M step may be used. Also, using PDA (Probable Data Association) shown in Non-Patent Document 3, a plurality of feature amount data correlated with ⁇ ij are weighted and integrated, and feature amount data belonging to transmission source i in the next M steps is It may be regenerated. The above-described M step and E step are repeated a predetermined number of times, or the process is ended when the variation of the parameter and the variation of the log likelihood function of equation (12) become smaller. For each piece of data, the transmission source with the highest occurrence probability of the hidden variable is regarded as the class to which the data belongs, and the mixed normal distribution having the estimated parameters is regarded as the frequency distribution of the feature quantity.
- GNN Global Near
- the prediction unit 19 that predicts a feature that may be extracted in the future by the feature extraction unit 12 using a prediction model of the feature, and a feature A hypothesis generation unit 15 that generates a hypothesis that assumes a transmission source of the radio wave detected by the reception unit 11 using the plurality of feature amounts extracted by the amount extraction unit 12 and the feature amounts predicted by the prediction unit 19;
- the distribution estimation unit 14 estimates the frequency distribution of the plurality of feature amounts extracted by the feature amount extraction unit 12, and the plurality of feature amounts extracted by the feature amount extraction unit 12 and the frequency distribution estimated by the distribution estimation unit 14
- the hypothesis evaluation unit 16 for calculating the hypothesis reliability indicating the likelihood of the hypothesis generated by the hypothesis generation unit 15, and the hypothesis selection unit 18 may generate one or more already generated by the hypothesis generation unit 15.
- the present invention is suitable for a radio detection device for detecting a transmission source transmitting radio waves.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Theoretical Computer Science (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
この電波探知装置は、複数の送信源から繰り返し送信される電波であるパルスを、送信源毎に分類する方法として、MHT(Multiple Hypothesis Tracking)と呼ばれる方法を用いている。
図1は、この発明の実施の形態1による電波探知装置を示す構成図である。
図2は、この発明の実施の形態1による電波探知装置を示すハードウェア構成図である。
図1及び図2において、センサ1は、空間に存在している送信源から送信された電波であるパルスを受信するレーダなどの装置である。
センサ1は、受信したパルスを電波探知装置2に出力する。
受信部11は、例えば図2に示す受信回路31で実現される。
受信部11は、センサ1から出力されたパルスを検波する。
受信部11は、検波したパルスを示す観測信号をアナログ信号からデジタル信号に変換し、デジタルの観測信号を特徴量抽出部12に出力する。
特徴量抽出部12は、受信部11からデジタルの観測信号が出力される毎に、当該観測信号の特徴量を抽出する処理を実施する。
例えば、特徴量抽出部12は、受信部11から出力されたデジタルの観測信号に対して、クラッタなどの不要信号を抑圧する処理、パルス検出処理及びMUSIC(MUltiple SIgnal Classification)などの測角処理を実施することで、観測信号の特徴量を抽出する。
データ蓄積部13は、観測信号の特徴量の平均値及び分散値、あるいは、最大目標数などの情報を事前情報として格納する。
分布推定部14は、例えば図2に示す分布推定回路34で実現される。
分布推定部14は、仮説選択部18から出力される隠れ変数の出現確率及びデータ蓄積部13により格納されている事前情報を用いて、特徴量抽出部12により抽出された複数の特徴量のクラスタリングを実施する。
分布推定部14は、1つ以上の特徴量が属するクラス毎に、当該クラスに属している1つ以上の特徴量の頻度分布をそれぞれ推定する処理を実施する。
仮説選択部18から出力される隠れ変数の出現確率は、受信部11により検波されたパルスが、どの送信源から送信されたパルスであるかを示す確率である。
仮説生成部15は、特徴量抽出部12により抽出された複数の特徴量を用いて、受信部11により検波されたパルスの送信源を仮定する仮説を生成する処理を実施する。
また、仮説生成部15は、予測部19の判定結果が、特徴量抽出部12により抽出された複数の特徴量の中に、予測した特徴量と相関が有る特徴量が存在しない旨を示していれば、予測部19により予測された特徴量を用いて、受信部11により検波されたパルスの送信源を仮定する仮説を生成する処理を実施する。
また、仮説生成部15は、分布推定部14により推定された特徴量の頻度分布を用いて、仮説を生成する処理を実施する。
仮説評価部16は、特徴量抽出部12により抽出された複数の特徴量と分布推定部14により推定された頻度分布とから、仮説生成部15により生成された仮説の確からしさを表す仮説信頼度を算出する処理を実施する。
予測モデル推定部17は、例えば図2に示す予測モデル推定回路37で実現される。
予測モデル推定部17は、仮説選択部18により選択された仮説と仮説評価部16により算出された仮説信頼度とから、特徴量の予測モデルを推定する処理を実施する。
仮説選択部18は、仮説生成部15により既に生成されている1つ以上の仮説の中から、仮説評価部16により算出された仮説信頼度が相対的に高い仮説を選択し、選択した仮説に基づいて受信部11により検波されたパルスを送信している送信源を探知する処理を実施する。
予測部19は、仮説選択部18により選択された仮説と、予測モデル推定部17により推定された特徴量の予測モデルとを用いて、特徴量抽出部12により将来抽出される可能性がある特徴量を予測し、予測した特徴量を仮説生成部15に出力する処理を実施する。
また、予測部19は、予測した特徴量と、特徴量抽出部12により抽出された各々の時刻の特徴量との相関の有無をそれぞれ判定する処理を実施する。
表示部20は、例えば図2に示す表示回路40で実現される。
表示部20は、仮説選択部18の探知結果などをディスプレイに表示する処理を実施する。
また、受信回路31、特徴量抽出回路32、分布推定回路34、仮説生成回路35、仮説評価回路36、予測モデル推定回路37、仮説選択回路38、予測回路39及び表示回路40は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものが該当する。
ソフトウェア又はファームウェアはプログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
電波探知装置の受信部11を除く構成要素が、ソフトウェア又はファームウェアなどで実現される場合、データ蓄積部13をコンピュータのメモリ51上に構成するとともに、特徴量抽出部12、分布推定部14、仮説生成部15、仮説評価部16、予測モデル推定部17、仮説選択部18、予測部19及び表示部20の処理手順をコンピュータに実行させるためのプログラムをメモリ51に格納し、コンピュータのプロセッサ52がメモリ51に格納されているプログラムを実行するようにすればよい。
図4は、この発明の実施の形態1による電波探知装置の処理手順を示すフローチャートである。
センサ1は、空間に存在している送信源から繰り返し送信されるパルスをそれぞれ受信し、受信した各々のパルスを電波探知装置2に出力する。
電波探知装置2の受信部11は、センサ1からパルスが出力される毎に、パルスを検波する(図4のステップST1)。
受信部11は、検波したパルスを示す観測信号をアナログ信号からデジタル信号に変換し、デジタルの観測信号を特徴量抽出部12に出力する。
特徴量抽出部12により抽出される観測信号の特徴量として、例えば、受信パルスの周波数、方位、パルス幅、TOA(Time Of Arrival)、あるいは、振幅を示す値が考えられる。
例えば、特徴量抽出部12は、受信部11から出力されたデジタルの観測信号に対して、クラッタなどの不要信号を抑圧する処理、パルス検出処理及びMUSICなどの測角処理を実施することで、観測信号の特徴量を抽出する。
特徴量抽出部12は、抽出した各々の時刻の観測信号の特徴量を分布推定部14、仮説生成部15及び予測部19に出力する。
予測部19による特徴量の予測処理としては、例えば、公知のカルマンフィルタ又はMHTを用いる送信源の追尾処理内で行われる予測処理が考えられる。
追尾処理内で行われる予測処理は、上記の非特許文献1のほか、以下の非特許文献2及び非特許文献3に開示されているため、予測部19による特徴量の予測処理の詳細は省略する。
[非特許文献2]真庭久和,岩本雅史,小林正明,桐本哲郎,“MHTを用いたレーダパルス列分離法,”信学論(B),vol.J84-B, no.1, pp.116-123, Jan. 2001
[非特許文献3]S. Blackman, R. Popoli, Design and Analysis of Modern Tracking Systems , Artech House, 1999.
以下、予測部19によるゲート判定処理の一例を説明する。
まず、予測部19は、予測した各々の時刻の特徴量(以下、予測特徴量と称する)と、特徴量抽出部12により抽出された各々の時刻の特徴量(以下、抽出特徴量と称する)との間の距離Lとして、マハラビノス距離などをそれぞれ算出する。
次に、予測部19は、或る時刻の予測特徴量と或る時刻の抽出特徴量との間の距離Lと、事前に設定された距離閾値Lthとを比較する。
予測部19は、以下の式(1)が示すように、距離Lが距離閾値Lth以下であれば、或る時刻の予測特徴量と或る時刻の抽出特徴量との間に相関が有ると判定する。
L≦Lth → 相関が有る (1)
予測部19は、以下の式(2)が示すように、距離Lが距離閾値Lthよりも大きければ、或る時刻の予測特徴量と或る時刻の抽出特徴量との間に相関が無いと判定する。
L>Lth → 相関が無い (2)
図5の例では、送信源から一定のパルス繰り返し周期(PRI:Pulse Repetition Interval)でパルスが送信されているが、2番目のパルスが検波されていない状況を示している。1番目及び3~5番目のパルスについては検波されている。
このため、図5の例では、1番目及び3~5番目のパルスについての特徴量は、特徴量抽出部12によって抽出されるが、2番目のパルスについての特徴量は、特徴量抽出部12によって抽出されない。
例えば、i番目(i=1,3,4,5)のパルスについての予測特徴量と、特徴量抽出部12により抽出されたi番目のパルスについての抽出特徴量との距離Lは、距離閾値Lth以下となる可能性が高いため、相関が有ると判定される可能性が高い。
2番目のパルスについての予測特徴量と、特徴量抽出部12により抽出されたi番目のパルスについての抽出特徴量との距離Lは、距離閾値Lthよりも大きくなる可能性が高いため、相関が無いと判定される可能性が高い。
これは一例に過ぎず、予測部19は、例えば、図6に示すようなPRIの頻度分布を示す分布情報を参照して、受信部11により検波されるパルスのPRIを特定する。
具体的には、予測部19は、図6に示す分布情報を参照して、最も頻度が高い閾値以上のPRIを、受信部11により検波されるパルスのPRIとして特定する。図6の例では、受信部11により検波されるパルスのPRIとして、1000[μs]が特定される。
図6は、PRIの頻度分布の一例を示す説明図である。
PRIの頻度分布を示す分布情報は、例えば、事前に予測部19に保持されているものとする。
予測部19は、特定したPRIで決まる時刻の特徴量をそれぞれ予測する。図6の例では、PRIが1000[μs]である各々のパルスについての特徴量をそれぞれ予測する。
例えば、特徴量抽出部12により抽出された特徴量に係るパルスが、送信源(1)から送信されたパルスであると仮定する仮説(1)と、特徴量抽出部12により抽出された特徴量に係るパルスが、送信源(2)から送信されたパルスであると仮定する仮説(2)とが既に生成されているものとする。
この場合、仮説生成部15は、例えば、仮説の生成処理として、特徴量抽出部12により新たに抽出された特徴量を仮説(1)に含める処理と、特徴量抽出部12により新たに抽出された特徴量を仮説(2)に含める処理とを行う。また、仮説生成部15は、送信源(3)から送信されたパルスであると仮定する仮説(3)を生成し、特徴量抽出部12により新たに抽出された特徴量を仮説(3)に含める処理を行う。
ここでは、仮説生成部15が、3つの仮説を生成する例を示しているが、送信するパルスのPRIが固定の送信源についての運動モデルを含む仮説を3つ生成し、また、送信するパルスのPRIが変動する送信源についての運動モデルを含む仮説を3つ生成するようにしてもよい。
この場合、合計で6つの仮説が生成される。
図8では、受信部11により8つのパルスが検波された際に生成された仮説の例を示している。
図8の例では、塗りつぶしがあるパルスは、送信源(1)から送信されたパルスであり、塗りつぶしがないパルスは、送信源(2)から送信されたパルスである。
図8に示す仮説(2)は、送信するパルスのPRIが固定の送信源についての運動モデルを含んでおり、図8に示す仮説(1)(3)は、送信するパルスのPRIが変動する送信源についての運動モデルを含んでいる。
PRIが固定の送信源についての運動モデルは、固定PRIモデルであり、PRIが変動する送信源についての運動モデルは、スタガPRIモデルである。
図8では、PRIが変動する送信源についての運動モデルがスタガPRIモデルである例を示しているが、これに限るものではなく、例えば、ジッターPRIモデルあってもよい。
図9は、2番目のパルスについての特徴量を含まない仮説の一例を示す説明図である。
図9に示す仮説は、2番目のパルスについての特徴量を含んでいないため、正確な仮説ではない。したがって、図9に示す不正確な仮説を生成すると、パルスを送信している送信源の誤探知の発生確率が高まる。
仮説生成部15は、予測部19の判定結果が、特徴量抽出部12により抽出された各々の時刻の特徴量の中に、予測した特徴量と相関が有る特徴量が存在しない旨を示していれば(図4のステップST6:YESの場合)、予測部19により予測された特徴量を用いて、仮説を生成する(図4のステップST7)。
仮説生成部15は、予測部19の判定結果が、特徴量抽出部12により抽出された各々の時刻の特徴量の中に、予測した特徴量と相関が有る特徴量が存在している旨を示していれば(図4のステップST6:NOの場合)、予測部19により予測された特徴量を用いて、仮説を生成する処理を行わない。
仮説生成部15は、予測部19により予測された各々の時刻の予測特徴量の中で、特徴量抽出部12により抽出された全ての抽出特徴量と相関が無い予測特徴量を特定する。
図9の例では、2番目のパルスについての抽出特徴量がないため、2番目のパルスについての予測特徴量は、全ての抽出特徴量と相関が無い予測特徴量として特定される。
仮説生成部15は、図10に示すように、特定した予測特徴量と、特徴量抽出部12により抽出された各々の時刻の特徴量とを含む仮説を生成する。
図10は、図9に示す仮説に予測特徴量を含めている仮説を示す説明図である。
図10の例では、2番目のパルスについての抽出特徴量が抜けているため、抜けている抽出特徴量の代わりに、2番目のパルスについての予測特徴量を用いて、仮説を生成している。
これは一例に過ぎず、例えば、仮説生成部15が、分布推定部14により推定された図7に示すような特徴量の頻度分布を用いて、全ての抽出特徴量と相関が無い予測特徴量を特定するようにしてもよい。
具体的には、仮説生成部15は、分布推定部14により推定された特徴量の頻度分布を参照して、頻度が閾値以上の特徴量をそれぞれ特定する。
そして、仮説生成部15は、それぞれ特定した頻度が閾値以上の特徴量の中に、特徴量抽出部12により抽出されていない特徴量があれば、特徴量抽出部12により抽出されていない頻度が閾値以上の特徴量を、全ての抽出特徴量と相関が無い予測特徴量であると特定する。
分布推定部14による特徴量の頻度分布の推定処理については後述するが、仮説生成部15が用いる特徴量の頻度分布は、図4のステップST11において、前の時刻で推定された頻度分布である。
図7は、分布推定部14により推定される特徴量の頻度分布の一例を示す説明図である。
図7では、1つのクラスとして送信源(1)に属する特徴量の頻度分布と、1つのクラスとして送信源(2)に属する特徴量の頻度分布とを例示している。
仮説評価部16が用いる特徴量の頻度分布についても、図4のステップST11において、前の時刻で推定された頻度分布である。
仮説評価部16による仮説信頼度の算出処理自体は、公知の技術であるため詳細な説明を省略するが、例えば、以下の方法で、仮説信頼度を算出することができる。
仮説評価部16は、固定PRIのパルスの特徴量においては、PRIのばらつきが小さいことを想定し、スタガパルス又はジッターパルスなどの変動PRIのパルスの特徴量においては、PRIのばらつきが大きいことを想定して、仮説信頼度を算出する。
具体的には、仮説評価部16は、例えば、図7に示す送信源(1)についての特徴量の頻度分布を用いる場合、当該頻度分布に従って、例えば、特徴量αに対応する頻度βを特定する。
仮説評価部16は、特徴量αに対応する頻度βと同様に、送信源(1)についての各々の特徴量に対応する頻度をそれぞれ特定し、特定した各々の頻度から、送信源(1)についての特徴量のPRIのばらつきを算出し、PRIのばらつきから、仮説信頼度を算出する。
予測モデル推定部17による予測モデルの推定処理は、例えば、上記の非特許文献2に開示されている公知の技術であるため、詳細な説明を省略する。
例えば、特徴量がTOAである場合、特徴量の予測モデルとして、固定PRIモデル、スタガPRIモデル及びジッターPRIモデルなどを扱うことができる。固定PRIモデルでは、PRIを最尤法で推定し、スタガPRIPRIモデルでは、PRIとスタガのポジションとスタガ比とを最尤法で推定する。
予測モデルの推定処理は、仮説選択部18により選択された仮説と仮説評価部16により算出された仮説信頼度とを用いて、例えば、固定PRIモデル、スタガPRIモデル及びジッターPRIモデルの尤度をそれぞれ算出し、尤度が最も高いPRIモデルを、特徴量の予測モデルとして特定する処理である。
具体的には、仮説選択部18は、仮説生成部15により既に生成されている1つ以上の仮説の中で、仮説評価部16により算出された仮説信頼度が大きい上位N(Nは1以上の整数)個の仮説を特定する。
仮説選択部18は、特定した上位N個の仮説を予測部19に出力する。
仮説選択部18は、上位N個の仮説と、正規化した仮説信頼度とから、隠れ変数の出現確率を算出する。隠れ変数の出現確率の算出処理自体は、公知の技術であるため、詳細な説明を省略する。
また、仮説選択部18は、最良仮説が仮定している「受信部11により検波されたパルスの送信源」を送信源の探知結果として表示部20に出力する。
表示部20は、仮説選択部18から出力された探知結果などをディスプレイに表示する(図4のステップST10)。
なお、仮説選択部18は、既に生成している1つ以上の仮説のうち、仮説評価部16により算出された仮説信頼度が閾値以下の仮説を削除することで、仮説の生成数が増え過ぎないようにする。
また、分布推定部14は、1つ以上の特徴量が属するクラス毎に、当該クラスに属している1つ以上の特徴量の頻度分布をそれぞれ推定する(図4のステップST11)。
仮説選択部18から出力される隠れ変数の出現確率は、受信部11により検波されたパルスが、どの送信源から送信されたパルスであるかを示す確率である。
分布推定部14による特徴量のクラスタリング処理としては、例えば、以下の非特許文献4及び非特許文献5に開示されている公知のEM(Expectation Maximization)アルゴリズム又は変分ベイズアルゴリズムを用いることができる。
EMアルゴリズム又は変分ベイズアルゴリズムを用いることで、パルスがどの諸元に属するかを計算するEステップと、パルスの特徴量のパラメータである周波数、パルス幅、振幅、方位の平均値及び分散値を推定するMステップとを繰り返すことで、パルスが属している目標と、特徴量の頻度分布とを推定することができる。
また、電波パルスの特徴量がTOA特徴量の場合、上記のパルスがどの諸元に属するかを計算するEステップと、TOA特徴量が時間変化することを考慮し、固定PRIモデルを用いて、TOA特徴量のパラメータである初期TOAとPRIを以下の非特許文献5に開示されている公知の正規方程式を用いて推定するMステップを繰り返すことで、パルスが属している目標と、特徴量の頻度分布とを推定することができる。
[非特許文献4]H. Attias: Learning parameters and structure of latent variable models by variational Bayes, Proc. Uncertainty in Artificial Intelligence (1999)
[非特許文献5]C. M. Bishop: Pattern Recognition and Machine Learning, Springer (2006)
特徴量データznが送信元jに属する仮説の番号の集合をCjnとして、仮説番号jの仮説信頼度をβjとすると、特徴量データznが送信元iに属する場合の隠れ変数の出現確率γinは、以下の式(3)で計算される。
隠れ変数の出現確率における初期値の設定は、上記の方法に限るものではなく、一様乱数から生成する方法と上記の方法とを並列に実行し、初期値毎に、後述のEステップとMステップとを繰り返した上で、以下の式(12)に示す尤度が最大となる初期値を選択するとしてもよい。
以下の式(4)は、隠れ変数の出現確率を対角項とした行列であり、Mステップの初回では、隠れ変数の出現確率を式(3)によって設定し、Mステップの2回目以降では、後述のEステップで算出した隠れ変数の出現確率を以下の式(11)によって設定する。
以下の式(5)において、Wi MLは、隠れ変数の出現確率を重み、Φは、正規行列である。
nは、処理の対象とする蓄積した特徴量データ数、niは、送信元iに属する特徴量データ数、ziは、送信元iに属するni×1のni個の特徴量データを並べた特徴量ベクトルとする。送信元iに属する特徴量データとは、K個の送信元中で隠れ変数の出現確率が送信元iで最大となる特徴量データである。
また、hjは、基底関数を表す行列である。例えば、特徴量の時間的な一次変化のみを考慮すると、正規行列Φは、以下の式(7)、基底関数hjは、以下の式(8)で表現される。
ここで、Kは、送信元数であり、N(a;b,c)は、平均b及び標準偏差cの正規分布から観測値aが出現する確率である。また、Eステップでは、非特許文献3に示されるゲーティング処理を用いて、μijとすべての特徴量データとの統計距離が一定以上となる場合に、μijは送信元iと相関しないと判定し、次のMステップにおける送信元iに属する特徴量データから取り除いてもよい。
また、非特許文献3に示されるGNN(Global Nearest Neighbor)処理を用いて、Mステップで推定したμij,σiを用いて、μijから統計距離が最も小さい特徴量データziを次のMステップにおける送信元iに属する特徴量データとしてもよい。また、非特許文献3に示されるPDA(Probablic Data Association)を用いて、μijと相関する複数の特徴量データを重みづけ統合して、次のMステップにおける送信元iに属する特徴量データを再生成するようにしてもよい。
上記のMステップとEステップとを所定回数繰り返す、または、パラメータの変動及び式(12)の対数尤度関数の変動が小さくなった段階で処理を終了する。それぞれのデータ毎に、隠れ変数の出現確率が最も大きい送信元をデータの属するクラスとし、推定したパラメータを持つ混合正規分布を特徴量の頻度分布とする。
Claims (9)
- 送信源から送信された電波を検波し、検波した電波を示す観測信号を出力する受信部と、
前記受信部から観測信号が出力される毎に、当該観測信号の特徴量を抽出する特徴量抽出部と、
特徴量の予測モデルを用いて、前記特徴量抽出部により将来抽出される可能性がある特徴量を予測する予測部と、
前記特徴量抽出部により抽出された複数の特徴量と前記予測部により予測された特徴量とを用いて、前記受信部により検波された電波の送信源を仮定する仮説を生成する仮説生成部と、
前記特徴量抽出部により抽出された複数の特徴量の頻度分布を推定する分布推定部と、
前記特徴量抽出部により抽出された複数の特徴量と前記分布推定部により推定された頻度分布とから、前記仮説生成部により生成された仮説の確からしさを表す仮説信頼度を算出する仮説評価部と、
前記仮説生成部により既に生成されている1つ以上の仮説の中から、前記仮説評価部により算出された仮説信頼度が相対的に高い仮説を選択し、選択した仮説に基づいて前記受信部により検波された電波を送信している送信源を探知する仮説選択部と
を備えた電波探知装置。 - 前記予測部は、前記仮説選択部により選択された仮説と前記予測モデルとを用いて、前記特徴量抽出部により将来抽出される可能性がある特徴量を予測し、予測した特徴量と前記特徴量抽出部により抽出された複数の特徴量との相関の有無をそれぞれ判定し、
前記仮説生成部は、前記特徴量抽出部により抽出された複数の特徴量を用いて、仮説を生成し、前記予測部の判定結果が、前記特徴量抽出部により抽出された複数の特徴量の中に、予測した特徴量と相関が有る特徴量が存在しない旨を示していれば、前記予測部により予測された特徴量を用いて、仮説を生成することを特徴とする請求項1記載の電波探知装置。 - 前記受信部により検波される電波がパルスであり、
前記予測部は、パルスの繰り返し周期の頻度分布を示す分布情報を参照して、前記受信部により検波されるパルスの繰り返し周期を特定し、特定した繰り返し周期で決まる時刻の特徴量をそれぞれ予測することを特徴とする請求項1記載の電波探知装置。 - 前記仮説生成部は、前記分布推定部により推定された頻度分布を用いて、仮説を生成することを特徴とする請求項1記載の電波探知装置。
- 前記仮説選択部により選択された仮説と前記仮説評価部により算出された仮説信頼度とから、前記予測モデルを推定する予測モデル推定部を備えたことを特徴とする請求項1記載の電波探知装置。
- 前記仮説生成部は、既に生成している1つ以上の仮説のうち、前記仮説評価部により算出された仮説信頼度が閾値以下の仮説を削除することを特徴とする請求項1記載の電波探知装置。
- 前記受信部により検波される電波がパルスであり、
前記仮説生成部は、前記パルスの繰り返し周期が固定の送信源についての仮説と、前記パルスの繰り返し周期が変動する送信源についての仮説とを生成することを特徴とする請求項1記載の電波探知装置。 - 前記仮説選択部は、選択した仮説に基づいて、送信源から送信された電波が、どの送信源から送信された電波であるかを示す確率である隠れ変数の出現確率を算出し、
前記分布推定部は、前記仮説選択部により算出された隠れ変数の出現確率を用いて、前記特徴量抽出部により抽出された複数の特徴量のクラスタリングを実施し、1つ以上の特徴量が属するクラス毎に、当該クラスに属している1つ以上の特徴量の頻度分布をそれぞれ推定することを特徴とする請求項1記載の電波探知装置。 - 前記分布推定部は、前記特徴量抽出部により抽出された複数の特徴量が時間変化することを考慮して、前記特徴量抽出部により抽出された複数の特徴量の頻度分布を推定することを特徴とする請求項1記載の電波探知装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018518541A JP6400251B1 (ja) | 2017-07-28 | 2017-07-28 | 電波探知装置 |
EP17919386.7A EP3647809A4 (en) | 2017-07-28 | 2017-07-28 | RADIO WAVE DETECTION DEVICE |
CA3069794A CA3069794A1 (en) | 2017-07-28 | 2017-07-28 | Radio-wave detection device |
PCT/JP2017/027448 WO2019021459A1 (ja) | 2017-07-28 | 2017-07-28 | 電波探知装置 |
US16/630,598 US20200182919A1 (en) | 2017-07-28 | 2017-07-28 | Radio-wave detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/027448 WO2019021459A1 (ja) | 2017-07-28 | 2017-07-28 | 電波探知装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019021459A1 true WO2019021459A1 (ja) | 2019-01-31 |
Family
ID=63708683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/027448 WO2019021459A1 (ja) | 2017-07-28 | 2017-07-28 | 電波探知装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200182919A1 (ja) |
EP (1) | EP3647809A4 (ja) |
JP (1) | JP6400251B1 (ja) |
CA (1) | CA3069794A1 (ja) |
WO (1) | WO2019021459A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7286033B2 (ja) | 2020-11-16 | 2023-06-02 | 三菱電機株式会社 | 目標距離推定装置、電波探知装置、及び目標距離推定方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5381150A (en) * | 1993-05-07 | 1995-01-10 | Trw Inc. | Partial intercept LPI (low probability of intercept) reconnaissance system |
JPH1082850A (ja) * | 1996-09-09 | 1998-03-31 | Mitsubishi Electric Corp | パルス列分類装置 |
JP2000266838A (ja) * | 1999-03-16 | 2000-09-29 | Mitsubishi Electric Corp | パルス列分類装置 |
JP2003215225A (ja) * | 2002-01-28 | 2003-07-30 | Mitsubishi Electric Corp | 時間差方位検出装置 |
JP2006177786A (ja) * | 2004-12-22 | 2006-07-06 | Mitsubishi Electric Corp | 信号分類装置 |
JP2006234674A (ja) * | 2005-02-25 | 2006-09-07 | Mitsubishi Electric Corp | 信号分類装置 |
JP2008256501A (ja) * | 2007-04-04 | 2008-10-23 | Mitsubishi Electric Corp | 信号分析装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7133887B2 (en) * | 2003-08-08 | 2006-11-07 | Bae Systems Information And Electronics Systems Integration Inc | Detection and identification of stable PRI patterns using multiple parallel hypothesis correlation algorithms |
JP2005214842A (ja) * | 2004-01-30 | 2005-08-11 | Mitsubishi Electric Corp | 信号分離装置 |
US8587468B2 (en) * | 2011-05-03 | 2013-11-19 | Src, Inc. | Method, system and program product for deinterleaving and classifying arbitrary radar pulse patterns using non-determinsitic finite state automata |
-
2017
- 2017-07-28 WO PCT/JP2017/027448 patent/WO2019021459A1/ja unknown
- 2017-07-28 JP JP2018518541A patent/JP6400251B1/ja active Active
- 2017-07-28 EP EP17919386.7A patent/EP3647809A4/en not_active Withdrawn
- 2017-07-28 CA CA3069794A patent/CA3069794A1/en not_active Abandoned
- 2017-07-28 US US16/630,598 patent/US20200182919A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5381150A (en) * | 1993-05-07 | 1995-01-10 | Trw Inc. | Partial intercept LPI (low probability of intercept) reconnaissance system |
JPH1082850A (ja) * | 1996-09-09 | 1998-03-31 | Mitsubishi Electric Corp | パルス列分類装置 |
JP2000266838A (ja) * | 1999-03-16 | 2000-09-29 | Mitsubishi Electric Corp | パルス列分類装置 |
JP2003215225A (ja) * | 2002-01-28 | 2003-07-30 | Mitsubishi Electric Corp | 時間差方位検出装置 |
JP2006177786A (ja) * | 2004-12-22 | 2006-07-06 | Mitsubishi Electric Corp | 信号分類装置 |
JP2006234674A (ja) * | 2005-02-25 | 2006-09-07 | Mitsubishi Electric Corp | 信号分類装置 |
JP2008256501A (ja) * | 2007-04-04 | 2008-10-23 | Mitsubishi Electric Corp | 信号分析装置 |
Non-Patent Citations (7)
Title |
---|
C. M. BISHOP: "Pattern Recognition and Machine Learning", 2006, SPRINGER |
H. ATTIAS: "Learning parameters and structure of latent variable models by variational Bayes", PROC. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 1999 |
HISAKAZU MANIWA ET AL.: "MHT deinterleaving method of pulse trains in consideration of false and miss detection", IEICE TECHNICAL REPORT, vol. 101, no. 33, 20 April 2001 (2001-04-20), pages 69 - 76, XP009518451, ISSN: 0913-5685 * |
J. LIUH. MENGY LIUX. WANG: "Deinterleaving pulse trains in unconventional circumstances using multiple hypothesis tracking algorithm", SIGNAL PROCESS, vol. 90, no. 8, 2010, pages 2581 - 2593, XP055627135, DOI: 10.1016/j.sigpro.2010.03.004 |
MANIWA HISAKAZUIWAMOTO MASAFUMIKOBAYASHI MASAAKIKIRIMOTO TETSUO: "Deinterleaving of Radar Pulse Trains Using MHT Approach", IEICE TRANSACTIONS ON COMMUNICATIONS, vol. J 84-B, no. 1, January 2001 (2001-01-01), pages 116 - 123 |
See also references of EP3647809A4 |
TETSUTARO YAMADA ET AL.: "Hybrid Multiple Hypotheses Tracking to Suppress Grating Lobe Observations in Separated Antenna Arrays", PROCEEDINGS OF THE 2016 IEICE GENERAL CONFERENCE, 18 March 2016 (2016-03-18), pages 285, XP055626805, ISSN: 1349-1369 * |
Also Published As
Publication number | Publication date |
---|---|
JP6400251B1 (ja) | 2018-10-03 |
JPWO2019021459A1 (ja) | 2019-07-25 |
EP3647809A4 (en) | 2020-06-24 |
EP3647809A1 (en) | 2020-05-06 |
US20200182919A1 (en) | 2020-06-11 |
CA3069794A1 (en) | 2019-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Human activity classification based on micro-Doppler signatures using a support vector machine | |
CN106199584B (zh) | 一种基于量测存储的航迹起始方法 | |
CN106291534B (zh) | 一种改进的航迹确认方法 | |
CN110780289B (zh) | 基于场景雷达的多目标车辆跟踪方法及装置 | |
Jiang et al. | Integrated track initialization and maintenance in heavy clutter using probabilistic data association | |
CN104793200B (zh) | 一种基于迭代处理的动态规划检测前跟踪方法 | |
JP2017156219A (ja) | 追尾装置、追尾方法およびプログラム | |
WO2014197139A1 (en) | System and method for distribution free target detection in a dependent non-gaussian background | |
EP3417311A1 (en) | A method for motion classification using a pulsed radar system | |
JP2011203214A (ja) | 目標検出装置及び目標検出方法 | |
Gehly et al. | An AEGIS-CPHD filter to maintain custody of GEO space objects with limited tracking data | |
CN105866748B (zh) | 一种基于检测先验的固定窗长恒虚警检测方法 | |
WO2017188905A1 (en) | A method for motion classification using a pulsed radar system | |
JP2015121473A (ja) | 目標追尾装置及び目標追尾方法 | |
Tugac et al. | Radar target detection using hidden Markov models | |
JP6400251B1 (ja) | 電波探知装置 | |
WO2016098250A1 (ja) | 波形推定装置及び波形推定方法 | |
JP6513310B1 (ja) | 航跡推定装置及び携帯情報端末 | |
JP2018205229A (ja) | 信号追尾装置及び信号追尾方法 | |
Bocquel et al. | Multitarget tracking with interacting population-based MCMC-PF | |
Jishy et al. | A Bayesian track-before-detect procedure for passive radars | |
JP2004219300A (ja) | 目標追尾装置 | |
JP5701152B2 (ja) | 追尾装置及びコンピュータプログラム及び追尾方法 | |
Zheng et al. | Optimization and analysis of PDAF with Bayesian detection | |
Berry et al. | Adaptive detection of low-observable targets in correlated sea clutter using Bayesian track-before-detect |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018518541 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17919386 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3069794 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017919386 Country of ref document: EP Effective date: 20200128 |