WO2019021436A1 - Laser device and method for controlling temperature of transmissive optical element - Google Patents

Laser device and method for controlling temperature of transmissive optical element Download PDF

Info

Publication number
WO2019021436A1
WO2019021436A1 PCT/JP2017/027310 JP2017027310W WO2019021436A1 WO 2019021436 A1 WO2019021436 A1 WO 2019021436A1 JP 2017027310 W JP2017027310 W JP 2017027310W WO 2019021436 A1 WO2019021436 A1 WO 2019021436A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
optical element
laser
temperature control
transmission type
Prior art date
Application number
PCT/JP2017/027310
Other languages
French (fr)
Japanese (ja)
Inventor
進吾 宇野
東條 公資
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2019532304A priority Critical patent/JPWO2019021436A1/en
Priority to PCT/JP2017/027310 priority patent/WO2019021436A1/en
Publication of WO2019021436A1 publication Critical patent/WO2019021436A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Definitions

  • the present invention relates to a laser device that couples the output of a semiconductor laser to a fiber through a transmissive optical element and a temperature control method for the transmissive optical element.
  • a light emitting device described in Patent Document 1 is known as a laser device that couples the output of a semiconductor laser or a solid state laser to a fiber.
  • the light emitting device described in Patent Document 1 collimates outgoing light from a plurality of light sources, changes the beam diameter of the collimated light with a transmission type optical element (prism), or changes the optical path.
  • a transmission type optical element pris
  • the refractive index of the transmission type optical element changes due to the temperature change due to the beam absorption of the transmission type optical element or the change of the environmental temperature.
  • the optical path of the beam changes, which changes the fiber coupling efficiency with which the output of the semiconductor laser is coupled to the fiber.
  • the fiber coupling efficiency changes significantly.
  • the present invention provides a laser device and a temperature control method of a transmission type optical device that can stabilize and optimize the fiber coupling efficiency even when the optical path length is long.
  • a laser device includes a semiconductor laser for emitting a laser beam, a collimator lens for collimating the laser beam from the semiconductor laser, and an optical path of the laser beam collimated by the collimator lens.
  • a transmissive optical element for bending, a condensing lens for condensing the laser beam bent by the transmissive optical element and coupling it to a fiber, and a temperature detection unit for detecting the temperature of the transmissive optical element;
  • a temperature control element for adjusting the temperature of the transmissive optical element, and a temperature for controlling the temperature of the transmissive optical element to a predetermined temperature by controlling the temperature control element based on the temperature detected by the temperature detection unit
  • a control unit is provided.
  • a semiconductor laser for emitting a laser beam
  • a collimating lens for collimating the laser beam from the semiconductor laser
  • a transmissive optical system for bending an optical path of the laser beam collimated by the collimating lens
  • a plurality of temperature detection units that detect the temperature of the corresponding side, and a plurality of temperature control that are disposed corresponding to the plurality of sides of the transmissive optical element and that adjust the temperature of the corresponding side of the transmissive optical element The temperature of the corresponding side of the transmission type optical element by controlling the temperature control element based on the temperature detected by the temperature detection unit on the plurality of sides of the element and the transmission type optical element A control temperature control unit.
  • a laser device includes a plurality of semiconductor lasers emitting laser light, a plurality of collimating lenses disposed corresponding to the plurality of semiconductor lasers, and collimating laser light from the semiconductor lasers, and the plurality A plurality of transmissive optical elements disposed corresponding to the collimating lens for bending the optical path of the laser light collimated by the collimating lens, and collecting the plurality of laser beams bent by the plurality of transmissive optical elements And a plurality of temperature detection devices disposed corresponding to a plurality of sides of each of the transmission type optical elements and detecting a temperature of a corresponding side of each of the transmission type optical elements.
  • a plurality of temperature control elements disposed corresponding to the plurality of sides of each of the transmissive optical elements, for adjusting the temperature of the corresponding side of each of the transmissive optical elements;
  • a temperature control unit that controls the temperature of the corresponding side of the transmissive optical element by controlling the temperature control element based on the temperature detected by the temperature detection unit for each side of each of the transmissive optical elements
  • the temperature control method of the transmission type optical element includes a semiconductor laser for emitting a laser beam, a collimator lens for collimating the laser beam from the semiconductor laser, and a transmission type for bending an optical path of the laser beam collimated by the collimator lens.
  • a temperature control method of a transmission type optical element of a laser device comprising: an optical element; and a condensing lens which condenses laser light bent by the transmission type optical element and couples it to a fiber, wherein the transmission type optical element
  • By controlling the temperature control device by a temperature control unit based on the detected temperature by the detection section and a temperature control step of controlling the temperature of the corresponding side of the transmissive optical element.
  • the temperature control unit controls the temperature of the transmissive optical element to a predetermined temperature by controlling the temperature adjustment element based on the temperature detected by the temperature detection unit, even when the optical path length is long. Fiber coupling efficiency can be stabilized and optimized.
  • the temperature control unit controls the temperature control element on the plurality of sides of the transmission type optical element based on the temperatures detected by the temperature detection unit
  • the temperature control portion controls the temperature of the corresponding side of the transmission type optical element.
  • the refractive index distribution is generated according to the temperature gradient in the transmission type optical element, and the light path in the transmission type optical element is bent. That is, the fiber coupling efficiency can be adjusted by temperature control of the transmission type optical element.
  • FIG. 1 is a block diagram of a laser apparatus of Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram of a laser apparatus of Embodiment 2 of the present invention.
  • FIG. 3 is a block diagram of a laser apparatus according to a modification of the second embodiment of the present invention.
  • FIG. 4 is a side view of a laser apparatus according to a third embodiment of the present invention.
  • FIG. 5 is a block diagram of the laser device according to the third embodiment of the present invention as viewed from below.
  • FIG. 1 is a block diagram of a laser apparatus according to a first embodiment of the present invention.
  • the laser apparatus of the first embodiment includes a semiconductor laser 1, a collimator lens 2, a prism 3, a holder 4, a condenser lens 5, a fiber 6, a Peltier element 7, a heat sink 8, a thermistor 9, and a temperature control unit 10.
  • the semiconductor laser 1 emits a laser beam.
  • the collimator lens 2 collimates the laser light from the semiconductor laser 1.
  • the prism 3 corresponds to the transmission type optical element of the present invention, and comprises, for example, four long sides and two oblique sides inclined with respect to the four sides, and the optical path of the laser light collimated by the collimator lens 2 It bends at two oblique sides and leads to the condenser lens 5.
  • the condenser lens 5 condenses the laser beam bent by the prism 3 and couples it to the core of the fiber 1.
  • the prism 3 is fixed to the holder 4, and a thermistor 9 is provided at the periphery of the prism 3 and in the holder 4.
  • the thermistor 9 corresponds to the temperature detection unit of the present invention, and detects the temperature of the prism 3.
  • a Peltier element 7 is attached to the holder 4, and the Peltier element 7 corresponds to the temperature control element of the present invention, and adjusts the temperature of the prism 3 in the holder 4.
  • the temperature control element may be an element other than the Peltier element 7.
  • a heat sink 8 for radiating heat of the Peltier element 7 is attached to the Peltier element 7.
  • the temperature control unit 10 controls the temperature of the prism 3 to a predetermined temperature by controlling the Peltier element 7 based on the temperature detected by the thermistor 9.
  • the temperature control unit 10 controls the temperature of the prism 3 to a predetermined temperature by controlling the Peltier element 7 based on the temperature detected by the thermistor 9. It is possible to suppress the fluctuation of the refractive index distribution of
  • FIG. 2 is a block diagram of a laser apparatus of Embodiment 2 of the present invention.
  • FIG. 2A is a front view of the laser device of the second embodiment
  • FIG. 2B is a top view of the laser device of the second embodiment.
  • the laser device of the second embodiment shown in FIG. 2 is different from the laser device of the first embodiment shown in FIG. 1 in the following points.
  • a holder 4a is disposed on the side 3a of the prism 3
  • a holder 4b is disposed on the side 3b of the prism 3
  • the prism 3 is fixed by the holders 4a and 4b.
  • a thermistor 9a is disposed in the holder 4a
  • a thermistor 9b is disposed in the holder 4b.
  • the thermistor 9 a detects the temperature of the side 3 a of the prism 3 and outputs first temperature information to the temperature control unit 10.
  • the thermistor 9 b detects the temperature of the side 3 b of the prism 3 and outputs the second temperature information to the temperature control unit 10.
  • the Peltier element 7a is disposed corresponding to the side 3a of the prism 3 and the holder 4a, and adjusts the temperature of the side 3a of the prism 3 via the holder 4a.
  • the Peltier element 7b is disposed corresponding to the side 3b of the prism 3 and the holder 4b, and adjusts the temperature of the side 3b of the prism 3 via the holder 4b.
  • the temperature control unit 10 controls the temperature of the side 3a of the prism 3 by controlling the Peltier element 7a based on the first temperature information detected by the thermistor 9a, and based on the second temperature information detected by the thermistor 9b.
  • the temperature of the side 3b of the prism 3 is controlled by controlling the element 7b.
  • the thermistor 9 a detects the temperature of the side 3 a of the prism 3 and outputs the first temperature information to the temperature control unit 10.
  • the thermistor 9 b detects the temperature of the side 3 b of the prism 3 and outputs the second temperature information to the temperature control unit 10.
  • the Peltier element 7 a adjusts the temperature of the side 3 a of the prism 3.
  • the Peltier element 7 b adjusts the temperature of the side 3 b of the prism 3.
  • the temperature control unit 10 controls the temperature of the side 3 a of the prism 3 by controlling the Peltier element 7 a based on the first temperature information detected by the thermistor 9 a.
  • the temperature control unit 10 controls the temperature of the side 3 b of the prism 3 by controlling the Peltier element 7 b based on the second temperature information detected by the thermistor 9 b.
  • the temperature control unit 10 can control the temperature of the side 3 a of the prism 3 and the temperature of the side 3 b of the prism 3 to the same temperature.
  • the temperature control unit 10 can perform control so as to make a temperature difference between the temperature of the side 3 a of the prism 3 and the temperature of the side 3 b of the prism 3.
  • the direction of light can be controlled in accordance with the change of the refractive index distribution in the prism 3. Accordingly, temperature control of the prism 3 can adjust the fiber coupling efficiency.
  • the temperature control unit 10 causes the temperature of the side 3 a of the prism 3 and the temperature of the side 3 b of the prism 3 to maximize the amount of light incident on the core of the fiber 6, that is, maximize the fiber coupling efficiency. And may be controlled. This control can maximize the fiber coupling efficiency.
  • the fiber coupling efficiency can be adjusted by temperature control of the prism 3.
  • FIG. 3 is a block diagram of a laser apparatus according to a modification of the second embodiment of the present invention.
  • a thermistor 9a is disposed corresponding to the side 3c different from the sides 3a and 3b of the prism 3.
  • a thermistor 9 b is disposed corresponding to the side 3 d different from the sides 3 a and 3 b of the prism 3.
  • the thermistor 9 a detects the temperature of the side 3 c of the prism 3 and outputs third temperature information to the temperature control unit 10.
  • the thermistor 9 b detects the temperature of the side 3 d of the prism 3 and outputs fourth temperature information to the temperature control unit 10.
  • the Peltier element 7 a is disposed corresponding to the side 3 c of the prism 3, and adjusts the temperature of the side 3 c of the prism 3.
  • the Peltier element 7 b is disposed corresponding to the side 3 d of the prism 3, and adjusts the temperature of the side 3 d of the prism 3.
  • the holder 4a is disposed outside the Peltier element 7a, and the holder 4b is disposed outside the Peltier element 7b.
  • the temperature control unit 10 controls the temperature of the side 3c of the prism 3 by controlling the Peltier element 7a based on the third temperature information detected by the thermistor 9a, and based on the fourth temperature information detected by the thermistor 9b.
  • the temperature of the side 3 d of the prism 3 is controlled by controlling the element 7 b.
  • the temperature control unit 10 causes the temperature of the side 3 c of the prism 3 and the temperature of the side 3 d of the prism 3 to maximize the amount of light incident on the core of the fiber 6, that is, maximize the fiber coupling efficiency. And control.
  • the same operation as the operation of the laser device of the second embodiment and the same effect can be obtained.
  • FIG. 4 is a side view of a laser apparatus according to a third embodiment of the present invention.
  • FIG. 5 is a block diagram of the laser device according to the third embodiment of the present invention as viewed from below, showing only the periphery of the prisms 3A and 3B.
  • the laser device includes a plurality of semiconductor lasers 1a to 1d, a plurality of collimator lenses 2a to 2d, a plurality of prisms 3A to 3D, a condenser lens 5, and a fiber 6.
  • Each of the plurality of semiconductor lasers 1a to 1d comprises a plurality of laser elements as shown in FIG. 4, and each of the plurality of laser elements emits a laser beam.
  • the plurality of collimator lenses 2a to 2d are arranged corresponding to the plurality of semiconductor lasers 1a to 1d.
  • Each of the plurality of collimating lenses 2a to 2d is composed of a plurality of collimating lens elements as shown in FIG. 4, and the plurality of collimating lens elements collimate the laser light from the plurality of laser elements.
  • the plurality of prisms 3A to 3D are arranged corresponding to the plurality of collimator lenses 2a to 2d, fixed to the holders 4A to 4D, and bend the optical paths of the laser beams collimated by the collimator lenses 2a to 2d.
  • the prisms 3A and 3D are larger than the prisms 3B and 3C.
  • the condenser lens 5 condenses the plurality of laser beams bent by the plurality of prisms 3A to 3D and couples the plurality of laser beams to the fiber 6.
  • FIG. 5 shows the prisms 3A and 3B.
  • a holder 4aA is disposed on the side 3aA of the prism 3A
  • a holder 4bA is disposed on the side 3bA of the prism 3A
  • the prism 3A is fixed by the holders 4aA and 4bA.
  • a thermistor 9aA is disposed in the holder 4aA
  • a thermistor 9bA is disposed in the holder 4bA.
  • the thermistor 9aA detects the temperature of the side 3aA of the prism 3A, and outputs temperature information to the temperature control unit 10.
  • the thermistor 9bA detects the temperature of the side 3bA of the prism 3A, and outputs temperature information to the temperature control unit 10.
  • the Peltier element 7aA is disposed corresponding to the side 3aA of the prism 3A and the holder 4aA, and adjusts the temperature of the side 3aA of the prism 3A via the holder 4aA.
  • Peltier element 7bA is arranged corresponding to side 3bA of prism 3A and holder 4bA, and adjusts the temperature of side 3bA of prism 3A via holder 4bA.
  • Temperature control unit 10 controls the temperature of side 3aA of prism 3A by controlling Peltier element 7aA based on the temperature information detected by thermistor 9aA, and controls Peltier element 7bA based on the temperature information detected by thermistor 9bA Thus, the temperature of the side 3bA of the prism 3A is controlled.
  • the temperature control unit 10 causes the temperature of the side 3aA of the prism 3A and the temperature of the side 3bA of the prism 3A to maximize the amount of light incident on the core of the fiber 6, that is, maximize the fiber coupling efficiency. And control.
  • a holder 4aB is disposed on the side 3aB of the prism 3B
  • a holder 4bB is disposed on the side 3bB of the prism 3B
  • the prism 3B is fixed by the holders 4aB and 4bB.
  • a thermistor 9aB is disposed in the holder 4aB
  • a thermistor 9bB is disposed in the holder 4bB.
  • the thermistor 9aB detects the temperature of the side 3aB of the prism 3B, and outputs temperature information to the temperature control unit 10.
  • the thermistor 9 b B detects the temperature of the side 3 b B of the prism 3 B, and outputs temperature information to the temperature control unit 10.
  • the Peltier element 7aB is disposed corresponding to the side 3aB of the prism 3B and the holder 4aB, and adjusts the temperature of the side 3aB of the prism 3B via the holder 4aB.
  • the Peltier element 7bB is disposed corresponding to the side 3bB of the prism 3B and the holder 4bB, and adjusts the temperature of the side 3bB of the prism 3B via the holder 4bB.
  • the temperature control unit 10 controls the temperature of the side 3aB of the prism 3B by controlling the Peltier element 7aB based on the temperature information detected by the thermistor 9aB, and controls the Peltier element 7bB based on the temperature information detected by the thermistor 9bB. Thus, the temperature of the side 3bB of the prism 3B is controlled.
  • the temperature control unit 10 causes the temperature of the side 3aB of the prism 3B and the temperature of the side 3bB of the prism 3B to maximize the amount of light incident on the core of the fiber 6, that is, maximize the fiber coupling efficiency. And control.
  • the prisms 3C and 3D are the same as the prisms 3A and 3B although not shown.
  • the temperature control unit 10 controls the temperature of the two sides of the prism for each of the prisms 3A, 3B, 3C, 3D. Change the internal refractive index distribution.
  • each prism 3A, 3B, 3C, 3D By adjusting the optical path for each of the prisms 3A, 3B, 3C, 3D, individual differences between the semiconductor lasers 1a to 1d and aberrations of the condenser lens 5 can be corrected, and each prism 3A,
  • the fiber coupling efficiency can be optimized for 3B, 3C, and 3D to obtain a high output as a whole.
  • the temperatures of the two sides of the prism 3 are controlled in the laser devices according to the first to third embodiments, the temperatures of the three or more sides of the prism 3 may be controlled without being limited thereto. good. In this case, it is necessary to arrange a holder, a thermistor, a Peltier element, and a heat sink corresponding to each side.
  • the prism 3 is used in the laser devices of the first to third embodiments, a beam splitter may be used instead of the prism 3.
  • the present invention is applicable to fiber coupled laser devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

In the present invention, a collimating lens collimates a laser beam from a laser-beam-emitting semiconductor laser. A transmissive optical element bends the light path of the laser beam collimated by the collimating lens. A condensing lens condenses the laser beam bent by the transmissive optical element, and couples said laser beam into a fibre. A temperature-detecting unit detects the temperature of the transmissive optical element. A temperature-adjusting element adjusts the temperature of the transmissive optical element. A temperature-controlling unit controls the temperature-adjusting element on the basis of the temperature detected by the temperature-detecting unit, and thereby controls the temperature of the transmissive optical element to a prescribed temperature.

Description

レーザ装置及び透過型光学素子の温度制御方法Laser apparatus and temperature control method of transmission type optical element
 本発明は、半導体レーザの出力を透過型光学素子を通してファイバに結合するレーザ装置及び透過型光学素子の温度制御方法に関する。 The present invention relates to a laser device that couples the output of a semiconductor laser to a fiber through a transmissive optical element and a temperature control method for the transmissive optical element.
 半導体レーザや固体レーザの出力をファイバに結合するレーザ装置は、例えば、特許文献1に記載された発光装置が知られている。 For example, a light emitting device described in Patent Document 1 is known as a laser device that couples the output of a semiconductor laser or a solid state laser to a fiber.
 特許文献1に記載された発光装置は、複数の光源からの出射光をコリメートして、コリメートされた光を透過型光学素子(プリズム)によりビーム径を変更したり、光路を変更している。 The light emitting device described in Patent Document 1 collimates outgoing light from a plurality of light sources, changes the beam diameter of the collimated light with a transmission type optical element (prism), or changes the optical path.
特開2015-72956号公報JP, 2015-72956, A
 しかしながら、透過型光学素子を用いてビームを伝搬する際に、透過型光学素子のビーム吸収による温度変化や環境温度の変化によって、透過型光学素子の屈折率が変化する。 However, when transmitting a beam using a transmission type optical element, the refractive index of the transmission type optical element changes due to the temperature change due to the beam absorption of the transmission type optical element or the change of the environmental temperature.
 このため、ビームの光路が変わるため、半導体レーザの出力がファイバに結合されるファイバ結合効率が変化してしまう。特に、光路長が長くなる複数の半導体レーザからの光を合成するようなレーザ装置においては、ファイバ結合効率が大幅に変化する。 As a result, the optical path of the beam changes, which changes the fiber coupling efficiency with which the output of the semiconductor laser is coupled to the fiber. In particular, in a laser device that combines light from a plurality of semiconductor lasers whose optical path lengths are long, the fiber coupling efficiency changes significantly.
 本発明は、光路長が長い場合でもファイバ結合効率を安定化及び最適化することができるレーザ装置及び透過型光学素子の温度制御方法を提供する。 The present invention provides a laser device and a temperature control method of a transmission type optical device that can stabilize and optimize the fiber coupling efficiency even when the optical path length is long.
 上記の課題を解決するために、本発明のレーザ装置は、レーザ光を出射する半導体レーザと、前記半導体レーザからのレーザ光をコリメートするコリメートレンズと、前記コリメートレンズでコリメートされたレーザ光の光路を曲げるための透過型光学素子と、前記透過型光学素子で曲げられたレーザ光を集光してファイバに結合する集光レンズと、前記透過型光学素子の温度を検出する温度検出部と、前記透過型光学素子の温度を調整する温調素子と、前記温度検出部で検出された温度に基づき前記温調素子を制御することにより前記透過型光学素子の温度を所定の温度に制御する温度制御部を備える。 In order to solve the above problems, a laser device according to the present invention includes a semiconductor laser for emitting a laser beam, a collimator lens for collimating the laser beam from the semiconductor laser, and an optical path of the laser beam collimated by the collimator lens. A transmissive optical element for bending, a condensing lens for condensing the laser beam bent by the transmissive optical element and coupling it to a fiber, and a temperature detection unit for detecting the temperature of the transmissive optical element; A temperature control element for adjusting the temperature of the transmissive optical element, and a temperature for controlling the temperature of the transmissive optical element to a predetermined temperature by controlling the temperature control element based on the temperature detected by the temperature detection unit A control unit is provided.
 また、本発明のレーザ装置は、レーザ光を出射する半導体レーザと、前記半導体レーザからのレーザ光をコリメートするコリメートレンズと、前記コリメートレンズでコリメートされたレーザ光の光路を曲げるための透過型光学素子と、前記透過型光学素子で曲げられたレーザ光を集光してファイバに結合する集光レンズと、前記透過型光学素子の複数の辺に対応して配置され、前記透過型光学素子の対応する辺の温度を検出する複数の温度検出部と、前記透過型光学素子の前記複数の辺に対応して配置され、前記透過型光学素子の対応する辺の温度を調整する複数の温調素子と、前記透過型光学素子の前記複数の辺に、前記温度検出部で検出された温度に基づき前記温調素子を制御することにより前記透過型光学素子の対応する辺の温度を制御する温度制御部を備える。 Further, according to the laser device of the present invention, there is provided a semiconductor laser for emitting a laser beam, a collimating lens for collimating the laser beam from the semiconductor laser, and a transmissive optical system for bending an optical path of the laser beam collimated by the collimating lens. An element, a condensing lens for condensing laser light bent by the transmission type optical element and coupling it to a fiber, and the transmission type optical element disposed corresponding to a plurality of sides of the transmission type optical element A plurality of temperature detection units that detect the temperature of the corresponding side, and a plurality of temperature control that are disposed corresponding to the plurality of sides of the transmissive optical element and that adjust the temperature of the corresponding side of the transmissive optical element The temperature of the corresponding side of the transmission type optical element by controlling the temperature control element based on the temperature detected by the temperature detection unit on the plurality of sides of the element and the transmission type optical element A control temperature control unit.
 また、本発明のレーザ装置は、レーザ光を出射する複数の半導体レーザと、前記複数の半導体レーザに対応して配置され、前記半導体レーザからのレーザ光をコリメートする複数のコリメートレンズと、前記複数のコリメートレンズに対応して配置され、前記コリメートレンズでコリメートされたレーザ光の光路を曲げるための複数の透過型光学素子と、前記複数の透過型光学素子で曲げられた複数のレーザ光を集光してファイバに結合する集光レンズと、各々の前記透過型光学素子の複数の辺に対応して配置され、各々の前記透過型光学素子の対応する辺の温度を検出する複数の温度検出部と、各々の前記透過型光学素子の前記複数の辺に対応して配置され、各々の前記透過型光学素子の対応する辺の温度を調整する複数の温調素子と、各々の前記透過型光学素子の各辺毎に、前記温度検出部で検出された温度に基づき前記温調素子を制御することにより前記透過型光学素子の対応する辺の温度を制御する温度制御部とを備える。 A laser device according to the present invention includes a plurality of semiconductor lasers emitting laser light, a plurality of collimating lenses disposed corresponding to the plurality of semiconductor lasers, and collimating laser light from the semiconductor lasers, and the plurality A plurality of transmissive optical elements disposed corresponding to the collimating lens for bending the optical path of the laser light collimated by the collimating lens, and collecting the plurality of laser beams bent by the plurality of transmissive optical elements And a plurality of temperature detection devices disposed corresponding to a plurality of sides of each of the transmission type optical elements and detecting a temperature of a corresponding side of each of the transmission type optical elements. A plurality of temperature control elements, disposed corresponding to the plurality of sides of each of the transmissive optical elements, for adjusting the temperature of the corresponding side of each of the transmissive optical elements; A temperature control unit that controls the temperature of the corresponding side of the transmissive optical element by controlling the temperature control element based on the temperature detected by the temperature detection unit for each side of each of the transmissive optical elements And
 透過型光学素子の温度制御方法は、レーザ光を出射する半導体レーザと、前記半導体レーザからのレーザ光をコリメートするコリメートレンズと、前記コリメートレンズでコリメートされたレーザ光の光路を曲げるための透過型光学素子と、前記透過型光学素子で曲げられたレーザ光を集光してファイバに結合する集光レンズとを備えたレーザ装置の透過型光学素子の温度制御方法であって、前記透過型光学素子の複数の辺に対応して配置された複数の温度検出部により前記透過型光学素子の対応する辺の温度を検出する温度検出工程と、前記透過型光学素子の前記複数の辺に対応して配置された複数の温調素子により、前記透過型光学素子の対応する辺の温度を調整する温度調整工程と、前記透過型光学素子の前記複数の辺に、前記温度検出部で検出された温度に基づき温度制御部により前記温調素子を制御することにより前記透過型光学素子の対応する辺の温度を制御する温度制御工程とを備える。 The temperature control method of the transmission type optical element includes a semiconductor laser for emitting a laser beam, a collimator lens for collimating the laser beam from the semiconductor laser, and a transmission type for bending an optical path of the laser beam collimated by the collimator lens. A temperature control method of a transmission type optical element of a laser device comprising: an optical element; and a condensing lens which condenses laser light bent by the transmission type optical element and couples it to a fiber, wherein the transmission type optical element A temperature detection step of detecting the temperature of the corresponding side of the transmissive optical element by a plurality of temperature detection units arranged corresponding to a plurality of sides of the element; and corresponding to the plurality of sides of the transmissive optical element Temperature adjusting step of adjusting the temperature of the corresponding side of the transmissive optical element by the plurality of temperature control elements arranged in the second step; and the temperature on the plurality of sides of the transmissive optical element By controlling the temperature control device by a temperature control unit based on the detected temperature by the detection section and a temperature control step of controlling the temperature of the corresponding side of the transmissive optical element.
 本発明によれば、温度制御部は、温度検出部で検出された温度に基づき温調素子を制御することにより透過型光学素子の温度を所定の温度に制御するので、光路長が長い場合でもファイバ結合効率を安定化及び最適化することができる。 According to the present invention, since the temperature control unit controls the temperature of the transmissive optical element to a predetermined temperature by controlling the temperature adjustment element based on the temperature detected by the temperature detection unit, even when the optical path length is long. Fiber coupling efficiency can be stabilized and optimized.
 また、温度制御部は、透過型光学素子の前記複数の辺に、温度検出部で検出された温度に基づき温調素子を制御することにより透過型光学素子の対応する辺の温度を制御するので、透過型光学素子内の温度勾配に応じて屈折率分布が生じ、透過型光学素子内の光路が曲げられる。即ち、透過型光学素子の温度制御によりファイバ結合効率を調整することができる。 In addition, since the temperature control unit controls the temperature control element on the plurality of sides of the transmission type optical element based on the temperatures detected by the temperature detection unit, the temperature control portion controls the temperature of the corresponding side of the transmission type optical element. The refractive index distribution is generated according to the temperature gradient in the transmission type optical element, and the light path in the transmission type optical element is bent. That is, the fiber coupling efficiency can be adjusted by temperature control of the transmission type optical element.
図1は本発明の実施例1のレーザ装置の構成図である。FIG. 1 is a block diagram of a laser apparatus of Embodiment 1 of the present invention. 図2は本発明の実施例2のレーザ装置の構成図である。FIG. 2 is a block diagram of a laser apparatus of Embodiment 2 of the present invention. 図3は本発明の実施例2の変形例のレーザ装置の構成図である。FIG. 3 is a block diagram of a laser apparatus according to a modification of the second embodiment of the present invention. 図4は本発明の実施例3のレーザ装置を側面から見た構成図である。FIG. 4 is a side view of a laser apparatus according to a third embodiment of the present invention. 図5は本発明の実施例3のレーザ装置を下側から見た構成図である。FIG. 5 is a block diagram of the laser device according to the third embodiment of the present invention as viewed from below.
 (実施例1)
 以下、本発明の実施形態に係るレーザ装置を図面を参照しながら詳細に説明する。図1は本発明の実施例1のレーザ装置の構成図である。
Example 1
Hereinafter, a laser apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of a laser apparatus according to a first embodiment of the present invention.
 実施例1のレーザ装置は、半導体レーザ1、コリメートレンズ2、プリズム3、ホルダ4、集光レンズ5、ファイバ6、ペルチェ素子7、ヒートシンク8、サーミスタ9、温度制御部10を備えている。 The laser apparatus of the first embodiment includes a semiconductor laser 1, a collimator lens 2, a prism 3, a holder 4, a condenser lens 5, a fiber 6, a Peltier element 7, a heat sink 8, a thermistor 9, and a temperature control unit 10.
 半導体レーザ1は、レーザ光を出射する。コリメートレンズ2は、半導体レーザ1からのレーザ光をコリメートする。 The semiconductor laser 1 emits a laser beam. The collimator lens 2 collimates the laser light from the semiconductor laser 1.
 プリズム3は、本発明の透過型光学素子に対応し、例えば縦に長い4つの辺と4つの辺に対して傾斜した2つの斜辺とからなり、コリメートレンズ2でコリメートされたレーザ光の光路を2つの斜辺で曲げて、集光レンズ5に導く。 The prism 3 corresponds to the transmission type optical element of the present invention, and comprises, for example, four long sides and two oblique sides inclined with respect to the four sides, and the optical path of the laser light collimated by the collimator lens 2 It bends at two oblique sides and leads to the condenser lens 5.
 集光レンズ5は、プリズム3で曲げられたレーザ光を集光してファイバ1のコアに結合する。プリズム3は、ホルダ4に固定されており、プリズム3の周辺部で且つホルダ4内にサーミスタ9が設けられている。サーミスタ9は、本発明の温度検出部に対応し、プリズム3の温度を検出する。 The condenser lens 5 condenses the laser beam bent by the prism 3 and couples it to the core of the fiber 1. The prism 3 is fixed to the holder 4, and a thermistor 9 is provided at the periphery of the prism 3 and in the holder 4. The thermistor 9 corresponds to the temperature detection unit of the present invention, and detects the temperature of the prism 3.
 ホルダ4にはペルチェ素子7が取り付けられており、ペルチェ素子7は、本発明の温調素子に対応し、ホルダ4内のプリズム3の温度を調整する。温調素子は、ペルチェ素子7以外の素子を用いてもよい。 A Peltier element 7 is attached to the holder 4, and the Peltier element 7 corresponds to the temperature control element of the present invention, and adjusts the temperature of the prism 3 in the holder 4. The temperature control element may be an element other than the Peltier element 7.
 ペルチェ素子7には、ペルチェ素子7の放熱を行うヒートシンク8が取り付けられている。温度制御部10は、サーミスタ9で検出された温度に基づきペルチェ素子7を制御することによりプリズム3の温度を所定の温度に制御する。 A heat sink 8 for radiating heat of the Peltier element 7 is attached to the Peltier element 7. The temperature control unit 10 controls the temperature of the prism 3 to a predetermined temperature by controlling the Peltier element 7 based on the temperature detected by the thermistor 9.
 このように実施例1のレーザ装置によれば、温度制御部10は、サーミスタ9で検出された温度に基づきペルチェ素子7を制御することによりプリズム3の温度を所定の温度に制御し、プリズム内の屈折率分布の変動を抑制することができる。 As described above, according to the laser device of the first embodiment, the temperature control unit 10 controls the temperature of the prism 3 to a predetermined temperature by controlling the Peltier element 7 based on the temperature detected by the thermistor 9. It is possible to suppress the fluctuation of the refractive index distribution of
 従って、プリズム3を用いてビーム伝搬を行っても、特に、光路長が長い場合でもファイバ結合効率を安定化及び最適化することができる。 Therefore, even if beam propagation is performed using the prism 3, fiber coupling efficiency can be stabilized and optimized even when the optical path length is long.
 (実施例2)
 図2は本発明の実施例2のレーザ装置の構成図である。図2(a)は実施例2のレーザ装置の正面図、図2(b)は実施例2のレーザ装置の上面図である。図2に示す実施例2のレーザ装置は、図1に示す実施例1のレーザ装置に対して、以下の点が異なる。
(Example 2)
FIG. 2 is a block diagram of a laser apparatus of Embodiment 2 of the present invention. FIG. 2A is a front view of the laser device of the second embodiment, and FIG. 2B is a top view of the laser device of the second embodiment. The laser device of the second embodiment shown in FIG. 2 is different from the laser device of the first embodiment shown in FIG. 1 in the following points.
 プリズム3の辺3aにはホルダ4aが配置され、プリズム3の辺3bにはホルダ4bが配置され、プリズム3は、ホルダ4a,4bにより固定されている。ホルダ4a内にはサーミスタ9aが配置され、ホルダ4b内にはサーミスタ9bが配置されている。 A holder 4a is disposed on the side 3a of the prism 3, a holder 4b is disposed on the side 3b of the prism 3, and the prism 3 is fixed by the holders 4a and 4b. A thermistor 9a is disposed in the holder 4a, and a thermistor 9b is disposed in the holder 4b.
 サーミスタ9aは、プリズム3の辺3aの温度を検出して、第1温度情報を温度制御部10に出力する。サーミスタ9bは、プリズム3の辺3bの温度を検出して、第2温度情報を温度制御部10に出力する。 The thermistor 9 a detects the temperature of the side 3 a of the prism 3 and outputs first temperature information to the temperature control unit 10. The thermistor 9 b detects the temperature of the side 3 b of the prism 3 and outputs the second temperature information to the temperature control unit 10.
 ペルチェ素子7aは、プリズム3の辺3a及びホルダ4aに対応して配置され、ホルダ4aを介してプリズム3の辺3aの温度を調整する。ペルチェ素子7bは、プリズム3の辺3b及びホルダ4bに対応して配置され、ホルダ4bを介してプリズム3の辺3bの温度を調整する。 The Peltier element 7a is disposed corresponding to the side 3a of the prism 3 and the holder 4a, and adjusts the temperature of the side 3a of the prism 3 via the holder 4a. The Peltier element 7b is disposed corresponding to the side 3b of the prism 3 and the holder 4b, and adjusts the temperature of the side 3b of the prism 3 via the holder 4b.
 温度制御部10は、サーミスタ9aで検出された第1温度情報に基づきペルチェ素子7aを制御することによりプリズム3の辺3aの温度を制御し、サーミスタ9bで検出された第2温度情報に基づきペルチェ素子7bを制御することによりプリズム3の辺3bの温度を制御する。 The temperature control unit 10 controls the temperature of the side 3a of the prism 3 by controlling the Peltier element 7a based on the first temperature information detected by the thermistor 9a, and based on the second temperature information detected by the thermistor 9b. The temperature of the side 3b of the prism 3 is controlled by controlling the element 7b.
 このように実施例2のレーザ装置の動作、即ち、プリズムの温度制御方法を説明する。まず、サーミスタ9aは、プリズム3の辺3aの温度を検出して、第1温度情報を温度制御部10に出力する。サーミスタ9bは、プリズム3の辺3bの温度を検出して、第2温度情報を温度制御部10に出力する。 The operation of the laser apparatus of Embodiment 2, that is, the method of controlling the temperature of the prism will be described. First, the thermistor 9 a detects the temperature of the side 3 a of the prism 3 and outputs the first temperature information to the temperature control unit 10. The thermistor 9 b detects the temperature of the side 3 b of the prism 3 and outputs the second temperature information to the temperature control unit 10.
 ペルチェ素子7aは、プリズム3の辺3aの温度を調整する。ペルチェ素子7bは、プリズム3の辺3bの温度を調整する。 The Peltier element 7 a adjusts the temperature of the side 3 a of the prism 3. The Peltier element 7 b adjusts the temperature of the side 3 b of the prism 3.
 さらに、温度制御部10は、サーミスタ9aで検出された第1温度情報に基づきペルチェ素子7aを制御することによりプリズム3の辺3aの温度を制御する。温度制御部10は、サーミスタ9bで検出された第2温度情報に基づきペルチェ素子7bを制御することによりプリズム3の辺3bの温度を制御する。例えば、温度制御部10は、プリズム3の辺3aの温度とプリズム3の辺3bの温度とを同じ温度に制御することができる。 Furthermore, the temperature control unit 10 controls the temperature of the side 3 a of the prism 3 by controlling the Peltier element 7 a based on the first temperature information detected by the thermistor 9 a. The temperature control unit 10 controls the temperature of the side 3 b of the prism 3 by controlling the Peltier element 7 b based on the second temperature information detected by the thermistor 9 b. For example, the temperature control unit 10 can control the temperature of the side 3 a of the prism 3 and the temperature of the side 3 b of the prism 3 to the same temperature.
 また、温度制御部10は、プリズム3の辺3aの温度とプリズム3の辺3bの温度とに温度差を付けるように制御することができる。この場合には、プリズム3内の屈折率分布の変化に伴い、光の方向を制御することができる。従って、プリズム3の温度制御によりファイバ結合効率を調整することができる。 Further, the temperature control unit 10 can perform control so as to make a temperature difference between the temperature of the side 3 a of the prism 3 and the temperature of the side 3 b of the prism 3. In this case, the direction of light can be controlled in accordance with the change of the refractive index distribution in the prism 3. Accordingly, temperature control of the prism 3 can adjust the fiber coupling efficiency.
 また、温度制御部10は、ファイバ6のコアへ入射する光量が最大となるように、即ち、ファイバ結合効率が最大になるように、プリズム3の辺3aの温度とプリズム3の辺3bの温度とを制御するようにしても良い。このように制御すれば、ファイバ結合効率を最大にすることができる。 Further, the temperature control unit 10 causes the temperature of the side 3 a of the prism 3 and the temperature of the side 3 b of the prism 3 to maximize the amount of light incident on the core of the fiber 6, that is, maximize the fiber coupling efficiency. And may be controlled. This control can maximize the fiber coupling efficiency.
 また、例えば、プリズム3の上面と下面の温度を制御する場合、上面の温度を下面の温度よりも高くすると、プリズム3の温度勾配に応じて屈折率分布が生じ、プリズム3内の光路が真直ぐではなく、上方向に曲げられる。これによれば、プリズム3の温度制御によりファイバ結合効率を調整することができる。 Also, for example, when controlling the temperatures of the upper surface and the lower surface of the prism 3, if the temperature of the upper surface is higher than the temperature of the lower surface, a refractive index distribution is generated according to the temperature gradient of the prism 3 and the light path in the prism 3 is straight It is not bent upwards. According to this, the fiber coupling efficiency can be adjusted by temperature control of the prism 3.
 (実施例2の変形例)
 図3は本発明の実施例2の変形例のレーザ装置の構成図である。図3に示す実施例2の変形例のレーザ装置は、プリズム3の辺3a,3bとは別の辺3cに対応してサーミスタ9aが配置されている。また、プリズム3の辺3a,3bとは別の辺3dに対応してサーミスタ9bが配置されている。
(Modification of Embodiment 2)
FIG. 3 is a block diagram of a laser apparatus according to a modification of the second embodiment of the present invention. In the laser device of the modification of the second embodiment shown in FIG. 3, a thermistor 9a is disposed corresponding to the side 3c different from the sides 3a and 3b of the prism 3. Further, a thermistor 9 b is disposed corresponding to the side 3 d different from the sides 3 a and 3 b of the prism 3.
 サーミスタ9aは、プリズム3の辺3cの温度を検出して、第3温度情報を温度制御部10に出力する。サーミスタ9bは、プリズム3の辺3dの温度を検出して、第4温度情報を温度制御部10に出力する。 The thermistor 9 a detects the temperature of the side 3 c of the prism 3 and outputs third temperature information to the temperature control unit 10. The thermistor 9 b detects the temperature of the side 3 d of the prism 3 and outputs fourth temperature information to the temperature control unit 10.
 ペルチェ素子7aは、プリズム3の辺3cに対応して配置され、プリズム3の辺3cの温度を調整する。ペルチェ素子7bは、プリズム3の辺3dに対応して配置され、プリズム3の辺3dの温度を調整する。ペルチェ素子7aの外側にホルダ4aが配置され、ペルチェ素子7bの外側にホルダ4bが配置されている。 The Peltier element 7 a is disposed corresponding to the side 3 c of the prism 3, and adjusts the temperature of the side 3 c of the prism 3. The Peltier element 7 b is disposed corresponding to the side 3 d of the prism 3, and adjusts the temperature of the side 3 d of the prism 3. The holder 4a is disposed outside the Peltier element 7a, and the holder 4b is disposed outside the Peltier element 7b.
 温度制御部10は、サーミスタ9aで検出された第3温度情報に基づきペルチェ素子7aを制御することによりプリズム3の辺3cの温度を制御し、サーミスタ9bで検出された第4温度情報に基づきペルチェ素子7bを制御することによりプリズム3の辺3dの温度を制御する。 The temperature control unit 10 controls the temperature of the side 3c of the prism 3 by controlling the Peltier element 7a based on the third temperature information detected by the thermistor 9a, and based on the fourth temperature information detected by the thermistor 9b. The temperature of the side 3 d of the prism 3 is controlled by controlling the element 7 b.
 また、温度制御部10は、ファイバ6のコアへ入射する光量が最大となるように、即ち、ファイバ結合効率が最大になるように、プリズム3の辺3cの温度とプリズム3の辺3dの温度とを制御する。 Further, the temperature control unit 10 causes the temperature of the side 3 c of the prism 3 and the temperature of the side 3 d of the prism 3 to maximize the amount of light incident on the core of the fiber 6, that is, maximize the fiber coupling efficiency. And control.
 このように実施例2の変形例のレーザ装置によれば、実施例2のレーザ装置の動作と同様に動作し、且つ同様な効果が得られる。 As described above, according to the laser device of the modified example of the second embodiment, the same operation as the operation of the laser device of the second embodiment and the same effect can be obtained.
 (実施例3)
 図4は本発明の実施例3のレーザ装置を側面から見た構成図である。図5は本発明の実施例3のレーザ装置を下側から見た構成図でプリズム3A,3Bの周辺のみを示す図ある。
(Example 3)
FIG. 4 is a side view of a laser apparatus according to a third embodiment of the present invention. FIG. 5 is a block diagram of the laser device according to the third embodiment of the present invention as viewed from below, showing only the periphery of the prisms 3A and 3B.
 レーザ装置は、複数の半導体レーザ1a~1d、複数のコリメートレンズ2a~2d、複数のプリズム3A~3D、集光レンズ5、ファイバ6を備えている。 The laser device includes a plurality of semiconductor lasers 1a to 1d, a plurality of collimator lenses 2a to 2d, a plurality of prisms 3A to 3D, a condenser lens 5, and a fiber 6.
 複数の半導体レーザ1a~1dの各々は、図4に示すように複数のレーザ素子からなり、複数のレーザ素子の各々は、レーザ光を出射する。 Each of the plurality of semiconductor lasers 1a to 1d comprises a plurality of laser elements as shown in FIG. 4, and each of the plurality of laser elements emits a laser beam.
 複数のコリメートレンズ2a~2dは、複数の半導体レーザ1a~1dに対応して配置されている。複数のコリメートレンズ2a~2dの各々は、図4に示すように複数のコリメートレンズ素子からなり、複数のコリメートレンズ素子は、複数のレーザ素子からのレーザ光をコリメートする。 The plurality of collimator lenses 2a to 2d are arranged corresponding to the plurality of semiconductor lasers 1a to 1d. Each of the plurality of collimating lenses 2a to 2d is composed of a plurality of collimating lens elements as shown in FIG. 4, and the plurality of collimating lens elements collimate the laser light from the plurality of laser elements.
 複数のプリズム3A~3Dは、複数のコリメートレンズ2a~2dに対応して配置され、ホルダ4A~4Dに固定され、コリメートレンズ2a~2dでコリメートされたレーザ光の光路を曲げる。プリズム3A,3Dは、プリズム3B,3Cよりも大きい。 The plurality of prisms 3A to 3D are arranged corresponding to the plurality of collimator lenses 2a to 2d, fixed to the holders 4A to 4D, and bend the optical paths of the laser beams collimated by the collimator lenses 2a to 2d. The prisms 3A and 3D are larger than the prisms 3B and 3C.
 集光レンズ5は、複数のプリズム3A~3Dで曲げられた複数のレーザ光を集光してファイバ6に結合する。 The condenser lens 5 condenses the plurality of laser beams bent by the plurality of prisms 3A to 3D and couples the plurality of laser beams to the fiber 6.
 図5では、プリズム3A,3Bについて示す。プリズム3Aの辺3aAにはホルダ4aAが配置され、プリズム3Aの辺3bAにはホルダ4bAが配置され、プリズム3Aは、ホルダ4aA,4bAにより固定されている。ホルダ4aA内にはサーミスタ9aAが配置され、ホルダ4bA内にはサーミスタ9bAが配置されている。 FIG. 5 shows the prisms 3A and 3B. A holder 4aA is disposed on the side 3aA of the prism 3A, a holder 4bA is disposed on the side 3bA of the prism 3A, and the prism 3A is fixed by the holders 4aA and 4bA. A thermistor 9aA is disposed in the holder 4aA, and a thermistor 9bA is disposed in the holder 4bA.
 サーミスタ9aAは、プリズム3Aの辺3aAの温度を検出して、温度情報を温度制御部10に出力する。サーミスタ9bAは、プリズム3Aの辺3bAの温度を検出して、温度情報を温度制御部10に出力する。 The thermistor 9aA detects the temperature of the side 3aA of the prism 3A, and outputs temperature information to the temperature control unit 10. The thermistor 9bA detects the temperature of the side 3bA of the prism 3A, and outputs temperature information to the temperature control unit 10.
 ペルチェ素子7aAは、プリズム3Aの辺3aA及びホルダ4aAに対応して配置され、ホルダ4aAを介してプリズム3Aの辺3aAの温度を調整する。ペルチェ素子7bAは、プリズム3Aの辺3bA及びホルダ4bAに対応して配置され、ホルダ4bAを介してプリズム3Aの辺3bAの温度を調整する。 The Peltier element 7aA is disposed corresponding to the side 3aA of the prism 3A and the holder 4aA, and adjusts the temperature of the side 3aA of the prism 3A via the holder 4aA. Peltier element 7bA is arranged corresponding to side 3bA of prism 3A and holder 4bA, and adjusts the temperature of side 3bA of prism 3A via holder 4bA.
 温度制御部10は、サーミスタ9aAで検出された温度情報に基づきペルチェ素子7aAを制御することによりプリズム3Aの辺3aAの温度を制御し、サーミスタ9bAで検出された温度情報に基づきペルチェ素子7bAを制御することによりプリズム3Aの辺3bAの温度を制御する。 Temperature control unit 10 controls the temperature of side 3aA of prism 3A by controlling Peltier element 7aA based on the temperature information detected by thermistor 9aA, and controls Peltier element 7bA based on the temperature information detected by thermistor 9bA Thus, the temperature of the side 3bA of the prism 3A is controlled.
 また、温度制御部10は、ファイバ6のコアへ入射する光量が最大となるように、即ち、ファイバ結合効率が最大になるように、プリズム3Aの辺3aAの温度とプリズム3Aの辺3bAの温度とを制御する。 Further, the temperature control unit 10 causes the temperature of the side 3aA of the prism 3A and the temperature of the side 3bA of the prism 3A to maximize the amount of light incident on the core of the fiber 6, that is, maximize the fiber coupling efficiency. And control.
 次に、プリズム3Bの辺3aBにはホルダ4aBが配置され、プリズム3Bの辺3bBにはホルダ4bBが配置され、プリズム3Bは、ホルダ4aB,4bBにより固定されている。ホルダ4aB内にはサーミスタ9aBが配置され、ホルダ4bB内にはサーミスタ9bBが配置されている。 Next, a holder 4aB is disposed on the side 3aB of the prism 3B, a holder 4bB is disposed on the side 3bB of the prism 3B, and the prism 3B is fixed by the holders 4aB and 4bB. A thermistor 9aB is disposed in the holder 4aB, and a thermistor 9bB is disposed in the holder 4bB.
 サーミスタ9aBは、プリズム3Bの辺3aBの温度を検出して、温度情報を温度制御部10に出力する。サーミスタ9bBは、プリズム3Bの辺3bBの温度を検出して、温度情報を温度制御部10に出力する。 The thermistor 9aB detects the temperature of the side 3aB of the prism 3B, and outputs temperature information to the temperature control unit 10. The thermistor 9 b B detects the temperature of the side 3 b B of the prism 3 B, and outputs temperature information to the temperature control unit 10.
 ペルチェ素子7aBは、プリズム3Bの辺3aB及びホルダ4aBに対応して配置され、ホルダ4aBを介してプリズム3Bの辺3aBの温度を調整する。ペルチェ素子7bBは、プリズム3Bの辺3bB及びホルダ4bBに対応して配置され、ホルダ4bBを介してプリズム3Bの辺3bBの温度を調整する。 The Peltier element 7aB is disposed corresponding to the side 3aB of the prism 3B and the holder 4aB, and adjusts the temperature of the side 3aB of the prism 3B via the holder 4aB. The Peltier element 7bB is disposed corresponding to the side 3bB of the prism 3B and the holder 4bB, and adjusts the temperature of the side 3bB of the prism 3B via the holder 4bB.
 温度制御部10は、サーミスタ9aBで検出された温度情報に基づきペルチェ素子7aBを制御することによりプリズム3Bの辺3aBの温度を制御し、サーミスタ9bBで検出された温度情報に基づきペルチェ素子7bBを制御することによりプリズム3Bの辺3bBの温度を制御する。 The temperature control unit 10 controls the temperature of the side 3aB of the prism 3B by controlling the Peltier element 7aB based on the temperature information detected by the thermistor 9aB, and controls the Peltier element 7bB based on the temperature information detected by the thermistor 9bB. Thus, the temperature of the side 3bB of the prism 3B is controlled.
 また、温度制御部10は、ファイバ6のコアへ入射する光量が最大となるように、即ち、ファイバ結合効率が最大になるように、プリズム3Bの辺3aBの温度とプリズム3Bの辺3bBの温度とを制御する。 Further, the temperature control unit 10 causes the temperature of the side 3aB of the prism 3B and the temperature of the side 3bB of the prism 3B to maximize the amount of light incident on the core of the fiber 6, that is, maximize the fiber coupling efficiency. And control.
 なお、プリズム3C,3Dについては、図示していないが、プリズム3A,3Bと同様である。 The prisms 3C and 3D are the same as the prisms 3A and 3B although not shown.
 このように構成された実施例3のレーザ装置によれば、プリズム3A,3B,3C,3Dの各々のプリズム毎に、温度制御部10がプリズムの2つの辺の温度を制御することで、プリズム内部の屈折率分布を変更させる。 According to the laser apparatus of the third embodiment configured as described above, the temperature control unit 10 controls the temperature of the two sides of the prism for each of the prisms 3A, 3B, 3C, 3D. Change the internal refractive index distribution.
 プリズム3A,3B,3C,3Dの各々のプリズム毎に、光路を調整することで、各半導体レーザ1a~1dの個体差、集光レンズ5の収差を補正することができ、各々のプリズム3A,3B,3C,3Dについて、ファイバ結合効率を最適化して全体として高い出力を得ることができる。 By adjusting the optical path for each of the prisms 3A, 3B, 3C, 3D, individual differences between the semiconductor lasers 1a to 1d and aberrations of the condenser lens 5 can be corrected, and each prism 3A, The fiber coupling efficiency can be optimized for 3B, 3C, and 3D to obtain a high output as a whole.
 なお、実施例1乃至実施例3のレーザ装置では、プリズム3の2つの辺の温度を制御したが、これに限定されることなく、プリズム3の3つ以上の辺の温度を制御しても良い。この場合には、各辺に対応させて、ホルダ、サーミスタ、ペルチェ素子、ヒートシンクを配置する必要がある。 Although the temperatures of the two sides of the prism 3 are controlled in the laser devices according to the first to third embodiments, the temperatures of the three or more sides of the prism 3 may be controlled without being limited thereto. good. In this case, it is necessary to arrange a holder, a thermistor, a Peltier element, and a heat sink corresponding to each side.
 また、実施例1乃至実施例3のレーザ装置では、プリズム3を用いたが、プリズム3の代わりに、ビームスプリッタを用いても良い。 Further, although the prism 3 is used in the laser devices of the first to third embodiments, a beam splitter may be used instead of the prism 3.
 本発明は、ファイバ結合型レーザ装置に適用可能である。 The present invention is applicable to fiber coupled laser devices.

Claims (7)

  1.  レーザ光を出射する半導体レーザと、
     前記半導体レーザからのレーザ光をコリメートするコリメートレンズと、
     前記コリメートレンズでコリメートされたレーザ光の光路を曲げるための透過型光学素子と、
     前記透過型光学素子で曲げられたレーザ光を集光してファイバに結合する集光レンズと、
     前記透過型光学素子の温度を検出する温度検出部と、
     前記透過型光学素子の温度を調整する温調素子と、
     前記温度検出部で検出された温度に基づき前記温調素子を制御することにより前記透過型光学素子の温度を所定の温度に制御する温度制御部と、
    を備えるレーザ装置。
    A semiconductor laser for emitting laser light;
    A collimating lens for collimating laser light from the semiconductor laser;
    A transmissive optical element for bending the optical path of the laser light collimated by the collimating lens;
    A condensing lens for condensing the laser light bent by the transmission type optical element and coupling it to a fiber;
    A temperature detection unit that detects the temperature of the transmissive optical element;
    A temperature control element for adjusting the temperature of the transmissive optical element;
    A temperature control unit that controls the temperature of the transmissive optical element to a predetermined temperature by controlling the temperature control element based on the temperature detected by the temperature detection unit;
    Laser device.
  2.  レーザ光を出射する半導体レーザと、
     前記半導体レーザからのレーザ光をコリメートするコリメートレンズと、
     前記コリメートレンズでコリメートされたレーザ光の光路を曲げるための透過型光学素子と、
     前記透過型光学素子で曲げられたレーザ光を集光してファイバに結合する集光レンズと、
     前記透過型光学素子の複数の辺に対応して配置され、前記透過型光学素子の対応する辺の温度を検出する複数の温度検出部と、
     前記透過型光学素子の前記複数の辺に対応して配置され、前記透過型光学素子の対応する辺の温度を調整する複数の温調素子と、
     前記透過型光学素子の前記複数の辺に、前記温度検出部で検出された温度に基づき前記温調素子を制御することにより前記透過型光学素子の対応する辺の温度を制御する温度制御部と、
    を備えるレーザ装置。
    A semiconductor laser for emitting laser light;
    A collimating lens for collimating laser light from the semiconductor laser;
    A transmissive optical element for bending the optical path of the laser light collimated by the collimating lens;
    A condensing lens for condensing the laser light bent by the transmission type optical element and coupling it to a fiber;
    A plurality of temperature detection units disposed corresponding to a plurality of sides of the transmission type optical element and detecting temperatures of corresponding sides of the transmission type optical element;
    A plurality of temperature control elements disposed corresponding to the plurality of sides of the transmission type optical element and adjusting the temperature of the corresponding side of the transmission type optical element;
    A temperature control unit for controlling the temperature of the corresponding side of the transmissive optical element by controlling the temperature control element on the plurality of sides of the transmissive optical element based on the temperature detected by the temperature detection unit; ,
    Laser device.
  3.  前記温度制御部は、前記ファイバのコアへ入射する光量が最大となるように前記透過型光学素子の複数の辺の温度を制御する請求項2記載のレーザ装置。 The laser apparatus according to claim 2, wherein the temperature control unit controls the temperatures of the plurality of sides of the transmission type optical element such that the amount of light incident on the core of the fiber is maximized.
  4.  レーザ光を出射する複数の半導体レーザと、
     前記複数の半導体レーザに対応して配置され、前記半導体レーザからのレーザ光をコリメートする複数のコリメートレンズと、
     前記複数のコリメートレンズに対応して配置され、前記コリメートレンズでコリメートされたレーザ光の光路を曲げるための複数の透過型光学素子と、
     前記複数の透過型光学素子で曲げられた複数のレーザ光を集光してファイバに結合する集光レンズと、
     各々の前記透過型光学素子の複数の辺に対応して配置され、各々の前記透過型光学素子の対応する辺の温度を検出する複数の温度検出部と、
     各々の前記透過型光学素子の前記複数の辺に対応して配置され、各々の前記透過型光学素子の対応する辺の温度を調整する複数の温調素子と、
     各々の前記透過型光学素子の各辺毎に、前記温度検出部で検出された温度に基づき前記温調素子を制御することにより前記透過型光学素子の対応する辺の温度を制御する温度制御部と、
    を備えるレーザ装置。
    A plurality of semiconductor lasers emitting laser light;
    A plurality of collimating lenses disposed corresponding to the plurality of semiconductor lasers and collimating laser light from the semiconductor lasers;
    A plurality of transmissive optical elements disposed corresponding to the plurality of collimator lenses, for bending the optical path of the laser light collimated by the collimator lenses;
    A condensing lens for condensing a plurality of laser beams bent by the plurality of transmission optical elements and coupling the plurality of laser beams to a fiber;
    A plurality of temperature detection units disposed corresponding to a plurality of sides of each of the transmissive optical elements, for detecting temperatures of corresponding sides of the respective transmissive optical elements;
    A plurality of temperature control elements disposed corresponding to the plurality of sides of each of the transmissive optical elements and adjusting the temperature of the corresponding side of each of the transmissive optical elements;
    A temperature control unit that controls the temperature of the corresponding side of the transmissive optical element by controlling the temperature control element based on the temperature detected by the temperature detection unit for each side of each transmissive optical element When,
    Laser device.
  5.  前記温度制御部は、前記ファイバのコアへ入射する光量が最大となるように前記透過型光学素子の複数の辺の温度を制御する請求項4記載のレーザ装置。 5. The laser apparatus according to claim 4, wherein the temperature control unit controls the temperatures of the plurality of sides of the transmission type optical element such that the amount of light incident on the core of the fiber is maximized.
  6.  レーザ光を出射する半導体レーザと、前記半導体レーザからのレーザ光をコリメートするコリメートレンズと、前記コリメートレンズでコリメートされたレーザ光の光路を曲げるための透過型光学素子と、前記透過型光学素子で曲げられたレーザ光を集光してファイバに結合する集光レンズとを備えたレーザ装置の透過型光学素子の温度制御方法であって、
     前記透過型光学素子の複数の辺に対応して配置された複数の温度検出部により前記透過型光学素子の対応する辺の温度を検出する温度検出工程と、
     前記透過型光学素子の前記複数の辺に対応して配置された複数の温調素子により、前記透過型光学素子の対応する辺の温度を調整する温度調整工程と、
     前記透過型光学素子の前記複数の辺に、前記温度検出部で検出された温度に基づき温度制御部により前記温調素子を制御することにより前記透過型光学素子の対応する辺の温度を制御する温度制御工程と、
    を備える透過型光学素子の温度制御方法。
    A semiconductor laser for emitting a laser beam, a collimating lens for collimating the laser beam from the semiconductor laser, a transmissive optical element for bending an optical path of the laser beam collimated by the collimating lens, and the transmissive optical element What is claimed is: 1. A temperature control method of a transmission type optical element of a laser device, comprising: a focusing lens for focusing bent laser light and coupling it to a fiber,
    A temperature detection step of detecting a temperature of a corresponding side of the transmission type optical element by a plurality of temperature detection units arranged corresponding to a plurality of sides of the transmission type optical element;
    A temperature adjustment step of adjusting a temperature of a corresponding side of the transmission type optical element by a plurality of temperature control elements arranged corresponding to the plurality of sides of the transmission type optical element;
    The temperature control unit controls the temperature control element based on the temperature detected by the temperature detection unit on the plurality of sides of the transmission type optical device to control the temperature of the corresponding side of the transmission type optical device Temperature control process,
    A method of controlling the temperature of a transmissive optical element comprising:
  7.  前記温度制御部は、前記ファイバのコアへ入射する光量が最大となるように前記透過型光学素子の複数の辺の温度を制御する請求項6記載の透過型光学素子の温度制御方法。 The temperature control method of a transmission type optical element according to claim 6, wherein the temperature control unit controls the temperatures of the plurality of sides of the transmission type optical element so as to maximize the amount of light incident on the core of the fiber.
PCT/JP2017/027310 2017-07-27 2017-07-27 Laser device and method for controlling temperature of transmissive optical element WO2019021436A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019532304A JPWO2019021436A1 (en) 2017-07-27 2017-07-27 Laser apparatus and transmission optical element temperature control method
PCT/JP2017/027310 WO2019021436A1 (en) 2017-07-27 2017-07-27 Laser device and method for controlling temperature of transmissive optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/027310 WO2019021436A1 (en) 2017-07-27 2017-07-27 Laser device and method for controlling temperature of transmissive optical element

Publications (1)

Publication Number Publication Date
WO2019021436A1 true WO2019021436A1 (en) 2019-01-31

Family

ID=65040493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027310 WO2019021436A1 (en) 2017-07-27 2017-07-27 Laser device and method for controlling temperature of transmissive optical element

Country Status (2)

Country Link
JP (1) JPWO2019021436A1 (en)
WO (1) WO2019021436A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274632A (en) * 1998-03-25 1999-10-08 Komatsu Ltd Wave front controller for narrow band laser
JP2008102806A (en) * 2006-10-20 2008-05-01 Sony Corp Temperature controller, method, and program
JP2015025961A (en) * 2013-07-26 2015-02-05 株式会社島津製作所 Polarization conversion device
JP2015072956A (en) * 2013-10-02 2015-04-16 株式会社島津製作所 Light-emitting device
JP2016081994A (en) * 2014-10-14 2016-05-16 株式会社アマダホールディングス Direct diode laser oscillator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4102457B2 (en) * 1997-05-09 2008-06-18 株式会社小松製作所 Narrow band laser equipment
JP2003283011A (en) * 2002-03-25 2003-10-03 Komatsu Ltd Narrow-spectrum laser device
EP2186171A1 (en) * 2007-04-02 2010-05-19 Pirelli & C. S.p.A. External cavity laser module comprising a multi-functional optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11274632A (en) * 1998-03-25 1999-10-08 Komatsu Ltd Wave front controller for narrow band laser
JP2008102806A (en) * 2006-10-20 2008-05-01 Sony Corp Temperature controller, method, and program
JP2015025961A (en) * 2013-07-26 2015-02-05 株式会社島津製作所 Polarization conversion device
JP2015072956A (en) * 2013-10-02 2015-04-16 株式会社島津製作所 Light-emitting device
JP2016081994A (en) * 2014-10-14 2016-05-16 株式会社アマダホールディングス Direct diode laser oscillator

Also Published As

Publication number Publication date
JPWO2019021436A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
US11378808B2 (en) Laser systems and optical devices for laser beam shaping
US7843653B2 (en) Achromatic flat top beam shaping
US6873640B2 (en) Laser diode collimating system
KR101616635B1 (en) Laser beam-combining optical device
US9846353B2 (en) Projection device combining and modifing light beam cross sectional dimensions
JP6285650B2 (en) Laser equipment
CN103576319A (en) Light deflector, light source device, image projecting device, and display device
JPWO2016035349A1 (en) Laser optical apparatus and image projection apparatus
JP2010050137A (en) Optical module, optical communication device using the same and reflection optical path setting method
US7570848B2 (en) Lens adjusting method, lens adjusting device, and optical switch
JP2008216131A (en) Infrared imaging/laser range finder
JPWO2016117108A1 (en) Multi-wavelength laser optical multiplexing module
US20150132003A1 (en) Multiplexer/demultiplexer based on diffractive optical elements
US20050141897A1 (en) Light detection apparatus and free space optics communication apparatus
US20070297718A1 (en) Temperature-independent optical wavelength identification apparatus and optical wavelength identification method
WO2019021436A1 (en) Laser device and method for controlling temperature of transmissive optical element
JP6521098B2 (en) Combined laser light source
JP2006350044A (en) Optical channel monitor
JP2008040042A (en) Optical system and optical apparatus
JP2005536779A (en) Optical multiplexer / demultiplexer for optical fibers having a large numerical aperture
KR102072623B1 (en) Optical beam forming unit, distance measuring device and laser illuminator
JP4225152B2 (en) Optical power monitor device
JP6551215B2 (en) Fluorescent light source device
JP5900043B2 (en) Optical coupling structure and array optical amplification module
KR101309704B1 (en) Optical pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532304

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919515

Country of ref document: EP

Kind code of ref document: A1