JP2008216131A - Infrared imaging/laser range finder - Google Patents

Infrared imaging/laser range finder Download PDF

Info

Publication number
JP2008216131A
JP2008216131A JP2007055883A JP2007055883A JP2008216131A JP 2008216131 A JP2008216131 A JP 2008216131A JP 2007055883 A JP2007055883 A JP 2007055883A JP 2007055883 A JP2007055883 A JP 2007055883A JP 2008216131 A JP2008216131 A JP 2008216131A
Authority
JP
Japan
Prior art keywords
laser
infrared imaging
imaging
objective
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007055883A
Other languages
Japanese (ja)
Inventor
Toshiharu Oishi
寿治 大石
Makoto Kamozawa
誠 鴨沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007055883A priority Critical patent/JP2008216131A/en
Publication of JP2008216131A publication Critical patent/JP2008216131A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared imaging/laser range finder without reducing imaging performance, without causing an aberration, even when sharing an objective lens of two optical systems of an infrared imaging optical system and a laser range finding receiving optical system. <P>SOLUTION: This infrared imaging/laser range finder shares the objective lens of the two optical systems of the infrared imaging optical system and the laser range finding receiving optical system, and has a dichroic mirror 6 using an objective diffraction lens 5 having a diffraction surface on one surface or both surfaces, arranged in the rear of the objective diffraction lens 5, reflecting infrared radiation for imaging and transmitting a range finding laser beam, as the objective lens. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、赤外線撮像装置とレーザ測距装置を有する赤外線撮像・レーザ測距装置の光学系に関するものである。   The present invention relates to an optical system of an infrared imaging / laser ranging device having an infrared imaging device and a laser ranging device.

目標探知用の撮像装置と、測距用のレーザ測距装置を有する赤外線撮像・レーザ測距装置においては、撮像用光学系と、レーザ測距用の送信光学系と受信光学系が使用される(例えば、特許文献1参照)。   In an infrared imaging / laser ranging device having an imaging device for target detection and a laser ranging device for ranging, an imaging optical system, a transmission optical system for laser ranging, and a receiving optical system are used. (For example, refer to Patent Document 1).

撮像装置の光学系と、レーザ測距装置の送信光学系と受信光学系は、必要な視野、使用される波長帯、使用する発信器、検知器等の違いから、それぞれ別の光学系で構成される場合が多い。   The optical system of the imaging device and the transmission optical system and the reception optical system of the laser distance measuring device are configured with different optical systems depending on the required field of view, wavelength band used, transmitter used, detector, etc. Often done.

撮像装置とレーザ測距装置を有する赤外線撮像・レーザ測距装置において、探知距離、測距距離を長く取るためには、撮像装置の撮像用光学系及びレーザ測距装置の受信光学系の二つの光学系に、それぞれ大口径の対物レンズを使用する必要がある。しかし、二つの対物レンズが大口径化することで、装置全体が大型化し、赤外線撮像・レーザ測距装置を搭載できる機器や使用条件に制限が生じていた。   In an infrared imaging / laser distance measuring device having an imaging device and a laser distance measuring device, in order to increase the detection distance and the distance measuring distance, the imaging optical system of the imaging device and the receiving optical system of the laser distance measuring device are It is necessary to use an objective lens having a large aperture for each optical system. However, the increase in the diameter of the two objective lenses increases the size of the entire apparatus, which limits the equipment and operating conditions on which the infrared imaging / laser ranging device can be mounted.

これに対し、撮像装置とレーザ測距装置を有する赤外線撮像・レーザ測距装置の小型化を図る手段として、撮像光学系と受信光学系の対物レンズを共用とし、その後ダイクロイックミラー等の波長分離手段において撮像用と測距用の2つの波長の光をそれぞれの光学系に導く方法がある(例えば、特許文献2参照)。   On the other hand, as means for reducing the size of an infrared imaging / laser ranging apparatus having an imaging apparatus and a laser distance measuring apparatus, the objective lens of the imaging optical system and the receiving optical system is shared, and then wavelength separation means such as a dichroic mirror is used. There is a method of guiding light of two wavelengths for imaging and ranging to respective optical systems (see, for example, Patent Document 2).

特開平7−181260号公報(第7図)Japanese Patent Laid-Open No. 7-181260 (FIG. 7) 特開平5−107501号公報(第2図)Japanese Patent Laid-Open No. 5-107501 (FIG. 2)

しかしながら、撮像装置に赤外線撮像器を使用し、撮像用光学系とレーザ測距用の受信光学系の対物レンズを共用化する場合、両方の波長を透過するレンズ材料を使用する必要があり、使用できるレンズ材料が限られることになる。使用できるレンズ材料が限られることで、広い範囲の波長を使用する撮像用光学系においては、複数のレンズ材料を使用することで行う色収差の補正ができなくなり、結果として、撮像光学系が集光する光のスポット径が大きくなる等の結像性能の低下が発生する。   However, when using an infrared imaging device for the imaging device and sharing the objective lens of the imaging optical system and the receiving optical system for laser distance measurement, it is necessary to use a lens material that transmits both wavelengths. The lens materials that can be produced are limited. Due to the limited use of lens materials, imaging optical systems that use a wide range of wavelengths cannot correct chromatic aberration by using multiple lens materials. As a result, the imaging optical system collects light. Degradation of imaging performance, such as an increase in the spot diameter of the generated light, occurs.

この発明は上述した点に鑑みてなされたもので、赤外線撮像用光学系及びレーザ測距用受信光学系の二つの光学系の対物レンズを共用化しても、収差が発生しなく、結像性能が低下することのない赤外線撮像・レーザ測距装置を得ることを目的とする。   The present invention has been made in view of the above-described points. Even if the objective lens of the two optical systems, that is, the infrared imaging optical system and the laser distance receiving optical system is shared, no aberration occurs, and the imaging performance is improved. An object of the present invention is to obtain an infrared imaging / laser distance measuring device that does not deteriorate.

この発明に係る赤外線撮像・レーザ測距装置は、赤外線撮像用光学系及びレーザ測距用受信光学系の二つの光学系の対物レンズを共用する赤外線撮像・レーザ測距装置であって、前記対物レンズとして、片面または両面に回折面を有する対物回折レンズを用いると共に、前記対物回折レンズの後方に配置され、撮像用の赤外線を反射し、測距用のレーザ光を透過するダイクロイックミラーを備えたことを特徴とする。   An infrared imaging / laser distance measuring device according to the present invention is an infrared imaging / laser ranging device sharing an objective lens of two optical systems of an infrared imaging optical system and a laser distance receiving optical system, As the lens, an objective diffractive lens having a diffractive surface on one side or both sides is used, and a dichroic mirror that is disposed behind the objective diffractive lens and reflects infrared rays for imaging and transmits laser beams for distance measurement is provided. It is characterized by that.

この発明によれば、収差が発生しなく、結像性能が低下することのない赤外線撮像・レーザ測距装置を得ることができる。   According to the present invention, it is possible to obtain an infrared imaging / laser distance measuring device in which aberration does not occur and imaging performance does not deteriorate.

実施の形態1.
図1は、この発明の実施の形態1に係る赤外線撮像・レーザ測距装置の光学系の構成を示すブロック図である。赤外線撮像・レーザ測距装置には、赤外線受光素子、レーザ受信素子で電気信号に変換出力した後の信号処理回路や、レーザ発信部の制御回路、各光学系のフォーカス調整用の駆動機構・駆動制御回路などが設けられるが、図1に示す構成では、発明の要旨とする光学系の部分のみを示して説明する。
Embodiment 1 FIG.
1 is a block diagram showing a configuration of an optical system of an infrared imaging / laser distance measuring apparatus according to Embodiment 1 of the present invention. Infrared imaging / laser distance measuring devices include infrared light receiving elements, signal processing circuits that have been converted and output to electrical signals by laser receiving elements, laser transmitter control circuits, and drive mechanisms and drives for adjusting the focus of each optical system. Although a control circuit and the like are provided, the configuration shown in FIG.

図1において、レーザ発信器1から射出されたレーザ光3は、送信光学系2を経て目標に対し射出される。レーザ光3は、目標で反射した後、対物回折レンズ5、ウェッジ付きダイクロイックミラー6、受信光学系7を透過し、レーザ受信素子8に結像する。また、目標及びその周辺から発せられた赤外線光4は、対物回折レンズ5を透過しウェッジ付きダイクロイックミラー6の表面で反射し、撮像光学系9を透過後に、赤外線受光素子10上に結像する。ここで、レーザ光3と赤外線光4の波長は、異なる波長であり、また、赤外線光4は、広い波長範囲を持つ。例として、ここでは、レーザ光3の波長を1.5μm、赤外線光4の波長を3〜5μmとする。   In FIG. 1, a laser beam 3 emitted from a laser transmitter 1 is emitted to a target through a transmission optical system 2. The laser beam 3 is reflected by the target, passes through the objective diffraction lens 5, the wedged dichroic mirror 6, and the receiving optical system 7, and forms an image on the laser receiving element 8. Infrared light 4 emitted from the target and its periphery passes through the objective diffractive lens 5, reflects off the surface of the dichroic mirror 6 with wedge, passes through the imaging optical system 9, and then forms an image on the infrared light receiving element 10. . Here, the wavelengths of the laser light 3 and the infrared light 4 are different wavelengths, and the infrared light 4 has a wide wavelength range. As an example, the wavelength of the laser beam 3 is 1.5 μm and the wavelength of the infrared light 4 is 3 to 5 μm.

ここで、まず、対物回折レンズ5について説明する。図1において、目標から来たレーザ光3と赤外線光4は、対物回折レンズ5に共に入射する。対物回折レンズ5は、片面または両面に回折面を有するレンズである。赤外線光4は、3〜5μmの波長範囲を持つため、回折面をもたない通常の単レンズの場合、レンズ材料の波長による屈折率の違いにより短い波長ほど大きく屈折することになり、その結果、色収差が発生し結像性能が低下する。   Here, first, the objective diffraction lens 5 will be described. In FIG. 1, laser light 3 and infrared light 4 coming from a target are incident on an objective diffraction lens 5 together. The objective diffractive lens 5 is a lens having a diffractive surface on one side or both sides. Since the infrared light 4 has a wavelength range of 3 to 5 μm, in the case of a normal single lens having no diffractive surface, a shorter wavelength is refracted more greatly due to a difference in refractive index depending on the wavelength of the lens material. Further, chromatic aberration occurs and the imaging performance is deteriorated.

一般には、色収差を補正するために、正レンズに分散の異なる材料の負レンズを組み合わせることで色収差の補正を行う。3〜5μmの赤外線光学系の場合、正レンズにSi、負レンズにGeの組み合わせが良く用いられるが、Geは1.5μmの波長の光を透過しないため、1.5μmのレーザ光3を透過させる対物レンズの場合、SiとGeレンズの組み合わせによる色収差の補正は不可能である。   In general, in order to correct chromatic aberration, chromatic aberration is corrected by combining a positive lens with a negative lens made of a material having different dispersion. In the case of an infrared optical system of 3 to 5 μm, a combination of Si for the positive lens and Ge for the negative lens is often used. However, since Ge does not transmit light having a wavelength of 1.5 μm, it transmits laser light 3 of 1.5 μm. In the case of the objective lens to be corrected, it is impossible to correct the chromatic aberration by the combination of the Si and Ge lenses.

色収差を補正する手段として、本実施の形態1では、対物レンズに回折面を有する対物回折レンズを使用する。回折面を通過した光は、長い波長ほど大きく屈折されるため、レンズに回折面を設けることで、1枚のレンズでの色収差の補正が可能となり、高い結像性能を得ることができる。なお、レーザ光3については、単波長の光であるため、色収差は発生しない。   As means for correcting chromatic aberration, in the first embodiment, an objective diffractive lens having a diffractive surface is used. Since light that has passed through the diffractive surface is refracted as the wavelength increases, providing the lens with a diffractive surface makes it possible to correct chromatic aberration with a single lens and obtain high imaging performance. Since the laser light 3 is a single wavelength light, no chromatic aberration occurs.

また、回折面、回折効率により透過する光量が波長により変化する。回折効率と透過する波長λの関係は、η=sinc(λ/λ−k)で表される。ここで、sincはシンク関数、ηは回折効率、λは回折面の光路差を示す光の波長、λは透過する光の波長、kは回折光の次数(0、1、2、・・・)である。 Further, the amount of light that is transmitted varies depending on the wavelength depending on the diffraction surface and diffraction efficiency. The relationship between the diffraction efficiency and the transmitted wavelength λ is expressed by η = sinc 20 / λ−k). Here, sinc is the sink function, η is the diffraction efficiency, λ 0 is the wavelength of light indicating the optical path difference of the diffraction surface, λ is the wavelength of the transmitted light, k is the order of the diffracted light (0, 1, 2,...・)

異なる波長の赤外線光4とレーザ光3を透過する際、共に高い回折効率を得るため、対物回折レンズ5は、回折面の光路差を示す光の波長λと回折光の次数kが、|λ/λ−k|≦|λmin−k|または|λ/λ−k|≦|λmax−k|を満足し、加えてλ/λmax−k≦0≦λmin−kの関係を満足するように設定される。ここで、k・kは回折光の次数、λはレーザ光3の波長、λminとλmaxは赤外線光4の最小の波長と最大の波長である。λが1.5μm、λminが3.0μm、λmaxが5.0μmにおいて、λを3.3μm、kを1、kを2とした場合の対物回折レンズ5の回折効率の設計例を図2に示す。 In order to obtain high diffraction efficiency when transmitting infrared light 4 and laser light 3 having different wavelengths, the objective diffractive lens 5 has a light wavelength λ 0 indicating the optical path difference of the diffracting surface and the order k of the diffracted light. λ 0 / λ L −k 2 | ≦ | λ min −k 1 | or | λ 0 / λ L −k 2 | ≦ | λ max −k 1 |, and in addition, λ 0 / λ max −k 1 It is set so as to satisfy the relationship of ≦ 0 ≦ λ min −k 1 . Here, k 1 and k 2 are the orders of the diffracted light, λ L is the wavelength of the laser light 3, and λ min and λ max are the minimum wavelength and the maximum wavelength of the infrared light 4. When λ L is 1.5 μm, λ min is 3.0 μm, and λ max is 5.0 μm, λ 0 is 3.3 μm, k 1 is 1, and k 2 is 2. A design example is shown in FIG.

次に、ウェッジ付きダイクロイックミラー6について説明する。ダイクロイックミラーは、特定の波長を反射、透過させることで、波長により光の光路を分離させる光学部品である。対物回折レンズ5を通過した光は、集光する光線としてウェッジ付きダイクロイックミラー6に入射する。集光する光路に斜めに置かれた平行形状の媒質を通過した光は、非点収差が発生するため結像性能の低下が発生する。また、斜めに置かれた媒質を透過する際に発生する非点収差の量は、対物回折レンズ5に入射する光の入射角度により異なる。   Next, the dichroic mirror 6 with a wedge will be described. A dichroic mirror is an optical component that separates an optical path of light according to a wavelength by reflecting and transmitting a specific wavelength. The light that has passed through the objective diffraction lens 5 enters the dichroic mirror 6 with a wedge as a condensed light beam. The light that has passed through the parallel-shaped medium placed obliquely on the light path to be condensed has astigmatism, and the imaging performance is deteriorated. Also, the amount of astigmatism that occurs when passing through a medium placed obliquely varies depending on the incident angle of light incident on the objective diffraction lens 5.

撮像を目的とする赤外線光4については、目標物を含むその周辺の広い視野からの光を赤外線受光素子10に結像させる必要があるが、一方、レーザ光3については、目標で反射した光のみを受光素子に導けば良く狭い視野のみレーザ受光素子8に結像させれば良い。   For infrared light 4 for imaging purposes, light from a wide field of view including the target must be imaged on the infrared light receiving element 10, while for laser light 3, light reflected by the target is required. Only a narrow field of view may be formed on the laser light receiving element 8.

このため、広い視野の赤外線光4については、ウェッジ付きダイクロイックミラー6の表面で反射させることで、広い視野全体で非点収差の発生を防止する。狭い視野のレーザ光3については、ダイクロイックミラーを平行平板ではなく、ウェッジをつけることでダイクロイックミラーを通過する際、入射面で発生する非点収差を射出面で発生する非点収差で打ち消すことで補正し結像性能を維持する。   Therefore, the infrared light 4 with a wide field of view is reflected by the surface of the dichroic mirror 6 with a wedge, thereby preventing astigmatism from occurring over the entire wide field of view. For the laser beam 3 with a narrow field of view, when the dichroic mirror passes through the dichroic mirror by applying a wedge instead of a parallel plate, the astigmatism generated on the entrance surface is canceled by the astigmatism generated on the exit surface. Correct and maintain imaging performance.

ウェッジは、レーザ光3が入射される表面の法線とレーザ光の主光線を含む面に垂直な軸周りに傾け、主光線11に対するウェッジ付きダイクロイックミラー6の入射面の角度12をθ、射出面の角度13をθとすると、θ>θの関係が成り立ち、その角度は、ウェッジ付きダイクロイックミラー6の材質、厚さ、入射する光線の角度、対物回折レンズ5との距離から収差が補正されるよう最適化される。 The wedge is tilted about an axis perpendicular to the surface normal to the surface on which the laser beam 3 is incident and the plane including the chief ray of the laser beam, and the angle 12 of the incident surface of the dichroic mirror 6 with the wedge with respect to the chief ray 11 is set to θ i , If the exit surface of the angle 13 and theta o, holds the relationship of θ i> θ o, the angle, material of the wedge with the dichroic mirror 6, the thickness, the angle of the incident light, the distance between the objective diffraction lens 5 Optimized to correct aberrations.

従って、実施の形態1によれば、赤外線撮像用光学系及びレーザ測距用受信光学系の二つの光学系の対物レンズを共用する赤外線撮像・レーザ測距装置において、対物レンズとして、片面または両面に回折面を有する対物回折レンズを用いると共に、対物回折レンズの後方に配置され、撮像用の赤外線を反射し、測距用のレーザ光を透過するダイクロイックミラーを備えたので、収差が発生しなく、結像性能が低下することのない赤外線撮像・レーザ測距装置を得ることができる。   Therefore, according to the first embodiment, in the infrared imaging / laser distance measuring apparatus that shares the objective lenses of the two optical systems, that is, the infrared imaging optical system and the laser ranging reception optical system, one or both surfaces are used as the objective lens. In addition, an objective diffractive lens having a diffractive surface is used, and a dichroic mirror that is disposed behind the objective diffractive lens, reflects infrared rays for imaging, and transmits laser light for distance measurement, so that no aberration occurs. Thus, it is possible to obtain an infrared imaging / laser ranging device in which the imaging performance does not deteriorate.

この発明の実施の形態1による赤外線撮像、レーザ測距装置の光学系の構成を示すブロック図である。It is a block diagram which shows the structure of the optical system of the infrared imaging and laser distance measuring device by Embodiment 1 of this invention. この発明の実施の形態1による対物回折レンズ5の回折効率の設計例を示す図である。It is a figure which shows the example of a design of the diffraction efficiency of the objective diffraction lens 5 by Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 レーザ発信器、2 送信光学系、3 レーザ光、4 赤外線光、5 対物回折レンズ、6 ウェッジ付きダイクロイックミラー、7 受信光学系、8 レーザ受信素子、9 撮像光学系、10 赤外線受光素子、11 主光線、12 主光線に対するダイクロイックミラーの入射面の角度θ、13 主光線に対するダイクロイックミラーの射出面の角度θDESCRIPTION OF SYMBOLS 1 Laser transmitter, 2 Transmission optical system, 3 Laser light, 4 Infrared light, 5 Objective diffraction lens, 6 Dichroic mirror with a wedge, 7 Reception optical system, 8 Laser receiving element, 9 Imaging optical system, 10 Infrared light receiving element, 11 Chief ray, 12 angle 慮i of incident surface of dichroic mirror with respect to chief ray, 13 angle 慮o of exit surface of dichroic mirror with respect to chief ray.

Claims (3)

赤外線撮像用光学系及びレーザ測距用受信光学系の二つの光学系の対物レンズを共用する赤外線撮像・レーザ測距装置であって、
前記対物レンズとして、片面または両面に回折面を有する対物回折レンズを用いると共に、
前記対物回折レンズの後方に配置され、撮像用の赤外線を反射し、測距用のレーザ光を透過するダイクロイックミラーを備えた
ことを特徴とする赤外線撮像・レーザ測距装置。
An infrared imaging / laser distance measuring apparatus that shares the objective lens of two optical systems, an infrared imaging optical system and a laser ranging reception optical system,
As the objective lens, while using an objective diffractive lens having a diffractive surface on one side or both sides,
An infrared imaging / laser ranging apparatus, comprising a dichroic mirror disposed behind the objective diffractive lens and reflecting infrared rays for imaging and transmitting laser beams for ranging.
請求項1に記載の赤外線撮像・レーザ測距装置において、
前記対物回折レンズは、回折の光路差を示す波長λと回折の次数k、kが、
|λ/λ−k|≦|λmin−k|または
|λ/λ−k|≦|λmax−k1|を満たし、かつ
λ/λmax−k≦0≦λmin−k
ここで、λは回折の光路差を示す波長
λはレーザ光の波長
λminは赤外線光の最小の波長
λmaxは赤外線光の最大の波長
、kは回折の次数
の関係を満足するように設定される
ことを特徴とする赤外線撮像・レーザ測距装置。
In the infrared imaging / laser ranging device according to claim 1,
The objective diffractive lens has a wavelength λ 0 indicating diffraction optical path difference and diffraction orders k 1 and k 2 .
| Λ 0 / λ L −k 2 | ≦ | λ min −k 1 | or | λ 0 / λ L −k 2 | ≦ | λ max −k1 | and λ 0 / λ max −k 1 ≦ 0 ≦ λ min −k 1
Where λ 0 is the wavelength indicating the optical path difference of diffraction
λ L is the wavelength of the laser beam
λ min is the minimum wavelength of infrared light
λ max is the maximum wavelength of infrared light
Infrared imaging / laser ranging apparatus characterized in that k 1 and k 2 are set so as to satisfy the relationship of diffraction orders.
請求項1または2に記載の赤外線撮像・レーザ測距装置において、
前記ダイクロイックミラーは、レーザ光が入射される表面の法線とレーザ光の主光線を含む面に垂直な軸周りに傾け、主光線と入射面のなす角に対し主光線と射出面のなす角を小としたウェッジ形状とする
ことを特徴とする赤外線撮像・レーザ測距装置。
The infrared imaging / laser distance measuring device according to claim 1 or 2,
The dichroic mirror is tilted about an axis perpendicular to the surface normal to the surface on which the laser beam is incident and the plane containing the principal ray of the laser beam, and the angle between the principal ray and the exit surface with respect to the angle between the principal ray and the incident surface. An infrared imaging / laser ranging device characterized by having a wedge shape with a small diameter.
JP2007055883A 2007-03-06 2007-03-06 Infrared imaging/laser range finder Pending JP2008216131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055883A JP2008216131A (en) 2007-03-06 2007-03-06 Infrared imaging/laser range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055883A JP2008216131A (en) 2007-03-06 2007-03-06 Infrared imaging/laser range finder

Publications (1)

Publication Number Publication Date
JP2008216131A true JP2008216131A (en) 2008-09-18

Family

ID=39836335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055883A Pending JP2008216131A (en) 2007-03-06 2007-03-06 Infrared imaging/laser range finder

Country Status (1)

Country Link
JP (1) JP2008216131A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113191A (en) * 2008-11-07 2010-05-20 Topcon Corp Infrared optical system
JP2011080976A (en) * 2009-10-07 2011-04-21 Topins Co Ltd Single-axis lens module for thermal imaging camera
JP2012530940A (en) * 2009-06-19 2012-12-06 コーニング インコーポレイテッド Ultra-wideband compact optical system with multiple fields of view
JP2014505875A (en) * 2011-01-12 2014-03-06 ユーエル リミテッド ライアビリティ カンパニー Optical measurement meter device
CN104459957B (en) * 2014-12-22 2016-08-17 福建福光股份有限公司 Refrigeration mode medium-wave infrared and laser bimodulus Shared aperture camera lens
CN108107554A (en) * 2017-12-27 2018-06-01 天津津航技术物理研究所 A kind of distribution wedge scanning medium-wave infrared athermal imaging lens
CN109737917A (en) * 2019-03-07 2019-05-10 东莞中子科学中心 Image distance measuring instrument and measurement method
JP2019527816A (en) * 2016-06-30 2019-10-03 フラマトムFramatome Method and associated apparatus for inspecting metal surfaces
JP2020073894A (en) * 2019-12-25 2020-05-14 京セラ株式会社 Electromagnetic wave detection device and information acquisition system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113191A (en) * 2008-11-07 2010-05-20 Topcon Corp Infrared optical system
JP2012530940A (en) * 2009-06-19 2012-12-06 コーニング インコーポレイテッド Ultra-wideband compact optical system with multiple fields of view
JP2011080976A (en) * 2009-10-07 2011-04-21 Topins Co Ltd Single-axis lens module for thermal imaging camera
JP2014505875A (en) * 2011-01-12 2014-03-06 ユーエル リミテッド ライアビリティ カンパニー Optical measurement meter device
CN104459957B (en) * 2014-12-22 2016-08-17 福建福光股份有限公司 Refrigeration mode medium-wave infrared and laser bimodulus Shared aperture camera lens
JP2019527816A (en) * 2016-06-30 2019-10-03 フラマトムFramatome Method and associated apparatus for inspecting metal surfaces
CN108107554A (en) * 2017-12-27 2018-06-01 天津津航技术物理研究所 A kind of distribution wedge scanning medium-wave infrared athermal imaging lens
CN108107554B (en) * 2017-12-27 2020-10-02 天津津航技术物理研究所 Distributed optical wedge scanning medium wave infrared athermal imaging lens
CN109737917A (en) * 2019-03-07 2019-05-10 东莞中子科学中心 Image distance measuring instrument and measurement method
JP2020073894A (en) * 2019-12-25 2020-05-14 京セラ株式会社 Electromagnetic wave detection device and information acquisition system
JP2022173534A (en) * 2019-12-25 2022-11-18 京セラ株式会社 Electromagnetic wave detection device and information acquisition system

Similar Documents

Publication Publication Date Title
JP2008216131A (en) Infrared imaging/laser range finder
JP6049628B2 (en) High damage threshold frequency conversion system
US11714168B2 (en) Optical circulator
CA2862616A1 (en) Laser beam-combining optical device
JP6576435B2 (en) System and method for analyzing light beams derived from beam guidance optics
KR20170019409A (en) Device and method for monitoring a laser beam
US20160329685A1 (en) Semiconductor laser device
WO2015145608A1 (en) Laser device
EP2413186B1 (en) Image projection apparatus
US11002978B2 (en) Microscope having a beam splitter assembly
Izumiura HIDES: a high dispersion echelle spectrograph
KR101620594B1 (en) spectroscopy apparatus
KR20180031929A (en) Curved mirror optics LIDAR system
US7336432B2 (en) Optical pickup and optical disc device
JP2007183333A (en) Imaging apparatus
WO2020235145A1 (en) Ultraviolet optical system and light distribution measuring apparatus
KR102072623B1 (en) Optical beam forming unit, distance measuring device and laser illuminator
US8514477B2 (en) Optical arrangements for imaging including an acousto-optic tunable filter and at least one petzval lens combination
CN110869825B (en) Polarizer device and EUV radiation generating apparatus having a polarizer device
JP2008130128A (en) Optical pickup device
JPH07244247A (en) Light beam scanning device
JP7367026B2 (en) Instruments with multiple optical channels
US9000383B2 (en) Digital image detector and digital image detecting method using gratings
WO2022186114A1 (en) Optical transmission device
JP2009020022A (en) Light receiving optical system and spectral luminance meter using it