WO2019020169A1 - Blechbauteil, hergestellt durch warmumformen eines stahlflachprodukts und verfahren zu dessen herstellung - Google Patents

Blechbauteil, hergestellt durch warmumformen eines stahlflachprodukts und verfahren zu dessen herstellung Download PDF

Info

Publication number
WO2019020169A1
WO2019020169A1 PCT/EP2017/068771 EP2017068771W WO2019020169A1 WO 2019020169 A1 WO2019020169 A1 WO 2019020169A1 EP 2017068771 W EP2017068771 W EP 2017068771W WO 2019020169 A1 WO2019020169 A1 WO 2019020169A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet metal
metal component
steel
content
hot
Prior art date
Application number
PCT/EP2017/068771
Other languages
English (en)
French (fr)
Inventor
Brigitte Hammer
Harald Hofmann
Thomas Heller
Sebastian STILLE
Georg Parma
Janko Banik
Jonas SCHWABE
Original Assignee
Thyssenkrupp Steel Europe Ag
Thyssenkrupp Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59656019&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019020169(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Thyssenkrupp Steel Europe Ag, Thyssenkrupp Ag filed Critical Thyssenkrupp Steel Europe Ag
Priority to PCT/EP2017/068771 priority Critical patent/WO2019020169A1/de
Priority to US16/634,029 priority patent/US20210087662A1/en
Priority to CN201780093424.9A priority patent/CN110944765B/zh
Priority to EP17754271.9A priority patent/EP3658307B9/de
Publication of WO2019020169A1 publication Critical patent/WO2019020169A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling

Definitions

  • Sheet metal component can be specified.
  • Typical protective layers which are present on components according to the invention and with which the flat steel products from which components according to the invention are formed can be coated with zinc-based protective coatings applied by hot-dip coating, such as Zn coatings ("Z"), zinc-iron coatings. Coatings ("ZF”), zinc-magnesium-aluminum coatings ("ZM”), zinc-aluminum coatings ("ZA”). Furthermore, aluminum-based protective coatings such as aluminum-zinc coatings (“AZ”), aluminum-silicon coatings (“AS”) can be used.
  • Elongation at break A80 is above 10% and the products Rm x A80 are more than 14,000 MPa%. At the same time, the examples have bending angles of more than 60 °.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Die Erfindung stellt ein Blechbauteil und ein Verfahren zur Herstellung derartiger Blechbauteile zur Verfügung, das im Vergleich zu konventionell hergestellten Blechbauteilen eine Energieeinsparung durch niedrigere Umformtemperaturen ermöglicht, eine erhöhte Restdehnung bei hohen Festigkeiten zulässt und bei denen ein möglichst hohes Potenzial für einen kathodischen Korrosionsschutz gewahrt ist. Das erfindungsgemäße Blechbauteil besteht aus (in Gew.-%) C: bis zu 0,5 %, Si: 0,05 - 1 %, Mn: 4 - 12 %, Cr: 0,1 - 4 %, AI: bis zu 3,5 %, N: bis zu 0,05 %, P: bis zu 0,05 %, S: bis zu 0,01 %, Cu, Ni: in Summe bis zu 2 %, Ti, Nb, V: in Summe bis zu 0,5 %, Seltene Erden: bis zu 0,1 %, und als Rest aus Fe und unvermeidbaren Verunreinigungen, wobei der Gehalt % C an C und der Gehalt %Cr an Cr folgende Bedingung erfüllt: (10 x %C) + %Cr < 5,5 %. Zur Herstellung eines Blechbauteils wird erfindungsgemäß das Stahlflachprodukt auf eine Erwärmungstemperatur, die mindestens 200 °C und höchstens 800 °C beträgt, durcherwärmt und anschließend durch Warmumformen des auf die Erwärmungstemperatur erwärmten Stahlflachprodukts zu dem Bauteil geformt, wobei das Gefüge des warmumgeformten Blechbauteils zu 5 - 50 Vol.-% aus Austenit und als Rest aus Martensit, angelassenem Martensit oder Ferrit besteht, wobei der Ferrit-Anteil auch „0" sein kann, und wobei der mittlere Korndurchmesser der Körner des Gefüges weniger als 5 pm beträgt.

Description

Blechbauteil, hergestellt durch Warmumformen eines
Stahiflachprodukts und Verfahren zu dessen Herstellung
Die Erfindung betrifft ein Blechbauteil, hergestellt durch Warmumformen eines Stahlflachprodukts.
Des Weiteren betrifft die Erfindung ein Verfahren zur Herstellung eines erfindungsgemäßen Bauteils.
Wenn im vorliegenden Text Angaben zu Legierungsgehalten einzelner Elemente im erfindungsgemäßen Stahl gemacht werden, beziehen diese sich immer auf das Gewicht (Angabe in Gew.-%), sofern nichts anderes angegeben ist.
Angaben zu den Bestandteilen des Gefüges eines Stahls, eines
Stahlflachprodukts oder eines daraus geformten Bauteils beziehen sich hier dagegen immer auf das Volumen (Angabe in Vol.-%). Sofern erwähnt, sind die Anteile an Austenit dabei über XRD mit Fe-gefilterter Co-Ka-Strahlung gemessen worden. Das XRD - Messverfahren ist in folgender Quelle beschrieben: DIN EN 13925-Röntgendiffraktometrie von polykristallinen und amorphen Materialien Teil 1 und 2 aus 2003_7, Teil 3 aus 2005. Die weiteren Gefügebestandteile, sofern erwähnt, sind jeweils nach Nital-Ätzung
lichtmikroskopisch identifiziert worden.
Bei den erfindungsgemäßen Stahlflachprodukten handelt es sich um
Walzprodukte, wie Stahlbänder, Stahlbleche oder daraus gewonnene Zuschnitte und Platinen, deren Dicke wesentlich geringer ist als ihre Breite und Länge.
Die im vorliegenden Text erwähnten mechanischen Eigenschaften Zugfestigkeit Rm, Dehngrenze Rp0,2 und Bruchdehnung A80 sind gemäß der DIN EN ISO 6892-1 :2017-02 bestimmt worden.
Aus der EP 2 383 353 A2 sind Beispiele für höherfeste, Mn-haltige Stähle bekannt, die als beschichtetes oder unbeschichtetes Warm- oder Kaltband eine Bruchdehnung A80 von mindestens 4 % und eine Zugfestigkeit von 900 - 1500 MPa aufweisen. Diese Stähle enthalten neben Eisen und
unvermeidbaren Verunreinigungen (in Gew.-%) C: bis zu 0,5, Mn: von 4 bis 12 %, Si: bis zu 1 ,0 %, AI: bis zu 3 %, Cr: von 0,1 bis 4 %, Cu: bis zu 2,0 %, Ni: bis zu 2,0 %, N: bis zu 0,05 %, P: bis zu 0,05 %; S: bis zu 0,01 %, sowie optional eines oder mehrere Elemente aus der Gruppe "V, Nb, Ti", wobei die Summe der Gehalte dieser Elemente höchstens gleich 0,5 % ist. Des
Weiteren wird in der EP 2 383 353 A2 ein Verfahren zur Herstellung eines beschichteten oder unbeschichteten Warm- oder Kaltbands vorgestellt.
Gemäß diesem Verfahren wird zur Erzeugung eines Ausgangsproduktes eine in der voranstehend angegebenen Weise zusammengesetzte
Stahlschmelze zu einem Strang oder Band vergossen, das anschließend einer Wärmebehandlung unterzogen wird, um es auf eine
Warmwalzstarttemperatur von 1150 - 1000 °C zu erwärmen. Im Anschluss daran wird das jeweilige Ausgangsprodukt zu einem Warmband
warmgewalzt. Das fertige Warmband wird dann zu einem Coil gehaspelt.
Diesem Arbeitsschritt können sich jeweils optional ein Glühen des
Warmbands, ein Kaltwalzen des geglühten Warmbands, ein Glühen des Kaltbandes und ein Beschichten der Oberfläche des Warm- oder Kaltbands anschließen.
Aus der EP 2 778 247 A1 ist ein Verfahren zum Herstellen eines Bauteils durch Warmpressformen eines Stahlbleches nach einer Erwärmung im Zweiphasengebiet, das heißt nach einer Erwärmung auf eine Temperatur, die zwischen der Ac1- und der Ac3-Temperatur der jeweiligen Stahllegierung liegt, bekannt. Gemäß diesem Verfahren wird eine Bramme, die aus Eisen, unvermeidbaren Verunreinigungen und (in Gew.-%) C: 0,01 - 0,5 %, Si: bis zu 3,0 %, Mn: 3 - 15 %, P: 0,0001 - 0,1 %, S: 0,0001 -0,03 %, AI: bis zu 3 % und N: bis zu 0,03 % besteht, auf 1000 - 1400 °C erwärmt, warmgewalzt und anschließend in einem Temperaturbereich, der von der Ar3-Temperatur des Stahls bis 000 °C reicht, fertig warmgewalzt. Das erhaltene
warmgewalzte Band wird gehaspelt, geglüht und anschließend kaltgewalzt. Im Anschluss daran wird das Warmband auf eine Temperatur erwärmt, die zwischen der Ad - und der Ac3-Temperatur der jeweiligen Stahllegierung liegt, und warmpressgeformt. Das Gefüge des so erhaltenen Bauteils besteht zu 5 - 50 Vol.-% aus Restaustenit und als Rest aus Martensit, angelassenem Martensit, Bainit oder Ferrit.
Eine weitere Möglichkeit höchstfeste Bauteile herzustellen, ist das
Warmpresshärten konventioneller Warmumformstähle. Aus diesen Stählen bestehende Platinen werden für das Warmpressformen auf so hohe
Temperaturen erwärmt, dass ihr Gefüge vollaustenitisch ist. Nach einem Abschrecken weisen die erhaltenen Bauteile dann ein martensitisches Gefüge auf, das allerdings ein relativ geringes Restverformungsvermögen besitzt. Problematisch ist dabei, dass wegen der hohen Austenitisierungstemperaturen ein kathodischer Schutz der Bleche durch eine metallische
Korrosionsschutzbeschichtung nicht möglich ist.
Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe darin, ein Blechbauteil zu schaffen, welches im Vergleich zu konventionell hergestellten Blechbauteilen eine Energieeinsparung durch niedrigere Umformtemperaturen ermöglicht, eine erhöhte Restdehnung bei hohen Festigkeiten zulässt und bei denen ein möglichst hohes Potenzial für einen kathodischen Korrosionsschutz gewahrt ist. Darüber hinaus sollte ein Verfahren zur Herstellung eines solchen
Blechbauteils angegeben werden.
Ein diese Aufgabe lösendes Blechbauteil weist erfindungsgemäß
mindestens die in Anspruch 1 angegebenen Merkmale auf.
Ein die voranstehend genannte Aufgabe erfindungsgemäß lösendes
Verfahren ist in Anspruch 9 angegeben.
Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen
Ansprüchen angegeben und werden nachfolgend wie der allgemeine
Erfindungsgedanke im Einzelnen erläutert.
Ein erfindungsgemäßes Blechbauteil ist demgemäß durch Warmumformen eines Stahlflachprodukts hergestellt, das aus (in Gew.-%) C: bis zu 0,5 %, Si: 0,05 - 1 %, Mn: 4 - 12 %, Cr: 0,1 - 4 %, AI: bis zu 3,5 %, N: bis zu 0,05 %, P: bis zu 0,05 %, S: bis zu 0,01 %, in Summe bis zu 2 % Cu oder Ni, in
Summe bis zu 0,5 % an Ti, Nb oder V, Seltene Erden: bis zu 0,1 % und als Rest aus Fe und unvermeidbaren Verunreinigungen besteht.
Dabei erfüllen der Gehalt %C an C und der Gehalt %Cr an Cr des Stahls des Stahlflachprodukts folgende Bedingung: (10x%C)+%Cr < 5,5 Gew.-%.
Gleichzeitig weist das erfindungsgemäße Stahlflachprodukt nach der
Warmumformung zu dem Blechbauteil einen nach VDA 238-100: 2010-12 bestimmten Biegewinkel von mehr als 60° auf.
Das Gefüge des warmumgeformten erfindungsgemäßen Blechbauteils besteht zu 5 - 50 Vol.-% aus Austenit und als Rest aus Martensit, angelassenem Martensit oder Ferrit, wobei der Ferrit-Anteil auch„0" sein kann. Dabei liegen die mittleren Korndurchmesser der Körner des Gefüges unter 5 Mm, vorzugsweise unter 2 pm. Das erfindungsgemäß zu dem Blechbauteil geformte Stahlflachprodukt besteht aus einem Stahl, der der Klasse der so genannten "Mittelmanganstähle" zuzuordnen ist, welche üblicherweise Mn-Gehalte von 4 - 12 Gew.-%,
insbesondere 4 - 9 Gew.-%, aufweisen. Durch Mangan "Mn" wird die
Austenitisierungstemperatur gesenkt und die Umwandlung von Ferrit, Perlit und Bainit verzögert. Damit kann auch die Haltetemperatur im Ofen vor der
Warmumformung verringert werden. Die erhaltenen Vorteile werden durch Halten und Warmumformung im Zweiphasengebiet weiter verstärkt. Bei der
anschließenden Abkühlung bleibt ein hoher Austenitanteil erhalten. Dieser führt zu einer sehr hohen Restbruchdehnung sowie einem hohen möglichen Biegewinkel bis zu ersten Rissen und damit einer höheren Energieaufnahme im Crashfall. Die Mn-Gehalte eines erfindungsgemäß verarbeiteten Stahlflachprodukts sind dabei mit 4 - 12 Gew.-% so eingestellt, dass die geforderten Mindestfestigkeiten eines erfindungsgemäßen Stahls sicher erreicht werden und gleichzeitig ein hoher Restaustenitanteil erhalten bleibt, der optimale Dehnungseigenschaften gewährleistet.
Kohlenstoff "C" bestimmt beim Stahl eines erfindungsgemäß zu dem Bauteil geformten Stahlflachprodukts zum einen die Festigkeit von Martensit und zum anderen die Menge und die Stabilität des Restaustenits. Bei zu hohen
Kohlenstoffgehalten wird die Schweißbarkeit und Zähigkeit des Stahls, z. B. durch Bildung von Cr-Karbiden, negativ beeinflusst. Deshalb beträgt der
Kohlenstoffgehalt von Mn-Stählen der erfindungsgemäß ausgewählten Art höchstens 0,5 Gew.-%, wobei geringere C-Gehalte von weniger als 0,5 Gew.-%, insbesondere von bis zu 0,3 Gew.-%, sich als besonders günstig erweisen. Bei zu geringem Kohlenstoffgehalt wird jedoch die Menge und Stabilität des
verbleibenden Restaustenits beeinträchtigt. Deshalb beträgt der C-Gehalt eines erfindungsgemäßen Stahls mindestens 0,02 Gew-%. Aluminium "AI" und Silizium "Si" sind starke Ferritbildner. Beide Elemente wirken dem Einfluss der Austenitbildner C und Mn entgegen. Die wesentliche Aufgabe der Elemente Si und AI besteht im Stahl eines erfindungsgemäß zu dem
Blechbauteil warmgeformten Stahlflachprodukts darin, die Karbidausscheidung zu unterdrücken und damit die Stabilität des Restaustenits zu fördern. Gleichzeitig führen Si und AI zu einer Mischkristallhärtung und reduzieren das spezifische Gewicht des Stahls. Bei zu geringem Si- und AI-Gehalt kann die
Karbidausscheidung jedoch möglicherweise nicht effektiv unterdrückt werden. Bei zu hohen Gehalten an Si und AI wird dagegen die Verarbeitung sowohl bei einer Erzeugung über ein Strangguss- als auch bei einer Erzeugung über ein
Bandgussverfahren erschwert. Deshalb sieht die Erfindung vor, den Si-Gehalt auf max. 1 Gew.-% zu beschränken, wobei die positiven Effekte der Anwesenheit von Si dann bereits effektiv genutzt werden können, wenn der Si-Gehalt des Stahls des Stahlflachprodukts, aus dem das erfindungsgemäße Bauteil warmgeformt ist, mindestens 0,05 Gew.-% beträgt.
Insbesondere höhere AI-Gehalte des Stahls des erfindungsgemäß für die
Warmformung des erfindungsgemäßen Bauteils verwendeten Stahlflachprodukts verringern die Dichte des Stahls signifikant, führen jedoch zu erhöhten Ferrit- Anteilen im Gefüge und damit einhergehend zu einer Abnahme der Festigkeit. Bei zu hohen AI-Gehalten nimmt zudem die Schweißeignung ab, da sich beim
Schweißvorgang stabile Schweißschlacke bildet und der elektrische
Schweißwiderstand erhöht wird. Gleichzeitig wird die Ac3-Temperatur durch hohe AI-Gehalte so weit erhöht, dass eine niedrige Warmumformtemperatur, wie sie die Erfindung anstrebt, nicht mehr erzielbar ist.
Durch die Anwesenheit von Chrom "Cr" in Gehalten von 0,1 - 4 Gew.-% wird in einem erfindungsgemäßen Stahl die Gefahr der Entstehung von
Spannungsrisskorrosion gezielt vermindert. Cr und AI behindern eine
wasserstoffinduzierte Rissbildung. Zudem trägt Cr zur Festigkeitssteigerung bei. Des Weiteren senkt Cr auch die Ms-Temperatur (Martensitstarttemperatur) und unterstützt damit die Restaustenit-Stabilisierung. Ab einem Gehalt von 0,1 Gew.-% Cr, insbesondere aber ab Cr-Gehalten von mindestens 2,2 Gew.-%, sind diese positiven Effekte zu beobachten. Ab Cr-Gehalten von 2,2 Gew.-% wird im unbeschichteten Zustand zudem die Zunderbeständigkeit verbessert. Bei
Stahlflachprodukten, die mit einer metallischen Korrosionsschutzbeschichtung versehen sind, kann eine positive Wirkung auf die Schicht ausgenutzt werden, wie beispielsweise die Wirkung als Diffusionssperre für das Eindiffundieren von Eisen in die Schutzbeschichtung. Der Cr-Gehalt des Stahls eines zu dem
erfindungsgemäßen Bauteil warmgeformten Stahlflachprodukts ist auf max. 4 Gew.-% beschränkt, weil bei höheren Gehalten Cr-Karbide entstehen könnten, die die Duktilität des Stahls negativ beeinflussen würden.
Ebenfalls im Hinblick auf die Vermeidung der Entstehung von höheren Cr- Karbidmengen schreibt die Erfindung vor, dass der Gehalt "%C" an Kohlenstoff "C" und der Gehalt "%Cr" an Chrom "Cr" des Stahls eines erfindungsgemäß zu dem Bauteil geformten Stahlflachprodukts die Bedingung (10x%C) + %Cr < 5,5 Gew.-% einhalten muss.
Durch Zugabe von Kupfer "Cu" oder Nickel "Ni" zum Stahl des erfindungsgemäß warmgeformten Stahlflachprodukts lässt sich der Widerstand gegen verschiedene Korrosionsmechanismen verbessern. Die positive Wirkung von Cu und Ni lässt sich dabei dadurch besonders sicher nutzen, dass diese Elemente in Gehalten zugegeben werden, in denen sie technisch wirksam werden. Dies ist zu erwarten, wenn im Stahl des erfindungsgemäßen Bauteils die Summe der Gehalte an Cu und Ni mindestens > 0,04 Gew.-% beträgt. Dagegen werden negative
Auswirkungen, wie höhere Kosten und Heissrisssprödigkeit bei hohen Cu- Gehalten der einzelnen oder kombinierten Anwesenheit von Cu oder Ni in erfindungsgemäßen Stählen dadurch sicher vermieden, dass die Summe der Gehalte an Cu und Ni auf maximal 2 Gew.-% beschränkt ist.
Die Mikrolegierungselemente Ti, Nb und V können im Stahl des
Stahlflachprodukts, aus dem das erfindungsgemäße Bauteil geformt ist, in
Gehalten von in Summe bis zu 0,5 Gew.-% anwesend sein. Diese Mikrolegierungselemente tragen zur Kornfeinung und Festigkeitssteigerung bei. In Summe oberhalb von 0,5 Gew.-% liegende Gehalte an Ti, Nb und V führen jedoch zu keiner Steigerung dieses Effekts, wogegen die positiven Wirkungen von Ti, Nb und V im Stahl des erfindungsgemäßen Bauteils sicher genutzt werden können, wenn ihr Gehalt in Summe mindestens 0,05 Gew.-% beträgt.
Durch die Zugabe von Stickstoff "N" in Gehalten von bis zu 0,05 Gew.-%, kann das austenitische Gefüge zusätzlich stabilisiert werden. Bei zu hohem N-Gehalt wird die Prozessierbarkeit beim Stranggiessen verschlechtert und eine
versprödende Menge an Nitriden entsteht.
Die Gehalte an Phosphor "P" des Stahls eines erfindungsgemäßen Bauteils sind auf maximal 0,05 Gew.-% beschränkt, um negative Einflüsse dieses Elements sicher auszuschließen.
Aus demselben Grund ist der Gehalt an Schwefel "S" eines erfindungsgemäßen Stahls auf max. 0,01 Gew-% beschränkt.
Seltene Erden "REM" können im Stahl des erfindungsgemäßen Bauteils durch Bildung von Oxiden zur Kornfeinung beitragen und verbessern über die Textur die Isotropie der mechanisch-technologischen Eigenschaften. Die beiden Seltenen Erden Cer und Lanthan sind chemisch nahezu identisch und kommen daher in der Natur immer vergemeinschaftet vor. Durch ihre chemische Ähnlichkeit sind sie sehr schwer und daher aufwendig zu trennen. Dabei haben sie die gleiche
Wirkung. Die Seltenen Erden kann man für die Nutzung im Stahl frei substituieren. Bei Gehalten über 0,1 Gew.-% ergibt sich allerdings unter anderem beim großtechnischen Vergießen des Stahls die Gefahr des so genannten "Cloggings", d.h. des Verstopfens der Gießkokille durch lokal erstarrende Schmelze. Die Vorteile der Anwesenheit der REM können dennoch dadurch sicher genutzt werden, dass der Gehalt des Stahls eines erfindungsgemäßen Bauteils
mindestens 0,0005 Gew.-% beträgt. Der gemäß VDA 238-100 : 2010-12 bestimmte Biegewinkel ist ein Maß für das Faltverhalten des Werkstoffs im Crashfall und somit ein Indikator für die Duktilität, die ein warmumgeformtes Bauteil besitzt. Erfindungsgemäße Bauteile zeichnen sich durch einen hohen Biegewinkel von mindestens 60°, insbesondere
mindestens 80° oder mehr als 80°, wie beispielsweise mindestens 85°, nach der Warmumformung aus. Dabei spielt das gleichmäßige, sehr feine Gefüge eine fördernde Rolle. Ein hoher Austenitgehalt, wie er vorliegt, wenn die
Warmumformung bei Temperaturen erfolgt, die im Zweiphasenmischgebiet des Stahls (oder tiefer) liegen, aus dem das Stahlflachprodukt besteht, aus welchem das Bauteil geformt ist, hat vorteilhafte Auswirkungen.
Erfindungsgemäße Bauteile zeichnen sich dadurch aus, dass sie ein Gefüge aufweisen, welches zu mindestens 5 Vol.-% aus Austenit besteht, wobei der Austenit-Anteil des Gefüges bis zu 50 Vol.-% betragen kann. Das restliche Gefüge des Bauteils besteht aus festigkeitssteigernden Anteilen an Martensit und angelassenem Martensit. Außerdem kann Ferrit enthalten sein. Die Menge sonstiger technisch unvermeidbar vorhandener Gefügebestandteile, ist so gering, dass sie hinsichtlich der Eigenschaften des erfindungsgemäßen Bauteils unwirksam sind. Das erfindungsgemäße Verfahren zur Herstellung eines gemäß den voranstehenden Ansprüchen beschaffenen Blechbauteils umfasst folgende Arbeitsschritte: a) Bereitstellen eines Stahlflachprodukts aus einem Stahl, der (in Gew.-%) aus
C: bis zu 0,5 %,
Si: 0,05 - 1 %,
Mn: 4 - 12 %
Cr: 0,1 - 4 %,
AI: bis zu 3,5 %,
N: bis zu 0,05 %,
P: bis zu 0,05 %,
S: bis zu 0,01 %, in Summe bis zu 2 % Cu oder Ni,
in Summe bis zu 0,5 % an Ti, Nb oder V,
REM: bis zu 0,1 %
und als Rest aus Fe und unvermeidbaren Verunreinigungen besteht, wobei der Gehalt %C an C und der Gehalt %Cr an Cr folgende Bedingung erfüllt:
(10 x %C) + %Cr < 5,5 %, b) Durcherwärmen des Stahlflachprodukts auf eine Erwärmungstemperatur, die mindestens 200 °C und höchstens 800 °C beträgt; c) Warmumformen des auf die Erwärmungstemperatur erwärmten
Stahlflachprodukts zu dem Bauteil.
Die Abkühlgeschwindigkeit, mit der das erhaltene warmumgeformte Bauteil abgekühlt wird, unterliegt dabei keinen Einschränkungen.
Die grundsätzlichen Möglichkeiten der Erzeugung von Stahlflachprodukten, die für die erfindungsgemäßen Zwecke geeignet und im Arbeitsschritt a) des erfindungsgemäßen Verfahrens bereitgestellt werden, sind in der EP 2 383 353 A2 beschrieben, deren Inhalt durch Bezugnahme in die vorliegende Anmeldung aufgenommen wird. Im dort wiedergegebenen Diagramm und den zugehörigen Abschnitten [0031] bis [0040] der EP 2 383 353 A2 sind die verschiedenen in der Praxis zur Verfügung stehenden Wege zur Erzeugung von
Stahlflachprodukten dargestellt, die zur Erzeugung von erfindungsgemäßen Bauteilen geeignet sind.
Zusätzlich besteht die Möglichkeit, das gewalzte Band direkt, d.h. ohne vorherigen Glühschritt, dem Prozess der Warmumformung zuzuführen. Typische Schutzschichten, die auf erfindungsgemäßen Bauteilen vorhanden sind und mit denen die Stahlflachprodukte, aus denen erfindungsgemäße Bauteile geformt werden, belegt sein können, sind durch Schmelztauchbeschichten aufgetragene Schutzüberzüge auf Zinkbasis, wie z.B. Zn-Überzüge ("Z"), Zink-Eisen- Überzüge ("ZF"), Zink-Magnesium-Aluminium-Überzüge ("ZM"), Zink-Aluminium- Überzüge ("ZA"). Des Weiteren können Schutzüberzüge auf Aluminium-Basis zum Einsatz kommen, wie Aluminium-Zink-Überzüge ("AZ"), Aluminium-Silizium- Überzüge ("AS"). Ebenso können elektrolytisch aufgetragene Schutzüberzüge auf Zn-Basis, wie z.B. Reinzink„ZE" -Überzüge oder Zink-Nickel-Überzüge („ZN") vorgesehen sein. Möglich sind aber auch an sich bekannte metallische Korrosionsschutzüberzüge, die durch abscheidende Verfahren, wie PVD, CVD oder Dampfspritzen, aufgebracht werden.
Ausgehend hiervon zeigt die Erfindung einen Weg auf, wie durch
ressourcenschonendes Warmformen ein Bauteil erzeugt werden kann, dass nach seiner Warmformgebung optimale mechanische Eigenschaften aufweist und aufgrund dieser Eigenschaften und seiner sonstigen
Gebrauchseigenschaften auch hohen Anforderungen bei Crashbelastung des Bauteils gewachsen ist.
Der hohe Mangangehalt erfindungsgemäß verarbeiteter Stahlflachprodukte ermöglicht niedrigere Warmumformtemperaturen als bei üblichen
Warmumformstählen. Damit erlaubt es die Erfindung, Energie und Kosten einzusparen.
So sollten die Erwärmungstemperaturen zur Warmumformung nicht mehr als 60 °C oberhalb der Ac3-Temperatur des jeweiligen Stahls des Stahlflachprodukts liegen, um die gewünschten positiven Eigenschaften zu erhalten.
Besonders niedrig können die Erwärmungstemperaturen sein, wenn die
Umformung im Zweiphasengebiet oder bei darunter liegenden Temperaturen erfolgen soll. In diesem Fall liegt der Restaustenitanteil im erhaltenen Bauteil über 20 Vol.-% und die Bruchdehnung A80 über 15 %. Die erfindungsgemäße Warmformgebung findet hier bei Erwärmungstemperaturen statt, die
typischerweise oberhalb der Ac1 -Temperatur und unterhalb der Ac3-Temperatur des jeweiligen Stahls des Stahlflachprodukts liegen, wobei sich im Fall einer Verformung im Zweiphasengebiet Erwärmungstemperaturen als besonders günstig erweisen, die um mindestens 10 °C höher sind als die Ac1 -Temperatur und um mindestens 50 °C niedriger sind als die Ac3-Temperatur des jeweiligen Stahls des Stahlflachprodukts.
Soll bei Temperaturen umgeformt werden, die unterhalb des
Temperaturbereichs liegen, in denen ein zweiphasiges Gefüge im
Stahlflachprodukt vorliegt, so kann dazu die Erwärmungstemperatur unterhalb der Ac1 -Temperatur des jeweiligen Stahls liegen, aus dem das
erfindungsgemäß warmumgeformte Stahlflachprodukt jeweils besteht.
Während bei Glühungen mit oberhalb der Ac1 -Temperatur liegenden
Erwärmungstemperaturen der Austenitanteil vor der Warmumformung nicht von Belang ist, muss der gewünschte Anteil bei Umformung unter Ac1 in einem vorangehenden Glühschritt eingestellt werden. Die Erwärmungstemperatur bei dieser zusätzlichen Glühung sollte dabei mindestens so hoch sein, dass die Umformkräfte sich von denen der Kaltumformung positiv abheben.
Dementsprechend sollte die Erwärmungstemperatur in diesem Fall so eingestellt werden, dass die Umformkräfte der Warmumformung maximal 85 % der
Umformkräfte bei Raumtemperatur betragen. Dies ist bei
Erwärmungstemperaturen von über 200 °C, insbesondere von über 400 °C, gesichert.
Durch die erfindungsgemäße Vorgehensweise wird ein Gefüge erhalten, das durch optimierte Austenitanteile gekennzeichnet ist und in Folge dessen sehr gute mechanische Eigenschaften, insbesondere eine hohe Restdehnung und eine hohe Energieaufnahme im Crashlastfall, besitzt. Die in diesem Bereich liegenden, vergleichbar niedrigen Erwärmungstemperaturen, bei denen die Warmformgebung des erfindungsgemäßen Bauteils stattfindet, erweisen sich auch als besonders vorteilhaft, wenn das erfindungsgemäß verarbeitete
Stahlflachprodukt einen kathodischen Korrosionsschutz haben soll. Die Glühzeiten, die für die Durcherwärmung im Arbeitsschritt b) typischerweise benötigt werden, betragen üblicherweise bis zu 60 min, wobei sich in der Praxis Glühzeiten von bis 20 min, insbesondere bis zu 10 min, als besonders wirtschaftlich erwiesen haben. Die Durcherwärmung kann in konventionellen Kammeröfen oder Rollenöfen durchgeführt werden, in denen die
warmzuverformenden Stahlflachprodukte im Durchlauf oder batchweise auf die Erwärmungstemperatur gebracht werden. Da bei erfindungsgemäßen
Zusammensetzungen des zu dem Bauteil verformten Stahlflachprodukts die Eigenschaften nahezu unabhängig von Aufheiz- und Abkühlgeschwindigkeit gebildet werden, kann es sich jedoch auch als günstig erweisen, wenn die Erwärmung durch konduktive oder induktive Erwärmung vorgenommen wird, oder auch beispielsweise mittels Festkörperkontakt oder im Wirbelbett. Durch die zur konventionellen Ofenerwärmung alternativen Verfahren können im Vergleich zur reinen Strahlungserwärmung im konventionellen Ofen kürzere Glühzeiten erzielt werden. Gleichzeitig erlauben die alternativen Verfahren genauer gesteuerte Erwärmungszyklen, da bei ihnen der Verlauf der
Erwärmung genauen Vorgaben folgen kann. Der weitere Vorteil des Einsatzes der alternativen Erwärmungsverfahren besteht darin, dass auf
Produktionsänderungen, wie sie gerade typisch für kleine Stückzahlfertigungen mit unterschiedlichen Blechdicken sind, schnell reagiert werden kann.
Anpassungen der Erwärmungsparameter an die jeweils geänderten
Anforderungen können entsprechend schnell vorgenommen werden
Die Warmformgebung (Arbeitsschritt c)) des auf die jeweilige
Erwärmungstemperatur erwärmten Stahlflachprodukts zu dem
erfindungsgemäßen Bauteil kann in hierzu im Stand der Technik verfügbaren, konventionellen Warmformgebungswerkzeugen vorgenommen werden. Dabei erfolgt die Warmformgebung in möglichst unmittelbarem Anschluss an die Durcherwärmung (Arbeitsschritt b)), so dass die Temperatur, mit der das Stahlflachprodukt in die Warmformgebung eintritt, bis auf einen technisch unwesentlichen Unterschied der Erwärmungstemperatur entspricht. Allerdings ist auch eine stärkere Abkühlung zulässig, solange die Umformkräfte und
Rückfederung vorteilhaft gegenüber einem Kaltumformen sind.
Die Abkühlung des Bauteils nach der Warmumformung kann in ebenso an sich bekannter Weise im Warmformgebungswerkzeug erfolgen. Alternativ kann das Bauteil nach der Warmformgebung jedoch auch in geeignet kurzem Zeitabstand aus dem Warmformgebungswerkzeug entnommen außerhalb des Werkzeugs abgekühlt werden. Da die Abkühlgeschwindigkeit nicht eingeschränkt ist, kann sie sogar auch kleiner 10K/s sein.
Wie schon erwähnt, wirkt sich die Erfindung besonders positiv bei der Erzeugung von Bauteilen aus Stahlflachprodukten aus, die mit einer metallischen
Schutzschicht belegt sind, um sie vor Korrosion oder anderen Angriffen zu schützen.
Hier zeigt sich, dass durch die vergleichbar niedrigen erforderlichen
Erwärmungstemperaturen, bei denen die Warmformung des erfindungsgemäßen Bauteils durchgeführt werden kann, ein Auflegieren der Schutzbeschichtung durch Eindiffundieren von Legierungsbestandteilen aus dem Stahlsubstrat allenfalls vermindert stattfindet, so dass die Schutzbeschichtung auch nach der
Warmformgebung des Bauteils ihre kathodische Schutzwirkung beibehält. Die auf dem jeweils erfindungsgemäß verarbeiteten, zu dem erfindungsgemäßen Bauteil warm verformten Stahlflachprodukt vorhandenen Schutzschichten weisen dabei typischerweise vor der Warmumformung eine oberflächennahe, an das
Stahlsubstrat des Stahlflachprodukts angrenzende Grenzschicht auf, die aus metallischem und/oder oxidischem Eisen, sowie ggf. metallischem und/oder oxidischem Mangan und des weiteren Legierungsbestandteilen des
Grundwerkstoffes besteht. Nach der Warmumformung zu dem Bauteil liegt aufgrund der erfindungsgemäß genutzten geringen Erwärmungstemperaturen, bei denen die erfindungsgemäße Warmformgebung stattfindet, ein gegenüber der konventionellen, höhere Umformtemperaturen vorsehenden Vorgehensweise verringerter Anteil spröder Phasen im Grenzschichtbereich vor, da es aufgrund der erfindungsgemäß abgesenkten Erwärmungstemperatur der Warmformgebung nur zu einer minimierten Durchlegierung der Schutzbeschichtung mit aus dem
Stahlsubstrat stammenden Elementen kommt. Das Potential des kathodischen Korrosionsschutzes durch Zn-reiche Phasen bleibt damit erhalten.
Die Parameter der erfindungsgemäßen Vorgehensweise erlauben es, die kathodische Schutzwirkung einer auf dem Stahlflachprodukt vorhandenen Zn- haltigen Schicht zu erhalten und kritische Risse bei der Warmumformung von mehr als 10 μιη zu vermeiden.
Bei den beim erfindungsgemäßen Verfahren vogesehenen, vergleichsweise niedrigen Erwärmungs- bzw. Umformtemperaturen werden die schädlichen Konsequenzen vermieden, die bei einem Aufschmelzen der Zn-Schicht auftreten würden. Aufgrund der Diffusion von Fe aus dem Substrat in die
Schicht wird deren Schmelzpunkt in ausreichendem Maße angehoben. Um jedoch einen kathodischen Korrosionsschutz zu wahren, ist eine Begrenzung des Fe-Anteils in der Beschichtung erforderlich, damit nach der
Warmumformung noch ausreichend Zn-reiche Phasen erhalten bleiben. Die im Überzug vorliegenden Fe-Zn-Phasen wurden für die Beispiele per
Röntgendiffraktometrie bestimmt und sind in Tabelle 3 zusammengefasst.
Der konventionell in der Warmumformung eingesetzte Vergleichsstahl V wird zur Einstellung der mechanischen Zieleigenschaften typischerweise bei
870 - 950 °C geglüht. Dabei kommt es zur Ausbildung einer Γ7 IVPhase, welche vergleichsweise temperaturstabil ist, was den Anteil an entstehendem flüssigen Zn begrenzt und somit die Gefahr einer auftretenden
Flüssigmetallversprödung eindämmt. Der in der Γ7 r Phase enthaltene hohe Fe-Anteil schränkt jedoch den aktiven Korrosionsschutz der Schicht stark ein.
Bei den erfindungsgemäßen Proben Mittelmangan + Z bleibt aufgrund der deutlich niedrigeren Ofentemperatur zur Einstellung der mechanischen
Zieleigenschaften zusätzlich die deutlich Zn-reichere δ-Phase bestehen, was zu einem verbesserten Korrosionsschutzpotenzial führt. Aufgrund des
durchlegierungsbedingten Schichtaufbaus ist das Schichtsystem ausreichend temperaturstabil, so dass es bei erfindungsgemäßen
Warmumformtemperaturen zu keiner kritischen Rissbildung über 10 μιη Tiefe durch flüssiges Zn kommt, bei der ein Rissfortschritt bei Beanspruchung des Bauteils zu erwarten wäre.
Außerdem bildet sich an der freien Oberfläche des Schutzüberzugs in an sich bekannter weise (s. EP 2 290 133 B1 ) eine manganhaltige Schicht in
metallischer und/oder oxidischer Form an der freien Oberfläche des Bauteils aus, durch die die Wirksamkeit der Schutzbeschichtung weiter erhöht ist.
Erfindungsgemäß erzeugte Bauteile besitzen in Folge ihrer Verformung bei Temperaturen, die unterhalb einer Höchstgrenze liegen, welche der
Ac3-Temperatur des jeweiligen Stahls + 60 °C entspricht, eine optimierte Kombination aus hohen Festigkeitswerten, für die Zugfestigkeiten Rm von typischerweise mindestens 1000 MPa stehen, und optimierten
Dehnungseigenschaften, die sich in Bruchdehnungen A80 von regelmäßig mehr als 0 % ausdrücken. Das Produkt Rm x A80 liegt bei erfindungsgemäßen Bauteilen dementsprechend ebenso regelmäßig im Bereich von 13.000 - 35.000 MPa%. Dagegen liegen die Zugfestigkeiten Rm bei Bauteilen, die aus
konventionellen Stählen für die Warmumformung hergestellt wurden, bei Temperaturen, bei denen ein vollaustenitisch.es Gefüge vorliegt, zwar typischerweise bei mindestens 1200 MPa, da sie nach Abschrecken
vollmartensitisch sind. Jedoch erreichen diese Bauteile nur deutlich niedrigere Bruchdehnungswerte A80, so dass bei diesen Bauteilen das Produkt Rm x A80 regelmäßig nur 6.000 - 11.000 MPa% beträgt.
Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Es sind drei den Maßgaben der Erfindung entsprechende Schmelzen S1 - S3 und eine Vergleichsschmelze V erschmolzen worden, deren
Zusammensetzungen jeweils in Gew.-% in Tabelle 1 angegeben sind.
Zusätzlich sind in Tabelle 1 die zu den Stählen S1 - S3 und V gemäß SEP 1680:1990-12 ermittelten Ad - und Ac3-Temperaturen in °C genannt.
Die Vergleichsschmelze V liegt aufgrund ihres zu geringen Mn-Gehalts und der Anwesenheit von B außerhalb der Vorgaben der Erfindung.
Aus den Stählen S1 - S3 und V sind Blechzuschnitte hergestellt worden.
In Beispiel 1 , 4, und 8 wurden Blechproben untersucht, die aus
Warmbändern geschnitten worden sind, die aus einem in konventioneller Weise erzeugten Vorprodukt auf eine Dicke„d" warmgewalzt (Zustand "WW") und anschließend unter einer Haube (Zustand„HG") oder in einem Durchlaufofen (Zustand„DO") geglüht worden sind. Bei den Beispielen 2 und 5 wurden die Blechproben aus Bändern geschnitten, die aus
Warmbändern erzeugt worden sind, welche zusätzlich auf eine Dicke„d" kaltgewalzt worden sind (Zustand "KW"). Vor dem Blechzuschnitt sind einige der kaltgewalzten Bänder zum Teil, wie bei den Beispielen 3, 6,12, haubengeglüht (Zustand„HG") oder , wie bei den Beispielen 7, 9, 10, 13 - 16, in einem Durchlaufofen (Zustand„DO") geglüht worden. Einige der Blechzuschnitte sind zudem mit einer reinen Zink-Schicht elektrolytisch („ZE") oder feuerbeschichtet ("Z"), mit einer Zink-Eisen-Schicht ("ZF") oder mit einer Aluminium-Silizium-Schicht ("AS") beschichtet worden.
Die Blechzuschnitte sind jeweils in einem konventionellen Ofen auf eine Erwärmungstemperatur Tew durcherwärmt, dann in einem konventionellen Warmformwerkzeug zu einem Hutprofil warmumgeformt und anschließend an Luft abgekühlt worden. Die am jeweils erhaltenen Bauteil ermittelte Zugfestigkeit Rm, die
Dehngrenze Rp0,2, die Bruchdehnung A80, das Produkt Rm x A80 und der Biegewinkel sind in Tabelle 2 angegeben. Darüber hinaus sind dort, soweit diese Merkmale bestimmt worden sind, Gefügekenngrößen des jeweils erhaltenen Bauteils angegeben.
Darüber hinaus sind dort, soweit diese Merkmale bestimmt worden sind, die Austenitanteile des jeweils erhaltenen Bauteils und die abgeschätzte
Korngröße sowie die Risstiefen an der kritischsten Stelle des Hutprofils angegeben, wie sie im Querschliff unter dem Lichtmikroskop gemessen wurden.
Es zeigt sich, dass bei den erfindungsgemäßen Beispielen die
Bruchdehnungen A80 über 10 % liegen und die Produkte Rm x A80 mehr als 14.000 MPa% betragen. Gleichzeitig weisen die Beispiele Biegewinkel von über 60° auf.
Bei den Beispielen 1 - 3 wurde beim Erwärmen eine überwiegend
austenitische Struktur eingestellt, die beim Abkühlen weitgehend in Martensit umwandelt, was zu den hohen Festigkeiten führt.
Bei den Beispielen 4 - 13 wurde der Austenitanteil durch Wärmen im
Zweiphasengebiet so optimiert, dass besonders hohe Produkte Rm x A80 und hohe Biegewinkel erhalten wurden.
Ein besonders feines Gefüge kann durch Zulegieren von
Mikrolegierungselementen und Seltenen Erdmetallen erzielt werden.
In den Beispielen 14 - 16 wurde der Austenitgehalt durch die dem
Blechzuschnitt vorangegangen Glühungen im Zweiphasengebiet eingestellt. Beim Warmumformen unterhalb von Ac1 wird im Wesentlichen nur noch der Martensit angelassen. Letzteres Verfahren hat neben guten mechanischen Eigenschaften insbesondere Vorteile in Bezug auf die Beschichtung. Da die Temperaturen unter der Schmelztemperatur des Überzugs liegen, können Risse im Substrat durch eindringendes Zink bei der Warmumformung weitgehend vermieden werden.
Aber auch bei Erwärmungstemperaturen im Zweiphasengebiet (Beispiele 8 - 10) ist der Überzug so beschaffen, dass Risse in einem akzeptierbaren Rahmen von höchstens 10 μιτι bleiben.
Figure imgf000022_0001
Gehaltsangaben in Gew.-%, Rest Fe und unvermeidbare Verunreinigungen nicht erfindungsgemäße Gehalte sind unterstrichen
Tabelle 1
Figure imgf000023_0001
"-" = Nicht bestimmt
*) »WW"= warmgewalzt, "KW" = kaltgewalzt, "HG" = haubengeglüht, "DO" = durchlaufofengeglüht Tabelle 2
Figure imgf000024_0001
liegt vor,„-" = liegt nicht vor
Tabelle 3

Claims

PATENTANSPRÜCHE
1. Blechbauteil, hergestellt durch Warmumformen eines Stahlflachprodukts, das aus (in Gew.-%)
C: bis zu 0,5 %,
Si: 0,05 - 1 %,
Mn: 4-12%,
Cr: 0,1 -4%,
AI: bis zu 3,5 %,
N: bis zu 0,05%,
P: bis zu 0,05 %,
S: bis zu 0,01 %,
Cu, Ni: in Summe bis zu 2 %,
Ti, Nb, V: in Summe bis zu 0,5 %
Seltene Erden: bis zu 0,1 %
und als Rest aus Fe und unvermeidbaren Verunreinigungen
besteht,
wobei der Gehalt %C an C und der Gehalt %Cr an Cr folgende Bedingung erfüllt:
(10x%C) + %Cr<5,5%, wobei das Stahlflachprodukt nach der Warmumformung zum Blechbauteil einen Biegewinkel von mehr als 60° aufweist
und wobei das Gefüge des warmumgeformten Blechbauteils zu 5 - 50 Vol.-% aus Austenit und als Rest aus Martensit, angelassenem Martensit oder Ferrit besteht, wobei der Ferrit-Anteil auch„0" sein kann, und wobei der mittlere Korndurchmesser der Körner des Gefüges weniger als 5 μιη beträgt.
2. Blechbauteil aus Anspruch 1, dadurch gekennzeichnet, dass sein C-Gehalt mindestens 0,02 Gew.-% beträgt.
3. Blechbauteil nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass sein C-Gehalt bis zu 0,3 Gew.-% beträgt.
4. Blechbauteil nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass sein Cr-Gehalt mindestens 2,2 Gew.-% beträgt.
5. Blechbauteil nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass der mittlere Korndurchmesser unter 2 μηι liegt.
6. Blechbauteil nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass der Biegewinkel mehr als 80° beträgt.
7. Blechbauteil nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass nach der Warmumformung die
Zugfestigkeit Rm des Stahlflachprodukts mindestens 1000 MPa, seine Bruchdehnung A80 mehr als 10 % und das aus seiner Zugfestigkeit Rm und seiner Bruchdehnung A80 gebildete Produkt Rm*A80 mehr als 13000 MPa% beträgt.
8. Blechbauteil nach einem der voranstehenden Ansprüche, dadurch
gekennzeichnet, dass es mit einer metallischen
Schutzbeschichtung versehen ist.
9. Verfahren zur Herstellung eines gemäß den voranstehenden Ansprüchen beschaffenen Blechbauteils, umfassend folgende Arbeitsschritte: a) Bereitstellen eines Stahlflachprodukts aus einem Stahl, der (in
Gew.-%) aus
C: bis zu 0,5 %,
Si: 0,05 - 1 %,
Mn: 4 -12%,
Cr: 0,1 -4%,
AI: bis zu 3,5 %,
N: bis zu 0,05 %,
P: bis zu 0,05 %,
S: bis zu 0,01 %,
in Summe bis zu 2 % Cu oder Ni,
in Summe bis zu 0,5 % an Ti, Nb oder V,
REM: bis zu 0,1 %
und als Rest aus Fe und unvermeidbaren Verunreinigungen besteht, wobei der Gehalt %C an C und der Gehalt %Cr an Cr folgende Bedingung erfüllt:
(10x%C) + %Cr<5,5% b) Durcherwärmen des Stahlflachprodukts auf eine
Erwärmungstemperatur, die mindestens 200 °C beträgt und
höchstens gleich der Ac3 -Temperatur + 60°C des Stahls liegt, aus dem das Stahlflachprodukt jeweils besteht; c) Warmumformen des auf die Erwärmungstemperatur erwärmten
Stahlflachprodukts zu dem Bauteil.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Erwärmungstemperatur höchstens 800 °C beträgt.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Erwärmungstemperatur oberhalb der Ac1 -Temperatur und unterhalb der Ac3-Temperatur des Stahls liegt, aus dem das Stahlflachprodukt jeweils besteht.
12. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Erwärmungstemperatur unterhalb der Ac1 -Temperatur des Stahls liegt, aus dem das Stahlflachprodukt jeweils besteht, und dass die
Austeniteinstellung in einem Glühschritt vor dem Warmumformprozess erfolgt.
3. Verfahren nach einem der Ansprüche 9-12,dadurch
gekennzeichnet, dass das im Arbeitsschritt a) bereitgestellte Stahlflach produkt eine metallische Korrosionsschutzschicht besitzt.
14. Verfahren nach einem der Ansprüche 9 bis 12, dadurch
gekennzeichnet, dass die Durcherwärmung im Arbeitsschritt b) mittels eines konduktiv oder induktiv wirkenden Erwärmungsverfahrens durchgeführt wird.
PCT/EP2017/068771 2017-07-25 2017-07-25 Blechbauteil, hergestellt durch warmumformen eines stahlflachprodukts und verfahren zu dessen herstellung WO2019020169A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/EP2017/068771 WO2019020169A1 (de) 2017-07-25 2017-07-25 Blechbauteil, hergestellt durch warmumformen eines stahlflachprodukts und verfahren zu dessen herstellung
US16/634,029 US20210087662A1 (en) 2017-07-25 2017-07-25 Metal Sheet Component, Manufactured by Hot Forming a Flat Steel Product and Method for Its Manufacture
CN201780093424.9A CN110944765B (zh) 2017-07-25 2017-07-25 通过热成型扁钢产品生产的金属板构件及其生产方法
EP17754271.9A EP3658307B9 (de) 2017-07-25 2017-07-25 Blechbauteil, hergestellt durch warmumformen eines stahlflachprodukts und verfahren zu dessen herstellung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2017/068771 WO2019020169A1 (de) 2017-07-25 2017-07-25 Blechbauteil, hergestellt durch warmumformen eines stahlflachprodukts und verfahren zu dessen herstellung

Publications (1)

Publication Number Publication Date
WO2019020169A1 true WO2019020169A1 (de) 2019-01-31

Family

ID=59656019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/068771 WO2019020169A1 (de) 2017-07-25 2017-07-25 Blechbauteil, hergestellt durch warmumformen eines stahlflachprodukts und verfahren zu dessen herstellung

Country Status (4)

Country Link
US (1) US20210087662A1 (de)
EP (1) EP3658307B9 (de)
CN (1) CN110944765B (de)
WO (1) WO2019020169A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020204356A1 (de) 2020-04-03 2021-10-07 Thyssenkrupp Steel Europe Ag Gehärtetes Blechbauteil, hergestellt durch Warmumformen eines Stahlflachprodukts und Verfahren zu dessen Herstellung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115151669B (zh) * 2020-05-13 2023-12-26 日本制铁株式会社 热冲压成形体
CN113913700B (zh) * 2021-10-26 2023-01-24 江苏沙钢集团有限公司 一种1700MPa级热成形钢及其生产方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383353A2 (de) 2010-04-30 2011-11-02 ThyssenKrupp Steel Europe AG Höherfester, Mn-haltiger Stahl, Stahlflachprodukt aus einem solchen Stahl und Verfahren zu dessen Herstellung
EP2290133B1 (de) 2009-08-25 2012-04-18 ThyssenKrupp Steel Europe AG Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil
CN102127675B (zh) * 2011-02-21 2012-11-14 钢铁研究总院 高效率低能耗高质量的钢板温成形零件的生产方法
EP2778247A1 (de) 2011-11-07 2014-09-17 Posco Stahlblech für heisspressformen, heisspressformelement und herstellungsverfahren dafür
WO2016131218A1 (zh) * 2015-02-16 2016-08-25 重庆哈工易成形钢铁科技有限公司 热冲压成形用钢板、热冲压成形工艺及热冲压成形构件
KR101677398B1 (ko) * 2015-11-30 2016-11-18 주식회사 포스코 열간성형용 강재 및 이를 이용한 부재 제조방법
WO2017092104A1 (zh) * 2015-12-04 2017-06-08 重庆哈工易成形钢铁科技有限公司 用于冲压成形的钢材及其成形构件与热处理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2524970A1 (de) * 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Hochfestes Stahlflachprodukt und Verfahren zu dessen Herstellung
EP2690183B1 (de) * 2012-07-27 2017-06-28 ThyssenKrupp Steel Europe AG Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
RU2659549C2 (ru) 2014-01-06 2018-07-02 Ниппон Стил Энд Сумитомо Метал Корпорейшн Горячеформованный элемент и способ его изготовления
JP6533528B2 (ja) * 2014-04-15 2019-06-19 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 高降伏強度を備えた冷間圧延平鋼製品の製造方法及び冷延平鋼製品
PL3170912T3 (pl) * 2014-07-18 2019-09-30 Nippon Steel & Sumitomo Metal Corporation Produkt stalowy oraz sposób jego wytwarzania
CN106574318B (zh) * 2014-08-07 2019-01-08 杰富意钢铁株式会社 高强度钢板及其制造方法
US20160312323A1 (en) 2015-04-22 2016-10-27 Colorado School Of Mines Ductile Ultra High Strength Medium Manganese Steel Produced Through Continuous Annealing and Hot Stamping

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290133B1 (de) 2009-08-25 2012-04-18 ThyssenKrupp Steel Europe AG Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil
EP2383353A2 (de) 2010-04-30 2011-11-02 ThyssenKrupp Steel Europe AG Höherfester, Mn-haltiger Stahl, Stahlflachprodukt aus einem solchen Stahl und Verfahren zu dessen Herstellung
CN102127675B (zh) * 2011-02-21 2012-11-14 钢铁研究总院 高效率低能耗高质量的钢板温成形零件的生产方法
EP2778247A1 (de) 2011-11-07 2014-09-17 Posco Stahlblech für heisspressformen, heisspressformelement und herstellungsverfahren dafür
WO2016131218A1 (zh) * 2015-02-16 2016-08-25 重庆哈工易成形钢铁科技有限公司 热冲压成形用钢板、热冲压成形工艺及热冲压成形构件
KR101677398B1 (ko) * 2015-11-30 2016-11-18 주식회사 포스코 열간성형용 강재 및 이를 이용한 부재 제조방법
WO2017092104A1 (zh) * 2015-12-04 2017-06-08 重庆哈工易成形钢铁科技有限公司 用于冲压成形的钢材及其成形构件与热处理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020204356A1 (de) 2020-04-03 2021-10-07 Thyssenkrupp Steel Europe Ag Gehärtetes Blechbauteil, hergestellt durch Warmumformen eines Stahlflachprodukts und Verfahren zu dessen Herstellung

Also Published As

Publication number Publication date
EP3658307B9 (de) 2022-01-12
CN110944765B (zh) 2022-02-25
US20210087662A1 (en) 2021-03-25
CN110944765A (zh) 2020-03-31
EP3658307A1 (de) 2020-06-03
EP3658307B1 (de) 2021-09-29
EP3658307B8 (de) 2021-11-03

Similar Documents

Publication Publication Date Title
DE102008035714B9 (de) Stahlblech zum Warmpreßformen, das Niedrigtemperatur-Vergütungseigenschaft hat, Verfahren zum Herstellen desselben, Verfahren zum Herstellen von Teilen unter Verwendung desselben, und damit hergestellte Teile
EP2855717B1 (de) Stahlflachprodukt und verfahren zur herstellung eines stahlflachprodukts
EP2848709B1 (de) Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil
EP2402472B2 (de) Höherfester, kaltumformbarer Stahl und aus einem solchen Stahl bestehendes Stahlflachprodukt
EP2383353B1 (de) Höherfester, Mn-haltiger Stahl, Stahlflachprodukt aus einem solchen Stahl und Verfahren zu dessen Herstellung
DE60133493T2 (de) Feuerverzinktes Stahlblech und Verfahren zu dessen Herstellung
WO2009021898A1 (de) Dualphasenstahl, flachprodukt aus einem solchen dualphasenstahl und verfahren zur herstellung eines flachprodukts
EP1807542A1 (de) Höherfestes, twip-eigenschaften aufweisendes stahlband oder -blech und verfahren zu dessen herstellung mittels &#34;direct strip casting &#34;
WO2009021897A1 (de) Dualphasenstahl, flachprodukt aus einem solchen dualphasenstahl und verfahren zur herstellung eines flachprodukts
EP2374910A1 (de) Stahl, Stahlflachprodukt, Stahlbauteil und Verfahren zur Herstellung eines Stahlbauteils
WO2017021464A1 (de) Hochfester manganhaltiger stahl, verwendung des stahls für flexibel gewalzte stahlflachprodukte und herstellverfahren nebst stahlflachprodukt hierzu
DE102015111177A1 (de) Höchstfester Mehrphasenstahl und Verfahren zur Herstellung eines kaltgewalzten Stahlbandes hieraus
EP3692178B1 (de) Verfahren zur herstellung eines stahlbandes aus höchstfestem mehrphasenstahl
WO2016078642A1 (de) Hochfester lufthärtender mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines bandes aus diesem stahl
EP3610049A1 (de) Kaltgewalztes, haubengeglühtes stahlflachprodukt und verfahren zu dessen herstellung
EP3221483A1 (de) Höchstfester lufthärtender mehrphasenstahl mit hervorragenden verarbeitungseigenschaften und verfahren zur herstellung eines bandes aus diesem stahl
EP3512968B1 (de) Verfahren zur herstellung eines stahlflachprodukts aus einem manganhaltigen stahl und ein derartiges stahlflachprodukt
EP2208803A1 (de) Höherfester, kaltumformbarer Stahl, Stahlflachprodukt, Verfahren zur Herstellung eines Stahlflachprodukts sowie Verwendung eines Stahlflachproduktes
EP3658307B1 (de) Blechbauteil, hergestellt durch warmumformen eines stahlflachprodukts und verfahren zu dessen herstellung
WO2018050637A1 (de) Verfahren zur herstellung eines warm- oder kaltbandes und/oder eines flexibel gewalzten stahlflachprodukts aus einem hochfesten manganhaltigen stahl und stahlflachprodukt hiernach
EP3469108A1 (de) Verfahren zur herstellung eines kaltgewalzten stahlbandes mit trip-eigenschften aus einem hochfesten, manganhaltigen stahl
WO2017157770A1 (de) Verfahren zur herstellung eines warmumgeformten stahlbauteils und ein warmumgeformtes stahlbauteil
DE102020204356A1 (de) Gehärtetes Blechbauteil, hergestellt durch Warmumformen eines Stahlflachprodukts und Verfahren zu dessen Herstellung
WO2024046913A1 (de) Verfahren zur herstellung eines kaltgewalzten stahlflachprodukts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17754271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017754271

Country of ref document: EP

Effective date: 20200225