WO2019019987A1 - 一种聚烯烃组合物及其应用 - Google Patents

一种聚烯烃组合物及其应用 Download PDF

Info

Publication number
WO2019019987A1
WO2019019987A1 PCT/CN2018/096743 CN2018096743W WO2019019987A1 WO 2019019987 A1 WO2019019987 A1 WO 2019019987A1 CN 2018096743 W CN2018096743 W CN 2018096743W WO 2019019987 A1 WO2019019987 A1 WO 2019019987A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
composition according
encapsulating
polyolefin
Prior art date
Application number
PCT/CN2018/096743
Other languages
English (en)
French (fr)
Inventor
徐涛
傅智盛
吴安洋
Original Assignee
杭州星庐科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810805534.XA external-priority patent/CN109337156B/zh
Application filed by 杭州星庐科技有限公司 filed Critical 杭州星庐科技有限公司
Publication of WO2019019987A1 publication Critical patent/WO2019019987A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • This invention relates to a polyolefin composition and to a process and use for the preparation of the polyolefin composition.
  • Polyolefin materials containing only hydrocarbon elements and saturated molecular chains are a very wide range of materials that are widely used.
  • Creep is a fundamental property of polyolefin materials and is more prevalent in medium density polyethylene, low density polyethylene, linear low density polyethylene and olefin copolymer elastomers. In order to improve the use effect, in practical application, the creep of the polyolefin material is often slowed down or inhibited by crosslinking and solidifying.
  • Non-polar polyolefin materials have poor adhesion and are therefore limited in application. In practical applications, the polyolefin material and the polar monomer are often modified to have good viscosity.
  • the above crosslinking curing or graft modification involves a radical reaction.
  • the radical reaction tends to occur on tertiary carbon atoms, but the existing general polyolefin materials have fewer tertiary carbon atoms and are generally present in the polymer molecular chain.
  • the main chain there are two problems in the actual reaction process: one is due to the limitation of the main chain as a whole, when the reaction occurs in the tertiary carbon atom of the main chain, the steric hindrance encountered is large, affecting the reaction speed and efficiency. The other is that it is possible to affect the properties of polyolefin materials due to the occurrence of beta chain scission.
  • the technical solution of the present invention provides a polyolefin composition comprising a polymer matrix, the polymer matrix based on 100 parts by weight of the unit polymer matrix.
  • the invention comprises: 1 to 99 parts by weight of highly branched polyethylene (P1), 1 to 99 parts by weight of polyolefin (P2) different from highly branched polyethylene, and the highly branched polyethylene is ethylene having a branched structure.
  • a polymer having a degree of branching of not less than 40 branches/1000 carbons and a melting point of not higher than 130 ° C which is obtained by homopolymerization of ethylene by a late transition metal catalyst, which is different from the polyolefin of highly branched polyethylene (P2) comprising at least one of a copolymer of ethylene and an ⁇ -olefin or an ethylene homopolymer having a density of less than 0.94 g/cm 3 .
  • P2 highly branched polyethylene
  • the polymer matrix comprises: 5 to 95 parts by weight of highly branched polyethylene (P1), and 5 to 95 parts by weight of the polymer different from the highly branched polyethylene, based on 100 parts by weight of the unit polymer matrix.
  • the content of the olefin (P2), highly branched polyethylene in the polymer matrix is preferably not less than 30 parts by weight, further preferably not less than 50 parts by weight, further preferably not less than 70 parts by weight.
  • the technical solution of the present invention provides a package composition comprising a polymer matrix, a tackifier and a radical initiator, characterized in that the unit polymer is 100 parts by weight.
  • the polymer matrix comprises 5 to 100 parts by weight (P1) of highly branched polyethylene, and 0 to 95 parts by weight of the polyolefin (P2) different from the highly branched polyethylene, copolymerization of ethylene and a polar monomer. 0 to 70 parts by weight.
  • the polyolefin P2 contains at least one of a crystalline polyethylene different from the highly branched polyethylene, a propylene homopolymer, and a copolymer of ethylene and an ⁇ -olefin.
  • the highly branched polyethylene (P1) is obtained by catalyzing ethylene homopolymerization based on a "chain walking mechanism" of a late transition metal catalyst, and the preferred transition metal catalyst may be one of ( ⁇ -diimine) nickel/palladium catalysts.
  • Part of the branch of the highly branched polyethylene (P1) is present on the branch, i.e., a portion of the tertiary carbon atoms are on the branch.
  • the nature of the chain walking mechanism refers to a post-transition metal catalyst, such as an ( ⁇ -diimine) nickel/palladium catalyst which is more prone to ⁇ -hydrogen elimination reaction during catalytic olefin polymerization, thereby causing branching.
  • the present invention provides an electronic device assembly comprising: at least one electronic device and an encapsulating material in intimate contact with at least one surface of the electronic device, the encapsulating material comprising a polymer matrix and tackifying
  • the polymer matrix comprises: 5 to 100 parts by weight of highly branched polyethylene (P1), and 0 to 95 parts by weight of polyolefin (P2) different from highly branched polyethylene, based on 100 parts by weight of the unit polymer matrix.
  • the highly branched polyethylene (P1) is an ethylene homopolymer having a branched structure and has a degree of branching of not less than 40 branches/1000 carbons.
  • intimate contact and the like mean that the encapsulating material is in contact with at least one surface of the device or other article in a manner similar to the contact of the coating with the substrate, for example, there is little gap or void between the encapsulating material and the surface of the device ( If present, and the material exhibits good or excellent adhesion to the surface of the device.
  • the encapsulating material is extruded or otherwise applied to at least one surface of the electronic device, the material is typically formed and/or cured into a film, which may be either transparent or opaque, and It can be either flexible or rigid.
  • the assembly may also include one or more other items, such as one or more cover glass sheets, and in these embodiments, the encapsulating material is typically positioned between the electronic device and the cover glass in a sandwich configuration. If the encapsulating material is applied as a film to the surface of the cover glass opposite the electronic device, the surface of the film in contact with the surface of the cover glass may be smooth or uneven, for example, embossed or textured. Chemical.
  • the adjustment of its branching degree, molecular weight and melting point can be achieved by adjusting the structure of the catalyst and the polymerization conditions. Specifically, in the case of a certain catalytic system, when the polymerization temperature is high and the polymerization pressure is low, the prepared product has a higher degree of branching, a lower molecular weight and a melting point, and when the polymerization temperature is lower, the polymerization is performed. When the pressure is high, the prepared product has a lower degree of branching, a higher molecular weight and a melting point.
  • the molecular weights described in the specification are measured by PL-GPC220 in units of g/mol.
  • the highly branched polyethylene used in the present invention has a degree of branching of not less than 40 branches/1000 carbons, further preferably 45 to 130 branches/1000 carbons, still more preferably 60 to 116 branches/ 1000 carbons; weight average molecular weight ranging from 50,000 to 500,000, more preferably from 200,000 to 450,000; melting point not higher than 125 ° C, preferably from -44 ° C to 101 ° C, further preferably from -30 ° C to 80 ° C.
  • the amount of the highly branched polyethylene is preferably 20 to 99 parts by weight, and still more preferably 30 to 80 parts by weight per 100 parts by weight of the unit polymer matrix.
  • the highly branched polyethylene used in the present invention may preferably have a degree of branching of 60 to 85 branches/1000 carbons, a weight average molecular weight of preferably 100,000 to 200,000, and a molecular weight distribution of preferably 1.3 to 3.5. It is also preferably 40 to 80 ° C, and the melt index measured under a load of 190 ° C and 2.16 kg is preferably 1 to 30 g/10 min, more preferably 5 to 25 g/10 min, still more preferably 10 to 20 g/10 min. Or 5 to 10 g/10 min, or 10 to 15 g/10 min, or 15 to 20 g/10 min.
  • a further preferred embodiment has a melting point close to that of the polyolefin (P2) different from the highly branched polyethylene, and it is possible to avoid phase separation due to excessive difference in melting points and poor mixing.
  • the ⁇ -olefin in the copolymer of ethylene and ⁇ -olefin in the polyolefin (P2) different from the highly branched polyethylene has 3 to 30 carbon atoms
  • the ⁇ -olefin includes propylene, 1-butene, 1-pentene, 3-methyl-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-octene, 1- Terpene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, 1-icodene, 1-tetradecene, 1-di At least one of hexadecene, 1-octadecene and 1-triene.
  • the ⁇ -olefin is preferably at least one of 1-butene, 1-hexene and 1-octene.
  • the copolymer of ethylene and an ⁇ -olefin may be a binary or multi-component copolymer, and a typical terpolymer may be an illustrative terpolymer including an ethylene/propylene/1-octene copolymer, ethylene/propylene/ 1-butene copolymer, ethylene/1-butene/1-octene copolymer, and the like.
  • the amount of the ethylene and the ⁇ -olefin copolymer used is preferably from 0 to 80 parts by weight, more preferably from 10 to 70 parts by weight, still more preferably from 20 to 60 parts by weight per 100 parts by weight of the unit polymer matrix.
  • the copolymer of ethylene and an ⁇ -olefin is preferably an ethylene-octene copolymer or an ethylene-butene copolymer, more preferably an ethylene-1-octene copolymer, and a practical application is simply referred to as a polyolefin elastomer (POE).
  • the weight percentage of the ⁇ -olefin in the ethylene and ⁇ -olefin copolymer is generally from 20% to 50%, preferably from 30% to 45%.
  • the theoretically corresponding tertiary carbon atom ratio is 37.5 to 56.3 tertiary carbon atoms/1000 carbons, or corresponding branches.
  • the degree of conversion is 37.5 to 56.3 branches/1000 carbons.
  • the branched polyethylene used in the present invention has a branching degree of not less than 40 branches. /1000 carbons, further preferably not less than 60 branches / 1000 carbons.
  • the weight percentage of propylene in the copolymer is preferably more than 30%, further preferably more than 50%, further preferably more than 70%.
  • the copolymer comprising ethylene and propylene may further comprise one or more diene comonomers for the preparation of these copolymers, especially suitable diene of the EPDM type including 4 to 20 Conjugated or non-conjugated, linear or branched, monocyclic or polycyclic diene of one carbon atom.
  • Preferred dienes include 1,4-pentadiene, 1,4-hexadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, cyclohexadiene, and 5-butylidene-2- Norbornene.
  • a particularly preferred diene is 5-ethylidene-2-norbornene.
  • the ethylene homopolymer of the present invention which is different from the highly branched polyethylene (P1) generally has a melting point of not lower than 40 °C.
  • the melting point thereof is preferably from 80 ° C to 140 ° C, further preferably the melting point is from 90 ° C to 130 ° C, further preferably from 100 ° C to 125 ° C, and the usual manner is that it can be catalyzed by a Ziegler-Natta catalyst or a metallocene catalyst or A composite catalytic system of the two is used to catalyze the homopolymerization of ethylene.
  • ethylene monomer and two or more catalyst components in the same reaction vessel, at least one of which can oligomerize ethylene to form an ⁇ -olefin, and at least one catalyst for ethylene and the produced ⁇ -olefin.
  • the late transition metal catalyst with less steric hindrance is an ideal oligomerization catalyst for the bifunctional catalyst system due to its high oligomerization catalytic activity and selectivity.
  • the copolymerization catalyst component is generally a Ziegler-Natta catalyst or a metallocene. catalyst.
  • the propylene homopolymer of the present invention may be an isotactic polypropylene, a syndiotactic polypropylene, a random polypropylene or an isotactic-random block polypropylene.
  • in-situ blending that is, a catalyst which catalyzes ethylene polymerization by adding two different functions to the same reaction vessel.
  • an alpha-diimine nickel catalyst (forming P1) and a metallocene catalyst (forming P2) are combined and catalyzed by ethylene polymerization to achieve in-situ blending, which is expected to reduce costs.
  • a block copolymer obtained by further adding a chain shuttling agent such as diethyl zinc to the above mixed catalyst system to obtain a segment containing P1 and P2 properties is also understood as a variant of the embodiment of the present invention.
  • This in-situ blending practice also applies when highly branched polyethylene (P1) having two or more melt indices can be included in the polymer matrix in order to adjust the melting point or melt index.
  • the high number of branches and the complex branch distribution unique to highly branched polyethylene can better destroy the regularity of ethylene molecular chain and reduce crystallization compared to the regular branch distribution of ⁇ -olefin introduced into the copolymer of ethylene and ⁇ -olefin.
  • the light transmittance is improved, so that the partial or total replacement of the other polyolefins with the highly branched polyethylene can improve the light transmittance and fluidity of the entire composition.
  • the highly branched polyethylene has a relatively low cohesive force. In combination with some of the other polyolefins in the highly branched polyethylene, the cohesive force of the composition as a whole can be improved, and the tendency of cold flow during processing and molding can be reduced. When used in combination with the above different polyolefins, it is expected to enhance the impact resistance of the final product.
  • the olefin used in the preparation of the copolymer of the olefin and the polar monomer of the present invention includes at least one of an olefin monomer such as ethylene, propylene, 1-butene, 1-hexene or 1-octene. It is preferably ethylene.
  • the polar group-containing monomers used in the preparation of the copolymer of ethylene and polar monomers of the present invention include, but are not limited to, vinyl acetate, acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, At least one of maleic anhydride and vinyltrimethoxysilane is preferably at least a copolymer of ethylene and vinyl acetate, a copolymer of ethylene and maleic anhydride, and a copolymer of ethylene and vinyltrimethoxysilane.
  • vinyl acetate acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate
  • At least one of maleic anhydride and vinyltrimethoxysilane is preferably at least a copolymer of ethylene and vinyl acetate, a copolymer of ethylene and maleic anhydride, and a copolymer of ethylene and vinyltrimethoxysilane.
  • the copolymer of ethylene and a polar monomer includes not only a copolymer obtained by directly polymerizing ethylene with a polar group-containing monomer but also a derivative of ethylene and a polar group-containing monomer during polymerization.
  • a copolymer such as ethylene is copolymerized with vinyl acetate, a vinyl alcohol copolymer and polyvinyl butyral derived in a polymerization reaction should also be included in the meaning of a copolymer of ethylene and a polar monomer.
  • the copolymer of ethylene and a polar monomer is preferably a copolymer of ethylene and vinyl acetate (EVA), and the amount of EVA per 100 parts by weight of the unit polymer matrix is preferably 0 to 70 parts by weight, EVA
  • the range of the melt index is preferably 14 to 45 g/10 min, more preferably 13 to 30 g/10 min, still more preferably 10 to 20 g/10 min, still more preferably 5 to 10 g/10 min, or 10 to 15 g/10 min, or 15 to 20 g/ 10min.
  • the main purpose is to improve the light transmittance of the composition by adding a small amount of EVA, and provide a certain adhesiveness, effectively reducing the amount of the binder and the radical initiator, due to the low cost of the EVA.
  • POE it is also possible to reduce the production cost of the film.
  • the main purpose is to improve the weathering, aging resistance and yellowing resistance of EVA by introducing saturated polyolefin into EVA, and to improve volume resistivity and water vapor barrier property, and to improve electrical insulation.
  • the highly branched polyethylene has a better fluidity with respect to POE, so it can be more easily mixed with EVA evenly, and the aforementioned beneficial effects are exerted.
  • a further technical solution is to further comprise 0.01 to 20 parts by weight, based on 100 parts by weight of the unit polymer matrix, of a processing aid which initiates or promotes a radical reaction.
  • a further technical solution is to further comprise 0.05 to 10 parts by weight of a radical initiator based on 100 parts by weight of the unit polymer matrix.
  • the radical reaction includes at least one of a crosslinking reaction between the polymer matrix or a graft reaction between the polymer matrix and the reactive monomer.
  • the crosslinking reaction mode between the polymer matrices is selected from at least one of peroxide crosslinking, azo crosslinking, radiation crosslinking, photocrosslinking, and silane crosslinking.
  • the above crosslinking reaction mode may initiate crosslinking by a thermally activated initiator such as a peroxide or an azo compound, or may be photocrosslinked by sunlight or ultraviolet light in the presence of a photoinitiator, or may be irradiated by radiation.
  • a thermally activated initiator such as a peroxide or an azo compound
  • photocrosslinked by sunlight or ultraviolet light in the presence of a photoinitiator or may be irradiated by radiation.
  • the thermal initiator described in the present invention may specifically be selected from the group consisting of di-tert-butyl peroxide, dicumyl peroxide, t-butyl cumyl peroxide, and 1,1-di-tert-butyl peroxide-3.
  • the radiation source may be selected from at least one of infrared radiation, electron beam, beta ray, gamma ray, x-ray, and neutron ray, and an appropriate amount of a conventional radiation sensitizer may be added.
  • the light source may be selected from sunlight or ultraviolet light.
  • the photoinitiator includes organic carbonyl compounds such as benzophenone, benzofluorenone, benzoin and its alkyl ether, 2,2-diethoxy Acetophenone, 2,2-dimethoxy-2-phenylacetophenone, p-phenoxydichloroacetophenone, 2-hydroxycyclohexyl phenyl ketone, 2-hydroxyisopropyl phenyl ketone And 1-phenylpropanedione-2-(ethoxycarboxy)anthracene. These initiators are used in a known conventional manner and in conventional amounts.
  • silane crosslinks When silane crosslinks are employed, vinyl silanes are employed, typically with simultaneous application of water vapor, and it is generally preferred to use one or more hydrolysis/complexation catalysts.
  • catalysts include Lewis acids such as dibutyltin dilaurate, dioctyltin dilaurate, stannous octoate, and acid sulfonates (e.g., sulfonic acids).
  • the radical processing aid further comprises a radical activator.
  • the radical activator of the invention can prolong the life of the macromolecular radical generated by the hydrogen abstraction of the initiator, and has an auxiliary effect on the grafting reaction and the cross-linking curing.
  • the radical activator can be selected from the group consisting of triallyl cyanurate, triallyl isocyanurate, ethylene glycol dimethacrylate, triethyl methacrylate Diester, triallyl trimellitate, trimethylolpropane trimethacrylate, N, N'-m-phenylene bismaleimide, N, N'-bis-decylene acetone, low At least one of molecular weight 1,2-polybutadiene.
  • the radical activator is used in an amount of from 0 to 10 parts by weight, preferably from 0.05 to 2 parts by weight, per 100 parts by weight of the polymer base.
  • triallyl cyanurate triallyl isocyanurate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, trimethylolpropane trimethacrylate can also be used.
  • a radiation sensitizer As a radiation sensitizer.
  • the grafting reaction described in the present invention means that certain properties of the polyolefin can be purposefully imparted by introducing a functional monomer to the polymer molecular chain, the functional monomer comprising at least one ethylenic unsaturation.
  • the functional monomer may be referred to as a tackifier, preferably a polar monomer further comprising at least one polar group, the polar group of which may be selected At least one of a carbonyl group, a carboxylate group, a carboxylic anhydride group, a siloxane group, a titanyl group, and an epoxide group.
  • the polar monomer preferably contains a siloxane-based silane coupling agent, wherein the silane coupling agent used has a functional group such as at least one of a vinyl group, an acryl group, an amino group, a chlorine group, and a phenoxy group.
  • the tackifier used may be selected from the group consisting of vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris(methoxyethoxy)silane, vinyltriacetoxysilane, ⁇ - At least one of (meth)acryloxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane or ⁇ -ketoacryloxypropyltrimethoxysilane.
  • the silane coupling agent may be used in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the polymer matrix, wherein, in order, preferably 0.5 to 5 parts by weight, 1 to 5 parts by weight, and 1 to 4 parts by weight Parts or 1 to 3 parts by weight.
  • the amount of the silane coupling agent is less than 0.1 parts by weight, the adhesive properties of the prepared encapsulating composition may be deteriorated.
  • the content of the silane coupling agent exceeds 5 parts by weight, more radical initiator should be used in consideration of the reaction efficiency, so that it is difficult to control the physical properties of the encapsulating composition, and the physical properties of the encapsulating composition. May be degraded.
  • the tackifier of the present invention may also be a titanate coupling agent, which may be added in a conventional amount.
  • the tackifier of the present invention may also be a composite tackifier composed of a silane coupling agent and a titanate coupling agent, which may be added in a conventional amount, preferably 0.2 to 2 parts by weight, and a silane in the composite tackifier.
  • the coupling agent is preferably used in a specific gravity of more than 70%.
  • the tackifier of the present invention may also be selected from organic compounds containing at least one ethylenic unsaturation (e.g., a double bond) and a carbonyl group.
  • Suitable and common polar monomers are carboxylic acids, anhydrides, esters and their metallic and non-metallic salts.
  • An organic compound containing ethylenic unsaturation conjugated to a carbonyl group preferably selected from the group consisting of maleic acid, fumaric acid, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, alpha-methyl crotonic acid, and cinnamon At least one of an acid and their anhydrides, esters and salt derivatives. Among them, maleic anhydride is a preferred one.
  • the tackifying organic compound may be used in an amount of 0.01 to 10 parts, preferably 0.05 to 5 parts, more preferably 0.1 to 2 parts, based on 100 parts by weight of the polymer base.
  • All of the above-mentioned polar monomers for tackifying are usually grafted onto the polymer matrix by any conventional method in the presence of a radical initiator such as a peroxide and an azo compound, or by ionizing radiation or the like.
  • the polymer matrix modified by grafting is preferably a highly branched polyethylene (P1).
  • a specific conventional grafting method may be: adding the polymer to a two-roll mill and mixing at a suitable temperature such as 60 ° C, and then bringing the unsaturated organic compound together with a radical initiator such as benzoyl peroxide. Add, and the components are mixed at 30 ° C until the grafting is completed.
  • a suitable temperature such as 60 ° C
  • a radical initiator such as benzoyl peroxide
  • Add, and the components are mixed at 30 ° C until the grafting is completed.
  • Another type of grafting process is similar, except that the reaction temperature is higher, for example from 210 ° C to 300 ° C, without the use of a free radical initiator, or with a reduced concentration, as described in U.S. Patent 5,194,509.
  • the polymer matrix further comprises a graft polymer to provide adhesion, the grafted polymer being typically selected from the group consisting of polyolefins, more typically selected from the foregoing highly branched polyethylenes. (P1) and polyolefin (P2) different from highly branched polyethylene, preferably P1. At least a portion of P1 and/or P2 is grafted with the graft material by a conventional grafting reaction, and the unsaturated organic compound used is preferably a vinyl silane coupling agent or maleic anhydride.
  • the adhesive composition may be formulated without a tackifier or olefin-free.
  • the copolymer of a polar monomer may further contain no radical initiator for the purpose of producing a thermoplastic film, but when the modification method is graft modification, it is equivalent to a part of the encapsulating composition.
  • the polymer and the tackifier are reacted first by a free radical grafting reaction or by other means such as grafting at a high temperature, so in this case, a copolymer containing no olefin and a polar monomer and no tackifier is contained.
  • Technical solutions, as well as further technical solutions free of free radical initiators, are still within the scope of the technical solution of the invention.
  • tertiary carbon atoms of the highly branched polyethylene (P1) of the present invention may be located on the branch, these tertiary carbon atoms on the branch are more susceptible to movement relative to the tertiary carbon atoms on the backbone.
  • the tertiary carbon atom is most susceptible to external action to generate free radicals, and further crosslinks by free radical bonding.
  • the tertiary carbon atoms of the commonly used ethylene- ⁇ -olefin copolymers such as ethylene-octene copolymers or ethylene homopolymers in the prior art are generally located in the main chain, and the movement is not free and the steric hindrance is large during the crosslinking process.
  • the proportion of tertiary carbon atoms in highly branched polyethylene is generally higher than that of commonly used ethylene- ⁇ -olefin copolymers and ethylene homopolymers, and because some of the tertiary carbon atoms are distributed on the branches, the steric hindrance is small and the space is small. The movement is relatively free, which is conducive to rapid cross-linking curing. And because part of the tertiary carbon atom is located on the branch, the ⁇ chain scission is reduced to some extent, which leads to the influence of the main chain scission on the overall performance of the polymer.
  • the tertiary carbon atom is relatively easy to generate free radicals under the action of the radical initiator, and further with a tackifier (for example, a silane coupling agent).
  • a tackifier for example, a silane coupling agent.
  • the grafting reaction takes place to obtain a modified polyolefin. Therefore, increasing the content of tertiary carbon atoms in the molecular chain of the polyolefin helps to improve the grafting efficiency with the silane coupling agent, which contributes to the improvement of the viscosity-increasing effect or reduces the silane coupling while satisfying the same adhesive performance requirements.
  • the amount of the coupling agent and the free radical initiator reduces the cost.
  • ethylene-octene copolymers are most commonly used, but each long chain branch corresponds to only one tertiary carbon atom, and the tertiary carbon atoms are all located in the main chain, and the tertiary carbon atoms are in the polymerization.
  • the proportion of the total number of carbon atoms is generally not higher than 5%, and highly branched polyethylene can generally have more tertiary carbon atoms due to the unique branched structure, and the proportion of tertiary carbon atoms in the total number of carbon atoms in the polymer is generally Not less than 5%, and some of the tertiary carbon atoms may be located on the branch, which somewhat reduces the influence of the beta chain scission on the overall performance of the polymer, so the highly branched polyethylene is partially or completely replaced in the prior art.
  • the ethylene-octene copolymer under the same modification conditions, can impart better grafting efficiency and adhesion properties to the whole.
  • the highly branched polyethylene in the polymer matrix is grafted with all the silane coupling agent and the necessary free radical initiator, which can have higher grafting efficiency and grafting conditions. It can be varied, but the melting temperature is usually between 160 and 260 ° C, preferably between 190 and 230 ° C, depending on the residence time and the half-life of the initiator, and the highly branched polyethylene can have good fluidity by itself. It is more evenly dispersed throughout the blending process with the rest of the components.
  • the radical initiator may be used in an amount of 0.005 to 10 parts by weight, preferably 0.05 to 10 parts by weight, further preferably 0.05 to 5 parts by weight per 100 parts by weight of the polymer base.
  • the radical initiator may contain a radical initiator in the range of 0.005 to 5 parts by weight, or 0.05 to 3 parts by weight.
  • the content of the radical initiator is less than 0.005 parts by weight, the generation of active radicals is lowered, thereby reducing the grafting efficiency between the tackifier and the polymer matrix.
  • it exceeds 5 parts by weight the generation of active radicals is increased to form more side reactions.
  • the purpose is to obtain a crosslinked polyolefin composition
  • it may contain 0.1 to 10 parts by weight of a radical initiator, preferably 0.1 to 5 parts by weight, 0.2 to 4 parts by weight, 1 to 4.5 parts by weight or 1 to 1 part by weight. 4 parts by weight.
  • a radical initiator preferably 0.1 to 5 parts by weight, 0.2 to 4 parts by weight, 1 to 4.5 parts by weight or 1 to 1 part by weight. 4 parts by weight.
  • the amount of the radical initiator is less than 0.1 part by weight, the efficiency of the process is too low, and the degree of crosslinking of the prepared encapsulating composition is insufficient to impart sufficient crosslinking degree and creep strength to the polyolefin composition.
  • the amount of the radical initiator exceeds 10 parts by weight, an increase in the production of a large amount of active radicals causes a large amount of side reactions, for example, a ⁇ -fragmentation reaction occurs in the molecular main chain due to the presence of a branched structure, thereby causing a polyolefin.
  • the physical properties of the composition are reduced.
  • the polyolefin composition of the present invention comprises a scorch retarder and an antioxidant, which further comprises an ultraviolet absorber, a light stabilizer, a glass fiber, a plasticizer, and a nucleation. At least one of an agent, a chain extender, a flame retardant, an inorganic filler, a thermally conductive filler, a metal ion scavenger, a colorant, a whitening agent, and an antireflective modifier.
  • the amount of the scorch retarder is 0 to 2 parts by weight based on 100 parts by weight of the polymer base; the amount of the ultraviolet absorber is 0 to 2 parts by weight, preferably 0.05 to 1 part by weight, and 0.1 to 0.8 parts by weight, in turn; antioxidant The amount is 0 to 5 parts by weight, preferably 0.1 to 1 part by weight, and 0.2 to 0.5 part by weight, and the light stabilizer is used in an amount of 0 to 5 parts by weight, preferably 0.05 to 2 parts by weight, and 0.1 to 1 part by weight in this order.
  • thermally activated free radical initiators to promote crosslinking of thermoplastic materials is that they can cause premature crosslinking, ie coking, prior to compounding and/or the actual stage of curing of the polyolefin desired throughout the processing.
  • the gel particles produced by coking can adversely affect the uniformity of the final product.
  • excessive coking also reduces the plastic properties of the material, making it inefficient for processing, and it is likely that the entire batch will be lost. Therefore, the present invention can also add a scorch retarder to suppress coking.
  • a commonly used coking inhibitor for compositions containing free radical (especially peroxide) initiators is 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl radical Also known as 4-hydroxy-TEMPO.
  • the scorch inhibitor is used in an amount of from 0 to 2 parts by weight, preferably from 0.01 to 1.5 parts by weight, based on 100 parts by weight of the unit polymer base, more preferably from 10% to 50% by weight of the radical initiator.
  • the antioxidant according to the present invention may be selected from at least one of a hindered phenol or a phosphite antioxidant, and preferably a hindered phenol antioxidant and a phosphite antioxidant. Specifically, it may be selected from 2,2'-methylenebis(4-methyl-6-tert-butylphenol), 2,2'-methylenebis(4-ethyl-6-tert-butylphenol), Pentaerythritol tetrakis(3,5-di-tert-butyl-4-hydroxy)phenylpropionate, bis(2,4-dicumylphenyl)pentaerythritol diphosphite, distearyl pentaerythritol diphosphite, three (nonylphenyl) phosphite, tris(2,4-di-tert-butylphenyl)phosphite, tris(1,2,2,6,6-pentamethylpiperidine)pho
  • the types and amounts of the glass fibers or glass bubbles of the present invention are well known to those skilled in the art and can effectively control the heat shrinkage deformation of the film-like polyolefin material.
  • the invention may also add a plasticizer to improve processing rheology, improve production efficiency and molding uniformity;
  • the plasticizer is selected from the group consisting of paraffin mineral oil, naphthenic oil and aromatic mineral oil; preferably paraffin mineral oil, in addition,
  • the plasticizer can also improve the wettability of the composition to the adherend and further improve the adhesion properties.
  • the plasticizer at least one selected from the group consisting of phthalic acid esters, sebacic acid esters, adipates, and tricresyl phosphates may also be selected.
  • the flame retardant may be added to the present invention, and the flame retardant may be selected from one or more of nano aluminum hydroxide, nano magnesium hydroxide, nano silicon dioxide, nano zinc oxide and nano titanium dioxide, and may be further selected.
  • One or more selected from the group consisting of nano-aluminum hydroxide, nano-magnesium hydroxide, nano-silica, nano-zinc oxide and nano-titanium dioxide, which may be selected from phosphate ester flame retardants, such as bisphenol One or more of A bis(diphenyl phosphate), triphenyl phosphate, and resorcinol bis (diphenyl phosphate) may also be selected from microencapsulated intumescent flame retardants, such as microencapsulation. Melamine polyphosphate borate.
  • the different classes of flame retardants described above can also be formulated for use in accordance with prior art in the art.
  • the polyolefin composition of the present invention may also be added with an inorganic filler for coloring, reinforcing or reducing costs, such as one of carbon black, silica, titania, alumina, calcium carbonate, montmorillonite, carbon nanotubes or A variety.
  • an inorganic filler for coloring, reinforcing or reducing costs such as one of carbon black, silica, titania, alumina, calcium carbonate, montmorillonite, carbon nanotubes or A variety.
  • the polyolefin composition of the present invention when used as an encapsulating film for a solar electronic component, it preferably contains a functional filler such as an ultraviolet absorber, a light stabilizer, a nucleating agent, an antireflection modifier, and the like.
  • a functional filler such as an ultraviolet absorber, a light stabilizer, a nucleating agent, an antireflection modifier, and the like.
  • the ultraviolet absorber according to the present invention is selected from the group consisting of benzophenones or benzotriazoles; the light stabilizer is selected from hindered amines or piperidine compounds, preferably benzotriazole ultraviolet absorbers and hindered amine light Stabilizers are used in combination.
  • the ultraviolet absorber of the present invention is selected from the group consisting of benzophenone compounds such as 2-hydroxy-4-methoxybenzophenone, 2,2-dihydroxy-4-methoxybenzophenone, 2-hydroxyl -4-n-octyloxybenzophenone; benzotriazole compound, such as 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)-benzotriazole, 2-(2 '-Hydroxy-5'-methylphenyl)-benzotriazole; salicylate compounds such as phenyl salicylate, p-octylphenyl salicylate.
  • benzophenone compounds such as 2-hydroxy-4-methoxybenzophenone, 2,2-dihydroxy-4-methoxybenzophenone, 2-hydroxyl -4-n-octyloxybenzophenone
  • benzotriazole compound such as 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)
  • the light stabilizer of the present invention is selected from the group consisting of bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, bis(1-octyloxy-2,2,6,6 -tetramethyl-4-piperidinyl) sebacate, 4-(meth)acryloyloxy-2,2,6,6-tetramethylpiperidine polymerized with an ⁇ -olefin monomer Graft copolymer, n-hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, tris(1,2,2,6,6-pentamethylpiperidine) phosphite, succinic acid and At least one of polymers of 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinol.
  • the invention may also add a nucleating agent to make the composition nucleate heterogeneously during the crystallization process, reduce the grain size and increase the light transmittance, and the nucleating agent is selected from the group consisting of dibenzylidene sorbitol and its derivatives: Benzylidene sorbitol, 1,3:2,4-di-p-methylbenzylidene sorbitol, 1,3:2,4-di(p-ethyl)benzyl sorbitol and di-(3,4-dimethyl At least one of benzylidene) sorbitol is preferably 1,3:2,4-di-p-methylbenzylidene sorbitol.
  • the invention can also add an anti-reflection modifier, participate in the crosslinking reaction through the anti-reflecting agent, further destroy the crystal structure of the polyolefin, and improve the light transmittance.
  • the anti-reflection modifier may be selected from the group consisting of ethylene-methyl methacrylate copolymer, difunctional aliphatic urethane acrylate prepolymer, difunctional epoxy acrylate prepolymer, and difunctional polypolymer.
  • the anti-reflection modifier is preferably used in an amount of 0.1 to 1.5 parts by weight, more preferably 0.5 to 1 part by weight, per 100 parts by weight of the polymer base.
  • the present invention may also add one or more of a chain extender, a colorant, a whitening agent, a binding additive (e.g., polyisobutylene), etc., to achieve or improve the corresponding properties known in the art.
  • a chain extender e.g., polyisobutylene
  • a colorant e.g., polyisobutylene
  • a binding additive e.g., polyisobutylene
  • the present invention also provides a wire and cable whose insulating layer material comprises any of the above polyolefin compositions.
  • the present invention also provides a sheet, sheet or coil comprising any of the above polyolefin compositions.
  • the web may be a waterproof roll.
  • the polyolefin composition of the present invention can be used as a sealing material having a film form, a ring shape or a strip form.
  • the present invention also provides an electronic device assembly comprising: at least one electronic device and an encapsulating material in intimate contact with at least one surface of the electronic device device, the encapsulating material being the film-like polyolefin composition described above.
  • the electronic device provided by the present invention is a solar cell, and the electronic device component is a solar cell module.
  • the invention provides a solar cell module having at least one encapsulating film in the structure, and at least one layer of the encapsulating film used comprises the above encapsulating composition.
  • the term "solar” as used in the present invention may be equivalent to "photovoltaic".
  • a solar cell module can also be understood as a photovoltaic cell component.
  • the invention provides a solar cell module with a double-layer encapsulation film, comprising a supporting back plate, a solar power generating body (electronic device), a light receiving substrate and an encapsulating film, wherein the encapsulating film is supported on the back plate and There is a layer between the solar power generating bodies and between the light receiving substrate and the solar power generating body, wherein at least one of the sealing films comprises the above package composition.
  • the solar power generation main body is a crystalline silicon solar cell sheet or a thin film solar cell sheet.
  • the above-mentioned support backing plate is used to protect the back side of the solar cell module from the external environment, and it requires weather resistance.
  • the support back sheet includes a glass plate, a metal plate such as a foil (or aluminum), a fluororesin sheet, a cyclic polyolefin resin sheet, a polycarbonate resin sheet, a polyacrylic resin sheet, a polymethacryl resin sheet, At least one of a polyamide resin sheet, a polyester resin sheet, or a composite sheet in which a weather resistant film and a barrier film are laminated.
  • the light-receiving substrate formed on the solar power generation main body can realize the function of protecting the internal solar power generation main body from weather, external impact or fire, and ensuring long-term exposure of the solar cell module outdoors. reliability.
  • the light-receiving substrate of the present invention is not particularly limited as long as it has excellent light transmittance, electrical insulation, and mechanical or physicochemical strength, and for example, a glass plate, a fluororesin sheet, a cyclic polyolefin resin sheet, or the like can be used. At least one of a polycarbonate resin sheet, a polyacryl resin sheet, a polymethacryl resin sheet, a polyamide resin sheet, a polyester resin sheet, and the like. In the embodiment of the invention, a glass plate having excellent heat resistance can be preferably used.
  • the invention provides a solar cell module with a single-layer encapsulation film, which comprises a supporting backing plate, a solar power generating body, a light receiving substrate and an encapsulating film, wherein the encapsulating film is between the supporting backing plate and the solar power generating body Or between the light-receiving substrate and the solar power generating body, which comprises the above-described encapsulating composition.
  • the single-layer film-packaged solar cell module may be a thin film type solar cell module, and the solar power generating body may be generally formed on a light-receiving substrate composed of a ferroelectric material by a chemical vapor deposition method.
  • the apparatus prepares the above solar cell module.
  • the present invention provides a double glazing using an encapsulating material comprising the above encapsulating composition.
  • the present invention provides an encapsulating material comprising the above encapsulating composition.
  • the above encapsulating material has a structural form of a sheet or a film.
  • a method of preparing an encapsulant film comprising the above encapsulating composition comprising the steps of:
  • Step 1 The polymer matrix, the tackifier and the free radical initiator are uniformly mixed with the remaining components and then blended and extruded into the extruder in one time.
  • the remaining components refer to the polymer matrix in the encapsulating composition. a component other than a tackifier or a free radical initiator;
  • Step 2 The extrudate is cast into a film
  • Step 3 Cooling and pulling for shaping
  • Step 4 the final winding is available.
  • a method of preparing an encapsulant film comprising the above encapsulating composition comprising the steps of:
  • Step a a part or all of the polymer matrix, all tackifiers, 3% to 20% by weight of the tackifier, the free radical initiator is first blended by an extruder, grafted, and extruded to obtain a graft modified Polymer matrix material A;
  • Step b the polymer matrix A and the remaining components are uniformly mixed and then put into an extruder for blending and extruding, and the remaining components refer to components other than the polymer matrix A in the encapsulating composition;
  • Step c the extrudate is cast into a film
  • Step d cooling, and pulling for shaping
  • Step e the final winding is obtained.
  • the polymeric material of the electronic device assembly of the present invention in intimate contact with at least one surface of the electronic device is a coextruded material wherein at least one outer skin layer does not contain peroxide. If the extrusion material comprises three layers, the surface layer in contact with the component contains no peroxide and the core layer contains peroxide. The outer skin has good adhesion to the glass.
  • the electronic device in the electronic device assembly of the present invention is encapsulated in an encapsulating material, ie, completely within or encased in the encapsulating material.
  • the cap layer is treated with a silane coupling agent, such as gamma-aminopropyltriethoxysilane.
  • the encapsulating material further comprises a graft polymer to increase its adhesion to one or both of the electronic device and the cover layer.
  • the graft polymer is typically prepared in situ simply by grafting the highly branched polyethylene with an unsaturated organic compound containing a carbonyl group, such as maleic anhydride.
  • One of the embodiments of the present invention provides a polyolefin composition
  • a polymer matrix comprising: 5 to 95 parts by weight of highly branched polyethylene, based on 100 parts by weight of the unit polymer matrix ( P1), 5 to 95 parts by weight of a polyolefin (P2) different from the highly branched polyethylene, the highly branched polyethylene being an ethylene homopolymer having a branched structure, having a branching degree of not less than 40 branches a chain/1000 carbons having a melting point of not higher than 130 ° C, which is obtained by homopolymerization of ethylene catalyzed by a late transition metal catalyst comprising a copolymer of ethylene and an ⁇ -olefin or At least one of ethylene homopolymers having a density of less than 0.94 g/cm 3 .
  • a second embodiment of the present invention provides a package composition comprising a polymer matrix, a radical initiator and a tackifier, wherein the highly branched polyethylene contained in 100 parts by weight of the polymer matrix is 5 to 100.
  • the olefin copolymer has a weight of from 0 to 95 parts by weight, and the copolymer of ethylene and the polar monomer is contained in an amount of from 0 to 70 parts by weight.
  • the amount of the radical initiator is 0.05 to 5 parts by weight
  • the amount of the tackifier is 0.1 to 5 parts by weight based on 100 parts by weight of the polymer matrix.
  • a third embodiment of the present invention provides an encapsulating composition comprising a polymer matrix, a tackifier and a free radical initiator, the polymer matrix being a highly branched polyethylene.
  • a fourth embodiment of the present invention provides an encapsulating material in the form of a sheet or film.
  • a fifth embodiment of the present invention provides a solar (photovoltaic) battery module comprising a solar (photovoltaic) cell, and an encapsulating material in intimate contact with the surface of the cell, the encapsulating material comprising the encapsulating composition of the present invention.
  • the synthesis method of the highly branched polyethylene used is obtained by catalyzing the homopolymerization of ethylene by coordination polymerization using a late transition metal catalyst, and the preferred transition metal catalyst may be one of ( ⁇ -diimine) nickel/palladium catalysts, from the cost. It is contemplated that the ( ⁇ -diimine) nickel catalyst, the structure of the ( ⁇ -diimine) nickel catalyst used, the synthesis method, and the method for preparing the branched polyethylene therefrom are disclosed prior art, and may be employed but not limited thereto.
  • the cocatalyst may be selected from one or more of diethylaluminum chloride, ethylaluminum dichloride, sesquiethylaluminum chloride, methylaluminoxane, and modified methylaluminoxane.
  • the highly branched polyethylene used can be adjusted to adjust the basic parameters such as the degree of branching, molecular weight and melting point by adjusting the structure of the catalyst and the polymerization conditions.
  • the highly branched polyethylene used in the present invention has a branching degree of not less than 40 branches/1000 carbons, further may be 45 to 130 branches/1000 carbons, and further preferably 60 to 116 branches/1000.
  • the weight average molecular weight may range from 50,000 to 500,000, further may be from 200,000 to 450,000; the melting point is not higher than 125 ° C, further may be -44 ° C to 101 ° C, and further may be -30 ° C to 80 ° C Further, the melt index measured at 40 ° C to 80 ° C under a load of 190 ° C and 2.16 kg is preferably from 1 to 30 g/10 min, more preferably from 5 to 25 g/10 min, still more preferably from 10 to 20 g/10 min. Or, 5 to 10 g/10 min, or 10 to 15 g/10 min, or 15 to 20 g/10 min, the amount of the highly branched polyethylene is preferably 70 to 100 parts by weight per 100 parts by weight of the unit polymer matrix.
  • the ethylene and ⁇ -olefin copolymer used is an ethylene-octene copolymer (POE).
  • the copolymer of ethylene and polar monomer used is an ethylene-vinyl acetate copolymer (EVA).
  • EVA ethylene-vinyl acetate copolymer
  • the free radical initiator used is a peroxide crosslinker such as t-butylperoxy-2-ethylhexyl carbonate.
  • the tackifier used is a silane coupling agent such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris(methoxyethoxy)silane.
  • an auxiliary component can be added to the encapsulating composition to achieve or improve various properties in a targeted manner.
  • Auxiliary components such as free radical activators, ultraviolet absorbers, light stabilizers, antioxidants, glass fibers, plasticizers, nucleating agents, chain extenders, flame retardants, inorganic fillers, scorch inhibitors, thermally conductive fillers, A metal ion scavenger, a colorant, a whitening agent, a leveling modifier, a binding additive, etc., and the auxiliary component is used in a conventional amount.
  • a method for preparing an encapsulating film comprising the above encapsulating composition comprising the steps of:
  • a part or all of the polymer matrix, all tackifiers, and 3% to 20% by weight of the tackifier are firstly subjected to graft modification by grafting, grafting and extruding through an extruder.
  • the extruder temperature is controlled at 50 to 210 °C.
  • the polymer matrix A and the remaining components are uniformly mixed and then put into an extruder for blending and extruding, and the extrudate is cast into a film, shaped by cooling and drawing, and finally obtained by a winding process.
  • the extruder temperature is controlled at 80 to 210 °C.
  • Preferred highly branched polyethylenes have the following characteristics: a branching degree of 46 to 130 branches/1000 carbons, a weight average molecular weight of 66,000 to 471,000, and a melting point of -44 to 101 °C.
  • the degree of branching was measured by nuclear magnetic resonance spectroscopy
  • the molecular weight and molecular weight distribution were measured by PL-GPC220
  • the melting point was measured by differential scanning calorimetry.
  • the sample was tested according to the spectrophotometer method of GB/T 2410-2008.
  • the wavelength range of the spectrophotometer is set to be 290 nm to 1100 nm.
  • the average values of the transmittances in the wavelength range of 290 nm to 380 nm and 380 nm to 1100 nm were respectively calculated.
  • At least three samples were tested in each group and the test results were averaged.
  • the light transmittance described in the embodiment of the present invention is a test result for a wavelength range of 380 nm to 1100 nm.
  • volume resistivity first put the sample into the laboratory of 23 °C ⁇ 2 °C, 50% ⁇ 5% RH, at least 48h; then according to the requirements of GB/T 1410-2006, at 1000V ⁇ 2V, The volume resistivity of the sample was tested under the condition of an electrochemical time of 60 min, and three samples were tested, and the results were averaged.
  • Humidification and heat aging resistance and yellowing index Firstly, all the samples are placed in a high temperature and high humidity aging test chamber, and the test conditions are set: temperature 85 °C ⁇ 2 °C, relative humidity 85% ⁇ 5%; test time is 1000h, after the end of the test, the sample was taken out, and after 2 to 4 hours of recovery in an open environment of 23 ° C ⁇ 5 ° C and relative humidity of less than 75%, the appearance inspection was carried out, and no appearance defects were required. Finally, the laminate test before and after the test was performed separately. The sample is measured according to ASTM E313, and each sample is measured by not less than 3 points. The yellow index of the sample is taken as the average value of the measured points, and the difference in yellow index change before and after aging is recorded.
  • Anti-PID performance test A voltage of -1000 V was applied at 85 ° C and 85 RH% for testing.
  • the packaged composition of the comparative polymer matrix of DOW ENGAGE 8137 and PER-15 was tested under the following formulation.
  • the vulcanization time Tc90 was tested according to the national standard GB/T16584-1996, and the test temperature was 150 °C.
  • the test duration is 30 minutes.
  • the formulation is 100 parts by weight of polymer matrix, 1 part by weight of vinyltrimethoxysilane, 1 part by weight of t-butylperoxy-2-ethylhexyl carbonate, 0.5 part by weight of triallyl isocyanurate, 0.25 Parts by weight of pentaerythritol tetrakis(3,5-di-tert-butyl-4-hydroxy)phenylpropanate, 0.15 parts by weight of bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate And 0.15 parts by weight of 2-hydroxy-4-n-octyloxybenzophenone.
  • the polymer matrix and the liquid component are soaked and mixed, and then the other components are blended and extruded in an extruder, the extrusion temperature is controlled at 90 ⁇ 1 ° C, and the residence time of the mixture in the extruder is 4 min.
  • the extrudate is subjected to a film formation, cooling, slitting, and coiling process to obtain a transparent encapsulating film having a thickness of 0.5 mm. Cut the sample and stack it into about 5 grams of the sample to be tested for testing.
  • the specific gravity of DOW ENGAGE 8137 and PER-15 in the polymer matrix and the corresponding Tc90 are shown in Table 1:
  • the encapsulating compositions of Examples 9 to 16 were kneaded by an internal mixer, and then calendered or extruded into a film having a film thickness of 0.5 mm, and flat glass and a TFT back sheet were attached to both surfaces of the film. The resulting laminate was then laminated in a vacuum laminator.
  • Example 15 By comparison of Example 8, Example 15 and Comparative Example 2, it can be found that partially or completely replacing the POE in the prior art with highly branched polyethylene can impart better crosslinking degree, light transmittance, and Volume resistivity and adhesion to glass.
  • the encapsulating film using the highly branched polyethylene as the polymer matrix has excellent transparency, and the solar cell using the encapsulating film has good power generation efficiency.
  • the encapsulating film with highly branched polyethylene as the polymer matrix has good peeling strength between the glass and the peeling strength between the glass after the heat and humidity aging resistance is much higher than that of the EVA encapsulant in the comparative example.
  • the film and the yellowing index are also much lower than the EVA encapsulating film in the comparative example, indicating that the encapsulating film with the highly branched polyethylene as the polymer matrix in the invention has excellent adhesive properties and moist heat aging resistance, and can be more Good for outdoor environments.
  • the novel encapsulating film provided by the invention adopts highly branched polyethylene whose molecular chain is all saturated hydrocarbon structure, so the high volume resistivity has a significant advantage in terms of electrical insulation relative to the EVA encapsulating film.
  • Example 16 By comparison of Example 16 and Comparative Example 3, it can be found that replacing some of the prior art EVA with highly branched polyethylene can significantly improve the moisture aging resistance of the EVA packaging film, reduce the yellowing index and improve the electrical insulation. It has improved the performance defects of the existing EVA packaging film, and although the bonding strength with the glass is reduced, it still meets the industry standard of more than 60N/cm.
  • An encapsulant film having a thickness of 0.5 mm was prepared by a package composition comprising 100 parts by weight of PER-13 (190 ° C, MI of 1.16 kg load of 1 g/10 min), 1 part by weight of vinyltrimethoxysilane, 1 part by weight of t-butylperoxy-2-ethylhexyl carbonate, 0.5 part by weight of triallyl isocyanurate, 0.05 part by weight of 4-hydroxy-TEMPO, 0.25 part by weight of four (3,5-di-tert Pentaerythritol ester of butyl-4-hydroxy)phenylpropanate, 0.15 parts by weight of bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, and 0.15 parts by weight of 2-hydroxy-4 - n-octyloxybenzophenone.
  • PER-13 190 ° C, MI of 1.16 kg load of 1 g/10 min
  • vinyltrimethoxysilane 1 part by weight of
  • the polymer matrix and the liquid component are soaked and mixed, and then the other components are blended and extruded in an extruder, the extrusion temperature is controlled at 90 ⁇ 1 ° C, and the residence time of the mixture in the extruder is 4 min.
  • the extrudate is subjected to a film formation, cooling, slitting, and coiling process to obtain an encapsulating film having a thickness of 0.5 mm.
  • the solar cell module was prepared by a lamination method at 145 ° C, wherein the encapsulant film was located between the glass cover plate and the solar cell, and also between the TPT back plate and the solar cell.
  • Anti-PID test After 192 hours of testing, the output power attenuation was 0.82%.
  • An encapsulant film having a thickness of 0.5 mm was prepared by a package composition comprising 90 parts by weight of PER-14 (190 ° C, MI of 2.16 kg load of 5 g/10 min), 10 parts by weight of maleic anhydride-modified ethylene.
  • 1-octene copolymer (graft content of MAH is 1 wt%, MI: 1.5 g/10 min), 1 part by weight of vinyltrimethoxysilane, 1 part by weight of t-butylperoxy-2-ethylhexyl carbonate Ester, 0.5 parts by weight of triallyl isocyanurate, 0.05 parts by weight of 4-hydroxy-TEMPO, 0.25 parts by weight of pentaerythritol tetrakis(3,5-di-tert-butyl-4-hydroxy)phenylpropionate, 0.15 by weight Bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate, and 0.15 parts by weight of 2-hydroxy-4-n-octyloxybenzophenone.
  • the polymer matrix and the liquid component are soaked and mixed, and then the other components are blended and extruded in an extruder, the extrusion temperature is controlled at 90 ⁇ 1 ° C, and the residence time of the mixture in the extruder is 4 min.
  • the extrudate is subjected to a film formation, cooling, slitting, and coiling process to obtain an encapsulating film having a thickness of 0.5 mm.
  • the solar cell module was prepared by a lamination method at 145 ° C, wherein the encapsulant film was located between the glass cover plate and the solar cell, and also between the TPT back plate and the solar cell.
  • Anti-PID test After 192 hours of testing, the output power attenuation was 0.88%.
  • An encapsulant film having a thickness of 0.5 mm was prepared by a package composition containing 70 parts by weight of PER-15 (190 ° C, MI at a load of 2.16 kg of 13 g/10 min), 30 parts by weight of Dow POE 8137, 1 part by weight.
  • Vinyltrimethoxysilane 1 part by weight of t-butylperoxy-2-ethylhexyl carbonate, 0.5 part by weight of triallyl isocyanurate, 0.25 parts by weight of tetrakis(3,5-di-tert-butyl Pentaerythritol 4-hydroxy) phenylpropionate, 0.15 parts by weight of bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, and 0.15 parts by weight of 2-hydroxy-4-positive Octyloxybenzophenone.
  • the polymer matrix and the liquid component are soaked and mixed, and then the other components are blended and extruded in an extruder, the extrusion temperature is controlled at 90 ⁇ 1 ° C, and the residence time of the mixture in the extruder is 4 min.
  • the extrudate is subjected to a film formation, cooling, slitting, and coiling process to obtain an encapsulating film having a thickness of 0.5 mm.
  • the solar cell module was prepared by a lamination method at 145 ° C, wherein the encapsulant film was located between the glass cover plate and the solar cell, and also between the TPT back plate and the solar cell.
  • Anti-PID test After 192 hours of testing, the output power attenuation was 0.81%.
  • An encapsulant film having a thickness of 0.5 mm was prepared by a package composition comprising 100 parts by weight of PER-18 (190 ° C, MI at a load of 2.16 kg of 30 g/10 min), 1 part by weight of vinyltrimethoxysilane, 1 part by weight of t-butylperoxy-2-ethylhexyl carbonate, 0.5 part by weight of triallyl isocyanurate, 0.05 part by weight of 4-hydroxy-TEMPO, 0.25 part by weight of four (3,5-di-tert Pentaerythritol ester of butyl-4-hydroxy)phenylpropanate, 0.15 parts by weight of bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, and 0.15 parts by weight of 2-hydroxy-4 - n-octyloxybenzophenone.
  • PER-18 190 ° C, MI at a load of 2.16 kg of 30 g/10 min
  • vinyltrimethoxysilane
  • the processing method is as follows: all the polymer matrix, all the silane coupling agent and the peroxide having a weight of 10% of the silane coupling agent are uniformly mixed, and then added to a twin-screw extruder for blending and extrusion.
  • the temperature of the feed end portion of the twin-screw extruder is 50 ° C
  • the temperature of the reactor portion injected with nitrogen is 210 ° C
  • the temperature of the outlet after the reaction is 140 ° C, to obtain a graft modified polymer matrix material A
  • the film was extruded through a twin-screw extruder and a T-die.
  • Nitrogen was injected into the extruder and the extrusion temperature was controlled to 110 °C.
  • the residence time of the mixture in the extruder was 4 min, and the extrudate was subjected to a film formation, cooling, slitting, and coiling process to obtain an encapsulating film having a thickness of 0.5 mm.
  • the solar cell module was prepared by a lamination method at 145 ° C, wherein the encapsulant film was located between the glass cover plate and the solar cell, and also between the TPT back plate and the solar cell.
  • Anti-PID test After 192 hours of testing, the output power attenuation was 0.83%.
  • Double glass solar cell module wherein the two layers of the battery component are transparent film:
  • An encapsulant film having a thickness of 0.5 mm was prepared by a package composition comprising 100 parts by weight of PER-16 (190 ° C, MI at a load of 2.16 kg of 13 g/10 min), 1 part by weight of vinyltrimethoxysilane, 1 part by weight of t-butylperoxy-2-ethylhexyl carbonate, 0.5 part by weight of triallyl isocyanurate, 0.05 part by weight of 4-hydroxy-TEMPO, 0.25 part by weight of four (3,5-di-tert Pentaerythritol ester of butyl-4-hydroxy)phenylpropanate, 0.15 parts by weight of bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, and 0.15 parts by weight of 2-hydroxy-4 - n-octyloxybenzophenone.
  • PER-16 190 ° C, MI at a load of 2.16 kg of 13 g/10 min
  • vinyltrimethoxysilane
  • the polymer matrix and the liquid component are soaked and mixed, and then the other components are blended and extruded in an extruder, the extrusion temperature is controlled at 90 ⁇ 1 ° C, and the residence time of the mixture in the extruder is 4 min.
  • the extrudate is subjected to a film formation, cooling, slitting, and coiling process to obtain an encapsulating film having a thickness of 0.5 mm.
  • the solar cell module is prepared by a lamination method at 145 ° C, wherein the solar cell is an N-type cell sheet, and the encapsulation film is located between the glass cover plate and the solar cell, and also between the glass cover plate and the solar cell.
  • Anti-PID test After 192 hours of testing, the output power attenuation was 0.63%.
  • the double-glass solar cell module has a transparent film on the upper layer and a white film on the lower layer:
  • An upper encapsulant film having a thickness of 0.5 mm was prepared by a package composition comprising 100 parts by weight of PER-16 (190 ° C, MI at a load of 2.16 kg of 13 g/10 min), 1 part by weight of vinyl trimethoxysilane 1 part by weight of t-butylperoxy-2-ethylhexyl carbonate, 0.5 part by weight of triallyl isocyanurate, 0.05 part by weight of 4-hydroxy-TEMPO, 0.25 parts by weight of tetrakis(3,5-di Pentaerythritol tert-butyl-4-hydroxy)phenylpropanate, 0.15 parts by weight of bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, and 0.15 parts by weight of 2-hydroxy- 4-n-octyloxybenzophenone.
  • PER-16 190 ° C, MI at a load of 2.16 kg of 13 g/10 min
  • the polymer matrix and the liquid component are soaked and mixed, and then the other components are blended and extruded in an extruder, the extrusion temperature is controlled at 90 ⁇ 1 ° C, and the residence time of the mixture in the extruder is 4 min.
  • the extrudate is subjected to a film formation, cooling, slitting, and coiling process to obtain a transparent encapsulating film having a thickness of 0.5 mm.
  • the lower encapsulant film having a thickness of 0.5 mm was prepared by a package composition containing 100 parts by weight of PER-16 (190 ° C, MI at a load of 2.16 kg of 13 g/10 min), 10 parts by weight of titanium oxide powder, and 1 part by weight.
  • Vinyltrimethoxysilane 1 part by weight of t-butylperoxy-2-ethylhexyl carbonate, 0.5 parts by weight of triallyl isocyanurate, 0.05 parts by weight of 4-hydroxy-TEMPO, 0.25 parts by weight of four Pentaerythritol (3,5-di-tert-butyl-4-hydroxy)phenylpropanate, 0.15 parts by weight of bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, and 0.15 Parts by weight of 2-hydroxy-4-n-octyloxybenzophenone.
  • the polymer matrix and the liquid component are soaked and mixed, and then the other components are blended and extruded in an extruder, the extrusion temperature is controlled at 90 ⁇ 1 ° C, and the residence time of the mixture in the extruder is 4 min.
  • the extrudate is subjected to a film formation, cooling, slitting, and coiling process to obtain a transparent encapsulating film having a thickness of 0.5 mm.
  • the solar cell module is prepared by a lamination method at 145 ° C, wherein the solar cell is an N-type cell sheet, the transparent encapsulation film is located between the upper glass cover plate and the solar cell, and the white film is located in the lower glass cover plate and the solar cell. between.
  • Anti-PID test After 192 hours of testing, the output power attenuation was 0.68%.
  • Double glass solar N-type double-sided battery assembly wherein the battery is an N-type double-sided battery, and the two layers of the component are transparent plastic film:
  • An encapsulant film having a thickness of 0.5 mm was prepared by a package composition comprising 100 parts by weight of PER-16 (190 ° C, MI at a load of 2.16 kg of 13 g/10 min), 1 part by weight of vinyltrimethoxysilane, 1 part by weight of t-butylperoxy-2-ethylhexyl carbonate, 0.5 part by weight of triallyl isocyanurate, 0.05 part by weight of 4-hydroxy-TEMPO, 0.25 part by weight of four (3,5-di-tert Pentaerythritol ester of butyl-4-hydroxy)phenylpropanate, 0.15 parts by weight of bis(2,2,6,6-tetramethyl-4-piperidyl)sebacate, and 0.15 parts by weight of 2-hydroxy-4 - n-octyloxybenzophenone.
  • PER-16 190 ° C, MI at a load of 2.16 kg of 13 g/10 min
  • vinyltrimethoxysilane
  • the polymer matrix and the liquid component are soaked and mixed, and then the other components are blended and extruded in an extruder, the extrusion temperature is controlled at 90 ⁇ 1 ° C, and the residence time of the mixture in the extruder is 4 min.
  • the extrudate is subjected to a film formation, cooling, slitting, and coiling process to obtain an encapsulating film having a thickness of 0.5 mm.
  • the solar cell module is prepared by a lamination method at 145 ° C, wherein the solar cell is an N-type double-sided cell sheet, and the encapsulation film is located between the glass cover plate and the solar cell, and also between the glass cover plate and the solar cell.
  • Anti-PID test After 192 hours of testing, the output power attenuation was 1.52%.
  • a package film :
  • the encapsulant film was prepared by a package composition comprising: 70 parts by weight of ethylene-1-octene copolymer (27% by weight of octene, 190 ° C, MI of 5 g/10 min under a load of 2.16 kg), 30 parts by weight of PER -19 (190 ° C, MI at a load of 2.16 kg is 5 g/10 min), 1 part by weight of vinyltriethoxysilane, 0.05 part by weight of 2,5-dimethyl-2,5-di(tert-butyl) Oxy)hexane, 0.25 parts by weight of pentaerythritol tetrakis(3,5-di-tert-butyl-4-hydroxy)phenylpropanate, 0.15 parts by weight of bis(2,2,6,6-tetramethyl-4-piperidin Pyridyl) sebacate, and 0.15 parts by weight of 2-hydroxy-4-n-octyloxybenzophenone.
  • Preparation method all PER-19, vinyltriethoxysilane and 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane in the composition in a twin-screw extruder Blending, grafting, and extruding to obtain a silane-modified highly branched polyethylene material, the extrusion temperature is controlled at 140 ° C; and the silane-modified highly branched polyethylene material and the remaining components are in the twin-screw
  • the mixture was extruded and extruded in an extruder, and then cast into a film, which was shaped by cooling and drawing to obtain an encapsulating film having a thickness of 0.5 mm.
  • a package film :
  • the encapsulant film was prepared by a package composition comprising: 20 parts by weight of an ethylene-1-octene copolymer (27% by weight of octene, 190 ° C, MI of 5 g/10 min under a load of 2.16 kg), 80 parts by weight of PER -19 (190 ° C, MI of 2.16 kg load is 5 g/10 min), 1 part maleic anhydride, 0.25 parts by weight of pentaerythritol tetrakis(3,5-di-tert-butyl-4-hydroxy)phenylpropionate, 0.15 weight Bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate, and 0.15 parts by weight of 2-hydroxy-4-n-octyloxybenzophenone.
  • Preparation method all PER-19 in the composition is melted in a twin-screw extruder at 140 ° C, and then injected with maleic anhydride, and blended and grafted at 265 ° C to obtain a MAH graft modified height branch.
  • the polyethylene material is further blended and extruded with the MAH modified highly branched polyethylene material in the twin-screw extruder, and then cast into a film, which is shaped by cooling and drawing to obtain a thickness of 0.5 mm. Encapsulation film.
  • This embodiment is a method for producing an electric wire, and the formulation of the insulating material and the kneading process are as follows: setting the temperature of the internal mixer to 110 ° C, the rotation speed of the rotor to 50 rpm, adding 50 parts of PER-16 and 50 parts of POE ( DOW ENGAGE 8150) pre-pressed and kneaded for 90 seconds; then added 5 parts of the radiation sensitizing co-crosslinking agent trimethylolpropane trimethyl methacrylate, kneaded for 3 minutes, and discharged.
  • the manufacturing process is specifically as follows: first, the strand is twisted, and then the insulating material is extruded through an extruder to form an insulating layer on the strand, and then irradiated and crosslinked at room temperature, and the electron beam energy used for the irradiation is 1.0. MeV, the beam intensity is 1.0 mA, the irradiation dose is 100 kGy, and a wire product is obtained after product inspection.
  • the encapsulating film comprising the encapsulating composition of the invention has excellent weather resistance, aging resistance, yellowing resistance, electrical insulation and good optical properties and bonding in the case of a high content of highly branched polyethylene.
  • Performance compared to the existing EVA packaging film and POE packaging film, the advantages are obvious.
  • the production cost of highly branched polyethylene is theoretically significantly lower than POE, and the crosslinking speed Higher than POE, it can reduce the time cost and increase the production efficiency for the PV module supplier. Therefore, from the perspective of performance and cost, the solution of the present invention has obvious advantages over the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了一种聚烯烃组合物及其应用,主要涉及其在太阳能电池封装胶膜中的应用。一种聚烯烃组合物,包含聚合物基体,所述聚合物基体包含高度支化聚乙烯(P1)和不同于高度支化聚乙烯的聚烯烃(P2),其中高度支化聚乙烯为具有支链结构的乙烯均聚物,其支化度不低于40个支链/1000个碳,由后过渡金属催化剂催化乙烯聚合得到;聚烯烃(P2)包含不同于高度支化聚乙烯的结晶性聚乙烯或者乙烯与α-烯烃共聚物。其有益效果是,通过向聚合物基体中引入高度支化聚乙烯(P1),可以提高聚烯烃聚合物发生自由基反应如接枝反应和交联反应的速度和效率,并减小β断链导致主链断链的发生概率。

Description

一种聚烯烃组合物及其应用 技术领域
本发明涉及到一种聚烯烃组合物,还涉及到该聚烯烃组合物的制备方法和应用。
背景技术
只含碳氢元素且分子链饱和的聚烯烃材料是一类应用非常广泛的材料。
蠕变是聚烯烃材料的基本属性,在中密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯和烯烃共聚弹性体中较为普遍。为了改善使用效果,在实际应用过程中往往会通过使之交联固化的方法来减缓或抑制聚烯烃材料的蠕变。
非极性的聚烯烃材料粘接性差,应用场合也因此受限。在实际应用中往往会通过将聚烯烃材料与极性单体接枝改性使其具备良好的粘性。
上述交联固化或接枝改性都涉及自由基反应。对于只含碳氢元素且分子链饱和的聚烯烃,自由基反应容易发生在叔碳原子上,但现有的通用聚烯烃材料的叔碳原子数较少,且一般存在于聚合物分子链的主链上,在实际反应过程中存在两个问题:一个是由于主链整体的限制,当反应发生在主链上的叔碳原子时,遇到的空间位阻较大,影响反应速度和效率;另一个是有可能因为发生β断链而影响聚烯烃材料的性能。
发明内容
本发明的目的在于针对现有技术中的问题,提供一种具有较高的自由基反应速率的聚烯烃材料组合物,并且有望减小β断链对聚烯烃材料性能的影响。
为了实现上述目的,在本发明的一种实施方式中,本发明的技术方案是提供一种聚烯烃组合物,其包含聚合物基体,按100重量份单位聚合物基体计,所述聚合物基体包含:1~99重量份高度支化聚乙烯(P1),1~99重量份不同于高度支化聚乙烯的聚烯烃(P2),所述高度支化聚乙烯为具有支链结构的乙烯均聚物,其支化度不低于40个支链/1000个碳,熔点不高于130℃,其由后过渡金属催化剂催化乙烯均聚得到,所述不同于高度支化聚乙烯的聚烯烃(P2)包含乙烯与α-烯烃的共聚物或者密度低于0.94g/cm 3的乙烯均聚物中的至少一种。
进一步的技术方案中,按100重量份单位聚合物基体计,上述聚合物基体包含:5~95重量份高度支化聚乙烯(P1),5~95重量份不同于高度支化聚乙烯的 聚烯烃(P2),高度支化聚乙烯在聚合物基体中的含量优选不低于30重量份,进一步优选不低于50重量份,进一步优选不低于70重量份。
在本发明的另一种实施方式中,本发明的技术方案是提供一种封装组合物,其包含聚合物基体,增粘剂和自由基引发剂,其特征在于,按100重量份单位聚合物基体计,所述聚合物基体包含高度支化聚乙烯5~100重量份(P1),不同于高度支化聚乙烯的聚烯烃(P2)0~95重量份,乙烯与极性单体的共聚物0~70重量份。
所述聚烯烃P2包含不同于高度支化聚乙烯的结晶性聚乙烯、丙烯均聚物、乙烯与α-烯烃的共聚物中的至少一种。
所述高度支化聚乙烯(P1)由后过渡金属催化剂基于“链行走机理”催化乙烯均聚得到,优选的过渡金属催化剂可以为(α-二亚胺)镍/钯催化剂的其中一种,所述高度支化聚乙烯(P1)的部分支链存在于支链上,即有部分叔碳原子位于支链上。所述的链行走机理的本质是指后过渡金属催化剂,如(α-二亚胺)镍/钯催化剂在催化烯烃聚合过程中较为容易发生β-氢消除反应,从而导致支链产生。
另一种技术方案是,本发明提供一种电子器件组件,其包括:至少一个电子器件和与所述电子器件的至少一个表面密切接触的封装材料,所述封装材料包含聚合物基体和增粘剂,其中按100重量份单位聚合物基体计,聚合物基体包含:5~100重量份高度支化聚乙烯(P1),0~95重量份不同于高度支化聚乙烯的聚烯烃(P2),所述高度支化聚乙烯(P1)为有支链结构的乙烯均聚物,并且其支化度不低于40个支链/1000个碳。
“密切接触”等术语是指封装材料与器件或其它制品的至少一个表面接触,方式类似于涂层与基板的接触,例如,在封装材料和器件的表面之间存在很小的间隙或空隙(如果存在的话),并且所述材料显示出与器件表面的良好或优异的粘着力。在将所述封装材料挤出或通过其它方法施用至所述电子器件的至少一个表面之后,所述材料通常形成和/或固化成膜,所述膜可以或者为透明的或者为不透明的,并且可为或者柔性的或者刚性的。
所述组件还可包括一个或多个其它物件,例如一个或多个玻璃盖片,并且在这些实施方式中,封装材料通常以夹心的构型位于电子器件和玻璃盖片之间。如果将封装材料作为胶膜施用到与电子器件相对的玻璃盖片的表面上,那么与玻璃盖片的表面接触的该膜的表面可以为光滑的或者不平坦的,例如,压花的或者纹 理化的。
在高度支化聚乙烯(P1)的聚合过程中,可以通过调节催化剂的结构以及聚合条件来实现对其支化度、分子量以及熔点的调节。具体方式有,在催化体系一定的情况下,当聚合温度较高,聚合压力较低时,制备出的产物具有较高的支化度、较低的分子量和熔点,当聚合温度较低,聚合压力较高时,制备出的产物具有较低的支化度、较高的分子量和熔点。说明书中所述分子量由PL-GPC220测得,单位均为g/mol。
本发明采用的高度支化聚乙烯其支化度不低于40个支链/1000个碳,进一步优选为45~130个支链/1000个碳,再进一步优选为60~116个支链/1000个碳;重均分子量范围为5万~50万,进一步优选为20万~45万;熔点不高于125℃,优选为-44℃~101℃,进一步优选为-30℃~80℃。每100重量份单位聚合物基体中,高度支化聚乙烯的用量优选为20~99重量份,再进一步优选为30~80重量份。本发明采用的高度支化聚乙烯其支化度还可以优选为60~85个支链/1000个碳,重均分子量还可以优选为10万~20万,分子量分布优选为1.3~3.5,熔点还可以优选为40~80℃,在190℃和2.16kg的负载下测得的熔融指数优选为1~30g/10min,还可以优选为5~25g/10min,进一步优选为10~20g/10min,或者5~10g/10min,或者10~15g/10min,或者15~20g/10min。
进一步优选的方案是与不同于高度支化聚乙烯的聚烯烃(P2)具有相近的熔点,可以避免因为熔点相差过大而发生相分离,混合不良。
所述的所述不同于高度支化聚乙烯的聚烯烃(P2)中的乙烯与α-烯烃的共聚物中的α-烯烃具有3~30个碳原子,所述α-烯烃的包括丙烯、1-丁烯、1-戊烯、3-甲基-丁烯、1-己烯、4-甲基-1-戊烯、3-甲基-1-戊烯、1-辛烯、1-癸烯、1-十二烯、1-十四烯、1-十六烯、1-十八烯、1-二十烯、1-二十二烯、1-二十四烯、1-二十六烯、1-二十八烯和1-三十烯的至少一种。所述α-烯烃优选为1-丁烯、1-己烯和1-辛烯中的至少一种。所述乙烯与α-烯烃的共聚物可以为二元或者多元共聚物,典型的三元共聚物可以为说明性的三元共聚物包括乙烯/丙烯/1-辛烯共聚物,乙烯/丙烯/1-丁烯共聚物,乙烯/1-丁烯/1-辛烯共聚物等。每100重量份单位聚合物基体中,乙烯与α-烯烃共聚物的用量优选为0~80重量份,进一步优选10~70重量份,再进一步优选20~60重量份。上述乙烯与α-烯烃的共聚物优选为乙烯-辛烯共聚物或乙烯-丁烯共聚物,进一步优选为乙烯-1-辛烯共聚物,实际应 用中简称为聚烯烃弹性体(POE)。
所述乙烯与α-烯烃共聚物中α-烯烃的重量百分含量一般为20%~50%,优选为30%~45%。当乙烯-1-辛烯共聚物中辛烯的重量百分含量为30%~45%时,理论上对应的叔碳原子比例为37.5~56.3个叔碳原子/1000个碳,或者对应的支化度为37.5~56.3个支链/1000个碳。为了在不明显影响耐老化性的情况下,改善封装组合物发生接枝反应和/或交联反应的能力和速率,本发明所用的支化聚乙烯的支化度不低于40个支链/1000个碳,进一步优选为不低于60个支链/1000个碳。
当上述乙烯与α-烯烃的共聚物中的α-烯烃为丙烯时,丙烯在共聚物中的重量百分含量优选高于30%,进一步优选高于50%,进一步优选高于70%。在本发明的实践中,包含乙烯和丙烯的共聚物还可以进一步包含一种或多种二烯共聚单体,用于制备这些共聚物,尤其是EPDM类型的合适的二烯包括含有4到20个碳原子的共轭的或非共轭的,直链的或支链的,单环或多环二烯。优选的二烯包括1,4-戊二烯、1,4-己二烯、5-乙叉-2-降冰片烯、二环戊二烯、环己二烯和5-丁叉-2-降冰片烯。一种特别优选的二烯是5-乙叉-2-降冰片烯。
本发明所述的不同于高度支化聚乙烯(P1)的乙烯均聚物,熔点一般不低于40℃。常见的,其熔点范围优选80℃~140℃,进一步优选熔点为90℃~130℃,进一步优选为100℃~125℃,常见的方式是可以通过齐格勒纳塔催化剂或者茂金属催化剂催化或两者的复合催化体系来催化乙烯均聚得到。也可以通过在同一反应容器中加入单一乙烯单体和两种及以上催化剂组份,其中至少有一种催化剂可以使乙烯齐聚生成α-烯烃,另外至少有一种催化剂使乙烯与生成的α-烯烃原位共聚生成支化聚乙烯,其熔点可以低于120℃,也可以低于100℃,也可以低于80℃,其中齐聚催化剂可选范围很多,理论上凡是可以使乙烯齐聚生成α-烯烃同时又不与起共聚作用的催化剂组份起相互作用的化合物都可以适用。空间位阻较小的后过渡金属催化剂由于具有较高的齐聚催化活性和选择性,是双功能催化剂体系理想的齐聚催化剂,共聚合催化剂组份一般是齐格勒纳塔催化剂或者茂金属催化剂。本发明所述的丙烯均聚物可以为等规聚丙烯、间规聚丙烯、无规聚丙烯或等规-无规嵌段聚丙烯。
在P1和P2的聚合条件相近且基本互不影响的情况下,则其也可以通过原位共混得到,即在同一个反应容器中加入两种不同功能的催化剂均相催化乙烯聚合得到。例如把一种α-二亚胺镍催化剂(生成P1)和一种茂金属催化剂(生成 P2)复合,并催化乙烯聚合,实现原位共混,有望降低成本。通过向上述混合催化体系中进一步加入链穿梭剂,如二乙基锌,来得到包含P1和P2性质的链段的嵌段共聚物也可以理解为本发明的实施方式的一个变式。当为了调节熔点或者熔融指数,聚合物基体中可以包含两种及以上熔融指数的高度支化聚乙烯(P1)时,这种原位共混的做法也适用。
高度支化聚乙烯特有的高支链数以及复杂支链分布,相比于乙烯与α-烯烃的共聚物中引入α-烯烃的规则支链分布,可以更好地破坏乙烯分子链规整性、降低结晶性,提高透光率,所以用高度支化聚乙烯部分或者全部替代前述其他聚烯烃,可以提高组合物整体的透光率和流动性。另一方面,高度支化聚乙烯的内聚力相对较弱,在高度支化聚乙烯中并用部分前述其他聚烯烃,可以提高组合物整体的内聚力,降低加工成型过程中的冷流倾向,当采用两种及以上不同的聚烯烃并用时,有望增强最终产品的抗冲击性能。
本发明所述的烯烃与极性单体的共聚物在制备过程中所使用的烯烃包括乙烯、丙烯、1-丁烯、1-己烯、1-辛烯等烯烃单体中的至少一种,优选为乙烯。
本发明所述的乙烯与极性单体的共聚物的制备过程中所使用的含有极性基团的单体包括但不限于醋酸乙烯酯、丙烯酸、异丁烯酸、丙烯酸甲酯、丙烯酸乙酯、马来酸酐和乙烯基三甲氧基硅烷中的至少一种,优选为乙烯与醋酸乙烯酯的共聚物、乙烯与马来酸酐的共聚物和乙烯与乙烯基三甲氧基硅烷的共聚物中的至少一种。应当理解,乙烯与极性单体的共聚物不仅包括乙烯与含有极性基团的单体直接聚合得到的共聚物,还包括了乙烯与含有极性基团的单体在聚合反应时衍生的共聚物,例如乙烯在与醋酸乙烯酯共聚时,在聚合反应中衍生的乙烯醇共聚物和聚乙烯醇缩丁醛等也应当包含在乙烯与极性单体的共聚物的涵义之内。本发明中,所述乙烯与极性单体的共聚物优选乙烯与醋酸乙烯酯的共聚物(EVA),每100重量份单位聚合物基体中EVA的用量优选为0~70重量份,EVA的熔指范围优选为14~45g/10min,进一步优选为13~30g/10min,进一步优选为10~20g/10min,进一步优选为5~10g/10min,或者10~15g/10min,或者15~20g/10min。
当EVA用量较低时,主要目的是通过加入少量EVA来改善组合物整体的透光率,并提供一定的粘合性,有效减少粘合剂和自由基引发剂的用量,由于EVA的成本低于POE,所以也可以降低胶膜的生产成本。当EVA用量较高时,主要 目的是通过向EVA中引入饱和聚烯烃来改善EVA的耐候、耐老化性和耐黄变性,并且提高体积电阻率和水汽阻隔性能,改善电绝缘性。高度支化聚乙烯由于相对POE具有更好的流动性,所以可以更容易与EVA均匀混合,发挥前述有益效果。
进一步的技术方案是,以100重量份单位聚合物基体计,还包含0.01~20重量份引发或者促进自由基反应的加工助剂。
进一步的技术方案是,以100重量份单位聚合物基体计,还包含0.05~10重量份自由基引发剂。
所述的自由基反应包含聚合物基体之间的交联反应或聚合物基体与反应性单体之间的接枝反应中的至少一种。
所述聚合物基体之间的交联反应方式选自过氧化物交联、偶氮交联、辐射交联、光交联、硅烷交联中的至少一种。
上述交联反应方式可以通过热活化的引发剂,例如过氧化物或偶氮化合物来引发交联,也可以通过太阳光或紫外光在光引发剂的存在下进行光交联,也可以通过辐射来交联,优选加入适量的常规的辐射敏化剂。也可以通过硅烷偶联剂交联。
本发明中所述的热引发剂具体可选自二叔丁基过氧化物、二枯基过氧化物、叔丁基枯基过氧化物、1,1-二叔丁基过氧化物-3,3,5-三甲基环己烷、2,5-二甲基-2,5-二(叔丁基过氧基)己烷、2,5-二甲基-2,5-二叔丁基过氧基-3-己炔、1,4-双叔丁基过氧异丙基苯、过氧化苯甲酸叔丁酯、叔丁基过氧化-2-乙基己基碳酸酯、过氧化苯甲酰、过氧化新癸酸叔丁酯、过氧化乙酸叔丁酯、过氧化异辛酸叔丁酯、甲基乙基酮过氧化物、偶氮二异丁腈中的至少一种。
当采用辐射交联时,辐射源可以选自红外辐射、电子束、β射线、γ-射线、x-射线和中子射线中的至少一种,并且可以加入适量的常规的辐射敏化剂。
当采用光交联时,光源可以选用太阳光或紫外光,光引发剂包括有机羰基化合物例如二苯甲酮,苯并蒽酮,苯偶姻及其烷基醚,2,2-二乙氧基苯乙酮,2,2-二甲氧基-2-苯基苯乙酮,对苯氧基二氯苯乙酮,2-羟基环己基苯基酮,2-羟基异丙基苯基酮,和1-苯基丙烷二酮-2-(乙氧基羧基)肟。这些引发剂以已知的常规方式和常规的量使用。
当采用硅烷交联时,采用乙烯基硅烷,一般同时给予水汽,通常优选使用一种或多种水解/络合催化剂。这些催化剂包括路易斯酸例如二丁基锡二月桂酸盐、 二辛基锡二月桂酸盐、辛酸亚锡,和酸式磺酸盐(例如磺酸)。
进一步的技术方案是,所述的自由基反应的加工助剂中还包含自由基活化剂。本发明所述的自由基活化剂可以延长由引发剂夺氢后产生的大分子自由基寿命,对接枝反应和交联固化均有辅助作用,就交联过程而言,自由基活化剂可以称为助交联剂,所述自由基活化剂可以选自三烯丙基氰脲酸酯、三烯丙基异氰脲酸酯、乙二醇二甲基丙烯酸酯、二甲基丙烯酸三乙二酯、偏苯三酸三烯丙酯、三羟甲基丙烷三甲基丙烯酸酯、N,N’-间苯撑双马来酰亚胺、N,N’-双亚糠基丙酮、低分子量1,2-聚丁二烯中的至少一种。以100重量份单位聚合物基体计,自由基活化剂用量为0~10重量份,优选为0.05~2重量份。其中三烯丙基氰脲酸酯、三烯丙基异氰脲酸酯、乙二醇二甲基丙烯酸酯、二甲基丙烯酸三乙二酯、三甲基丙烯酸三羟甲基丙烷酯也可作为辐射敏化剂。
本发明中所述的接枝反应是指可以通过向聚合物分子链上引入具有功能单体来有目的地赋予聚烯烃某些性能,功能单体包含至少一个烯属不饱和度。如果目的是为了提高聚烯烃的粘结性,则功能单体可称为增粘剂,优选进一步包含至少一个极性基团的极性单体,所述增粘剂的极性基团可以选自羰基、羧酸酯基、羧酸酐基、硅氧烷基、钛氧烷基、环氧化基中的至少一种。所述极性单体优选包含硅氧烷基的硅烷偶联剂,其中所用的硅烷偶联剂具有官能团,如乙烯基、丙烯酰基、氨基、氯和苯氧基中的至少一种。具体而言,使用的增粘剂可以选自乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(甲氧基乙氧基)硅烷、乙烯基三乙酰氧基硅烷、γ-(甲基)丙烯酰氧基丙基三甲氧基硅烷、γ-氨基丙基三乙氧基硅烷或γ-酮基丙烯酰氧基丙基三甲氧基硅烷中的至少一种。
在本发明中,基于100重量份单位的聚合物基体,硅烷偶联剂的用量可以为0.1至5重量份,其中,依次优选为0.5至5重量份、1至5重量份、1至4重量份或1至3重量份。当硅烷偶联剂的用量小于0.1重量份时,制备的封装组合物的粘合性能可能劣化。另一方面,当该硅烷偶联剂的含量超过5重量份时,考虑到反应效率,应使用更多的自由基引发剂,从而难以控制封装组合物的物理性能,且封装组合物的物理性能可能会劣化。
本发明所述增粘剂还可以选用钛酸酯偶联剂,可按照常规用量添加。
本发明所述的增粘剂还可以选用由硅烷偶联剂与钛酸酯偶联剂组成的复合增粘剂,可按照常规用量添加,优选为0.2~2重量份,复合增粘剂中硅烷偶联剂 的用量比重优选高于70%。
本发明所述增粘剂还可以选用至少含有一个烯属不饱和度(例如双键)和一个羰基基团的有机化合物。适用的并且常见的极性单体是羧酸、酐、酯以及它们的金属的和非金属的盐。优选含有与羰基基团共轭的烯属不饱和度的有机化合物,可以选自马来酸、富马酸、丙烯酸、甲基丙烯酸、衣康酸、巴豆酸、α-甲基巴豆酸和肉桂酸以及它们的酐、酯和盐衍生物中的至少一种。其中马来酸酐是一种优选。基于100重量份单位的聚合物基体,此处的增粘用有机化合物的用量可以为0.01至10份,优选0.05至5份,进一步优选0.1至2份。
上述所有增粘用的极性单体通常在自由基引发剂如过氧化物和偶氮化合物的存在下通过任何常规的方法,或者通过致电离辐射等方式接枝到聚合物基体上。被接枝改性的聚合物基体优选为高度支化聚乙烯(P1)。
具体的常规接枝方法可以是:将聚合物加到双辊混炼机中并在适当的温度如60℃下混合,然后将不饱和的有机化合物与自由基引发剂例如过氧化苯甲酰一起加入,并且组分在30℃混合直到接枝完成。另一类接枝方法是类似的,所不同的是反应温度更高,例如为210℃至300℃,可以不使用自由基引发剂,或者使用的浓度降低,具体可参考美国专利5194509。
在本发明的另一实施方式中,聚合物基体还包括接枝聚合物来提供粘结性,所述被接枝的聚合物通常选自聚烯烃,更通常选自前述的高度支化聚乙烯(P1)和不同于高度支化聚乙烯的聚烯烃(P2),优选P1。通过常规的接枝反应,使至少一部分P1和/或P2与接枝材料发生接枝,所用不饱和有机化合物优选为乙烯基硅烷偶联剂或者马来酸酐。
当聚合物基体直接包含由极性单体接枝改性的聚烯烃时,由于聚合物基体具备一定的粘合性,故封装组合物配方中可以不添加增粘剂,也可以不含烯烃与极性单体的共聚物,若进一步以生产热塑型胶膜为目的,还可以不含自由基引发剂,但当改性方式为接枝改性时,相当于把封装组合物中的部分聚合物与增粘剂通过自由基接枝反应或者其他途径(如高温下接枝)先行反应,所以在这种情况下的不含烯烃与极性单体的共聚物且不含增粘剂的技术方案,以及进一步不含自由基引发剂的技术方案仍在本发明技术方案范畴内。
由于本发明所述的高度支化聚乙烯(P1)的一部分叔碳原子可以位于支链上,这些位于支链上的叔碳原子相对于主链上的叔碳原子更加容易发生运动。
对于为了增强聚烯烃抗蠕变能力的交联固化反应,在饱和的聚烯烃分子链上,叔碳原子最容易受外界作用而产生自由基,进一步通过自由基结合而发生交联。现有技术中的常用乙烯-α-烯烃共聚物如乙烯-辛烯共聚物或者乙烯均聚物的叔碳原子一般位于主链上,在交联过程中运动不自由且空间位阻较大,而高度支化聚乙烯中的叔碳原子比例一般高于常用的乙烯-α-烯烃共聚物和乙烯均聚物,并且由于有部分叔碳原子分布在支链上,空间位阻较小,空间运动相对自由,有利于快速交联固化。并且由于部分叔碳原子位于支链上,一定程度上减小β断链导致主链断链对聚合物整体性能的影响。
对于为了提高聚烯烃粘性的接枝改性反应,在饱和的聚烯烃分子链上,叔碳原子比较容易在自由基引发剂的作用下产生自由基,进而与增粘剂(例如硅烷偶联剂)发生接枝反应,得到改性的聚烯烃。所以提高聚烯烃分子链中的叔碳原子含量有助于提高与硅烷偶联剂之间的接枝效率,这有助于改善增粘效果或者在满足同样的粘合性能要求下,降低硅烷偶联剂和自由基引发剂的用量,降低成本。就乙烯与α-烯烃共聚物而言,最常用的是乙烯-辛烯共聚物,但每一个长支链仅对应一个叔碳原子,并且叔碳原子均位于主链上,叔碳原子占聚合物碳原子总数中的比例一般不高于5%,而高度支化聚乙烯由于独特的支链结构,一般可以具有更多的叔碳原子,叔碳原子占聚合物碳原子总数中的比例一般不低于5%,并且可以有部分叔碳原子位于支链上,一定程度上减小β断链对聚合物整体性能的影响,所以用高度支化聚乙烯部分或者全部替代现有技术中的乙烯-辛烯共聚物,在相同的改性条件下,可以赋予整体更好的接枝效率和粘合性能。优选的方案是,将聚合物基体中的部分或全部高度支化聚乙烯先与全部硅烷偶联剂和必要的自由基引发剂共混接枝,可以具有更高的接枝效率,接枝条件可变化,但是熔融温度通常在160~260℃之间,优选在190~230℃之间,取决于停留时间和引发剂的半衰期,并且高度支化聚乙烯由于本身具有较好的流动性,可以在与其余组份共混加工过程中更均匀地分散到整体中。
在本发明中,按100重量份单位的聚合物基体,自由基引发剂的用量可以为0.005至10重量份,优选0.05至10重量份,进一步优选0.05至5重量份。当目的是得到热塑型聚烯烃组合物时,可以包含有0.005至5重量份,或0.05至3重量份的范围内的自由基引发剂。当自由基引发剂的含量小于0.005重量份时,活性自由基的产生会降低,从而降低增粘剂与聚合物基体之间的接枝效率。当其 超过5重量份时,活性自由基的产生增加从而形成更多副反应。当目的是得到交联型聚烯烃组合物时,可以包含有0.1至10重量份的自由基引发剂,依次优选为0.1至5重量份、0.2至4重量份、1至4.5重量份或1至4重量份。当自由基引发剂的用量小于0.1重量份时,加工过程的效率过低,并且制备的封装组合物交联程度不足以赋予聚烯烃组合物足够的交联度和抗蠕变强度。另一方面,当自由基引发剂的用量超过10重量份时,大量活性自由基的产生增加会导致大量副反应,例如由于支链结构的存在,分子主链发生β断裂反应,从而导致聚烯烃组合物的物理性能降低。
为了获得更好的加工性能和使用性能,本发明所述的聚烯烃组合物中包含防焦剂、抗氧剂,其进一步包含紫外线吸收剂、光稳定剂、玻璃纤维、增塑剂、成核剂、扩链剂、阻燃剂、无机填料、导热填料、金属离子捕捉剂、着色剂、增白剂、增透改性剂中的至少一种添加剂。以100重量份单位聚合物基体计,防焦剂用量为0~2重量份;紫外线吸收剂用量为0~2重量份,依次优选为0.05~1重量份、0.1~0.8重量份;抗氧剂用量为0~5重量份,依次优选为0.1~1重量份、0.2~0.5重量份;光稳定剂用量为0~5重量份,依次优选为0.05~2重量份、0.1~1重量份。
使用热活化的自由基引发剂促进热塑性材料的交联的一个难点是它们可能在混配和/或在整个加工过程中期望聚烯烃固化的实际阶段之前引起过早交联即焦化。焦化产生的凝胶粒子会有害地影响最终产物的均匀性。此外,过度的焦化也会减少材料的塑性性质,从而使得它不能有效地被加工,很有可能整个批料都会损失掉。所以本发明还可以添加防焦剂来抑制焦化。用于含有自由基(尤其是过氧化物)引发剂的组合物的一种通常使用的焦化抑制剂是4-羟基-2,2,6,6-四甲基哌啶-1-氧自由基,也称为4-羟基-TEMPO。添加4-羟基-TEMPO,通过在熔融加工温度″淬灭″可交联的聚合物的自由基交联,抑制焦化。以100重量份单位聚合物基体计,防焦剂用量为0~2重量份,优选为0.01~1.5重量份,更优选为自由基引发剂重量份的10%~50%。
本发明所述的抗氧剂可选自受阻酚类或亚磷酸酯类抗氧剂的至少一种,优选受阻酚类抗氧剂和亚磷酸酯类抗氧剂并用。具体可选自2,2'-亚甲基双(4-甲基-6-叔丁基苯酚)、2,2'-亚甲基双(4-乙基-6-叔丁基苯酚)、四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯、二(2,4-二枯基苯基)季戊四醇二亚磷酸酯、二硬脂基季戊四醇二亚磷酸酯、三(壬基苯基)亚磷酸酯、三(2,4-二叔丁基苯基)亚磷酸酯、三(1,2,2,6,6- 五甲基哌啶)亚磷酸酯、3,5-二叔丁基-4-羟基-苯甲酸正十六酯中的至少一种。
本发明所述的玻璃纤维或玻璃泡的种类和用量是本领域技术人员熟知的,可以有效控制膜状的聚烯烃材料的热收缩形变。
本发明还可以添加增塑剂以改善加工流变性,提高生产效率和成型均匀性;所述的增塑剂选自石蜡矿物油、环烷油和芳香族矿物油;优选石蜡矿物油,另外,增塑剂还可以提高组合物对被粘物的浸润性,进一步提高粘结性能。作为增塑剂,还可以选自是邻苯二甲酸酯、壬二酸酯、己二酸酯或磷酸三甲苯酯中的至少一种。
本发明还可以添加阻燃剂,所述阻燃剂可以选自纳米氢氧化铝、纳米氢氧化镁、纳米二氧化硅、纳米氧化锌和纳米二氧化钛中的一种或多种,还可以进一步选自经偶联剂处理的纳米氢氧化铝、纳米氢氧化镁、纳米二氧化硅、纳米氧化锌和纳米二氧化钛中的一种或多种,也可以选自磷酸酯类阻燃剂,如双酚A双(磷酸二苯酯)、磷酸三苯酯、间苯二酚双(磷酸二苯酯)中的一种或多种,也可以选自微胶囊化膨胀型阻燃剂,如微胶囊化聚磷酸三聚氰胺硼酸盐。上述不同类别的阻燃剂还可以根据本领域现有技术进行复配使用。
本发明的聚烯烃组合物还可以添加无机填料用来着色、补强或者降低成本,如炭黑、二氧化硅、二氧化钛、氧化铝、碳酸钙、蒙脱土、碳纳米管中的一种或多种。
当本发明的聚烯烃组合物用作太阳能电子组件的封装胶膜时,其优选包含紫外线吸收剂、光稳定剂、成核剂、增透改性剂等功能性填料。
本发明所述的紫外线吸收剂选自二苯甲酮类或苯并三唑类;光稳定剂选自受阻胺类或哌啶化合物,优选为苯并三唑类紫外线吸收剂和受阻胺类光稳定剂并用。
本发明所述的紫外线吸收剂选自苯甲酮化合物,如2-羟基-4-甲氧基二苯甲酮、2,2-二羟基-4-甲氧基二苯甲酮、2-羟基-4-正辛氧基二苯甲酮;苯并三唑化合物,如2-(2'-羟基-3',5'-二叔丁基苯基)-苯并三唑、2-(2'-羟基-5'-甲基苯基)-苯并三唑;水杨酸酯化合物,如水杨酸苯酯、水杨酸对辛基苯基酯。本发明所述的光稳定剂选自双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯、双(1-辛氧基-2,2,6,6-四甲基-4-哌啶基)癸二酸酯、4-(甲基)丙烯酰氧基-2,2,6,6-四甲基哌啶与α-烯类单体聚合得到的接枝共聚物、3,5-二叔丁基-4-羟基苯甲酸正十六酯、三(1,2,2,6,6-五甲基哌啶)亚磷酸酯、丁二酸和4-羟基-2,2,6,6-四甲基-1-哌啶醇的聚合物中的至少一种。
本发明还可以添加成核剂,使组合物在结晶过程中异相成核,减小晶粒尺寸, 提高透光率,所述成核剂选自二苄叉山梨醇及其衍生物:二苄叉山梨醇、1,3:2,4-二对甲基苄叉山梨醇、1,3:2,4-二亚(对乙基)苄基山梨醇和二-(3,4-二甲基苄叉)山梨醇中的至少一种,优选1,3:2,4-二对甲基苄叉山梨醇。
本发明还可以添加增透改性剂,通过增透改性剂参与交联反应,进一步破坏聚烯烃的结晶结构,提高透光率。所述增透改性剂可选自乙烯-甲基丙烯酸甲酯共聚物、双官能度的脂肪族聚氨酯丙烯酸酯预聚物、双官能度的环氧丙烯酸酯预聚物、双官能度的聚酯丙烯酸酯预聚物、三官能度的聚醚丙烯酸酯预聚物、三官能度的脂肪族聚氨酯丙烯酸酯预聚物、四官能度的聚酯丙烯酸酯预聚物、四官能度的环氧丙烯酸酯预聚物、四官能度的聚醚丙烯酸酯预聚物、六官能度的脂肪族聚氨酯丙烯酸酯预聚物、六官能度的环氧丙烯酸酯预聚物中的一种或两种以上的混合物。以100重量份单位聚合物基体计,所述增透改性剂的用量优选0.1~1.5重量份,进一步优选为0.5~1重量份。
本发明还可以添加扩链剂、着色剂、增白剂、粘结添加剂(例如聚异丁烯)等中的一种或多种,来实现或改善本领域中已知的相应性能。这些和其它潜在的添加剂的使用方式和用量都与本领域通常已知的相同。
本发明还提供一种电线电缆,其绝缘层材料包含上述任一聚烯烃组合物。
本发明还提供一种片材、板材或卷材,其包含上述任一聚烯烃组合物。所述卷材可以为防水卷材。
在一种具体的实施方式中,本发明的聚烯烃组合物可以作为一种密封材料,其具有膜状、环状或者条状的形态。
本发明还提供一种电子器件组件,其包括:至少一个电子器件和与所述电子器件器件的至少一个表面密切接触的封装材料,所述封装材料为上述膜状的聚烯烃组合物。
在一种具体的实施方式中,本发明提供的电子器件是太阳能电池,电子器件组件是太阳能电池组件。
本发明提供的一种太阳能电池组件,其结构中至少有一层封装胶膜,其所用封装胶膜至少一层包含上述封装组合物。本发明中所涉及的与“太阳能”相关的字眼,可以等价于“光伏”。例如太阳能电池组件也可以理解为光伏电池组件。
本发明提供了一种具有双层封装胶膜的太阳能电池组件,其包括支撑背板、太阳能发电主体(电子器件)、光接收基片以及封装胶膜,所述封装胶膜在支撑 背板与太阳能发电主体之间、在光接收基片与太阳能发电主体之间各有一层,其中,至少有一层封装胶膜包含上述封装组合物。所述太阳能发电主体为晶硅太阳能电池片或者薄膜太阳能电池片。
在本发明中,上述支承背板用于保护太阳能电池组件的背侧不受外部环境影响,且其要求耐候性。在本发明中,支承背板包括玻璃板、金属板如箔(或铝)、氟树脂片、环状聚烯烃树脂片、聚碳酸酯树脂片、聚丙烯酸树脂片、聚甲基丙烯酸树脂片、聚酰胺树脂片、聚酯树脂片或层压了耐候性膜和阻挡膜的复合片中的至少一种。
在本发明中,在太阳能发电主体上形成的光接收基片可以实现这样的功能:保护内部的太阳能发电主体不受天气、外部冲击或火灾等影响,并确保在室外暴露的太阳能电池组件的长期可靠性。本发明的光接收基片没有特别的种类限制,只要其具有优异的透光性、电绝缘性和机械或物理化学强度,例如,可使用玻璃板、氟树脂片、环状聚烯烃树脂片、聚碳酸酯树脂片、聚丙烯酸树脂片、聚甲基丙烯酸树脂片、聚酰胺树脂片、聚酯树脂片等的至少一种。在本发明的实施方式中,可优选使用具有优异的耐热性的玻璃板。
在本发明中,被配置在太阳能电池组件内部,特别是在支承基片和光接收基片之间封装太阳能发电主体的封装胶膜,其可包括上述的根据本发明申请的封装组合物,并具有对支承基片和光接收基片的优异的粘合性,以及优异的透明性、热稳定性、紫外线稳定性等,从而延长了太阳能电池组件的使用期限。
本发明提供了一种单层封装胶膜的太阳能电池组件,其包括支撑背板、太阳能发电主体、光接收基片以及封装胶膜,所述封装胶膜在支撑背板与太阳能发电主体之间,或者在光接收基片与太阳能发电主体之间,其包含上述封装组合物。
上述单层胶膜封装的太阳能电池组件可以是薄膜型太阳能电池组件,其太阳能发电主体通常可以通过化学气相沉积的方法在由铁电体组成的光接收基片上形成。
在使用根据本发明的封装胶膜的情况下,在层压光接收基片以后,太阳能发电主体、支承基片和根据所需的组件结构的封装胶膜,可以通过有真空抽吸的热压装置制备上述的太阳能电池组件。
本发明提供一种双层玻璃,其所用封装材料包含上述封装组合物。
本发明提供一种封装材料,其包含上述封装组合物。
上述封装材料具有片或膜的结构形式。
一种制备包含上述封装组合物的封装胶膜的方法,所述方法包含的步骤有:
步骤1、将聚合物基体,增粘剂和自由基引发剂与其余组分混合均匀后一次性投入挤出机中共混挤出,所述其余组分是指封装组合物中除聚合物基体、增粘剂、自由基引发剂以外的其他组成成份;
步骤2、挤出物经流延成膜;
步骤3、冷却、牵引进行整形;
步骤4、最后收卷即得。
一种制备包含上述封装组合物的封装胶膜的方法,所述方法包含的步骤有:
步骤a、将部分或全部聚合物基体、全部增粘剂、增粘剂重量的3%~20%的自由基引发剂先通过挤出机共混、接枝、挤出得到接枝改性的聚合物基体料A;
步骤b、将聚合物基体A与其余组分混合均匀后投入挤出机中共混挤出,所述其余组分是指封装组合物中除聚合物基体A以外的其他组成成份;
步骤c、挤出物经流延成膜;
步骤d、冷却、牵引进行整形;
步骤e、最后收卷即得。
在另一种实施方案中,本发明的电子器件组件中与所述电子器件的至少一个表面密切接触的聚合物材料是共挤出的材料,其中至少一个外部表层不含有过氧化物。若供挤出材料包含三个层,则与所述组件接触的表层不含过氧化物,芯层含有过氧化物。所述外部表层对玻璃具有良好的粘着力。
在另一种实施方案中,本发明所述的电子器件组件中的电子器件被包封在封装材料中,即完全位于或者包围在封装材料中。在这些实施方式的另一变体中,所述盖层用硅烷偶联剂,例如γ-氨基丙基三乙氧基硅烷处理。在这些实施方式的又一变体中,所述封装材料还包括接枝聚合物,以提高它对于所述电子器件和盖层之一或二者的粘合性。所述接枝聚合物通常简单地通过用含有羰基基团的不饱和有机化合物例如马来酸酐来接枝所述高度支化聚乙烯来原位制备。
通过向聚合物基体中引入高度支化聚乙烯,本发明的有益效果是:
(1)、提高自由基反应如接枝反应和交联反应的速度和效率;
(2)、减小β断链导致主链断链的发生概率。
具体实施方式:
下面给出实施例以对本发明做进一步说明,但不是用来限制本发明的范围,该领域的技术熟练人员根据发明内容对本发明做出的一些非本质的改进和调整仍属于本发明的保护范围。
本发明的实施方式之一是提供一种聚烯烃组合物,其包含聚合物基体,按100重量份单位聚合物基体计,所述聚合物基体包含:5~95重量份高度支化聚乙烯(P1),5~95重量份不同于高度支化聚乙烯的聚烯烃(P2),所述高度支化聚乙烯为具有支链结构的乙烯均聚物,其支化度不低于40个支链/1000个碳,熔点不高于130℃,其由后过渡金属催化剂催化乙烯均聚得到,所述不同于高度支化聚乙烯的聚烯烃(P2)包含乙烯与α-烯烃的共聚物或者密度低于0.94g/cm 3的乙烯均聚物中的至少一种。
本发明的实施方式之二是提供一种封装组合物,其包含聚合物基体,自由基引发剂和增粘剂,其中每100重量份聚合物基体中包含的高度支化聚乙烯为5~100重量份(P1),5~95重量份不同于高度支化聚乙烯的聚烯烃(P2),P2中包含的结晶性聚乙烯和聚丙烯总重量为0~80重量份,包含的乙烯与α-烯烃共聚物重量为0~95重量份,包含的乙烯与极性单体的共聚物重量为0~70重量份。其中,相对于100重量份的聚合物基体,自由基引发剂用量为0.05~5重量份,增粘剂用量为0.1~5重量份。
本发明的实施方式之三是提供一种封装组合物,其包含聚合物基体,增粘剂和自由基引发剂,所述聚合物基体为高度支化聚乙烯。
本发明的实施方式之四是提供一种封装材料,其具有片或者膜的形式。
本发明的实施方式之五是提供一种太阳能(光伏)电池模块,其包含太阳能(光伏)电池片,和与电池片表面密切接触的封装材料,封装材料包含本发明的封装组合物。
所用的高度支化聚乙烯的合成方法采用后过渡金属催化剂通过配位聚合催化乙烯均聚得到,优选的过渡金属催化剂可以为(α-二亚胺)镍/钯催化剂的其中一种,从成本考虑,优选(α-二亚胺)镍催化剂,所用(α-二亚胺)镍催化剂的结构、合成方法及通过其制备支化聚乙烯的方法是公开的现有技术,可以采用但不限于以下文献:CN102827312A、CN101812145A、CN101531725A、CN104926962A、US6103658、US6660677。助催化剂可以选自一氯二乙基铝、 二氯乙基铝、倍半乙基氯化铝、甲基铝氧烷、改性甲基铝氧烷中的一种或多种。
所用的高度支化聚乙烯可以通过调节催化剂的结构以及聚合条件来实现对其支化度、分子量以及熔点等基本参数的调节。本发明采用的高度支化聚乙烯其支化度不低于40个支链/1000个碳,进一步可以为45~130个支链/1000个碳,进一步优选为60~116个支链/1000个碳;重均分子量范围可以为5万~50万,进一步可以为20万~45万;熔点不高于125℃,进一步可以为-44℃~101℃,进一步可以为-30℃~80℃,进一步可以为40℃~80℃,在190℃和2.16kg的负载下测得的熔融指数优选为1~30g/10min,还可以优选为5~25g/10min,进一步优选为10~20g/10min,或者5~10g/10min,或者10~15g/10min,或者15~20g/10min,每100重量份单位聚合物基体中,高度支化聚乙烯的用量优选为70~100重量份。
所用乙烯与α-烯烃共聚物为乙烯-辛烯共聚物(POE)。
所用乙烯与极性单体共聚物为乙烯-醋酸乙烯酯共聚物(EVA)。
所用自由基引发剂为过氧化物交联剂,例如叔丁基过氧化-2-乙基己基碳酸酯。
所用增粘剂为硅烷偶联剂,例如乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(甲氧基乙氧基)硅烷。
优选的实施方案是,可向封装组合物中加入辅助成分,针对性地取得或者改善各种性能。
辅助成分,如自由基活化剂、紫外线吸收剂、光稳定剂、抗氧剂、玻璃纤维、增塑剂、成核剂、扩链剂、阻燃剂、无机填料、防焦剂、导热填料、金属离子捕捉剂、着色剂、增白剂、增透改性剂、粘结添加剂等等,辅助成分以常规用量使用。
一种包含上述封装组合物的封装胶膜的制备方法,其包含以下步骤:
(1)、将部分或者全部聚合物基体、全部增粘剂、增粘剂重量的3%~20%的自由基引发剂先通过挤出机共混、接枝、挤出得到接枝改性的聚合物基体料A。挤出机温度控制在50~210℃。
(2)、将聚合物基体A与其余组分混合均匀后投入挤出机中共混挤出,挤出物经流延成膜,通过冷却、牵引进行整形,最后通过收卷工序即得。挤出机温度控制在80~210℃。
为了更清楚的叙述本发明的实施方式,下面对本发明所涉及到的材料做个定 义。
优选的高度支化聚乙烯特征范围为:支化度为46~130个支链/1000个碳、重均分子量为6.6万~47.1万,熔点为-44~101℃。其中,支化度通过核磁氢谱测得,分子量及分子量分布由PL-GPC220测得,熔点通过差式扫描量热法测得。
具体如下表:
Figure PCTCN2018096743-appb-000001
性能测试方法:
(1)交联度、剥离强度:按照GB/T 29848-2013标准进行测定;
(2)透光率:将试样按GB/T 2410-2008的分光光度计法进行测试。分光光度计的波长范围设置为290nm~1100nm。分别计算波段范围为290nm~380nm 和380nm~1100nm的透光率平均值。每组至少测试三个试样,测试结果取平均值。本发明实施例中所述的透光率是针对波段范围为380nm~1100nm的测试结果
(3)体积电阻率:先将样品放到23℃±2℃,50%±5%RH的实验室内,至少放置48h;然后按GB/T 1410-2006规定的要求,在1000V±2V,电化时间60min条件下,进行试样体积电阻率的测试,测试3个试样,结果取平均值。
(4)耐湿热老化性能及黄变指数:先将所有试样放入高温高湿老化试验箱中,设定试验条件:温度85℃±2℃,相对湿度85%±5%;试验时间为1000h,试验结束后将试样取出,在23℃±5℃,相对湿度小于75%的敞开环境下恢复2~4h后,进行外观检查,要求没有外观缺陷;最后分别对试验前后层压件试样按ASTM E313进行黄色指数测量,每块试样测不少于3个点,试样黄色指数取所测点的平均值,记录老化前后黄色指数变化差值。
(5)抗PID性能测试:在85℃、85RH%下,施加-1000V的电压进行测试。
具体实施例:
实施例1~8及对比例1
封装胶膜及其交联速度测试:
对比聚合物基体分别为DOW ENGAGE 8137和PER-15的封装组合物在以下配方下,测试的正硫化时间Tc90:按照国标GB/T16584-1996,在无转子硫化仪中进行,试验温度为150℃,测试时长为30min。配方为100重量份聚合物基体,1重量份乙烯基三甲氧基硅烷,1重量份叔丁基过氧化-2-乙基己基碳酸酯,0.5重量份三烯丙基异氰脲酸酯,0.25重量份四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯,0.15重量份双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯,和0.15重量份2-羟基-4-正辛氧基二苯甲酮。将聚合物基体与液态组份浸泡混合后,再与其余组份在在挤出机中进行共混挤出,挤出温度控制在90±1℃,混合物在挤出机内停留时间为4min,挤出物经过流延成膜、冷却、分切、卷取工序,即得厚度为0.5mm的透明封装胶膜。裁样,叠成约5克的待测试样,进行测试。其中具体的DOW ENGAGE 8137和PER-15在聚合物基体中的比重以及相应的Tc90如表1所示:
表1
Figure PCTCN2018096743-appb-000002
Figure PCTCN2018096743-appb-000003
通过实施例1~8与对比例1的对比,可以明显发现支化度适当的高度支化聚乙烯的交联速度明显高于现有技术中常用的聚烯烃共聚物,当封装组合物或者封装材料的聚合物基体部分或者全部采用高度支化聚乙烯时,在同样的加工条件下,可以有效提高交联速度,从而缩短组件在加工成型时所需的交联固化时间,一方面可以有效降低能耗,并提高产能,另一方面可以保护电子器件如太阳能电池片,缩短其在高温高压下的停留时间。
实施例9~16以及对比例2和3
实施例9~16以及对比例2和3的配方组份如表2所示:(其中列出了相对于每100重量份聚合物基体,所用各组分的重量份数)
表2
Figure PCTCN2018096743-appb-000004
Figure PCTCN2018096743-appb-000005
实施例9~16的封装组合物经密炼机混炼后,经压延或者挤出成膜,膜厚为0.5mm,在膜的两个表面分别附上平板玻璃和TFT背板。然后将得到的层压体在真空层压机中层压加工。
各测试试样的性能测试数据如表3所示:
表3
Figure PCTCN2018096743-appb-000006
通过实施例8、实施例15和对比例2的对比可以发现,采用高度支化聚乙烯部分或者全部替换现有技术中的POE,可以赋予封装胶膜更好的交联度、透光率、体积电阻率以及与玻璃之间的粘结性。
通过实施例9~14与对比例3的对比可以发现,采用高度支化聚乙烯为聚合物基体的封装胶膜具有优异的透明性,保证应用该封装胶膜的太阳能电池具有良好的发电效率。其次,采用高度支化聚乙烯为聚合物基体的封装胶膜与玻璃之间具有良好的剥离强度,并且耐湿热老化后与玻璃之间的剥离强度保持率远高于对比例中的EVA封装胶膜,黄变指数也远低于对比例中的EVA封装胶膜,说明本发明中以高度支化聚乙烯为聚合物基体的封装胶膜具有优异的粘合性能和耐湿热老化性能,能够更好的适用于户外环境。本发明提供的新型封装胶膜采用分子链全为饱和碳氢结构的高度支化聚乙烯,因此很高的体积电阻率,在电绝缘性方面相对于EVA封装胶膜具有显著优势。
通过实施例16和对比例3的对比可以发现,用高度支化聚乙烯替换部分现有技术中的EVA,可以明显改善EVA封装胶膜的耐湿热老化性,降低黄变指数并改善电绝缘性,很好地改善了现有EVA封装胶膜的性能缺陷,虽然与玻璃之间的粘结强度有所降低,但仍满足高于60N/cm的行业标准。
实施例17
单玻太阳能电池组件:
厚度为0.5mm的封装胶膜通过包含以下物质的封装组合物制备:100重量份PER-13(190℃,2.16kg负荷下的MI为1g/10min),1重量份乙烯基三甲氧基硅烷,1重量份叔丁基过氧化-2-乙基己基碳酸酯,0.5重量份三烯丙基异氰脲酸酯,0.05重量份4-羟基-TEMPO,0.25重量份四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯,0.15重量份双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯,和0.15重量份2-羟基-4-正辛氧基二苯甲酮。将聚合物基体与液态组份浸泡混合后,再与其余组份在在挤出机中进行共混挤出,挤出温度控制在90±1℃,混合物在挤出机内停留时间为4min,挤出物经过流延成膜、冷却、分切、卷取工序,即得厚度为0.5mm的封装胶膜。太阳能电池组件通过层压方法在145℃下制备,其中所述封装胶膜位于玻璃盖板与太阳能电池之间,也位于TPT背板与太阳能电池之间。抗PID测试:经192小时测试后,输出功率衰减程度为0.82%。
实施例18
单玻太阳能电池组件:
厚度为0.5mm的封装胶膜通过包含以下物质的封装组合物制备:90重量份PER-14(190℃,2.16kg负荷下的MI为5g/10min),10重量份马来酸酐改性的乙烯-1-辛烯共聚物(MAH的接枝含量为1wt%,MI:1.5g/10min),1重量份乙烯基三甲氧基硅烷,1重量份叔丁基过氧化-2-乙基己基碳酸酯,0.5重量份三烯丙基异氰脲酸酯,0.05重量份4-羟基-TEMPO,0.25重量份四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯,0.15重量份双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯,和0.15重量份2-羟基-4-正辛氧基二苯甲酮。将聚合物基体与液态组份浸泡混合后,再与其余组份在在挤出机中进行共混挤出,挤出温度控制在90±1℃,混合物在挤出机内停留时间为4min,挤出物经过流延成膜、冷却、分切、卷取工序,即得 厚度为0.5mm的封装胶膜。太阳能电池组件通过层压方法在145℃下制备,其中所述封装胶膜位于玻璃盖板与太阳能电池之间,也位于TPT背板与太阳能电池之间。抗PID测试:经192小时测试后,输出功率衰减程度为0.88%。
实施例19
单玻太阳能电池组件:
厚度为0.5mm的封装胶膜通过包含以下物质的封装组合物制备:70重量份PER-15(190℃,2.16kg负荷下的MI为13g/10min),30重量份陶氏POE8137,1重量份乙烯基三甲氧基硅烷,1重量份叔丁基过氧化-2-乙基己基碳酸酯,0.5重量份三烯丙基异氰脲酸酯,0.25重量份四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯,0.15重量份双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯,和0.15重量份2-羟基-4-正辛氧基二苯甲酮。将聚合物基体与液态组份浸泡混合后,再与其余组份在在挤出机中进行共混挤出,挤出温度控制在90±1℃,混合物在挤出机内停留时间为4min,挤出物经过流延成膜、冷却、分切、卷取工序,即得厚度为0.5mm的封装胶膜。太阳能电池组件通过层压方法在145℃下制备,其中所述封装胶膜位于玻璃盖板与太阳能电池之间,也位于TPT背板与太阳能电池之间。抗PID测试:经192小时测试后,输出功率衰减程度为0.81%。
实施例20
单玻太阳能电池组件:
厚度为0.5mm的封装胶膜通过包含以下物质的封装组合物制备:100重量份PER-18(190℃,2.16kg负荷下的MI为30g/10min),1重量份乙烯基三甲氧基硅烷,1重量份叔丁基过氧化-2-乙基己基碳酸酯,0.5重量份三烯丙基异氰脲酸酯,0.05重量份4-羟基-TEMPO,0.25重量份四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯,0.15重量份双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯,和0.15重量份2-羟基-4-正辛氧基二苯甲酮。加工方法为:将全部聚合物基体、全部硅烷偶联剂以及重量为硅烷偶联剂10%的过氧化物混合均匀后加入双螺杆挤出机中共混挤出。双螺杆挤出机的进料端部分的温度是50℃,注入氮气的反应器部分的温度为210℃,且反应后出口的温度为140℃,得到接枝改性的聚合物基体料A;将接枝改性的聚合物基体料A和其余组份混合均匀后,通过双螺杆挤出机配合T 型模挤出成膜。向挤出机中注入氮气,并且控制挤出温度为110℃。混合物在挤出机内停留时间为4min,挤出物经过流延成膜、冷却、分切、卷取工序,即得厚度为0.5mm的封装胶膜。太阳能电池组件通过层压方法在145℃下制备,其中所述封装胶膜位于玻璃盖板与太阳能电池之间,也位于TPT背板与太阳能电池之间。抗PID测试:经192小时测试后,输出功率衰减程度为0.83%。
实施例21
双玻太阳能电池组件,其中电池组件的两层胶膜均为透明胶膜:
厚度为0.5mm的封装胶膜通过包含以下物质的封装组合物制备:100重量份PER-16(190℃,2.16kg负荷下的MI为13g/10min),1重量份乙烯基三甲氧基硅烷,1重量份叔丁基过氧化-2-乙基己基碳酸酯,0.5重量份三烯丙基异氰脲酸酯,0.05重量份4-羟基-TEMPO,0.25重量份四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯,0.15重量份双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯,和0.15重量份2-羟基-4-正辛氧基二苯甲酮。将聚合物基体与液态组份浸泡混合后,再与其余组份在在挤出机中进行共混挤出,挤出温度控制在90±1℃,混合物在挤出机内停留时间为4min,挤出物经过流延成膜、冷却、分切、卷取工序,即得厚度为0.5mm的封装胶膜。太阳能电池组件通过层压方法在145℃下制备,其中所述太阳能电池为N型电池片,封装胶膜位于玻璃盖板与太阳能电池之间,也位于玻璃盖板与太阳能电池之间。抗PID测试:经192小时测试后,输出功率衰减程度为0.63%。
实施例22
双玻太阳能电池组件,其上层均为透明胶膜,下层为白膜:
厚度为0.5mm的上层封装胶膜通过包含以下物质的封装组合物制备:100重量份PER-16(190℃,2.16kg负荷下的MI为13g/10min),1重量份乙烯基三甲氧基硅烷,1重量份叔丁基过氧化-2-乙基己基碳酸酯,0.5重量份三烯丙基异氰脲酸酯,0.05重量份4-羟基-TEMPO,0.25重量份四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯,0.15重量份双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯,和0.15重量份2-羟基-4-正辛氧基二苯甲酮。将聚合物基体与液态组份浸泡混合后,再与其余组份在在挤出机中进行共混挤出,挤出温度控制在90±1℃,混合物在挤出 机内停留时间为4min,挤出物经过流延成膜、冷却、分切、卷取工序,即得厚度为0.5mm的透明封装胶膜。
厚度为0.5mm的下层封装胶膜通过包含以下物质的封装组合物制备:100重量份PER-16(190℃,2.16kg负荷下的MI为13g/10min),10重量份二氧化钛粉末,1重量份乙烯基三甲氧基硅烷,1重量份叔丁基过氧化-2-乙基己基碳酸酯,0.5重量份三烯丙基异氰脲酸酯,0.05重量份4-羟基-TEMPO,0.25重量份四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯,0.15重量份双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯,和0.15重量份2-羟基-4-正辛氧基二苯甲酮。将聚合物基体与液态组份浸泡混合后,再与其余组份在在挤出机中进行共混挤出,挤出温度控制在90±1℃,混合物在挤出机内停留时间为4min,挤出物经过流延成膜、冷却、分切、卷取工序,即得厚度为0.5mm的透明封装胶膜。
太阳能电池组件通过层压方法在145℃下制备,其中所述太阳能电池为N型电池片,透明封装胶膜位于上层玻璃盖板与太阳能电池之间,白膜位于下层玻璃盖板与太阳能电池之间。抗PID测试:经192小时测试后,输出功率衰减程度为0.68%。
实施例23
双玻太阳能N型双面电池组件,其中电池为N型双面电池,组件的两层胶膜均为透明胶膜:
厚度为0.5mm的封装胶膜通过包含以下物质的封装组合物制备:100重量份PER-16(190℃,2.16kg负荷下的MI为13g/10min),1重量份乙烯基三甲氧基硅烷,1重量份叔丁基过氧化-2-乙基己基碳酸酯,0.5重量份三烯丙基异氰脲酸酯,0.05重量份4-羟基-TEMPO,0.25重量份四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯,0.15重量份双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯,和0.15重量份2-羟基-4-正辛氧基二苯甲酮。将聚合物基体与液态组份浸泡混合后,再与其余组份在在挤出机中进行共混挤出,挤出温度控制在90±1℃,混合物在挤出机内停留时间为4min,挤出物经过流延成膜、冷却、分切、卷取工序,即得厚度为0.5mm的封装胶膜。太阳能电池组件通过层压方法在145℃下制备,其中所述太阳能电池为N型双面电池片,封装胶膜位于玻璃盖板与太阳能电池之间,也位于玻璃盖板与太阳能电池之间。抗PID测试:经192小时测试后,输出功率衰减程度 为1.52%。
实施例24
一种封装胶膜:
封装胶膜通过包含以下物质的封装组合物制备:70重量份乙烯-1-辛烯共聚物(辛烯含量27wt%,190℃,2.16kg负荷下的MI为5g/10min),30重量份PER-19(190℃,2.16kg负荷下的MI为5g/10min),1重量份乙烯基三乙氧基硅烷,0.05重量份2,5-二甲基-2,5-二(叔丁基过氧基)己烷,0.25重量份四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯,0.15重量份双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯,和0.15重量份2-羟基-4-正辛氧基二苯甲酮。
制备方法:将组合物中的全部PER-19、乙烯基三乙氧基硅烷和2,5-二甲基-2,5-二(叔丁基过氧基)己烷在双螺杆挤出机中进行共混、接枝、挤出得到硅烷改性的高度支化聚乙烯料,挤出温度控制在140℃;再将硅烷改性的的高度支化聚乙烯料与其余组份在双螺杆挤出机中共混挤出,然后流延成膜,经冷却、牵引进行整形得到厚度为0.5mm的封装胶膜。
性能测试:透光率为91.7%;与玻璃按照测试要求层压后,测得与玻璃之间的剥离强度为112N/cm。
实施例25
一种封装胶膜:
封装胶膜通过包含以下物质的封装组合物制备:20重量份乙烯-1-辛烯共聚物(辛烯含量27wt%,190℃,2.16kg负荷下的MI为5g/10min),80重量份PER-19(190℃,2.16kg负荷下的MI为5g/10min),1份马来酸酐,0.25重量份四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯,0.15重量份双(2,2,6,6-四甲基-4-哌啶基)癸二酸酯,和0.15重量份2-羟基-4-正辛氧基二苯甲酮。
制备方法:将组合物中的全部PER-19在140℃的双螺杆挤出机中熔融,然后注入马来酸酐,在265℃下,进行共混、接枝得到MAH接枝改性的高度支化聚乙烯料;再将MAH改性的的高度支化聚乙烯料与其余组份在双螺杆挤出机中共混挤出,然后流延成膜,经冷却、牵引进行整形得到厚度为0.5mm的封装胶膜。
性能测试:透光率为92.1%;与玻璃按照测试要求层压后,测得与玻璃之间的剥离强度为103N/cm。
实施例26
一种电线
本实施例为一种电线的生产方法,其绝缘料的配方以及混炼过程如下:设置密炼机温度为110℃,转子转速为50转/分钟,加入50份PER-16和50份POE(DOW ENGAGE 8150)预压混炼90秒;然后加入5份辐射敏化助交联剂三甲基丙烯酸三羟甲基丙烷酯,混炼3分钟,出料。
其制造工艺流程具体如下:首先绞线,然后将上述绝缘料通过挤出机挤出包覆在绞线上形成绝缘层,然后在常温下进行辐照交联,辐照所用电子束能量为1.0MeV,束流强度为1.0mA,辐照剂量为100kGy,通过产品检验后得到一种电线产品。
总体而言,包含本发明封装组合物的封装胶膜在高度支化聚乙烯含量较高的情况下,具有优异的耐候、耐老化、耐黄变性、电绝缘性以及良好的光学性能和粘结性能,相对于现有的EVA封装胶膜和POE封装胶膜的优势明显。在高度支化聚乙烯含量较低的情况下,也有望改善EVA封装胶膜和POE封装胶膜的性能缺陷,而且高度支化聚乙烯的生产成本理论上要明显低于POE,并且交联速度高于POE,可以为光伏组件供应商降低时间成本,提高生产效率,所以从性能角度和成本角度分析,本发明方案相对于现有技术都具有明显的优越性。
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (39)

  1. 一种聚烯烃组合物,其包含聚合物基体,按100重量份单位聚合物基体计,所述聚合物基体包含:1~99重量份高度支化聚乙烯(P1),1~99重量份不同于高度支化聚乙烯的聚烯烃(P2),所述高度支化聚乙烯为具有支链结构的乙烯均聚物,其支化度不低于40个支链/1000个碳,熔点不高于130℃,其由后过渡金属催化剂催化乙烯均聚得到,其中,所述不同于高度支化聚乙烯的聚烯烃(P2)包含乙烯与α-烯烃的共聚物或者密度低于0.94g/cm 3的乙烯均聚物中的至少一种。
  2. 根据权利要求1所述的聚烯烃组合物,其特征在于,所述高度支化聚乙烯(P1)由后过渡金属催化剂基于“链行走机理”催化乙烯均聚得到。
  3. 根据权利要求2所述的聚烯烃组合物,其特征在于,所述高度支化聚乙烯(P1)的部分支链上还存在支链。
  4. 根据权利要求1所述的聚烯烃组合物,其特征在于,所述不同于高度支化聚乙烯的聚烯烃(P2)中的乙烯与α-烯烃的共聚物中的α-烯烃具有3~30个碳原子,所述α-烯烃的包括丙烯、1-丁烯、1-戊烯、3-甲基-丁烯、1-己烯、4-甲基-1-戊烯、3-甲基-1-戊烯、1-辛烯、1-癸烯、1-十二烯、1-十四烯、1-十六烯、1-十八烯、1-二十烯、1-二十二烯、1-二十四烯、1-二十六烯、1-二十八烯和1-三十烯的至少一种。
  5. 根据权利要求1所述的聚烯烃组合物,其特征在于,以100单位重量份单位聚合物基体计,还包含0.01~20重量份引发或者促进自由基反应的加工助剂。
  6. 根据权利要求5所述的聚烯烃组合物,其特征在于,所述自由基反应包含聚合物基体之间的交联反应或聚合物基体与反应性单体之间的接枝反应中的至少一种。
  7. 根据权利要求6所述的聚烯烃组合物,其特征在于,所述聚合物基体之间的交联反应方式选自过氧化物交联、偶氮交联、辐射交联、光交联、硅烷交联中的至少一种。
  8. 根据权利要求5所述的聚烯烃组合物,其特征在于,所述加工助剂选自过氧化物引发剂、偶氮类引发剂、辐射交联敏化剂、光引发剂、硅烷偶联剂中的至少一种。
  9. 根据权利要求5所述的聚烯烃组合物,其特征在于,所述加工助剂还包含自由基活化剂。
  10. 根据权利要求6所述的聚烯烃组合物,其特征在于,所述与聚合物基体发生接枝反应的反应性单体包含至少一个烯属不饱和度。
  11. 根据权利要求10所述的聚烯烃组合物,其特征在于,所述反应性单体还包含至少一个极性基团,所述极性基团选自羰基、羧酸酯基、羧酸酐基、硅氧烷基、钛氧烷基、环氧化基中的至少一种。
  12. 根据权利要求11所述的聚烯烃组合物,其特征在于,所述含有反应性单体选自醋酸乙烯酯、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三乙酰氧基硅烷、γ-(甲基)丙烯酰氧基丙基三甲氧基硅烷、γ-氨基丙基三乙氧基硅烷、γ-酮基丙烯酰氧基丙基三甲氧基硅烷中的至少一种和(/或)马来酸、富马酸、丙烯酸、甲基丙烯酸、衣康酸、巴豆酸、α-甲基巴豆酸和肉桂酸以及它们的酐、酯和盐衍生物中的至少一种。
  13. 根据权利要求1所述的聚烯烃组合物,其特征在于,所述聚烯烃组合物还包含紫外线吸收剂、光稳定剂、抗氧剂、玻璃纤维、增塑剂、成核剂、扩链剂、阻燃剂、无机填料、防焦剂、导热填料、金属离子捕捉剂、着色剂、增白剂、粘结添加剂、增透改性剂中的至少一种。
  14. 根据权利要求13所述的聚烯烃组合物,其特征在于,以100重量份单位聚合物基体计,所述聚烯烃组合物内还包含紫外线吸收剂0~2重量份,抗氧剂0~5重量份,光稳定剂0~5重量份,防焦剂用量为0~2重量份。
  15. 一种电线电缆,其绝缘层材料包含权利要求1~14任一所述聚烯烃组合物。
  16. 一种防水材料,其包含权利要求1~14任一所述聚烯烃组合物。
  17. 一种密封材料,其包含权利要求1~14任一所述聚烯烃组合物,所述密封材料,其具有膜状、环状或者条状的形态。
  18. 一种电子器件组件,其包括:至少一个电子器件和与所述电子器件器件的至少一个表面密切接触的封装材料,所述封装材料包含权利要求1~14任一所述聚烯烃组合物,所述封装材料具有膜的形态。
  19. 根据权利要求18所述的电子器件组件,所述电子器件是太阳能电池,所述电子器件组件是太阳能电池组件。
  20. 一种封装组合物,其包含聚合物基体,增粘剂和自由基引发剂,其特征在于,按100重量份单位聚合物基体计,所述聚合物基体包含高度支化聚乙烯5~100重量份,聚烯烃0~95重量份,乙烯与极性单体的共聚物0~70重量份。
  21. 根据权利要20所述的封装组合物,其特征在于,所述高度支化聚乙烯为具有支链结构的乙烯均聚物,其支化度不低于40个支链/1000个碳,重均分子量为5万~50万,熔点为-44~101℃。
  22. 根据权利要求21所述的封装组合物,其特征在于,所述聚烯烃包含不同于高度支化聚乙烯的结晶性聚乙烯、丙烯均聚物、乙烯与α-烯烃共聚物中的至少一种。
  23. 根据权利要20所述的封装组合物,其特征在于,所述高度支化聚乙烯是由后过渡金属催化剂催化乙烯均聚得到,其中,所述后过渡金属催化剂中的金属元素为镍或钯中的一种。
  24. 根据权利要22所述的封装组合物,其特征在于,所述结晶性聚乙烯的熔点为80℃~140℃,其通过齐格勒纳塔催化剂或者茂金属催化剂进行的聚合得到,在100重量份单位聚合物基体中,所述结晶性聚乙烯的含量为0~30重量份。
  25. 根据权利要求20所述的封装组合物,其特征在于,在100重量份单位聚合物基体中,乙烯与α-烯烃共聚物的用量为0~70重量份,所述乙烯与α-烯烃的共聚物中的α-烯烃具有3~30个碳原子,所述α-烯烃的包括丙烯、1-丁烯、1-戊烯、3-甲基-丁烯、1-己烯、4-甲基-1-戊烯、3-甲基-1-戊烯、1-辛烯、1-癸烯、1-十二烯、1-十四烯、1-十六烯、1-十八烯、1-二十烯、1-二十二烯、1-二十四烯、1-二十六烯、1-二十八烯和1-三十烯的至少一种。
  26. 根据权利要求20所述的封装组合物,其特征在于,所述乙烯与极性单体的共聚物在制备过程中所使用的含有极性基团的单体包括醋酸乙烯酯、丙烯酸、异丁烯酸、丙烯酸甲酯、丙烯酸乙酯、马来酸酐中的至少一种。
  27. 根据权利要求20所述的封装组合物,其特征在于,以100重量份聚合物基体计,所述封装组合物包含增粘剂0.1~5重量份。
  28. 根据权利要求27所述的封装组合物,其特征在于,所述增粘剂通过接枝反应途径向聚烯烃分子链上引入极性官能团来提高聚烯烃胶膜粘结性能的极性单体,所述极性单体的极性基团选自羧酸酯基、羧酸酐基、硅氧烷基、环氧化基中的至少一种,所述极性单体为具有硅氧烷基的硅烷偶联剂,其中,所用的硅烷偶联剂具有官能团,所述官能团包含乙烯基、丙烯酰基、氨基、氯和苯氧基中的至少一种。
  29. 根据权利要求28所述的封装组合物,其特征在于,所述增粘剂选自乙烯基 三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(甲氧基乙氧基)硅烷、乙烯基三乙酰氧基硅烷或γ-酮基丙烯酰氧基丙基三甲氧基硅烷中的至少一种。
  30. 根据权利要求20所述的封装组合物,其特征在于,以100重量份聚合物基体计,所述封装组合物包含自由基引发剂0.05~10份。
  31. 根据权利要求30所述的封装组合物,其特征在于,所述自由基引发剂为过氧化物,可选自二叔丁基过氧化物、二枯基过氧化物、叔丁基枯基过氧化物、1,1-二叔丁基过氧化物-3,3,5-三甲基环己烷、2,5-二甲基-2,5-二(叔丁基过氧基)己烷、2,5-二甲基-2,5-二叔丁基过氧基-3-己炔、1,4-双叔丁基过氧异丙基苯、过氧化苯甲酸叔丁酯、叔丁基过氧化-2-乙基己基碳酸酯、过氧化苯甲酰、过氧化新癸酸叔丁酯、过氧化乙酸叔丁酯、过氧化异辛酸叔丁酯、甲基乙基酮过氧化物中的至少一种。
  32. 根据权利要求20所述的封装组合物,其特征在于,所述封装组合物还包含自由基活化剂、紫外线吸收剂、光稳定剂、抗氧剂、玻璃纤维、增塑剂、成核剂、扩链剂、阻燃剂、填料、防焦剂、导热填料、金属离子捕捉剂、着色剂、增白剂、增透改性剂中的至少一种。
  33. 根据权利要求32所述的封装组合物,其特征在于,以100重量份单位聚合物基体计,所述封装组合物内包含自由基活化剂0~10份,紫外线吸收剂0~2份,抗氧剂0~5份,光稳定剂0~5份,所述自由基活化剂包含三烯丙基氰脲酸酯、三烯丙基异氰脲酸酯、乙二醇二甲基丙烯酸酯、二甲基丙烯酸三乙二酯、偏苯三酸三烯丙酯、三羟甲基丙烷三甲基丙烯酸酯、N,N’-间苯撑双马来酰亚胺、N,N’-双亚糠基丙酮、1,2-聚丁二烯中的至少一种,所述紫外线吸收剂包含二苯甲酮类或苯并三唑类中的至少一种,所述光稳定剂包含受阻胺类或哌啶化合物中的至少一种,所述抗氧剂包含受阻酚类或亚磷酸酯类抗氧剂的至少一种,所述抗氧剂包含2,2'-亚甲基双(4-甲基-6-叔丁基苯酚)、2,2'-亚甲基双(4-乙基-6-叔丁基苯酚)、四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯、二(2,4-二枯基苯基)季戊四醇二亚磷酸酯、二硬脂基季戊四醇二亚磷酸酯、三(壬基苯基)亚磷酸酯、三(2,4-二叔丁基苯基)亚磷酸酯、三(1,2,2,6,6-五甲基哌啶)亚磷酸酯、3,5-二叔丁基-4-羟基-苯甲酸正十六酯中的至少一种。
  34. 根据权利要求32所述的封装组合物,其特征在于,所述增塑剂包含石蜡矿物油和芳香族矿物油、邻苯二甲酸酯、壬二酸酯、己二酸酯或磷酸三甲苯酯中的 至少一种。
  35. 一种太阳能电池组件,其特征在于,所述太阳能电池组件内所用的封装胶膜至少一层包含权利要求20~34中任一所述的封装组合物。
  36. 根据权利要求35所述的太阳能电池组件,其包括支撑背板、太阳能发电主体、光接收基片、封装胶膜,其特征在于,所述支撑背板与太阳能发电主体之间,光接收基片与太阳能发电主体之间至少一层设有封装胶膜,所述封装胶膜的至少一层包含权利要求20~38任一所述封装组合物,所述太阳能发电主体为晶硅太阳能电池片或者薄膜太阳能电池片。
  37. 一种加工权利要求36所述太阳能电池组件的方法,其特征在于,在层压光接收基片后,太阳能发电主体、支承基片和封装胶膜通过真空抽吸的热压装置加工太阳能电池组件。
  38. 一种双层玻璃,其特征在于,所述双层玻璃内所用的封装材料包含权利要求20~34中任一所述封装组合物。
  39. 一种封装材料,其特征在于,所述封装材料内包括权利要求20~34中任一所述封装组合物。
PCT/CN2018/096743 2017-07-25 2018-07-24 一种聚烯烃组合物及其应用 WO2019019987A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201710612989.5 2017-07-25
CN201710612989 2017-07-25
CN201711364857.1 2017-12-18
CN201711366329 2017-12-18
CN201711366329.X 2017-12-18
CN201711364857 2017-12-18
CN201810805534.XA CN109337156B (zh) 2017-07-25 2018-07-20 一种聚烯烃组合物及其应用
CN201810805534.X 2018-07-20

Publications (1)

Publication Number Publication Date
WO2019019987A1 true WO2019019987A1 (zh) 2019-01-31

Family

ID=65039369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/096743 WO2019019987A1 (zh) 2017-07-25 2018-07-24 一种聚烯烃组合物及其应用

Country Status (1)

Country Link
WO (1) WO2019019987A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111675971A (zh) * 2019-03-11 2020-09-18 杭州福斯特应用材料股份有限公司 一种封装材料、相关的胶膜和其制法以及光伏组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183283A (en) * 1958-01-08 1965-05-11 Union Carbide Corp Blends of low molecular weight, highly branched polyethylenes with high molecular weight, sparsely branched polyethylenes
US5904964A (en) * 1989-12-18 1999-05-18 E. I. Du Pont De Nemours And Company Process for manufacturing heat-shrinkable polyethylene film
WO2014028210A1 (en) * 2012-08-16 2014-02-20 Exxonmobile Chemical Patents Inc. Highly branched compositions and processes for the production thereof
CN103980596A (zh) * 2014-05-13 2014-08-13 浙江大学 一种聚乙烯橡胶及其加工方法
CN104877225A (zh) * 2015-06-20 2015-09-02 浙江大学 一种气密层材料的制备方法及其原料配方

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3183283A (en) * 1958-01-08 1965-05-11 Union Carbide Corp Blends of low molecular weight, highly branched polyethylenes with high molecular weight, sparsely branched polyethylenes
US5904964A (en) * 1989-12-18 1999-05-18 E. I. Du Pont De Nemours And Company Process for manufacturing heat-shrinkable polyethylene film
WO2014028210A1 (en) * 2012-08-16 2014-02-20 Exxonmobile Chemical Patents Inc. Highly branched compositions and processes for the production thereof
CN103980596A (zh) * 2014-05-13 2014-08-13 浙江大学 一种聚乙烯橡胶及其加工方法
CN104877225A (zh) * 2015-06-20 2015-09-02 浙江大学 一种气密层材料的制备方法及其原料配方

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111675971A (zh) * 2019-03-11 2020-09-18 杭州福斯特应用材料股份有限公司 一种封装材料、相关的胶膜和其制法以及光伏组件
CN111675971B (zh) * 2019-03-11 2022-05-03 杭州福斯特应用材料股份有限公司 一种封装材料、相关的胶膜和其制法以及光伏组件

Similar Documents

Publication Publication Date Title
CN109337156B (zh) 一种聚烯烃组合物及其应用
JP5276167B2 (ja) ガラス/ポリオレフィンフィルム積層構造を作製する方法
TWI501410B (zh) 包含聚烯烴共聚物之電子元件模組
JP5696044B2 (ja) エチレン系樹脂組成物、太陽電池封止材およびそれを用いた太陽電池モジュール
JP5766912B2 (ja) エチレンマルチブロックコポリマーを含む電子装置モジュール
JP5970769B2 (ja) 太陽電池モジュール用封止材及びそれを用いた太陽電池モジュールの製造方法
JP6170948B2 (ja) フィルムを含むシラン含有エチレンインターポリマー配合物及びそれを含む電子デバイスモジュール
JP6078967B2 (ja) 太陽電池モジュール用封止材シート
JP5859633B2 (ja) 太陽電池封止材および太陽電池モジュール
US20130174907A1 (en) Sealing material for solar cell modules, and manufacturing method thereof
JP2014506938A (ja) シラン含有熱可塑性ポリオレフィンコポリマー樹脂、フィルム、その製造方法、並びにその樹脂およびフィルムを含む光起電力モジュール積層構造
CN110079244B (zh) 一种太阳能电池封装材料、相关胶膜及太阳能电池组件
JP5854473B2 (ja) 太陽電池封止材および太陽電池モジュール
JP5830600B2 (ja) 太陽電池封止材および太陽電池モジュール
US9570642B2 (en) Sealing material sheet for solar cell modules
EP4166618A1 (en) Adhesive film, composition for forming same and electronic device
JP2013229410A (ja) 太陽電池封止材および太陽電池モジュール
JP6166377B2 (ja) 太陽電池封止用シートセットおよび太陽電池モジュール
WO2019019986A1 (zh) 封装组合物及包含其的封装胶膜和电子器件组件
WO2019019987A1 (zh) 一种聚烯烃组合物及其应用
WO2019019988A1 (zh) 封装组合物及应用,及包含其的封装胶膜及其制备方法
KR101472712B1 (ko) 비가교형 태양전지 봉지재 조성물, 이를 포함하는 태양전지 봉지재 및 이를 포함하는 태양전지 모듈
JP7391187B2 (ja) ヒュームドアルミナを含む光起電力封入剤フィルム
JP2018050027A (ja) 太陽電池モジュール
JP2012207144A (ja) エチレン系樹脂組成物、太陽電池封止材およびそれを用いた太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838184

Country of ref document: EP

Kind code of ref document: A1