WO2019019786A1 - 一种车辆定位方法、装置及设备 - Google Patents

一种车辆定位方法、装置及设备 Download PDF

Info

Publication number
WO2019019786A1
WO2019019786A1 PCT/CN2018/088307 CN2018088307W WO2019019786A1 WO 2019019786 A1 WO2019019786 A1 WO 2019019786A1 CN 2018088307 W CN2018088307 W CN 2018088307W WO 2019019786 A1 WO2019019786 A1 WO 2019019786A1
Authority
WO
WIPO (PCT)
Prior art keywords
location
geographic coordinate
determining
target
site
Prior art date
Application number
PCT/CN2018/088307
Other languages
English (en)
French (fr)
Inventor
魏文超
Original Assignee
杭州海康威视数字技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州海康威视数字技术股份有限公司 filed Critical 杭州海康威视数字技术股份有限公司
Publication of WO2019019786A1 publication Critical patent/WO2019019786A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments

Definitions

  • the present application relates to the field of intelligent transportation technologies, and in particular, to a vehicle positioning method, device and device.
  • the vehicle In some scenarios, it is often necessary to accurately locate the vehicle. For example, for a bus, it is often necessary to determine the site where it is located.
  • the GIS Geographic Information System
  • the site where the vehicle is located is determined in the plane coordinate system.
  • the earth is ellipsoidal.
  • the latitude and longitude information of the ellipsoid is mapped to the plane coordinate system, and there are some precision loss and tensile defects, which reduces the accuracy of positioning.
  • An object of the embodiments of the present application is to provide a vehicle positioning method, device, and device, which improve the accuracy of positioning.
  • the embodiment of the present application discloses a vehicle positioning method, including:
  • the target site is determined to be the site where the target vehicle is located.
  • the second location of each site corresponding to the target vehicle is a set of numbers
  • each element of the sequence is a second location of each site
  • the sequence is sorted according to a second location of each site
  • the step of determining the positional relationship of the second location of the first location of each site corresponding to the target vehicle in the non-ellipsoid map model may include:
  • the first location and the second location each include a first geographic coordinate; the sequence is sorted according to a first geographic coordinate of each site; and the determining the first location is in the sequence
  • the steps of the target location can include:
  • the step of determining the positional relationship between the second position to be compared and the first position in the non-ellipsoid map model may include:
  • the step of selecting the second location of the target site that matches the first location based on the location relationship may include:
  • the first location and the second location further include a second geographic coordinate; and the determining the second location to be compared as the target site that matches the first location Before the step of two locations, the method may further include:
  • the step of determining the second location to be compared as the second location of the target site that matches the first location may include:
  • the method may further include:
  • the step of sequentially determining the second location to be compared, starting from the target location may include:
  • the first location and the second location each include a first geographic coordinate;
  • the second location of each site corresponding to the target vehicle is a set of series, and each element of the sequence is a site a second location, the sequence is sorted according to a first geographic coordinate of each site;
  • the step of determining the positional relationship of the second location of the first location of each site corresponding to the target vehicle in the non-ellipsoid map model may include:
  • the step of selecting the second location of the target site that matches the first location based on the location relationship may include:
  • a sequence element adjacent to the target location is determined as a second location of the target site that matches the first location.
  • the first location and the second location further include a second geographic coordinate; and the sequence element adjacent to the target location is determined as a target site that matches the first location Before the step of the second location, the method may further include:
  • the step of determining the sequence element adjacent to the target location as the second location of the target site that matches the first location is performed.
  • the first geographic coordinate is a longitude position or a latitude position.
  • the first geographic coordinate is a longitude position
  • the second geographic coordinate is a latitude position
  • the first geographic coordinate is a latitude position and the second geographic coordinate is a longitude position.
  • the non-ellipsoid map model is a plane map model or a positive sphere map model.
  • a vehicle positioning device including:
  • a first determining module configured to determine a first location of the target vehicle
  • a second determining module configured to determine a positional relationship between the first location and the second location of each site corresponding to the target vehicle acquired in advance in a non-ellipsoid map model
  • a selection module configured to select a second location of the target site that matches the first location based on the location relationship
  • a first calculating module configured to calculate an ellipsoid distance of the first location and the second location of the target site in an ellipsoid map model
  • a third determining module configured to determine the target site as a site where the target vehicle is located if the ellipsoid distance is less than a first preset value.
  • the second location of each site corresponding to the target vehicle is a set of numbers
  • each element of the sequence is a second location of each site
  • the sequence is sorted according to a second location of each site
  • the second determining module may include:
  • a first determining submodule configured to determine a target location of the first location in the sequence
  • a second determining submodule configured to sequentially determine the second location to be compared, starting from the target location
  • a third determining submodule configured to determine a positional relationship between the second location to be compared and the first location in the non-ellipsoid map model.
  • the first location and the second location include a first geographic coordinate; the sequence is sorted according to a first geographic coordinate of each site; the first determining sub-module may be specifically used to:
  • the third determining submodule may be specifically configured to:
  • the selection module may include:
  • a first determining sub-module configured to determine whether the calculated first geographic coordinate distance is less than a second preset value
  • a fourth determining submodule configured to determine, in the case that the first geographic coordinate distance is less than a second preset value, the second location to be compared as the second target site that matches the first location position.
  • the first location and the second location further include a second geographic coordinate; the second determining module may further include:
  • a calculation submodule configured to: when the first determining submodule determines that the first geographic coordinate distance is less than a second preset value, calculate the second position to be compared and the first position in a non-ellipsoid map The second geographic coordinate distance in the model;
  • a second determining sub-module configured to determine whether the calculated second geographic coordinate distance is less than a third preset value
  • the fourth determining submodule may be specifically configured to:
  • the second determining submodule determines that the second geographic coordinate distance is less than a third preset value, triggering the second determining submodule;
  • the second determining submodule may specifically be used to:
  • the device may further include:
  • a switching module configured to switch the current direction if the first determining sub-module determines that the calculated first geographic coordinate distance is not less than the second preset value.
  • the first location and the second location each include a first geographic coordinate;
  • the second location of each site corresponding to the target vehicle is a set of series, and each element of the sequence is a site a second location, the sequence is sorted according to a first geographic coordinate of each site;
  • the second determining module may be specifically configured to:
  • the selection module can be specifically used to:
  • a sequence element adjacent to the target location is determined as a second location of the target site that matches the first location.
  • the first location and the second location further include a second geographic coordinate; the device may further include:
  • a second calculating module configured to calculate a second geographic coordinate distance of the adjacent sequence element and the first position in a non-ellipsoid map model
  • the determining module is configured to determine whether the calculated second geographic coordinate distance is less than a third preset value; if yes, trigger the selection module.
  • the first geographic coordinate is a longitude position or a latitude position.
  • the first geographic coordinate is a longitude position
  • the second geographic coordinate is a latitude position
  • the first geographic coordinate is a latitude position and the second geographic coordinate is a longitude position.
  • the non-ellipsoid map model is a plane map model or a positive sphere map model.
  • an embodiment of the present application further discloses an electronic device, including a processor and a memory, wherein the memory is used to store a computer program, and the processor is configured to execute the program stored on the memory.
  • a vehicle positioning method including a processor and a memory, wherein the memory is used to store a computer program, and the processor is configured to execute the program stored on the memory.
  • an embodiment of the present application further discloses a computer readable storage medium, where the computer readable storage medium stores a computer program, and the computer program is executed by a processor to implement any of the above vehicle positioning methods. .
  • an embodiment of the present application further discloses an executable program code for being executed to execute any of the above vehicle positioning methods.
  • the second position of the target station matching the first position of the target vehicle is roughly determined in the non-ellipsoid map model, and then the first position and the target of the target vehicle are accurately calculated.
  • the ellipsoid distance of the second position of the station in the ellipsoid map model on the one hand, the accuracy of the positioning is improved compared to the scheme of "mapping the latitude and longitude information of the ellipsoid to the plane coordinate system"; Compared to the scheme of "accurately calculating the ellipsoid distance of the first position of the target vehicle and the second position of all stations in the ellipsoid map model", the amount of calculation is reduced.
  • FIG. 1 is a schematic diagram of a first process of a vehicle positioning method according to an embodiment of the present application
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present application
  • FIG. 2 is a second schematic flowchart of a vehicle positioning method according to an embodiment of the present application.
  • 2a is a schematic diagram of calculating a longitude distance in an embodiment of the present application.
  • 2b is a schematic diagram of calculating a latitude distance in the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a third process of a vehicle positioning method according to an embodiment of the present application.
  • FIG. 3a is a schematic diagram of distribution of some sites in the embodiment of the present application.
  • FIG. 3b is a schematic diagram of another station distribution in the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a vehicle positioning device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the embodiment of the present application provides a vehicle positioning method, device, and device.
  • a vehicle positioning method provided by an embodiment of the present application is described in detail below. The method can be applied to a server or applied to other various electronic devices, and is not limited.
  • FIG. 1 is a schematic diagram of a first process of a vehicle positioning method according to an embodiment of the present disclosure, including:
  • S101 Determine a first position of the target vehicle.
  • the equipment that implements the scheme (hereinafter referred to as the equipment) can be communicably connected with the positioning module of one or more vehicles, so that the device can determine the position of the vehicle.
  • the position of the target vehicle is referred to as a first position
  • the position of each station corresponding to the target vehicle is referred to as a second position.
  • the application scenario of the embodiment of the present application may be as shown in FIG. 1a, where a GPS (Global Positioning System) module, that is, a positioning module, is further provided with a communication module;
  • the GPS module can determine the location of the vehicle, and the communication module transmits the location information of the vehicle to the base station, and the base station forwards the location information to the server, that is, the execution body of the solution, so that the server can determine the location of the vehicle.
  • GPS Global Positioning System
  • the target vehicle in S101 refers to the vehicle that needs to determine the site at which it is located.
  • the vehicle may send its own location information to the server if it needs to determine its own site, and the server determines the first location of the target vehicle according to the received location information; or the vehicle may also locate its own location information in real time or periodically.
  • the server may determine the first location of the target vehicle based on the received location information according to a preset rule or a user instruction, which is reasonable.
  • the vehicle is a public transportation vehicle
  • the public transportation vehicle may send its own location information to the server when some special events such as parking, opening, closing, etc., and the server determines the first location of the target vehicle according to the received location information.
  • S102 Determine a positional relationship between the first location and the second location of each site corresponding to the target vehicle acquired in advance in a non-ellipsoid map model.
  • the non-ellipsoid map model here may be a planar map model or a positive sphere map model. It can be understood that the earth is ellipsoidal, and some of the more accurate algorithms are usually based on the ellipsoid map model, that is, the operation of the earth as an ellipsoid; and some less precise algorithms are usually based on a flat map model, or a true sphere.
  • the map model performs operations, that is, the operation of the earth's surface as a plane, or the operation of the earth as a true sphere.
  • the device is in communication with the positioning module of the three-way bus (1, 2, 3), wherein the route corresponding to the bus 1 includes: A1 site, A2 site, A3 site, A4 station, A5 station and A6 station, the corresponding routes of the 2 bus vehicles include: B1 site, B2 site, B3 site, B4 site, B5 site and B6 site.
  • the routes corresponding to the three bus vehicles include: C1 site, C2 site , C3 sites, C4 sites, C5 sites, and C6 sites.
  • the device pre-acquires the second location of each station in the route corresponding to the three public transportation vehicles. Assuming that the target vehicle in S101 is a bus, the positional relationship between the first position of the bus 1 and the second position of the A1-A6 station in the non-ellipsoid map model is determined.
  • the second location of each site corresponding to the target vehicle acquired in advance may be a set of series, and each element of the sequence is a second location of each site, and the sequence is sorted according to the second location of each site.
  • S102 may include:
  • Step 1 Determine a target location of the first location in the sequence
  • Step 2 using the target location as a starting point, sequentially determining a second location of the station to be compared;
  • Step 3 Determine a positional relationship between the second position to be compared and the first position in a non-ellipsoid map model.
  • S103 Select a second location of the target site that matches the first location based on the location relationship.
  • the first location in S101 and the second location of the site may include a first geographic coordinate, which may be a longitude location and/or a latitude location.
  • the above step 1 includes:
  • Step 3 above includes:
  • S103 includes:
  • the first location in S101 and the second location of the site all include a first geographic coordinate and a second geographic coordinate.
  • the first geographic coordinate is a longitude location
  • the second geographic coordinate is a latitude Position
  • the first geographic coordinate is a latitude position
  • the second geographic coordinate is a longitude position.
  • the second position to be compared and the first position may be continuously calculated in the non-ellipsoid map model. a second geographic coordinate distance; determining whether the calculated second geographic coordinate distance is less than a third preset value; if less than, determining the second location to be compared as the target site matching the first location The second position.
  • S104 Calculate an ellipsoid distance of the first location and the second location of the target site in an ellipsoid map model.
  • Calculate the ellipsoid distance between the two positions in the ellipsoid map model that is, calculate the elliptical distance between the two.
  • a fine function such as the getFlatternDistance function, can be used to calculate the elliptical distance between two positions of S101 by using the earth as an ellipsoid.
  • S105 Determine the target site as the site where the target vehicle is located if the ellipsoid distance is less than the first preset value.
  • the first preset value can be set according to the radius of the site coverage area.
  • the second position of the target station matching the first position of the target vehicle is roughly determined in the non-ellipsoid map model, and then the target vehicle is accurately calculated.
  • the ellipsoid distance between a position and the second position of the target site in the ellipsoid map model on the one hand, the accuracy of the positioning is improved compared to the scheme of "mapping the latitude and longitude information of the ellipsoid to the plane coordinate system"; On the one hand, the amount of calculation is reduced compared to the scheme of "accurately calculating the ellipsoid distance of the first position of the target vehicle and the second position of all stations in the ellipsoid map model".
  • FIG. 2 is a second schematic flowchart of a vehicle positioning method according to an embodiment of the present disclosure, including:
  • S201 Determine a first location of the target vehicle, the first location including the first geographic coordinate and the second geographic coordinate.
  • S202 Determine, according to the first geographic coordinate in the first location, a target location of the first location in the sequence.
  • Each element of the sequence is a second location of each site corresponding to the target vehicle, and the second location includes a first geographic coordinate and a second geographic coordinate, and the sequence is sorted according to the first geographic coordinate of each site.
  • S203 Determine, according to the current direction, the second position to be compared according to the current position as the starting point.
  • S204 Calculate a first geographic coordinate distance between the second location to be compared and the first location in the non-ellipsoid map model.
  • S206 Calculate a second geographic coordinate distance between the second location to be compared and the first location in the non-ellipsoid map model.
  • S209 Determine the second location to be compared as the second location of the target site that matches the first location.
  • S210 Calculate an ellipsoid distance in the ellipsoid map model between the first location and the second location of the target site.
  • S212 Determine the target site as a site where the target vehicle is located.
  • the first geographic coordinate in the first case, is a longitude position, and the second geographic coordinate is a latitude position; in the second case, the first geographic coordinate is a latitude position, and the second geographic coordinate is a longitude position.
  • each element of the sequence is a second position of each station corresponding to the target vehicle, and the second position includes a longitude position and the latitude position, and the sequence is sorted according to the longitude position of each station.
  • a first position of the target vehicle is determined, the first position including a longitude position and a latitude position. Based on the longitude position in the first position, the target position of the first position of the S101 in the sequence is determined.
  • the east longitude is positive
  • the west longitude is negative
  • the north latitude is positive
  • the south latitude is negative
  • the target vehicle is a one-way bus
  • the corresponding stations of the one-way bus are A1-A6 stations.
  • the longitude position of A1 is 116.3258°
  • the latitude position is 40.0848°
  • the longitude position of A2 is 116.3350°
  • the latitude position is 40.0780°
  • the longitude position of A3 is 116.3458°
  • the latitude position is 40.0231°
  • the longitude position of A4 is 116.3537°
  • the latitude position is 40.0016°
  • the longitude position of A5 is 116.3784°
  • the latitude position is 39.9877°
  • the longitude position of A6 is 116.3813°
  • the latitude position is 39.9497°.
  • the longitude position may be multiplied by 10000 to take an integer, and then the subsequent calculation is performed.
  • the obtained sequence is: A1:1163258, A2: 1163350, A3: 1163458, A4: 1163537, A5: 1163784, A6: 1163813.
  • the longitude position in the first position determined in S201 is 1163810 (multiplied by 10000 to take the integer value), and the target position of the longitude position in the series is determined. Specifically, one-to-one comparison method may be used, or Using the dichotomy, the target position is determined to be the penultimate position (between A5 and A6).
  • the second position to be compared is determined in turn, and the current direction may be forward or backward.
  • the order in the series is indicated forward and backward.
  • the earth is an ellipsoid, and the longitude and the minimum are the same, that is, the above series can be understood as a cyclic sequence. Therefore, in the process of sequentially determining the second position to be compared, the second position of A6 is determined to be the second position to be compared, and the second position to be compared is determined in turn, and A1 is determined after A6.
  • the second location is the second location of the site to be compared.
  • the target position is used as a starting point, and the second position to be compared is determined backward.
  • the first time A6: 1163813 is determined as the second position to be compared, and the second position of S201 and the second position of A6 are calculated on the non-ellipsoid map. Longitude distance in the model (first geographic coordinate distance).
  • the calculated longitude distance is a rough calculation. It can be assumed that the first position in S201 is at the same latitude as the second position of A6. Specifically, the higher latitude can be calculated, as shown in FIG. 2a. P denotes the first position in S201, Pi denotes the second position of A6, and the latitude of Pi is higher than the latitude of P. Taking P as the latitude, P is moved to P', and the distance between P' and Pi is calculated as S201. The longitude of the first position and A6.
  • the non-ellipsoid map model may be a plane map model or a positive sphere map model. If it is a plane map model, the distance between P' and Pi is the line segment distance, and if it is a positive sphere map model, then P' and The distance of the Pi is the distance from the positive surface of the ball.
  • the second preset value may be set according to a radius of the site coverage area, and the second preset value may be the same as or different from the first preset value.
  • the first scheme can directly determine the site corresponding to the second location to be compared (that is, A6) as the target site, and the second scheme can utilize the latitude distance (second geographic).
  • the coordinate distance is further determined: calculating a latitude distance between the second position to be compared and the first position; determining whether the calculated latitude distance is less than a third preset value; and if so, comparing the above-mentioned comparison
  • the site corresponding to the second location ie, A6) is determined as the target site.
  • the long-distance distance is used to screen out the target site, and only the ellipsoid distance of the target site and the first position in the S201 in the ellipsoid map model is accurately calculated.
  • the scheme to the plane coordinate system improves the accuracy of positioning; on the other hand, the calculation amount is reduced compared to the scheme of "accurately calculating the ellipsoid distance of the target vehicle and all stations in the ellipsoid map model".
  • the longitude distance and the latitude distance are used for two screenings to screen out the target site, and only the elliptical surface distance between the target site and the first position in S101 is accurately calculated, thereby further reducing the calculation amount.
  • the calculated latitude distance is a rough calculation, and it can be assumed that the first position in S201 is at the same longitude as the second position of A6. Specifically, any longitude of the two can be calculated, as shown in FIG. 2b.
  • P denotes the first position in S201
  • Pi denotes the second position of A6, and it is assumed that P is moved to P' based on the longitude of P, and the distance between P' and P is calculated as the latitude distance between the first position and A6 in S201.
  • the non-ellipsoid map model may be a planar map model or a positive sphere map model. If it is a planar map model, the distance between P' and Pi is the line segment distance. If it is a positive sphere map model, the distance between P' and Pi is the distance from the positive spherical surface.
  • the third preset value may be set according to the radius of the site coverage area, and the third preset value may be the same as or different from the first preset value and the second preset value.
  • the process may return to S203, continue to determine the second position to be compared according to the current direction, and continue the second position to be compared. Compare with the first position in S201.
  • the target position is taken as the starting point, and the second position to be compared is sequentially determined backward, and the sequence is the cyclic sequence. Therefore, the second time A1:1163258 is determined as the second position to be compared, and the calculation is performed.
  • the process of comparing the first position in S201 with A1 is similar to the above process, and will not be described again. If A1 is the target site, the subsequent S210 is performed. If A1 is not the target site, the process returns to S203, and the second location to be compared is determined according to the current direction, and the second location to be compared is continued with the first location in S201. Comparison.
  • the current direction may be switched first, and then the process returns to S203. That is to say, the second position to be compared may be sequentially determined according to the direction from the target position, and if the target station is not matched (NO in S205) (NO in S205), In the other direction, the second position to be compared is determined in turn.
  • the second position to be compared is determined first and then sequentially. If the result of the determination in S205 is no, the target position is used as the starting point, and the second position to be compared is determined in order.
  • the pre-acquired sequence is sorted according to the longitude position of each station, and the above example is continued. If A1 is not the target site, the second position to be compared is re-determined as the second position of A2, and the A2 is continued. Comparing the second position with the first position in S201, assuming that the longitude distance between A2 and the first position of the target vehicle is greater than or equal to the second preset value, it can be considered that the direction along the series is backward and the second position of the station is followed. The longitude distance of the first position of the target vehicle will be larger and larger, and therefore, the second position to be compared is stopped in this direction.
  • the second position to be compared can be determined in order from the above target position as the starting point.
  • the target station in the backward direction, the second position of all the stations has been compared with the first position of the target vehicle as the second position to be compared, and it has not been determined yet.
  • Target site in this case, there is no need to forward the second location to be compared. At this time, it is possible to output related information that cannot determine the site where the target vehicle is located, or output other information, which is not limited.
  • the ellipsoid distance of the first location in S201 and the second location of the target site in the ellipsoid map model can be calculated.
  • Calculate the ellipsoid distance between the two positions in the ellipsoid map model that is, calculate the elliptical distance between the two.
  • a fine function such as the getFlatternDistance function, may be used to calculate the elliptical surface distance between the two positions by using the earth as an ellipsoid, and if the distance is smaller than the first preset value,
  • the target site is determined to be the site where the target vehicle is located.
  • the pre-acquired sequence is sorted according to the latitude position of each station, and correspondingly, the target position of the first position of the S201 in the sequence is determined according to the latitude position in the first position of S201.
  • sequence ranked according to the longitude position is a cyclic sequence
  • sequence sorted according to the latitude position is not a cyclic sequence
  • the longitude position of A1 is 116.3258°
  • the latitude position is 40.0848°
  • the longitude position of A2 is 116.3350°
  • the latitude position is 40.0780°
  • the longitude position of A3 is 116.3458°
  • the latitude position is 40.0231°
  • the latitude position is 40.0016°
  • the longitude position of A5 is 116.3784°
  • the latitude position is 39.9877°
  • the longitude position of A6 is 116.3813°
  • the latitude position is 39.9497°.
  • the latitude position may be multiplied by 10000 to take an integer, and then the subsequent calculation is performed.
  • the obtained sequence is: A1: 400848, A2: 400780, A3: 400231, A4: 400016, A5: 399877, A6: 399497.
  • the latitude information in the first position determined in S201 is 399498 (multiplied by 10000 to take the integer value), and the target position of the latitude information in the series is determined.
  • a one-to-one comparison method may be used, or Using the dichotomy, the target position is determined to be the penultimate position (between A5 and A6).
  • the second position to be compared may be sequentially determined according to the current direction starting from the target position, and the current direction may be forward or backward. In the present embodiment, the order in the series is indicated forward and backward.
  • the second position to be compared is determined backward, and A6:399497 is determined as the second position to be compared for the first time, and the latitude distance between the first position and A6 in S101 is calculated.
  • the calculated latitude distance is a rough calculation, and it can be assumed that the first position in S201 is at the same longitude as the second position of A6. Specifically, any longitude of the two can be calculated, as shown in FIG. 2b.
  • P denotes the first position in S201
  • Pi denotes the second position of A6, and it is assumed that P is moved to P' based on the longitude of P, and the distance between P' and P is calculated as the latitude distance between the first position and A6 in S201.
  • the non-ellipsoid map model may be a planar map model or a positive sphere map model. If it is a planar map model, the distance between P' and Pi is the line segment distance, and if it is the positive ball map model, the distance between P' and Pi is the positive spherical surface distance.
  • Determining whether the calculated latitude distance is less than a second preset value, and the second preset value may be set according to a radius of the site coverage area; if less than, there may be two schemes: the first scheme may directly compare the above to be compared The second site corresponding to the second location (ie, A6) is determined as the target site, and the second scheme can be further judged by using the longitude distance (second geographic coordinate distance): calculating the second and the first to be compared The longitude distance of a position; determining whether the calculated longitude distance is smaller than a third preset value; if yes, determining the station corresponding to the second position to be compared (that is, A6) as the target station.
  • the latitude distance is used to screen out the target site, and only the ellipsoid distance of the target site and the first position in the S201 in the ellipsoid map model is accurately calculated.
  • the latitude and longitude information of the ellipsoid is mapped.
  • the scheme to the plane coordinate system improves the accuracy of positioning; on the other hand, the calculation amount is reduced compared to the scheme of "accurately calculating the ellipsoid distance of the target vehicle and all stations in the ellipsoid map model".
  • the latitude distance and the longitude distance are used for two screenings to screen out the target site, and only the elliptical surface distance between the target site and the first position in S101 is accurately calculated, thereby further reducing the calculation amount.
  • the calculated longitude distance is a rough calculation, and it can be assumed that the first position in S201 is at the same latitude as the second position of A6. Specifically, the higher latitude can be calculated, as shown in FIG. 2a.
  • P denotes the first position in S201
  • Pi denotes the second position of A6, and the latitude of Pi is higher than the latitude of P. Taking P as the latitude, P is moved to P', and the distance between P' and Pi is calculated as S201. The longitude of the first position and A6.
  • the non-ellipsoid map model may be a plane map model or a positive sphere map model. If it is a plane map model, the distance between P' and Pi is the line segment distance, and if it is a positive sphere map model, then P' and The distance of the Pi is the distance from the positive surface of the ball.
  • the third preset value may be set according to the radius of the site coverage area, and the third preset value may be the same as or different from the first preset value and the second preset value.
  • the process may return to S203, continue to determine the second position to be compared according to the current direction, and continue to compare the second position to be compared with The first position in S201 is compared.
  • the sequence in the embodiment is not a cyclic sequence, and the target location is used as a starting point, and only one site A6 is backward. If A6 is not the target site, and the second location to be compared is continuously determined, the The target position is the starting point, and the second position to be compared is determined in order. That is to say, the second time A5: 1163258 is determined as the second position to be compared, and the latitude distance between the first position and A5 in S101 is calculated.
  • the process of comparing the first position in S201 with A5 is similar to the above process, and will not be described again. If A5 is the target site, then the subsequent S210 is performed. If A5 is not the target site, the second location to be compared is further determined, and the second location to be compared is continuously compared with the first location in S101.
  • the current direction may be switched first, and then the process returns to S203. That is to say, the second position to be compared may be determined in turn according to the direction of the target position, and in the case that the target station is not matched, the second position to be compared is sequentially determined according to the other direction.
  • the pre-acquired sequence is sorted according to the latitude position of each station, assuming that there are other sites after A6, and A6 is not the target site, then the other second positions to be compared are later determined, if to be compared If the latitude distance between the second position and the first position of the target vehicle is greater than or equal to the second preset value, it can be considered that the latitude distance between the second position of the station in the backward direction direction and the first position of the target vehicle is larger and larger. Therefore, the determination of the second position to be compared is stopped in this direction.
  • the target station is still not matched, the related information of the site where the target vehicle is located cannot be determined, or other information is output, which is not limited.
  • the ellipsoid distance of the first location in S201 and the second location of the target site in the ellipsoid map model can be calculated.
  • Calculate the ellipsoid distance between the two positions in the ellipsoid map model that is, calculate the elliptical distance between the two.
  • a fine function such as the getFlatternDistance function, may be used to calculate the elliptical surface distance between the two positions by using the earth as an ellipsoid, and if the distance is smaller than the first preset value,
  • the target site is determined to be the site where the target vehicle is located.
  • the result of the determination in S211 is negative, it may return to S203 to continue determining the second position to be compared.
  • the longitude distance is greater than or equal to the third preset value, or the ellipsoid distance in the elliptical map model is greater than or equal to the first preset value
  • the original direction is determined in turn.
  • the second position of the comparison if the latitude distance is greater than or equal to the first preset value, the direction is switched, and the second position to be compared is sequentially determined according to the switched direction (forward).
  • FIG. 3 is a third schematic flowchart of a vehicle positioning method according to an embodiment of the present disclosure, including:
  • S301 Determine a first location of the target vehicle, where the first location includes a first geographic coordinate and a second geographic coordinate.
  • S302 Determine, according to the non-ellipsoid map model, a target location of the first location in the sequence according to the first geographic coordinate in the first location.
  • each element of the sequence is a second location of each site corresponding to the target vehicle, and the second location includes a first geographic coordinate, and the sequence is sorted according to a first geographic coordinate of each site.
  • S303 Determine a sequence element adjacent to the target location as a second location of the target site that matches the first location.
  • S304 Calculate an ellipsoid distance in the ellipsoid map model between the first location and the second location of the target site.
  • S305 Determine the target site as the site where the target vehicle is located if the ellipsoid distance is less than the first preset value.
  • the embodiment of FIG. 3 after determining the target location of the first location in the sequence, the site corresponding to the second location adjacent to the target location is directly determined as the target site; compared to determining the target site in the embodiment of FIG. In this way, the embodiment of FIG. 3 determines the manner of the target site to be simpler and more efficient.
  • the embodiment of FIG. 3 can be used to determine both efficiently and accurately.
  • the site where the target vehicle is located is located.
  • the first geographic coordinate may be a latitude position; if it is the second case in Fig. 3a, the latitude position of each station is similar, The longitude position is linearly distributed, and the first geographic coordinate may be a longitude position; if it is the third case in FIG. 3a, the longitude position and the latitude position of each station are linearly distributed, and the first geographic coordinate may be a longitude position or a latitude position.
  • the first location and the second location further include a second geographic coordinate.
  • the adjacent sequence element and the first location may be first calculated in a non-ellipsoid map model. a second geographic coordinate distance; determining whether the calculated second geographic coordinate distance is less than a third preset value; if yes, executing S303.
  • the longitude positions of the two stations are approximate, and the latitude positions are different, or the latitude positions of the two stations are approximate, and the longitude positions are different.
  • the route of the target vehicle is similar to an ellipse. As shown in FIG. 3b, the latitudes of the two stations X and Y on the circle are the same, but the longitudes are largely different, and the two stations are spaced apart in the route.
  • the target vehicle is at Z
  • the first geographic coordinate is a latitude position.
  • the target position of Z in the sequence is determined according to the latitude position of Z, and the target position is determined.
  • the adjacent sequence element is determined to be the second location of the target site.
  • the two target sites are X and Y.
  • the longitude position can be reused, and the Y of the target site is not filtered out, and only the ellipsoid distance between X and Z in the ellipsoid map model is calculated. Reduced the amount of calculations.
  • the embodiment of the present application further provides a vehicle positioning device, as shown in FIG. 4, including:
  • a first determining module 401 configured to determine a first location of the target vehicle
  • a second determining module 402 configured to determine a positional relationship between the first location and a second location of each site corresponding to the target vehicle acquired in advance in a non-ellipsoid map model;
  • a selection module 403, configured to select a second location of the target site that matches the first location based on the location relationship
  • a first calculating module 404 configured to calculate an ellipsoid distance of the first location and the second location of the target site in an ellipsoid map model
  • the third determining module 405 is configured to determine the target site as the site where the target vehicle is located if the ellipsoid distance is less than the first preset value.
  • the second location of each site corresponding to the target vehicle is a set of numbers
  • each element of the sequence is a second location of each site
  • the sequence is sorted according to a second location of each site
  • the second determining module 402 may include:
  • a first determining submodule configured to determine a target location of the first location in the sequence
  • a second determining submodule configured to sequentially determine the second location to be compared, starting from the target location
  • a third determining submodule configured to determine a positional relationship between the second location to be compared and the first location in the non-ellipsoid map model.
  • the first location and the second location each include a first geographic coordinate; the sequence is sorted according to a first geographic coordinate of each site; the first determining sub-module may be specifically used to:
  • the third determining submodule may be specifically configured to:
  • the selecting module 403 may include:
  • a first determining sub-module configured to determine whether the calculated first geographic coordinate distance is less than a second preset value
  • a fourth determining submodule configured to determine, in the case that the first geographic coordinate distance is less than a second preset value, the second location to be compared as the second target site that matches the first location position.
  • the first location and the second location further include a second geographic coordinate; the second determining module 402 may further include:
  • a calculation submodule configured to: when the first determining submodule determines that the first geographic coordinate distance is less than a second preset value, calculate the second position to be compared and the first position in a non-ellipsoid map The second geographic coordinate distance in the model;
  • a second determining sub-module configured to determine whether the calculated second geographic coordinate distance is less than a third preset value
  • the fourth determining submodule may be specifically configured to:
  • the second determining sub-module determines that the second geographic coordinate distance is less than a third preset value, triggering the second determining sub-module
  • the second determining submodule may specifically be used to:
  • the device may further include:
  • a switching module configured to switch the current direction if the first determining sub-module determines that the calculated first geographic coordinate distance is not less than the second preset value.
  • the first location and the second location each include a first geographic coordinate;
  • the second location of each site corresponding to the target vehicle is a set of numbers, and each element of the sequence is a second location of the site, the sequence being sorted according to a first geographic coordinate of each site;
  • the second determining module 402 is specifically configured to:
  • the module 403 is selected and can be specifically used to:
  • a sequence element adjacent to the target location is determined as a second location of the target site that matches the first location.
  • the selection module 403 further includes a second geographic coordinate in the first location and the second location; the device may further include:
  • a second calculating module configured to calculate a second geographic coordinate distance of the adjacent sequence element and the first position in a non-ellipsoid map model
  • the determining module is configured to determine whether the calculated second geographic coordinate distance is less than a third preset value; if yes, trigger the selection module.
  • the module 403 is selected, and the first geographic coordinate is a longitude position or a latitude position.
  • the module 403 is selected, the first geographic coordinate is a longitude position, and the second geographic coordinate is a latitude position;
  • the first geographic coordinate is a latitude position and the second geographic coordinate is a longitude position.
  • the module 403 is selected, and the non-ellipsoid map model is a plane map model or a positive sphere map model.
  • the second position of the target station matching the first position of the target vehicle is roughly determined in the non-ellipsoid map model, and then the target vehicle is accurately calculated.
  • the ellipsoid distance between a position and the second position of the target site in the ellipsoid map model on the one hand, the accuracy of the positioning is improved compared to the scheme of "mapping the latitude and longitude information of the ellipsoid to the plane coordinate system"; On the one hand, the amount of calculation is reduced compared to the scheme of "accurately calculating the ellipsoid distance of the first position of the target vehicle and the second position of all stations in the ellipsoid map model".
  • the embodiment of the present application further provides an electronic device, including a processor and a memory, wherein the memory is used to store a computer program, and the processor is configured to execute the program stored in the memory to implement the vehicle provided by the embodiment of the present application. Positioning method.
  • the electronic device may include a processor 501, a communication interface 502, a memory 503, and a communication bus 504, wherein the processor 501, the communication interface 502, and the memory 503 complete communication with each other through the communication bus 504.
  • the processor 501 is configured to perform the following steps when executing the program stored on the memory 503:
  • the target site is determined to be the site where the target vehicle is located.
  • the second location of each site corresponding to the target vehicle is a set of numbers
  • each element of the sequence is a second location of each site
  • the sequence is sorted according to a second location of each site
  • the processor 501 is further configured to perform the following steps when executing the program stored on the memory 503:
  • the first location and the second location each include a first geographic coordinate; the sequence is sorted according to a first geographic coordinate of each site; and the processor 501 is further configured to execute the memory 503.
  • the following steps are implemented:
  • the first location and the second location further include a second geographic coordinate.
  • the processor 501 is further configured to perform the following steps when the program stored in the memory 503 is executed:
  • processor 501 when the processor 501 is further configured to execute the program stored on the memory 503, the following steps are implemented:
  • the first location and the second location each include a first geographic coordinate;
  • the second location of each site corresponding to the target vehicle is a set of numbers, and each element of the sequence is a second location of the site, the sequence being sorted according to a first geographic coordinate of each site;
  • the processor 501 is further configured to: when executing the program stored on the memory 503, implement the following steps:
  • a sequence element adjacent to the target location is determined as a second location of the target site that matches the first location.
  • the first location and the second location further include a second geographic coordinate.
  • the processor 501 is further configured to perform the following steps when the program stored in the memory 503 is executed:
  • the step of determining the sequence element adjacent to the target location as the second location of the target site that matches the first location is performed.
  • the first geographic coordinate is a longitude position or a latitude position.
  • the first geographic coordinate is a longitude position
  • the second geographic coordinate is a latitude position
  • the first geographic coordinate is a latitude position and the second geographic coordinate is a longitude position.
  • the non-ellipsoid map model is a plane map model or a positive sphere map model.
  • the communication bus mentioned in the above electronic device may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the communication bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in the figure, but it does not mean that there is only one bus or one type of bus.
  • the communication interface is used for communication between the above electronic device and other devices.
  • the memory may include a random access memory (RAM), and may also include a non-volatile memory (NVM), such as at least one disk storage.
  • RAM random access memory
  • NVM non-volatile memory
  • the memory may also be at least one storage device located away from the aforementioned processor.
  • the above processor may be a general-purpose processor, including a central processing unit (CPU), a network processor (NP), etc.; or may be a digital signal processing (DSP), dedicated integration.
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the embodiment of the present application further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and the computer program is executed by the processor to implement any of the above vehicle positioning methods.
  • Embodiments of the present application also provide an executable program code for being executed to perform any of the above-described vehicle positioning methods.
  • the various embodiments in the present specification are described in a related manner, and the same or similar parts between the various embodiments may be referred to each other, and each embodiment focuses on the differences from the other embodiments.
  • the embodiment of the vehicle positioning device shown in FIG. 4 the electronic device embodiment shown in FIG. 5, the computer readable storage medium embodiment, and the above-described executable program code embodiment are substantially similar to the figure. 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

一种车辆定位方法、装置及设备,先在非椭球地图模型中粗略确定与目标车辆的第一位置匹配的目标站点的第二位置(S102),再精确计算目标车辆的第一位置与目标站点的第二位置在椭球地图模型中的椭球距离(S104);一方面,相比于"将椭球面的经纬度信息映射至平面坐标系"的方案,提高了定位的准确性;另一方面,相比于"精确计算目标车辆的第一位置与所有站点的第二位置在椭球地图模型中的椭球距离"的方案,减少了计算量。

Description

一种车辆定位方法、装置及设备
本申请要求于2017年7月27日提交中国专利局、申请号为201710623633.1、发明名称为“一种车辆定位方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能交通技术领域,特别涉及一种车辆定位方法、装置及设备。
背景技术
在一些场景中,通常需要对车辆进行准确定位,比如,对于公交车辆来说,通常需要确定其所在站点。现有方案中,通常利用GIS(Geographic Information System,地理信息系统)算法,将经纬度信息映射至平面坐标系,并在平面坐标系中确定车辆所在站点。
而地球为椭球形,应用上述方案进行车辆定位时,将椭球面的经纬度信息映射至平面坐标系,会存在一些精度损失及拉伸缺陷,降低定位的准确性。
发明内容
本申请实施例的目的在于提供一种车辆定位方法、装置及设备,提高定位的准确性。
为达到上述目的,本申请实施例公开了一种车辆定位方法,包括:
确定目标车辆的第一位置;
确定所述第一位置与预先获取的所述目标车辆对应的各站点的第二位置在非椭球地图模型中的位置关系;
基于所述位置关系,选择与所述第一位置匹配的目标站点的第二位置;
计算所述第一位置与所述目标站点的第二位置在椭球地图模型中的椭球距离;
在所述椭球距离小于第一预设值的情况下,将所述目标站点确定为所述目标车辆所在站点。
可选的,所述目标车辆对应的各站点的第二位置为一组数列,所述数列的各个元素为各站点的第二位置,所述数列根据各站点的第二位置进行排序;
所述确定所述第一位置与预先获取的所述目标车辆对应的各站点的第二位置在非椭球地图模型中的位置关系的步骤,可以包括:
确定所述第一位置在所述数列中的目标位置;
以所述目标位置为起点,依次确定待比较的第二位置;
确定所述待比较的第二位置与所述第一位置在非椭球地图模型中的位置关系。
可选的,所述第一位置及所述第二位置中均包括第一地理坐标;所述数列根据各站点的第一地理坐标进行排序;所述确定所述第一位置在所述数列中的目标位置的步骤,可以包括:
根据所述第一位置中的第一地理坐标,确定所述第一位置在所述数列中的目标位置;
所述确定所述待比较的第二位置与所述第一位置在非椭球地图模型中的位置关系的步骤,可以包括:
计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第一地理坐标距离;
所述基于所述位置关系,选择与所述第一位置匹配的目标站点的第二位置的步骤,可以包括:
判断计算得到的第一地理坐标距离是否小于第二预设值;
在所述第一地理坐标距离小于第二预设值的情况下,将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置。
可选的,所述第一位置及所述第二位置中均还包括第二地理坐标;在所述将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置的步骤之前,所述方法还可以包括:
在所述第一地理坐标距离小于第二预设值的情况下,计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第二地理坐标距离;
判断计算得到的第二地理坐标距离是否小于第三预设值;
所述将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置的步骤,可以包括:
在所述第二地理坐标距离小于第三预设值的情况下,将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置。
可选的,所述方法还可以包括:
在判断计算得到的第二地理坐标距离不小于第三预设值的情况下、以及在所述椭球距离不小于第一预设值的情况下,返回执行所述以所述目标位置 为起点,依次确定待比较的第二位置的步骤;
所述以所述目标位置为起点,依次确定待比较的第二位置的步骤,可以包括:
以所述目标位置为起点,按照当前方向,依次确定待比较的第二位置;
在判断计算得到的第一地理坐标距离不小于所述第二预设值的情况下,切换所述当前方向,并返回执行所述以所述目标位置为起点,按照当前方向,依次确定待比较的第二位置的步骤。
可选的,所述第一位置及所述第二位置中均包括第一地理坐标;所述目标车辆对应的各站点的第二位置为一组数列,所述数列的各个元素为各站点的第二位置,所述数列根据各站点的第一地理坐标进行排序;
所述确定所述第一位置与预先获取的所述目标车辆对应的各站点的第二位置在非椭球地图模型中的位置关系的步骤,可以包括:
基于非椭球地图模型,根据所述第一位置中的第一地理坐标,确定所述第一位置在所述数列中的目标位置;
所述基于所述位置关系,选择与所述第一位置匹配的目标站点的第二位置的步骤,可以包括:
将与所述目标位置相邻的数列元素确定为与所述第一位置匹配的目标站点的第二位置。
可选的,所述第一位置及所述第二位置中均还包括第二地理坐标;在所述将与所述目标位置相邻的数列元素确定为与所述第一位置匹配的目标站点的第二位置的步骤之前,所述方法还可以包括:
计算所述相邻的数列元素与所述第一位置在非椭球地图模型中的第二地理坐标距离;
判断计算得到的第二地理坐标距离是否小于第三预设值;
如果是,执行所述将与所述目标位置相邻的数列元素确定为与所述第一位置匹配的目标站点的第二位置的步骤。
可选的,所述第一地理坐标为经度位置或纬度位置。
可选的,所述第一地理坐标为经度位置,所述第二地理坐标为纬度位置;
或者,所述第一地理坐标为纬度位置,所述第二地理坐标为经度位置。
可选的,所述非椭球地图模型为平面地图模型、或者正球地图模型。
为达到上述目的,本申请实施例还公开了一种车辆定位装置,包括:
第一确定模块,用于确定目标车辆的第一位置;
第二确定模块,用于确定所述第一位置与预先获取的所述目标车辆对应的各站点的第二位置在非椭球地图模型中的位置关系;
选择模块,用于基于所述位置关系,选择与所述第一位置匹配的目标站点的第二位置;
第一计算模块,用于计算所述第一位置与所述目标站点的第二位置在椭球地图模型中的椭球距离;
第三确定模块,用于在所述椭球距离小于第一预设值的情况下,将所述目标站点确定为所述目标车辆所在站点。
可选的,所述目标车辆对应的各站点的第二位置为一组数列,所述数列的各个元素为各站点的第二位置,所述数列根据各站点的第二位置进行排序;
所述第二确定模块,可以包括:
第一确定子模块,用于确定所述第一位置在所述数列中的目标位置;
第二确定子模块,用于以所述目标位置为起点,依次确定待比较的第二位置;
第三确定子模块,用于确定所述待比较的第二位置与所述第一位置在非椭球地图模型中的位置关系。
可选的,所述第一位置及所述第二位置中均包括第一地理坐标;所述数列根据各站点的第一地理坐标进行排序;所述第一确定子模块,具体可以用于:
根据所述第一位置中的第一地理坐标,确定所述第一位置在所述数列中的目标位置;
所述第三确定子模块,具体可以用于:
计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第一地理坐标距离;
所述选择模块,可以包括:
第一判断子模块,用于判断计算得到的第一地理坐标距离是否小于第二预设值;
第四确定子模块,用于在所述第一地理坐标距离小于第二预设值的情况下,将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置。
可选的,所述第一位置及所述第二位置中均还包括第二地理坐标;所述第二确定模块还可以包括:
计算子模块,用于在所述第一判断子模块判定第一地理坐标距离小于第二预设值的情况下,计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第二地理坐标距离;
第二判断子模块,用于判断计算得到的第二地理坐标距离是否小于第三预设值;
所述第四确定子模块,具体可以用于:
在所述第二判断子模块判定所述第二地理坐标距离小于第三预设值的情况下,将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置。
可选的,在所述第二判断子模块判定所述第二地理坐标距离小于第三预设值的情况下,触发所述第二确定子模块;
所述第二确定子模块,具体可以用于:
以所述目标位置为起点,按照当前方向,依次确定待比较的第二位置;
所述装置还可以包括:
切换模块,用于在所述第一判断子模块判定计算得到的第一地理坐标距离不小于所述第二预设值的情况下,切换所述当前方向。
可选的,所述第一位置及所述第二位置中均包括第一地理坐标;所述目标车辆对应的各站点的第二位置为一组数列,所述数列的各个元素为各站点的第二位置,所述数列根据各站点的第一地理坐标进行排序;
所述第二确定模块,具体可以用于:
基于非椭球地图模型,根据所述第一位置中的第一地理坐标,确定所述第一位置在所述数列中的目标位置;
所述选择模块,具体可以用于:
将与所述目标位置相邻的数列元素确定为与所述第一位置匹配的目标站点的第二位置。
可选的,所述第一位置及所述第二位置中均还包括第二地理坐标;所述装置还可以包括:
第二计算模块,用于计算所述相邻的数列元素与所述第一位置在非椭球地图模型中的第二地理坐标距离;
判断模块,用于判断计算得到的第二地理坐标距离是否小于第三预设值;如果是,触发所述选择模块。
可选的,所述第一地理坐标为经度位置或纬度位置。
可选的,所述第一地理坐标为经度位置,所述第二地理坐标为纬度位置;
或者,所述第一地理坐标为纬度位置,所述第二地理坐标为经度位置。
可选的,所述非椭球地图模型为平面地图模型、或者正球地图模型。
为达到上述目的,本申请实施例还公开了一种电子设备,包括处理器和存储器,其中,存储器,用于存放计算机程序;处理器,用于执行存储器上所存放的程序时,实现上述任一种车辆定位方法。
为达到上述目的,本申请实施例还公开了一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种车辆定位方法。
为达到上述目的,本申请实施例还公开了一种可执行程序代码,所述可执行程序代码用于被运行以执行上述任一种车辆定位方法。
应用本申请实施例提供的方案进行车辆定位时,先在非椭球地图模型中粗略确定与目标车辆的第一位置匹配的目标站点的第二位置,再精确计算目标车辆的第一位置与目标站点的第二位置在椭球地图模型中的椭球距离;一方面,相比于“将椭球面的经纬度信息映射至平面坐标系”的方案,提高了定位的准确性;另一方面,相比于“精确计算目标车辆的第一位置与所有站点的第二位置在椭球地图模型中的椭球距离”的方案,减少了计算量。
当然,实施本申请的任一产品或方法并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的车辆定位方法的第一种流程示意图;
图1a为本申请实施例的一种应用场景示意图;
图2为本申请实施例提供的车辆定位方法的第二种流程示意图;
图2a为本申请实施例中计算经度距离示意图;
图2b为本申请实施例中计算纬度距离示意图;
图3为本申请实施例提供的车辆定位方法的第三种流程示意图;
图3a为本申请实施例中的一些站点分布示意图;
图3b为本申请实施例中的另一种站点分布示意图;
图4为本申请实施例提供的一种车辆定位装置的结构示意图;
图5为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了解决上述技术问题,本申请实施例提供了一种车辆定位方法、装置及设备。下面首先对本申请实施例提供的一种车辆定位方法进行详细说明。该方法可以应用于服务器,或者应用于其他各种电子设备,具体不做限定。
图1为本申请实施例提供的车辆定位方法的第一种流程示意图,包括:
S101:确定目标车辆的第一位置。
执行本方案的设备(以下简称本设备)可以与一台或多台车辆的定位模块通信连接,这样,本设备可以确定车辆的位置。在本申请实施例中,为了方便描述,将目标车辆的位置称为第一位置,将目标车辆对应的各站点的位置称为第二位置。
作为一种实施方式,本申请实施例的应用场景可以如图1a所示,车辆的车载设备中设置有GPS(Global Positioning System,全球定位系统)模块,也就是定位模块,还设置有通讯模块;GPS模块可以确定车辆的位置,通讯模块将该车辆的位置信息发送给基站,基站将该位置信息转发给服务器,也就是本方案的执行主体,这样,服务器便可以确定车辆的位置。
S101中的目标车辆是指需要确定所在站点的车辆。车辆可以在需要确定自身所在站点的情况下,将自身位置信息发送给服务器,服务器根据接收到的位置信息确定目标车辆的第一位置;或者,车辆也可以实时地、或周期地将自身位置信息发送给服务器,服务器可以根据预设规则、或者用户指令,根据接收到的位置信息确定出目标车辆的第一位置,这都是合理的。
作为一种实施方式,车辆为公交车辆,公交车辆可以在停车、开门、关门等一些特殊事件发生时,将自身的位置信息发送给服务器,服务器根据接收到的位置信息确定目标车辆的第一位置。
S102:确定所述第一位置与预先获取的所述目标车辆对应的各站点的第二位置在非椭球地图模型中的位置关系。
这里的非椭球地图模型可以为平面地图模型、或者正球地图模型。可以理解,地球为椭球形,一些较精确的算法通常是基于椭球地图模型进行运算,也就是将地球作为椭球形进行运算;而一些不太精确的算法通常是基于平面地图模型、或者正球地图模型进行运算,也就是将地球表面作为平面进行运算,或者将地球作为正球形进行运算。
以公交车辆为例,假设本设备与三路公交车辆(1路、2路、3路)的定位模块通信连接,其中,1路公交车辆对应的路线包括:A1站点、A2站点、A3站点、A4站点、A5站点和A6站点,2路公交车辆对应的路线包括:B1站点、B2站点、B3站点、B4站点、B5站点和B6站点,3路公交车辆对应的路线包括:C1站点、C2站点、C3站点、C4站点、C5站点和C6站点。
本设备预先获取这三路公交车辆对应的路线中各站点的第二位置。假设S101中的目标车辆为1路公交车辆,则确定1路公交车辆的第一位置与上述A1-A6站点的第二位置在非椭球地图模型中的位置关系。
作为一种实施方式,预先获取的目标车辆对应的各站点的第二位置可以为一组数列,数列的各个元素为各站点的第二位置,该数列根据各站点的第二位置进行排序。本实施方式中,S102可以包括:
步骤1、确定所述第一位置在所述数列中的目标位置;
步骤2、以所述目标位置为起点,依次确定待比较站点的第二位置;
步骤3、确定所述待比较的第二位置与所述第一位置在非椭球地图模型中的位置关系。
S103:基于所述位置关系,选择与所述第一位置匹配的目标站点的第二位置。
作为一种实施方式,S101中的第一位置、以及站点的第二位置可以包含第一地理坐标,该第一地理坐标可以为经度位置和/或纬度位置。这种情况下,上述步骤1包括:
根据所述第一位置中的第一地理坐标,确定所述第一位置在所述数列中 的目标位置;
上述步骤3包括:
计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第一地理坐标距离;
S103包括:
判断计算得到的第一地理坐标距离是否小于第二预设值;
在所述第一地理坐标距离小于第二预设值的情况下,将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置。
作为一种实施方式,S101中的第一位置、以及站点的第二位置都包含第一地理坐标和第二地理坐标,第一种情况,第一地理坐标为经度位置,第二地理坐标为纬度位置;第二种情况,第一地理坐标为纬度位置,第二地理坐标为经度位置。
在本实施方式中,在上述判断计算得到的第一地理坐标距离小于第二预设值的情况下,可以继续计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第二地理坐标距离;判断计算得到的第二地理坐标距离是否小于第三预设值;如果小于,再将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置。
S104:计算所述第一位置与所述目标站点的第二位置在椭球地图模型中的椭球距离。
计算两个位置在椭球地图模型中的椭球距离,也就是计算二者的椭圆面距离。作为一种实施方式,可以利用精细函数,比如getFlatternDistance函数,将地球作为一个椭球,来计算S101两个位置之间的椭圆面距离。
S105:在所述椭球距离小于第一预设值的情况下,将所述目标站点确定为所述目标车辆所在站点。
第一预设值可以根据站点覆盖区域半径进行设定。
应用本申请图1所示实施例提供的方案进行车辆定位时,先在非椭球地图模型中粗略确定与目标车辆的第一位置匹配的目标站点的第二位置,再精确计算目标车辆的第一位置与目标站点的第二位置在椭球地图模型中的椭球距离;一方面,相比于“将椭球面的经纬度信息映射至平面坐标系”的方案,提高了定位的准确性;另一方面,相比于“精确计算目标车辆的第一位置与 所有站点的第二位置在椭球地图模型中的椭球距离”的方案,减少了计算量。
图2为本申请实施例提供的车辆定位方法的第二种流程示意图,包括:
S201:确定目标车辆的第一位置,该第一位置包含第一地理坐标和第二地理坐标。
S202:根据所述第一位置中的第一地理坐标,确定所述第一位置在数列中的目标位置。
其中,该数列的各个元素为目标车辆对应的各站点的第二位置,所述第二位置包含第一地理坐标和第二地理坐标,所述数列根据各站点的第一地理坐标进行排序。
S203:以所述目标位置为起点,按照当前方向,依次确定待比较的第二位置。
S204:计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第一地理坐标距离。
S205:判断计算得到的第一地理坐标距离是否小于第二预设值,如果是,执行S206,如果否,执行S207。
S206:计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第二地理坐标距离。
S207:切换所述当前方向,返回执行S203。
S208:判断计算得到的第二地理坐标距离是否小于第三预设值,如果是,执行S209,如果否,返回执行S203。
S209:将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置。
S210:计算所述第一位置与所述目标站点的第二位置在椭球地图模型中的椭球距离。
S211:判断所述椭球距离是否小于第一预设值,如果是,执行S212,如果否,返回执行S203。
S212:将所述目标站点确定为所述目标车辆所在站点。
在图2实施例中,第一种情况,第一地理坐标为经度位置,第二地理坐标为纬度位置;第二种情况,第一地理坐标为纬度位置,第二地理坐标为经度位置。
下面先介绍第一种情况:
预先获取一组数列,该数列的各个元素为目标车辆对应的各站点的第二位置,第二位置包含经度位置及该纬度位置,且该数列根据各站点的经度位置进行排序。
确定目标车辆的第一位置,该第一位置中包含经度位置及纬度位置。根据第一位置中的经度位置,确定S101第一位置在该数列中的目标位置。
在本实施例中,东经为正值,西经为负值,北纬为正值,南纬为负值。延续图1实施例中的例子,目标车辆为1路公交车辆,则1路公交车辆的对应的各站点为A1-A6站点。假设A1的经度位置为116.3258°,纬度位置为40.0848°,A2的经度位置为116.3350°,纬度位置为40.0780°,A3的经度位置为116.3458°,纬度位置为40.0231°,A4的经度位置为116.3537°,纬度位置为40.0016°,A5的经度位置为116.3784°,纬度位置为39.9877°,A6的经度位置为116.3813°,纬度位置为39.9497°。
作为一种实施方式,为了方便计算,可以将经度位置乘10000取整数后,再进行后续计算。
假设数列中经度由小到大排序,则获取的数列为:A1:1163258,A2:1163350,A3:1163458,A4:1163537,A5:1163784,A6:1163813。
假设S201中确定的第一位置中的经度位置为1163810(乘10000取整数后的数值),确定该经度位置在上述数列中的目标位置,具体的,可以采用一一比较法,或者,也可以采用二分法,确定出目标位置为倒数第二位(A5与A6之间)。
以目标位置为起点,按照当前方向,依次确定待比较的第二位置,该当前方向可以为向前,也可以为向后。在本实施例中,向前、向后表示的是数列中的顺序。本领域技术人员可以理解,地球是椭球形,经度极大值与极小值是同一点,也就是说,上述数列可以理解为循环数列。因此,向前依次确定待比较的第二位置过程中,A1之后会确定A6的第二位置为待比较的第二位置,向后依次确定待比较的第二位置过程中,A6之后会确定A1的第二位置为待比较站点的第二位置。
假设以该目标位置为起点,向后确定待比较的第二位置,第一次将A6:1163813确定为待比较的第二位置,计算S201第一位置与A6的第二位置在非椭球地图模型中的经度距离(第一地理坐标距离)。
需要说明的是,这里计算经度距离为粗略计算,可以假设S201中第一位置与A6的第二位置在同一纬度上,具体的,可以取二者中较高纬度进行计算,如图2a所示,P表示S201中第一位置,Pi表示A6的第二位置,Pi的纬度高于P的纬度,以Pi所在纬度为准,将P移动至P’,计算P’与Pi的距离作为S201中第一位置与A6的经度距离。
如上所述,该非椭球地图模型可以为平面地图模型、或者正球地图模型,如果为平面地图模型,则P’与Pi的距离为线段距离,如果为正球地图模型,则P’与Pi的距离为正球表面距离。
判断计算得到的经度距离是否小于第二预设值,该第二预设值可以根据站点覆盖区域半径进行设定,第二预设值与第一预设值可以相同或不同。
如果小于,可以有两种方案:第一种方案,可以直接将上述待比较的第二位置对应的站点(也就是A6)确定为目标站点,第二种方案,可以利用纬度距离(第二地理坐标距离)作进一步地判断:计算所述待比较的第二位置与所述第一位置的纬度距离;判断计算得到的纬度距离是否小于第三预设值;如果是,再将上述待比较的第二位置对应的站点(也就是A6)确定为目标站点。
第一种方案中,利用经度距离筛选出目标站点,仅精确计算目标站点与S201中第一位置在椭球地图模型中的椭球距离,一方面,相比于“将椭球面的经纬度信息映射至平面坐标系”的方案,提高了定位的准确性;另一方面,相比于“精确计算目标车辆与所有站点在椭球地图模型中的椭球距离”的方案,减少了计算量。
第二种方案中,利用经度距离和纬度距离进行两次筛选,筛选出目标站点,仅精确计算目标站点与S101中第一位置的椭圆面距离,进一步减少了计算量。
需要说明的是,这里计算纬度距离为粗略计算,可以假设S201中第一位置与A6的第二位置在同一经度上,具体的,可以取二者中任意经度进行计算,如图2b所示,P表示S201中第一位置,Pi表示A6的第二位置,假设以P所在经度为准,将Pi移动至P’,计算P’与P的距离作为S201中第一位置与A6的纬度距离。
如上所述,该非椭球地图模型可以为平面地图模型、或者正球地图模型。如果为平面地图模型,则P’与Pi的距离为线段距离,如果为正球地图模型, 则P’与Pi的距离为正球表面距离。
上述第三预设值可以根据站点覆盖区域半径进行设定,第三预设值与第一预设值、第二预设值可以相同或不同。
在本申请实施例中,在判断计算得到的纬度距离不小于第三预设值的情况下,可以返回S203,继续按照当前方向,确定待比较的第二位置,继续将待比较的第二位置与S201中第一位置进行比较。
需要说明的是,上面内容中以目标位置为起点,向后依次确定待比较的第二位置,而且数列为循环数列,因此,第二次将A1:1163258确定为待比较的第二位置,计算S201中第一位置与A1的经度距离。
将S201中第一位置与A1进行比较的过程与上述过程类似,不再赘述。如果A1为目标站点,则执行后续S210,如果A1不为目标站点,则返回S203,继续按照当前方向,确定待比较的第二位置,继续将待比较的第二位置与S201中第一位置进行比较。
作为一种实施方式,如果S205判断结果为否,则可以先切换当前方向,再返回S203。也就是说,可以先以目标位置为起点,按照一个方向,依次确定待比较的第二位置,在匹配不到目标站点(S205判断结果为否)的情况下(S205判断结果为否),再按照另一个方向,依次确定待比较的第二位置。
比如上述例子中,先向后依次确定待比较的第二位置,如果S205判断结果为否,则重新以目标位置为起点,向前依次确定待比较的第二位置。
可以理解,本方案中,预先获取的数列根据各站点的经度位置排序,延续上述例子,假设A1不为目标站点,则重新确定待比较的第二位置为A2的第二位置,继续将A2的第二位置与S201中第一位置进行比较,假设A2与目标车辆第一位置的经度距离大于等于第二预设值,则可以认为沿着数列向后这个方向A3及之后站点的第二位置与目标车辆第一位置的经度距离会越来越大,因此,停止在这个方向上确定待比较的第二位置。
本领域技术人员可以理解,地球是椭球形,经度极大值与极小值是同一点,因此,可以以上述目标位置为起点,向前依次确定待比较的第二位置。
另外,“匹配不到目标站点”还有一种情况:向后这个方向中,全部站点的第二位置都已经作为待比较的第二位置与目标车辆的第一位置进行过比较,仍没有确定出目标站点;这种情况下,不需要再向前确定待比较的第二位置。 此时,可以输出无法确定目标车辆所在站点的相关信息,或者输出其他信息,具体不做限定。
确定出目标站点后(S209之后),便可以计算S201中第一位置与目标站点的第二位置在椭球地图模型中的椭球距离。计算两个位置在椭球地图模型中的椭球距离,也就是计算二者的椭圆面距离。作为一种实施方式,可以利用精细函数,比如getFlatternDistance函数,将地球作为一个椭球,来计算这两个位置之间的椭圆面距离,并在距离小于第一预设值的情况下,将该目标站点确定为该目标车辆所在站点。
如果S211判断结果为否,可以返回S203,继续确定待比较的第二位置。需要说明的是,在本实施方式中,如果纬度距离大于等于第三预设值、或者椭圆地图模型中的椭球距离大于等于第一预设值,仍按照原来方向(向后)依次确定待比较的第二位置;如果经度距离大于等于第一预设值,则切换方向,按照切换后的方向(向前)依次确定待比较的第二位置。
下面介绍第二种情况,也就是将上述实施方式中的经度与纬度互换位置:
预先获取的数列根据各站点的纬度位置进行排序,相对应的,根据S201第一位置中的纬度位置,确定S201第一位置在该数列中的目标位置。
需要说明的是,上述根据经度位置排序的数列为循环数列,而本实施方式中,根据纬度位置排序的数列不为循环数列。
延续上述例子,A1的经度位置为116.3258°,纬度位置为40.0848°,A2的经度位置为116.3350°,纬度位置为40.0780°,A3的经度位置为116.3458°,纬度位置为40.0231°,A4的经度位置为116.3537°,纬度位置为40.0016°,A5的经度位置为116.3784°,纬度位置为39.9877°,A6的经度位置为116.3813°,纬度位置为39.9497°。
作为一种实施方式,为了方便计算,可以将纬度位置乘10000取整数后,再进行后续计算。
假设数列中纬度由大到小排序,则获取的数列为:A1:400848,A2:400780,A3:400231,A4:400016,A5:399877,A6:399497。
假设S201中确定的第一位置中的纬度信息为399498(乘10000取整数后的数值),确定该纬度信息在上述数列中的目标位置,具体的,可以采用一一比较法,或者,也可以采用二分法,确定出目标位置为倒数第二位(A5与A6之 间)。
可以以目标位置为起点,按照当前方向,依次确定待比较的第二位置,该当前方向可以为向前,也可以为向后。在本实施例中,向前、向后表示的是数列中的顺序。
假设以该目标位置为起点,向后确定待比较的第二位置,第一次将A6:399497确定为待比较的第二位置,计算S101中第一位置与A6的纬度距离。
需要说明的是,这里计算纬度距离为粗略计算,可以假设S201中第一位置与A6的第二位置在同一经度上,具体的,可以取二者中任意经度进行计算,如图2b所示,P表示S201中第一位置,Pi表示A6的第二位置,假设以P所在经度为准,将Pi移动至P’,计算P’与P的距离作为S201中第一位置与A6的纬度距离。
如上所述,该非椭球地图模型可以为平面地图模型、或者正球地图模型。如果为平面地图模型,则P’与Pi的距离为线段距离,如果为正球地图模型,则P’与Pi的距离为正球表面距离。
判断计算得到的纬度距离是否小于第二预设值,该第二预设值可以根据站点覆盖区域半径进行设定;如果小于,可以有两种方案:第一种方案,可以直接将上述待比较的第二位置对应的站点(也就是A6)确定为目标站点,第二种方案,可以利用经度距离(第二地理坐标距离)作进一步地判断:计算所述待比较的第二与所述第一位置的经度距离;判断计算得到的经度距离是否小于第三预设值;如果是,再将上述待比较的第二位置对应的站点(也就是A6)确定为目标站点。
第一种方案中,利用纬度距离筛选出目标站点,仅精确计算目标站点与S201中第一位置在椭球地图模型中的椭球距离,一方面,相比于“将椭球面的经纬度信息映射至平面坐标系”的方案,提高了定位的准确性;另一方面,相比于“精确计算目标车辆与所有站点在椭球地图模型中的椭球距离”的方案,减少了计算量。
第二种方案中,利用纬度距离和经度距离进行两次筛选,筛选出目标站点,仅精确计算目标站点与S101中第一位置的椭圆面距离,进一步减少了计算量。
需要说明的是,这里计算经度距离为粗略计算,可以假设S201中第一位置与A6的第二位置在同一纬度上,具体的,可以取二者中较高纬度进行计算, 如图2a所示,P表示S201中第一位置,Pi表示A6的第二位置,Pi的纬度高于P的纬度,以Pi所在纬度为准,将P移动至P’,计算P’与Pi的距离作为S201中第一位置与A6的经度距离。
如上所述,该非椭球地图模型可以为平面地图模型、或者正球地图模型,如果为平面地图模型,则P’与Pi的距离为线段距离,如果为正球地图模型,则P’与Pi的距离为正球表面距离。
上述第三预设值可以根据站点覆盖区域半径进行设定,第三预设值与第一预设值、第二预设值可以相同或不同。
在本实施方式中,在判断计算得到的经度距离不小于第三预设值的情况下,可以返回S203,继续按照当前方向,确定待比较的第二位置,继续将待比较的第二位置与S201中第一位置进行比较。
根据上面内容描述,本实施方式中的数列不为循环数列,以上述目标位置为起点,向后仅有一个站点A6,如果A6不为目标站点,继续确定待比较的第二位置时,可以以目标位置为起点,向前依次确定待比较的第二位置。也就是说,第二次将A5:1163258确定为待比较的第二位置,计算S101中第一位置与A5的纬度距离。
将S201中第一位置与A5进行比较的过程与上述过程类似,不再赘述。如果A5为目标站点,则执行后续S210,如果A5不为目标站点,则继续向前确定待比较的第二位置,继续将待比较的第二位置与S101中第一位置进行比较。
作为一种实施方式,如果S205判断结果为否,则可以先切换当前方向,再返回S203。也就是说,可以先以目标位置为起点,按照一个方向,依次确定待比较的第二位置,在匹配不到目标站点的情况下,再按照另一个方向,依次确定待比较的第二位置。
可以理解,本方案中,预先获取的数列根据各站点的纬度位置排序,假设A6之后还有其他站点,A6不为目标站点,则向后重新确定其他待比较的第二位置时,如果待比较的第二位置与目标车辆第一位置的纬度距离大于等于第二预设值,则可以认为沿着数列向后这个方向站点的第二位置与目标车辆第一位置的纬度距离会越来越大,因此,停止在这个方向上确定待比较的第二位置。
另外,如果向前仍然匹配不到目标站点,可以输出无法确定目标车辆所在站点的相关信息,或者输出其他信息,具体不做限定。
确定出目标站点后(S209之后),便可以计算S201中第一位置与目标站点的第二位置在椭球地图模型中的椭球距离。计算两个位置在椭球地图模型中的椭球距离,也就是计算二者的椭圆面距离。作为一种实施方式,可以利用精细函数,比如getFlatternDistance函数,将地球作为一个椭球,来计算这两个位置之间的椭圆面距离,并在距离小于第一预设值的情况下,将该目标站点确定为该目标车辆所在站点。
如果S211判断结果为否,可以返回S203,继续确定待比较的第二位置。需要说明的是,在本实施方式中,如果经度距离大于等于第三预设值、或者椭圆地图模型中的椭球距离大于等于第一预设值,仍按照原来方向(向后)依次确定待比较的第二位置;如果纬度距离大于等于第一预设值,则切换方向,按照切换后的方向(向前)依次确定待比较的第二位置。
图3为本申请实施例提供的车辆定位方法的第三种流程示意图,包括:
S301:确定目标车辆的第一位置,该第一位置包含第一地理坐标和第二地理坐标。
S302:基于非椭球地图模型,根据所述第一位置中的第一地理坐标,确定所述第一位置在数列中的目标位置。
其中,该数列的各个元素为目标车辆对应的各站点的第二位置,所述第二位置包含第一地理坐标,所述数列根据各站点的第一地理坐标进行排序。
S303:将与所述目标位置相邻的数列元素确定为与所述第一位置匹配的目标站点的第二位置。
S304:计算所述第一位置与所述目标站点的第二位置在椭球地图模型中的椭球距离。
S305:在所述椭球距离小于第一预设值的情况下,将所述目标站点确定为所述目标车辆所在站点。
在图3实施例中,确定第一位置在数列中的目标位置后,直接将与目标位置相邻的第二位置对应的站点确定为目标站点;相比于图2实施例中确定目标站点的方式,图3实施例确定目标站点的方式更简单、更高效。
在一些应用场景中,各站点之间在平面地图模型中呈近似直线分布的情况下,比如图3a中的几种情况,这些情况下,利用图3实施例,可以既高效又准确地确定出目标车辆所在站点。
如果为图3a中第一种情况,各站点的经度位置近似,纬度位置呈直线分布,则第一地理坐标可以为纬度位置;如果为图3a中第二种情况,各站点的纬度位置近似,经度位置呈直线分布,则第一地理坐标可以为经度位置;如果为图3a中第三种情况,各站点的经度位置、纬度位置都呈直线分布,则第一地理坐标可以为经度位置或者纬度位置。
作为一种实施方式,第一位置及第二位置中均还包括第二地理坐标,在S303之前,可以先计算所述相邻的数列元素与所述第一位置在非椭球地图模型中的第二地理坐标距离;判断计算得到的第二地理坐标距离是否小于第三预设值;如果是,再执行S303。
在一些应用场景中,两个站点的经度位置近似,而纬度位置相差较大,或者,两个站点的纬度位置近似,而经度位置相差较大。例如,目标车辆的路线类似于椭圆形,如图3b所示,圆形上两个站点X和Y的纬度相同,但经度相差较大,而且这两个站点在路线中间隔较大。
这种应用场景中,假设目标车辆在Z处,且上述第一地理坐标为纬度位置,如果利用图3所示实施例,根据Z的纬度位置确定Z在数列中的目标位置,将该目标位置相邻的数列元素确定为目标站点的第二位置。假设确定出为X、Y两个目标站点,这种情况下,可以再利用经度位置,将不为目标站点的Y滤除,仅计算X与Z在椭球地图模型中的椭球距离,进一步减少了计算量。
与上述方法实施例相对应,本申请实施例还提供了一种车辆定位装置,如图4所示,包括:
第一确定模块401,用于确定目标车辆的第一位置;
第二确定模块402,用于确定所述第一位置与预先获取的所述目标车辆对应的各站点的第二位置在非椭球地图模型中的位置关系;
选择模块403,用于基于所述位置关系,选择与所述第一位置匹配的目标站点的第二位置;
第一计算模块404,用于计算所述第一位置与所述目标站点的第二位置在椭球地图模型中的椭球距离;
第三确定模块405,用于在所述椭球距离小于第一预设值的情况下,将所述目标站点确定为所述目标车辆所在站点。
作为一种实施方式,所述目标车辆对应的各站点的第二位置为一组数列, 所述数列的各个元素为各站点的第二位置,所述数列根据各站点的第二位置进行排序;
第二确定模块402,可以包括:
第一确定子模块,用于确定所述第一位置在所述数列中的目标位置;
第二确定子模块,用于以所述目标位置为起点,依次确定待比较的第二位置;
第三确定子模块,用于确定所述待比较的第二位置与所述第一位置在非椭球地图模型中的位置关系。
作为一种实施方式,所述第一位置及所述第二位置中均包括第一地理坐标;所述数列根据各站点的第一地理坐标进行排序;所述第一确定子模块,具体可以用于:
根据所述第一位置中的第一地理坐标,确定所述第一位置在所述数列中的目标位置;
所述第三确定子模块,具体可以用于:
计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第一地理坐标距离;
选择模块403,可以包括:
第一判断子模块,用于判断计算得到的第一地理坐标距离是否小于第二预设值;
第四确定子模块,用于在所述第一地理坐标距离小于第二预设值的情况下,将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置。
作为一种实施方式,所述第一位置及所述第二位置中均还包括第二地理坐标;第二确定模块402还可以包括:
计算子模块,用于在所述第一判断子模块判定第一地理坐标距离小于第二预设值的情况下,计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第二地理坐标距离;
第二判断子模块,用于判断计算得到的第二地理坐标距离是否小于第三预设值;
所述第四确定子模块,具体可以用于:
在所述第二判断子模块判定所述第二地理坐标距离小于第三预设值的情 况下,将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置。
作为一种实施方式,在所述第二判断子模块判定所述第二地理坐标距离小于第三预设值的情况下,触发所述第二确定子模块;
所述第二确定子模块,具体可以用于:
以所述目标位置为起点,按照当前方向,依次确定待比较的第二位置;
所述装置还可以包括:
切换模块,用于在所述第一判断子模块判定计算得到的第一地理坐标距离不小于所述第二预设值的情况下,切换所述当前方向。
作为一种实施方式,所述第一位置及所述第二位置中均包括第一地理坐标;所述目标车辆对应的各站点的第二位置为一组数列,所述数列的各个元素为各站点的第二位置,所述数列根据各站点的第一地理坐标进行排序;
第二确定模块402,具体可以用于:
基于非椭球地图模型,根据所述第一位置中的第一地理坐标,确定所述第一位置在所述数列中的目标位置;
选择模块403,具体可以用于:
将与所述目标位置相邻的数列元素确定为与所述第一位置匹配的目标站点的第二位置。
选择模块403,所述第一位置及所述第二位置中均还包括第二地理坐标;所述装置还可以包括:
第二计算模块,用于计算所述相邻的数列元素与所述第一位置在非椭球地图模型中的第二地理坐标距离;
判断模块,用于判断计算得到的第二地理坐标距离是否小于第三预设值;如果是,触发所述选择模块。
选择模块403,所述第一地理坐标为经度位置或纬度位置。
选择模块403,所述第一地理坐标为经度位置,所述第二地理坐标为纬度位置;
或者,所述第一地理坐标为纬度位置,所述第二地理坐标为经度位置。
选择模块403,所述非椭球地图模型为平面地图模型、或者正球地图模型。
应用本申请图4所示实施例提供的方案进行车辆定位时,先在非椭球地图模型中粗略确定与目标车辆的第一位置匹配的目标站点的第二位置,再精确 计算目标车辆的第一位置与目标站点的第二位置在椭球地图模型中的椭球距离;一方面,相比于“将椭球面的经纬度信息映射至平面坐标系”的方案,提高了定位的准确性;另一方面,相比于“精确计算目标车辆的第一位置与所有站点的第二位置在椭球地图模型中的椭球距离”的方案,减少了计算量。
本申请实施例还提供了一种电子设备,包括处理器和存储器,其中,存储器,用于存放计算机程序;处理器,用于执行存储器上所存放的程序时,实现本申请实施例提供的车辆定位方法。
如图5所示,该电子设备可以包括处理器501、通信接口502、存储器503和通信总线504,其中,处理器501,通信接口502,存储器503通过通信总线504完成相互间的通信,
存储器503,用于存放计算机程序;
处理器501,用于执行存储器503上所存放的程序时,实现如下步骤:
确定目标车辆的第一位置;
确定所述第一位置与预先获取的所述目标车辆对应的各站点的第二位置在非椭球地图模型中的位置关系;
基于所述位置关系,选择与所述第一位置匹配的目标站点的第二位置;
计算所述第一位置与所述目标站点的第二位置在椭球地图模型中的椭球距离;
在所述椭球距离小于第一预设值的情况下,将所述目标站点确定为所述目标车辆所在站点。
作为一种实施方式,所述目标车辆对应的各站点的第二位置为一组数列,所述数列的各个元素为各站点的第二位置,所述数列根据各站点的第二位置进行排序;
处理器501,还可以用于执行存储器503上所存放的程序时,实现如下步骤:
确定所述第一位置在所述数列中的目标位置;
以所述目标位置为起点,依次确定待比较的第二位置;
确定所述待比较的第二位置与所述第一位置在非椭球地图模型中的位置关系。
作为一种实施方式,所述第一位置及所述第二位置中均包括第一地理坐标;所述数列根据各站点的第一地理坐标进行排序;处理器501,还可以用于 执行存储器503上所存放的程序时,实现如下步骤:
根据所述第一位置中的第一地理坐标,确定所述第一位置在所述数列中的目标位置;
计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第一地理坐标距离;
判断计算得到的第一地理坐标距离是否小于第二预设值;
在所述第一地理坐标距离小于第二预设值的情况下,将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置。
作为一种实施方式,所述第一位置及所述第二位置中均还包括第二地理坐标;处理器501,还可以用于执行存储器503上所存放的程序时,实现如下步骤:
在所述将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置的步骤之前,在所述第一地理坐标距离小于第二预设值的情况下,计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第二地理坐标距离;
判断计算得到的第二地理坐标距离是否小于第三预设值;
在所述第二地理坐标距离小于第三预设值的情况下,将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置。
作为一种实施方式,处理器501,还可以用于执行存储器503上所存放的程序时,实现如下步骤:
在判断计算得到的第二地理坐标距离不小于第三预设值的情况下、以及在所述椭球距离不小于第一预设值的情况下,返回执行所述以所述目标位置为起点,依次确定待比较的第二位置的步骤;
以所述目标位置为起点,按照当前方向,依次确定待比较的第二位置;
在判断计算得到的第一地理坐标距离不小于所述第二预设值的情况下,切换所述当前方向,并返回执行所述以所述目标位置为起点,按照当前方向,依次确定待比较的第二位置的步骤。
作为一种实施方式,所述第一位置及所述第二位置中均包括第一地理坐标;所述目标车辆对应的各站点的第二位置为一组数列,所述数列的各个元素为各站点的第二位置,所述数列根据各站点的第一地理坐标进行排序;
处理器501,还可以用于执行存储器503上所存放的程序时,实现如下步 骤:
基于非椭球地图模型,根据所述第一位置中的第一地理坐标,确定所述第一位置在所述数列中的目标位置;
将与所述目标位置相邻的数列元素确定为与所述第一位置匹配的目标站点的第二位置。
作为一种实施方式,所述第一位置及所述第二位置中均还包括第二地理坐标;处理器501,还可以用于执行存储器503上所存放的程序时,实现如下步骤:
在所述将与所述目标位置相邻的数列元素确定为与所述第一位置匹配的目标站点的第二位置的步骤之前,计算所述相邻的数列元素与所述第一位置在非椭球地图模型中的第二地理坐标距离;
判断计算得到的第二地理坐标距离是否小于第三预设值;
如果是,执行所述将与所述目标位置相邻的数列元素确定为与所述第一位置匹配的目标站点的第二位置的步骤。
作为一种实施方式,所述第一地理坐标为经度位置或纬度位置。
作为一种实施方式,所述第一地理坐标为经度位置,所述第二地理坐标为纬度位置;
或者,所述第一地理坐标为纬度位置,所述第二地理坐标为经度位置。
作为一种实施方式,所述非椭球地图模型为平面地图模型、或者正球地图模型。
上述电子设备提到的通信总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。该通信总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口用于上述电子设备与其他设备之间的通信。
存储器可以包括随机存取存储器(Random Access Memory,RAM),也可以包括非易失性存储器(Non-Volatile Memory,NVM),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号 处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现上述任一种车辆定位方法。
本申请实施例还提供一种可执行程序代码,所述可执行程序代码用于被运行以执行上述任一种车辆定位方法。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于图4所示的车辆定位装置实施例、图5所示的电子设备实施例、上述计算机可读存储介质实施例、以及上述可执行程序代码实施例而言,由于其基本相似于图1、图2、图3所示的车辆定位方法实施例,所以描述的比较简单,相关之处参见图1、图2、图3所示的车辆定位方法实施例的部分说明即可。
本领域普通技术人员可以理解实现上述方法实施方式中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于计算机可读取存储介质中,这里所称得的存储介质,如:ROM/RAM、磁碟、光盘等。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (23)

  1. 一种车辆定位方法,其特征在于,包括:
    确定目标车辆的第一位置;
    确定所述第一位置与预先获取的所述目标车辆对应的各站点的第二位置在非椭球地图模型中的位置关系;
    基于所述位置关系,选择与所述第一位置匹配的目标站点的第二位置;
    计算所述第一位置与所述目标站点的第二位置在椭球地图模型中的椭球距离;
    在所述椭球距离小于第一预设值的情况下,将所述目标站点确定为所述目标车辆所在站点。
  2. 根据权利要求1所述的方法,其特征在于,所述目标车辆对应的各站点的第二位置为一组数列,所述数列的各个元素为各站点的第二位置,所述数列根据各站点的第二位置进行排序;
    所述确定所述第一位置与预先获取的所述目标车辆对应的各站点的第二位置在非椭球地图模型中的位置关系的步骤,包括:
    确定所述第一位置在所述数列中的目标位置;
    以所述目标位置为起点,依次确定待比较的第二位置;
    确定所述待比较的第二位置与所述第一位置在非椭球地图模型中的位置关系。
  3. 根据权利要求2所述的方法,其特征在于,所述第一位置及所述第二位置中均包括第一地理坐标;所述数列根据各站点的第一地理坐标进行排序;所述确定所述第一位置在所述数列中的目标位置的步骤,包括:
    根据所述第一位置中的第一地理坐标,确定所述第一位置在所述数列中的目标位置;
    所述确定所述待比较的第二位置与所述第一位置在非椭球地图模型中的位置关系的步骤,包括:
    计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第一地理坐标距离;
    所述基于所述位置关系,选择与所述第一位置匹配的目标站点的第二位置的步骤,包括:
    判断计算得到的第一地理坐标距离是否小于第二预设值;
    在所述第一地理坐标距离小于第二预设值的情况下,将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置。
  4. 根据权利要求3所述的方法,其特征在于,所述第一位置及所述第二位置中均还包括第二地理坐标;在所述将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置的步骤之前,所述方法还包括:
    在所述第一地理坐标距离小于第二预设值的情况下,计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第二地理坐标距离;
    判断计算得到的第二地理坐标距离是否小于第三预设值;
    所述将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置的步骤,包括:
    在所述第二地理坐标距离小于第三预设值的情况下,将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    在判断计算得到的第二地理坐标距离不小于第三预设值的情况下、以及在所述椭球距离不小于第一预设值的情况下,返回执行所述以所述目标位置为起点,依次确定待比较的第二位置的步骤;
    所述以所述目标位置为起点,依次确定待比较的第二位置的步骤,包括:
    以所述目标位置为起点,按照当前方向,依次确定待比较的第二位置;
    在判断计算得到的第一地理坐标距离不小于所述第二预设值的情况下,切换所述当前方向,并返回执行所述以所述目标位置为起点,按照当前方向,依次确定待比较的第二位置的步骤。
  6. 根据权利要求1所述的方法,其特征在于,所述第一位置及所述第二位置中均包括第一地理坐标;所述目标车辆对应的各站点的第二位置为一组数列,所述数列的各个元素为各站点的第二位置,所述数列根据各站点的第一地理坐标进行排序;
    所述确定所述第一位置与预先获取的所述目标车辆对应的各站点的第二位置在非椭球地图模型中的位置关系的步骤,包括:
    基于非椭球地图模型,根据所述第一位置中的第一地理坐标,确定所述第一位置在所述数列中的目标位置;
    所述基于所述位置关系,选择与所述第一位置匹配的目标站点的第二位置的步骤,包括:
    将与所述目标位置相邻的数列元素确定为与所述第一位置匹配的目标站点的第二位置。
  7. 根据权利要求6所述的方法,其特征在于,所述第一位置及所述第二位置中均还包括第二地理坐标;在所述将与所述目标位置相邻的数列元素确定为与所述第一位置匹配的目标站点的第二位置的步骤之前,所述方法还包括:
    计算所述相邻的数列元素与所述第一位置在非椭球地图模型中的第二地理坐标距离;
    判断计算得到的第二地理坐标距离是否小于第三预设值;
    如果是,执行所述将与所述目标位置相邻的数列元素确定为与所述第一位置匹配的目标站点的第二位置的步骤。
  8. 根据权利要求3或6所述的方法,其特征在于,所述第一地理坐标为经度位置或纬度位置。
  9. 根据权利要求4、5、7中任一项所述的方法,其特征在于,所述第一地理坐标为经度位置,所述第二地理坐标为纬度位置;
    或者,所述第一地理坐标为纬度位置,所述第二地理坐标为经度位置。
  10. 根据权利要求1所述的方法,其特征在于,所述非椭球地图模型为平 面地图模型、或者正球地图模型。
  11. 一种车辆定位装置,其特征在于,包括:
    第一确定模块,用于确定目标车辆的第一位置;
    第二确定模块,用于确定所述第一位置与预先获取的所述目标车辆对应的各站点的第二位置在非椭球地图模型中的位置关系;
    选择模块,用于基于所述位置关系,选择与所述第一位置匹配的目标站点的第二位置;
    第一计算模块,用于计算所述第一位置与所述目标站点的第二位置在椭球地图模型中的椭球距离;
    第三确定模块,用于在所述椭球距离小于第一预设值的情况下,将所述目标站点确定为所述目标车辆所在站点。
  12. 根据权利要求11所述的装置,其特征在于,所述目标车辆对应的各站点的第二位置为一组数列,所述数列的各个元素为各站点的第二位置,所述数列根据各站点的第二位置进行排序;
    所述第二确定模块,包括:
    第一确定子模块,用于确定所述第一位置在所述数列中的目标位置;
    第二确定子模块,用于以所述目标位置为起点,依次确定待比较的第二位置;
    第三确定子模块,用于确定所述待比较的第二位置与所述第一位置在非椭球地图模型中的位置关系。
  13. 根据权利要求12所述的装置,其特征在于,所述第一位置及所述第二位置中均包括第一地理坐标;所述数列根据各站点的第一地理坐标进行排序;所述第一确定子模块,具体用于:
    根据所述第一位置中的第一地理坐标,确定所述第一位置在所述数列中的目标位置;
    所述第三确定子模块,具体用于:
    计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第一地理坐标距离;
    所述选择模块,包括:
    第一判断子模块,用于判断计算得到的第一地理坐标距离是否小于第二预设值;
    第四确定子模块,用于在所述第一地理坐标距离小于第二预设值的情况下,将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置。
  14. 根据权利要求13所述的装置,其特征在于,所述第一位置及所述第二位置中均还包括第二地理坐标;所述第二确定模块还包括:
    计算子模块,用于在所述第一判断子模块判定第一地理坐标距离小于第二预设值的情况下,计算所述待比较的第二位置与所述第一位置在非椭球地图模型中的第二地理坐标距离;
    第二判断子模块,用于判断计算得到的第二地理坐标距离是否小于第三预设值;
    所述第四确定子模块,具体用于:
    在所述第二判断子模块判定所述第二地理坐标距离小于第三预设值的情况下,将所述待比较的第二位置确定为与所述第一位置匹配的目标站点的第二位置。
  15. 根据权利要求14所述的装置,其特征在于,
    在所述第二判断子模块判定所述第二地理坐标距离小于第三预设值的情况下,触发所述第二确定子模块;
    所述第二确定子模块,具体用于:
    以所述目标位置为起点,按照当前方向,依次确定待比较的第二位置;
    所述装置还包括:
    切换模块,用于在所述第一判断子模块判定计算得到的第一地理坐标距 离不小于所述第二预设值的情况下,切换所述当前方向。
  16. 根据权利要求11所述的装置,其特征在于,所述第一位置及所述第二位置中均包括第一地理坐标;所述目标车辆对应的各站点的第二位置为一组数列,所述数列的各个元素为各站点的第二位置,所述数列根据各站点的第一地理坐标进行排序;
    所述第二确定模块,具体用于:
    基于非椭球地图模型,根据所述第一位置中的第一地理坐标,确定所述第一位置在所述数列中的目标位置;
    所述选择模块,具体用于:
    将与所述目标位置相邻的数列元素确定为与所述第一位置匹配的目标站点的第二位置。
  17. 根据权利要求16所述的装置,其特征在于,所述第一位置及所述第二位置中均还包括第二地理坐标;所述装置还包括:
    第二计算模块,用于计算所述相邻的数列元素与所述第一位置在非椭球地图模型中的第二地理坐标距离;
    判断模块,用于判断计算得到的第二地理坐标距离是否小于第三预设值;如果是,触发所述选择模块。
  18. 根据权利要求13或16所述的装置,其特征在于,所述第一地理坐标为经度位置或纬度位置。
  19. 根据权利要求14、15、17中任一项所述的装置,其特征在于,所述第一地理坐标为经度位置,所述第二地理坐标为纬度位置;
    或者,所述第一地理坐标为纬度位置,所述第二地理坐标为经度位置。
  20. 根据权利要求11所述的装置,其特征在于,所述非椭球地图模型为平面地图模型、或者正球地图模型。
  21. 一种电子设备,其特征在于,包括处理器和存储器,其中,
    存储器,用于存放计算机程序;
    处理器,用于执行存储器上所存放的程序时,实现权利要求1-10任一所述的方法步骤。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-10任一所述的方法步骤。
  23. 一种可执行程序代码,其特征在于,所述可执行程序代码用于被运行以执行权利要求1-10任一项所述的方法步骤。
PCT/CN2018/088307 2017-07-27 2018-05-25 一种车辆定位方法、装置及设备 WO2019019786A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710623633.1 2017-07-27
CN201710623633.1A CN109307512B (zh) 2017-07-27 2017-07-27 一种车辆定位方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2019019786A1 true WO2019019786A1 (zh) 2019-01-31

Family

ID=65039955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088307 WO2019019786A1 (zh) 2017-07-27 2018-05-25 一种车辆定位方法、装置及设备

Country Status (2)

Country Link
CN (1) CN109307512B (zh)
WO (1) WO2019019786A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375656B (zh) * 2020-03-09 2023-06-27 杭州海康威视数字技术股份有限公司 定位方法和设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004110458A (ja) * 2002-09-19 2004-04-08 Fukuyama Consultants Co Ltd 計測地点データの作成方法、データ処理方法、データ処理装置及びデータ処理システム、並びにプログラム及び情報記憶媒体
CN101201977A (zh) * 2007-12-27 2008-06-18 深圳市赛格导航科技股份有限公司 一种公交报站装置及其报站方法
CN101295439A (zh) * 2007-04-26 2008-10-29 爱信艾达株式会社 车辆位置信息提供装置、提供方法以及计算机程序
CN104089619A (zh) * 2014-05-14 2014-10-08 北京联合大学 无人驾驶汽车的gps导航地图精确匹配系统及其操作方法
CN105303637A (zh) * 2015-11-03 2016-02-03 用友网络科技股份有限公司 基于移动应用的坐标点上传及自动巡检装置和方法
CN105674977A (zh) * 2016-01-06 2016-06-15 华为技术有限公司 导航装置和导航方法
CN106767835A (zh) * 2017-02-08 2017-05-31 百度在线网络技术(北京)有限公司 定位方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE556298T1 (de) * 2008-03-11 2012-05-15 Gmv Aerospace And Defence S A Verfahren zur darstellung der übereinstimmung mit gewährter integrität
US8645093B2 (en) * 2009-11-04 2014-02-04 Qualcomm Incorporated Calibrating multi-dimensional sensor for offset, sensitivity, and non-orthogonality
US8954265B2 (en) * 2010-04-09 2015-02-10 Tomtom North America, Inc. Method of resolving a location from data representative thereof
JP2013124902A (ja) * 2011-12-14 2013-06-24 Nec Casio Mobile Communications Ltd 携帯端末、位置特定方法及びプログラム並びに位置特定システム
RU2569487C1 (ru) * 2014-09-19 2015-11-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет путей сообщения" МГУПС (МИИТ) Способ адаптивного формирования единой глобальной системы трёхмерных координат непосредственно на эллипсоиде
CN104596501A (zh) * 2015-01-20 2015-05-06 成都山河空间信息技术有限公司 一种基于移动地理信息平台的地图定位动态矫正方法
CN105203104B (zh) * 2015-09-16 2018-06-01 北京航空航天大学 一种适用于高精度惯导系统的重力场建模方法
CN105509733B (zh) * 2015-11-30 2018-04-06 上海宇航系统工程研究所 非合作空间圆目标的相对位姿测量方法
CN105788260B (zh) * 2016-04-13 2018-10-30 西南交通大学 一种基于智能公交系统数据的公交乘客od推算方法
CN106840159B (zh) * 2016-12-12 2019-06-18 西安空间无线电技术研究所 一种基于扁率角补偿的坐标变换方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004110458A (ja) * 2002-09-19 2004-04-08 Fukuyama Consultants Co Ltd 計測地点データの作成方法、データ処理方法、データ処理装置及びデータ処理システム、並びにプログラム及び情報記憶媒体
CN101295439A (zh) * 2007-04-26 2008-10-29 爱信艾达株式会社 车辆位置信息提供装置、提供方法以及计算机程序
CN101201977A (zh) * 2007-12-27 2008-06-18 深圳市赛格导航科技股份有限公司 一种公交报站装置及其报站方法
CN104089619A (zh) * 2014-05-14 2014-10-08 北京联合大学 无人驾驶汽车的gps导航地图精确匹配系统及其操作方法
CN105303637A (zh) * 2015-11-03 2016-02-03 用友网络科技股份有限公司 基于移动应用的坐标点上传及自动巡检装置和方法
CN105674977A (zh) * 2016-01-06 2016-06-15 华为技术有限公司 导航装置和导航方法
CN106767835A (zh) * 2017-02-08 2017-05-31 百度在线网络技术(北京)有限公司 定位方法和装置

Also Published As

Publication number Publication date
CN109307512A (zh) 2019-02-05
CN109307512B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2020078015A1 (zh) 基于道路匹配的定位方法、芯片子系统及电子设备
Fajardo et al. A mobile disaster management system using the android technology
CN109141441B (zh) 车辆的障碍分析方法和装置
US10798670B2 (en) Information processing device, portable device, and system
WO2019242520A1 (zh) 物流配送站点规划方法和服务器
US8996551B2 (en) Managing geographic region information
US20140031058A1 (en) Wireless Transmitter Identity or Positioning Information Partitioning
CN107644002B (zh) 一种物品寻找方法、装置及系统
JP2012511721A (ja) 目的地を判定するためのベクトルを有する地図データベース、及びベクトル判定方法
JP6181595B2 (ja) 地図のネットワークデータ自動生成装置、ネットワークデータ自動生成方法及びネットワークデータ自動生成プログラム
US11487289B1 (en) Autonomous vehicle repair
US20200249332A1 (en) Online Extrinsic Miscalibration Detection Between Sensors
CN112857371A (zh) 一种导航二维码生成方法、园区导航方法及装置
US11415423B2 (en) Map information management device, map information management system, and map information management method
CN103822638A (zh) 用户位置信息的处理方法和装置
CN105376716A (zh) 位置获取方法及装置
KR20180122737A (ko) 도로명칭 표시방법, 장치 및 저장매체
US20170192087A1 (en) Method and device for determining vehicle site location
WO2019019786A1 (zh) 一种车辆定位方法、装置及设备
AU2015356757B2 (en) Retrospective path analysis
CN104050869B (zh) Gis地图覆盖物布点响应方法和系统
CN110909456B (zh) 一种建模方法、装置、终端设备及介质
CN111510857A (zh) 一种用于实现用户间协同移动的方法与设备
CN104023392B (zh) 确定无线接入点的位置的方法和设备
CN112254730B (zh) 室内导航方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838234

Country of ref document: EP

Kind code of ref document: A1