WO2019019186A1 - 上行功率控制方法及装置 - Google Patents

上行功率控制方法及装置 Download PDF

Info

Publication number
WO2019019186A1
WO2019019186A1 PCT/CN2017/095035 CN2017095035W WO2019019186A1 WO 2019019186 A1 WO2019019186 A1 WO 2019019186A1 CN 2017095035 W CN2017095035 W CN 2017095035W WO 2019019186 A1 WO2019019186 A1 WO 2019019186A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
cell
power control
parameter
path loss
Prior art date
Application number
PCT/CN2017/095035
Other languages
English (en)
French (fr)
Inventor
赵雅琪
周国华
石小丽
吴南龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780092844.5A priority Critical patent/CN110832914B/zh
Priority to PCT/CN2017/095035 priority patent/WO2019019186A1/zh
Priority to EP17919536.7A priority patent/EP3651508B1/en
Publication of WO2019019186A1 publication Critical patent/WO2019019186A1/zh
Priority to US16/749,401 priority patent/US20200163026A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/245TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • H04W52/343TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading taking into account loading or congestion level

Definitions

  • the present application relates to the field of communications technologies, and in particular, to an uplink power control method and apparatus.
  • the uplink power control is performed on the signal transmitting end, and the purpose is to enable the signal receiving end to correctly demodulate the signal, and at the same time avoid the signal transmitting power being too large and causing strong neighboring cells in the cell where the signal transmitting end is located. interference.
  • the uplink power control in the long term evolution (LTE) system adopts a combination of open loop power control and closed loop power control.
  • the open loop power control refers to determining the transmit power of the terminal according to the downlink path loss
  • the closed loop power control refers to The uplink transmit power is adjusted by transmitting power control commands to the terminal.
  • Wireless signals have different characteristics over the air as compared to ground transmission.
  • the line-of-sight propagation of the signal is significantly increased compared to when communicating on the ground due to less obstruction of obstacles.
  • signals transmitted by terminals in the air may be received by more cells, and for these cells, the received signal strength may be large, which results in strong uplinks to these cells. interference.
  • the embodiment of the present application provides an uplink power control method and device, which are used to reduce uplink interference of a terminal to a neighboring cell.
  • the first aspect provides an uplink power control method, including: determining, by a terminal, a power control parameter according to neighbor information of the terminal, where the power control parameter includes a path impact parameter of a channel impact parameter or a downlink path loss, and the downlink
  • the path loss path correction parameter is used to correct the downlink path loss involved in the calculation of the transmission power; the terminal determines the transmission power according to the determined power control parameter.
  • the terminal determines the power control parameter for calculating the transmit power according to the neighbor information, and therefore introduces the uplink interference factor of the terminal to the neighboring area into the calculation process of the transmit power, that is, the uplink interference of the terminal to the neighboring area.
  • the transmission power is calculated so that the terminal can reduce the uplink interference to the neighboring cell when transmitting the signal using the transmission power.
  • the neighboring cell information includes one or any combination of the following information: a reference signal transmit power of a neighboring cell, an uplink interference thermal noise ratio of a neighboring cell, an uplink load of a neighboring cell, and a downlink of a neighboring cell. Path loss preset threshold, height of neighbor base station, etc.
  • the path-correcting parameter of the interference-influencing parameter or the downlink path loss may be determined according to the foregoing multiple neighboring cell information, so that the estimated neighboring cell interference is more accurate, and may be provided by using the embodiment of the present application.
  • the uplink power control method better suppresses uplink interference in the neighboring area.
  • the determining process of the interference affecting parameter or the path correcting parameter of the downlink path loss includes: transmitting power according to a reference signal of the first neighboring cell and a first neighboring cell reference measured by the terminal a signal receiving strength, determining a downlink path loss of the first neighboring cell to the terminal; wherein the first neighboring cell is a neighboring cell of the terminal; according to a downlink path loss of the first neighboring cell to the terminal, or Determining a path correction parameter of the interference influence parameter or the downlink path loss according to the downlink path loss of the first neighboring area to the terminal and the neighboring area information of the first neighboring area.
  • the first neighboring area is indicated by the network side, or is selected by the terminal from the neighboring area of the terminal,
  • the first neighboring cell is a cell that is subjected to strong uplink interference in a neighboring cell of the terminal.
  • the downlink path loss of the neighbor to the terminal when calculating the interference impact parameter or the path correction parameter of the downlink path loss, according to the downlink path loss of the neighbor to the terminal, the downlink path loss of the neighbor to the terminal can reflect the neighboring area is affected.
  • the degree of uplink interference of the terminal so that the interference influence parameter calculated based on the downlink path loss or the path correction parameter of the downlink path loss can accurately reflect the interference of the terminal to the neighboring area, and thus can pass the present
  • the uplink power control method provided by the application embodiment better suppresses uplink interference.
  • the selected neighboring cell is a cell that is subjected to strong uplink interference in the neighboring cell of the terminal, for example, may be the cell with the strongest uplink interference, so that the cell is
  • the downlink path loss of the terminal is used as a basis for calculating the path modification parameter of the interference influence parameter or the downlink path loss, so that the transmit power calculated according to the interference influence parameter or the modified parameter may be used for a cell with strong interference Uplink interference acts as a suppression.
  • the interference influence parameter is determined according to the first formula or the second formula or the third formula:
  • the second formula is:
  • the third formula is:
  • ⁇ c represents an interference influence parameter
  • PL M represents a downlink path loss of the cell M to the terminal
  • IoT M represents an uplink interference thermal noise ratio of the cell M
  • Load M represents an uplink load of the cell M
  • ⁇ , x, y, z is a set value; wherein the cell M is the first neighboring cell.
  • the path correction parameter of the downlink path loss is determined according to the fourth formula, the fifth formula, or the sixth formula:
  • the fifth formula is:
  • the sixth formula is:
  • ⁇ c (j) represents the path correction parameter of the uplink path loss
  • PL M represents the downlink path loss of the cell M to the terminal
  • IoT m represents the uplink interference thermal noise ratio of the cell M
  • Load m represents the uplink load of the cell M.
  • ⁇ , ⁇ , x, y, z are set values; wherein the cell M is the first neighboring cell.
  • determining, by the terminal, the transmit power according to the determined power control parameter includes: the terminal according to the interference influence parameter, a downlink path loss, and a network side Determining the transmit power; the power control parameter includes a path correction parameter of the downlink path loss, and determining, by the terminal, the transmit power according to the determined power control parameter, the path correction by the terminal according to the downlink path loss
  • the parameter corrects the downlink path loss involved in the calculation of the transmission power, and determines the transmission power according to the modified downlink path loss and the parameters configured on the network side.
  • a second aspect provides an uplink power control method, including: a base station according to neighboring area information of a terminal, and according to at least one of measurement information of the terminal and self information of the terminal, from a plurality of power control parameter sets.
  • Choose A set of power control parameters the base station notifying the terminal of the selected set of power control parameters.
  • the plurality of power control parameter sets are a plurality of power control parameter sets corresponding to the same channel or the same signal.
  • the power control parameter types are the same, and the power control parameters in different sets have different values.
  • multiple power control parameter sets are set for the same channel or the same signal to adapt to different scenarios.
  • the base station may select one power control parameter set from the plurality of power control parameter sets according to the neighboring area information of the terminal and according to at least one of the measurement information of the terminal and the self information of the terminal, and notify the terminal, so that the terminal
  • the transmit power is determined based on the power control parameters included in the notified set of power control parameters.
  • the power control parameter set selected by the base station is selected according to the neighboring area information of the terminal and according to at least one of the measurement information of the terminal and the self information of the terminal, so that the selected power control parameter set is The interference between the terminals and the adjacent areas is matched, so that the determined transmit power can reduce the uplink interference caused by the neighboring areas.
  • the base station notifies the terminal of the selected power control parameter set, where the base station sends an index of the selected power control parameter set to the terminal; or The base station sends a change indication to the terminal, where the change indication is used to instruct the terminal to replace the power control parameter set.
  • the method further includes: sending, by the base station, a plurality of power control parameter sets corresponding to the same channel or the same signal to the terminal by using a dedicated signaling or a broadcast message.
  • the neighboring cell information includes one or any combination of the following information: a reference signal transmit power of a neighboring cell, an uplink interference thermal noise ratio of a neighboring cell, an uplink load of a neighboring cell, and a downlink of a neighboring cell. Path loss preset threshold, height of neighbor base station, etc.
  • the third aspect provides an uplink power control method, including: determining, by the terminal, the working mode of the terminal according to at least one of the information of the terminal, the neighboring area information of the terminal, and the measurement information of the terminal. And selecting, by the terminal according to the working mode of the terminal, a power control parameter set from a plurality of power control parameter sets corresponding to the target channel or the target signal; and determining, by the terminal, the target channel or the target signal according to the selected power control parameter set. Transmit power.
  • the working mode includes a working mode corresponding to the terminal when communicating in the air and a working mode corresponding to the terminal when communicating in the ground.
  • the power control parameter types are the same, and the power control parameter values in different sets are different.
  • the working mode of the terminal is divided into a ground mode and an air mode, and multiple power control parameter sets are set for the target channel or the target signal to adapt to different working modes. Because the communication characteristics of the terrestrial mode and the air mode are different, the same signal transmission power has different degrees of uplink interference to the neighboring cell when the terminal is in different working modes. Therefore, the foregoing method can enable the base station to select and match according to the working mode of the terminal.
  • the power control parameter set can suppress the uplink interference of the neighbor of the terminal.
  • the method further includes: the terminal receiving the multiple power control parameter sets sent by the base station by using a dedicated signaling or a broadcast message.
  • the neighboring cell information includes one or any combination of the following information: a reference signal transmit power of a neighboring cell, an uplink interference thermal noise ratio of a neighboring cell, an uplink load of a neighboring cell, and a downlink of a neighboring cell. Path loss preset threshold, height of neighbor base station, etc.
  • a fourth aspect provides a method for transmitting information, including: acquiring, by a base station, neighboring cell information of a first terminal; and sending, by the base station, the first terminal neighboring cell information to the first terminal.
  • the base station may send the neighboring area information of the terminal to the terminal, so that the terminal determines the uplink interference of the neighboring area according to the neighboring area information, and calculates the transmitting power according to the basis, thereby reducing the uplink interference of the neighboring area of the terminal.
  • the acquiring, by the base station, the neighboring cell information of the first terminal includes: acquiring, by the base station, neighboring cell information of a neighboring cell of the cell where the first terminal is located in the coverage of the base station; and/or, the base station And receiving neighboring cell information of a neighboring cell of a cell where the first terminal is located and sent by the neighboring base station.
  • the base station sends the first terminal neighboring area information to the first terminal, where the base station sends the first terminal neighboring area by using a dedicated signaling or a broadcast message. Information is sent to the first terminal.
  • the neighboring cell information includes one or any combination of the following information: a reference signal transmit power of a neighboring cell, an uplink interference thermal noise ratio of a neighboring cell, an uplink load of a neighboring cell, and a downlink of a neighboring cell. Path loss preset threshold, height of neighbor base station, etc.
  • an uplink power control device for a terminal, the device having the function of implementing the terminal in any one of the above first aspect or the first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the device includes a power control parameter determining module and a transmit power determining module, and the modules may perform corresponding functions in any one of the above possible aspects or the first aspect, as described in detail.
  • the detailed description in the method example is not described here.
  • the apparatus includes a communication interface, a processor, and a memory, the communication interface for transmitting and receiving data, the processor being configured to support the processing device to perform the first aspect or the first The corresponding function in any possible design on the one hand.
  • the memory is coupled to the processor, which stores program instructions and data necessary for the processor.
  • an uplink power control device for a base station, the device having the function of implementing a base station in any of the possible aspects of the second aspect or the second aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the device includes a power control parameter selection module and a notification module, and the modules may perform corresponding functions in any one of the above possible aspects of the second aspect or the second aspect.
  • the modules may perform corresponding functions in any one of the above possible aspects of the second aspect or the second aspect.
  • the apparatus includes a communication interface, a processor, and a memory
  • the communication interface is configured to transmit and receive data
  • the processor is configured to support the processing device to perform the second aspect or the foregoing The corresponding function in any of the possible designs of the two aspects.
  • the memory is coupled to the processor, which stores program instructions and data necessary for the processor.
  • an uplink power control device for a terminal, the device having the function of implementing the terminal in any of the above-mentioned third or third aspects.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the device includes a working mode determining module, a power control parameter selecting module, and a transmitting power determining module, and the modules may perform any of the above possible aspects of the third aspect or the third aspect.
  • the modules may perform any of the above possible aspects of the third aspect or the third aspect.
  • the apparatus includes a communication interface, a processor, and a memory
  • the communication interface is configured to transmit and receive data
  • the processor is configured to support the processing device to perform the third aspect or the foregoing The corresponding function in any of the three possible designs.
  • the memory is coupled to the processor, which stores program instructions and data necessary for the processor.
  • an uplink power control device for a base station, the device having the function of implementing a base station in any of the above-mentioned fourth or fourth aspects.
  • the function can be implemented by hardware or by The hardware implements the corresponding software implementation.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the device includes an acquisition module and a transmission module, and the modules may perform corresponding functions in any one of the possible aspects of the fourth aspect or the fourth aspect, as described in detail in the method example. Description, no further description here.
  • the apparatus includes a communication interface, a processor, and a memory
  • the communication interface is configured to transmit and receive data
  • the processor is configured to support the processing device to perform the fourth aspect or the foregoing The corresponding function in any of the four possible designs.
  • the memory is coupled to the processor, which stores program instructions and data necessary for the processor.
  • a ninth aspect a computer readable storage medium for storing computer software instructions for performing the functions designed to perform any of the above aspects and any of the aspects, comprising And a program designed by any of the methods of any of the aspects.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any of the above aspects.
  • FIG. 1 is a schematic diagram of a communication scenario to which the embodiment of the present application is applied;
  • FIG. 2 is a schematic flowchart of an uplink power control process according to Embodiment 1 of the present application;
  • FIG. 3 is a schematic diagram of a signaling interaction process according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another uplink power control process according to the first embodiment of the present application.
  • FIG. 5 is a schematic diagram of another signaling interaction process according to an embodiment of the present application.
  • FIG. 6 is an uplink power control process provided by the second embodiment of the present application.
  • FIG. 7 is a schematic diagram of another signaling interaction process according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an uplink power control apparatus according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another uplink power control apparatus according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another uplink power control apparatus according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of an information transmission apparatus according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • a network device which may be referred to as a Radio Access Network (RAN) device, is a device that connects a terminal to a wireless network, including but not limited to: an evolved Node B (evolved Node B, eNB), Radio Network Controller (RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), and home base station (for example) , Home evolved NodeB, or Home Node B, HNB), Base Band Unit (BBU), Wireless Fidelity (WIFI) Access Point (AP), transmission point (transmission and Receiver point, TRP or transmission point (TP), node B (gNB) that continues to evolve, and so on.
  • RAN Radio Access Network
  • a terminal is a device that provides voice and/or data connectivity to users, and may include various handheld devices with wireless communication capabilities, in-vehicle devices, wearable devices, computing devices, drones, or connected to wireless devices.
  • the interaction in this application refers to the process in which the two parties exchange information with each other, and the information transmitted here may be the same or different.
  • the two parties are the base station 1 and the base station 2, and the base station 1 may request information from the base station 2, and the base station 2 provides the base station 1 with the information requested by the base station 1.
  • the base station 1 and the base station 2 may request information from each other, and the information requested here may be the same or different.
  • Multiple means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • FIG. 1 exemplarily shows a schematic diagram of one possible communication scenario.
  • the terminal 10 is a drone, and the terminal 10 is in the air, accesses the wireless network through the base station 21, acquires a service of an external network (such as the Internet) through a wireless network, or communicates with other terminals through a wireless network.
  • the base station 22 and the base station 23 are nodes adjacent to the base station 21.
  • the terminal 10 transmits a signal to the base station 21, since the signal transmission path has almost no obstruction, both the base station 22 and the base station 23 receive the signal, and the received signal strength is large, so that the base station 22 and the base station 23 cover the cell in the range.
  • Information exchange between base stations can be performed through links between base stations.
  • the foregoing base station can be replaced with another network device, such as a RAN node.
  • the uplink interference caused by the terminal to the neighboring cell is estimated, and is introduced into the uplink power control process of the terminal, that is, the estimated uplink interference caused by the neighboring cell is used as a pair.
  • the terminal performs one of the basis of uplink power control to reduce uplink interference to the neighboring cell.
  • Solution 1 When the terminal performs uplink power control, the terminal estimates the uplink interference of the neighboring area, and influences the power control parameter according to the estimation result, and performs uplink power control according to the power control parameter;
  • Solution 2 The network configures a plurality of power control parameter sets for the terminal, and the network device selects one of the configured multiple power control parameter sets according to the uplink interference of the terminal to the neighboring cell, and notifies the terminal of the selected power control parameter set to the terminal. And causing the terminal to perform uplink power control according to the power control parameter in the power control parameter set;
  • Solution 3 The network configures multiple power control parameter sets for the same channel or the same signal.
  • the configured power control parameter set corresponds to the working mode of the terminal.
  • the working mode selects a power control parameter set corresponding to the current working mode from the plurality of power control parameter sets, and performs uplink power control according to the power control parameter in the selected power control parameter set.
  • the “neighborhood” in the embodiment of the present application refers to a neighboring cell of a cell where the terminal is located.
  • the neighboring area of the terminal usually includes multiple, and the neighboring area of the terminal may include: a cell that belongs to the same base station coverage as the cell where the terminal is located, and may also include a cell that belongs to a different base station coverage range with the cell where the terminal is located.
  • the terminal needs to estimate the interference of the terminal to the neighboring area, and the interference of the terminal to the neighboring area can be characterized by the interference affecting parameter.
  • the interference influence parameter can be determined based on the neighboring area information. It should be noted that the “interference influence parameter” is only an exemplary name, and the naming of the parameter is not limited in the embodiment of the present application.
  • the neighboring area interference information may be determined according to the neighboring area information and according to at least one of the terminal own information and the terminal measurement information, and then the interference influence parameter is determined according to the neighboring area interference information.
  • the determined neighboring area interference information may include some or all of the following information: downlink path loss from the neighboring cell to the terminal, interference over thermal (IoT) in the neighboring cell, and uplink load in the neighboring cell.
  • IoT interference over thermal
  • the information about the terminal itself may include the height of the terminal, or other information that can reflect the status, location, or communication status of the terminal.
  • the terminal measurement information may include a reference signal receiving power (RSRP) of the terminal for a signal from a neighboring cell.
  • RSRP reference signal receiving power
  • the network side can configure the measurement of the terminal, for example, the configurable terminal can measure which information.
  • the embodiment of the present application does not limit the specific type of measurement information of the terminal, and the terminal can perform measurement according to the measurement configuration of the network side.
  • the neighboring area information includes information of one or more neighboring areas, wherein, for one of the one or more neighboring areas, the neighboring area information may include one or any combination of the following information: the RS transmit power, uplink IoT of the cell, uplink load of the cell, downlink path loss threshold of the cell, height of the base station of the cell, and the like.
  • Neighboring base stations can exchange neighboring area information through links between base stations.
  • the base station can transmit the neighbor information to the terminal within the coverage of the base station.
  • the neighboring area information it receives from its serving base station may include information of neighboring areas within the coverage of the serving base station, and may also include information of neighboring areas within the coverage of other base stations.
  • the base station can transmit the neighbor information to the terminal through a dedicated signaling or a broadcast message.
  • the proprietary signaling may be a radio resource control (RRC) message.
  • the base station may send the neighboring area information to the terminal in the form of a neighboring area list, where the neighboring area list includes information of one or more neighboring areas, and an index is allocated for each neighboring area, and is used to index the corresponding neighbors. District information.
  • the base station may further send neighboring area information to the terminal, and may further send indication information to the terminal to indicate a neighboring area that is subjected to strong uplink interference, such as a neighboring area that is most strongly interfered by the uplink.
  • the indicated neighboring cell is a neighboring cell in the neighboring cell list sent by the base station to the terminal.
  • the indication information can be sent by downlink control information (DCI).
  • the indication information may be an index of the neighboring cell that is subjected to strong uplink interference in the neighboring cell list, or may be indicated in a bitmap manner, for example, sending a binary sequence to the terminal, and the number of bits and the sending of the binary sequence
  • the number of neighboring cells in the neighboring cell list of the terminal is the same, and one bit corresponds to one neighboring cell. If the bit value is 1, the corresponding neighboring cell is a cell that is subjected to strong uplink interference, and the value of the bit is If it is 0, the corresponding neighboring area is not subjected to strong uplink interference, and vice versa.
  • the base station can determine the neighboring area in the neighboring area of the terminal that is subject to strong uplink interference. As an example, for a terminal, if the base station receives uplink load information (such as an overload indicator OI) and/or a high interference indicator (HII) of a neighbor of the terminal, and the base station After the uplink data transmission of the terminal is scheduled on the corresponding resource block (RB), it can be determined that the neighboring area is subjected to strong uplink interference.
  • uplink load information such as an overload indicator OI
  • HII high interference indicator
  • the base station determines that the uplink IoT sent by the neighboring cell of the terminal (or the base station where the neighboring cell is located) exceeds a set threshold, it may be determined that the neighboring cell is subjected to strong uplink interference.
  • the working mode defines two working modes: an air mode and a ground mode.
  • the air mode refers to the communication mode when the terminal is in the air
  • the ground mode refers to the working mode when the terminal is on the ground.
  • the base station may first determine the working mode of the terminal, that is, whether the terminal is in the air mode or the ground mode, and if the terminal is in the air mode, There is signaling to send neighbor information to the terminal.
  • the working mode of the terminal may not be limited to the above two types, for example, the air mode may be further divided according to different height ranges.
  • the working mode of the terminal may be determined by the base station, or may be reported to the base station by the terminal after determining the working mode.
  • the base station or the terminal can determine the working mode of the terminal according to one or more combinations of the following information: the terminal itself information, the terminal measurement information, and the neighboring area information.
  • the information about the terminal itself may include the height of the terminal, or other information that can reflect the status, location, or communication status of the terminal.
  • the terminal measurement information and the content of the neighboring area information are as described above.
  • the terminal In an example of judging the working mode of the terminal according to the information of the terminal itself, if the height of the terminal exceeds a set threshold (the height at which the terminal is located can be obtained by location positioning), it is determined that the terminal is in the air mode, otherwise the terminal is determined. In ground mode.
  • a set threshold the height at which the terminal is located can be obtained by location positioning
  • the terminal may be determined to be in the air mode, otherwise the terminal is determined to be in the ground mode, where The downlink path loss between the terminal and the neighboring cell may be calculated according to the neighboring cell information and the terminal measurement information.
  • the downlink path loss of a cell to the terminal is equal to the RS transmit power of the cell minus the RSRP of the cell measured by the terminal. .
  • the terminal In another example of determining the working mode of the terminal according to the terminal measurement information, if the terminal measures that the RSRP of the neighboring cell exceeds the set threshold, and the number of the neighboring cells whose neighboring area RSRP exceeds the set threshold reaches a preset threshold, Then, the terminal can be judged to be in the air mode, otherwise the terminal is judged to be in the ground mode.
  • determining the working mode of the terminal if the height of the terminal exceeds a set threshold, and the downlink path loss of the terminal and the adjacent interval is lower than a set threshold, determining that the terminal is in the air mode Otherwise, it is determined that the terminal is in the ground mode, wherein the downlink path loss between the terminal and the neighboring cell can be calculated according to the neighboring area information and the terminal measurement information.
  • the base station may also determine whether to send the neighbor information to the terminal according to the type of the terminal. Specifically, if the base station determines that the terminal is a terminal of the UAV type, the neighboring area information is sent to the terminal.
  • FIG. 2 a schematic diagram of an uplink power control process provided by Embodiment 1 of the embodiment of the present application. As shown in Figure 2, when the terminal performs uplink power control, the following process can be performed:
  • the terminal determines a power control parameter, where the power control parameter includes an interference impact parameter, where the interference impact parameter may be determined according to neighbor information of the terminal or neighboring area interference information.
  • the power control parameter is used as an input parameter of the calculation formula of the transmission power to calculate the transmission power.
  • the interference influence parameter participates in the calculation of the transmit power as the power control parameter.
  • the power control parameters may include other parameters in addition to the interference influence parameters, such as parameters including network side configurations.
  • the interference impact parameter may be a function of neighbor information or neighbor interference information.
  • the neighboring area information may be sent to the terminal by using the base station. For the manner in which the neighboring area information is sent and the content of the neighboring area information, refer to the foregoing description, which is not repeated here.
  • the terminal may determine the downlink path loss of the terminal and the adjacent interval according to the neighbor information and the terminal measurement information, and further determine the uplink IoT of the neighboring area, the uplink load of the neighboring area, and the like, and according to the determined information. Determine the interference impact parameters.
  • the cell in which the terminal is located is the cell c, and the cell M is a neighboring cell of the cell c as an example, and the method for determining the interference influence parameter is described.
  • the base station may determine the downlink path loss of the cell M to the terminal according to the RS transmit power of the cell M and the RSRP of the cell M measured by the terminal, and determine the interference according to the downlink path loss. Affect the parameters.
  • the interference influence parameter ⁇ c can be determined according to the following formula:
  • PL M is the downlink path loss loss of the cell M to the terminal
  • PL M referenceSignalPower M -RSRP M
  • referenceSignalPower M represents the RS transmit power of the cell M, which can be obtained from the neighboring cell information sent by the base station to the terminal (the neighboring cell)
  • the information includes the RS transmit power of the cell M
  • the RSRP M represents the RSRP of the cell M measured by the terminal;
  • can be a set value, and specifically, ⁇ can be configured by a higher layer.
  • the upper layer may configure ⁇ to the terminal through RRC signaling, or configure a parameter for determining ⁇ , and the terminal calculates the value of ⁇ according to the parameter.
  • is a non-positive value
  • is a negative value if the terminal is in the air mode
  • is 0 if the terminal is in the ground mode.
  • the base station may determine the interference-influencing parameter according to more factors.
  • the cell M may be determined according to the RS transmit power of the cell M and the RSRP of the cell M measured by the terminal.
  • the downlink path loss of the terminal is determined according to the downlink path loss, the uplink load of the cell M, and the uplink IoT of the cell M.
  • the interference influence parameter ⁇ c can be determined according to the following formula:
  • the PL M represents the downlink path loss of the cell M to the terminal
  • the IoT M represents the uplink interference thermal noise ratio of the cell M
  • the Load M represents the uplink load of the cell M.
  • X, y, and z are set values, which can be preset or configured by a higher layer, and may be greater than or equal to zero.
  • the value of ⁇ and its meaning are as described above.
  • the base station may determine the downlink path loss of the cell M to the terminal according to the RS transmit power of the cell M and the RSRP of the cell M measured by the terminal, and then according to the downlink path loss.
  • the uplink load of the cell M determines the interference influence parameter.
  • the interference influence parameter ⁇ c can be determined according to the following formula:
  • the cell M involved in the foregoing interference-influencing parameter determining method is used as a reference neighboring cell for uplink interference estimation, and the cell M may be any neighboring cell in the neighboring cell of the terminal, which may be selected by the terminal or may be indicated by the base station.
  • the base station can send indication information to the terminal to indicate the neighboring area that is subject to strong uplink interference.
  • the cell M may be a cell in the neighboring cell of the terminal that meets certain conditions. For example, it may be a cell that is subject to strong uplink interference (such as a cell with the strongest uplink interference), or a cell with a small path loss (such as a cell with the smallest path loss), or a cell with a large uplink IoT (such as the largest uplink IoT). A cell, or a cell with a large uplink load (such as a cell with the largest uplink load).
  • the reference cell can also be selected according to the comprehensive consideration of the information of each neighboring cell, for example, a cell with a small downlink path loss, a large uplink load, and a large uplink IoT is selected.
  • the following expression shows a method of selecting a reference cell:
  • x, y, and z are set values, and may be preset or configured by a high layer, and may be a value greater than or equal to zero.
  • Max() means take the maximum value
  • arg means make The value of the variable m when the maximum value is reached.
  • S202 The terminal determines the transmit power according to the determined power control parameter.
  • the terminal may use the interference influence parameter calculated in S202 as one of the power control parameters, and may combine the downlink path loss of the cell where the terminal is located to the terminal, or further combine the parameters configured on the network side to determine the transmit power. .
  • the following are respectively a physical uplink control channel (PUCCH), a physical uplink shared channel (PUSCH), a sounding reference signal (SRS), and a physical random access channel ( Physical random access channel (PRACH) is described by taking uplink power control as an example.
  • the agreed cell c is the cell where the terminal is located.
  • the PUCCH transmission power of the terminal can be determined by the following formula (in dBm):
  • P CMAX,c (i) is the maximum transmit power of each subcarrier in cell c;
  • P O_PUCCH is summed by two parameters configured by the upper layer;
  • PL c is the downlink path loss of the cell c to the terminal, and the downlink path The loss is equal to the RS transmit power of the cell c minus the RSRP of the cell c measured by the terminal;
  • h(n CQI , n HARQ , n SR ) is a value related to the PUCCH format;
  • ⁇ F_PUCCH (F) is configured by the upper layer, and PUCCH format related;
  • ⁇ TxD (F') is configured by higher layers and is related to PUCCH transmission on several ports;
  • the ⁇ PUCCH is a terminal-specific value and is a feedback of the network side and can be sent to each terminal through the PDCCH.
  • ⁇ c is the interference influence parameter calculated by the method provided in the above embodiment of the present application.
  • the transmit power of the PUCCH is determined by the following formula (in dBm):
  • P PUCCH (i) min ⁇ P CMAX,c (i),P 0_PUCCH +PL c +g(i)+ ⁇ c ⁇ .2016-2018[6]
  • ⁇ c is the interference influence parameter calculated by the method provided in the above embodiment of the present application.
  • the transmit power of the PUSCH of the terminal may be determined according to the following formula (in dBm):
  • ⁇ c is the interference influence parameter calculated by the method provided in the above embodiment of the present application.
  • M PUSCH, c (i) is the number of resource blocks (RBs) occupied in one subframe of the PUSCH
  • P O_PUSCH, c (j) are two configured by the upper layer The sum of the parameters is obtained;
  • ⁇ c (j) is a high-level configuration;
  • PL c is a downlink path loss calculated by the terminal, and the downlink path loss is equal to the RS transmit power of the cell c minus the RSRP of the cell c measured by the terminal;
  • K S is configured by a higher layer;
  • f c (i) is a value related to a higher layer configuration and ⁇ PUSCH,c , where ⁇ PUSCH,c is related to a Transmitted Power Control (TPC) command indicated by the PDCCH/EPDCCH Value.
  • TPC Transmitted Power Control
  • the transmit power of the PUSCH of the terminal may be determined according to the following formula (in dBm):
  • the terminal If the terminal does not send the PUSCH but receives the TPC command of DCI format 3/3A (DCI format 3/3A), the terminal assumes that the transmit power of the PUSCH is (in dBm):
  • ⁇ c is the interference influence parameter calculated by the method provided in the above embodiment of the present application.
  • the transmit power of the SRS (in dBm) can be determined according to the following formula:
  • P SRS_OFFSET,c (m) is a semi-static parameter of the high-level configuration
  • M SRS,c is the number of RBs occupied by the SRS in one subframe
  • f c (i) is the power control adjustment of the PUSCH
  • P O_PUSCH, c (j) and ⁇ c (j) are the same as defined in the PUSCH power control formula.
  • ⁇ c is the interference influence parameter calculated by the method provided in the above embodiment of the present application.
  • the transmit power of the PRACH (in dBm) can be determined according to the following formula:
  • PREAMBLE_RECEIVED_TARGET_POWER is configured by the upper layer
  • PL c is the estimated downlink path loss
  • ⁇ c is the interference influence parameter calculated by the method provided in the above embodiment of the present application.
  • PREAMBLE_RECEIVED_TARGET_POWER and ⁇ c are power control parameters.
  • FIG. 3 is a schematic diagram of a signaling interaction flow according to the uplink power control procedure shown in FIG. 2.
  • the cell 1 is the cell where the terminal is located, and the cell 2 to the cell n (n is an integer greater than 2) is the neighboring cell of the cell 1.
  • the interference influence parameter is determined according to the above formula (1).
  • the base station where the cell 2 to the cell n are located transmits the information of the cell 2 to the cell n (including the RS transmit power) to the base station where the cell 1 is located; in S302, the base station broadcasts the message
  • the information of the cell 2 to the cell n (including the RS transmit power) is sent to the terminal; in S303, the terminal performs RSRP measurement on the cell 2 to the cell n; in S304, the terminal selects the smallest downlink according to the measurement result in S303.
  • the path loss is calculated according to formula (1); in S305, the terminal uses the interference influence parameter calculated in S305 as one of the power control parameters to perform uplink power control.
  • the timing of each step in FIG. 3 is only an example, and the processes of S301 to S302 are relatively independent with respect to the processes of S303 to S305.
  • the uplink power control process may be performed according to S303 to S304, and the process of S301 to S302 is not necessarily performed every time the uplink power control is performed.
  • the interference influence parameter is determined according to the neighbor information or the terminal information and/or the terminal measurement information, and the interference influence parameter is used as one of the power control parameters, thereby
  • the neighboring area interference factor is introduced into the uplink power control, so that the uplink power control can be optimized to reduce the uplink interference of the terminal to the neighboring area.
  • FIG. 4 is a schematic diagram of another uplink power control process according to the first embodiment of the present application.
  • the interference of the terminal to the neighboring cell can be characterized by the path correction parameter of the downlink path loss.
  • path modification parameter of the downlink path loss is only an exemplary name, and the naming of the parameter is not limited in the embodiment of the present application.
  • the path correction parameter of the downlink path loss may be determined according to the neighboring area information or the neighboring area interference information, and the neighboring area interference information may be determined according to the neighboring area information and according to at least one of the terminal own information and the terminal measurement information.
  • the determined neighboring area interference information may include some or all of the following information: downlink path loss from the neighboring cell to the terminal, interference over thermal (IoT) in the neighboring cell, and uplink load in the neighboring cell.
  • the content of the neighboring area information and the manner of interaction, and the manner in which the base station sends the neighboring area information to the terminal are the same as the foregoing embodiment.
  • the definitions of the terminal own information and the terminal measurement information are the same as those of the foregoing embodiment.
  • the base station may further send neighboring area information to the terminal, and may further send indication information to the terminal to indicate a neighboring area that is subjected to strong uplink interference, such as a neighboring area that is most subjected to uplink interference.
  • the base station may first determine the working mode of the terminal before transmitting the neighbor information to the terminal, that is, whether the terminal is in the air mode or the ground mode, and if the terminal is in the air mode, Neighbor information is sent to the terminal.
  • the base station may also determine whether to send the neighbor information to the terminal according to the type of the terminal. Specifically, if the base station determines that the terminal is a terminal of the UAV type, the neighboring area information is sent to the terminal.
  • the terminal determines a power control parameter, where the power control parameter includes a path correction parameter of a downlink path loss, where the path correction parameter of the downlink path loss may be determined according to neighbor information or neighboring interference information of the terminal.
  • the modified parameter is used to correct the downlink path loss of the cell where the terminal is located to the terminal, and the modified downlink path loss can be used as an input parameter to participate in the calculation of the transmit power.
  • the path loss may be corrected by multiplying the correction parameter by the downlink path loss of the cell where the terminal is located.
  • the downlink path loss of the cell where the terminal is located to the terminal may be corrected.
  • the power control parameter is used as an input parameter of the calculation formula of the transmission power to calculate the transmission power.
  • the path correction parameter of the downlink path loss is used as a calculation of the participating transmit power as a power control parameter.
  • the power control parameters may include other parameters, such as parameters including network side configurations.
  • the path correction parameter of the downlink path loss may be a function of the neighboring area information or the neighboring area interference information, and the neighboring area interference information may be determined according to the neighboring area information and according to at least one of the terminal's own information and the terminal measurement information.
  • the determined neighboring interference information may include a combination of one or more of the following information: a downlink path loss of the terminal and the adjacent interval (the downlink path loss may be the RS transmit power of the neighboring area and the neighboring area RSRP measured by the terminal) ), uplink IoT in the neighboring area, uplink load in the neighboring area, and so on.
  • the terminal may determine the downlink path loss of the terminal and the adjacent interval according to the neighbor information and the terminal measurement information, and further determine the uplink IoT of the neighboring area, the uplink load of the neighboring area, and the like, and according to the determined information.
  • a path correction parameter that determines the downlink path loss.
  • the method for determining the path correction parameter of the downlink path loss is described below by taking the cell in which the terminal is located as the cell c and the cell M as a neighboring cell of the cell c as an example.
  • the base station may determine the downlink path loss of the cell M to the terminal according to the RS transmit power of the cell M and the RSRP of the cell M measured by the terminal, and determine according to the downlink path loss.
  • the correction parameter ⁇ c can be determined according to the following formula:
  • the value of ⁇ can be configured by the upper layer, and the value can be the same as the corresponding parameter of the upper layer configuration of the power control scheme of the existing LTE system; the ⁇ is configured by the upper layer, for example, can be configured through an RRC message, and the value can be greater than 0. .
  • the base station may determine the modified parameter according to more factors, for example, determining the cell M to the terminal according to the RS transmit power of the cell M and the RSRP of the cell M measured by the terminal.
  • the downlink path loss is determined according to the downlink path loss, the neighboring area information of the cell M (such as the uplink load of the cell M, the uplink IoT of the cell M, etc.).
  • the correction parameter ⁇ c can be determined according to the following formula:
  • PL M represents the downlink path loss of the cell M to the terminal
  • IoT M represents the uplink interference thermal noise ratio of the cell M
  • Load M represents the uplink load of the cell M.
  • X, y, and z are set values, which can be preset or configured by a higher layer, and may be greater than or equal to zero. The value of ⁇ and its meaning are as described above.
  • the base station may determine the downlink path loss of the cell M to the terminal according to the RS transmit power of the cell M and the RSRP of the cell M measured by the terminal, and then according to the downlink path loss,
  • the uplink load of the cell M determines the interference influence parameter.
  • the interference influence parameter ⁇ c can be determined according to the following formula:
  • the cell M involved in the path correction parameter determining method for the downlink path loss is used as a reference neighboring cell for uplink interference estimation, and the cell M may be any neighboring cell in the neighboring cell of the terminal, which may be selected by the terminal or may be a base station. Instructed. As mentioned before, the base station can send indication information to the terminal to indicate the neighboring area that is subject to strong uplink interference.
  • the cell M may be a cell in the neighboring cell of the terminal that meets certain conditions. For example, it may be a cell that is subject to strong uplink interference (such as a cell with the strongest uplink interference), or a cell with a small path loss (such as a cell with the smallest path loss), or a cell with a large uplink IoT (such as the largest uplink IoT). A cell, or a cell with a large uplink load (such as a cell with the largest uplink load).
  • the reference cell can also be selected according to the comprehensive consideration of the information of each neighboring cell, for example, a cell with a small downlink path loss, a large uplink load, and a large uplink IoT is selected.
  • the reference cell can be selected by using the foregoing formula (4).
  • S402 The terminal determines the transmit power according to the determined power control parameter.
  • the terminal may use the modified parameter calculated in S401 as one of the power control parameters, and use the modified parameter to modify the downlink path loss of the terminal, and further combine the other power control parameters to perform uplink power control.
  • the following describes the uplink power control for the PUSCH and the SRS as an example.
  • the agreed cell c is the cell where the terminal is located.
  • the transmit power of the PUSCH of the terminal may be determined according to the following formula (in dBm):
  • P CMAX,c (i) is the maximum transmit power of each subcarrier in cell c; M PUSCH,c (i) is the number of RBs occupied in one subframe of PUSCH; P O_PUSCH,c (j) is configured by higher layer The two parameters are summed; PL c is the downlink path loss calculated by the terminal, and the downlink path loss is equal to the RS transmit power of the cell c minus the RSRP of the cell c measured by the terminal; Where K S is configured by a higher layer; f c (i) is a value related to the higher layer configuration and ⁇ PUSCH,c , where ⁇ PUSCH,c is a value related to the TPC command indicated by the PDCCH/EPDCCH. ⁇ c (j) is a path correction parameter of the downlink path loss calculated by the method provided by the above embodiment of the present application.
  • the transmit power of the PUSCH of the terminal may be determined according to the following formula (in dBm):
  • the terminal If the terminal does not send the PUSCH but receives the TPC command of DCI format 3/3A (DCI format 3/3A), the terminal assumes that the transmit power of the PUSCH is (in dBm):
  • ⁇ c (j) is a path correction parameter of the downlink path loss calculated by the method provided by the above embodiment of the present application.
  • the transmit power of the SRS (in dBm) can be determined according to the following formula:
  • P SRS_OFFSET,c (m) is a semi-static parameter of the high-level configuration
  • M SRS,c is the number of RBs occupied by the SRS in one subframe
  • f c (i) is the power control adjustment of the PUSCH
  • P O_PUSCH, c (j) is defined in the same PUSCH power control formula.
  • ⁇ c (j) is a path correction parameter of the downlink path loss calculated by the method provided by the above embodiment of the present application.
  • FIG. 5 is a schematic diagram of a signaling interaction flow according to the uplink power control procedure shown in FIG.
  • the cell 1 is the cell where the terminal is located, and the cell 2 to the cell n (n is an integer greater than 2) is the neighboring cell of the cell 1.
  • the path correction parameter of the downlink path loss is determined according to the above formula (12).
  • the base station where the cell 2 to the cell n are located transmits the information of the cell 2 to the cell n (including the RS transmit power) to the base station where the cell 1 is located; in S502, the base station broadcasts the message The information of the cell 2 to the cell n (including the RS transmit power) is sent to the terminal; in S503, the base station allocates parameters required for calculating the path correction parameter of the downlink path loss to the terminal through the RRC message; in S504, the terminal pairs the cell 2 ⁇ cell n performs RSRP measurement, according to the measurement result, selects the minimum downlink path loss, and calculates the path correction parameter of the downlink path loss according to formula (12); in S505, the corrected parameter calculated by the terminal root S504 is used for the cell 1 The downlink path loss to the terminal is corrected, and the uplink power control is performed according to the corrected path loss.
  • the timing of each step in FIG. 5 is only an example, wherein the processes of S501 to S502 are relatively independent with respect to the process of S503 and with respect to the processes of S504 to S505.
  • the uplink power control process may be performed according to S504 to S505.
  • the process of S501 to S502 or the process of S503 is not necessarily performed every time the uplink power control is performed.
  • the path correction parameter of the downlink path loss is determined according to the neighboring area information or the terminal information and/or the terminal measurement information, and the path loss is corrected by using the modified parameter, and the corrected path is used.
  • the path loss is used for uplink power control, so that the neighboring interference factor is introduced into the uplink power control during the uplink power control, so that the uplink power control can be optimized to reduce the uplink interference of the terminal to the neighboring area.
  • the estimation of the interference of the terminal to the neighboring area may be based on the neighboring area information, and further may be based on at least one of the terminal measurement information and the terminal's own information.
  • the terminal measurement information is reported by the terminal to the base station.
  • the content of the neighboring area information and the interaction manner are the same as those of the foregoing embodiment.
  • the definitions of the terminal measurement information and the terminal own information are the same as those of the foregoing embodiment.
  • the base station may organize the neighboring area information into a neighboring area list, where the neighboring area list includes information of one or more neighboring areas, and each neighboring area is allocated an index for indexing information of the corresponding neighboring area.
  • a plurality of power control parameter sets may be configured for the same channel or the same signal.
  • multiple power control parameter sets may be configured for the channel for performing uplink power control, such as such a channel may include one or more of PUCCH, PUSCH, PRACH, and the like.
  • a plurality of sets of power control parameters may be configured for signals for uplink power control, such signals may include uplink reference signals, such as SRS.
  • the types of power control parameters included in the power control parameter set corresponding to different channels or different signals may be different.
  • the power control parameters For a plurality of power control parameter sets corresponding to the same channel or the same signal, which include the same type of power control parameters, but the power control parameters have different values, so that different power control parameter sets are used for the same channel or the same signal. Power control can achieve different power control effects.
  • the corresponding power control parameter set may be used for uplink power control for different scenarios (such as whether the terminal is in the air mode or the ground mode, or the degree of uplink interference caused by the terminal to the neighboring cell).
  • the set 1 and set 2 are configured, and both the set 1 and the set 2 include the power control parameter P O_PUCCH of the PUCCH , but the values of the parameters in the set 1 and the set 2 are different. More specifically, the set 1 is suitable for use when the terminal is in the air mode or causes strong interference to the neighboring area, and the set 2 is suitable for use when the terminal is in the ground mode or the interference caused to the neighboring area is small.
  • two power control parameter sets (set 1 and set 2) are configured, and both set 1 and set 2 include power control parameters P O_PUSCH, c (j), ⁇ c (j) of the PUSCH, but the set The values of at least one of the two parameters in 1 and set 2 are different.
  • two power control parameter sets (set 1 and set 2) are configured, and both set 1 and set 2 include SRS power control parameters P O_PUSCH, c (j), ⁇ c (j), but the set The values of at least one of the two parameters in 1 and set 2 are different.
  • two power control parameter sets are configured, and both the set 1 and the set 2 include the PRACH power control parameter PREAMBLE_RECEIVED_TARGET_POWER, but the values of the parameters in the set 1 and the set 2 are different.
  • a plurality of sets of power control parameters configured for the same channel or the same signal may be pre-agreed.
  • a plurality of power control parameter sets configured for the same channel or the same signal may be sent to the terminal by the base station.
  • the base station may configure the power control parameter set to the terminal by using a dedicated signaling or a broadcast message.
  • the base station may use an existing RRC message or a newly defined RRC message, such as an RRC connection.
  • the configuration message is sent to the terminal, and the power control parameter set may be sent to the terminal through a newly defined system information block (SIB) message.
  • SIB system information block
  • the base station may also determine whether to send multiple power control parameter sets to the terminal according to the type of the terminal, considering that different types of terminals may be different. Specifically, if the base station determines that the terminal is a terminal of the UAV type, the multiple power control parameter sets are sent to the terminal.
  • the uplink power control procedure provided by the second embodiment of the present application is shown.
  • the base station needs to perform uplink power control on a certain channel or signal (hereinafter referred to as a target channel or a target signal) of the terminal
  • the terminal that needs to perform uplink power control may perform the following process:
  • the base station acquires neighboring cell information of the terminal, and further acquires at least one of measurement information of the terminal and self information of the terminal.
  • S602 The base station according to the neighboring area information of the terminal, or according to at least one of the measurement information of the terminal and the information of the terminal, the target channel or the target signal, the multiple corresponding to the target channel or the target signal A set of power control parameters is selected in the power control parameter set.
  • the base station may determine the uplink interference caused by the terminal to the neighboring area according to the neighboring area information of the terminal, or according to at least one of the measurement information of the terminal and the self information of the terminal, and perform according to the Selection of power control parameter sets.
  • the power control parameter P O_PUCCH is included in both the set 1 and the set 2, but the value of the parameter in the set 1 is smaller than the value in the set 2
  • the power control of the PUCCH adopts the manner described in the foregoing formula (5).
  • the terminal that needs to perform the uplink power control determines the neighboring area of the terminal according to the neighboring area information of the terminal, or according to at least one of the measurement information of the terminal and the self information of the terminal.
  • the method for the uplink interference may be implemented in various manners, which is not limited in this embodiment of the present application. As an example, if the downlink path loss of the neighboring cell to the terminal calculated by the terminal based on the measured neighboring area RSRP is lower than a set threshold, and the uplink IoT of the neighboring cell is higher than a set threshold, it may be determined.
  • the terminal causes a large interference to its neighboring area.
  • the uplink interference metric parameter may be calculated according to the neighbor information of the terminal and the measurement information of the terminal. If the value of the parameter is greater than the set threshold, the terminal may be determined to cause a large interference to the neighboring area, where An example of a calculation formula for the uplink interference metric parameter of the terminal to the neighboring area M is:
  • ⁇ M represents the metric of the uplink interference caused by the terminal to the neighboring zone M
  • PL M represents the downlink path loss of the neighboring zone M to the terminal
  • PL M referenceSignalPower M -RSRP M
  • referenceSignalPower M represents the RS of the neighboring zone M Transmit power
  • RSRP M represents the RSRP of the neighboring zone M measured by the terminal
  • IoT m represents the uplink interference thermal noise ratio of the neighboring zone M
  • Load m represents the uplink load of the neighboring zone M.
  • X, y, and z are set values, which can be preset or configured by a higher layer, and may be greater than or equal to zero.
  • the base station notifies the terminal of the selected power control parameter set, so that the terminal can determine the transmit power of the target channel or the target signal by using the power control parameter in the corresponding power control parameter set according to the notification.
  • the base station may transmit the power control parameters included in the selected set of power control parameters to the terminal.
  • the terminal has configured a plurality of power control parameter sets for the same channel or the same signal, for example, may be configured in a pre-agreed manner, or may be sent by using a base station. Configuration.
  • the base station may notify the terminal of the selected power control parameter set by using the indication information.
  • the base station may send the foregoing indication information to the terminal by using a DCI or an RRC message.
  • the above indication information may be an identifier or an index of a power control parameter set. For example, if two power control parameter sets (set 1 and set 2) are configured for the PUSCH, when performing uplink power control for the PUSCH, the base station can use the 1-bit information to inform the terminal whether to use the set 1 or the set 2, for example, when When the value of the bit is 0, the terminal is instructed to use the set 1. When the bit takes a value of 1, the terminal is instructed to use the set 2.
  • the indication information may also be a change indication, which is used to instruct the terminal to replace the power control parameter set, or to instruct the terminal to use a different power control parameter set than the one currently used.
  • a change indication which is used to instruct the terminal to replace the power control parameter set, or to instruct the terminal to use a different power control parameter set than the one currently used.
  • the base station when performing uplink power control on the PUSCH, the base station can use 1-bit information as a change indication, when the change indication takes a value of 0. Or, when the base station does not send the change indication, it indicates that the currently used power control parameter set is unchanged, and when the change indication value is 1, it indicates that the power control parameter set different from the current use is used. For example, the terminal currently uses the set 1. If the terminal receives the change indication (takes the value 1), the set 2 is used. If the terminal does not receive the change indication or the received change indication takes a value of 0, the set 1 is still used.
  • the parameters included in the power control parameter set may also be different according to the adopted uplink power control algorithm.
  • the embodiment of the present application does not limit the uplink power control algorithm used.
  • the uplink power control algorithm defined in the LTE protocol may be used in S803 for transmit power setting. This embodiment of the present application does not limit this.
  • FIG. 7 is a schematic diagram of a signaling interaction flow according to the uplink power control procedure shown in FIG. 6.
  • the base station sets two power control parameter sets corresponding to the PUCCH through an RRC connection reconfiguration message (set 1 And the set 2) is sent to the terminal;
  • the terminal reports the measurement report to the base station, where the measurement report includes the neighboring area RSRP measured by the terminal;
  • the base station according to the neighboring area information of the terminal and the measurement reported by the terminal Reporting, determining the uplink interference of the terminal to the neighboring area, because different uplink interference levels correspond to different working modes of the terminal (for example, when the interference in the neighboring area is greater in the air mode than in the ground mode),
  • the working mode of the terminal may be determined according to the uplink interference caused by the terminal to the neighboring cell, and the base station selects one terminal for the terminal according to the uplink interference of the terminal to the neighboring cell or according to the working mode of the terminal.
  • the working mode of the terminal may be determined according to the uplink interference
  • the timing of each step in FIG. 7 is only an example, wherein the process of S701, the process of S702, and the processes of S703-S704 are independent of each other.
  • the uplink power control process may be performed according to S703 to S704, and the processes of S701 and S702 are not necessarily performed every time the uplink power control is performed.
  • the base station corresponds to the same channel or the same signal according to the neighboring area information and according to at least one of the terminal measurement information and the terminal's own information.
  • the power control parameter set is selected from the plurality of power control parameter sets, and the selected power control parameter set is notified to the terminal, so that the terminal sets the transmit power according to the power control parameter set, so that the terminal can be used for different scenarios (such as terminal neighboring The interference caused by the zone is stronger or weaker. Different power control parameters are used for uplink power control.
  • the terminal In the uplink power control process provided by the solution, the terminal needs to determine the working mode in which the terminal is located.
  • the method for determining the working mode of the terminal refer to the description in the first solution of the embodiment of the present application.
  • the terminal working mode may be determined according to one or more combinations of the terminal's own information, the neighboring area information of the terminal, and the measurement information of the terminal.
  • the content of the neighboring area information and the interaction manner are the same as those of the foregoing embodiment.
  • the definitions of the terminal measurement information and the terminal own information are the same as those of the foregoing embodiment.
  • the neighboring area information may be organized into a neighboring area list, where the neighboring area list includes information of one or more neighboring areas, and an index is allocated for each neighboring area for indexing information of the corresponding neighboring area.
  • multiple power control parameter sets may be configured for the same channel or the same signal, and different power control parameter sets may correspond to different terminal working modes (such as air mode or ground mode).
  • terminal working modes such as air mode or ground mode.
  • a plurality of sets of power control parameters configured for the same channel or the same signal may be pre-agreed, or a plurality of sets of power control parameters configured for the same channel or the same signal may be sent to the terminal by the base station.
  • the base station may configure a set of power control parameters to the terminal through proprietary signaling (such as an RRC message) or a broadcast message.
  • the base station may also determine whether to send multiple power control parameter sets to the terminal according to the type of the terminal, considering that different types of terminals may be different. Specifically, if the base station determines that the terminal is a terminal of the UAV type, the multiple power control parameter sets are sent to the terminal.
  • FIG. 8 is a schematic diagram of an uplink power control process provided by the third embodiment of the present application. As shown in FIG. 2, when the terminal performs uplink power control, the following process may be performed:
  • the terminal determines an operating mode of the terminal according to at least one of a height of the terminal, neighboring area information of the terminal, and measurement information of the terminal.
  • the terminal selects a power control parameter set from a target channel or a plurality of power control parameter sets corresponding to the target signal according to the working mode of the terminal.
  • the working of the terminal may be performed for multiple power control parameter sets corresponding to the same channel or the same signal.
  • the mode selects a set of power control parameters that match the current working mode of the terminal, so that the uplink interference of the terminal to the neighboring cell can be better reduced.
  • S803 The terminal determines, according to the selected power control parameter set, a transmit power of the current channel or target signal.
  • the parameters included in the power control parameter set may also be different according to the adopted uplink power control algorithm.
  • the embodiment of the present application does not limit the uplink power control algorithm used.
  • the uplink power control algorithm defined in the LTE protocol may be used in S803 for transmit power setting. This embodiment of the present application does not limit this.
  • the solution provided by the embodiment of the present application is mainly introduced from the perspective of interaction between the terminal and the network device.
  • the terminal and the network device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the embodiments of the present application can be implemented in a combination of hardware or hardware and computer software in combination with the units (devices, devices) and algorithm steps of the examples described in the embodiments disclosed in the application. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present application.
  • the embodiments of the present application may divide the functional units (devices, devices) of the terminal and the network device according to the foregoing method.
  • each functional unit (device, device) may be divided according to each function, or two or more may be used.
  • the functions are integrated in one processing unit (device, device).
  • the above integrated units (devices, devices) can be implemented in the form of hardware or in the form of software functional units (devices, devices). It should be noted that the division of the unit (device, device) in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 9 is a schematic structural diagram of an uplink power control apparatus according to an embodiment of the present application, and the uplink power control apparatus is applicable to a terminal.
  • the uplink power control device 900 includes a power control parameter determination module 901 and a transmit power determination module 902, and may further include a receiving module (not shown in the figure).
  • the power control parameter determining module 901 is configured to determine a power control parameter, where the power control parameter includes a path impact parameter of the interference influence parameter or the downlink path loss, and the path correction parameter of the downlink path loss is used to modify the participating transmit power calculation.
  • the downlink path loss; wherein the interference affecting parameter and the path correcting parameter of the downlink path loss are determined according to the neighboring area information of the terminal.
  • the transmit power determination module 902 is configured to determine transmit power based on the determined power control parameters.
  • the power control parameter determining module 901 determines the interference impact parameter or the path correction parameter of the downlink path loss by: transmitting power according to a reference signal of the first neighboring area and measuring by the terminal a first neighboring cell reference signal receiving strength, determining a downlink path loss of the first neighboring cell to the terminal, where The first neighboring cell is a neighboring cell of the terminal; according to the downlink path loss of the first neighboring cell to the terminal, or the downlink path loss of the first neighboring cell to the terminal and the neighboring cell of the first neighboring cell Zone information, the path correction parameter that determines the interference impact parameter or the downlink path loss.
  • the first neighboring area is indicated by the network side, or is selected by the terminal from the neighboring area of the terminal, where the first neighboring area is a cell that is strongly uplink interfered in the neighboring area of the terminal. .
  • the specific calculation method of the interference affecting parameter and the path correcting parameter of the downlink path loss may be referred to the description of the foregoing embodiment.
  • the neighboring area information includes part or all of the following information: a downlink path loss of the neighboring cell to the terminal, an uplink interference thermal noise ratio of the neighboring cell, and an uplink load of the neighboring cell.
  • a downlink path loss of the neighboring cell to the terminal an uplink interference thermal noise ratio of the neighboring cell
  • an uplink load of the neighboring cell an uplink load of the neighboring cell.
  • the transmit power determining module 902 may be specifically configured to: when the power control parameter includes the interference impact parameter, determine the transmit power according to the determined power control parameter, where the terminal according to the interference influence parameter, The downlink path loss and the parameters configured on the network side determine the transmit power; when the power control parameter includes the path correction parameter of the downlink path loss, determining the transmit power according to the determined power control parameter includes: the terminal according to the downlink path The path correction parameter of the loss corrects the downlink path loss involved in the calculation of the transmission power, and determines the transmission power according to the modified downlink path loss and the parameters configured on the network side.
  • FIG. 10 is a schematic structural diagram of a terminal 1000 according to an embodiment of the present application, that is, another schematic structural diagram of an uplink power control apparatus 900.
  • the terminal 1000 includes a processor 1001 and a transceiver 1002.
  • the processor 1001 can also be a controller.
  • the processor 1001 is configured to support a terminal to perform the functions involved in FIG. 2.
  • the transceiver 1002 is configured to support the function of the terminal to send and receive messages.
  • the terminal 1000 can also include a memory 1003 for coupling with the processor 1001, which stores program instructions and data necessary for the terminal.
  • the processor 1001, the transceiver 1002 and the memory 1003 are connected to each other.
  • the memory 1003 is configured to store an instruction, and the processor 1001 is configured to execute the instruction stored in the memory 1003 to control the transceiver 1002 to send and receive signals, and complete the terminal execution in the foregoing method.
  • the steps for the corresponding feature are configured to store an instruction, and the processor 1001 is
  • FIG. 11 is a schematic structural diagram of an uplink power control apparatus according to an embodiment of the present application, where the uplink power control apparatus is applicable to a network device.
  • the uplink power control device 1100 includes a power control parameter selection module 1101 and a notification module 1102 .
  • the power control parameter selection module 1101 is configured to select one power control parameter set from a plurality of power control parameter sets, where the one power control parameter set is based on neighbor information of the terminal and according to measurement information of the terminal. And selecting, by the at least one of the terminal information, the plurality of power control parameter sets are the same channel or multiple power control parameter sets corresponding to the same signal; the notification module 1102 is configured to use the selected power control parameter The set notification is sent to the terminal.
  • the power control parameter types are the same in the same channel or multiple power control parameter sets corresponding to the same signal, and the power control parameters in different sets have different values.
  • the content included in the neighboring area information can be referred to the foregoing embodiment.
  • the notification module 1102 may send an index of the selected power control parameter set to the terminal; or send a change indication to the terminal, where the change indication is used to indicate that the terminal is replaced. Power control parameter set.
  • the uplink power control apparatus 1100 further includes: a configuration module 1103, configured to pass The proprietary signaling or broadcast message sends a plurality of power control parameter sets corresponding to the same channel or the same signal to the terminal.
  • FIG. 12 is a schematic structural diagram of a base station 1200 according to an embodiment of the present application, that is, another schematic structural diagram of an uplink power control apparatus 1100.
  • the base station 1200 includes a processor 1201 and a transceiver 1202.
  • the processor 1201 may also be a controller.
  • the processor 1201 is configured to support a network device to perform the functions involved in FIG.
  • the transceiver 1202 is configured to support a function of a network device to send and receive messages.
  • Base station 1200 can also include a memory 1203 for coupling with processor 1201 that retains program instructions and data necessary for the network device.
  • the processor 1201, the transceiver 1202 and the memory 1203 are connected to each other.
  • the memory 1203 is configured to store an instruction
  • the processor 1201 is configured to execute the instruction stored by the memory 1203 to control the transceiver 1002 to send and receive signals, and complete the network device in the foregoing method. The steps to perform the corresponding function.
  • FIG. 13 is a schematic structural diagram of an uplink power control apparatus according to an embodiment of the present application, where the uplink power control apparatus is applicable to a terminal.
  • the uplink power control apparatus 1300 includes an operation mode determination module 1301, a power control parameter selection module 1302, and a transmission power determination module 1303.
  • the working mode determining module 1301 is configured to determine, according to at least one of the self information of the terminal, the neighboring area information of the terminal, and the measurement information of the terminal, the working mode of the terminal;
  • the mode includes a corresponding working mode when the terminal communicates in the air and a corresponding working mode when the terminal communicates in the ground.
  • the power control parameter selection module 1302 is configured to select one power control parameter set from a plurality of power control parameter sets corresponding to the target channel or the target signal according to the working mode of the terminal.
  • the transmit power determining module 1303 is configured to determine a transmit power of the target channel or target signal according to the selected set of power control parameters.
  • the power control parameter types are the same in the same channel or multiple power control parameter sets corresponding to the same signal, and the power control parameters in different sets have different values.
  • the uplink power control apparatus 1300 further includes: a receiving module 1304, configured to receive the multiple power control parameter sets sent by the base station by using a dedicated signaling or a broadcast message.
  • FIG. 14 is a schematic structural diagram of a terminal 1400 according to an embodiment of the present application, that is, another schematic structural diagram of the uplink power control apparatus 1300.
  • the terminal 1400 includes a processor 1401 and a transceiver 1402.
  • the processor 1401 can also be a controller.
  • the processor 1401 is configured to support a terminal to perform the functions involved in FIG. 2.
  • the transceiver 1402 is configured to support the function of the terminal to send and receive messages.
  • the terminal 1400 can also include a memory 1403 for coupling with the processor 1401, which stores program instructions and data necessary for the terminal.
  • the processor 1401, the transceiver 1402 is connected to the memory 1403, and the memory 1403 is configured to store instructions.
  • the processor 1401 is configured to execute the instructions stored by the memory 1403 to control the transceiver 1402 to send and receive signals, and complete the terminal execution in the foregoing method. The steps for the corresponding feature.
  • FIG. 15 is a schematic structural diagram of an information transmission apparatus provided by an embodiment of the present application, and the information transmission apparatus is applicable to a base station.
  • the information transmission device 1500 includes an acquisition module 1501 and a transmission module 1502.
  • the obtaining module 1501 is configured to acquire neighboring cell information of the first terminal
  • the sending module 1502 is configured to send the first terminal neighboring cell information to the first terminal. among them,
  • the content contained in the neighboring area information can be referred to the foregoing embodiment.
  • the acquiring module 1501 may acquire neighboring cell information of a neighboring cell of a cell where the first terminal is located in the coverage of the base station; and/or, receive the neighboring cell of the cell where the first terminal is located and sent by the neighboring base station. Neighborhood information.
  • the sending module 1502 may send the first terminal neighbor information to the first terminal by using a dedicated signaling or a broadcast message.
  • FIG. 16 is a schematic structural diagram of a base station 1600 according to an embodiment of the present application, that is, another structure diagram of the information transmission apparatus 1500.
  • the base station 1600 includes a processor 1601 and a transceiver 1602.
  • the processor 1601 can also be a controller.
  • the processor 1601 is configured to support a base station to perform the functions involved in the neighboring area information transmission described in the foregoing embodiments.
  • the transceiver 1602 is configured to support a function of a base station to send and receive messages.
  • the base station 1600 can also include a memory 1603 for coupling with the processor 1601, which stores program instructions and data necessary for the terminal.
  • the processor 1601, the transceiver 1602 is connected to the memory 1603, and the memory 1603 is configured to store instructions.
  • the processor 1601 is configured to execute the instructions stored in the memory 1603 to control the transceiver 1602 to send and receive signals, and the base station performs the foregoing method. The steps for the corresponding function.
  • the information transmission device 1500 and the base station 1600 are described in the foregoing method or other embodiments. I will not repeat them here.
  • the network device and the terminal are not limited to the above structure, and may further include, for example, an antenna array, a duplexer, and a baseband processing section.
  • the duplexer of the network device is used to implement an antenna array, which is used for both transmitting signals and receiving signals.
  • the transmitter is used to convert between the RF signal and the baseband signal.
  • the transmitter can include a power amplifier, a digital-to-analog converter and a frequency converter.
  • the receiver can include a low noise amplifier, an analog to digital converter and a frequency converter. Among them, the receiver and the transmitter can sometimes also be collectively referred to as a transceiver.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the terminal may further include a display device, an input/output interface, and the like.
  • the terminal may have a single antenna or multiple antennas (ie, an antenna array).
  • the duplexer of the terminal is used to implement the antenna array for both transmitting signals and receiving signals.
  • the transmitter is used to convert between the RF signal and the baseband signal.
  • the transmitter can include a power amplifier, a digital-to-analog converter and a frequency converter.
  • the receiver can include a low noise amplifier, an analog to digital converter and a frequency converter.
  • the baseband processing section is used to implement processing of transmitted or received signals, such as layer mapping, precoding, modulation/demodulation, encoding/decoding, etc., and for physical control channels, physical data channels, physical broadcast channels, reference signals, etc. Perform separate processing.
  • the terminal may further include a control part, configured to request an uplink physical resource, calculate channel state information (CSI) corresponding to the downlink channel, determine whether the downlink data packet is successfully received, or the like.
  • CSI channel state information
  • the processor involved in the foregoing embodiments may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor can also be a combination of computing functions, such as one or more microprocessor combinations, DSP and microprocessor Combination of devices and so on.
  • the memory may be integrated in the processor or may be separately provided from the processor.
  • the functions of the receiver and the transmitter can be implemented by a dedicated chip through the transceiver circuit or the transceiver.
  • the processor can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • program code that implements processor, receiver, and transmitter functions is stored in a memory that implements the functions of the processor, receiver, and transmitter by executing code in memory.
  • the embodiment of the present application further provides a communication system, including the foregoing network device and one or more terminals.
  • the embodiment of the present application further provides a computer storage medium for storing some instructions. When the instructions are executed, any method involved in the foregoing terminal or network device may be completed.
  • the embodiment of the present application further provides a computer program product for storing a computer program, which is used to execute a method for scheduling an MF system information block involved in the foregoing method embodiment.
  • embodiments of the present application can be provided as a method, system, or computer program product. Therefore, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, embodiments of the present application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种上行功率控制方法及装置。本申请中,终端确定功率控制参数,所述终端根据确定出的功率控制参数确定发射功率。其中,所述功率控制参数中包括干扰影响参数或者下行路径损耗的路径修正参数,所述下行路径损耗的路径修正参数用于修正参与发射功率计算的下行路径损耗,所述干扰影响参数和所述下行路径损耗的路径修正参数是根据所述终端的邻区信息确定得到,所述邻区信息包括以下部分或全部信息:邻区的参考信号发射功率、邻区的上行干扰热噪比、邻区的上行负载。采用本申请可减小终端对邻区的干扰。

Description

上行功率控制方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种上行功率控制方法及装置。
背景技术
无线通信系统中,对信号发送端进行上行功率控制,其目的是使信号接收端能够正确对信号进行解调,同时避免信号发射功率过大而对信号发送端所在小区的邻小区造成较强的干扰。长期演进(long term evolution,LTE)系统中的上行功率控制采取开环功率控制和闭环功率控制相结合的方式,开环功率控制是指根据下行路径损耗确定终端的发射功率,闭环功率控制是指通过向终端发送功率控制命令(power control commands)来调整上行发射功率。
无线信号在空中传输与在地面传输相比具有不同的特性。无线信号在空中传输时,由于较少障碍物的遮挡,信号的视距传播比在地面通信时明显增多。此种情况下,与地面通信相比,处于空中的终端发送的信号可能被更多小区所接收,并且对于这些小区来说可能接收信号强度较大,这就导致对这些小区造成较强的上行干扰。
目前无人机的应用越来越广泛,其在空中通信时会对邻区造成较强的上行干扰。针对此类型的终端,如何通过上行功率控制以降低上行干扰,是目前需要解决的问题。
发明内容
本申请实施例提供一种上行功率控制方法及装置,用以减少终端对邻区的上行干扰。
第一方面,提供一种上行功率控制方法,包括:终端根据所述终端的邻区信息确定功率控制参数,所述功率控制参数中包括干扰影响参数或者下行路径损耗的路径修正参数,所述下行路径损耗的路径修正参数用于修正参与发射功率计算的下行路径损耗;所述终端根据确定出的功率控制参数确定发射功率。
上述实施例中,由于终端根据邻区信息确定用于计算发射功率的功率控制参数,因此将终端对邻区的上行干扰因素引入了发射功率的计算过程,即,将终端对邻区的上行干扰作为考虑因素以计算发射功率,从而使得终端在使用发射功率发送信号时,可以降低对邻区的上行干扰。
一种可能的实施方式中,所述邻区信息中包括以下信息之一或任意组合:邻区的参考信号发射功率、邻区的上行干扰热噪比、邻区的上行负载、邻区的下行路径损耗预设阈值、邻区基站的高度等。
根据上述实施例,在具体实施时,可根据上述多种邻区信息确定干扰影响参数或者下行路径损耗的路径修正参数,从而使得估算出的邻区干扰较为精确,进而可以通过本申请实施例提供的上行功率控制方法更好地对邻区的上行干扰进行抑制。
一种可能的实施方式中,所述干扰影响参数或所述下行路径损耗的路径修正参数的确定过程包括:根据第一邻区的参考信号发射功率以及所述终端测量到的第一邻区参考信号接收强度,确定第一邻区到所述终端的下行路径损耗;其中,所述第一邻区为所述终端的一个邻区;根据第一邻区到所述终端的下行路径损耗,或者根据第一邻区到所述终端的下行路径损耗以及第一邻区的邻区信息,确定干扰影响参数或下行路径损耗的路径修正参数。其中,所述第一邻区为网络侧指示的,或者为所述终端从所述终端的邻区中选择的, 所述第一邻区为所述终端的邻区中受到强上行干扰的小区。
根据上述实施例,一方面,在计算所述干扰影响参数或所述下行路径损耗的路径修正参数时依据邻区到终端的下行路径损耗,由于邻区到终端的下行路径损耗能够反映邻区受到该终端的上行干扰程度,因此基于该下行路径损耗所计算得到的所述干扰影响参数或所述下行路径损耗的路径修正参数,能够较为精确地反映该终端对邻区的干扰,进而可以通过本申请实施例提供的上行功率控制方法更好地对上行干扰进行抑制。另一方面,计算邻区到终端的下行路径损耗时,所选择的邻区为终端的邻区中受到强上行干扰的小区,比如可以是受到上行干扰最强的小区,这样,以该小区到终端的下行路径损耗作为计算所述干扰影响参数或所述下行路径损耗的路径修正参数的依据,使得根据该干扰影响参数或修正参数所计算出的发射功率,可以对受干扰较强的小区的上行干扰起到抑制作用。
一种可能的实施方式中,所述干扰影响参数根据第一公式或第二公式或第三公式确定得到:
所述第一公式为:βc=θ/PLM
所述第二公式为:
Figure PCTCN2017095035-appb-000001
所述第三公式为:
Figure PCTCN2017095035-appb-000002
其中,βc表示干扰影响参数,PLM表示小区M到所述终端的下行路径损耗,IoTM表示小区M的上行干扰热噪比,LoadM表示小区M的上行负载,θ、x、y、z为设定值;其中,小区M为所述第一邻区。
一种可能的实施方式中,所述下行路径损耗的路径修正参数根据第四公式、第五公式或第六公式确定得到:
所述第四公式为:αc=α-γ/PLM
所述第五公式为:
Figure PCTCN2017095035-appb-000003
所述第六公式为:
Figure PCTCN2017095035-appb-000004
其中,αc(j)表示上行路径损耗的路径修正参数,PLM表示小区M到所述终端的下行路径损耗,IoTm表示小区M的上行干扰热噪比,Loadm表示小区M的上行负载,α、γ、x、y、z为设定值;其中,小区M为所述第一邻区。
一种可能的实施方式中,所述功率控制参数包括干扰影响参数时,所述终端根据确定出的功率控制参数确定发射功率包括:所述终端根据所述干扰影响参数、下行路径损耗以及网络侧配置的参数,确定发射功率;所述功率控制参数包括下行路径损耗的路径修正参数时,所述终端根据确定出的功率控制参数确定发射功率包括:所述终端根据所述下行路径损耗的路径修正参数修正参与发射功率计算的下行路径损耗,并根据修正后的下行路径损耗以及网络侧配置的参数,确定发射功率。
第二方面,提供一种上行功率控制方法,包括:基站根据终端的邻区信息以及根据所述终端的测量信息和所述终端的自身信息中的至少一种,从多个功率控制参数集合中选择 一个功率控制参数集合,所述基站将选择出的功率控制参数集合通知给所述终端。其中,所述多个功率控制参数集合为同一信道或同一信号对应的多个功率控制参数集合。可选地,同一信道或同一信号对应的多个功率控制参数集合中,功率控制参数类型相同,不同集合中的功率控制参数取值不同。
上述实施例中,针对同一信道或同一信号设置多个功率控制参数集合,以适配不同的场景。基站可根据终端的邻区信息以及根据所述终端的测量信息和所述终端的自身信息中的至少一种,从多个功率控制参数集合中选择一个功率控制参数集合并通知给终端,使得终端根据所通知的功率控制参数集合中包含的功率控制参数确定发射功率。由于基站所选择出的功率控制参数集合是依据终端的邻区信息以及根据所述终端的测量信息和所述终端的自身信息中的至少一种所选择的,使得选择出的功率控制参数集合与终端对邻区造成的干扰情况相匹配,从而使得确定出的发射功率可以减少对邻区造成的上行干扰。
一种可能的实施方式中,所述基站将选择出的功率控制参数集合通知给所述终端,包括:所述基站将所选择出的功率控制参数集合的索引发送给所述终端;或者,所述基站向所述终端发送变更指示,所述变更指示用于指示所述终端更换功率控制参数集合。
一种可能的实施方式中,还包括:所述基站通过专有信令或广播消息,将同一信道或同一信号对应的多个功率控制参数集合发送给终端。
一种可能的实施方式中,所述邻区信息中包括以下信息之一或任意组合:邻区的参考信号发射功率、邻区的上行干扰热噪比、邻区的上行负载、邻区的下行路径损耗预设阈值、邻区基站的高度等。
第三方面,提供一种上行功率控制方法,包括:终端根据所述终端的自身信息、所述终端的邻区信息、所述终端的测量信息中的至少一种,确定所述终端的工作模式;终端根据所述终端的工作模式,从目标信道或目标信号对应的多个功率控制参数集合中选择一个功率控制参数集合;终端根据选择出的功率控制参数集合,确定所述目标信道或目标信号的发射功率。其中,所述工作模式包括终端在空中通信时对应的工作模式以及终端在地面通信时对应的工作模式。可选地,一种可能的实施方式中,目标信道或目标信号对应的多个功率控制参数集合中,功率控制参数类型相同,不同集合中的功率控制参数取值不同。
上述实施例中,将终端的工作模式区分为地面模式和空中模式,并针对目标信道或目标信号设置多个功率控制参数集合,以适配不同的工作模式。由于地面模式和空中模式的通信特性不同,相同的信号发射功率在终端处于不同工作模式时对邻区的上行干扰程度不同,因此通过上述方法可以使得基站根据终端的工作模式选择出相适配的功率控制参数集合,从而可以对终端的邻区上行干扰进行抑制。
一种可能的实施方式中,还包括:所述终端接收基站通过专有信令或广播消息发送的所述多个功率控制参数集合。
一种可能的实施方式中,所述邻区信息中包括以下信息之一或任意组合:邻区的参考信号发射功率、邻区的上行干扰热噪比、邻区的上行负载、邻区的下行路径损耗预设阈值、邻区基站的高度等。
第四方面,提供一种信息传输方法,包括:基站获取第一终端的邻区信息;所述基站将所述第一终端邻区信息发送给所述第一终端。
上述实施例中,基站可将终端的邻区信息发送给终端,以使得终端根据该邻区信息确定邻区上行干扰,并以此作为依据计算发射功率,从而可以减少终端的邻区的上行干扰。
一种可能的实施方式中,所述基站获取第一终端的邻区信息,包括:基站获取所述基站覆盖范围内第一终端所在小区的邻小区的邻区信息;和/或,所述基站接收邻基站发送的第一终端所在小区的邻小区的邻区信息。
一种可能的实施方式中,所述基站将所述第一终端邻区信息发送给所述第一终端,包括:所述基站通过专有信令或广播消息,将所述第一终端邻区信息发送给所述第一终端。
一种可能的实施方式中,所述邻区信息中包括以下信息之一或任意组合:邻区的参考信号发射功率、邻区的上行干扰热噪比、邻区的上行负载、邻区的下行路径损耗预设阈值、邻区基站的高度等。
第五方面,提供了一种上行功控控制装置,用于终端,该装置具有实现上述第一方面或第一方面任意一个可能的设计中终端的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括功率控制参数确定模块、发射功率确定模块,这些模块可以执行上述第一方面或第一方面的任意一个可能的设计中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述装置的结构中包括通信接口、处理器和存储器,所述通信接口用于收发数据,所述处理器被配置为支持所述处理设备执行上述第一方面或第一方面的任意一个可能的设计中相应的功能。所述存储器与所述处理器耦合,其保存所述处理器必要的程序指令和数据。
第六方面,提供了一种上行功控控制装置,用于基站,该装置具有实现上述第二方面或第二方面任意一个可能的设计中基站的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括功率控制参数选择模块、通知模块,这些模块可以执行上述第二方面或第二方面的任意一个可能的设计中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述装置的结构中包括通信接口、处理器和存储器,所述通信接口用于收发数据,所述处理器被配置为支持所述处理设备执行上述第二方面或第二方面的任意一个可能的设计中相应的功能。所述存储器与所述处理器耦合,其保存所述处理器必要的程序指令和数据。
第七方面,提供了一种上行功控控制装置,用于终端,该装置具有实现上述第三方面或第三方面任意一个可能的设计中终端的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括工作模式确定模块、功率控制参数选择模块、发射功率确定模块,这些模块可以执行上述第三方面或第三方面的任意一个可能的设计中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述装置的结构中包括通信接口、处理器和存储器,所述通信接口用于收发数据,所述处理器被配置为支持所述处理设备执行上述第三方面或第三方面的任意一个可能的设计中相应的功能。所述存储器与所述处理器耦合,其保存所述处理器必要的程序指令和数据。
第八方面,提供了一种上行功控控制装置,用于基站,该装置具有实现上述第四方面或第四方面任意一个可能的设计中基站的功能。所述功能可以通过硬件实现,也可以通过 硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,所述装置的结构中包括获取模块、发送模块,这些模块可以执行上述第四方面或第四方面的任意一个可能的设计中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
在一个可能的设计中,所述装置的结构中包括通信接口、处理器和存储器,所述通信接口用于收发数据,所述处理器被配置为支持所述处理设备执行上述第四方面或第四方面的任意一个可能的设计中相应的功能。所述存储器与所述处理器耦合,其保存所述处理器必要的程序指令和数据。
第九方面,提供了一种计算机可读存储介质,用于存储为执行上述任一方面以及任一方面中的任意一种设计的功能所用的计算机软件指令,其包含用于执行上述任一方面以及任一方面中的任意一种设计的方法所设计的程序。
第十方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任一方面中的所述的方法。
附图说明
图1为本申请实施例适用的一种通信场景的示意图;
图2为本申请实施例方案一提供的上行功率控制流程示意图;
图3为本申请实施例提供的一种信令交互流程示意图;
图4为本申请实施例方案一提供的另一上行功率控制流程示意图;
图5为本申请实施例提供的另一种信令交互流程示意图;
图6为本申请实施例方案二提供的上行功率控制流程;
图7为本申请实施例提供的另一种信令交互流程示意图;
图8为本申请实施例方案三提供的上行功率控制流程;
图9为本申请实施例提供的一种上行功率控制装置的结构示意图;
图10为本申请实施例提供的终端的结构示意图;
图11为本申请实施例提供的另一种上行功率控制装置的结构示意图;
图12为本申请实施例提供的基站的结构示意图;
图13为本申请实施例提供的另一种上行功率控制装置的结构示意图;
图14为本申请实施例提供的另一种终端的结构示意图;
图15为本申请实施例提供的信息传输装置的结构示意图;
图16为本申请实施例提供的一种基站的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例进行描述。
首先,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)网络设备,可以称之为无线接入网(Radio Access Network,RAN)设备,是一种将终端接入到无线网络的设备,包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(Base Band Unit,BBU)、无线保真(Wireless Fidelity,WIFI)接入点(Access Point,AP),传输点(transmission and  receiver point,TRP或者transmission point,TP)、继续演进的节点B(gNB)等。
(2)终端,是一种向用户提供语音和/或数据连通性的设备,可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备、无人机或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile station,MS),终端设备(Terminal Equipment),传输点(transmission and receiver point,TRP或者transmission point,TP)等等。
(3)交互,本申请中的交互是指交互双方彼此向对方传递信息的过程,这里传递的信息可以相同,也可以不同。例如,交互双方为基站1和基站2,可以是基站1向基站2请求信息,基站2向基站1提供基站1请求的信息。当然,也可以基站1和基站2彼此向对方请求信息,这里请求的信息可以相同,也可以不同。
(4)“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
图1示例性地示出了一种可能的通信场景的示意图。如图1所示,终端10为无人机,终端10处于空中,通过基站21接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端通信。基站22和基站23为与基站21相邻的节点。终端10向基站21发送信号时,由于信号传输路径上几乎没有遮挡物,基站22和基站23均接收到该信号,且接收信号强度较大,这样,基站22和基站23覆盖范围内的小区会受到较强的上行干扰。基站间可通过基站间的链路进行信息交互。其中,上述基站可替换为其他网络设备,比如RAN节点。
基于上述通信场景,本申请实施例中,针对终端对邻区造成的上行干扰进行估算,并将其引入对终端的上行功率控制过程,即,将估算出的对邻区造成的上行干扰作为对终端进行上行功率控制的依据之一,以减小对邻区的上行干扰。
可以理解的是,本申请实施例中的方案还可以应用于其他无线通信网络中,例如可应用于未来5G新无线(New Radio,NR)通信架构中。
为此,本申请实施例提供了以下三种解决方案:
方案一:终端在进行上行功率控制时,针对该终端对邻区的上行干扰进行估算,并依据估算结果来影响功率控制参数,并根据该功率控制参数进行上行功率控制;
方案二:网络为终端配置多个功率控制参数集合,网络设备根据终端对邻区的上行干扰,从配置的多个功率控制参数集合中选择一个,并将选择出的功率控制参数集合通知给终端,使终端根据该功率控制参数集合中的功率控制参数进行上行功率控制;
方案三:网络针对同一信道或同一信号配置多个功率控制参数集合,所配置的功率控制参数集合与终端的工作模式相对应,终端进行上行功率控制时,首先确定自身的工作模式,再根据自身的工作模式从多个功率控制参数集合中选择与当前工作模式对应的功率控制参数集合,并根据选择出的功率控制参数集合中的功率控制参数进行上行功率控制。
本申请实施例中所述的“邻区”是指终端所在小区的邻小区。终端的邻区通常包括多个,终端的邻区可包括:与该终端所在的小区属于同一基站覆盖范围内的小区,也可以包括与该终端所在的小区属于不同基站覆盖范围内的小区。
下面结合附图分别对上述三种方案进行描述。
方案一
方案一提供的上行功率控制流程中,终端需要估算终端对邻区的干扰,终端对邻区的干扰可通过干扰影响参数表征。干扰影响参数可依据邻区信息确定。需要说明的是,“干扰影响参数”仅为一种示例性命名,本申请实施例对该参数的命名不作限制。
在具体实施时,可以根据邻区信息以及以及根据终端自身信息和终端测量信息中的至少一个来确定邻区干扰信息,再根据邻区干扰信息确定干扰影响参数。所确定出的邻区干扰信息可包括以下部分或全部信息:邻区到终端的下行路径损耗、邻区的上行干扰热噪比(interference over thermal,IoT)、邻区的上行负载等。
其中,所述终端自身信息可包括终端的高度,或者其他能够反映终端状态、位置或通信情况等的信息。
所述终端测量信息可包括终端针对来自邻区的信号的参考信号接收功率(reference signal receiving power,RSRP)。网络侧可对终端的测量进行配置,比如可配置终端对哪些信息进行测量。本申请实施例对终端测量信息的具体类型不作限制,终端可根据网络侧的测量配置进行测量。
所述邻区信息包括一个或多个邻区的信息,其中,对于该一个或多个邻区中的一个小区来说,其邻区信息可包括以下信息中的一个或任意组合:该小区的RS发射功率、该小区的上行IoT、该小区的上行负载、该小区的下行路径损耗阈值、该小区的基站的高度等。
相邻基站间可通过基站间的链路交互邻区信息。基站可将邻区信息发送给该基站覆盖范围内的终端。对于一个终端来说,它从其服务基站接收到的邻区信息可包括该服务基站覆盖范围内的邻区的信息,也可包括其他基站覆盖范围内的邻区的信息。基站可通过专有信令或广播消息将邻区信息发送给终端。所述专有信令可以是无线资源控制(radio resource control,RRC)消息。可选地,基站可将邻区信息组织成邻区列表的形式发送给终端,该邻区列表中包括一个或多个邻区的信息,针对每个邻区分配一个索引,用于索引相应邻区的信息。
基站除了可以将邻区信息发送给终端,还可以进一步地向终端发送指示信息以指示受到强上行干扰的邻区,比如受到上行干扰最强的邻区。所指示的邻区为该基站发送给终端的邻区列表中的一个邻区。该指示信息可以通过下行控制信息(downlink control information,DCI)发送。该指示信息可以是该受到强上行干扰的邻区在邻区列表中的索引,也可以以位图(bitmap)方式进行指示,比如,向终端发送一个二进制序列,该二进制序列的比特数量与发送给该终端的邻区列表中的邻区数量相同,且一个比特位对应一个邻区,如果比特位的取值为1,则对应的邻区为受到强上行干扰的小区,比特位的取值为0,则对应的邻区未受到强上行干扰,反之亦然。
针对一个终端,基站可自行判断该终端的邻区中受到强上行干扰的邻区。作为一个例子,对于一个终端,如果基站收到该终端的一个邻区的上行负载信息(如负载指示符(overload indicatorOI))和/或高干扰指示符(high interference indicator,HII),并且该基站在相应的资源块(resource block,RB)上对该终端的上行数据传输进行了调度,则可确定该邻区受到较强的上行干扰。作为另一个例子,对于一个终端,如果基站判断该终端的邻区(或邻区所在的基站)发送过来的上行IoT超过设定阈值,则可确定该邻区受到较强的上行干扰。
终端处于空中时,其发送的信号可能对邻区造成较强的上行干扰,需要采用本申请实施例提供的方法进行上行功率控制以减小上行干扰。为了区分终端处于空中还是处于地 面,本申请实施例定义了两种工作模式:空中模式和地面模式。空中模式是指终端处于空中时的通信模式,地面模式是指终端处于地面上时的工作模式。可选地,本申请实施例中,基站可在将邻区信息发送给终端之前,首先判断该终端的工作模式,即该终端是处于空中模式还是地面模式,如果终端处于空中模式,则通过专有信令将邻区信息发送给该终端。当然,终端的工作模式也可以不限于上述两种,比如可以针对空中模式进一步根据不同的高度范围进行细分。终端的工作模式可由基站判断得到,也可由终端在确定工作模式后将其上报给基站。
其中,无论是基站还是终端均可根据以下信息中的一种或多种组合,判断终端的工作模式:终端自身信息、终端测量信息、邻区信息。其中,所述终端自身信息可包括终端的高度,或者其他能够反映终端状态、位置或通信情况等的信息;所述终端测量信息以及邻区信息包含的内容同前所述。
在根据终端自身信息判断终端的工作模式的一个例子中,如果终端所处的高度超过设定阈值(终端所处的高度可通过位置定位获得),则判断该终端处于空中模式,否则判断该终端处于地面模式。
在根据终端测量信息判断终端的工作模式的一个例子中,如果终端与邻区之间的下行路径损耗小于设定阈值,则可判断该终端处于空中模式,否则判断该终端处于地面模式,其中,终端与邻区之间的下行路径损耗可根据邻区信息和终端测量信息计算得到,比如,一个小区到终端的下行路径损耗等于该小区的RS发射功率减去该终端测量到的该小区的RSRP。在根据终端测量信息判断终端的工作模式的另一个例子中,如果终端测量到有邻区的RSRP超过设定阈值,且邻区RSRP超过设定阈值的邻区数量达到预设的门限值,则可判断该终端处于空中模式,否则判断该终端处于地面模式。
在根据终端自身信息以及终端测量信息判断终端工作模式的一个例子中,如果终端的高度超过设定阈值,并且该终端与邻区间的下行路径损耗低于设定阈值,则判断该终端处于空中模式,否则判断该终端处于地面模式,其中,终端与邻区之间的下行路径损耗可根据邻区信息和终端测量信息计算得到。
在另外的例子中,基站也可以根据终端的类型,确定是否将邻区信息发送给终端。具体地,如果基站判断该终端为无人机类型的终端,则将邻区信息发送给该终端。
参见图2,本申请实施例方案一提供的上行功率控制流程示意图。如图2所示,终端进行上行功率控制时,可执行如下流程:
S201:终端确定功率控制参数,所述功率控制参数中包括干扰影响参数;其中,所述干扰影响参数可根据该终端的邻区信息或邻区干扰信息确定得到。
其中,功率控制参数作为发射功率计算公式的输入参数,用来计算发射功率。本申请实施例中,干扰影响参数作为功率控制参数参与发射功率的计算。功率控制参数除了包含干扰影响参数以外,还可包括其他参数,比如包括网络侧配置的参数。
干扰影响参数可以是邻区信息或邻区干扰信息的函数。其中,邻区信息可通过基站发送给终端。邻区信息的发送方式以及邻区信息所包含的内容,可参见前述描述,在此不再重复。
在一个例子中,终端可根据邻区信息和终端测量信息确定出终端与邻区间的下行路径损耗,并可进一步确定出邻区上行IoT、邻区上行负载等,并根据所确定出的这些信息确定干扰影响参数。
下面以终端所在的小区为小区c,且小区M为小区c的一个邻区为例,说明干扰影响参数的确定方法。
在干扰影响参数的确定方法一个例子中,基站可根据小区M的RS发射功率以及该终端测量到的小区M的RSRP,确定小区M到该终端的下行路径损耗,并根据该下行路径损耗确定干扰影响参数。具体地,可根据以下公式确定干扰影响参数βc
βc=θ/PLM……………………………………………………[1]
其中:
PLM为小区M到终端的下行路损损耗,PLM=referenceSignalPowerM-RSRPM,其中referenceSignalPowerM表示小区M的RS发射功率,可从基站发送给终端的邻区信息中可获得(该邻区信息中包含小区M的RS发射功率),RSRPM表示终端测量到的小区M的RSRP;
θ可为设定值,具体地,θ可由高层配置。高层可通过RRC信令配置θ给终端,或者配置用于确定θ的参数,由终端根据该参数计算得到θ的取值。本例子中,θ为非正值,如果终端处于空中模式,则θ为负值,如果终端处于地面模式,则θ为0。
在干扰影响参数的确定方法的另一个例子中,基站可以根据更多的因素确定干扰影响参数,比如,可根据小区M的RS发射功率以及该终端测量到的小区M的RSRP,确定小区M到该终端的下行路径损耗,再根据该下行路径损耗、小区M的上行负载、小区M的上行IoT等确定干扰影响参数。具体地,可根据以下公式确定干扰影响参数βc
Figure PCTCN2017095035-appb-000005
其中,PLM表示小区M到该终端的下行路径损耗,IoTM表示小区M的上行干扰热噪比,LoadM表示小区M的上行负载。x、y、z为设定值,可以预先设定或者由高层配置,可取值为大于等于0。θ的取值以及含义同前所述。
在干扰影响参数的确定方法的另一个例子中,基站可以根据小区M的RS发射功率以及该终端测量到的小区M的RSRP,确定小区M到该终端的下行路径损耗,再根据该下行路径损耗、小区M的上行负载确定干扰影响参数。具体地,可根据以下公式确定干扰影响参数βc
Figure PCTCN2017095035-appb-000006
上述干扰影响参数确定方法中涉及的小区M作为参考邻区用于上行干扰估算,小区M可以是该终端的邻区中的任意一个邻区,可以由终端选取,也可以是基站指示的。如前所述,基站可以向终端发送指示信息以指示受到强上行干扰的邻区。
为了更合理地对上行干扰进行估算,以便更好地减小邻区上行干扰,作为用于上行干扰估算的参考邻区,小区M可以是终端的邻区中符合一定条件的小区。比如,可以是受到强上行干扰的小区(比如受上行干扰最强的小区),或者是路径损耗小的小区(比如路径损耗最小的小区),或者是上行IoT大的小区(比如上行IoT最大的小区),或者是上行负载大的小区(比如上行负载最大的小区)。还可以结合各邻区的信息进行综合考虑来选取参考小区,比如选取下行路径损耗小、上行负载大以及上行IoT大的小区。以下表达式示出了一种选取参考小区的方法:
Figure PCTCN2017095035-appb-000007
其中,x、y、z为设定值,可以预先设定或者由高层配置,可取值为大于等于0。max()表示取最大值运算,arg表示使
Figure PCTCN2017095035-appb-000008
达到最大值时变量m的取值。
S202:终端根据确定出的功率控制参数确定发射功率。
该步骤中,终端可将S202中计算出的干扰影响参数作为功率控制参数之一,并可结合该终端所在的小区到该终端的下行路径损耗,或者进一步结合网络侧配置的参数,确定发射功率。
以下分别以对物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)、信道探测参考信号(sounding reference signal,SRS)、物理随机接入信道(physical random access channel,PRACH)进行上行功率控制为例进行描述。其中,约定小区c为终端所在的小区。
在对该终端的PUCCH进行上行功率控制时,该终端的PUCCH发射功率可通过以下公式确定(单位为dBm):
Figure PCTCN2017095035-appb-000009
其中,PCMAX,c(i)是小区c中每个子载波的最大发射功率;PO_PUCCH由高层配置的两个参数求和而成;PLc为小区c到该终端的下行路径损耗,下行路径损耗等于小区c的RS发射功率减去该终端测量到的小区c的RSRP;h(nCQI,nHARQ,nSR)是一个与PUCCH格式相关的值;ΔF_PUCCH(F)由高层配置,与PUCCH格式有关;ΔTxD(F')由高层配置,与PUCCH在几个端口上传输有关;
Figure PCTCN2017095035-appb-000010
其中,δPUCCH是一个终端专属的值,是网络侧的反馈,可通过PDCCH发给每个终端。βc是通过本申请上述实施例提供的方法计算得到的干扰影响参数。min()表示取最小值运算。上述公式(5)中,PO_PUCCH、βc均为功率控制参数。
如果终端没有在所在小区发送PUCCH,则PUCCH的发射功率通过以下公式确定(单位为dBm):
PPUCCH(i)=min{PCMAX,c(i),P0_PUCCH+PLc+g(i)+βc}……………………………[6]
公式(6)中的部分参数的含义与公式(5)中相应参数的含义相同,在此不再重复说明。βc是通过本申请上述实施例提供的方法计算得到的干扰影响参数。
在对该终端的PUSCH进行上行功率控制时,如果该终端没有同时传PUSCH和PUCCH,则该终端的PUSCH的发射功率可根据以下公式确定(单位为dBm):
Figure PCTCN2017095035-appb-000011
其中,
Figure PCTCN2017095035-appb-000012
是小区c中每个子载波的最大发射功率;MPUSCH,c(i)是PUSCH一个子帧内占用的资源块(resource block,RB)数;PO_PUSCH,c(j)是由高层配置的两个参数求和得到的;αc(j)是高层配置的;PLc是终端计算的下行路径损耗,下行路径损耗等于小区c的RS发射功率减去终端测量到的小区c的RSRP;
Figure PCTCN2017095035-appb-000013
其中KS由高层配置;fc(i)是一个与高层配置和δPUSCH,c有关的值,其中δPUSCH,c是与PDCCH/EPDCCH指示的发射功率控制(Transmitted Power Control,TPC)命令有关的值。βc是通过本申请上述实施例提供的方法计算得到的干扰影响参数。公式(7)中,PO_PUSCH,c(j)和βc均为功率控制参数。
如果终端同时传输PUSCH和PUCCH,则该终端的PUSCH的发射功率可根据如下公式确定(单位为dBm):
Figure PCTCN2017095035-appb-000014
其中,
Figure PCTCN2017095035-appb-000015
是PUCCH的发射功率,其余参数可参见公式(7)中的参数说明。
如果终端不发PUSCH,但收到了DCI格式3/3A(DCI format 3/3A)的TPC命令,则终端假定PUSCH的发射功率为(单位为dBm):
PPUSCH,c(i)=min{PCMAX,c(i),PO_PUSCH,c(1)+αc(1)·PLc+fc(i)+βc}………………[9]
公式(9)中的部分参数的含义与公式(8)中相应参数的含义相同,在此不再重复说明。βc是通过本申请上述实施例提供的方法计算得到的干扰影响参数。
在对该终端的SRS的上行功率进行控制时,可根据以下公式确定SRS的发射功率(单位为dBm):
PSRS,c(i)=min{PCMAX,c(i),PSRS_OFFSET,c(m)+10log10(MSRS,c)+PO_PUSCH,c(j)+αc(j)·PLc+fc(i)+βc}……[10]
其中,PSRS_OFFSET,c(m)是高层配置的半静态参数;MSRS,c是SRS在一个子帧内所占RB数;fc(i)是PUSCH的功率控制调节器(power control adjustment);PO_PUSCH,c(j)和αc(j)同PUSCH功率控制公式中的定义。βc是通过本申请上述实施例提供的方法计算得到的干扰影响参数。
在对该终端的PRACH的发射功率进行控制时,可根据如下公式确定PRACH的发射功率(单位为dBm):
PPRACH=min{PCMAX,c(i),PREAMBLE_RECEIVED_TARGET_POWER+PLcc}…………………[11]
其中,PREAMBLE_RECEIVED_TARGET_POWER由高层配置,PLc是估算的下行路径损耗。βc是通过本申请上述实施例提供的方法计算得到的干扰影响参数。公式(11)中,PREAMBLE_RECEIVED_TARGET_POWER和βc均为功率控制参数。
图3示出了根据图2所示的上行功率控制流程的一种信令交互流程示意图。该例子中约 定:小区1为终端所在的小区,小区2~小区n(n为大于2的整数)为小区1的邻区,干扰影响参数根据上述公式(1)确定。如图所示,在S301中,小区2~小区n所在的基站分别将小区2~小区n的信息(其中包括RS发射功率)发送给小区1所在的基站;在S302中,基站通过广播消息将小区2~小区n的信息(其中包括RS发射功率)发送给终端;在S303中,终端对小区2~小区n进行RSRP测量;在S304中,终端根据S303中的测量结果,选取其中最小的下行路径损耗,并根据公式(1)计算干扰影响参数;在S305中,终端将S305中计算得到的干扰影响参数作为功率控制参数之一,进行上行功率控制。
需要说明的是,图3中各步骤的时序仅为一个示例,其中,S301~S302的过程相对于S303至S305的过程相对独立。比如,终端需要进行上行功率控制时,即可按照S303至S304执行上行功率控制流程,不一定每次执行上行功率控制时,都包含S301~S302的过程。
通过以上实施例可以看出,由于根据邻区信息,或者进一步结合终端自身信息和/或终端测量信息确定干扰影响参数,并将干扰影响参数作为功率控制参数之一,从而在上行功率控制时将邻区干扰因素引入了上行功控中,从而可以对上行功率控制进行优化,以减少终端对邻区的上行干扰。
参见图4,为本申请实施例方案一提供的另一上行功率控制流程示意图。
与图2所示流程相同的是,本申请实施例提供的上行功率控制流程中,需要估算终端对邻区的干扰,终端对邻区的干扰可通过下行路径损耗的路径修正参数表征。需要说明的是,“下行路径损耗的路径修正参数”仅为一种示例性命名,本申请实施例对该参数的命名不作限制。
下行路径损耗的路径修正参数可依据邻区信息或邻区干扰信息确定,邻区干扰信息可根据邻区信息以及根据终端自身信息和终端测量信息中的至少一个来确定。所确定出的邻区干扰信息可包括以下部分或全部信息:邻区到终端的下行路径损耗、邻区的上行干扰热噪比(interference over thermal,IoT)、邻区的上行负载等。
其中,邻区信息的内容以及交互方式,以及基站将邻区信息发送给终端的方式,与前述实施例相同。终端自身信息和终端测量信息的定义与前述实施例相同。
与前述实施例类似,基站除了可以将邻区信息发送给终端,还可以进一步地向终端发送指示信息以指示受到强上行干扰的邻区,比如受到上行干扰最强的邻区。
与前述实施例类似,基站可在将邻区信息发送给终端之前,首先判断该终端的工作模式,即该终端是处于空中模式还是地面模式,如果终端处于空中模式,则通过专有信令将邻区信息发送给该终端。在另外的例子中,基站也可以根据终端的类型,确定是否将邻区信息发送给终端。具体地,如果基站判断该终端为无人机类型的终端,则将邻区信息发送给该终端。
如图4所示,终端进行上行功率控制时,可执行如下流程:
S401:终端确定功率控制参数,所述功率控制参数中包括下行路径损耗的路径修正参数;其中,所述下行路径损耗的路径修正参数可根据该终端的邻区信息或邻区干扰信息确定得到。该修正参数用于对该终端所在小区到该终端的下行路径损耗进行修正,修正后的下行路径损耗可作为输入参数参与发射功率的计算。比如,可将该修正参数与终端所在小区到该终端的下行路径损耗相乘的方式,对该路径损耗进行修正。当然,也可基于该修正参数并采用其他运算法对终端所在小区到该终端的下行路径损耗进行修正。
其中,功率控制参数作为发射功率计算公式的输入参数,用来计算发射功率。本申请 实施例中,下行路径损耗的路径修正参数作为功率控制参数的一种参与发射功率的计算。功率控制参数除了包含上述修正参数以外,还可包括其他参数,比如包括网络侧配置的参数。
下行路径损耗的路径修正参数可以是邻区信息或邻区干扰信息的函数,而所述邻区干扰信息可根据邻区信息以及根据终端自身信息和终端测量信息中的至少一种确定得到,所确定出的邻区干扰信息可包括以下信息中的一种或多种的组合:终端与邻区间的下行路径损耗(该下行路径损耗可邻区的RS发射功率以及终端测量到的邻区RSRP得到)、邻区上行IoT、邻区上行负载等。
在一个例子中,终端可根据邻区信息和终端测量信息确定出终端与邻区间的下行路径损耗,并可进一步确定出邻区上行IoT、邻区上行负载等,并根据所确定出的这些信息确定下行路径损耗的路径修正参数。
下面以终端所在的小区为小区c、且小区M为小区c的一个邻区为例,说明下行路径损耗的路径修正参数的确定方法。
在所述修正参数的确定方法一个例子中,基站可根据小区M的RS发射功率以及该终端测量到的小区M的RSRP,确定小区M到该终端的下行路径损耗,并根据该下行路径损耗确定修正参数。具体地,可根据以下公式确定修正参数αc
αc=α-γ/PLM……………………………………………[12]
其中,α为可由高层配置,其取值可与现有LTE系统的功率控制方案中高层配置的相应参数取值相同;γ由高层配置,比如可通过RRC消息进行配置,其取值可以大于0。PLM为小区M到终端的下行路径损耗,PLM=referenceSignalPowerM-RSRPM,其中referenceSignalPowerM表示小区M的RS发射功率,可从基站发送给终端的邻区信息中可获得(该邻区信息中包含小区M的RS发射功率),RSRPM表示终端测量到的小区M的RSRP。
在修正参数的确定方法的另一个例子中,基站可以根据更多的因素确定修正参数,比如,可根据小区M的RS发射功率以及该终端测量到的小区M的RSRP确定该小区M到该终端的下行路径损耗,再根据该下行路径损耗、小区M的邻区信息(比如小区M的上行负载、小区M的上行IoT等)确定修正参数。具体地,可根据以下公式确定修正参数αc
Figure PCTCN2017095035-appb-000016
其中,PLM表示小区M到终端的下行路径损耗,IoTM表示小区M的上行干扰热噪比,LoadM表示小区M的上行负载。x、y、z为设定值,可以预先设定或者由高层配置,可取值为大于等于0。α的取值以及含义同前所述。
在修正参数的确定方法的另一个例子中,基站可以根据小区M的RS发射功率以及该终端测量到的小区M的RSRP,确定小区M到该终端的下行路径损耗,再根据该下行路径损耗、小区M的上行负载确定干扰影响参数。具体地,可根据以下公式确定干扰影响参数αc
Figure PCTCN2017095035-appb-000017
上述下行路径损耗的路径修正参数确定方法中涉及的小区M作为参考邻区用于上行干扰估算,小区M可以是该终端的邻区中的任意一个邻区,可以由终端选取,也可以是基站 指示的。如前所述,基站可以向终端发送指示信息以指示受到强上行干扰的邻区。
为了更合理地对上行干扰进行估算,以便更好地减小邻区上行干扰,作为用于上行干扰估算的参考邻区,小区M可以是终端的邻区中符合一定条件的小区。比如,可以是受到强上行干扰的小区(比如受上行干扰最强的小区),或者是路径损耗小的小区(比如路径损耗最小的小区),或者是上行IoT大的小区(比如上行IoT最大的小区),或者是上行负载大的小区(比如上行负载最大的小区)。还可以结合各邻区的信息进行综合考虑来选取参考小区,比如选取下行路径损耗小、上行负载大以及上行IoT大的小区。比如可采用前述公式(4)选取参考小区。
S402:终端根据确定出的功率控制参数确定发射功率。
该步骤中,终端可将S401中计算出的修正参数作为功率控制参数之一,使用该修正参数修正终端下行路径损耗,并可进一步结合其他功率控制参数,进行上行功率控制。
以下分别以对PUSCH、SRS进行上行功率控制为例进行描述。其中,约定小区c为终端所在的小区。
在对该终端的PUSCH进行上行功率控制时,如果该终端没有同时传PUSCH和PUCCH,则该终端的PUSCH的发射功率可根据以下公式确定(单位为dBm):
Figure PCTCN2017095035-appb-000018
其中,PCMAX,c(i)是小区c中每个子载波的最大发射功率;MPUSCH,c(i)是PUSCH一个子帧内占用的RB数;PO_PUSCH,c(j)是由高层配置的两个参数求和得到的;PLc是终端计算的下行路径损耗,下行路径损耗等于小区c的RS发射功率减去终端测量到的小区c的RSRP;
Figure PCTCN2017095035-appb-000019
其中KS由高层配置;fc(i)是一个与高层配置和δPUSCH,c有关的值,其中δPUSCH,c是与PDCCH/EPDCCH指示的TPC命令有关的值。αc(j)是通过本申请上述实施例提供的方法计算得到的下行路径损耗的路径修正参数。
如果终端同时传PUSCH和PUCCH,则该终端的PUSCH的发射功率可根据如下公式确定(单位为dBm):
Figure PCTCN2017095035-appb-000020
其中,
Figure PCTCN2017095035-appb-000021
是PUCCH的发射功率,其余参数可参见公式(15)中的参数说明。
如果终端不发PUSCH,但收到了DCI格式3/3A(DCI format 3/3A)的TPC命令,则该终端假定PUSCH的发射功率为(单位为dBm):
PPUSCH,c(i)=min{PCMAX,c(i),PO_PUSCH,c(1)+αc(j)·PLc+fc(i)}…………………[17]
公式(17)中的部分参数的含义与公式(15)中相应参数的含义相同,在此不再重复说明。αc(j)是通过本申请上述实施例提供的方法计算得到的下行路径损耗的路径修正参数。
在对该终端的SRS的上行功率进行控制时,可根据以下公式确定SRS的发射功率(单位为dBm):
PSRS,c(i)=min{PCMAX,c(i),PSRS_OFFSET,c(m)+10log10(MSRS,c)+PO_PUSCH,c(j)+αc(j)·PLc+fc(i)}…………[18]
其中,PSRS_OFFSET,c(m)是高层配置的半静态参数;MSRS,c是SRS在一个子帧内所占RB数;fc(i)是PUSCH的功率控制调节器(power control adjustment);PO_PUSCH,c(j)同PUSCH功率控制公式中的定义。αc(j)是通过本申请上述实施例提供的方法计算得到的下行路径损耗的路径修正参数。
图5示出了根据图4所示的上行功率控制流程的一种信令交互流程示意图。该例子中约定:小区1为终端所在的小区,小区2~小区n(n为大于2的整数)为小区1的邻区,下行路径损耗的路径修正参数根据上述公式(12)确定。如图所示,在S501中,小区2~小区n所在的基站分别将小区2~小区n的信息(其中包括RS发射功率)发送给小区1所在的基站;在S502中,基站通过广播消息将小区2~小区n的信息(其中包括RS发射功率)发送给终端;在S503中,基站通过RRC消息将计算下行路径损耗的路径修正参数所需的参数配置给终端;在S504中,终端对小区2~小区n进行RSRP测量,根据测量结果,选取其中最小的下行路径损耗,并根据公式(12)计算下行路径损耗的路径修正参数;在S505中,终端根S504中计算得到的修正参数对小区1到该终端的下行路径损耗进行修正,并根据修正后的路径损耗进行上行功率控制。
需要说明的是,图5中各步骤的时序仅为一个示例,其中,S501~S502的过程相对于S503的过程以及相对于至S504~S505的过程相对独立。比如,终端需要进行上行功率控制时,即可按照S504至S505执行上行功率控制流程,不一定每次执行上行功率控制时,都包含S501~S502的过程或者包括S503的过程。
通过以上实施例可以看出,由于根据邻区信息,或者进一步结合终端自身信息和/或终端测量信息确定下行路径损耗的路径修正参数,并使用该修正参数对路径损耗进行修正,使用修正后的路径损耗进行上行功率控制,从而在上行功率控制时将邻区干扰因素引入了上行功控中,从而可以对上行功率控制进行优化,以减少终端对邻区的上行干扰。
方案二
方案二提供的上行功率控制流程中,需要估算终端对邻区的干扰。估算终端对邻区的干扰可依据邻区信息,进一步地在此基础上还可依据终端测量信息和终端自身信息中的至少一种。终端测量信息由终端上报给基站。其中,邻区信息的内容以及交互方式,与前述实施例相同。终端测量信息和终端自身信息的定义与前述实施例相同。基站可将邻区信息组织成邻区列表的形式,该邻区列表中包括一个或多个邻区的信息,针对每个邻区分配一个索引,用于索引相应邻区的信息。
在方案二提供的实施例中,可针对同一信道或同一信号,配置多个功率控制参数集合。具体来说,可针对进行上行功率控制的信道配置多个功率控制参数集合,比如这样的信道可包括PUCCH、PUSCH、PRACH等信道中的一个或多个。可针对进行上行功率控制的信号配置多个功率控制参数集合,这样的信号可包括上行参考信号,比如SRS等。
由于不同信道或不同信号的功率控制算法可能不同,因此不同信道或不同信号对应的功率控制参数集合中所包括的功率控制参数的类型可能不同。对于同一信道或同一信号所对应的多个功率控制参数集合,其中包含相同类型的功率控制参数,但功率控制参数的取值不同,从而针对同一信道或同一信号,使用不同的功率控制参数集合进行功率控制可以实现不同的功率控制效果。在实际应用中,可针对不同的场景(比如终端处于空中模式还是地面模式,或者终端对邻区造成的上行干扰程度)使用相应的功率控制参数集合进行上行功率控制。
举例来说,对于PUCCH,配置2个功率控制参数集合(集合1和集合2),集合1和集合2中均包括PUCCH的功率控制参数PO_PUCCH,但集合1和集合2中该参数的取值不同。更具体地,集合1适合于终端处于空中模式或对邻区造成较强干扰时使用,集合2适合于终端处于地面模式或对邻区造成的干扰较小时使用。
再比如,对于PUSCH,配置2个功率控制参数集合(集合1和集合2),集合1和集合2中均包括PUSCH的功率控制参数PO_PUSCH,c(j)、αc(j),但集合1和集合2中这两个参数中的至少一个参数的取值不同。
再比如,对于SRS,配置2个功率控制参数集合(集合1和集合2),集合1和集合2中均包括SRS的功率控制参数PO_PUSCH,c(j)、αc(j),但集合1和集合2中这两个参数中的至少一个参数的取值不同。
再比如,对于PRACH,配置2个功率控制参数集合(集合1和集合2),集合1和集合2中均包括PRACH的功率控制参数PREAMBLE_RECEIVED_TARGET_POWER,但集合1和集合2中该参数的取值不同。
以上虽然是以针对同一信道或同一信号配置2个功率控制参数集合为例描述的,但应理解,针对同一信道或同一信号可配置2个以上的功率控制参数集合。
针对同一信道或同一信号所配置的多个功率控制参数集合,可以预先约定。可选地,可以通过基站将针对同一信道或同一信号所配置的多个功率控制参数集合发送给终端。在通过基站发送给终端的例子中,基站可通过专有信令或广播消息将功率控制参数集合配置给终端,比如,基站可通过现有的RRC消息或新定义的RRC消息,比如RRC连接重配置消息,将功率控制参数集合发送给终端,也可通过新定义的系统信息块(system information block,SIB)消息将功率控制参数集合发送给终端。
本申请实施例中,考虑到不同终端的类型可能不同,基站也可以根据终端的类型,确定是否将多个功率控制参数集合发送给终端。具体地,如果基站判断该终端为无人机类型的终端,则将多个功率控制参数集合发送给该终端。
参见图6,为本申请实施例方案二提供的上行功率控制流程。如图6所示,基站需要对终端的某个信道或信号(以下称为目标信道或目标信号)进行上行功率控制时,针对需要进行上行功率控制的终端可执行如下流程:
S601:基站获取该终端的邻区信息,进一步地还可获取该终端的测量信息和该终端的自身信息中的至少一种。
S602:基站根据该终端的邻区信息,或者进一步根据该终端的测量信息和该终端的自身信息中的至少一种,针对目标信道或目标信号,从所述目标信道或目标信号对应的多个功率控制参数集合中选择一个功率控制参数集合。
该步骤中,基站可根据该终端的邻区信息,或者进一步根据该终端的测量信息和该终端的自身信息中的至少一种,确定该终端对其邻区造成的上行干扰,并据此进行功率控制参数集合的选择。
比如,针对PUCCH配置了2个功率控制参数集合(集合1和集合2),集合1和集合2中均包括功率控制参数PO_PUCCH,但集合1中该参数的取值小于集合2中该参数的取值,PUCCH的功率控制采用前述公式(5)描述的方式。在针对某个终端的PUCCH进行上行功率控制时,若基站根据该终端的邻区信息和该终端上报的测量信息,判断该终端对邻区造成比较大的干扰,则从PUCCH对应的集合1和集合2中选择集合1。
本申请实施例中,针对需要进行上行功率控制的终端,根据该终端的邻区信息,或者进一步根据该终端的测量信息和该终端的自身信息中的至少一种,确定该终端对其邻区造成的上行干扰的方法,可以采用多种方法,本申请实施例对此不作限制。作为一个例子,如果该终端基于测量到的邻区RSRP所计算出的该邻区到该终端的下行路径损耗低于设定阈值,且该邻区的上行IoT高于设定阈值,则可确定该终端对其邻区造成较大干扰。作为另一个例子,可根据该终端的邻区信息以及该终端的测量信息计算上行干扰度量参数,如果该参数取值大于设定阈值,则可确定该终端对其邻区造成较大干扰,其中,该终端对邻区M的上行干扰度量参数的计算公式的一个例子是:
Figure PCTCN2017095035-appb-000022
其中,λM表示终端对邻区M造成的上行干扰的度量值;PLM表示邻区M到该终端的下行路径损耗,PLM=referenceSignalPowerM-RSRPM,其中referenceSignalPowerM表示邻区M的RS发射功率,RSRPM表示终端测量到的邻区M的RSRP;IoTm表示邻区M的上行干扰热噪比;Loadm表示邻区M的上行负载。x、y、z为设定值,可以预先设定或者由高层配置,可取值为大于等于0。
S603:基站将选择出的功率控制参数集合通知给该终端,使得该终端可根据该通知,使用相应功率控制参数集合中的功率控制参数确定所述目标信道或目标信号的发射功率。
在S603的一个例子中,基站可将选择出的功率控制参数集合中所包含的功率控制参数发送给终端。
为了节省信令开销,在S603的另一例子中,终端上针对同一信道或同一信号已经配置有多个功率控制参数集合,比如可通过预先约定的方式进行配置,也可通过基站发送的方式进行配置。这样,在S603中,基站可通过指示信息将选择出的功率控制参数集合通知给终端。具体地,基站可通过DCI或RRC消息将上述指示信息发送给终端。
上述指示信息可以是功率控制参数集合的标识或索引。举例来说,如果针对PUSCH配置了2个功率控制参数集合(集合1和集合2),在针对PUSCH进行上行功率控制时,基站可使用1比特信息通知终端使用集合1还是使用集合2,比如当该比特取值为0时,指示终端使用集合1,当该比特取值为1时,指示终端使用集合2。
上述指示信息也可以是变更指示,用于指示终端更换功率控制参数集合,或者说指示终端使用不同于当前使用的功率控制参数集合。举例来说,如果针对PUSCH配置了2个功率控制参数集合(集合1和集合2),在针对PUSCH进行上行功率控制时,基站可使用1比特信息作为变更指示,当变更指示取值为0时或者基站未发送变更指示时,表示保持当前使用的功率控制参数集合不变,当变更指示取值为1时,表示使用不同于当前使用的功率控制参数集合。比如,终端当前使用集合1,若终端接收到变更指示(取值为1),则使用集合2,若终端未接收到变更指示或接收到的变更指示取值为0,则仍使用集合1。
上述流程中,根据所采用的上行功率控制算法的不同,功率控制参数集合中包含的参数也可能不同,本申请实施例对所使用的上行功率控制算法不做限制。作为一个例子,S803中可采用LTE协议中定义的上行功率控制算法进行发射功率设置。本申请实施例对此不做限制。
图7示出了根据图6所示的上行功率控制流程的一种信令交互流程示意图。如图所示,在S701中,基站通过RRC连接重配置消息将PUCCH对应的2个功率控制参数集合(集合1 和集合2)发送给终端;在S702中,终端向基站上报测量报告,该测量报告中包括终端测量到的邻区RSRP;在S703中,基站根据该终端的邻区信息以及该终端上报的测量报告,判断该终端对邻区的上行干扰,由于不同的上行干扰程度对应于终端的不同工作模式(比如处于空中模式时对邻区造成的干扰相较于处于地面模式时更大),因此该步骤中,可根据该终端对邻区造成的上行干扰确定该终端的工作模式,基站根据该终端对邻区的上行干扰或根据该终端的工作模式从集合1和集合2中为该终端选择一个集合;在S704中,基站通过DCI向终端发送通知,其中包括1比特的指示信息,以指示终端是使用集合1还是使用集合2确定PUCCH的发射功率。
需要说明的是,图7中各步骤的时序仅为一个示例,其中,S701的过程、S702的过程,以及S703~S704的过程各自独立。比如,需要对终端进行上行功率控制时,即可按照S703至S704执行上行功率控制流程,不一定每次执行上行功率控制时,都包含S701和S702的过程。
通过以上描述可以看出,由于针对同一信道或同一信号配置多个功率控制参数集合,基站根据邻区信息以及根据终端测量信息和终端自身信息中的至少一种,从同一信道或同一信号对应的多个功率控制参数集合选取一个功率控制参数集合,并将选择出的功率控制参数集合通知给终端,以使终端根据该功率控制参数集合设置发射功率,从而可以针对不同的场景(比如终端对邻区造成的干扰较强或较弱)使用不同的功率控制参数进行上行功率控制。
方案三
方案三提供的上行功率控制流程中,终端需要判断其所处的工作模式,其中,判断终端所处的工作模式的方法可参见本申请实施例方案一中的描述。
如前述实施例所述,终端工作模式可根据终端自身信息、终端的邻区信息、终端的测量信息中的一种或多种组合进行判断。其中,邻区信息的内容以及交互方式,与前述实施例相同。终端测量信息和终端自身信息的定义与前述实施例相同。所述邻区信息可组织成邻区列表的形式,该邻区列表中包括一个或多个邻区的信息,针对每个邻区分配一个索引,用于索引相应邻区的信息。
在方案三提供的实施例中,可针对同一信道或同一信号,配置多个功率控制参数集合,不同的功率控制参数集合可对应不同的终端工作模式(比如空中模式或地面模式)。与此相关的定义和配置方法,可参见方案二中的相应描述,在此不再重复。
针对同一信道或同一信号所配置的多个功率控制参数集合,可以预先约定,也可以通过基站将针对同一信道或同一信号所配置的多个功率控制参数集合发送给终端。在通过基站发送给终端的例子中,基站可通过专有信令(比如RRC消息)或广播消息将功率控制参数集合配置给终端。
本申请实施例中,考虑到不同终端的类型可能不同,基站也可以根据终端的类型,确定是否将多个功率控制参数集合发送给终端。具体地,如果基站判断该终端为无人机类型的终端,则将多个功率控制参数集合发送给该终端。
参见图8,为本申请实施例方案三提供的上行功率控制流程示意图,如图2所示,终端进行上行功率控制时,可执行如下流程:
S801:终端根据所述终端所处的高度、所述终端的邻区信息、所述终端的测量信息中的至少一种,确定所述终端的工作模式。
其中,确定终端的工作模式的方法,可参见前述实施例的描述,在此不再重复。
S802:终端根据所述终端的工作模式,从目标信道或目标信号对应的多个功率控制参数集合中选择功率控制参数集合。
该步骤中,由于同一信道或同一信号对应的多个功率控制参数集合,可对应于不同的工作模式,因此可针对同一信道或同一信号所对应的多个功率控制参数集合中,根据终端的工作模式从中选择一个与终端当前的工作模式匹配的功率控制参数集合,从而可以更好地降低终端对邻区的上行干扰。
S803:终端根据选择出的功率控制参数集合,确定所述目前信道或目标信号的发射功率。
上述流程中,根据所采用的上行功率控制算法的不同,功率控制参数集合中包含的参数也可能不同,本申请实施例对所使用的上行功率控制算法不做限制。作为一个例子,S803中可采用LTE协议中定义的上行功率控制算法进行发射功率设置。本申请实施例对此不做限制。
通过以上描述可以看出,由于针对同一信道或同一信号配置多个功率控制参数集合,不同的集合与不同的工作模式相对应,即不同的集合适用于不同的工作模式,终端可在确定出工作模式后选取适合的功率控制参数集合进行上行功率控制。
上述主要从终端和网络设备交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,终端和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元(器、器件)及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对终端和网络设备进行功能单元(器、器件)的划分,例如,可以对应各个功能划分各个功能单元(器、器件),也可以将两个或两个以上的功能集成在一个处理单元(器、器件)中。上述集成的单元(器、器件)既可以采用硬件的形式实现,也可以采用软件功能单元(器、器件)的形式实现。需要说明的是,本申请实施例中对单元(器、器件)的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元(器、器件)的情况下,图9示出了本申请实施例提供的一种上行功率控制装置的结构示意图,该上行功率控制装置可应用于终端。参阅图9所示,上行功率控制装置900包括功率控制参数确定模块901和发射功率确定模块902,进一步地还可包括接收模块(未在图中示出)。其中,功率控制参数确定模块901用于确定功率控制参数,所述功率控制参数中包括干扰影响参数或者下行路径损耗的路径修正参数,所述下行路径损耗的路径修正参数用于修正参与发射功率计算的下行路径损耗;其中,所述干扰影响参数和所述下行路径损耗的路径修正参数是根据所述终端的邻区信息确定得到。发射功率确定模块902用于根据确定出的功率控制参数确定发射功率。
一种可能的实施方式中,功率控制参数确定模块901通过以下方式确定所述干扰影响参数或所述下行路径损耗的路径修正参数:根据第一邻区的参考信号发射功率以及所述终端测量到的第一邻区参考信号接收强度,确定第一邻区到所述终端的下行路径损耗,其中, 所述第一邻区为所述终端的一个邻区;根据第一邻区到所述终端的下行路径损耗,或者根据第一邻区到所述终端的下行路径损耗以及第一邻区的邻区信息,确定干扰影响参数或下行路径损耗的路径修正参数。其中,所述第一邻区为网络侧指示的,或者为所述终端从所述终端的邻区中选择的,所述第一邻区为所述终端的邻区中受到强上行干扰的小区。
其中,所述干扰影响参数和所述下行路径损耗的路径修正参数的具体计算方法可参照前述实施例的描述。
一种可能的实施方式中,所述邻区信息包括以下部分或全部信息:邻区到所述终端的下行路径损耗、邻区的上行干扰热噪比、邻区的上行负载。其中,邻区信息所包括的内容可参见前述实施例的描述。
一种可能的实施方式中,发射功率确定模块902可具体用于:在功率控制参数包括干扰影响参数时,根据确定出的功率控制参数确定发射功率包括:所述终端根据所述干扰影响参数、下行路径损耗以及网络侧配置的参数,确定发射功率;在所述功率控制参数包括下行路径损耗的路径修正参数时,根据确定出的功率控制参数确定发射功率包括:所述终端根据所述下行路径损耗的路径修正参数修正参与发射功率计算的下行路径损耗,并根据修正后的下行路径损耗以及网络侧配置的参数,确定发射功率。
图10示出了本申请实施例提供的终端1000的结构示意图,即示出了上行功率控制装置900的另一结构示意图。参阅图10所示,终端1000包括处理器1001、收发器1002。其中,处理器1001也可以为控制器。所述处理器1001被配置为支持终端执行图2中涉及的功能。所述收发器1002被配置为支持终端收发消息的功能。终端1000还可以包括存储器1003,所述存储器1003用于与处理器1001耦合,其保存终端必要的程序指令和数据。其中,处理器1001、收发器1002和存储器1003相连,该存储器1003用于存储指令,该处理器1001用于执行该存储器1003存储的指令,以控制收发器1002收发信号,完成上述方法中终端执行相应功能的步骤。
本申请实施例中,上行功率控制装置900和终端1000所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
在采用集成的单元(器、器件)的情况下,图11示出了本申请实施例提供的一种上行功率控制装置的结构示意图,该上行功率控制装置可应用于网络设备。参阅图11所示,上行功率控制装置1100包括:功率控制参数选择模块1101、通知模块1102。其中,功率控制参数选择模块1101用于从多个功率控制参数集合中选择一个功率控制参数集合,其中,所述一个功率控制参数集合是根据终端的邻区信息以及根据所述终端的测量信息和所述终端的自身信息中的至少一种选择出的,所述多个功率控制参数集合为同一信道或同一信号对应的多个功率控制参数集合;通知模块1102用于将选择出的功率控制参数集合通知给所述终端。其中,同一信道或同一信号对应的多个功率控制参数集合中,功率控制参数类型相同,不同集合中的功率控制参数取值不同。所述邻区信息所包含的内容可参见前述实施例。
一种可能的实施方式中,通知模块1102可将所选择出的功率控制参数集合的索引发送给所述终端;或者,向所述终端发送变更指示,所述变更指示用于指示所述终端更换功率控制参数集合。
一种可能的实施方式中,上行功率控制装置1100还包括:配置模块1103,用于通过 专有信令或广播消息,将同一信道或同一信号对应的多个功率控制参数集合发送给终端。
图12示出了本申请实施例提供的基站1200的结构示意图,即示出了上行功率控制装置1100的另一结构示意图。参阅图10所示,基站1200包括处理器1201、收发器1202。其中,处理器1201也可以为控制器。所述处理器1201被配置为支持网络设备执行图4中涉及的功能。所述收发器1202被配置为支持网络设备收发消息的功能。基站1200还可以包括存储器1203,所述存储器1203用于与处理器1201耦合,其保存网络设备必要的程序指令和数据。其中,处理器1201、收发器1202和存储器1203相连,该存储器1203用于存储指令,该处理器1201用于执行该存储器1203存储的指令,以控制收发器1002收发信号,完成上述方法中网络设备执行相应功能的步骤。
本申请实施例中,上行功率控制装置1100和基站1200所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
在采用集成的单元(器、器件)的情况下,图13示出了本申请实施例提供的一种上行功率控制装置的结构示意图,该上行功率控制装置可应用于终端。参阅图13所示,上行功率控制装置1300包括:工作模式确定模块1301、功率控制参数选择模块1302、发射功率确定模块1303。其中,工作模式确定模块1301用于根据所述终端的自身信息、所述终端的邻区信息、所述终端的测量信息中的至少一种,确定所述终端的工作模式;其中,所述工作模式包括终端在空中通信时对应的工作模式以及终端在地面通信时对应的工作模式。功率控制参数选择模块1302用于根据所述终端的工作模式,从目标信道或目标信号对应的多个功率控制参数集合中选择一个功率控制参数集合。发射功率确定模块1303用于根据选择出的功率控制参数集合,确定所述目标信道或目标信号的发射功率。其中,同一信道或同一信号对应的多个功率控制参数集合中,功率控制参数类型相同,不同集合中的功率控制参数取值不同。
一种可能的实施方式中,上行功率控制装置1300中还包括:接收模块1304,用于接收基站通过专有信令或广播消息发送的所述多个功率控制参数集合。
图14示出了本申请实施例提供的终端1400的结构示意图,即示出了上行功率控制装置1300的另一结构示意图。参阅图14所示,终端1400包括处理器1401、收发器1402。其中,处理器1401也可以为控制器。所述处理器1401被配置为支持终端执行图2中涉及的功能。所述收发器1402被配置为支持终端收发消息的功能。终端1400还可以包括存储器1403,所述存储器1403用于与处理器1401耦合,其保存终端必要的程序指令和数据。其中,处理器1401、收发器1402和存储器1403相连,该存储器1403用于存储指令,该处理器1401用于执行该存储器1403存储的指令,以控制收发器1402收发信号,完成上述方法中终端执行相应功能的步骤。
本申请实施例中,上行功率控制装置1300和终端1400所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
在采用集成的单元(器、器件)的情况下,图15示出了本申请实施例提供的一种信息传输装置的结构示意图,该信息传输装置可应用于基站。参阅图15所示,信息传输装置1500包括:获取模块1501、发送模块1502。其中,获取模块1501用于获取第一终端的邻区信息;发送模块1502用于将所述第一终端邻区信息发送给所述第一终端。其中, 邻区信息所包含的内容可参见前述实施例。
一种可能的实施方式中,获取模块1501可获取所述基站覆盖范围内第一终端所在小区的邻小区的邻区信息;和/或,接收邻基站发送的第一终端所在小区的邻小区的邻区信息。
一种可能的实施方式中,发送模块1502可通过专有信令或广播消息,将所述第一终端邻区信息发送给所述第一终端。
图16示出了本申请实施例提供的基站1600的结构示意图,即示出了信息传输装置1500的另一结构示意图。参阅图16所示,基站1600包括处理器1601、收发器1602。其中,处理器1601也可以为控制器。所述处理器1601被配置为支持基站执行前述实施例描述的邻区信息发送涉及的功能。所述收发器1602被配置为支持基站收发消息的功能。基站1600还可以包括存储器1603,所述存储器1603用于与处理器1601耦合,其保存终端必要的程序指令和数据。其中,处理器1601、收发器1602和存储器1603相连,该存储器1603用于存储指令,该处理器1601用于执行该存储器1603存储的指令,以控制收发器1602收发信号,完成上述方法中基站执行相应功能的步骤。
本申请实施例中,信息传输装置1500和基站1600所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
可以理解的是,本申请实施例附图中仅仅示出了网络设备和终端的简化设计。在实际应用中,网络设备和终端并不限于上述结构,例如还可以包括天线阵列,双工器以及基带处理部分。
其中,网络设备的双工器用于实现天线阵列,既用于发送信号,又用于接收信号。发射器用于实现射频信号和基带信号之间的转换,通常发射器可以包括功率放大器,数模转换器和变频器,通常接收器可以包括低噪放,模数转换器和变频器。其中,接收器和发射器有时也可以统称为收发器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。再例如,终端还可以包括显示设备、输入输出接口等。
其中,终端可具有单天线,也可以具有多天线(即天线阵列)。其中,终端的双工器用于实现天线阵列既用于发送信号,又用于接收信号。发射器用于实现射频信号和基带信号之间的转换,通常发射器可以包括功率放大器,数模转换器和变频器,通常接收器可以包括低噪放,模数转换器和变频器。基带处理部分用于实现所发送或接收的信号的处理,比如层映射、预编码、调制/解调,编码/译码等,并且对于物理控制信道、物理数据信道、物理广播信道、参考信号等进行分别的处理。在一个示例中,终端也可以包括控制部分,用于请求上行物理资源、计算下行信道对应的信道状态信息(Channel State Information,CSI)、判断下行数据包是否接收成功等等。
需要说明的是,本申请实施例上述涉及的处理器可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理 器的组合等等。
其中,所述存储器可以集成在所述处理器中,也可以与所述处理器分开设置。
作为一种实现方式,接收器和发射器的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,将实现处理器、接收器和发射器功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器、接收器和发射器的功能。
根据本申请实施例提供的方法,本申请实施例还提供一种通信系统,其包括前述的网络设备和一个或多于一个终端。
本申请实施例还提供一种计算机存储介质,用于存储一些指令,这些指令被执行时,可以完成前述终端或网络设备所涉及的任意一种方法。
本申请实施例还提供一种计算机程序产品,用于存储计算机程序,该计算机程序用于执行上述方法实施例中涉及的调度MF系统信息块的方法。
本领域内的技术人员应明白,本申请实施例可提供为方法、系统、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (14)

  1. 一种上行功率控制方法,其特征在于,包括:
    终端确定功率控制参数,所述功率控制参数中包括干扰影响参数或者下行路径损耗的路径修正参数,所述下行路径损耗的路径修正参数用于修正参与发射功率计算的下行路径损耗;其中,所述干扰影响参数和所述下行路径损耗的路径修正参数是根据所述终端的邻区信息确定得到,所述邻区信息包括以下部分或全部信息:邻区的参考信号发射功率、邻区的上行干扰热噪比、邻区的上行负载;
    所述终端根据确定出的功率控制参数确定发射功率。
  2. 如权利要求1所述的方法,其特征在于,所述干扰影响参数或所述下行路径损耗的路径修正参数的确定过程包括:
    根据第一邻区的参考信号发射功率以及所述终端测量到的第一邻区参考信号接收强度,确定第一邻区到所述终端的下行路径损耗;其中,所述第一邻区为所述终端的一个邻区;
    根据第一邻区到所述终端的下行路径损耗,或者根据第一邻区到所述终端的下行路径损耗以及第一邻区的邻区信息,确定干扰影响参数或下行路径损耗的路径修正参数。
  3. 如权利要求2所述的方法,其特征在于,所述第一邻区为网络侧指示的,或者为所述终端从所述终端的邻区中选择的,所述第一邻区为所述终端的邻区中受到强上行干扰的小区。
  4. 如权利要求2所述的方法,其特征在于,所述干扰影响参数根据第一公式或第二公式或第三公式确定得到:
    所述第一公式为:βc=θ/PLM
    所述第二公式为:
    Figure PCTCN2017095035-appb-100001
    所述第三公式为:
    Figure PCTCN2017095035-appb-100002
    其中,βc表示干扰影响参数,PLM表示小区M到所述终端的下行路径损耗,IoTM表示小区M的上行干扰热噪比,LoadM表示小区M的上行负载,θ、x、y、z为设定值;其中,小区M为所述第一邻区。
  5. 如权利要求2所述的方法,其特征在于,所述下行路径损耗的路径修正参数根据第四公式、第五公式或第六公式确定得到:
    所述第四公式为:αc=α-γ/PLM
    所述第五公式为:
    Figure PCTCN2017095035-appb-100003
    所述第六公式为:
    Figure PCTCN2017095035-appb-100004
    其中,αc(j)表示上行路径损耗的路径修正参数,PLM表示小区M到所述终端的下行路径损耗,IoTm表示小区M的上行干扰热噪比,Loadm表示小区M的上行负载,α、γ、 x、y、z为设定值;其中,小区M为所述第一邻区。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述功率控制参数包括干扰影响参数时,所述终端根据确定出的功率控制参数确定发射功率包括:所述终端根据所述干扰影响参数、下行路径损耗以及网络侧配置的参数,确定发射功率;
    所述功率控制参数包括下行路径损耗的路径修正参数时,所述终端根据确定出的功率控制参数确定发射功率包括:所述终端根据所述下行路径损耗的路径修正参数修正参与发射功率计算的下行路径损耗,并根据修正后的下行路径损耗以及网络侧配置的参数,确定发射功率。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,还包括:
    所述终端通过专用信令或广播消息,接收所述基站发送的邻区信息;其中,所述邻区包括与所述终端所在小区位于同一基站覆盖范围内的邻小区和/或与所述终端所在小区位于不同基站覆盖范围内的邻小区。
  8. 一种上行功率控制装置,其特征在于,包括:
    功率控制参数确定模块,用于确定功率控制参数,所述功率控制参数中包括干扰影响参数或者下行路径损耗的路径修正参数,所述下行路径损耗的路径修正参数用于修正参与发射功率计算的下行路径损耗;其中,所述干扰影响参数和所述下行路径损耗的路径修正参数是根据所述终端的邻区信息确定得到,所述邻区信息包括以下部分或全部信息:邻区的参考信号发射功率、邻区的上行干扰热噪比、邻区的上行负载;
    发射功率确定模块,用于根据确定出的功率控制参数确定发射功率。
  9. 如权利要求8所述的装置,其特征在于,所述功率控制参数确定模块具体用于:通过以下方式确定所述干扰影响参数或所述下行路径损耗的路径修正参数:
    根据第一邻区的参考信号发射功率以及所述终端测量到的第一邻区参考信号接收强度,确定第一邻区到所述终端的下行路径损耗;其中,所述第一邻区为所述终端的一个邻区;
    根据第一邻区到所述终端的下行路径损耗,或者根据第一邻区到所述终端的下行路径损耗以及第一邻区的邻区信息,确定干扰影响参数或下行路径损耗的路径修正参数。
  10. 如权利要求9所述的装置,其特征在于,所述第一邻区为网络侧指示的,或者为所述终端从所述终端的邻区中选择的,所述第一邻区为所述终端的邻区中受到强上行干扰的小区。
  11. 如权利要求9所述的装置,其特征在于,所述功率控制参数确定模块具体用于:根据第一公式或第二公式或第三公式确定所述干扰影响参数;
    所述第一公式为:βc=θ/PLM
    所述第二公式为:
    Figure PCTCN2017095035-appb-100005
    所述第三公式为:
    Figure PCTCN2017095035-appb-100006
    其中,βc表示干扰影响参数,PLM表示小区M到所述终端的下行路径损耗,IoTM表示小区M的上行干扰热噪比,LoadM表示小区M的上行负载,θ、x、y、z为设定值;其中,小区M为所述第一邻区。
  12. 如权利要求9所述的装置,其特征在于,所述功率控制参数确定模块具体用于:根据第四公式、第五公式或第六公式确定所述下行路径损耗的路径修正参数;
    所述第四公式为:αc=α-γ/PLM
    所述第五公式为:
    Figure PCTCN2017095035-appb-100007
    所述第六公式为:
    Figure PCTCN2017095035-appb-100008
    其中,αc(j)表示上行路径损耗的路径修正参数,PLM表示小区M到所述终端的下行路径损耗,IoTm表示小区M的上行干扰热噪比,Loadm表示小区M的上行负载,α、γ、x、y、z为设定值;其中,小区M为所述第一邻区。
  13. 如权利要求8至12中任一项所述的装置,其特征在于,所述发射功率确定模块具体用于:
    功率控制参数包括干扰影响参数时,根据确定出的功率控制参数确定发射功率包括:所述终端根据所述干扰影响参数、下行路径损耗以及网络侧配置的参数,确定发射功率;
    所述功率控制参数包括下行路径损耗的路径修正参数时,根据确定出的功率控制参数确定发射功率包括:所述终端根据所述下行路径损耗的路径修正参数修正参与发射功率计算的下行路径损耗,并根据修正后的下行路径损耗以及网络侧配置的参数,确定发射功率。
  14. 如权利要求8至13中任一项所述的装置,其特征在于,还包括:
    接收模块,用于通过专用信令或广播消息,接收所述基站发送的邻区信息;其中,所述邻区包括与所述终端所在小区位于同一基站覆盖范围内的邻小区和/或与所述终端所在小区位于不同基站覆盖范围内的邻小区。
PCT/CN2017/095035 2017-07-28 2017-07-28 上行功率控制方法及装置 WO2019019186A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780092844.5A CN110832914B (zh) 2017-07-28 2017-07-28 上行功率控制方法及装置
PCT/CN2017/095035 WO2019019186A1 (zh) 2017-07-28 2017-07-28 上行功率控制方法及装置
EP17919536.7A EP3651508B1 (en) 2017-07-28 2017-07-28 Method and device for uplink power control
US16/749,401 US20200163026A1 (en) 2017-07-28 2020-01-22 Uplink power control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/095035 WO2019019186A1 (zh) 2017-07-28 2017-07-28 上行功率控制方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/749,401 Continuation US20200163026A1 (en) 2017-07-28 2020-01-22 Uplink power control method and apparatus

Publications (1)

Publication Number Publication Date
WO2019019186A1 true WO2019019186A1 (zh) 2019-01-31

Family

ID=65039358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095035 WO2019019186A1 (zh) 2017-07-28 2017-07-28 上行功率控制方法及装置

Country Status (4)

Country Link
US (1) US20200163026A1 (zh)
EP (1) EP3651508B1 (zh)
CN (1) CN110832914B (zh)
WO (1) WO2019019186A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600514A (zh) * 2020-03-18 2022-06-07 诺基亚通信公司 控制无线电设备的传输功率

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11153826B2 (en) * 2017-08-10 2021-10-19 Qualcomm Incorporated Procedure-based uplink power control
CN109842927B (zh) * 2017-11-24 2021-01-29 华为技术有限公司 上行控制的方法、装置和系统
CN112235857B (zh) * 2020-10-16 2023-02-24 中国联合网络通信集团有限公司 一种功率控制方法及装置
US11463912B2 (en) * 2020-12-16 2022-10-04 Dish Wireless L.L.C. 5G zero touch traffic management
CN112770381B (zh) * 2021-01-12 2022-02-08 中国科学院数学与系统科学研究院 调整区域内各子区域的导频信号发射总功率的方法和装置
CN113438670B (zh) * 2021-06-24 2022-09-02 中国联合网络通信集团有限公司 一种降低业务信道交叉链路干扰的方法及装置
WO2023245524A1 (zh) * 2022-06-22 2023-12-28 Oppo广东移动通信有限公司 功率控制方法和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635933A (zh) * 2008-07-22 2010-01-27 大唐移动通信设备有限公司 一种测量路径损耗的方法、系统及设备
CN103535086A (zh) * 2013-05-16 2014-01-22 华为技术有限公司 上行功率控制方法及基站
CN104837190A (zh) * 2014-02-07 2015-08-12 中国电信股份有限公司 用于实现自适应开环功率控制的方法和装置
US20170041884A1 (en) * 2013-02-15 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for power control and multilplexing for device to device communication in wireless cellular communication system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR065637A1 (es) * 2007-03-07 2009-06-17 Interdigital Tech Corp Un metodo combinado de bucle abierto/bucle cerrado para controlar la potencia de enlace ascendente de una estacion movil
CN102281571B (zh) * 2010-06-11 2015-01-14 电信科学技术研究院 一种功率控制的方法和设备
CN102348268B (zh) * 2010-08-03 2014-08-13 中兴通讯股份有限公司 一种lte系统上行功率控制的方法和系统
CN102056178B (zh) * 2011-01-17 2013-08-21 新邮通信设备有限公司 一种小区间的干扰协调方法和一种基站
CN103327594B (zh) * 2012-03-22 2017-04-05 电信科学技术研究院 上行功率控制方法、设备及系统
CN103037488B (zh) * 2012-12-07 2015-10-07 北京北方烽火科技有限公司 一种lte上行功率控制方法和相关设备
CN103874183B (zh) * 2012-12-14 2018-03-23 中国移动通信集团公司 路径损耗补偿因子确定方法及相关设备
CN104144486B (zh) * 2013-05-10 2017-10-27 上海贝尔股份有限公司 上行功率控制方法和设备
CN104254121B (zh) * 2013-06-28 2018-05-29 电信科学技术研究院 一种pusch功率控制方法及装置
CN104349438B (zh) * 2013-07-24 2018-11-02 上海诺基亚贝尔股份有限公司 确定上行传输功率的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635933A (zh) * 2008-07-22 2010-01-27 大唐移动通信设备有限公司 一种测量路径损耗的方法、系统及设备
US20170041884A1 (en) * 2013-02-15 2017-02-09 Samsung Electronics Co., Ltd. Method and apparatus for power control and multilplexing for device to device communication in wireless cellular communication system
CN103535086A (zh) * 2013-05-16 2014-01-22 华为技术有限公司 上行功率控制方法及基站
CN104837190A (zh) * 2014-02-07 2015-08-12 中国电信股份有限公司 用于实现自适应开环功率控制的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3651508A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600514A (zh) * 2020-03-18 2022-06-07 诺基亚通信公司 控制无线电设备的传输功率

Also Published As

Publication number Publication date
EP3651508A4 (en) 2020-07-01
US20200163026A1 (en) 2020-05-21
EP3651508B1 (en) 2021-06-02
EP3651508A1 (en) 2020-05-13
CN110832914B (zh) 2021-03-30
CN110832914A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
CN110832914B (zh) 上行功率控制方法及装置
EP3345438B1 (en) Power control in wireless networks
US11343776B2 (en) Method for terminal to transmit uplink signal, and terminal
US10165527B2 (en) Method of efficiently reporting user equipment transmission power and apparatus thereof
US9769765B2 (en) System and method for direct mobile communications power control
US9288743B2 (en) Uplink power control scheme for distributed RRH systems with same cell ID
US10856274B2 (en) Power headroom reporting method and apparatus
EP3005800B1 (en) Method and arrangement for d2d communication
WO2013021531A1 (ja) 端末、送信装置、受信品質報告方法および受信方法
EP3132555B1 (en) Uplink based selection of downlink connectivity configuration
US10368325B2 (en) System and method for beam adaptation in a beam-based communications system
WO2013024662A1 (ja) 無線通信システム、無線基地局装置、ユーザ端末、及び無線通信方法
US10560860B2 (en) System and method for measuring and reporting uplink channel condition
US20210099270A1 (en) Resource Indicating Method, Device, And System
US20220264482A1 (en) Link-adaptation power backoff
JPWO2014119264A1 (ja) 無線通信システム、無線局および上り送信電力制御方法
WO2020030117A1 (zh) 功率控制参数的确定方法及装置、存储介质、电子设备
WO2020030159A1 (zh) 功率控制方法和装置、接收设备及存储介质
US20190150101A1 (en) Network node and method for ue specific power handling
WO2022067823A1 (zh) 一种上行功率控制方法及设备
WO2023008325A1 (ja) 通信装置、基地局、及び通信方法
WO2023008326A1 (ja) 通信装置及び通信方法
WO2023008324A1 (ja) 通信装置、基地局、及び通信方法
JP2023530565A (ja) 高速アウターループリンク適応

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017919536

Country of ref document: EP

Effective date: 20200203