WO2023008326A1 - 通信装置及び通信方法 - Google Patents

通信装置及び通信方法 Download PDF

Info

Publication number
WO2023008326A1
WO2023008326A1 PCT/JP2022/028456 JP2022028456W WO2023008326A1 WO 2023008326 A1 WO2023008326 A1 WO 2023008326A1 JP 2022028456 W JP2022028456 W JP 2022028456W WO 2023008326 A1 WO2023008326 A1 WO 2023008326A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
trp201
transmission power
base station
uplink transmission
Prior art date
Application number
PCT/JP2022/028456
Other languages
English (en)
French (fr)
Inventor
正幸 星野
秀明 ▲高▼橋
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2023008326A1 publication Critical patent/WO2023008326A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present disclosure relates to a communication device and communication method used in a mobile communication system.
  • a first cell that is a serving cell and a second cell that belongs to the same frequency (intra frequency) as the first cell are configured in a communication device, and the communication device maintains the first cell as a serving cell, A model of performing data communication with the second cell is assumed (see Non-Patent Documents 1 to 3).
  • the second cell is a cell (cell having TRP with different PCI) configured by a TRP different from that of the first cell and having a physical cell identifier (PCI) different from that of the first cell.
  • PCI physical cell identifier
  • the total transmission power of uplink transmission is A transmission power reduction process is defined that allocates transmission power to each uplink transmission for each cell to be less than or equal to a predetermined maximum value.
  • the present disclosure provides a communication device and a communication method that enable appropriate transmission power reduction processing when a first cell, which is a serving cell, and a second cell belonging to the same frequency as the first cell are set. intended to provide
  • a communication device is a device in which the first cell and the second cell are configured by a base station that manages a first cell, which is a serving cell, and a second cell belonging to the same frequency as the first cell. be.
  • the communication device performs uplink transmission to the base station, and the uplink transmission based on the transmission type priority according to the type of the uplink transmission and the cell type priority according to the cell type.
  • a control unit that performs a transmission power reduction process that allocates transmission power to each uplink transmission for each cell so that the total transmission power of each cell is equal to or less than a predetermined maximum value.
  • the control unit determines the cell type priority applied to the second cell based on the cell type priority applied to the first cell.
  • a communication method is a communication apparatus in which the first cell and the second cell are configured by a base station that manages a first cell that is a serving cell and a second cell that belongs to the same frequency as the first cell. This is the method used in The communication method includes a step of determining a cell type priority applied to the second cell based on a cell type priority applied to the first cell, a transmission type priority according to a type of uplink transmission, and Transmission power for allocating transmission power to each uplink transmission for each cell so that the total transmission power of the uplink transmission is equal to or less than a predetermined maximum value based on the cell type priority according to the cell type performing a reduction process; and performing an uplink transmission to said base station.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment
  • FIG. 1 is a diagram showing a configuration example of a protocol stack in a mobile communication system according to an embodiment
  • FIG. 1 is a diagram showing an assumed scenario in a mobile communication system according to an embodiment
  • FIG. 3 shows a basic procedure in an assumed scenario according to an embodiment
  • FIG. 4 illustrates PRACH transmit power control in a UE according to one embodiment
  • FIG. 4 is a diagram showing a first operation example of PRACH transmission power control in the case of CFRA
  • FIG. 10 is a diagram showing a second operation example of PRACH transmission power control in the case of CFRA
  • FIG. 12 is a diagram showing a third operation example of PRACH transmission power control in the case of CFRA
  • FIG. 4 is a diagram showing an operation example of PRACH transmission power control in the case of CBRA
  • FIG. 4 is a diagram illustrating uplink transmit power control in a UE according to one embodiment
  • FIG. 4 is a diagram showing a specific example of uplink transmission power control in a UE according to one embodiment
  • FIG. 4 is a diagram illustrating transmission power reduction processing in a UE according to one embodiment
  • FIG. 5 is a diagram showing a specific example of transmission power reduction processing in a UE according to one embodiment
  • the mobile communication system 1 is, for example, a system conforming to 3GPP Technical Specifications (TS).
  • TS Technical Specifications
  • a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
  • the mobile communication system 1 has a network 10 and a communication device (User Equipment: UE) 100 that communicates with the network 10 .
  • the network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
  • NG-RAN Next Generation Radio Access Network
  • 5G Core Network 5G Core Network
  • the UE 100 is a device used by a user.
  • the UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • the UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein.
  • the UE 100 may be a transport body other than a vehicle (for example, a ship, an airplane, etc.) or a device provided thereon.
  • the UE 100 may be a sensor or a device attached thereto.
  • the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
  • NG-RAN 20 includes multiple base stations 200 .
  • Each base station 200 manages at least one cell.
  • a cell constitutes the minimum unit of a communication area. For example, one cell belongs to one frequency (carrier frequency) and is configured by one component carrier.
  • the term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 .
  • Each base station 200 can perform radio communication with the UE 100 residing in its own cell.
  • the base station 200 communicates with the UE 100 using the RAN protocol stack.
  • Base station 200 provides NR user plane and control plane protocol termination towards UE 100 and is connected to 5GC 30 via NG interface.
  • gNodeB gNodeB
  • the 5GC 30 includes a core network device 300.
  • the core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function).
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • AMF performs mobility management of UE100.
  • UPF provides functions specialized for user plane processing.
  • the AMF and UPF are connected with the base station 200 via the NG interface.
  • the protocol of the radio section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, It has an RRC (Radio Resource Control) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • RRC Radio Resource Control
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
  • a physical channel consists of multiple OFDM symbols in the time domain and multiple subcarriers in the frequency domain.
  • One subframe consists of a plurality of OFDM symbols in the time domain.
  • a resource block is a resource allocation unit, and is composed of a plurality of OFDM symbols and a plurality of subcarriers.
  • a frame may consist of 10 ms and may include 10 subframes of 1 ms.
  • a subframe can include a number of slots corresponding to the subcarrier spacing.
  • the physical downlink control channel plays a central role, for example, for purposes such as downlink scheduling assignments, uplink scheduling grants, and transmission power control.
  • the UE 100 can use a narrower bandwidth than the system bandwidth (that is, the cell bandwidth).
  • the base station 200 configures the UE 100 with a bandwidth part (BWP) made up of consecutive PRBs.
  • UE 100 transmits and receives data and control signals on the active BWP.
  • BWP bandwidth part
  • Up to four BWPs can be set in the UE 100, for example.
  • Each BWP may have different subcarrier spacing and may overlap each other in frequency. If multiple BWPs are configured for the UE 100, the base station 200 can specify which BWP to activate through downlink control. This allows the base station 200 to dynamically adjust the UE bandwidth according to the amount of data traffic of the UE 100, etc., and reduce UE power consumption.
  • the base station 200 can configure up to 3 control resource sets (CORESET) for each of up to 4 BWPs on the serving cell.
  • CORESET is a radio resource for control information that the UE 100 should receive.
  • UE 100 may be configured with up to 12 CORESETs on the serving cell.
  • Each CORESET has an index from 0 to 11.
  • a CORESET consists of 6 resource blocks (PRBs) and 1, 2 or 3 consecutive OFDM symbols in the time domain.
  • the MAC layer performs data priority control, hybrid ARQ (HARQ) retransmission processing, random access procedures, and so on. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels.
  • the MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to the UE 100 .
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer performs mapping between an IP flow, which is the unit of QoS control performed by the core network, and a radio bearer, which is the unit of QoS control performed by the AS (Access Stratum).
  • the RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release.
  • RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 .
  • UE 100 When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
  • the NAS layer located above the RRC layer performs session management and mobility management for UE100.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF).
  • AMF core network device 300
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • the base station 200 has a TRP 201 # 1 , a TRP 201 # 2 , a DU (Distributed Unit) 202 and a CU (central unit) 203 .
  • FIG. 3 shows an example in which base station 200 is separated into DU202 and CU203, base station 200 may not be separated into DU202 and CU203.
  • the number of TRPs 201 in base station 200 is two is shown, the number of TRPs 201 in base station 200 may be three or more.
  • TRPs 201#1 and TRPs 201#2 are distributed and constitute different cells. Specifically, TRP 201#1 forms cell C1 and TRP 201#2 forms cell C2.
  • Cell C1 and cell C2 belong to the same frequency.
  • Cell C1 and cell C2 have different physical cell identifiers (PCI). That is, the cell C2 is a cell (cell having TRP with different PCI) configured by a TRP #2 different from the TRP 201 #1 corresponding to the cell C1 and having a PCI different from that of the cell C1.
  • FIG. 3 shows an example in which the coverage of cell C2 is within the coverage of cell C1, the coverage of cell C2 may at least partially overlap the coverage of cell C1.
  • the DU202 controls TRP201#1 and TRP201#2. In other words, TRP201#1 and TRP201#2 are under the same DU202.
  • the DU 202 is a unit that includes lower layers included in the protocol stack described above, such as the RLC layer, the MAC layer and the PHY layer.
  • DU202 is connected with CU203 via F1 interface which is a fronthaul interface.
  • the CU203 controls DU202.
  • the CU 203 is a unit including upper layers included in the protocol stack described above, such as the RRC layer, the SDAP layer and the PDCP layer.
  • the CU 203 is connected to the core network (5GC 30) via the NG interface, which is a backhaul interface.
  • the UE 100 is in the RRC connected state and performs wireless communication with the base station 200.
  • NR is capable of wideband transmission in a high frequency band such as a millimeter wave band. It has high beam gain.
  • Base station 200 and UE 100 establish a beam pair.
  • the UE 100 performs data communication with the serving cell C1 (TRP201#1). Specifically, the UE 100 performs data communication with the cell C1 using a beam corresponding to transmission configuration indicator (TCI) state #1.
  • UE 100 is configured with cell 2, which is a non-serving cell, in addition to cell C1.
  • an SSB SS/PBCH Block
  • the SSB includes a primary synchronization signal (PSS), a secondary synchronization signal (SSS), a PBCH (Physical Broadcast Channel), and a demodulation reference signal (DMRS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH Physical Broadcast Channel
  • DMRS demodulation reference signal
  • an SSB may consist of four consecutive OFDM symbols in the time domain. Also, the SSB may consist of 240 consecutive subcarriers (ie, 20 resource blocks) in the frequency domain.
  • PBCH is a physical channel that carries a Master Information Block (MIB).
  • MIB Master Information Block
  • the UE 100 reports the beam measurement results for the cell C2 to the cell C1.
  • Base station 200 (DU 202) receives beam measurements from UE 100 in cell C1 and activates TCI state #2 corresponding to beams in cell C2 based on the beam measurements. Then, the UE 100 maintains the cell C1 as a serving cell and performs data communication with the cell C2 using radio resources set by the cell C1.
  • cell C1 which is a serving cell
  • cell C2 belonging to the same frequency intra-frequency as cell C1
  • UE 100 maintains cell C1 as a serving cell
  • NR supports TCI state setting, which is a higher layer setting for beamforming per CORESET.
  • TCI state setting is a higher layer setting for beamforming per CORESET.
  • UE 100 monitors a PDCCH search space associated with CORESET, UE 100 receives PDCCH on CORESET based on the TCI state settings configured for CORESET.
  • Beam information for PDCCH reception is implicitly recognized by the UE 100 by the QCL relationship between the downlink reference signal and the PDCCH demodulation reference signal (DMRS).
  • DMRS of PDCCH has a pseudo collocation relationship with downlink reference signals by QCL-TypeA and/or QCL-TypeD.
  • QCL-Type A corresponds to channel statistical properties observed at the UE 100 side, such as Doppler shift, Doppler spread, mean delay, delay spread.
  • QCL-TypeD corresponds to reception beam information on the UE 100 side.
  • the downlink reference signal and DMRS of PDCCH may be assumed that the downlink reference signal and DMRS of PDCCH have the same spatial reception parameters. If the PDCCH DMRS is in a pseudo-colocation relationship with the QCL-Type D downlink reference signal, the UE 100 can receive the PDCCH using the same spatial reception parameters used to receive the downlink reference signal in beamforming.
  • the base station 200 sets multiple TCI states for CORESET by RRC signaling.
  • Each TCI state includes parameters for downlink reference signal resources and QCL relationships between downlink reference signals and PDCCH DMRS ports for QCL-TypeA and QCL-TypeD.
  • UE 100 uses only one beam to receive one PDCCH. Therefore, if multiple TCI states are set for CORESET, the base station 200 activates one of the TCI states used for CORESET, for example using an activation command by MAC CE.
  • the UE 100 receives configuration information from the cell C1 (TRP201#1) by, for example, RRC signaling.
  • the setting information includes SSB settings used for beam measurement for cell C2 (TRP201#2) and settings necessary for using radio resources for data transmission/reception (including data transmission/reception with cell C2).
  • Configuration information may be transmitted from CU 203 to UE 100 via DU 202 and cell C1 (TRP 201 #1).
  • step S2 UE 100 performs beam measurement for cell C2 (TRP201#2) using the setting information (in particular, SSB setting) received in step S1 (step S2a), and sends a report including the measurement result to cell C1 (TRP201 #1) (step S2b).
  • DU 202 receives beam measurement results via cell C1 (TRP 201#1).
  • step S3 DU 202 sends an instruction to activate the TCI state associated with cell C2 (TRP201 #2) based on the beam measurement results received in step S2 via cell C1 (TRP201 #1) It transmits to UE100.
  • Such an activation indication is performed by layer 1 (PHY layer) and layer 2 (MAC layer, etc.) signaling.
  • the UE 100 activates the TCI state associated with the cell C2 (TRP201#2) in response to receiving the activation instruction from the cell C1. As a result, a beam pair is established between the UE 100 and the cell C2 (TRP201#2).
  • step S4 the UE 100 transmits and receives data to and from the cell C2 (TRP201#2) using the UE dedicated channel on the cell C2 (TRP201#2).
  • DU 202 transmits and receives data to and from UE 100 via cell C2 (TRP 201 #2).
  • the UE 100 is within the coverage of the cell C1 (TRP201#1) and receives the broadcast channel (BCCH) and paging channel (PCH), which are common channels, from the cell C1 (TRP201#1).
  • BCCH broadcast channel
  • PCH paging channel
  • the UE 100 can switch from cell C1 (TRP201 #1) to cell C2 (TRP201 #2) without depending on a switching instruction from a higher layer (in particular, the RRC layer).
  • Data communication can be switched from cell C1 (TRP201#1) to cell C2 (TRP201#2) by beam management in layer 1 (PHY layer) and layer 2 (MAC layer, etc.) without handover. That is, a cell for data communication can be realized by beam switching between layer 1 (PHY layer) and layer 2 (MAC layer, etc.).
  • the UE 100 may perform transmission power control on each of cell C1 (TRP201#1) and cell C2 (TRP201#2).
  • the UE 100 may perform random access (RA) to the cell C2 (TRP201#2) in order to adjust the timing of uplink transmission to the cell C2 (TRP201#2). Control is required.
  • RA random access
  • PRACH transmission power control for appropriately controlling the transmission power applied to such RA will be described.
  • PRACH is a physical channel for transmitting RA preambles.
  • Uplink transmissions include Sounding Reference Signal (SRS) transmissions, Physical Uplink Control Channel (PUCCH) transmissions, and Physical Uplink Shared Channel (PUSCH) transmissions.
  • SRS Sounding Reference Signal
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the SRS is an uplink reference signal and is used, for example, in the base station 200 to perform uplink channel estimation.
  • PUCCH is an uplink control channel and is a physical channel for transmitting uplink control information (UCI).
  • PUSCH is an uplink shared channel and is a physical channel for transmitting uplink data.
  • transmission power reduction processing is defined for the operation of communicating with a plurality of serving cells.
  • the UE 100 is based on the priority according to the type of uplink transmission and the priority according to the cell type, so that the total transmission power of uplink transmission is equal to or less than a predetermined maximum value. , allocate transmit power to each uplink transmission for each cell. Also in the above scenario, it is considered necessary for the UE 100 to perform transmission power reduction processing.
  • UE 100 (Configuration of communication device) A configuration of the UE 100 according to the embodiment will be described with reference to FIG. UE 100 includes communication unit 110 and control unit 120 .
  • the communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 .
  • the communication unit 110 has at least one transmitter 111 and at least one receiver 112 .
  • the transmitter 111 and receiver 112 may be configured to include multiple antennas and RF circuits.
  • the antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the control unit 120 performs various controls in the UE 100.
  • Control unit 120 controls communication with base station 200 via communication unit 110 .
  • the operations of the UE 100 described above and below may be operations under the control of the control unit 120 .
  • the control unit 120 may include at least one processor capable of executing a program and a memory that stores the program.
  • the processor may execute a program to operate the control unit 120 .
  • the control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs.
  • the memory may include at least one of ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Memory), and flash memory. All or part of the memory may be included within the processor.
  • the cell C1 ( TRP 201#1) and cell C2 (TRP 201#2) are set.
  • the receiving unit 112 receives reference signal information indicating the downlink reference signal transmitted by the cell C2 (TRP201#2) from the cell C1 (TRP201#1).
  • Control section 120 estimates the path loss with cell C2 (TRP201#2) based on the downlink reference signal received from cell C2 (TRP201#2) using the reference signal information, and estimates the RA for cell C2 (TRP201#2). based on the path loss.
  • Transmitting section 111 transmits the RA preamble to cell C2 (TRP201#2) with the determined transmission power. This makes it possible to appropriately control the transmission power applied to RA for cell C2 (TRP201#2).
  • control unit 120 controls uplink transmission power (for example, SRS transmission power, PUCCH transmission power, or PUSCH transmission power).
  • Control section 120 manages the transmission power adjustment state associated with cell C2 (TRP201#2) independently of the transmission power adjustment state associated with cell C1 (TRP201#1).
  • the transmitter 111 performs uplink transmission with the determined uplink transmission power. This makes it possible to appropriately control the uplink transmission power for cell C2 (TRP201#2).
  • the control unit 120 sets the total transmission power of uplink transmission to a predetermined maximum based on the transmission type priority according to the type of uplink transmission and the cell type priority according to the cell type.
  • a transmission power reduction process is performed to allocate transmission power to each uplink transmission for each cell so as to be equal to or less than the value.
  • the control unit 120 determines the cell type priority applied to the cell C2 (TRP201#2) based on the cell type priority applied to the cell C1 (TRP201#1). For example, the control unit 120 makes the cell type priority applied to the cell C2 (TRP201#2) equal to the cell type priority applied to the cell C1 (TRP201#1).
  • the configuration of the base station 200 according to the embodiment will be described with reference to FIG.
  • the base station 200 has a plurality of TRPs 201 (TRP 201 # 1 and TRP 201 # 2 in the example of FIG. 6), a communication section 210 , a network interface 220 and a control section 230 .
  • Each TRP 201 includes multiple antennas and is configured to enable beamforming.
  • TRP 201 may also be referred to as a panel or antenna panel.
  • the antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals.
  • Each TRP 201 is arranged in a distributed manner and constitutes a cell.
  • the communication unit 210 receives radio signals from the UE 100 and transmits radio signals to the UE 100.
  • the communication unit 210 has at least one transmitter 211 and at least one receiver 212 .
  • the transmitting section 211 and the receiving section 212 may be configured including an RF circuit.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the network interface 220 transmits and receives signals to and from the network.
  • the network interface 220 receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to adjacent base stations. Also, the network interface 220 receives signals from the core network device 300 connected via the NG interface, for example, and transmits signals to the core network device 300 .
  • the control unit 230 performs various controls in the base station 200.
  • the control unit 230 controls communication with the UE 100 via the communication unit 210, for example.
  • the control unit 230 controls communication with nodes (for example, adjacent base stations, core network device 300) via the network interface 220, for example.
  • the operations of the base station 200 described above and below may be operations under the control of the control unit 230 .
  • the control unit 230 may include at least one processor capable of executing programs and a memory storing the programs.
  • the processor may execute a program to operate the controller 230 .
  • Control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN.
  • the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
  • the communication unit 210 may be provided in the DU202, and the control unit 230 may be provided in the DU202 and/or the CU203.
  • the base station 200 configures the UE 100 with cell C1 (TRP201#1), which is a serving cell, and cell C2 (TRP201#2) belonging to the same frequency as cell C1 (TRP201#1). .
  • the transmitting section 211 transmits reference signal information indicating the downlink reference signal transmitted by the cell C2 (TRP201#2) to the UE 100 in the cell C1 (TRP201#1).
  • Receiving section 212 transmits the RA preamble transmitted from UE 100 with transmission power determined based on the downlink reference signal received from cell C2 (TRP201#2) using the reference signal information to cell C2 (TRP201#2). receive at
  • the transmission unit 211 provides association information that associates the identifier of the cell C2 (TRP201#2) with the identifier of the transmission power adjustment state that changes according to the transmission power control (TPC) command from the base station 200. is transmitted to the UE 100 in the cell C1 (TRP201#1).
  • the receiving unit 212 receives uplink transmission performed by the UE 100 with uplink transmission power determined based on the transmission power adjustment state associated with cell C2 (TRP201#2).
  • PRACH transmission power control (1) Operation Flow PRACH transmission power control in the UE 100 according to one embodiment will be described with reference to FIG.
  • the UE 100 may execute the operation flow shown in FIG. 7 between steps S2 and S4 in the procedure shown in FIG. 4, particularly between steps S3 and S4.
  • step S3 shown in FIG. 4 the UE 100 receives an instruction to activate the TCI state associated with the cell C2 (TRP201#2) from the cell C1 (TRP201#1), and then transfers the data to the cell C2 (
  • the operation flow shown in FIG. 7 is executed to transmit and receive with TRP 201#2).
  • step S11 the UE 100 (receiving section 112) receives reference signal information indicating the downlink reference signal transmitted by the cell C2 (TRP201#2) from the cell C1 (TRP201#1).
  • step S12 the UE 100 (control unit 230) receives the downlink reference signal from cell C2 (TRP 201 #2) using the reference signal information received in step S11, and based on the received downlink reference signal, the cell C2. Estimate the path loss with (TRP 201#2).
  • step S13 the UE 100 (control unit 230) determines the transmission power applied to RA for cell C2 (TRP201#2) based on the path loss estimated in step S12.
  • RA is contention-free random access (CFRA) or contention-based random access (CBRA).
  • step S14 the UE 100 (transmitting section 111) transmits the RA preamble to cell C2 (TRP201#2) with the transmission power determined in step S13.
  • step S101 the base station 200 (control unit 230) allocates a dedicated RA preamble to be used for RA for cell C2 (TRP201#2) to UE100.
  • a dedicated RA preamble is assigned exclusively to the UE 100 from among the RA preamble group prepared for the cell C2 (TRP201#2), and is an RA preamble that does not conflict with other UEs 100 in RA for the cell C2 (TRP201#2). be.
  • Base station 200 (transmitting section 211) transmits preamble information indicating a dedicated RA preamble allocated to UE 100 to UE 100 in cell C1 (TRP 201 #1).
  • UE 100 (receiving section 112) receives the preamble information.
  • base station 200 (transmitting section 211) may transmit preamble information indicating the dedicated RA preamble allocated to UE 100 in cell C1 (TRP 201 #1) to UE 100 in step S1 of the procedure in FIG.
  • the base station 200 determines to cause the UE 100 to perform RA for cell C2 (TRP201#2).
  • Base station 200 transmits to UE 100 in cell C1 (TRP201#1) a PDCCH command instructing execution of RA for cell C2 (TRP201#2).
  • the base station 200 transmits DCI of downlink control information (DCI) format 1_0 as a PDCCH command to the UE 100 on the PDCCH of the cell C1 (TRP201#1).
  • UE 100 receives the PDCCH command.
  • the PDCCH command for causing UE 100 to perform RA for cell C2 may be transmitted to UE 100 in a manner different from the PDCCH command for causing UE 100 to perform RA for cell C1 (TRP 201 #1).
  • the PDCCH command contains the index of the dedicated RA preamble to be used for RA for cell C2 (TRP201#2).
  • the dedicated RA preamble is the RA preamble assigned to the UE 100 in step S101.
  • the PDCCH command includes reference signal information (SS/PBCH index) indicating the SSB transmitted by cell C2 (TRP201#2).
  • step S103 UE 100 (receiving unit 112) receives from cell C2 (TRP201#2) based on the reference signal information (SS/PBCH index) included in the PDCCH command received from cell C1 (TRP201#1) in step S102. Receive SSB.
  • step S104 UE 100 (control unit 120) estimates the path loss with cell C2 (TRP201#2) based on the SSB received from cell C2 (TRP201#2) in step S103. This enables UE 100 (control section 120) to appropriately calculate transmission power to be applied to CFRA for cell C2 (TRP 201 #2). For example, UE 100 (control unit 120) measures the reception power of SSB received from cell C2 (TRP 201 #2) in step S103, and estimates the path loss by subtracting the reception power from the transmission power of SSB.
  • UE 100 (control unit 120) specifies the SSB transmission power by SSB transmission power information (ss-PBCH-BlockPower) transmitted in system information, for example, from cell C1 (TRP201 #1) or cell C2 (TRP201 #2). can.
  • SSB transmission power information SSB transmission power information
  • SSB transmission power information SSB transmission power information
  • SSB transmission power information SSB transmission power information
  • SSB transmission power information for example, from cell C1 (TRP201 #1) or cell C2 (TRP201 #2).
  • CSI-RS may estimate path loss using CSI-RS.
  • the transmission power of CSI-RS it may be specified using preset SSB transmission power information (ss-PBCH-BlockPower) and a predetermined offset value (powerControlOffsetSS), CSI-RS and / or SSB may be obtained as RSRP filtered in higher layers.
  • a PDCCH command may include CSI-RS information as reference signal information.
  • step S105 the UE 100 (control unit 120) determines the transmission power to be applied to CFRA for cell C2 (TRP201#2), specifically, the transmission power of PRACH, based on the path loss estimated in step S104. For example, the UE 100 (control unit 120) determines the sum of the target reception power of the RA preamble and the path loss as the transmission power of the PRACH.
  • step S106 the UE 100 (transmitting section 111) transmits a dedicated RA preamble on the PRACH to cell C2 (TRP201#2) with the transmission power determined in step S105.
  • Base station 200 receives the dedicated RA preamble in cell C2 (TRP201#2).
  • RA preamble transmission is referred to as Msg1 in the RA procedure.
  • Base station 200 (control section 230) generates an RA response in response to receiving the RA preamble.
  • the base station 200 transmits the RA response to the UE 100 on PDSCH in cell C1 (TRP201#1).
  • the base station 200 may transmit the RA response to the UE 100 on the PDSCH in cell C2 (TRP201#2).
  • UE 100 receives an RA response from cell C1 (TRP201#1) or cell C2 (TRP201#2).
  • RA Response transmission is referred to as Msg2 in the RA procedure.
  • the RA response contains timing alignment information and uplink grant.
  • the timing alignment information is information for adjusting the transmission timing from the UE 100 to the cell C2 (TRP201#2).
  • the uplink grant includes information indicating PUSCH resources allocated to UE 100 and a transmission power control command (TPC command) for adjusting PUSCH transmission power of UE 100 .
  • TPC command transmission power control command
  • UE 100 transmitting section 2111 performs PUSCH transmission with the transmission power adjusted by the TPC command using the allocated PUSCH resource.
  • the PDCCH command includes reference signal information (SS/PBCH index) indicating the SSB of cell C2 (TRP201#2).
  • UE 100 receives SSB from cell C2 (TRP201#2) based on the reference signal information (SS/PBCH index) included in the PDCCH command, and detects path loss with cell C2 (TRP201#2) based on the received SSB. estimate. This enables UE 100 (control section 120) to appropriately calculate transmission power to be applied to CFRA for cell C2 (TRP 201 #2).
  • the base station 200 transmits beam measurement setting information for setting a beam measurement reference signal used for beam measurement for cell C2 (TRP 201 #2) to UE 100 in cell C1 (TRP 201 #1). do.
  • the beam measurement setting information includes reference signal information indicating the SSB or channel state information reference signal (CSI-RS) transmitted by cell C2 (TRP201#2).
  • the UE 100 receives beam measurement setting information including reference signal information. Note that the base station 200 (transmitting section 211) may transmit beam measurement setting information including reference signal information to the UE 100 in the cell C1 (TRP 201#1) in step S1 of the procedure in FIG.
  • the base station 200 assigns to the UE 100 a dedicated RA preamble to be used for RA for cell C2 (TRP201#2).
  • Base station 200 transmits preamble information indicating a dedicated RA preamble allocated to UE 100 to UE 100 in cell C1 (TRP 201 #1).
  • UE 100 receives the preamble information.
  • Base station 200 transmitting section 211) may transmit preamble information indicating the dedicated RA preamble allocated to UE 100 in cell C1 (TRP 201 #1) to UE 100 in step S1 of the procedure in FIG.
  • step S113 the base station 200 (control unit 230) determines to cause the UE 100 to perform RA for cell C2 (TRP201#2).
  • Base station 200 transmits to UE 100 in cell C1 (TRP201#1) a PDCCH command instructing execution of RA for cell C2 (TRP201#2).
  • step S114 the UE 100 (receiving unit 112) receives downlink reference signals from the cell C2 (TRP201#2) based on the reference signal information included in the beam measurement configuration information received from the cell C1 (TRP201#1) in step S111. (SSB or CSI-RS).
  • step S115 UE 100 (control unit 120), based on the downlink reference signal (SSB or CSI-RS) received from cell C2 (TRP201 #2) in step S114, path loss with cell C2 (TRP201 #2) Estimate.
  • SSB downlink reference signal
  • TRP201 #2 path loss with cell C2 (TRP201 #2) Estimate.
  • This enables UE 100 (control section 120) to appropriately calculate transmission power to be applied to CFRA for cell C2 (TRP 201 #2).
  • UE 100 (control unit 120) measures the reception power of SSB received from cell C2 (TRP 201 #2) in step S114, and estimates the path loss by subtracting the reception power from the transmission power of SSB.
  • UE 100 (control unit 120) specifies the SSB transmission power by SSB transmission power information (ss-PBCH-BlockPower) transmitted in system information, for example, from cell C1 (TRP201 #1) or cell C2 (TRP201 #2). can.
  • SSB transmission power information SSB transmission power information
  • SSB transmission power information SSB transmission power information
  • SSB transmission power information SSB transmission power information
  • SSB transmission power information for example, from cell C1 (TRP201 #1) or cell C2 (TRP201 #2).
  • CSI-RS may estimate path loss using CSI-RS.
  • the transmission power of CSI-RS it may be specified using preset SSB transmission power information (ss-PBCH-BlockPower) and a predetermined offset value (powerControlOffsetSS), CSI-RS and / or SSB may be obtained as RSRP filtered in higher layers.
  • step S116 the UE 100 (control unit 120) determines the transmission power to be applied to CFRA for cell C2 (TRP201#2), specifically, the transmission power of PRACH, based on the path loss estimated in step S115. For example, the UE 100 (control unit 120) determines the sum of the target reception power of the RA preamble and the path loss as the transmission power of the PRACH.
  • steps S117 and S118 are the same as in the first operation example described above.
  • the beam measurement setting information for setting the beam measurement reference signal used for beam measurement for cell C2 is the downlink transmitted by cell C2 (TRP201#2). It includes reference signal information indicating a reference signal (SSB or CSI-RS).
  • UE 100 receives the downlink reference signal from cell C2 (TRP 201 #2) based on the reference signal information included in the beam measurement configuration information, and communicates with cell C2 (TRP 201 #2) based on the received downlink reference signal. Estimate path loss. This enables UE 100 (control section 120) to appropriately calculate transmission power to be applied to CFRA for cell C2 (TRP 201 #2).
  • the base station 200 transmits TCI state setting information for setting one or more TCI states for receiving PDCCH from cell C2 (TRP201#2) to cell C1 (TRP201#1). is transmitted to the UE 100 in.
  • the TCI state setting information includes reference signal information indicating a downlink reference signal (SSB or CSI-RS) transmitted by cell C2 (TRP201#2).
  • SSB downlink reference signal
  • each TCI state includes reference signal information consisting of parameters related to downlink reference signal resources, downlink reference signals related to QCL-Type A and QCL-Type D, and QCL relationships between DMRS ports of PDCCH.
  • UE 100 receives TCI state setting information including reference signal information.
  • the base station 200 may transmit TCI state setting information including reference signal information to the UE 100 in cell C1 (TRP201#1) in step S1 of the procedure in FIG.
  • step S122 the base station 200 (control unit 230) assigns to the UE 100 a dedicated RA preamble to be used for RA for cell C2 (TRP201#2).
  • Base station 200 transmits preamble information indicating a dedicated RA preamble allocated to UE 100 to UE 100 in cell C1 (TRP 201 #1).
  • UE 100 receives the preamble information.
  • step S123 the base station 200 (control unit 230) determines to cause the UE 100 to perform RA for cell C2 (TRP201#2).
  • Base station 200 transmits to UE 100 in cell C1 (TRP201#1) and/or cell C2 (TRP201#2) a PDCCH command instructing execution of RA for cell C2 (TRP201#2).
  • step S124 UE 100 (receiving unit 112) receives cell C1 (TRP201#1) and/or cell C2 (TRP201#2) in step S121 based on the reference signal information included in the TCI state setting information.
  • TRP 201#2 receives a downlink reference signal (SSB or CSI-RS).
  • SSB or CSI-RS downlink reference signal
  • the UE 100 (receiving unit 112) receives the downlink reference signal (SSB or CSI-RS) associated with the TCI state activated in step S3 of the procedure in FIG.
  • step S125 UE 100 (control unit 120), based on the downlink reference signal (SSB or CSI-RS) received from cell C2 (TRP201 #2) in step S124, path loss with cell C2 (TRP201 #2) Estimate.
  • SSB downlink reference signal
  • TRP201 #2 path loss with cell C2 (TRP201 #2) Estimate.
  • This enables UE 100 (control section 120) to appropriately calculate transmission power to be applied to CFRA for cell C2 (TRP 201 #2).
  • UE 100 (control unit 120) measures the reception power of SSB received from cell C2 (TRP 201 #2) in step S124, and estimates the path loss by subtracting the reception power from the transmission power of SSB.
  • UE 100 (control unit 120) specifies the SSB transmission power by SSB transmission power information (ss-PBCH-BlockPower) transmitted in system information, for example, from cell C1 (TRP201 #1) or cell C2 (TRP201 #2). can.
  • SSB transmission power information SSB transmission power information
  • SSB transmission power information SSB transmission power information
  • SSB transmission power information SSB transmission power information
  • SSB transmission power information for example, from cell C1 (TRP201 #1) or cell C2 (TRP201 #2).
  • CSI-RS may estimate path loss using CSI-RS.
  • the transmission power of CSI-RS it may be specified using preset SSB transmission power information (ss-PBCH-BlockPower) and a predetermined offset value (powerControlOffsetSS), CSI-RS and / or SSB may be obtained as RSRP filtered in higher layers.
  • step S126 the UE 100 (control unit 120) determines the transmission power to be applied to CFRA for cell C2 (TRP201#2), specifically, the transmission power of PRACH, based on the path loss estimated in step S125. For example, the UE 100 (control unit 120) determines the sum of the target reception power of the RA preamble and the path loss as the transmission power of the PRACH.
  • steps S127 and S128 are the same as in the first operation example described above.
  • the TCI state setting information for setting the TCI state for receiving the PDCCH from cell C2 is the downlink reference transmitted by cell C2 (TRP201#2). It contains reference signal information indicating the signal (SSB or CSI-RS).
  • UE 100 receives the downlink reference signal from cell C2 (TRP201#2) based on the reference signal information included in the TCI state setting information, and communicates with cell C2 (TRP201#2) based on the received downlink reference signal. Estimate path loss. This enables UE 100 (control section 120) to appropriately calculate transmission power to be applied to CFRA for cell C2 (TRP 201 #2).
  • step S201 the base station 200 performs the operation of step S1 of the procedure in FIG. Specifically, the base station 200 (transmitting section 211) transmits configuration information regarding the cell C2 (TRP201#2) to the UE 100 in the cell C1 (TRP201#1) by RRC signaling, for example.
  • the setting information includes SSB settings used for beam measurement for cell C2 (TRP201#2) and settings necessary for using radio resources for data transmission/reception (including data transmission/reception with cell C2).
  • the base station 200 (transmitting section 211) transmits RA configuration information regarding one or more RA resources (CBRA preamble group) that can be used for CBRA for cell C2 (TRP201#2) to cell C1 (TRP201#1). ) to the UE 100.
  • CBRA preamble group RA configuration information regarding one or more RA resources
  • Such a CBRA preamble is an RA preamble that can compete with other UEs 100.
  • the RA configuration information (each RA resource) includes reference signal information indicating the SSB of cell C2 (TRP201#2) as a downlink reference signal.
  • UE 100 (receiving unit 112) receives the setting information.
  • the UE 100 determines to perform CBRA to cell C2 (TRP201#2).
  • the factor that determines the execution of CBRA may be a PDCCH command from base station 200 (transmitter 211), or may be initiated by a higher layer command such as MAC or RRC.
  • the PDCCH command for performing CBRA here may be specified by notifying a predetermined preamble index (for example, the value of RA-PreambleIndex included in the PDCCH command is provided as 0b000000).
  • UE 100 randomly selects an RA preamble from among a group of CBRA preambles that can be used for CBRA for cell C2 (TRP201#2) based on the RA setting information received in step S201.
  • UE 100 (control unit 120) identifies the SSB associated with the selected RA preamble. That is, UE 100 (control section 120) selects a CBRA preamble from RA resources notified from base station 200, and identifies an SSB associated with the selected CBRA preamble.
  • step S203 the UE 100 (receiving unit 112) receives the SSB identified in step S202 from cell C2 (TRP201#2).
  • step S204 UE 100 (control unit 120) estimates the path loss with cell C2 (TRP201#2) based on the SSB received from cell C2 (TRP201#2) in step S203. This enables UE 100 (control section 120) to appropriately calculate transmission power to be applied to CBRA for cell C2 (TRP 201 #2). For example, UE 100 (control unit 120) measures the reception power of SSB received from cell C2 (TRP 201 #2) in step S203, and estimates the path loss by subtracting the reception power from the transmission power of SSB.
  • UE 100 (control unit 120) specifies the SSB transmission power by SSB transmission power information (ss-PBCH-BlockPower) transmitted in system information, for example, from cell C1 (TRP201 #1) or cell C2 (TRP201 #2). can.
  • SSB transmission power information SSB transmission power information
  • SSB transmission power information SSB transmission power information
  • SSB transmission power information SSB transmission power information
  • SSB transmission power information for example, from cell C1 (TRP201 #1) or cell C2 (TRP201 #2).
  • CSI-RS may estimate path loss using CSI-RS.
  • the transmission power of CSI-RS it may be specified using preset SSB transmission power information (ss-PBCH-BlockPower) and a predetermined offset value (powerControlOffsetSS), CSI-RS and / or SSB may be obtained as RSRP filtered in higher layers.
  • step S205 the UE 100 (control unit 120) determines the transmission power applied to CBRA for cell C2 (TRP201#2), specifically, the transmission power of PRACH, based on the path loss estimated in step S204. For example, the UE 100 (control unit 120) determines the sum of the target reception power of the RA preamble and the path loss as the transmission power of the PRACH.
  • step S206 the UE 100 (transmitting section 111) transmits the CBRA preamble on the PRACH to cell C2 (TRP201#2) with the transmission power determined in step S205.
  • Base station 200 receives the CBRA preamble in cell C2 (TRP201#2).
  • Base station 200 (control section 230) generates an RA response in response to receiving the RA preamble.
  • the base station 200 transmits the RA response to the UE 100 on PDSCH in cell C1 (TRP201#1).
  • the base station 200 may transmit the RA response to the UE 100 on the PDSCH in cell C2 (TRP201#2).
  • UE 100 receives an RA response from cell C1 (TRP201#1) or cell C2 (TRP201#2).
  • the RA response includes an RA preamble identifier, timing alignment information, uplink grant, and temporary C-RNTI.
  • the UE 100 determines RA success upon receiving an RA response including the same RA preamble identifier as the RA preamble of Msg1.
  • the timing alignment information is information for adjusting the transmission timing from the UE 100 to the cell C2 (TRP201#2).
  • the uplink grant includes information indicating PUSCH resources allocated to UE 100 and a transmission power control command (TPC command) for adjusting PUSCH transmission power of UE 100 .
  • TPC command transmission power control command
  • UE 100 transmitting section 211) performs PUSCH transmission with the transmission power adjusted by the TPC command using the allocated PUSCH resource.
  • the RA configuration information includes one or more RA resources (CBRA preamble group) that can be used for CBRA for cell C2 (TRP201#2), and each RA resource is a cell It includes reference signal information indicating the SSB of C2 (TRP201#2).
  • UE 100 receives SSB from cell C2 (TRP 201 #2) based on the reference signal information included in the RA configuration information, and estimates the path loss with cell C2 (TRP 201 #2) based on the received SSB. This enables UE 100 (control section 120) to appropriately calculate transmission power to be applied to CBRA for cell C2 (TRP 201 #2).
  • the UE 100 may determine the transmission power of the SRS as the uplink transmission power.
  • UE 100 may determine the transmission power of PUCCH as the uplink transmission power.
  • the UE 100 may determine the transmission power of PUSCH as the uplink transmission power.
  • the UE 100 may receive, from the cell C1 (TRP201#1), association information that associates the identifier of the cell C2 (TRP201#2) with the identifier of the transmission power adjustment state.
  • the transmission power adjustment state is a variable that changes according to the TPC command from the base station 200, and is used in the uplink transmission power calculation formula. This allows the base station 200 to set the transmission power adjustment state for cell C2 (TRP201#2). For example, when the transmission power adjustment state obtained by accumulating and calculating the correction value obtained from the TPC command is applied to the transmission power (which may be referred to as TPC accumulation), the relative Specify a value (up or down).
  • the transmit power adjustment state may be increased according to an increase value specified by the TPC command and decreased according to a decrease value specified by the TPC command.
  • one correction value received immediately before is applied to the transmission power as a transmission power adjustment state without accumulating and calculating the correction values obtained from the TPC commands (this may be referred to as TPC absolute).
  • the TPC command may include, for example, the TPC command of PUSCH in the DCI of the uplink scheduling grant, or the PUCCH for transmitting uplink control information including HARQ-ACK for downlink data in the DCI of the downlink scheduling assignment.
  • the TPC command may include a TPC command for
  • the TPC command may be notified using a non-scheduling DCI that is not used for scheduling, and is notified using a DCI (eg, DCI format 2_2) used for transmitting TPC commands for PUSCH and PUSCH.
  • DCI for example, DCI format 2_3 used to transmit a group of TPC commands for SRS transmission to one or more UEs 100 may be used for notification.
  • the association information may be transmitted and set from the base station 200 to the UE 100 in step S1 of the procedure in FIG.
  • the UE 100 (receiving unit 112) includes configuration information used for beam measurement for cell C2 (TRP201 #2), configuration information related to radio resources for data communication with cell C2 (TRP201 #2), is received from the cell C1 (TRP201#1), and association information that associates the identifier of the cell C2 (TRP201#2) with the identifier of the transmission power adjustment state may be received from the cell C1 (TRP201#1).
  • UE 100 manages the transmission power adjustment state associated with cell C2 (TRP201#2) independently of the transmission power adjustment state associated with cell C1 (TRP201#1). do. For example, UE 100 (control unit 120) changes the transmission power adjustment state associated with cell C2 (TRP201#2) in response to receiving a TPC command for cell C2 (TRP201#2) from base station 200. Update. Further, UE 100 (control unit 120) changes the transmission power adjustment state associated with cell C1 (TRP201 #1) in response to receiving the TPC command for cell C1 (TRP201 #1) from base station 200. You may update.
  • the UE 100 determines uplink transmission power based on the transmission power adjustment state. For example, UE 100 (control section 120) determines uplink transmission power for cell C2 (TRP201#2) based on the transmission power adjustment state associated with cell C2 (TRP201#2). Also, the UE 100 (control section 120) may determine the uplink transmission power for the cell C1 (TRP201#1) based on the transmission power adjustment state associated with the cell C1 (TRP201#1).
  • step S24 the UE 100 (transmitting unit 111) performs uplink transmission with the uplink transmission power determined in step S23.
  • UE 100 transmitting section 111 performs uplink transmission to cell C2 (TRP201#2) with uplink transmission power determined for cell C2 (TRP201#2).
  • the UE 100 may perform uplink transmission to the cell C1 (TRP201#1) with the determined uplink transmission power for the cell C1 (TRP201#1).
  • UE 100 manages the transmission power adjustment state associated with cell C2 (TRP201 #2), which is a non-serving cell, independently of the transmission power adjustment state associated with cell C1 (TRP201 #1). . This makes it possible to appropriately determine the uplink transmission power for cell C2 (TRP201#2).
  • UE 100 sets SRS transmission power P SRS,b,f,c , PUCCH transmission power P PUCCH,b,f,c , and PUSCH transmission power P PUSCH,b,f,c as follows: Determined by a formula (see 3GPP TS38.213).
  • j is a parameter set configuration (parameter set config.)
  • q s " and “q d” are reference signal resource identifiers (RS resource)
  • q s " is a p0-PUCCH identifier (p0-PUCCH id)
  • "l” means the identifier of the transmission power adjustment state.
  • the base station 200 may notify and configure the UE 100 of association information that associates "1" as the identifier "l” of the transmission power adjustment state with the cell C2 (TRP 201 #2).
  • the uplink transmission power P'i for cell C2 may be determined in association with cell C1 (TRP201#1).
  • "c" representing a serving cell may be shared between cell C1 (TRP 201#1) and cell C2 (TRP 201#2).
  • UE 100 (control unit 120) further based on the path loss (PL b,f,c ) estimated using the reference signal resource associated with cell C2 (TRP201#2) for cell C2 (TRP201#2) Uplink transmit power may be determined.
  • the pathloss (PL b,f,c ) may be the pathloss estimated by the PRACH transmission power control described above.
  • UE 100 (receiving unit 112), in step S21 described above, receives the association information that associates the identifier of cell C2 (TRP201#2) with the identifier of the reference signal resource (q d ) from cell C1 (TRP201#1). may The UE 100 (control unit 120) may identify the reference signal resource of the cell C2 (TRP201#2) and estimate the path loss based on the association information.
  • UE 100 determines uplink transmission power for cell C2 (TRP201#2) further based on the power control parameter set configuration (parameter set config.) associated with cell C2 (TRP201#2).
  • Transmission power reduction processing Transmission power reduction processing in the UE 100 according to one embodiment will be described with reference to FIG. 14 .
  • step S31 the UE 100 (control unit 120) determines in advance the total transmission power of each channel determined by the method described above, that is, the total transmission power of uplink transmission in a certain transmission opportunity (i). It is determined whether or not it is less than or equal to the maximum value.
  • the predetermined maximum value is a legal maximum value, and may be a value specified in the technical specifications of 3GPP (eg, TS38.101).
  • step S31 When the total transmission power of uplink transmission is equal to or less than the maximum value (step S31: YES), transmission power reduction processing is not performed, and UE 100 (transmitting unit 111) performs uplink transmission of each channel in a certain transmission opportunity (i). (step S35).
  • step S32 the UE 100 (control unit 120) determines that the uplink transmission in the transmission opportunity (i) is cell C2, which is a non-serving cell. It is determined whether or not uplink transmission for (TRP201#2) is included. If the uplink transmission in transmission opportunity (i) does not include uplink transmission for cell C2 (TRP201#2) (step S32: NO), operation proceeds to step S34.
  • uplink transmission in transmission opportunity (i) includes uplink transmission to cell C2 (TRP201#2) (step S32: YES), in step S33, UE 100 (control unit 120) controls cell C1 (TRP201#1).
  • the cell type priority applied to cell C2 (TRP 201#2) is determined based on the cell type priority applied to .
  • the UE 100 (control unit 120) may make the cell type priority applied to the cell C2 (TRP201#2) equal to the cell type priority applied to the cell C1 (TRP201#1).
  • step S34 the UE 100 (control unit 120) performs transmission power reduction processing for transmission opportunity (i). Specifically, the UE 100 (control unit 120) determines in advance the total transmission power of uplink transmission based on the transmission type priority according to the type of uplink transmission and the cell type priority according to the cell type. Allocate transmit power to each uplink transmission for each cell so that it is less than or equal to the specified maximum value.
  • TRP201#2 uplink transmission for cell C2
  • TRP201#1 the same priority as the cell type priority applied to cell C1
  • TRP201#2 the same priority as the cell type priority applied to cell C1 (TRP201#1) is given to cell C2 (TRP201#2).
  • TRP201#1 may perform uplink transmission to cell C1 (TRP201#1) and uplink transmission to cell C2 (TRP201#2) at different timings, so this is applied to cell C1 (TRP201#1). There is no problem in giving cell C2 (TRP201#2) the same priority as the cell type priority to be used.
  • step S35 the UE 100 (transmitting unit 111) performs uplink transmission for transmission opportunity (i).
  • the highest priority is given to PRACH transmission in the primary cell (PCell), the next highest priority is given to PUCCH transmission and PUSCH transmission, and the lowest priority is given to SRS transmission or PRACH transmission in cells other than the primary cell. Given. Also, in the case of the same priority and carrier aggregation, a higher priority is given to the primary cell than to the secondary cell.
  • the operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • the mobile communication system 1 based on NR has been described as an example.
  • the mobile communication system 1 may be a TS-compliant system of either LTE or another generation system (eg, 6th generation) of the 3GPP standard.
  • Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE.
  • the mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard.
  • the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • a program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided.
  • the program may be recorded on a computer readable medium.
  • a computer readable medium allows the installation of the program on the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM or DVD-ROM.
  • circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC).
  • “transmit” may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. may mean sending to Alternatively, “transmitting” may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire.
  • “receive” may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, “receiving” may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.
  • “obtain/acquire” may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes.
  • the first cell (C1) and the second cell (C2) belonging to the same frequency as the serving cell (C1) and the first cell (C1) are managed by the base station (200) that manages the first cell (C1) and the second cell ( A communication device (100) in which C2) is set, a communication unit (110) that performs uplink transmission to the base station (200); Based on the transmission type priority according to the type of uplink transmission and the cell type priority according to the cell type, so that the total transmission power of the uplink transmission is equal to or less than a predetermined maximum value, each A control unit (120) that performs a transmission power reduction process that allocates transmission power to each uplink transmission for a cell, The control unit (120) determines the cell type priority applied to the second cell (C2) based on the cell type priority applied to the first cell (C1) Communication device (100) .
  • Appendix 2 The communication device according to appendix 1, wherein the control unit (120) makes the cell type priority applied to the second cell (C2) equal to the cell type priority applied to the first cell (C1). (100).
  • the second cell (C2) is composed of a transmission/reception point (TRP) of the base station (200) and has a physical cell identifier (PCI) different from that of the first cell (C1).
  • TRP transmission/reception point
  • PCI physical cell identifier
  • the second cell (C2) is a non-serving cell;
  • the control unit (120) performs data communication with the second cell (C2) while maintaining the first cell (C1) as the serving cell. ).
  • the first cell (C1) and the second cell (C2) belonging to the same frequency as the serving cell (C1) and the first cell (C1) are managed by the base station (200) that manages the first cell (C1) and the second cell (
  • a communication method used in a communication device (100) in which C2) is set determining the cell type priority applied to the second cell (C2) based on the cell type priority applied to the first cell (C1) (S33);

Abstract

サービングセルである第1セル(C1)及び第1セル(C1)と同じ周波数に属する第2セル(C2)を管理する基地局(200)によって第1セル(C1)及び第2セル(C2)が設定される通信装置(100)は、第1セル(C1)に適用するセル種別優先度に基づいて、第2セル(C2)に適用するセル種別優先度を決定し、上りリンク送信の種別に応じた送信種別優先度及びセルの種別に応じたセル種別優先度に基づいて、上りリンク送信の総送信電力が予め定められた最大値以下になるように、各セルに対する各上りリンク送信に送信電力を割り当てる送信電力低減処理を行い、基地局(200)に対する上りリンク送信を行う。

Description

通信装置及び通信方法 関連出願への相互参照
 本出願は、2021年7月29日に出願された特許出願番号2021-124803号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。
 本開示は、移動通信システムで用いる通信装置及び通信方法に関する。
 移動通信システムの標準化プロジェクトである3GPP(登録商標。以下同じ)(3rd Generation Partnership Project)において、MIMO(multi-input multi-output)の拡張として、複数送受信ポイント(TRP:Transmission/Reception Point)伝送の導入が検討されている。
 複数TRP伝送のシナリオにおいて、サービングセルである第1セル及び当該第1セルと同じ周波数(イントラ周波数)に属する第2セルが通信装置に設定され、通信装置が第1セルをサービングセルとして維持しつつ、第2セルとのデータ通信を行うモデルが想定されている(非特許文献1乃至3参照)。ここで、第2セルは、第1セルとは異なるTRPにより構成され、且つ物理セル識別子(PCI)が第1セルとは異なるセル(cell having TRP with different PCI)である。
 一方、3GPPの技術仕様において、複数のサービングセルとの通信を行う動作について、上りリンク送信の種別に応じた優先度及びセルの種別に応じた優先度に基づいて、上りリンク送信の総送信電力が予め定められた最大値以下になるように、各セルに対する各上りリンク送信に送信電力を割り当てる送信電力低減処理(transmission power reduction)が規定されている。
 上述の複数TRP伝送シナリオにおいても、通信装置は、技術仕様で規定されるような送信電力低減処理を行うことが必要であると考えられる。しかしながら、従来の送信電力低減処理はサービングセルに対して適用されるため、サービングである第1セルに加えてサービングセルではない第2セルが設定された場合において送信電力低減処理を適切に行うことができない懸念がある。
 そこで、本開示は、サービングセルである第1セル及び当該第1セルと同じ周波数に属する第2セルが設定される場合において送信電力低減処理を適切に行うことを可能とする通信装置及び通信方法を提供することを目的とする。
 第1の態様に係る通信装置は、サービングセルである第1セル及び前記第1セルと同じ周波数に属する第2セルを管理する基地局によって前記第1セル及び前記第2セルが設定される装置である。前記通信装置は、前記基地局に対する上りリンク送信を行う通信部と、前記上りリンク送信の種別に応じた送信種別優先度及びセルの種別に応じたセル種別優先度に基づいて、前記上りリンク送信の総送信電力が予め定められた最大値以下になるように、各セルに対する各上りリンク送信に送信電力を割り当てる送信電力低減処理を行う制御部と、を備える。前記制御部は、前記第1セルに適用する前記セル種別優先度に基づいて、前記第2セルに適用する前記セル種別優先度を決定する。
 第2の態様に係る通信方法は、サービングセルである第1セル及び前記第1セルと同じ周波数に属する第2セルを管理する基地局によって前記第1セル及び前記第2セルが設定される通信装置で用いる方法である。前記通信方法は、前記第1セルに適用するセル種別優先度に基づいて、前記第2セルに適用するセル種別優先度を決定するステップと、上りリンク送信の種別に応じた送信種別優先度及びセルの種別に応じた前記セル種別優先度に基づいて、前記上りリンク送信の総送信電力が予め定められた最大値以下になるように、各セルに対する各上りリンク送信に送信電力を割り当てる送信電力低減処理を行うステップと、前記基地局に対する上りリンク送信を行うステップと、を備える。
実施形態に係る移動通信システムの構成を示す図である。 実施形態に係る移動通信システムにおけるプロトコルスタックの構成例を示す図である。 実施形態に係る移動通信システムにおける想定シナリオを示す図である。 実施形態に係る想定シナリオにおける基本的なプロシージャを示す図である。 実施形態に係るUEの構成を示す図である。 実施形態に係る基地局の構成を示す図である。 一実施形態に係るUEにおけるPRACH送信電力制御を示す図である。 CFRAの場合におけるPRACH送信電力制御の第1動作例を示す図である。 CFRAの場合におけるPRACH送信電力制御の第2動作例を示す図である。 CFRAの場合におけるPRACH送信電力制御の第3動作例を示す図である。 CBRAの場合におけるPRACH送信電力制御の動作例を示す図である。 一実施形態に係るUEにおける上りリンク送信電力制御を示す図である。 一実施形態に係るUEにおける上りリンク送信電力制御の具体例を示す図である。 一実施形態に係るUEにおける送信電力低減処理を示す図である。 一実施形態に係るUEにおける送信電力低減処理の具体例を示す図である。
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (移動通信システムの構成)
 図1を参照して、実施形態に係る移動通信システム1の構成について説明する。移動通信システム1は、例えば、3GPPの技術仕様(Technical Specification:TS)に準拠したシステムである。以下において、移動通信システム1として、3GPP規格の第5世代システム(5th Generation System:5GS)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。
 移動通信システム1は、ネットワーク10と、ネットワーク10と通信する通信装置(User Equipment:UE)100とを有する。ネットワーク10は、5Gの無線アクセスネットワークであるNG-RAN(Next Generation Radio Access Network)20と、5Gのコアネットワークである5GC(5G Core Network)30とを含む。
 UE100は、ユーザにより利用される装置である。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な装置である。UE100は、車両(例えば、車、電車など)又はこれに設けられる装置であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機など)又はこれに設けられる装置であってよい。UE100は、センサ又はこれに設けられる装置であってよい。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。
 NG-RAN20は、複数の基地局200を含む。各基地局200は、少なくとも1つのセルを管理する。セルは、通信エリアの最小単位を構成する。例えば、1つのセルは、1つの周波数(キャリア周波数)に属し、1つのコンポーネントキャリアにより構成される。用語「セル」は、無線通信リソースを表すことがあり、UE100の通信対象を表すこともある。各基地局200は、自セルに在圏するUE100との無線通信を行うことができる。基地局200は、RANのプロトコルスタックを使用してUE100と通信する。基地局200は、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続される。このようなNRの基地局200は、gNodeB(gNB)と称されることがある。
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、例えば、AMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)を含む。AMFは、UE100のモビリティ管理を行う。UPFは、ユーザプレーン処理に特化した機能を提供する。AMF及びUPFは、NGインターフェイスを介して基地局200と接続される。
 図2を参照して、実施形態に係る移動通信システム1におけるプロトコルスタックの構成例について説明する。
 UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRC(Radio Resource Control)レイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 物理チャネルは、時間領域における複数のOFDMシンボルと周波数領域における複数のサブキャリアとで構成される。1つのサブフレームは、時間領域で複数のOFDMシンボルで構成される。リソースブロックは、リソース割当単位であり、複数のOFDMシンボルと複数のサブキャリアとで構成される。フレームは、10msで構成されることができ、1msで構成された10個のサブフレームを含むことができる。サブフレーム内には、サブキャリア間隔に応じた数のスロットが含まれることができる。
 物理チャネルの中で、物理下りリンク制御チャネル(PDCCH)は、例えば、下りリンクスケジューリング割り当て、上りリンクスケジューリンググラント、及び送信電力制御等の目的で中心的な役割を果たす。
 NRでは、UE100は、システム帯域幅(すなわち、セルの帯域幅)よりも狭い帯域幅を使用できる。基地局200は、連続するPRBからなる帯域幅部分(BWP)をUE100に設定する。UE100は、アクティブなBWPにおいてデータ及び制御信号を送受信する。UE100には、例えば、最大4つのBWPが設定可能である。各BWPは、異なるサブキャリア間隔を有していてもよいし、周波数が相互に重複していてもよい。UE100に対して複数のBWPが設定されている場合、基地局200は、ダウンリンクにおける制御によって、どのBWPをアクティブ化するかを指定できる。これにより、基地局200は、UE100のデータトラフィックの量等に応じてUE帯域幅を動的に調整でき、UE電力消費を減少させ得る。
 基地局200は、例えば、サービングセル上の最大4つのBWPのそれぞれに最大3つの制御リソースセット(CORESET:control resource set)を設定できる。CORESETは、UE100が受信すべき制御情報のための無線リソースである。UE100には、サービングセル上で最大12個のCORESETが設定され得る。各CORESETは、0乃至11のインデックスを有する。例えば、CORESETは、6つのリソースブロック(PRB)と、時間領域内の1つ、2つ、又は3つの連続するOFDMシンボルとにより構成される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS))及びUE100への割当リソースを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。
 RRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300(AMF)のNASレイヤとの間では、NASシグナリングが伝送される。なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
 (想定シナリオ)
 図3を参照して、実施形態に係る移動通信システム1における想定シナリオについて説明する。
 基地局200は、TRP201#1と、TRP201#2と、DU(Distributed Unit)202と、CU(central unit)203とを有する。図3において、基地局200がDU202及びCU203に分離されている一例を示しているが、基地局200がDU202及びCU203に分離されていなくてもよい。また、基地局200のTRP201の数が2つである一例を示しているが、基地局200のTRP201の数が3つ以上であってもよい。
 TRP201#1及びTRP201#2は、分散して配置され、互いに異なるセルを構成する。具体的には、TRP201#1はセルC1を形成し、TRP201#2はセルC2を形成する。
 セルC1及びセルC2は、同じ周波数に属する。セルC1及びセルC2は、物理セル識別子(PCI)が互いに異なる。すなわち、セルC2は、セルC1に対応するTRP201#1とは異なるTRP#2により構成され、且つPCIがセルC1とは異なるセル(cell having TRP with different PCI)である。図3において、セルC2のカバレッジがセルC1のカバレッジ内にある一例を示しているが、セルC2のカバレッジは、セルC1のカバレッジと少なくとも一部が重複していればよい。
 DU202は、TRP201#1及びTRP201#2を制御する。換言すると、TRP201#1及びTRP201#2は、同一のDU202の配下にある。DU202は、上述のプロトコルスタックに含まれる下位レイヤ、例えば、RLCレイヤ、MACレイヤ及びPHYレイヤを含むユニットである。DU202は、フロントホールインターフェイスであるF1インターフェイスを介してCU203と接続される。
 CU203は、DU202を制御する。CU203は、上述のプロトコルスタックに含まれる上位レイヤ、例えば、RRCレイヤ、SDAPレイヤ及びPDCPレイヤを含むユニットである。CU203は、バックホールインターフェイスであるNGインターフェイスを介してコアネットワーク(5GC30)と接続される。
 UE100は、RRCコネクティッド状態にあり、基地局200との無線通信を行う。NRは、ミリ波帯といった高周波数帯による広帯域伝送が可能であるが、このような高周波数帯の電波における電波減衰を補うために、基地局200とUE100との間でビームフォーミングを利用し、高いビーム利得を得ている。基地局200及びUE100は、ビームペアを確立する。
 UE100は、サービングであるセルC1(TRP201#1)とのデータ通信を行う。具体的には、UE100は、送信設定指示子(TCI)状態#1に対応するビームを用いてセルC1とのデータ通信を行う。UE100には、セルC1に加えて、非サービングセルであるセル2が設定される。例えば、UE100には、セルC2に対するビーム測定を行うためのSSB(SS/PBCH Block)、及びセル2とのデータ通信を行うための無線リソースがセルC1から設定される。なお、SSBは、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)、PBCH(Physical Broadcast Channel)、及び復調参照信号(DMRS)を含む。例えば、SSBは、時間領域において連続した4つのOFDMシンボルから構成されてもよい。また、SSBは、周波数領域において連続した240サブキャリア(すなわち、20リソースブロック)から構成されてもよい。PBCHは、マスタ情報ブロック(MIB)を運ぶ物理チャネルである。
 UE100は、セルC2に対するビーム測定の結果をセルC1に報告する。基地局200(DU202)は、UE100からのビーム測定結果をセルC1において受信し、ビーム測定結果に基づいて、セルC2のビームに対応するTCI状態#2をアクティブ化する。そして、UE100は、セルC1をサービングセルとして維持しつつ、セルC1から設定された無線リソースを用いてセルC2とのデータ通信を行う。
 このように、実施形態では、複数TRP伝送のシナリオにおいて、サービングセルであるセルC1及び当該セルC1と同じ周波数イントラ周波数に属するセルC2がUE100に設定され、UE100がセルC1をサービングセルとして維持しつつ、セルC2とのデータ通信を行うモデルを想定する。
 ここで、NRにおけるビームフォーミングに関して説明する。PDCCHのマルチビーム動作を行うために、NRは、CORESETごとにビームフォーミングのための上位レイヤ設定であるTCI状態設定をサポートする。UE100がCORESETと対応付けられたPDCCHサーチスペースを監視する場合、UE100は、CORESETに対して設定されたTCI状態設定に基づいてCORESETでPDCCHを受信する。PDCCH受信のためのビーム情報は、下りリンク参照信号とPDCCHの復調用参照信号(DMRS)との間の疑似コロケーション(Quasi-Co-Location:QCL)関係によってUE100に暗黙的に認識される。PDCCHのDMRSは、QCL-TypeA及び/又はQCL-TypeDにより下りリンク参照信号と疑似コロケーション関係にある。QCL-TypeAは、ドップラーシフト、ドップラースプレッド、平均遅延、遅延スプレッドなど、UE100側で観測されたチャネル統計プロパティに対応する。QCL-TypeDは、UE100側の受信ビーム情報に対応する。QCL-TypeDの場合、下りリンク参照信号とPDCCHのDMRSとで空間受信パラメータが同じであると仮定できてもよい。PDCCHのDMRSがQCL-TypeDの下りリンク参照信号と疑似コロケーション関係にある場合、UE100がビームフォーミングで下りリンク参照信号を受信するために用いるのと同じ空間受信パラメータを使用してPDCCHを受信できる。
 例えば、基地局200は、RRCシグナリングにより、CORESETについて複数のTCI状態を設定する。各TCI状態には、下りリンク参照信号リソースに関するパラメータと、QCL-TypeA及びQCL-TypeDに関する下りリンク参照信号及びPDCCHのDMRSポート間のQCL関係が含まれる。UE100は、1つのPDCCHを受信するために1つのビームのみを用いる。したがって、複数のTCI状態がCORESETに設定されている場合、基地局200は、例えばMAC CEによるアクティブ化コマンドを用いて、CORESETに使用されるTCI状態の1つをアクティブ化する。
 図4を参照して、実施形態に係る想定シナリオにおける基本的なプロシージャについて説明する。
 ステップS1において、UE100は、例えばRRCシグナリングによりセルC1(TRP201#1)から設定情報を受信する。設定情報は、セルC2(TRP201#2)に対するビーム測定に用いるSSBの設定と、データの送受信(セルC2とのデータ送受信を含む)のための無線リソースを用いるために必要な設定とを含む。設定情報は、CU203からDU202及びセルC1(TRP201#1)を介してUE100に送信されてもよい。
 ステップS2において、UE100は、ステップS1で受信した設定情報(特に、SSB設定)を用いてセルC2(TRP201#2)に対するビーム測定を行い(ステップS2a)、測定結果を含む報告をセルC1(TRP201#1)に送信する(ステップS2b)。DU202は、セルC1(TRP201#1)を介してビーム測定結果を受信する。
 ステップS3において、DU202は、ステップS2で受信したビーム測定結果に基づいて、セルC2(TRP201#2)と対応付けられたTCI状態をアクティブ化する指示を、セルC1(TRP201#1)を介してUE100に送信する。このようなアクティブ化指示は、レイヤ1(PHYレイヤ)及びレイヤ2(MACレイヤ等)のシグナリングにより行われる。UE100は、セルC1からのアクティブ化指示の受信に応じて、セルC2(TRP201#2)と対応付けられたTCI状態をアクティブ化する。その結果、UE100とセルC2(TRP201#2)とのビームペアが確立される。
 ステップS4において、UE100は、セルC2(TRP201#2)上のUE専用チャネルを用いてデータをセルC2(TRP201#2)と送受信する。DU202は、セルC2(TRP201#2)を介してデータをUE100と送受信する。
 なお、UE100は、セルC1(TRP201#1)のカバレッジ内にあり、共通チャネルであるブロードキャストチャネル(BCCH)やページングチャネル(PCH)をセルC1(TRP201#1)から受信する。
 このようなシナリオ及びプロシージャによれば、UE100は、上位レイヤ(特に、RRCレイヤ)からの切り替え指示に依存せずに、且つ、セルC1(TRP201#1)からセルC2(TRP201#2)へのハンドオーバを行うことなく、レイヤ1(PHYレイヤ)及びレイヤ2(MACレイヤ等)におけるビーム管理により、データ通信をセルC1(TRP201#1)からセルC2(TRP201#2)に切り替えることができる。すなわち、データ通信を行うセルをレイヤ1(PHYレイヤ)及びレイヤ2(MACレイヤ等)によるビーム切り替えによって実現できる。
 上述のシナリオにおいて、UE100は、セルC1(TRP201#1)及びセルC2(TRP201#2)のそれぞれに対して送信電力制御を行うことが必要であると考えられる。例えば、UE100は、例えばセルC2(TRP201#2)に対する上りリンク送信のタイミング調整を行うために、セルC2(TRP201#2)に対してランダムアクセス(RA)を行う場合があり、RAについて送信電力制御が必要である。後述の一実施形態において、このようなRAに適用する送信電力を適切に制御可能とするためのPRACH送信電力制御について説明する。なお、PRACHは、RAプリアンブルを伝送する物理チャネルである。
 また、上述のシナリオにおいて、UE100は、上りリンク送信について、セルC1(TRP201#1)及びセルC2(TRP201#2)のそれぞれに対する上りリンク送信電力を異ならせる必要があると考えられる。上りリンク送信には、サウンディング参照信号(SRS)送信、物理上りリンク制御チャネル(PUCCH)送信、及び物理上りリンク共有チャネル(PUSCH)送信が含まれる。SRSは、上りリンク参照信号であって、例えば基地局200において上りリンクのチャネル推定を行うために用いられる。PUCCHは、上りリンクの制御チャネルであって、上りリンク制御情報(UCI)を伝送する物理チャネルである。PUSCHは、上りリンクの共有チャネルであって、上りリンクデータを伝送する物理チャネルである。
 しかしながら、従来の上りリンクの送信電力制御はサービングセルに対して適用されるため、サービングセルではないセルC2(TRP201#2)に対する上りリンクの送信電力を適切に制御できない懸念がある。後述の一実施形態において、このような上りリンクの送信電力を適切に制御可能とするための上りリンク送信電力制御(SRS/PUCCH/PUSCH送信電力制御)について説明する。
 また、3GPPの技術仕様において、複数のサービングセルとの通信を行う動作について、送信電力低減処理(transmission power reduction)が規定されている。具体的には、UE100は、上りリンク送信の種別に応じた優先度及びセルの種別に応じた優先度に基づいて、上りリンク送信の総送信電力が予め定められた最大値以下になるように、各セルに対する各上りリンク送信に送信電力を割り当てる。上述のシナリオにおいても、UE100は、送信電力低減処理を行うことが必要であると考えられる。
 しかしながら、従来の送信電力低減処理はサービングセルに対して適用されるため、サービングであるセルC1(TRP201#1)に加えてサービングセルではないセルC2(TRP201#2)が設定された場合において送信電力低減処理を適切に行うことができない懸念がある。後述の一実施形態において、サービングであるセルC1(TRP201#1)に加えてサービングセルではないセルC2(TRP201#2)が設定された場合における送信電力低減処理について説明する。
 (通信装置の構成)
 図5を参照して、実施形態に係るUE100の構成について説明する。UE100は、通信部110及び制御部120を備える。
 通信部110は、無線信号を基地局200と送受信することによって基地局200との無線通信を行う。通信部110は、少なくとも1つの送信部111及び少なくとも1つの受信部112を有する。送信部111及び受信部112は、複数のアンテナ及びRF回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。
 制御部120は、UE100における各種の制御を行う。制御部120は、通信部110を介した基地局200との通信を制御する。上述及び後述のUE100の動作は、制御部120の制御による動作であってよい。制御部120は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部120の動作を行ってもよい。制御部120は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
 一実施形態において、UE100には、サービングセルであるセルC1(TRP201#1)及びセルC1(TRP201#1)と同じ周波数に属するセルC2(TRP201#2)を管理する基地局200によって、セルC1(TRP201#1)及びセルC2(TRP201#2)が設定される。受信部112は、セルC2(TRP201#2)が送信する下りリンク参照信号を示す参照信号情報をセルC1(TRP201#1)から受信する。制御部120は、参照信号情報を用いてセルC2(TRP201#2)から受信した下りリンク参照信号に基づいてセルC2(TRP201#2)とのパスロスを見積もり、セルC2(TRP201#2)に対するRAに適用する送信電力を当該パスロスに基づいて決定する。送信部111は、決定された送信電力でRAプリアンブルをセルC2(TRP201#2)に送信する。これにより、セルC2(TRP201#2)に対するRAに適用する送信電力を適切に制御可能になる。
 一実施形態において、制御部120は、基地局200からの送信電力制御(TPC)コマンドに応じて変化する送信電力調整状態に基づいて上りリンク送信電力(例えば、SRS送信電力、PUCCH送信電力、又はPUSCH送信電力)を決定する。制御部120は、セルC2(TRP201#2)と対応付けられた送信電力調整状態を、セルC1(TRP201#1)と対応付けられた送信電力調整状態と独立に管理する。送信部111は、決定された上りリンク送信電力で上りリンク送信を行う。これにより、セルC2(TRP201#2)に対する上りリンク送信電力を適切に制御可能になる。
 一実施形態において、制御部120は、上りリンク送信の種別に応じた送信種別優先度及びセルの種別に応じたセル種別優先度に基づいて、上りリンク送信の総送信電力が予め定められた最大値以下になるように、各セルに対する各上りリンク送信に送信電力を割り当てる送信電力低減処理を行う。制御部120は、セルC1(TRP201#1)に適用するセル種別優先度に基づいて、セルC2(TRP201#2)に適用するセル種別優先度を決定する。例えば、制御部120は、セルC2(TRP201#2)に適用するセル種別優先度を、セルC1(TRP201#1)に適用するセル種別優先度と等しくする。これにより、サービングセルであるセルC1(TRP201#1)及び当該セルC1(TRP201#1)と同じ周波数に属するセルC2(TRP201#2)が設定される場合においても、送信電力低減処理を適切に行うことが可能になる。
 (基地局の構成)
 図6を参照して、実施形態に係る基地局200の構成について説明する。基地局200は、複数のTRP201(図6の例では、TRP201#1及びTRP201#2)と、通信部210と、ネットワークインターフェイス220と、制御部230とを有する。
 各TRP201は、複数のアンテナを含み、ビームフォーミング可能に構成される。TRP201は、パネル又はアンテナパネルと称されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。各TRP201は、分散して配置され、それぞれセルを構成する。
 通信部210は、例えば、UE100からの無線信号を受信し、UE100への無線信号を送信する。通信部210は、少なくとも1つの送信部211及び少なくとも1つの受信部212を有する。送信部211及び受信部212は、RF回路を含んで構成されてもよい。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。
 ネットワークインターフェイス220は、信号をネットワークと送受信する。ネットワークインターフェイス220は、例えば、基地局間インターフェイスであるXnインターフェイスを介して接続された隣接基地局から信号を受信し、隣接基地局へ信号を送信する。また、ネットワークインターフェイス220は、例えば、NGインターフェイスを介して接続されたコアネットワーク装置300から信号を受信し、コアネットワーク装置300へ信号を送信する。
 制御部230は、基地局200における各種の制御を行う。制御部230は、例えば、通信部210を介したUE100との通信を制御する。また、制御部230は、例えば、ネットワークインターフェイス220を介したノード(例えば、隣接基地局、コアネットワーク装置300)との通信を制御する。上述及び後述の基地局200の動作は、制御部230の制御による動作であってよい。制御部230は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部230の動作を行ってもよい。制御部230は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
 なお、基地局200がDU202及びCU203に分離されている場合、通信部210は、DU202内に設けられてもよく、制御部230は、DU202及び/又はCU203に設けられていてもよい。
 一実施形態において、基地局200(制御部230)は、サービングセルであるセルC1(TRP201#1)及びセルC1(TRP201#1)と同じ周波数に属するセルC2(TRP201#2)をUE100に設定する。送信部211は、セルC2(TRP201#2)が送信する下りリンク参照信号を示す参照信号情報をセルC1(TRP201#1)においてUE100に送信する。受信部212は、当該参照信号情報を用いてセルC2(TRP201#2)から受信した下りリンク参照信号に基づいて決定された送信電力でUE100から送信されるRAプリアンブルをセルC2(TRP201#2)において受信する。
 一実施形態において、送信部211は、セルC2(TRP201#2)の識別子と、基地局200からの送信電力制御(TPC)コマンドに応じて変化する送信電力調整状態の識別子とを対応付ける対応付け情報をセルC1(TRP201#1)においてUE100に送信する。受信部212は、セルC2(TRP201#2)と対応付けられた送信電力調整状態に基づいて決定された上りリンク送信電力でUE100により行われる上りリンク送信を受信する。
 (PRACH送信電力制御)
 (1)動作フロー
 図7を参照して、一実施形態に係るUE100におけるPRACH送信電力制御について説明する。
 UE100は、図7に示す動作フローを、図4に示すプロシージャにおけるステップS2からステップS4までの間、特に、ステップS3からステップS4までの間において実行してもよい。例えば、UE100は、図4に示すステップS3において、セルC2(TRP201#2)と対応付けられたTCI状態をアクティブ化する指示をセルC1(TRP201#1)から受信した後、データをセルC2(TRP201#2)と送受信するために図7に示す動作フローを実行する。
 図7に示すように、ステップS11において、UE100(受信部112)は、セルC2(TRP201#2)が送信する下りリンク参照信号を示す参照信号情報をセルC1(TRP201#1)から受信する。
 ステップS12において、UE100(制御部230)は、ステップS11で受信した参照信号情報を用いてセルC2(TRP201#2)から下りリンク参照信号を受信し、受信した下りリンク参照信号に基づいてセルC2(TRP201#2)とのパスロスを見積もる。
 ステップS13において、UE100(制御部230)は、セルC2(TRP201#2)に対するRAに適用する送信電力を、ステップS12で見積もったパスロスに基づいて決定する。RAは、非競合ランダムアクセス(CFRA)又は競合ベースランダムアクセス(CBRA)である。
 ステップS14において、UE100(送信部111)は、ステップS13で決定した送信電力でRAプリアンブルをセルC2(TRP201#2)に送信する。
 (2)CFRAの場合の動作例
 (2.1)第1動作例
 図8を参照して、CFRAの場合におけるPRACH送信電力制御の第1動作例について説明する。
 ステップS101において、基地局200(制御部230)は、セルC2(TRP201#2)に対するRAに用いるべき専用RAプリアンブルをUE100に割り当てる。専用RAプリアンブルは、セルC2(TRP201#2)のために準備されたRAプリアンブル群の中からUE100に専用で割り当てられ、セルC2(TRP201#2)に対するRAにおいて他のUE100と競合しないRAプリアンブルである。基地局200(送信部211)は、UE100に割り当てた専用RAプリアンブルを示すプリアンブル情報をセルC1(TRP201#1)においてUE100に送信する。UE100(受信部112)は、プリアンブル情報を受信する。なお、基地局200(送信部211)は、図4のプロシージャのステップS1において、UE100に割り当てた専用RAプリアンブルを示すプリアンブル情報をセルC1(TRP201#1)においてUE100に送信してもよい。
 ステップS102において、基地局200(制御部230)は、セルC2(TRP201#2)に対するRAをUE100に実行させることを決定する。基地局200(送信部211)は、セルC2(TRP201#2)に対するRAの実行を指示するPDCCH指令をセルC1(TRP201#1)においてUE100に送信する。例えば、基地局200(送信部211)は、下りリンク制御情報(DCI)フォーマット1_0のDCIをPDCCH指令としてセルC1(TRP201#1)のPDCCH上でUE100に送信する。UE100(受信部112)は、PDCCH指令を受信する。なお、セルC2(TRP201#2)に対するRAをUE100に実行させるPDCCH指令は、セルC1(TRP201#1)に対するRAをUE100に実行させるPDCCH指令とは異なる態様でUE100に送信されてもよい。ここで、PDCCH指令は、セルC2(TRP201#2)に対するRAに用いるべき専用RAプリアンブルのインデックスを含む。当該専用RAプリアンブルは、ステップS101でUE100に割り当てられているRAプリアンブルである。本動作例1において、PDCCH指令は、セルC2(TRP201#2)が送信するSSBを示す参照信号情報(SS/PBCH index)を含む。
 ステップS103において、UE100(受信部112)は、ステップS102でセルC1(TRP201#1)から受信したPDCCH指令に含まれる参照信号情報(SS/PBCH index)に基づいてセルC2(TRP201#2)からSSBを受信する。
 ステップS104において、UE100(制御部120)は、ステップS103でセルC2(TRP201#2)から受信したSSBに基づいて、セルC2(TRP201#2)とのパスロスを見積もる。これにより、UE100(制御部120)は、セルC2(TRP201#2)に対するCFRAに適用する送信電力を適切に算出可能になる。例えば、UE100(制御部120)は、ステップS103でセルC2(TRP201#2)から受信したSSBの受信電力を測定し、SSBの送信電力から当該受信電力を減算することによりパスロスを見積もる。UE100(制御部120)は、セルC1(TRP201#1)又はセルC2(TRP201#2)から例えばシステム情報中で送信されるSSB送信電力情報(ss-PBCH-BlockPower)によりSSBの送信電力を特定できる。ここではSSBおよびSSB送信電力情報を用いてパスロスを見積もる例を示したが、これに限らず、UE100(制御部120)は、CSI-RSを用いてパスロスを見積もることとしてもよい。例えば、CSI-RSの送信電力を、あらかじめ設定されたSSB送信電力情報(ss-PBCH-BlockPower)および所定のオフセット値(powerControlOffsetSS)を用いて特定してもよいし、CSI-RSおよび/またはSSBの受信電力を、上位レイヤでフィルタリングされたRSRPとして求めても良い。また、PDCCH指令がCSI-RSの情報を参照信号情報として含んでも良い。
 ステップS105において、UE100(制御部120)は、ステップS104で見積もったパスロスに基づいて、セルC2(TRP201#2)に対するCFRAに適用する送信電力、具体的には、PRACHの送信電力を決定する。例えば、UE100(制御部120)は、RAプリアンブルのターゲット受信電力とパスロスとの和をPRACHの送信電力として決定する。
 ステップS106において、UE100(送信部111)は、ステップS105で決定された送信電力で、PRACH上で専用RAプリアンブルをセルC2(TRP201#2)に送信する。基地局200(受信部212)は、セルC2(TRP201#2)において専用RAプリアンブルを受信する。RAプリアンブル送信は、RAプロシージャにおけるMsg1と称される。基地局200(制御部230)は、RAプリアンブルの受信に応じて、RA応答を生成する。
 ステップS107において、基地局200(送信部211)は、RA応答をセルC1(TRP201#1)においてPDSCH上でUE100に送信する。或いは、基地局200(送信部211)は、RA応答をセルC2(TRP201#2)においてPDSCH上でUE100に送信してもよい。専用RAプリアンブルの送信後、UE100(受信部112)は、RA応答をセルC1(TRP201#1)又はセルC2(TRP201#2)から受信する。RA応答送信は、RAプロシージャにおけるMsg2と称される。RA応答は、タイミングアライメント情報及び上りリンクグラントを含む。タイミングアライメント情報は、UE100からセルC2(TRP201#2)への送信タイミングを調整するための情報である。上りリンクグラントは、UE100に割り当てられたPUSCHリソースを示す情報と、UE100のPUSCH送信電力を調整するための送信電力制御コマンド(TPCコマンド)とを含む。その後、UE100(送信部211)は、割り当てられたPUSCHリソースを用いて、TPCコマンドで調整された送信電力でPUSCH送信を行う。
 このように、第1動作例によれば、PDCCH指令は、セルC2(TRP201#2)のSSBを示す参照信号情報(SS/PBCH index)を含む。UE100は、PDCCH指令に含まれる参照信号情報(SS/PBCH index)に基づいてセルC2(TRP201#2)からSSBを受信し、受信したSSBに基づいてセルC2(TRP201#2)とのパスロスを見積もる。これにより、UE100(制御部120)は、セルC2(TRP201#2)に対するCFRAに適用する送信電力を適切に算出可能になる。
 (2.2)第2動作例
 図9を参照して、CFRAの場合におけるPRACH送信電力制御の第2動作例について、上述の第1動作例との相違点を主として説明する。
 ステップS111において、基地局200(送信部211)は、セルC2(TRP201#2)に対するビーム測定に用いるビーム測定用参照信号を設定するビーム測定設定情報をセルC1(TRP201#1)においてUE100に送信する。ビーム測定設定情報は、セルC2(TRP201#2)が送信するSSB又はチャネル状態情報参照信号(CSI-RS)を示す参照信号情報を含む。UE100(受信部112)は、参照信号情報を含むビーム測定設定情報を受信する。なお、基地局200(送信部211)は、図4のプロシージャのステップS1において、参照信号情報を含むビーム測定設定情報をセルC1(TRP201#1)においてUE100に送信してもよい。
 ステップS112において、基地局200(制御部230)は、セルC2(TRP201#2)に対するRAに用いるべき専用RAプリアンブルをUE100に割り当てる。基地局200(送信部211)は、UE100に割り当てた専用RAプリアンブルを示すプリアンブル情報をセルC1(TRP201#1)においてUE100に送信する。UE100(受信部112)は、プリアンブル情報を受信する。基地局200(送信部211)は、図4のプロシージャのステップS1において、UE100に割り当てた専用RAプリアンブルを示すプリアンブル情報をセルC1(TRP201#1)においてUE100に送信してもよい。
 ステップS113において、基地局200(制御部230)は、セルC2(TRP201#2)に対するRAをUE100に実行させることを決定する。基地局200(送信部211)は、セルC2(TRP201#2)に対するRAの実行を指示するPDCCH指令をセルC1(TRP201#1)においてUE100に送信する。
 ステップS114において、UE100(受信部112)は、ステップS111でセルC1(TRP201#1)から受信したビーム測定設定情報に含まれる参照信号情報に基づいてセルC2(TRP201#2)から下りリンク参照信号(SSB又はCSI-RS)を受信する。
 ステップS115において、UE100(制御部120)は、ステップS114でセルC2(TRP201#2)から受信した下りリンク参照信号(SSB又はCSI-RS)に基づいて、セルC2(TRP201#2)とのパスロスを見積もる。これにより、UE100(制御部120)は、セルC2(TRP201#2)に対するCFRAに適用する送信電力を適切に算出可能になる。例えば、UE100(制御部120)は、ステップS114でセルC2(TRP201#2)から受信したSSBの受信電力を測定し、SSBの送信電力から当該受信電力を減算することによりパスロスを見積もる。UE100(制御部120)は、セルC1(TRP201#1)又はセルC2(TRP201#2)から例えばシステム情報中で送信されるSSB送信電力情報(ss-PBCH-BlockPower)によりSSBの送信電力を特定できる。ここではSSBおよびSSB送信電力情報を用いてパスロスを見積もる例を示したが、これに限らず、UE100(制御部120)は、CSI-RSを用いてパスロスを見積もることとしてもよい。例えば、CSI-RSの送信電力を、あらかじめ設定されたSSB送信電力情報(ss-PBCH-BlockPower)および所定のオフセット値(powerControlOffsetSS)を用いて特定してもよいし、CSI-RSおよび/またはSSBの受信電力を、上位レイヤでフィルタリングされたRSRPとして求めても良い。
 ステップS116において、UE100(制御部120)は、ステップS115で見積もったパスロスに基づいて、セルC2(TRP201#2)に対するCFRAに適用する送信電力、具体的には、PRACHの送信電力を決定する。例えば、UE100(制御部120)は、RAプリアンブルのターゲット受信電力とパスロスとの和をPRACHの送信電力として決定する。
 ステップS117及びステップS118の動作は、上述の第1動作例と同様である。
 このように、第2動作例によれば、セルC2(TRP201#2)に対するビーム測定に用いるビーム測定用参照信号を設定するビーム測定設定情報は、セルC2(TRP201#2)が送信する下りリンク参照信号(SSB又はCSI-RS)を示す参照信号情報を含む。UE100は、ビーム測定設定情報に含まれる参照信号情報に基づいてセルC2(TRP201#2)から下りリンク参照信号を受信し、受信した下りリンク参照信号に基づいてセルC2(TRP201#2)とのパスロスを見積もる。これにより、UE100(制御部120)は、セルC2(TRP201#2)に対するCFRAに適用する送信電力を適切に算出可能になる。
 (2.3)第3動作例
 図10を参照して、CFRAの場合におけるPRACH送信電力制御の第3動作例について、上述の第1動作例及び第2動作例との相違点を主として説明する。
 ステップS121において、基地局200(送信部211)は、セルC2(TRP201#2)からPDCCHを受信するための1つ又は複数のTCI状態を設定するTCI状態設定情報をセルC1(TRP201#1)においてUE100に送信する。TCI状態設定情報は、セルC2(TRP201#2)が送信する下りリンク参照信号(SSB又はCSI-RS)を示す参照信号情報を含む。具体的には、各TCI状態には、下りリンク参照信号リソースに関するパラメータからなる参照信号情報と、QCL-TypeA及びQCL-TypeDに関する下りリンク参照信号及びPDCCHのDMRSポート間のQCL関係とが含まれる。UE100(受信部112)は、参照信号情報を含むTCI状態設定情報を受信する。
 基地局200(送信部211)は、図4のプロシージャのステップS1において、参照信号情報を含むTCI状態設定情報をセルC1(TRP201#1)においてUE100に送信してもよい。
 ステップS122において、基地局200(制御部230)は、セルC2(TRP201#2)に対するRAに用いるべき専用RAプリアンブルをUE100に割り当てる。基地局200(送信部211)は、UE100に割り当てた専用RAプリアンブルを示すプリアンブル情報をセルC1(TRP201#1)においてUE100に送信する。UE100(受信部112)は、プリアンブル情報を受信する。
 ステップS123において、基地局200(制御部230)は、セルC2(TRP201#2)に対するRAをUE100に実行させることを決定する。基地局200(送信部211)は、セルC2(TRP201#2)に対するRAの実行を指示するPDCCH指令をセルC1(TRP201#1)および/またはセルC2(TRP201#2)においてUE100に送信する。
 ステップS124において、UE100(受信部112)は、ステップS121でセルC1(TRP201#1)および/またはセルC2(TRP201#2)から受信したTCI状態設定情報に含まれる参照信号情報に基づいてセルC2(TRP201#2)から下りリンク参照信号(SSB又はCSI-RS)を受信する。例えば、UE100(受信部112)は、図4のプロシージャのステップS3においてアクティブ化されたTCI状態と対応付けられた下りリンク参照信号(SSB又はCSI-RS)を受信する。
 ステップS125において、UE100(制御部120)は、ステップS124でセルC2(TRP201#2)から受信した下りリンク参照信号(SSB又はCSI-RS)に基づいて、セルC2(TRP201#2)とのパスロスを見積もる。これにより、UE100(制御部120)は、セルC2(TRP201#2)に対するCFRAに適用する送信電力を適切に算出可能になる。例えば、UE100(制御部120)は、ステップS124でセルC2(TRP201#2)から受信したSSBの受信電力を測定し、SSBの送信電力から当該受信電力を減算することによりパスロスを見積もる。UE100(制御部120)は、セルC1(TRP201#1)又はセルC2(TRP201#2)から例えばシステム情報中で送信されるSSB送信電力情報(ss-PBCH-BlockPower)によりSSBの送信電力を特定できる。ここではSSBおよびSSB送信電力情報を用いてパスロスを見積もる例を示したが、これに限らず、UE100(制御部120)は、CSI-RSを用いてパスロスを見積もることとしてもよい。例えば、CSI-RSの送信電力を、あらかじめ設定されたSSB送信電力情報(ss-PBCH-BlockPower)および所定のオフセット値(powerControlOffsetSS)を用いて特定してもよいし、CSI-RSおよび/またはSSBの受信電力を、上位レイヤでフィルタリングされたRSRPとして求めても良い。
 ステップS126において、UE100(制御部120)は、ステップS125で見積もったパスロスに基づいて、セルC2(TRP201#2)に対するCFRAに適用する送信電力、具体的には、PRACHの送信電力を決定する。例えば、UE100(制御部120)は、RAプリアンブルのターゲット受信電力とパスロスとの和をPRACHの送信電力として決定する。
 ステップS127及びステップS128の動作は、上述の第1動作例と同様である。
 このように、第3動作例によれば、セルC2(TRP201#2)からPDCCHを受信するためのTCI状態を設定するTCI状態設定情報は、セルC2(TRP201#2)が送信する下りリンク参照信号(SSB又はCSI-RS)を示す参照信号情報を含む。UE100は、TCI状態設定情報に含まれる参照信号情報に基づいてセルC2(TRP201#2)から下りリンク参照信号を受信し、受信した下りリンク参照信号に基づいてセルC2(TRP201#2)とのパスロスを見積もる。これにより、UE100(制御部120)は、セルC2(TRP201#2)に対するCFRAに適用する送信電力を適切に算出可能になる。
 (3)CBRAの場合の動作例
 図11を参照して、CBRAの場合におけるPRACH送信電力制御の動作例について説明する。
 ステップS201において、基地局200は、図4のプロシージャのステップS1の動作を行う。具体的には、基地局200(送信部211)は、例えばRRCシグナリングにより、セルC2(TRP201#2)に関する設定情報をセルC1(TRP201#1)においてUE100に送信する。設定情報は、セルC2(TRP201#2)に対するビーム測定に用いるSSBの設定と、データの送受信(セルC2とのデータ送受信を含む)のための無線リソースを用いるために必要な設定とを含む。ここで、基地局200(送信部211)は、セルC2(TRP201#2)に対するCBRAに利用可能な1つ又は複数のRAリソース(CBRAプリアンブル群)に関するRA設定情報を、セルC1(TRP201#1)においてUE100に送信する。このようなCBRAプリアンブルは、他のUE100と競合し得るRAプリアンブルである。RA設定情報(各RAリソース)は、下りリンク参照信号としてセルC2(TRP201#2)のSSBを示す参照信号情報を含む。UE100(受信部112)は、設定情報を受信する。
 ステップS202において、UE100(制御部120)は、セルC2(TRP201#2)へのCBRAを実行することを決定する。CBRAの実行を決定する要因は、基地局200(送信部211)からのPDCCH指令であってもよく、MACまたはRRC等の上位レイヤ指示により開始されてもよい。ここでのCBRAを実行するPDCCH指令は、予め定められたプリアンブルのインデックスを通知する(例えばPDCCH指令に含まれるRA-PreambleIndexの値が0b000000として提供される)ことにより特定されてもよい。UE100(制御部120)は、ステップS201で受信したRA設定情報に基づいて、セルC2(TRP201#2)に対するCBRAに利用可能なCBRAプリアンブル群の中からRAプリアンブルをランダムに選択する。UE100(制御部120)は、選択したRAプリアンブルと対応付けられたSSBを特定する。すなわち、UE100(制御部120)は、基地局200から通知されたRAリソースの中からCBRAプリアンブルを選択し、選択したCBRAプリアンブルと対応付けられたSSBを特定する。
 ステップS203において、UE100(受信部112)は、ステップS202で特定したSSBをセルC2(TRP201#2)から受信する。
 ステップS204において、UE100(制御部120)は、ステップS203でセルC2(TRP201#2)から受信したSSBに基づいて、セルC2(TRP201#2)とのパスロスを見積もる。これにより、UE100(制御部120)は、セルC2(TRP201#2)に対するCBRAに適用する送信電力を適切に算出可能になる。例えば、UE100(制御部120)は、ステップS203でセルC2(TRP201#2)から受信したSSBの受信電力を測定し、SSBの送信電力から当該受信電力を減算することによりパスロスを見積もる。UE100(制御部120)は、セルC1(TRP201#1)又はセルC2(TRP201#2)から例えばシステム情報中で送信されるSSB送信電力情報(ss-PBCH-BlockPower)によりSSBの送信電力を特定できる。ここではSSBおよびSSB送信電力情報を用いてパスロスを見積もる例を示したが、これに限らず、UE100(制御部120)は、CSI-RSを用いてパスロスを見積もることとしてもよい。例えば、CSI-RSの送信電力を、あらかじめ設定されたSSB送信電力情報(ss-PBCH-BlockPower)および所定のオフセット値(powerControlOffsetSS)を用いて特定してもよいし、CSI-RSおよび/またはSSBの受信電力を、上位レイヤでフィルタリングされたRSRPとして求めても良い。
 ステップS205において、UE100(制御部120)は、ステップS204で見積もったパスロスに基づいて、セルC2(TRP201#2)に対するCBRAに適用する送信電力、具体的には、PRACHの送信電力を決定する。例えば、UE100(制御部120)は、RAプリアンブルのターゲット受信電力とパスロスとの和をPRACHの送信電力として決定する。
 ステップS206において、UE100(送信部111)は、ステップS205で決定された送信電力で、PRACH上でCBRAプリアンブルをセルC2(TRP201#2)に送信する。基地局200(受信部212)は、セルC2(TRP201#2)においてCBRAプリアンブルを受信する。基地局200(制御部230)は、RAプリアンブルの受信に応じて、RA応答を生成する。
 ステップS207において、基地局200(送信部211)は、RA応答をセルC1(TRP201#1)においてPDSCH上でUE100に送信する。或いは、基地局200(送信部211)は、RA応答をセルC2(TRP201#2)においてPDSCH上でUE100に送信してもよい。CBRAプリアンブルの送信後、UE100(受信部112)は、RA応答をセルC1(TRP201#1)又はセルC2(TRP201#2)から受信する。RA応答は、RAプリアンブル識別子、タイミングアライメント情報、上りリンクグラント、及びtemporary C-RNTIを含む。UE100(制御部120)は、Msg1のRAプリアンブルと同じRAプリアンブル識別子を含むRA応答を受信すると、RA成功と判断する。タイミングアライメント情報は、UE100からセルC2(TRP201#2)への送信タイミングを調整するための情報である。上りリンクグラントは、UE100に割り当てられたPUSCHリソースを示す情報と、UE100のPUSCH送信電力を調整するための送信電力制御コマンド(TPCコマンド)とを含む。その後、UE100(送信部211)は、割り当てられたPUSCHリソースを用いて、TPCコマンドで調整された送信電力でPUSCH送信を行う。
 このように、本動作例によれば、RA設定情報は、セルC2(TRP201#2)に対するCBRAに利用可能な1つ又は複数のRAリソース(CBRAプリアンブル群)を含み、各RAリソースは、セルC2(TRP201#2)のSSBを示す参照信号情報を含む。UE100は、RA設定情報に含まれる参照信号情報に基づいてセルC2(TRP201#2)からSSBを受信し、受信したSSBに基づいてセルC2(TRP201#2)とのパスロスを見積もる。これにより、UE100(制御部120)は、セルC2(TRP201#2)に対するCBRAに適用する送信電力を適切に算出可能になる。
 (SRS/PUCCH/PUSCH送信電力制御)
 図12を参照して、一実施形態に係るUE100における上りリンク送信電力制御について説明する。UE100(制御部120)は、上りリンク送信電力としてSRSの送信電力を決定してもよい。UE100(制御部120)は、上りリンク送信電力としてPUCCHの送信電力を決定してもよい。UE100(制御部120)は、上りリンク送信電力としてPUSCHの送信電力を決定してもよい。
 ステップS21において、UE100(受信部112)は、セルC2(TRP201#2)の識別子と送信電力調整状態の識別子とを対応付ける対応付け情報をセルC1(TRP201#1)から受信してもよい。送信電力調整状態(adjustment state)は、基地局200からのTPCコマンドに応じて変化する変数であり、上りリンク送信電力の計算式において用いられる。これにより、セルC2(TRP201#2)用の送信電力調整状態を基地局200が設定できる。例えば、TPCコマンドから得られた補正値を累積して算出することで得られる送信電力調整状態を、送信電力に適用する(TPCアキュムレーションと称しても良い)場合には、現在の送信電力に対する相対値(上昇値又は低下値)を指定する。送信電力調整状態は、TPCコマンドにより指定された上昇値に応じて上昇し、TPCコマンドにより指定された低下値に応じて低下してもよい。あるいは、TPCコマンドから得られた補正値を累積して算出することなく、直前に受信した一つの補正値を送信電力調整状態として送信電力に適用する(TPCアブソリュートと称しても良い)こととしてもよい。TPCコマンドは、例えば上りリンクスケジューリンググラントのDCIにPUSCHのTPCコマンドを含めても良いし、下りリンクスケジューリング割り当てのDCIに、下りリンクデータに対するHARQ-ACKを含む上りリンク制御情報を送信するためのPUCCHに対する、TPCコマンドを含めても良い。また、TPCコマンドは、スケジューリングに用いられない非スケジューリングDCIを用い通知することとしてもよく、PUSCHおよびPUSCHのためのTPCコマンドの送信のために用いられるDCI(例えばDCIフォーマット2_2)を用いて通知することとでもよいし、1または複数のUE100に対するSRS送信のためのTPCコマンドのグループを送信するために用いられるDCI(例えばDCIフォーマット2_3)を用いて通知してもよい。
 対応付け情報は、図4のプロシージャのステップS1において基地局200からUE100に対して送信及び設定されてもよい。具体的には、UE100(受信部112)は、セルC2(TRP201#2)に対するビーム測定に用いる設定情報と、セルC2(TRP201#2)とのデータ通信のための無線リソースに関する設定情報と、をセルC1(TRP201#1)から受信するとともに、セルC2(TRP201#2)の識別子と送信電力調整状態の識別子とを対応付ける対応付け情報をセルC1(TRP201#1)から受信してもよい。
 ステップS22において、UE100(制御部120)は、セルC2(TRP201#2)と対応付けられた送信電力調整状態を、セルC1(TRP201#1)と対応付けられた送信電力調整状態と独立に管理する。例えば、UE100(制御部120)は、セルC2(TRP201#2)用のTPCコマンドを基地局200から受信したことに応じて、セルC2(TRP201#2)と対応付けられた送信電力調整状態を更新する。また、UE100(制御部120)は、セルC1(TRP201#1)用のTPCコマンドを基地局200から受信したことに応じて、セルC1(TRP201#1)と対応付けられた送信電力調整状態を更新してもよい。
 ステップS23において、UE100(制御部120)は、送信電力調整状態に基づいて上りリンク送信電力を決定する。例えば、UE100(制御部120)は、セルC2(TRP201#2)と対応付けられた送信電力調整状態に基づいて、セルC2(TRP201#2)に対する上りリンク送信電力を決定する。また、UE100(制御部120)は、セルC1(TRP201#1)と対応付けられた送信電力調整状態に基づいて、セルC1(TRP201#1)に対する上りリンク送信電力を決定してもよい。
 ステップS24において、UE100(送信部111)は、ステップS23で決定された上りリンク送信電力で上りリンク送信を行う。例えば、UE100(送信部111)は、セルC2(TRP201#2)に対して決定された上りリンク送信電力でセルC2(TRP201#2)に対する上りリンク送信を行う。UE100(送信部111)は、セルC1(TRP201#1)に対して決定された上りリンク送信電力でセルC1(TRP201#1)に対する上りリンク送信を行ってもよい。
 このように、UE100は、非サービングセルであるセルC2(TRP201#2)と対応付けられた送信電力調整状態を、セルC1(TRP201#1)と対応付けられた送信電力調整状態と独立に管理する。これにより、セルC2(TRP201#2)に対する上りリンク送信電力を適切に決定可能になる。
 図13を参照して、一実施形態に係るUE100における上りリンク送信電力制御の具体例について説明する。
 UE100(制御部120)は、SRSの送信電力PSRS,b,f,c、PUCCHの送信電力PPUCCH,b,f,c、及びPUSCHの送信電力PPUSCH,b,f,cを次の計算式により決定する(3GPP TS38.213参照)。
 PSRS,b,f,c(i, qs, l) = min{ PCMAX,f,c(i), PO_SRS,b,f,c(qs) + 10log10(2μ・MSRS,b,fc(i)) + αSRS,b,f,c(qs)・PLb,f,c(qd) + hb,f,c(i, l) }    ・・・(1)
 PPUCCH,b,f,c(i, qu, qd, l) = min{ PCMAX,f,c(i), PO_PUCCH,b,f,c(qu) + 10log10(2μ・MPUCCH RB,b,fc(i)) + PLb,f,c(qd) + ΔF_PUCCH(F) + ΔTF,b,f,c(i) + gb,f,c(i, l) }    ・・・(2)
 PPUSCH,b,f,c(i, j, qd, l) = min{ PCMAX,f,c(i), PO_PUSCH,b,f,c(j) + 10log10(2μ・MPUSCH RB,b,fc(i)) + αb,f,c(j)・PLb,f,c(qd) + ΔTF,b,f,c(i) + fb,f,c(i, l) }    ・・・(3)
 ここで、“b”は、上りリンクBWP(UL BWP)を、“f”はキャリアを、“c”はサービングセルを、“i”は送信機会(tx occasion)をそれぞれ意味する。また、“j”はパラメータセット設定(parameter set config.)を、“q”及び“q”は参照信号リソース識別子(RS resource)を、“q”はp0-PUCCH識別子(p0-PUCCH id)を、“l”は送信電力調整状態(adjustment state)の識別子をそれぞれ意味する。
 式(1)乃至式(3)において、“hb,f,c”はSRS向けの送信電力調整状態であり、“gb,f,c”はPUCCH向けの送信電力調整状態であり、“fb,f,c”はPUSCH向けの送信電力調整状態である。これらの送信電力調整状態は、識別子“l”を用いて使い分けることができる。例えば、“l”は、“0”又は“1”の値である。TPCアキュムレーションを用いる送信電力調整状態は、物理チャネル毎、SRSのリソースを示す識別子(例えばSRSリソースID、および/または複数のSRSリソースを示すSRSリソースセットID)毎に行なうかどうかが基地局200よりUE100に対し設定されてもよい。また、SRSの送信電力調整状態は、UE100にてPUSCHに適用される送信電力調整状態を流用しても良い。
 例えば、基地局200は、送信電力調整状態の識別子“l”として“1”をセルC2(TRP201#2)と対応付ける対応付け情報をUE100に通知及び設定してもよい。UE100(制御部120)は、セルC2(TRP201#2)向けに、識別子“l”=“1”と対応付けられた“hb,f,c”、“gb,f,c”、及び“fb,f,c”を管理してもよい。或いは、このような対応付け情報の通知は行わず、既定の設定値“l”=“2”又は非ゼロのときに、上りリンク送信電力がセルC2(TRP201#2)と対応付けて決定されてもよい。
 セルC2(TRP201#2)に対する上りリンク送信電力P’iは、セルC1(TRP201#1)と対応付けて決定されてもよい。例えば、式(1)乃至式(3)において、サービングセルを表す“c”は、セルC1(TRP201#1)及びセルC2(TRP201#2)で共通化してもよい。
 UE100(制御部120)は、セルC2(TRP201#2)と対応付けられた参照信号リソースを用いて見積もられるパスロス(PLb,f,c)にさらに基づいて、セルC2(TRP201#2)に対する上りリンク送信電力を決定してもよい。パスロス(PLb,f,c)は、上述のPRACH送信電力制御で見積もられたパスロスであってもよい。UE100(受信部112)は、上述のステップS21において、セルC2(TRP201#2)の識別子と参照信号リソースの識別子(q)とを対応付ける対応付け情報をセルC1(TRP201#1)から受信してもよい。UE100(制御部120)は、当該対応付け情報に基づいて、セルC2(TRP201#2)の参照信号リソースを特定してパスロスを見積もってもよい。
 UE100(制御部120)は、セルC2(TRP201#2)と対応付けられた電力制御パラメータセット設定(parameter set config.)にさらに基づいて、セルC2(TRP201#2)に対する上りリンク送信電力を決定してもよい。UE100(受信部112)は、上述のステップS21において、セルC2(TRP201#2)の識別子と電力制御パラメータセット設定の識別子(j)とを対応付ける対応付け情報をセルC1(TRP201#1)から受信してもよい。これにより、セルC2(TRP201#2)に対する電力制御パラメータセット設定(parameter set config.)をUE100に指定できる。
 (送信電力低減処理)
 図14を参照して、一実施形態に係るUE100における送信電力低減処理について説明する。
 ステップS31において、UE100(制御部120)は、上述のような方法で決定された各チャネルの送信電力の合計、すなわち、ある送信機会(i)における上りリンク送信の総送信電力が、予め定められた最大値以下であるか否かを判定する。予め定められた最大値は、法定の最大値であって、3GPPの技術仕様(例えば、TS38.101)で規定された値であってもよい。
 上りリンク送信の総送信電力が最大値以下である場合(ステップS31:YES)、送信電力低減処理が行われず、UE100(送信部111)は、ある送信機会(i)における各チャネルの上りリンク送信を行う(ステップS35)。
 一方、上りリンク送信の総送信電力が最大値を超える場合(ステップS31:NO)、ステップS32において、UE100(制御部120)は、送信機会(i)における上りリンク送信が非サービングセルであるセルC2(TRP201#2)に対する上りリンク送信を含むか否かを判定する。送信機会(i)における上りリンク送信がセルC2(TRP201#2)に対する上りリンク送信を含まない場合(ステップS32:NO)、動作がステップS34に進む。
 送信機会(i)における上りリンク送信がセルC2(TRP201#2)に対する上りリンク送信を含む場合(ステップS32:YES)、ステップS33において、UE100(制御部120)は、セルC1(TRP201#1)に適用するセル種別優先度に基づいて、セルC2(TRP201#2)に適用するセル種別優先度を決定する。UE100(制御部120)は、セルC2(TRP201#2)に適用するセル種別優先度を、セルC1(TRP201#1)に適用するセル種別優先度と等しくしてもよい。
 ステップS34において、UE100(制御部120)は、送信機会(i)についての送信電力低減処理を行う。具体的には、UE100(制御部120)は、上りリンク送信の種別に応じた送信種別優先度及びセルの種別に応じたセル種別優先度に基づいて、上りリンク送信の総送信電力が予め定められた最大値以下になるように、各セルに対する各上りリンク送信に送信電力を割り当てる。ここで、セルC2(TRP201#2)に対する上りリンク送信が含まれる場合、セルC2(TRP201#2)に対して、セルC1(TRP201#1)に適用するセル種別優先度と等しい優先度を与えてもよい。なお、UE100(送信部111)は、セルC1(TRP201#1)に対する上りリンク送信及びセルC2(TRP201#2)に対する上りリンク送信を互いに異なるタイミングで行うため、セルC1(TRP201#1)に適用するセル種別優先度と等しい優先度をセルC2(TRP201#2)に与えても問題ない。
 ステップS35において、UE100(送信部111)は、送信機会(i)についての上りリンク送信を行う。
 図15を参照して、一実施形態に係るUE100における送信電力低減処理の具体例について説明する。
 プライマリセル(PCell)におけるPRACH送信に最も高い優先度が与えられ、PUCCH送信及びPUSCH送信に次に高い優先度が与えられ、SRS送信、又はプライマリセル以外のセルにおけるPRACH送信に最も低い優先度が与えられる。また、同じ優先度であってキャリアアグリゲーションである場合、セカンダリセルよりもプライマリセルに高い優先度が与えられる。
 このような送信電力低減処理における優先度付けにおいて、“cell having TRP with different PCI”(すなわち、セルC2)がサービングセル(すなわち、セルC1)と共にUE100に設定された場合、セルC1及びセルC2に同じ優先度(same priority for transmission power reduction)が適用される。
 (その他の実施形態)
 上述の実施形態における動作シーケンス(及び動作フロー)は、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。また、上述の実施形態における動作シーケンス(及び動作フロー)は、別個独立に実施してもよいし、2以上の動作シーケンス(及び動作フロー)を組み合わせて実施してもよい。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。
 UE100又は基地局200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200の少なくとも一部を半導体集積回路(チップセット、SoC)として構成してもよい。
 上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 (付記)
 上述の実施形態に係る特徴について付記する。
 (付記1)
 サービングセルである第1セル(C1)及び前記第1セル(C1)と同じ周波数に属する第2セル(C2)を管理する基地局(200)によって前記第1セル(C1)及び前記第2セル(C2)が設定される通信装置(100)であって、
 前記基地局(200)に対する上りリンク送信を行う通信部(110)と、
 前記上りリンク送信の種別に応じた送信種別優先度及びセルの種別に応じたセル種別優先度に基づいて、前記上りリンク送信の総送信電力が予め定められた最大値以下になるように、各セルに対する各上りリンク送信に送信電力を割り当てる送信電力低減処理を行う制御部(120)と、を備え、
 前記制御部(120)は、前記第1セル(C1)に適用する前記セル種別優先度に基づいて、前記第2セル(C2)に適用する前記セル種別優先度を決定する
 通信装置(100)。
 (付記2)
 前記制御部(120)は、前記第2セル(C2)に適用する前記セル種別優先度を、前記第1セル(C1)に適用する前記セル種別優先度と等しくする
 付記1に記載の通信装置(100)。
 (付記3)
 前記通信部(110)は、前記第1セル(C1)に対する上りリンク送信及び前記第2セル(C2)に対する上りリンク送信を互いに異なるタイミングで行う
 付記1又は2に記載の通信装置(100)。
 (付記4)
 前記第2セル(C2)は、前記基地局(200)の送受信ポイント(TRP)により構成され、且つ、物理セル識別子(PCI)が前記第1セル(C1)とは異なる
 付記1乃至3のいずれかに記載の通信装置(100)。
 (付記5)
 前記第2セル(C2)は、非サービングセルであり、
 前記制御部(120)は、前記第1セル(C1)を前記サービングセルとして維持しつつ、前記第2セル(C2)とのデータ通信を行う
 付記1乃至4のいずれかに記載の通信装置(100)。
 (付記6)
 サービングセルである第1セル(C1)及び前記第1セル(C1)と同じ周波数に属する第2セル(C2)を管理する基地局(200)によって前記第1セル(C1)及び前記第2セル(C2)が設定される通信装置(100)で用いる通信方法であって、
 前記第1セル(C1)に適用するセル種別優先度に基づいて、前記第2セル(C2)に適用するセル種別優先度を決定するステップ(S33)と、
 上りリンク送信の種別に応じた送信種別優先度及びセルの種別に応じた前記セル種別優先度に基づいて、前記上りリンク送信の総送信電力が予め定められた最大値以下になるように、各セルに対する各上りリンク送信に送信電力を割り当てる送信電力低減処理を行うステップ(S34)と、
 前記基地局(200)に対する上りリンク送信を行うステップ(S35)と、を備える
 通信方法。

Claims (6)

  1.  サービングセルである第1セル(C1)及び前記第1セル(C1)と同じ周波数に属する第2セル(C2)を管理する基地局(200)によって前記第1セル(C1)及び前記第2セル(C2)が設定される通信装置(100)であって、
     前記基地局(200)に対する上りリンク送信を行う通信部(110)と、
     前記上りリンク送信の種別に応じた送信種別優先度及びセルの種別に応じたセル種別優先度に基づいて、前記上りリンク送信の総送信電力が予め定められた最大値以下になるように、各セルに対する各上りリンク送信に送信電力を割り当てる送信電力低減処理を行う制御部(120)と、を備え、
     前記制御部(120)は、前記第1セル(C1)に適用する前記セル種別優先度に基づいて、前記第2セル(C2)に適用する前記セル種別優先度を決定する
     通信装置(100)。
  2.  前記制御部(120)は、前記第2セル(C2)に適用する前記セル種別優先度を、前記第1セル(C1)に適用する前記セル種別優先度と等しくする
     請求項1に記載の通信装置(100)。
  3.  前記通信部(110)は、前記第1セル(C1)に対する上りリンク送信及び前記第2セル(C2)に対する上りリンク送信を互いに異なるタイミングで行う
     請求項1又は2に記載の通信装置(100)。
  4.  前記第2セル(C2)は、前記基地局(200)の送受信ポイント(TRP)により構成され、且つ、物理セル識別子(PCI)が前記第1セル(C1)とは異なる
     請求項1又は2に記載の通信装置(100)。
  5.  前記第2セル(C2)は、非サービングセルであり、
     前記制御部(120)は、前記第1セル(C1)を前記サービングセルとして維持しつつ、前記第2セル(C2)とのデータ通信を行う
     請求項1又は2に記載の通信装置(100)。
  6.  サービングセルである第1セル(C1)及び前記第1セル(C1)と同じ周波数に属する第2セル(C2)を管理する基地局(200)によって前記第1セル(C1)及び前記第2セル(C2)が設定される通信装置(100)で用いる通信方法であって、
     前記第1セル(C1)に適用するセル種別優先度に基づいて、前記第2セル(C2)に適用するセル種別優先度を決定するステップ(S33)と、
     上りリンク送信の種別に応じた送信種別優先度及びセルの種別に応じた前記セル種別優先度に基づいて、前記上りリンク送信の総送信電力が予め定められた最大値以下になるように、各セルに対する各上りリンク送信に送信電力を割り当てる送信電力低減処理を行うステップ(S34)と、
     前記基地局(200)に対する上りリンク送信を行うステップ(S35)と、を備える
     通信方法。
PCT/JP2022/028456 2021-07-29 2022-07-22 通信装置及び通信方法 WO2023008326A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-124803 2021-07-29
JP2021124803 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023008326A1 true WO2023008326A1 (ja) 2023-02-02

Family

ID=85086836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028456 WO2023008326A1 (ja) 2021-07-29 2022-07-22 通信装置及び通信方法

Country Status (1)

Country Link
WO (1) WO2023008326A1 (ja)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Summary of email discussion [Post113bis-e][061][feMIMO] InterCell mTRP and L1L2 mobility (Samsung)", 3GPP DRAFT; R2-2106314, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210519 - 20210527, 11 May 2021 (2021-05-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052007672 *
VIVO: "Discussion on potential positioning enhancements", 3GPP DRAFT; R1-2007666, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 17 October 2020 (2020-10-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051939828 *

Similar Documents

Publication Publication Date Title
KR102337557B1 (ko) 무선 통신 시스템에서 상향링크 전송 방법 및 장치
US11877246B2 (en) Uplink power control for SRS carrier-based switching
US11425552B2 (en) Method of connection control for direct communication between terminals, and apparatus therefor
EP3209053B1 (en) Method for controlling uplink transmit power in inter-base station carrier aggregation, base station, and device
US11510179B2 (en) Method for selecting resource from two or more carriers and bandwidth part and transmitting sidelink signal in wireless communication system
US20150003345A1 (en) Method and apparatus for small cell enhancements in a wireless communication system
KR20120124442A (ko) 무선 통신 시스템, 이동국 장치, 무선 통신 방법 및 집적 회로
JP7445766B2 (ja) 無線通信システムにおいて無線リンク品質評価方法及び装置
KR102528306B1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
KR20230002366A (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
CN116472688A (zh) 一种用于灵活波束管理的信令框架的方法和装置
CN106797558B (zh) 管理d2d操作的单向频率能力
WO2023013748A1 (ja) 通信装置及び通信方法
WO2023008326A1 (ja) 通信装置及び通信方法
WO2023008324A1 (ja) 通信装置、基地局、及び通信方法
WO2023008325A1 (ja) 通信装置、基地局、及び通信方法
KR20230023724A (ko) 무선 통신 시스템에서 사운딩 참조 신호의 송수신 방법 및 그 장치
KR20210018049A (ko) 단말 간 직접 통신을 위한 연결 제어 방법 및 이를 위한 장치
WO2023013750A1 (ja) 通信装置及び通信方法
WO2023013744A1 (ja) 通信装置、基地局及び通信方法
WO2023013745A1 (ja) 通信装置及び通信方法
WO2023013749A1 (ja) 通信装置及び通信方法
WO2023132272A1 (ja) 通信装置及び通信方法
WO2023132273A1 (ja) 通信装置及び通信方法
JP2023023275A (ja) ユーザ装置、基地局及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE