WO2019019183A1 - 一种大功率模块化ups系统 - Google Patents

一种大功率模块化ups系统 Download PDF

Info

Publication number
WO2019019183A1
WO2019019183A1 PCT/CN2017/094995 CN2017094995W WO2019019183A1 WO 2019019183 A1 WO2019019183 A1 WO 2019019183A1 CN 2017094995 W CN2017094995 W CN 2017094995W WO 2019019183 A1 WO2019019183 A1 WO 2019019183A1
Authority
WO
WIPO (PCT)
Prior art keywords
management control
module
control module
power
target
Prior art date
Application number
PCT/CN2017/094995
Other languages
English (en)
French (fr)
Inventor
刘晓红
刘鹏飞
吴壬华
邓向钖
唐疑军
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to PCT/CN2017/094995 priority Critical patent/WO2019019183A1/zh
Priority to CN201780004158.8A priority patent/CN108401473B/zh
Publication of WO2019019183A1 publication Critical patent/WO2019019183A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present invention relates to the field of power network technologies, and in particular, to a high power modular UPS system.
  • UPS Uninterruptible Power System/Uninterruptible Power Supply
  • UPS is a system device that connects a battery to a host computer and converts DC power into a commercial power through a module circuit such as a host inverter.
  • UPS is widely used in computers, computer network systems or other power electronics to provide a stable, uninterrupted power supply.
  • the UPS supplies the mains voltage to the load for use.
  • the UPS is an AC mains voltage regulator, and it also charges the internal battery; when the mains is interrupted (such as an accident power outage)
  • the UPS immediately converts the DC power of the battery to 220V AC through the inverter zero-switching conversion method, the load maintains normal operation and protects the load from soft and hardware.
  • UPS equipment is usually able to protect the load when the voltage is abnormal.
  • Modular UPS can be freely combined according to customer needs, but it also brings a serious problem.
  • the bus occupancy increases, which limits the number of parallel modules. If you want to achieve more For high power systems, existing UPS structures must be improved.
  • the embodiment of the invention provides a high-power modular UPS system, which can reduce the bus occupation rate and improve the reliability of the system.
  • Embodiments of the present invention provide a high power modular UPS system, including:
  • a total system management control module at least two subsystem management control modules, and at least two power modules, the at least two subsystem management control modules including a target subsystem management control module, the at least two power modules including a first target Power module
  • the total system management control module is connected to the target subsystem management control module
  • the target subsystem management control module is connected to the first target power module
  • the total system management control module is configured to determine the work of the system according to an input state of the alternating current Writing a mode and transmitting the working mode to the target subsystem management control module;
  • the target subsystem management control module is configured to send the working mode to the first target power module.
  • the total system management control module is connected to the target subsystem management control module by using a first controller area network CAN bus;
  • the target subsystem management control module is coupled to the first target power module via a second CAN bus.
  • system further includes: a monitoring module; the monitoring module is connected to the total system management control module;
  • the monitoring module is configured to: after detecting the power-on command, send the power-on command to the total system management control module, detect an input state of the alternating current, and send the input state of the alternating current to The total system management control module.
  • the total system management control module is further configured to: after receiving the power-on command, send the power-on command to the target subsystem management control module, and determine the system The working mode is standby mode.
  • the input state of the alternating current includes an alternating current normal state and an alternating current abnormal state; and the system further includes: a static switch module;
  • the total system management control module is specifically configured to determine that the working mode of the system is a bypass mode when the input state of the alternating current is a normal state of the alternating current;
  • the total system management control module is further configured to send a static switch pull-in command to the static switch module if the input state of the alternating current is an alternating current normal state.
  • the system further includes: an energy storage module; the energy storage module is connected to the first target power module;
  • the first target power module is configured to: when the working mode of the system is the bypass mode, charge the energy storage module, and after the charging is completed, work the first target power module The status is sent to the target subsystem management control module.
  • the total system management control module is further configured to receive an operating state of the first target power module sent by the target subsystem management control module;
  • the total system management control module is further configured to receive the work of the first target power module After the status, a phase lock command is issued.
  • the total system management control module is specifically configured to determine that an operating mode of the system is an inverter mode when an input state of the alternating current is an abnormal state of an alternating current;
  • the total system management control module is further configured to send a static switch disconnection command to the static switch module if the input state of the alternating current is an alternating current abnormal state.
  • the at least two power modules further include a second target power module, where the second target power module is connected to the target subsystem management control module;
  • the total system management control module is further configured to switch the second target power module to the inverter mode after filtering the second target power module according to the decision algorithm.
  • the second target power module is configured to perform inversion by using a droop control method in the inverter mode.
  • the target subsystem management control module is connected to the total system management control module, and the target subsystem management control module is connected to the first target power module, so that the bus occupancy rate is reduced, thereby enabling more power configuration;
  • the target subsystem management control module can automatically implement backup, thereby improving system reliability.
  • FIG. 1 is a schematic structural view of a high power modular UPS system
  • FIG. 2 is a schematic diagram of the architecture of a high power modular UPS system
  • FIG. 3 is a schematic structural diagram of a high-power modular UPS system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another high power modular UPS system according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a high power modular UPS system according to an embodiment of the present invention.
  • the high power modular UPS system includes:
  • the monitoring module 101, the system management control module 102, the at least two power modules and the static switch module 103, the at least two power modules include the target power module 104;
  • the foregoing monitoring module 101 is connected to the system management control module 102 described above;
  • the system management control module 102 is connected to the target power module 104;
  • the static switch module 103 is connected to the system management control module 102;
  • the monitoring module 101 sends the power-on command to the system management control module 102 when the power-on command is detected, and the system management control module 102 sends the power-on command to the target power module 104, and determines the working of the system.
  • the mode is a standby module;
  • the system management control module 102 When the monitoring module 101 detects that the AC input is normal, the system management control module 102 sends an instruction of normal AC input, and the system management control module 102 sends the AC input to the static switch module after receiving the normal AC input command. 103 sends a static switch pull-in command, and determines that the operating mode of the above system is bypass mode;
  • the system management control module 102 When the monitoring module 101 detects that the AC power input is abnormal, the system management control module 102 sends an instruction of the AC power input abnormality, and the system management control module 102, after receiving the AC power input abnormality command, goes to the static switch module. 103 sends a static switch disconnect command and determines that the operating mode of the above system is the inverter mode.
  • FIG. 2 is a schematic diagram of the architecture of a high power modular UPS system.
  • the schematic diagram of the architecture shown in FIG. 2 corresponds to the schematic diagram of the structure shown in FIG. 1.
  • the system management control module is The core module of the entire system, if the module is damaged, the entire system will crash. This greatly reduces the reliability of the system.
  • the embodiment of the present invention provides a high-power modular UPS system, which can not only reduce the bus data communication volume, reduce the bus occupation rate, facilitate the expansion of a larger power module, but also effectively improve the reliability of the system.
  • FIG. 3 is a schematic structural diagram of a high-power modular UPS system according to an embodiment of the present invention. As shown in FIG. 3, the system includes:
  • a total system management control module 301 at least two subsystem management control modules, and at least two power modules, the at least two subsystem management control modules including a target subsystem management control module 302, wherein the at least two power modules include a first target Power module 303;
  • the foregoing total system management control module 301 is connected to the target subsystem management control module 302;
  • the target subsystem management control module 302 is connected to the first target power module 303;
  • the total system management control module 301 is configured to determine an operating mode of the system according to an input state of the alternating current, and send the working mode to the target subsystem management control module 302;
  • the target subsystem management control module 302 is configured to send the foregoing working mode to the first target power module 303.
  • the target subsystem management control module is connected to the total system management control module, and the target subsystem management control module is connected to the first target power module, so that the bus occupancy rate is reduced, thereby enabling more power configuration;
  • the target subsystem management control module can automatically implement backup, thereby improving system reliability.
  • the embodiment further provides a specific connection manner.
  • the total system management control module 301 is connected to the target subsystem management control module 303 through the first controller area network CAN bus.
  • the target subsystem management control module 302 is connected to the first target power module 303 via the second CAN bus.
  • FIG. 4 is a schematic structural diagram of another high-power modular UPS system according to an embodiment of the present invention.
  • the system further includes: a monitoring module 401; the monitoring module 401 and the foregoing total
  • the system management control module 301 is connected;
  • the monitoring module 401 is configured to send the power-on command when the power-on command is detected. After being sent to the total system management control module 301, the input state of the alternating current is detected, and the input state of the alternating current is transmitted to the total system management control module 301.
  • the total system management control module 301 is further configured to: after receiving the power-on command, send the power-on command to the target subsystem management control module 302, and determine that the working mode of the system is a standby mode.
  • the input state of the alternating current includes an alternating current normal state and an alternating current abnormal state; the system further includes: a static switch module 402;
  • the total system management control module 301 is specifically configured to determine that the working mode of the system is a bypass mode when the input state of the alternating current is an alternating current normal state;
  • the total system management control module 301 is further configured to send a static switch pull-in command to the static switch module 402 when the input state of the alternating current is an alternating current normal state.
  • the voltage of the general commercial power is 220V
  • the normal state of the alternating current is the state in which the commercial power voltage is 220V
  • the abnormal state of the alternating current indicates that the utility power has a power failure phenomenon.
  • FIG. 5 is a schematic structural diagram of a high-power modular UPS system according to an embodiment of the present invention. As can be seen from the figure, in the case of normal AC input, by sucking the static switch module, It can supply power to the load.
  • the system further includes: an energy storage module 403; the energy storage module is connected to the first target power module 303;
  • the first target power module 303 is configured to charge the energy storage module 403 when the operating mode of the system is the bypass mode, and send the working state of the first target power module 303 after the charging is completed.
  • the above-mentioned target is divided into system management control module 302.
  • the first target power module can effectively charge the energy storage module, so that the power supply module can provide power support for the corresponding device when the AC input is abnormal.
  • the energy storage module 403 is not shown in the schematic diagram shown in FIG. 5.
  • the total system management control module 301 is further configured to receive the working state of the first target power module 303 sent by the target subsystem management control module 302;
  • the total system management control module 301 is further configured to issue a phase lock command after receiving the working state of the first target power module 303.
  • the frequency output by the first target power module can be the same as the frequency of the input alternating current, and the phase output by the first target power module and the phase of the input alternating current the same.
  • the total system management control module 301 is specifically configured to determine that the working mode of the system is the inverter mode when the input state of the alternating current is an abnormal state of the alternating current;
  • the total system management control module 301 is further configured to send a static switch disconnection command to the static switch module 402 when the input state of the alternating current is an alternating current abnormal state.
  • the at least two power modules further include a second target power module, and the second target power module is connected to the target subsystem management control module 302.
  • the total system management control module 301 is further configured to switch the second target power module to the inverter mode after filtering the second target power module according to the decision algorithm.
  • the second target power module is configured to perform the inverter using the droop control method in the inverter mode.
  • the second target power module is inverted by the droop control method, and the droop control method uses the virtual impedance technology to set the internal resistance of the second target power module to purely inductive or purely resistive, and the active power and reactive power are released. The effect of power on voltage and frequency coupling.
  • the Internet network in FIG. 5 can be used to connect with other devices so that the user can access or manage the UPS system.
  • the target subsystem management control module is used for data reception and delivery, thereby effectively reducing the data traffic of the bus, and on the other hand, the damage of the total system management control module.
  • the target subsystem management control module can automatically implement backup, thereby improving system reliability.
  • the high-power modular UPS system in this embodiment adopts the idea of hierarchical management control, so that the responsibilities of each layer are clear, thereby reducing the complexity of the system.
  • the system is mainly divided into three layers: the upper layer is the monitoring module and the Internet network, the middle layer is the total system management control module, and the lower layer is the sub-system management control module and the power module.
  • the upper layer is mainly responsible for receiving, displaying and uploading data of the intermediate layer to the Internet network, and issuing the operation instructions; the received data includes status information or fault information of each power module, and the main instructions are the switch machine command and other control commands. information.
  • the middle layer is mainly responsible for voltage sampling, bypass static switch control and system working state decision, and receiving and uploading of lower layer data.
  • This embodiment also provides a specific process for working with a high-power modular UPS system, as follows:
  • the specific process of the UPS system operation is described by taking the sub-system management control module 1 and the power module 11 and the power module 12 under it as an example, as follows.
  • the specific steps include:
  • the above-mentioned power-on command is sent to the total system management control module, and the total system management control module switches the system working mode to the standby mode, and sends the above-mentioned power-on command to the subsystem management control.
  • the sub-system management control module 1 sends the received power-on command to the power module 11 and the power module 12. After the power module 11 and the power module 12 receive the power-on command, the power module 11 and the foregoing The power module 12 is in a standby state.
  • the subsystem management control module in this embodiment is not limited to the subsystem management control module 1, but also includes the subsystem management control module 2 and the like, and the power module is not limited to the power module 11 and the power module 12.
  • the power module 13 and the power module 14 may be included, or the system management control module 2 issues a power-on command to the power module 21, the power module 22, and the like.
  • the example is not limited.
  • the monitoring module detects whether the AC voltage is normal in the standby mode. If the AC voltage is normal, the above-mentioned total system management control module sends a bypass static switch pull-in command, and the bypass conducts power to the load, and the above system working mode is switched to the bypass power supply mode.
  • the power module 11 and the power module 12 pre-charge the energy storage module, and switch to a normal state after the charging is completed.
  • the power module 11 and the power module 12 are uploaded to the respective working states.
  • the total system management control module receives the working states of the power module 11 and the power module 12, a sufficient number of power modules are found. In the normal state, the phase lock command is issued uniformly.
  • phase lock phase is started, and the phase lock state is uploaded to the total system management control module.
  • the phase lock command is used to make the frequency of the power module 11 and the power module 12 the same as the frequency of the alternating current, and the phases of the power module 11 and the power module 12 are the same as the phase of the alternating current.
  • the above-mentioned total system management control module sends a bypass static switch disconnection command, and the above system working mode is switched to the inverter mode.
  • the total system management control module requires one power module, and the power module 11 and the power module 12 can compete for a switch to the inverter mode in a competitive relationship.
  • the inverter part of the power module adopts the droop control method, and all the inverter programs are completely consistent.
  • the virtual impedance technology is adopted in the droop control to set the internal resistance of the inverter to purely inductive or purely resistive, which removes the influence of active power and reactive power on voltage and frequency coupling, and completes parallel control according to its own power.
  • the communication line of the machine can greatly improve the reliability if the inverter power module fails to exit the parallel system automatically.
  • modules or units in all embodiments of the present invention may be implemented by a general-purpose integrated circuit, such as a CPU, or by an ASIC (Application Specific Integrated Circuit).
  • a general-purpose integrated circuit such as a CPU
  • ASIC Application Specific Integrated Circuit

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种大功率模块化UPS系统,该系统包括:总系统管理控制模块(301)、至少两个分系统管理控制模块以及至少两个功率模块,所述至少两个分系统管理控制模块包括目标分系统管理控制模块(302),所述至少两个功率模块包括第一目标功率模块(303);所述总系统管理控制模块(301)与所述目标分系统管理控制模块(302)连接;所述目标分系统管理控制模块(302)与所述第一目标功率模块(303)连接;所述总系统管理控制模块(301),用于根据交流电的输入状态确定所述系统的工作模式,并将所述工作模式发送给所述目标分系统管理控制模块(302);所述目标分系统管理控制模块(302),用于将所述工作模式发送给所述第一目标功率模块(303)。该系统可以实现更大功率的配置。

Description

一种大功率模块化UPS系统 技术领域
本发明涉及电力网络技术领域,尤其涉及一种大功率模块化UPS系统。
背景技术
不间断电源(Uninterruptible Power System/Uninterruptible Power Supply,UPS)是将蓄电池与主机相连接,通过主机逆变器等模块电路将直流电转换成市电的系统设备。UPS被广泛应用于电脑、计算机网络系统或其它电力电子设备,从而提供稳定、不间断的电力供应。当市电输入正常时,UPS将市电稳压后供应给负载使用,此时的UPS就是一台交流市电稳压器,同时它还向机内电池充电;当市电中断(如事故停电)时,UPS立即将电池的直流电能,通过逆变零切换转换的方法向负载继续供应220V交流电,使负载维持正常工作并保护负载软、硬件不受损坏。UPS设备通常能够在电压异常时对负载提供保护。
随着UPS功率的需求不断提高,大功率模块化UPS的优势越加明显。模块化UPS可以根据客户需求自由组合,但是也会带来一个严重的问题,随着模块之间通讯数据量不断提高,总线占有率的增加,限制了模块并机的数量,如果要想实现更大功率系统,必须改进现有UPS结构。
发明内容
本发明实施例提供了一种大功率模块化UPS系统,该系统能够减少总线的占有率,提高系统的可靠性。
本发明实施例提供了一种大功率模块化UPS系统,包括:
总系统管理控制模块、至少两个分系统管理控制模块以及至少两个功率模块,所述至少两个分系统管理控制模块包括目标分系统管理控制模块,所述至少两个功率模块包括第一目标功率模块;
所述总系统管理控制模块与所述目标分系统管理控制模块连接;
所述目标分系统管理控制模块与所述第一目标功率模块连接;
所述总系统管理控制模块,用于根据交流电的输入状态确定所述系统的工 作模式,并将所述工作模式发送给所述目标分系统管理控制模块;
所述目标分系统管理控制模块,用于将所述工作模式发送给所述第一目标功率模块。
在一个可选的实现方式中,所述总系统管理控制模块通过第一控制器局域网CAN总线与所述目标分系统管理控制模块连接;
所述目标分系统管理控制模块通过第二CAN总线与所述第一目标功率模块连接。
在一个可选的实现方式中,所述系统还包括:监控模块;所述监控模块与所述总系统管理控制模块连接;
所述监控模块,用于在检测到开机指令的情况下,将所述开机指令发送给所述总系统管理控制模块后,检测所述交流电的输入状态,并将所述交流电的输入状态发送给所述总系统管理控制模块。
在一个可选的实现方式中,所述总系统管理控制模块,还用于在接收到所述开机指令后,将所述开机指令发送给所述目标分系统管理控制模块,并确定所述系统的工作模式为待机模式。
在一个可选的实现方式中,所述交流电的输入状态包括交流电正常状态和交流电异常状态;所述系统还包括:静态开关模块;
所述总系统管理控制模块,具体用于在所述交流电的输入状态为交流电正常状态的情况下,确定所述系统的工作模式为旁路模式;
所述总系统管理控制模块,还用于在所述交流电的输入状态为交流电正常状态的情况下,向所述静态开关模块发送静态开关吸合指令。
在一个可选的实现方式中,所述系统还包括:储能模块;所述储能模块与所述第一目标功率模块连接;
所述第一目标功率模块,用于在所述系统的工作模式为所述旁路模式的情况下,为所述储能模块充电,在充电完成后,将所述第一目标功率模块的工作状态发送给所述目标分系统管理控制模块。
在一个可选的实现方式中,所述总系统管理控制模块,还用于接收所述目标分系统管理控制模块发送的所述第一目标功率模块的工作状态;
所述总系统管理控制模块,还用于在接收到所述第一目标功率模块的工作 状态后,发出锁相指令。
在一个可选的实现方式中,所述总系统管理控制模块,具体用于在所述交流电的输入状态为交流电异常状态的情况下,确定所述系统的工作模式为逆变模式;
所述总系统管理控制模块,还用于在所述交流电的输入状态为交流电异常状态的情况下,向所述静态开关模块发送静态开关断开指令。
在一个可选的实现方式中,所述至少两个功率模块还包括第二目标功率模块,所述第二目标功率模块与所述目标分系统管理控制模块连接;
所述总系统管理控制模块,还用于根据决策算法筛选出所述第二目标功率模块后,将所述第二目标功率模块切换到所述逆变模式。
在一个可选的实现方式中,所述第二目标功率模块,用于在逆变模式下,采用下垂控制法进行逆变。
从以上技术方案可以看出,本发明实施例具有以下优点:
实施本实施例,将目标分系统管理控制模块与总系统管理控制模块连接,目标分系统管理控制模块与第一目标功率模块连接,使得总线的占有率减少,从而能够实现更大功率的配置;另一方面,在总系统管理控制模块损坏的情况下,目标分系统管理控制模块能够自动实现备份,从而提高系统的可靠性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是一种大功率模块化UPS系统的结构示意图;
图2是一种大功率模块化UPS系统的架构示意图;
图3是本发明实施例提供的一种大功率模块化UPS系统的结构示意图;
图4是本发明实施例提供的另一种大功率模块化UPS系统的结构示意图;
图5是本发明实施例提供的一种大功率模块化UPS系统的架构示意图。
具体实施方式
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是 用于区别不同的对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法或设备固有的其他步骤或单元。
图1是一种大功率模块化UPS系统的结构示意图,如图1所示,该大功率模块化UPS系统包括:
监控模块101、系统管理控制模块102、至少两个功率模块和静态开关模块103,上述至少两个功率模块包括目标功率模块104;
上述监控模块101与上述系统管理控制模块102连接;
上述系统管理控制模块102与上述目标功率模块104连接;
上述静态开关模块103与上述系统管理控制模块102连接;
上述监控模块101在检测到开机指令的情况下,将上述开机指令发送给上述系统管理控制模块102,上述系统管理控制模块102将上述开机指令发送给上述目标功率模块104,并确定上述系统的工作模式为待机模块;
在上述监控模块101检测到交流电输入正常的情况下,向上述系统管理控制模块102发送交流电输入正常的指令,上述系统管理控制模块102在接收到上述交流电输入正常的指令后,向上述静态开关模块103发送静态开关吸合指令,并确定上述系统的工作模式为旁路模式;
在上述监控模块101检测到交流电输入异常的情况下,向上述系统管理控制模块102发送交流电输入异常的指令,上述系统管理控制模块102在接收到上述交流电输入异常的指令后,向上述静态开关模块103发送静态开关断开指令,并确定上述系统的工作模式为逆变模式。
请一并参阅图2,图2是一种大功率模块化UPS系统的架构示意图。其中,图2所示的架构示意图与图1所示的结构示意图相对应。
从上可以看出,在用户需求量比较大的情况下,模块之间的通讯数据量会不断提高,从而使得总线占有率增加,限制模块并机的数量;另一方面,系统管理控制模块是整个系统的核心模块,若该模块损坏则会导致整个系统崩溃, 从而极大的降低了系统的可靠性。
基于此,本发明实施例提出了一种大功率模块化UPS系统,不仅能够降低总线数据通讯量,降低总线占有率,方便实现更大功率模块的扩容,而且能够有效提高系统的可靠性。
如图3,图3是本发明实施例提供的一种大功率模块化UPS系统的结构示意图,如图3所示,该系统包括:
总系统管理控制模块301、至少两个分系统管理控制模块以及至少两个功率模块,上述至少两个分系统管理控制模块包括目标分系统管理控制模块302,上述至少两个功率模块包括第一目标功率模块303;
上述总系统管理控制模块301与上述目标分系统管理控制模块302连接;
上述目标分系统管理控制模块302与上述第一目标功率模块303连接;
上述总系统管理控制模块301,用于根据交流电的输入状态确定上述系统的工作模式,并将上述工作模式发送给上述目标分系统管理控制模块302;
上述目标分系统管理控制模块302,用于将上述工作模式发送给上述第一目标功率模块303。
实施本实施例,将目标分系统管理控制模块与总系统管理控制模块连接,目标分系统管理控制模块与第一目标功率模块连接,使得总线的占有率减少,从而能够实现更大功率的配置;另一方面,在总系统管理控制模块损坏的情况下,目标分系统管理控制模块能够自动实现备份,从而提高系统的可靠性。
本实施例还提供了一种具体的连接方式,作为一种可选的实现方式,上述总系统管理控制模块301通过第一控制器局域网CAN总线与上述目标分系统管理控制模块303连接;
上述目标分系统管理控制模块302通过第二CAN总线与上述第一目标功率模块303连接。
请一并参阅图4,图4是本发明实施例提供的另一种大功率模块化UPS系统的结构示意图,本实施例中,上述系统还包括:监控模块401;上述监控模块401与上述总系统管理控制模块301连接;
上述监控模块401,用于在检测到开机指令的情况下,将上述开机指令发 送给上述总系统管理控制模块301后,检测上述交流电的输入状态,并将上述交流电的输入状态发送给上述总系统管理控制模块301。
本实施例中,上述总系统管理控制模块301,还用于在接收到上述开机指令后,将上述开机指令发送给上述目标分系统管理控制模块302,并确定上述系统的工作模式为待机模式。
本实施例中,上述交流电的输入状态包括交流电正常状态和交流电异常状态;上述系统还包括:静态开关模块402;
上述总系统管理控制模块301,具体用于在上述交流电的输入状态为交流电正常状态的情况下,确定上述系统的工作模式为旁路模式;
上述总系统管理控制模块301,还用于在上述交流电的输入状态为交流电正常状态的情况下,向上述静态开关模块402发送静态开关吸合指令。
本实施例中,举例来说,一般市电的电压为220V,其中交流电正常状态即为市电电压为220V的状态,交流电异常状态则说明市电出现了断电现象。在市电出现断电现象后,在一些对电要求高的地方,如医院中若医生正在手术,这时若出现断电现象,则可能会出现很严重的后果,因此,通过实施本实施例,可以为一些用电敏感的地方提供电力支持,如数据处理中心、计算机机房、电信、金融、证券、交通、税务、医疗系统等领域。
请一并参阅图5,图5是本发明实施例提供的一种大功率模块化UPS系统的架构示意图,从图中可以看出,在交流电输入正常的情况下,通过吸合静态开关模块,可以为负载供电。
本实施例中,上述系统还包括:储能模块403;上述储能模块与上述第一目标功率模块303连接;
上述第一目标功率模块303,用于在上述系统的工作模式为上述旁路模式的情况下,为上述储能模块403充电,在充电完成后,将上述第一目标功率模块303的工作状态发送给上述目标分系统管理控制模块302。
在交流电输入正常的情况下,通过第一目标功率模块可以有效的为储能模块充电,从而使得在交流电输入异常的情况下,通过储能模块来为相应的设备提供电力支持。
其中,储能模块403在图5所示的架构示意图中并未示出。
本实施例中,上述总系统管理控制模块301,还用于接收上述目标分系统管理控制模块302发送的上述第一目标功率模块303的工作状态;
上述总系统管理控制模块301,还用于在接收到上述第一目标功率模块303的工作状态后,发出锁相指令。
本实施例中,通过向第一目标功率模块发出锁相指令,可以使得第一目标功率模块输出的频率与输入的交流电的频率相同,且第一目标功率模块输出的相位与输入的交流电的相位相同。
本实施例中,上述总系统管理控制模块301,具体用于在上述交流电的输入状态为交流电异常状态的情况下,确定上述系统的工作模式为逆变模式;
上述总系统管理控制模块301,还用于在上述交流电的输入状态为交流电异常状态的情况下,向上述静态开关模块402发送静态开关断开指令。
本实施例中,上述至少两个功率模块还包括第二目标功率模块,上述第二目标功率模块与上述目标分系统管理控制模块302连接;
可以理解的是,第二目标功率模块未在图4中示出。
上述总系统管理控制模块301,还用于根据决策算法筛选出上述第二目标功率模块后,将上述第二目标功率模块切换到上述逆变模式。
本实施例中,举例来说,目标分系统管理控制模块连接的功率模块有十个,而总系统管理控制模块现在需要五个功率模块进入逆变模块,则十个功率模块之间进行竞争,从中筛选出五个功率模块进入逆变模式。这时,其余五个功率模块则继续等待。
本实施例中,上述第二目标功率模块,用于在逆变模式下,采用下垂控制法进行逆变。
本实施例中,第二目标功率模块采用下垂控制法进行逆变,下垂控制法采用虚拟阻抗技术,将第二目标功率模块内阻设置成纯感性或纯阻性,解除了有功功率和无功功率对电压和频率耦合的影响。
可以理解的是,图5中的Internet网络可以用于与其他设备相连,使得用户可以访问或管理UPS系统。
通过实施本实施例,利用目标分系统管理控制模块进行数据的接收与下发,有效降低了总线的数据通讯量,另一方面,在总系统管理控制模块损坏的情况 下,目标分系统管理控制模块能够自动实现备份,从而提高系统的可靠性。另外,本实施例中的大功率模块化UPS系统采用分层管理控制的思想,使得各层职责明确,从而降低了系统的复杂度。
基于图5所示的大功率模块化UPS系统的架构示意图,系统主要分为三层:上层为监控模块和Internet网络,中间层为总系统管理控制模块,下层为分系统管理控制模块和功率模块。上层主要负责中间层数据的接收、显示、上传给Internet网络,操作指令的下发;接收的数据包括每个功率模块的状态信息或故障信息等,下发的主要是开关机指令以及其它控制指令信息。中间层主要负责电压的采样、旁路静态开关控制和系统工作状态的决策,下层数据的接收和上传。
本实施例还提供了一种大功率模块化UPS系统工作的具体流程,如下所示:
以图中的分系统管理控制模块1以及其下的功率模块11、功率模块12为例来说明该UPS系统工作的具体流程,如下所示,具体步骤包括:
1)、当监控模块检测到开机指令后,将上述开机指令发送给总系统管理控制模块,上述总系统管理控制模块将系统工作模式切换成待机模式,并将上述开机指令发送给分系统管理控制模块1,上述分系统管理控制模块1将接收到的上述开机指令下发给功率模块11和功率模块12,上述功率模块11和上述功率模块12接收到上述开机指令后,上述功率模块11和上述功率模块12处于待机状态。
可以理解的是,本实施例中的分系统管理控制模块不局限于分系统管理控制模块1,还可以包括分系统管理控制模块2等等,功率模块也不局限于功率模块11和功率模块12,在分系统管理控制模块1下发开机指令时,还可以包括功率模块13、功率模块14等,或者分系统管理控制模块2下发开机指令给功率模块21、功率模块22等等,本实施例不作限定。
2)、上述监控模块在上述待机模式下检测交流电压是否正常。如果交流电压正常,则上述总系统管理控制模块发送旁路静态开关吸合指令,旁路导通给负载供电,上述系统工作模式切换为旁路供电模式。
3)、在上述旁路供电模式下,上述功率模块11和上述功率模块12给储能模块预充电,充电完成后切换到正常状态。
4)、然后上述功率模块11和上述功率模块12上传各自的工作状态,当上述总系统管理控制模块接收到上述功率模块11和上述功率模块12的工作状态后,发现足够数量的功率模块进入了正常状态,统一下发锁相指令。
5)、上述功率模块11和上述功率模块12接收到锁相指令后,开始锁相,同时上传锁相状态给总系统管理控制模块。
其中,锁相指令用于使上述功率模块11和上述功率模块12的频率与交流电的频率相同,上述功率模块11和上述功率模块12的相位与交流电的相位相同。
6)、如果交流电压异常,则上述总系统管理控制模块发送旁路静态开关断开指令,上述系统工作模式切换为逆变模式。
7)、上述总系统管理控制模块接收到锁相成功指令后,根据上述功率模块11和上述功率模块12成功的数量,采用决策算法,决定相应的功率模块切换到逆变模式。
举例来说,总系统管理控制模块需要1个功率模块,这时功率模块11和功率模块12可以以竞争的关系竞争哪个切换到逆变模式。
其中,功率模块的逆变部分采用下垂控制法,所有逆变程序完全一致。下垂控制中采用虚拟阻抗技术,将逆变器内阻设置成纯感性或纯阻性,解除了有功功率和无功功率对电压和频率耦合的影响,根据自身功率完成并机控制,不需要并机通讯线,如果逆变中功率模块出现故障自动退出并机系统,可靠性可以得到很大提高。
本发明所有实施例中的模块或单元,可以通过通用集成电路,例如CPU,或通过ASIC(Application Specific Integrated Circuit,专用集成电路)来实现。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某一些步骤可以采用其他顺序或者同时进行。

Claims (10)

  1. 一种大功率模块化UPS系统,其特征在于,包括:
    总系统管理控制模块、至少两个分系统管理控制模块以及至少两个功率模块,所述至少两个分系统管理控制模块包括目标分系统管理控制模块,所述至少两个功率模块包括第一目标功率模块;
    所述总系统管理控制模块与所述目标分系统管理控制模块连接;
    所述目标分系统管理控制模块与所述第一目标功率模块连接;
    所述总系统管理控制模块,用于根据交流电的输入状态确定所述系统的工作模式,并将所述工作模式发送给所述目标分系统管理控制模块;
    所述目标分系统管理控制模块,用于将所述工作模式发送给所述第一目标功率模块。
  2. 根据权利要求1所述的系统,其特征在于,
    所述总系统管理控制模块通过第一控制器局域网CAN总线与所述目标分系统管理控制模块连接;
    所述目标分系统管理控制模块通过第二CAN总线与所述第一目标功率模块连接。
  3. 根据权利要求1所述的系统,其特征在于,所述系统还包括:监控模块;所述监控模块与所述总系统管理控制模块连接;
    所述监控模块,用于在检测到开机指令的情况下,将所述开机指令发送给所述总系统管理控制模块后,检测所述交流电的输入状态,并将所述交流电的输入状态发送给所述总系统管理控制模块。
  4. 根据权利要求3所述的系统,其特征在于,
    所述总系统管理控制模块,还用于在接收到所述开机指令后,将所述开机指令发送给所述目标分系统管理控制模块,并确定所述系统的工作模式为待机模式。
  5. 根据权利要求4所述的系统,其特征在于,所述交流电的输入状态包括交流电正常状态和交流电异常状态;所述系统还包括:静态开关模块;
    所述总系统管理控制模块,具体用于在所述交流电的输入状态为交流电正 常状态的情况下,确定所述系统的工作模式为旁路模式;
    所述总系统管理控制模块,还用于在所述交流电的输入状态为交流电正常状态的情况下,向所述静态开关模块发送静态开关吸合指令。
  6. 根据权利要求5所述的系统,其特征在于,所述系统还包括:储能模块;所述储能模块与所述第一目标功率模块连接;
    所述第一目标功率模块,用于在所述系统的工作模式为所述旁路模式的情况下,为所述储能模块充电,在充电完成后,将所述第一目标功率模块的工作状态发送给所述目标分系统管理控制模块。
  7. 根据权利要求6所述的系统,其特征在于,
    所述总系统管理控制模块,还用于接收所述目标分系统管理控制模块发送的所述第一目标功率模块的工作状态;
    所述总系统管理控制模块,还用于在接收到所述第一目标功率模块的工作状态后,发出锁相指令。
  8. 根据权利要求5所述的系统,其特征在于,
    所述总系统管理控制模块,具体用于在所述交流电的输入状态为交流电异常状态的情况下,确定所述系统的工作模式为逆变模式;
    所述总系统管理控制模块,还用于在所述交流电的输入状态为交流电异常状态的情况下,向所述静态开关模块发送静态开关断开指令。
  9. 根据权利要求8所述的系统,其特征在于,所述至少两个功率模块还包括第二目标功率模块,所述第二目标功率模块与所述目标分系统管理控制模块连接;
    所述总系统管理控制模块,还用于根据决策算法筛选出所述第二目标功率模块后,将所述第二目标功率模块切换到所述逆变模式。
  10. 根据权利要求9所述的系统,其特征在于,
    所述第二目标功率模块,用于在逆变模式下,采用下垂控制法进行逆变。
PCT/CN2017/094995 2017-07-28 2017-07-28 一种大功率模块化ups系统 WO2019019183A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/094995 WO2019019183A1 (zh) 2017-07-28 2017-07-28 一种大功率模块化ups系统
CN201780004158.8A CN108401473B (zh) 2017-07-28 2017-07-28 一种大功率模块化ups系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/094995 WO2019019183A1 (zh) 2017-07-28 2017-07-28 一种大功率模块化ups系统

Publications (1)

Publication Number Publication Date
WO2019019183A1 true WO2019019183A1 (zh) 2019-01-31

Family

ID=63095116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094995 WO2019019183A1 (zh) 2017-07-28 2017-07-28 一种大功率模块化ups系统

Country Status (2)

Country Link
CN (1) CN108401473B (zh)
WO (1) WO2019019183A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120068541A1 (en) * 2010-09-20 2012-03-22 Eaton Corporation Power supply systems and methods employing a ups interfaced generator
CN103701192A (zh) * 2012-09-27 2014-04-02 力博特公司 一种模块化ups 系统及其供电方法
WO2015128253A1 (en) * 2014-02-25 2015-09-03 Abb Technology Ag Horizontal uninterrupted power supply design
CN106655222A (zh) * 2016-11-23 2017-05-10 北京用尚科技股份有限公司 一种将ups进行集群管理参与电网功率调整的方法
CN106849325A (zh) * 2016-11-30 2017-06-13 西安华为技术有限公司 一种模块化ups及其工作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208158220U (zh) * 2017-07-28 2018-11-27 深圳欣锐科技股份有限公司 一种大功率模块化ups系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120068541A1 (en) * 2010-09-20 2012-03-22 Eaton Corporation Power supply systems and methods employing a ups interfaced generator
CN103701192A (zh) * 2012-09-27 2014-04-02 力博特公司 一种模块化ups 系统及其供电方法
WO2015128253A1 (en) * 2014-02-25 2015-09-03 Abb Technology Ag Horizontal uninterrupted power supply design
CN106655222A (zh) * 2016-11-23 2017-05-10 北京用尚科技股份有限公司 一种将ups进行集群管理参与电网功率调整的方法
CN106849325A (zh) * 2016-11-30 2017-06-13 西安华为技术有限公司 一种模块化ups及其工作方法

Also Published As

Publication number Publication date
CN108401473B (zh) 2021-06-18
CN108401473A (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
US10014719B2 (en) Uninterruptible power system
US10097034B2 (en) UPS system with network monitoring and attached battery pack information sensing functions
TWI540423B (zh) 電源分配系統
CN106774771B (zh) 供电系统及其供电控制方法
CN206077055U (zh) 数据中心的供电系统和机房
JP2003092845A (ja) 電気装置に電力を供給するシステム及び方法
CN102882267A (zh) 供电装置、电子设备和供电方法
CN104333111B (zh) 直流不断电系统及装置
CN105429280A (zh) 不断电系统及其供应方法
WO2023125709A1 (zh) 双向充电机、供电系统、电源管理方法及装置
CN104917286A (zh) 一种高可靠性整机柜连续供电装置及方法
CN107479645A (zh) 一种双输入电源模块、服务器供电系统及供电方法
WO2015180514A1 (zh) 一种市电供电方法和装置
CN202424295U (zh) 一种逆变电源及应用所述逆变电源的供电系统
WO2023125511A1 (zh) 电源管理系统、换电站及其电源管理方法、装置
CN204258411U (zh) 一种智能ups电源装置
US9389659B2 (en) Power supply system
TW201407332A (zh) 不斷電系統及其操作方法
CN114421586A (zh) 数据中心供电系统及供电控制方法、装置和数据中心
CN110401260A (zh) 一种服务器备用电源及服务器电源
AU2020393924B2 (en) Reserve bus distribution system testing
CN103972978A (zh) 不间断电源电池共用系统及其控制方法
CN206259749U (zh) 具有储能功效的备用电源系统
CN110661332B (zh) 一种用于计算设备的供电系统
WO2019019183A1 (zh) 一种大功率模块化ups系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17918768

Country of ref document: EP

Kind code of ref document: A1