WO2019019045A1 - 光学指纹传感器模组 - Google Patents

光学指纹传感器模组 Download PDF

Info

Publication number
WO2019019045A1
WO2019019045A1 PCT/CN2017/094453 CN2017094453W WO2019019045A1 WO 2019019045 A1 WO2019019045 A1 WO 2019019045A1 CN 2017094453 W CN2017094453 W CN 2017094453W WO 2019019045 A1 WO2019019045 A1 WO 2019019045A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fingerprint sensor
optical fingerprint
layer
self
Prior art date
Application number
PCT/CN2017/094453
Other languages
English (en)
French (fr)
Inventor
凌严
朱虹
Original Assignee
上海箩箕技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海箩箕技术有限公司 filed Critical 上海箩箕技术有限公司
Priority to PCT/CN2017/094453 priority Critical patent/WO2019019045A1/zh
Priority to US16/632,515 priority patent/US20200210671A1/en
Publication of WO2019019045A1 publication Critical patent/WO2019019045A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of optical fingerprint recognition, and in particular to an optical fingerprint sensor module.
  • Fingerprint imaging recognition technology is a technology that uses an optical fingerprint sensor to collect fingerprint images of the human body and then compares them with existing fingerprint imaging information in the system to determine whether it is correct or not, and thus realizes identity recognition. Due to the convenience of its use and the uniqueness of human fingerprints, fingerprint imaging recognition technology has been widely used in various fields. For example, security inspection departments such as the Public Security Bureau and the Customs, access control systems for buildings, and consumer goods such as personal computers and mobile phones. Fingerprint imaging recognition technology can be realized by various techniques such as optical imaging, capacitive imaging, and ultrasonic imaging. Relatively speaking, optical fingerprint imaging recognition technology has relatively good imaging effect and relatively low equipment cost.
  • the structure of the existing optical fingerprint sensor module needs to be improved.
  • the problem solved by the present invention is to provide an optical fingerprint sensor module to improve the existing optical fingerprint sensor module.
  • an optical fingerprint sensor module comprising: an optical fingerprint sensor; further comprising: a self-luminous display panel located above the optical fingerprint sensor, the light can pass through the self from top to bottom a light emitting display panel; a light collimator panel between the optical fingerprint sensor and the self-luminous display panel.
  • the optical collimator panel includes two upper and lower surfaces in parallel, and the optical alignment
  • the straight panel includes a plurality of light collimating units perpendicular to or at a first angle to the upper and lower surfaces, the first angle being represented by ⁇ , 40° ⁇ ⁇ ⁇ 90°; each of the light collimating units having a core a layer and a skin layer, the core layers being evenly spaced apart from each other, the skin layer surrounding the core layer.
  • the core layer and the skin layer have a relative refractive index difference of -10% to 10%.
  • the relative refractive index difference between the core layer and the skin layer is between -10% and 0.
  • the core layer has an absorption rate of visible light and infrared light of ⁇ 10%, and the absorption rate of the skin layer to visible light and infrared light is >50%.
  • the cross-sectional area of the skin layer is less than 50% of the cross-sectional area of the light collimating unit.
  • the light collimator panel is formed by pressing a plurality of light collimating fibers, and each of the light collimating fibers is pressed to form one of the light collimating units.
  • a detachable light transmissive layer is disposed between the light collimator panel and the self-luminous display panel.
  • the separable light transmissive layer is a flexible material.
  • the separable light transmissive layer is an organic material, and the separable light transmissive layer has a thickness of ⁇ 0.2 mm.
  • the separable light transmissive layer is ultra-thin glass, and the separable light transmissive layer has a thickness of ⁇ 0.2 mm.
  • the separable light transmissive layer is disposed in a laminated manner under the self-luminous display panel.
  • an optical glue is disposed between the separable light transmissive layer and the light collimator panel, and the optical glue pastes the separable light transmissive layer and the light collimator panel together.
  • an optical glue is disposed between the optical collimator panel and the optical fingerprint sensor, and the optical glue pastes the optical collimator panel and the optical fingerprint sensor Start.
  • the self-luminous display panel is an OLED display panel.
  • the self-luminous display panel comprises a first transparent substrate, a second transparent substrate and a self-lighting circuit layer, wherein the self-lighting circuit layer is located on the first transparent substrate and the second transparent substrate
  • the self-illuminating circuit layer includes a plurality of display pixel units; each of the display pixel units includes at least one non-transmissive region and at least one light transmissive region.
  • the optical fingerprint sensor module further includes a protective layer, and the protective layer is located above the self-luminous display panel.
  • the display can be performed by the self-luminous display panel, and on the other hand, the reflected light of the fingerprint passing through the self-luminous display panel can be received by the optical fingerprint sensor, thereby implementing fingerprint recognition. Therefore, the optical fingerprint sensor module has both a display function and a fingerprint recognition function. More importantly, the light collimator panel enables light from the self-illuminating display panel to be more collimated due to the light collimator panel located between the optical fingerprint sensor and the self-illuminating display panel. Light passing through the light collimator panel has a smaller angular extent, and most of the light outside this angular range is absorbed.
  • the angle between the light passing through the light collimator panel and the upper and lower surfaces of the light collimator panel is closer to 90 degrees (specifically 80 degrees to 90 degrees), while other angles of light are optically aligned.
  • the straight panel is absorbed. This effect helps to improve the fingerprint recognition performance of the optical fingerprint sensor.
  • the light collimator panel includes a plurality of light collimating units perpendicular to the upper and lower surfaces or at a first angle, the first angle being represented by ⁇ , 40° ⁇ ⁇ ⁇ 90°; each of the light collimating units has a core layer and a skin layer, the core layers being evenly spaced apart from each other, the skin layer surrounding the core layer.
  • a light collimator panel can be more advantageous for achieving a collimation effect on light, and can be fabricated by a corresponding optical fiber forming process, or a light collimating unit can be fabricated by other processes, thereby reducing the process difficulty.
  • a detachable light-transmitting layer is disposed between the self-luminous display panel and the light collimator panel, and the detachable light-transmitting layer and the self-luminous display panel are laminated by lamination.
  • the presence of air can be substantially excluded between the detachable light-transmitting layer and the self-luminous display panel, and has a certain fixed strength. That is, during use, the two can still remain relatively fixed, and normally, relative positional movement does not occur.
  • the separable light-transmitting layer and the self-luminous display panel are laminated together by lamination, they are not as difficult to separate as sticking by the adhesive layer.
  • the separable light transmissive layer and the self-luminous display panel are relatively easily separated. Therefore, once any structure below the self-luminous display panel is found to be problematic, the detachable light-transmitting layer and the self-luminous display panel can be separated, thereby protecting the self-luminous display panel with higher cost, thereby reducing the corresponding process cost. .
  • FIG. 1 is a schematic diagram of an optical fingerprint sensor module according to an embodiment of the present invention.
  • FIG. 2 is a partial top plan view of the optical collimator panel of FIG. 1;
  • Figure 3 is a schematic cross-sectional view of the structure shown in Figure 2;
  • Figure 5 is a schematic cross-sectional view of the structure shown in Figure 4.
  • FIG. 6 is a schematic diagram of an optical fingerprint sensor module according to another embodiment of the present invention.
  • FIG. 7 is an enlarged schematic view showing a partial structure of the optical fingerprint sensor module shown in FIG. 6.
  • the existing optical fingerprint sensor module has a single function, and the application is limited.
  • the present invention provides a new optical fingerprint sensor module that includes an optical fingerprint sensor, a self-luminous display panel, and a light collimator panel.
  • the self-luminous display panel is located above the optical fingerprint sensor, and the light can pass through from top to bottom.
  • Self-luminous display panel is located between the optical fingerprint sensor and the self-luminous display panel. The performance of the optical fingerprint sensor module is improved, thereby better implementing the fingerprint recognition function and the display function.
  • the embodiment of the invention provides an optical fingerprint sensor module, as shown in FIG. 1 .
  • the optical fingerprint sensor module includes an optical fingerprint sensor 110 and a self-luminous display panel 120, and the self-luminous display panel 120 is located above the optical fingerprint sensor 110. Among them, light can pass through the self-luminous display panel 120 from top to bottom.
  • the optical fingerprint sensor module also includes a light collimator panel 130 positioned between the optical fingerprint sensor 110 and the self-illuminating display panel 120.
  • the light can pass through the self-luminous display panel 120 from top to bottom, wherein the "from top to bottom” can be vertically downward, obliquely downward or meandering downward.
  • light can pass downwardly from the self-luminous display panel 120 through the self-illuminating display panel 120 and continue to propagate downward.
  • the self-luminous display panel 120 does not require light transmission in other directions (such as the front-rear direction and the left-right direction), and opaque light in these directions is better.
  • the self-luminous display panel 120 includes a first transparent substrate 121, a second transparent substrate 122, and a self-luminous circuit layer 123.
  • the self-luminous circuit layer 123 is located between the first transparent substrate 121 and the second transparent substrate 122.
  • the optical fingerprint sensor 110 is located below the second transparent substrate 122.
  • the self-luminous circuit layer 123 includes a plurality of display pixel units 1231.
  • One of the display pixel units 1231 is illustrated by a dashed box in FIG. The area and the adjacent relationship of the respective display pixel units 1231.
  • the dotted line frame includes a portion of the first transparent substrate 121 and the second transparent substrate 122, this is only for the convenience of display, and the display pixel unit 1231 does not include the first transparent substrate 121 and the second transparent substrate 122. . That is, only a schematic display of the display pixel unit 1231 is shown in FIG. Other embodiments use the same dashed box display mode, which is described together.
  • Each display pixel unit 1231 includes at least one non-transmissive region and at least one light transmissive region. Since each display pixel unit 1231 has a corresponding light transmissive area and a non-transmissive area, in the embodiment, the self-luminous display panel 120 can uniformly transmit light uniformly. The contents of the non-light transmitting region and the light transmitting region are further described later in the specification. It should be noted that the more specific structure of the display pixel unit 1231 may be different depending on the specific type of the self-luminous display panel 120.
  • the self-luminous display panel 120 may be an OLED display panel.
  • the display pixel unit 1231 of the self-luminous circuit layer 123 may include an anode layer, a hole injection layer (HIL), an emission layer (EML), and an electron injection layer.
  • the structure (EIL) and the cathode layer may further have a hole transport layer (HTL) and an electron transport layer (ETL), and may also include a TFT for driving the OLED, a driving metal line, and a storage capacitor.
  • the luminescence principle of the OLED display panel is: under a certain voltage driving, electrons and holes migrate from the cathode layer and the anode layer to the luminescent layer, respectively, and meet in the luminescent layer to form excitons and excite the luminescent molecules, and the luminescent molecules undergo radiation. Relaxation produces visible light (or other light).
  • the structure of the light emitting layer or the like may be located in a corresponding non-light transmitting region of the display pixel unit 1231.
  • the display pixel unit 1231 In the periphery of the non-transparent area, the display pixel unit 1231 has a corresponding light transmissive area. It should be noted that, in other embodiments, the light transmissive area of one display pixel unit 1231 may also be connected to the light transmissive area of the other display pixel unit 1231 to form a wider transparent area.
  • the two display pixel units 1231 are generally adjacent, and the area between the adjacent two display pixel units 1231 is also a light transmitting area, so that the three light transmitting areas can be connected as one large light transmitting area.
  • a display panel (this pass generally refers to passing through the height of display pixel unit 1231, which is also commonly referred to as thickness).
  • the non-transparent area of the display pixel unit 1231 not the entire area is non-transparent from top to bottom. Rather, the bottoms of these regions have a non-transmissive structure (illustrated in Fig. 1 as obliquely shaded portions in each display pixel unit 1231). That is, the structure above the structure such as the non-transmissive layer light-emitting layer is still transparent. For example, the structure above the light-emitting layer is transparent, so that the light emitted by the light-emitting layer can reach the user's eyes upward, thereby ensuring display of the OLED display panel. .
  • the height of the light-transmitting region of the embodiment is equal to the height of the self-luminous circuit layer 123, so that the light can pass through the self-light-emitting circuit layer 123 from the light-transmitting region.
  • the height of each position of the self-light-emitting circuit layer 123 may be slightly The difference is that the height of the self-illuminating circuit layer 123 at least a portion of the position is equal to the height of the light-transmitting region).
  • the light can pass through the self-illuminating circuit layer 123 from the light-transmitting region, thereby ensuring that the light can pass through the self-luminous display panel 120 from bottom to bottom, thereby ensuring that the optical fingerprint sensor module can perform fingerprint image collection. It can be seen from the above that when the light passes through the self-luminous display panel 120 obliquely, it passes through the first transparent substrate 121, the light transmitting region and the second transparent substrate 122.
  • the self-luminous display panel 120 also includes a sealing structure (not labeled).
  • the sealing structure is also located between the first transparent substrate 121 and the second transparent substrate 122.
  • the sealing structure together with the first transparent substrate 121 and the second transparent substrate 122, seals the self-luminous circuit layer 123 between the first transparent substrate 121 and the second transparent substrate 122.
  • the material of the first transparent substrate 121 and the second transparent substrate 122 may be a light transmissive material, and the specific material may be inorganic glass or organic glass, or may be other plastic products other than organic glass.
  • the optical fingerprint sensor 110 can include a fingerprint sensing circuit layer (not labeled) and a substrate substrate (not labeled).
  • the fingerprint sensing circuit layer includes a plurality of photosensitive pixel units (not separately labeled). Each of the photosensitive pixel units includes a photodiode or other light The sensitive device, the corresponding fingerprint reflected light can be received by the photosensitive element.
  • the fingerprint sensing circuit layer is located between the second transparent substrate 122 and the substrate substrate, as shown in FIG.
  • the optical fingerprint sensor 110 may be an image sensor fabricated by a TFT (Thin Film Transistor) process based on a glass or plastic substrate, that is, the substrate may be glass or plastic, and the optical fingerprint sensor 110 may also be based on silicon.
  • TFT Thin Film Transistor
  • the substrate is a silicon substrate; in another case, the substrate is located in the second transparent substrate 122 and the fingerprint sensing layer
  • the optical fingerprint sensor 110 in FIG. 1 is turned upside down.
  • the base substrate is a light transmissive material, such as a glass or plastic substrate.
  • the optical fingerprint sensor 110 may be based on glass. Or a back-illuminated image sensor of a plastic substrate or a TFT process.
  • the self-luminous display panel 120, the light collimator panel 130, and the optical fingerprint sensor 110 may be directly stacked.
  • Direct lamination means at least partial contact between the self-luminous display panel 120 and the light collimator panel 130, and light collimation At least partial contact between the panel 130 and the optical fingerprint sensor 110.
  • the self-luminous display panel 120, the light collimator panel 130, and the optical fingerprint sensor 110 may also be bonded by an optical adhesive layer.
  • the optical adhesive layer can prevent multiple reflections and scattering of different substrate and air interfaces, thereby avoiding the occurrence of reduced fingerprint image clarity.
  • the material of the optical adhesive layer may be a pressure sensitive optical adhesive, a thermal optical adhesive, and a photosensitive optical adhesive.
  • the optical fingerprint sensor module When the self-luminous display panel 120 is located above the optical fingerprint sensor 110 and the light can pass through the self-luminous display panel 120 from top to bottom, the optical fingerprint sensor module can be displayed on the one hand through the self-luminous display panel 120. The fingerprint reflected light passing through the self-luminous display panel 120 can be received by the optical fingerprint sensor 110, thereby implementing fingerprint recognition. Therefore, the optical fingerprint sensor module has both a display function and a fingerprint recognition function.
  • the embodiment first uses a self-luminous display. Some of the light emitted by panel 120 is used for fingerprint recognition, and some of the light is shown in Figure 1 by oblique upward arrows (not labeled). After the light reaches the upper surface of the self-luminous display panel 120, an optical phenomenon such as refraction and reflection occurs with the surface of the finger fingerprint to generate corresponding reflected light. The reflected light is returned obliquely downward to the self-luminous display panel 120, and further (obliquely) passes through the self-luminous display panel 120, passes through the light collimator panel 130, and then reaches the optical fingerprint sensor 110, which is received by the optical fingerprint sensor 110. The photosensitive pixels are received, and the fingerprint is recognized by the optical fingerprint sensor 110.
  • the light collimator panel 130 since the light collimator panel 130 is located between the optical fingerprint sensor 110 and the self-luminous display panel 120, the light collimator panel 130 can transmit the light transmitted through the self-luminous display panel 120. More accurate. Light passing through the light collimator panel 130 has a smaller angular extent, and most of the light outside of this angular range is absorbed. For example, the angle between the light passing through the light collimator panel 130 and the upper and lower surfaces of the light collimator panel 130 is closer to 90 degrees (light passing through the light collimator panel 130, specifically from the light collimator panel).
  • the core layer in 130 passes through, and the core layer will be described later; when the length direction of the core layer is perpendicular to the upper and lower surfaces of the light collimator panel 130, the angle between the light passing through and the upper and lower surfaces of the light collimator panel 130 is Specifically, it may be 80 to 90 degrees, and most of the light of other angular ranges is absorbed by the light collimator panel 130 (specifically absorbed by the skin layer in the light collimator panel 130, which will be described later). This effect helps to improve the fingerprint recognition performance of the optical fingerprint sensor.
  • the light collimator panel 130 used in this embodiment is a special structure, which will be further described below.
  • FIG. 2 is a partial top plan view of the optical collimator panel 130 of FIG. 1
  • FIG. 3 is a cross-sectional view corresponding to the structure of FIG.
  • the light collimator panel 130 includes parallel upper and lower surfaces (not labeled), and the light collimator panel 130 includes a plurality of light collimating units 131 perpendicular to the upper and lower surfaces. 2 and FIG. 3 each select one of the light collimating units 131 for distinguishing display by a dotted frame, wherein both FIG. 2 and FIG. 3 exemplify that the light collimating unit 131 is perpendicular to the upper and lower surfaces of the light collimator panel 130.
  • the entire light collimating unit 131 has a rectangular shape as a whole in plan view, and is arranged in a neat row in a plan view plane.
  • the light collimating unit 131 may have a hexagonal shape (a regular hexagon) or other shape as a whole.
  • the arrangement of the light collimating units 131 on a plan view plane may be other modes.
  • each of the light collimating units 131 has a core layer 1311 and a skin layer 1312 (refer to FIGS. 4 and 5), wherein different core layers 1311 are evenly spaced apart in a plan view direction, and the core layer 1311 It is separated by the skin layer 1312, that is, the skin layer 1312 surrounds the core layer 1311.
  • the core layers 1311 are evenly spaced from each other, which corresponds to the alignment of the light collimating units 131.
  • the core layer 1311 is also perpendicular to the upper and lower surfaces of the light collimator panel 130, specifically, the length of the core layer 1311 is perpendicular to the optical collimator.
  • the upper and lower surfaces of the panel 130 are perpendicular to the upper and lower surfaces of the panel 130.
  • FIG. 4 is a schematic plan view of one of the light collimating units 131, which corresponds to a top view of the light collimating unit 131 of FIG.
  • Figure 5 is a schematic cross-sectional view of the structure shown in Figure 4.
  • the light collimator panel 130 mainly uses the core layer 1311 of the light collimating unit 131 to pass light, and the skin layer 1312 is used to absorb light, and the core layer 1311 and the skin layer 1312 cooperate to achieve the above-mentioned light collimation. effect.
  • the absorption rate of visible light and infrared light by the core layer 1311 is selected to be ⁇ 10%. It can be seen from the function of the skin layer 1312 that the higher the absorption rate of visible light and infrared light by the skin layer 1312, the better, or the absorption rate of visible light and infrared light of the skin layer 1312 is higher, so as to absorb light outside a specific angle. .
  • the absorption of visible light and infrared light by the skin layer 1312 is selected to be >50%.
  • the corresponding light visible light and infrared light enters the light collimator panel 130 and is usually only divided into two cases: the first case is absorbed by the skin layer 1312; the second case is worn along the core layer 1311.
  • the light collimator panel 130 is usually only divided into two cases: the first case is absorbed by the skin layer 1312; the second case is worn along the core layer 1311.
  • the light collimator panel 130 is usually only divided into two cases: the first case is absorbed by the skin layer 1312; the second case is worn along the core layer 1311.
  • the light collimator panel 130 is usually only divided into two cases: the first case is absorbed by the skin layer 1312; the second case is worn along the core layer 1311.
  • the cross-sectional area of the skin layer 1312 is selected to be less than 50% of the cross-sectional area of the entire light collimating unit 131.
  • the light collimator panel 130 can be formed by pressing a plurality of light collimating fibers, and each light collimating fiber is pressed into a Light collimation unit 131.
  • the manufacturing process of each single light collimating fiber can be made by using the existing optical fiber manufacturing process.
  • the above-mentioned optical fiber fabrication process is used to fabricate light collimating fibers (and then laminated by a plurality of light collimating fibers to form the light collimator panel 130) in order to utilize the existing mature optical fiber process to better form light.
  • Collimating fibers are different from the optical fibers.
  • the optical collimator panel 130 can be formed by other methods, which is not limited by the present invention.
  • the optical collimating fiber used to fabricate the light collimating unit 131 is different from the optical fiber.
  • the optical collimating fiber is not required to have the "light total reflection property" of the optical fiber. That is to say, in the optical fiber, the optical fiber sheath is required to be a relative optical thinning medium, and the optical fiber core is a relatively optically dense medium. In the optical fiber, the relative refractive index difference between the optical fiber core and the optical fiber sheath must be a positive value. However, light collimating fibers do not necessarily require this.
  • the relative refractive index difference between the core layer 1311 and the skin layer 1312 is -10% to 10%. Even with the optical fiber completely reversed, the relative refractive index difference between the core layer 1311 and the skin layer 1312 is between -10% and 0, which in this case contributes to a better light collimation effect of the light collimator panel 130. Because, it should be noted that in the present embodiment, the first consideration is mainly the selection of the absorption ratio of visible light and infrared light by the above-mentioned skin layer 1312 and core layer 1311.
  • the relative refractive index difference is a parameter of the degree of difference between the refractive index n1 of the core layer and the refractive index n2 of the skin layer.
  • the value of the relative refractive index difference is represented by ⁇ , and the corresponding calculation formula is:
  • the refractive index of the visible light and the near-infrared light of the core layer 1311 and the skin layer 1312 of the light collimating fiber are preferably equal or close, and in the light collimating fiber, preferably It is such that most of the light (>80%) does not reflect, and the fiber is necessarily required to have total reflection properties; the skin 1312 of the light collimating fiber has the characteristics of absorbing visible light and near-infrared light, and the fiber does not have such characteristics.
  • the obliquely incident light does not reflect significantly at the interface between the core layer 1311 and the skin layer 1312 of the light collimating fiber, and does not cause total reflection, but is incident from the core layer 1311 into the skin layer 1312, and is covered by the skin layer 1312. Absorbed. Therefore, the light having a small angle with the upper and lower surfaces of the light collimator panel 130 is absorbed by the skin layer 1312 when passing through the skin layer 1312 one time or more; and the light having a larger angle with the upper and lower surfaces of the light collimator panel 130. Then, it can be completely passed through a core layer 1311 for implementing the fingerprint recognition function.
  • the optical collimator panel 130 can be more advantageous for achieving the collimation effect on the light, and the optical collimation process can be performed by using the corresponding optical fiber forming process.
  • the unit 131, or other process, produces the light collimating unit 131, thus reducing the process difficulty.
  • Another embodiment of the present invention provides another optical fingerprint sensor module, as shown in FIG.
  • the optical fingerprint sensor module includes an optical fingerprint sensor 210 and a self-luminous display panel 220, and the self-luminous display panel 220 is located above the optical fingerprint sensor 210. Among them, light can pass through the self-luminous display panel 220 from top to bottom.
  • the optical fingerprint sensor module also includes a light collimator panel 230 positioned between the optical fingerprint sensor 210 and the self-illuminating display panel 220.
  • the self-luminous display panel 220 includes a first transparent substrate 221 , a second transparent substrate 222 , and a self-luminous circuit layer 223 .
  • the self-luminous circuit layer 223 is located between the first transparent substrate 221 and the second transparent substrate 222.
  • the optical fingerprint sensor 210 is located below the second transparent substrate 222.
  • the self-luminous circuit layer 223 includes a plurality of display pixel units 2231.
  • Each display pixel unit 2231 includes at least one non-transmissive region and at least one light transmissive region.
  • the self-luminous display panel 220 may be an OLED display panel.
  • the self-luminous display panel 220 also includes a sealing structure (not labeled).
  • the optical fingerprint sensor module of this embodiment further includes a protective layer 250, and the protective layer 250 is located above the self-luminous display panel 220.
  • the protective layer 250 may be a flat substrate or other shape having a flat portion.
  • the material of the protective layer 250 may be a transparent material, and the specific material may be inorganic glass or organic glass, or may be other plastic products other than organic glass.
  • the optical fingerprint sensor module of this embodiment also has a display function and a fingerprint recognition function.
  • the first embodiment uses some light emitted from the self-luminous display panel 220 for fingerprint recognition.
  • some of the light rays are indicated by oblique upward arrows (not labeled). These rays reach an optical phenomenon such as refraction and reflection at the upper surface of the protective layer 250 (the interface where the protective layer 250 is in contact with the finger), and generate corresponding reflected light.
  • the reflected light returns obliquely downward to the protective layer 250, and further (obliquely) passes through the self-luminous display panel 220, passes through the light collimator panel 230, and then reaches the optical fingerprint sensor 210, which is illuminated by the optical fingerprint sensor 210.
  • the light collimator panel 230 is located between the optical fingerprint sensor 210 and the self-luminous display panel 220, the light collimator panel 230 can make the light transmitted through the self-luminous display panel 220 more collimated, thereby improving the optical fingerprint sensor 210. Fingerprint recognition performance.
  • the self-luminous display panel, the light collimator panel and the optical fingerprint sensor may be directly laminated, or may be bonded by an optical adhesive layer.
  • the effect of bonding through the optical adhesive layer is better than that of the three. This includes at least two reasons: First, as mentioned above, if optical glue is not used, there is a possibility that there will be an air layer between the structures, causing a serious loss of signal; second, if optical glue is not used Fixed, the relative position shift may occur in the subsequent use In the case of motion, the collection effect of the fingerprint image is adversely affected. Therefore, it is desirable to carry out the fixation of the three airs.
  • the three are fixed by optical glue, although the effect is good, it brings about a problem of high cost. This is because after the optical glue is cured, it is difficult for the three to separate again. Therefore, once one of the steps is not pasted, or if there is a problem with the structure itself, it may cause the two structures or the three structures to be scrapped. For example, after the completion of the bonding, it is found that the light collimator panel or the optical fingerprint sensor is damaged or malfunctioned, which may cause the self-luminous display panel to be scrapped together. The cost of the self-luminous display panel is high, and it can be seen that such a fixed structure causes an increase in process cost.
  • the light collimator panel 230 and the self-luminous display panel 220 have a separable light transmissive layer 240.
  • the assembly yield is improved by separating the light transmissive layer 240.
  • the detachable light-transmitting layer 240 is laminated on the lower surface of the self-luminous display panel 220 (ie, the lower surface of the second transparent substrate 222).
  • the detachable light-transmitting layer 240 and the light collimator panel 230 have optical glue, and the optical glue affixes the detachable light-transmitting layer 240 and the light collimator panel 230 together.
  • An optical glue is disposed between the light collimator panel 230 and the optical fingerprint sensor, and the optical glue bonds the light collimator panel 230 and the optical fingerprint sensor together.
  • the detachable light-transmitting layer 240 and the self-luminous display panel 220 are laminated together by lamination, and the detachable light-transmitting layer 240 and the light collimator panel 230 are bonded by optical glue.
  • the collimator panel 230 and the optical fingerprint sensor are bonded by optical glue.
  • the detachable light-transmitting layer 240 and the self-luminous display panel 220 are combined by lamination, the presence of air can be substantially eliminated between the detachable light-transmitting layer 240 and the self-luminous display panel 220, and has a certain fixed strength. That is, during use, the two can still remain relatively fixed, and normally, relative positional movement does not occur.
  • the detachable light-transmitting layer 240 and the self-luminous display panel 220 are press-bonded together by lamination, they are not as difficult to separate as sticking by the adhesive layer. In contrast, the separable light transmissive layer 240 and the self-luminous display panel 220 are relatively easily separated.
  • the detachable light-transmitting layer 240 and the self-luminous display panel 220 can be separated, thereby protecting the self-luminous display panel 220 with higher cost, thereby reducing the corresponding process cost.
  • the detachable light transmissive layer 240 may be removed from the self-illuminating display panel 220.
  • the manner in which the lower surface is separated allows the self-luminous display panel 220 to be reused, reducing process costs.
  • the detachable light transmissive layer 240 is a flexible material.
  • This flexible material has correspondingly good surface properties (such as electrostatic adsorption, or surface tension).
  • the detachable light transmissive layer 240 may be an organic material, and the detachable light transmissive layer 240 may have a thickness of ⁇ 0.2 mm; in another case, the detachable light transmissive layer 240 may be super. Thin glass, the thickness of the detachable light transmissive layer 240 is ⁇ 0.2 mm.
  • the organic material or the ultra-thin glass can have the flexibility required in the embodiment, and can have the properties of electrostatic adsorption and the like required in the embodiment, and the self-luminous display panel 220 and the detachable light-transmitting layer 240 are preferably provided. The ground pressure is put together.
  • the detachable light-transmitting layer 240 is made of an organic material, the corresponding pressing effect is better.
  • the organic material is an organic film, and at this time, the light can be separated and transmitted.
  • Layer 240 can be better disposed in a laminated manner beneath self-illuminating display panel 220 (similar to a cell phone film).
  • the light collimator panel 230 still includes parallel upper and lower surfaces (not labeled), the light collimating unit 231 in the light collimator panel 230 It is not perpendicular to the upper and lower surfaces, but has a first angle of less than 90°, denoted by ⁇ , as shown in FIG.
  • the first angle ⁇ is the angle between the light collimating unit 231 and the upper and lower surfaces of the light collimator panel 230, and is also the core layer in the light collimating unit 231 (not labeled, Referring to the corresponding content of the foregoing embodiment, the angle with the upper and lower surfaces of the light collimator panel 230 is specifically the angle between the length direction of the core layer and the upper and lower surfaces of the light collimator panel 230.
  • the range of the first angle ⁇ is: 40° ⁇ ⁇ ⁇ 90°.
  • FIG. 7 shows an enlarged schematic view of a portion of the light collimator panel 230, in which black arrows indicate corresponding reflected rays
  • the upper and lower surfaces of the panel 230 have a certain angle. Therefore, when the light collimating unit 231 and the upper and lower surfaces of the light collimator panel 230 have a first angle ⁇ , more reflective light can pass through the light collimator panel. 230, and the difference in angle between the reflected rays after passing is naturally small). Therefore, such an arrangement helps to further improve the fingerprint recognition performance of the module.
  • the range of ray angles that can pass through the light collimator panel 230 is generally a range including the first angle ⁇ .
  • the angle of light that can pass through the light collimator panel 230 may range from 65° to 75°.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Image Input (AREA)

Abstract

一种光学指纹传感器模组,包括:光学指纹传感器;还包括:位于所述光学指纹传感器上方的自发光显示面板,光线能够从上到下透过所述自发光显示面板;位于所述光学指纹传感器和所述自发光显示面板之间的光准直器面板。所述光学指纹传感器模组性能得到改进。

Description

光学指纹传感器模组 技术领域
本发明涉及光学指纹识别领域,尤其涉及一种光学指纹传感器模组。
背景技术
指纹成像识别技术,是通过光学指纹传感器采集到人体的指纹图像,然后与系统里的已有指纹成像信息进行比对,来判断正确与否,进而实现身份识别的技术。由于其使用的方便性,以及人体指纹的唯一性,指纹成像识别技术已经大量应用于各个领域。比如公安局和海关等安检领域、楼宇的门禁系统、以及个人电脑和手机等消费品领域等等。指纹成像识别技术的实现方式有光学成像、电容成像、超声成像等多种技术。相对来说,光学指纹成像识别技术成像效果相对较好,设备成本相对较低。
更多有关光学指纹传感器的内容可参考公开号为CN105184230A的中国发明专利申请(公开日2015年12月23日)。
现有光学指纹传感器模组的结构有待改进。
发明内容
本发明解决的问题是提供一种光学指纹传感器模组,以对现有光学指纹传感器模组进行改进。
为解决上述技术问题,本发明提供一种光学指纹传感器模组,包括:光学指纹传感器;还包括:位于所述光学指纹传感器上方的自发光显示面板,光线能够从上到下透过所述自发光显示面板;位于所述光学指纹传感器和所述自发光显示面板之间的光准直器面板。
可选的,所述光准直器面板包括平行的上下两个表面,所述光准 直器面板包含与其上下表面垂直或呈第一夹角的多个光准直单元,所述第一夹角用α表示,40°≤α<90°;每个所述光准直单元具有芯层和皮层,所述芯层相互之间呈均匀间隔分布,所述皮层包围所述芯层。
可选的,所述芯层和所述皮层的相对折射率差在-10%~10%。
可选的,所述芯层和所述皮层的相对折射率差在-10%~0。
可选的,所述芯层对可见光和红外光的吸收率<10%,所述皮层对可见光和红外光的吸收率>50%。
可选的,所述皮层截面面积小于所述光准直单元截面面积的50%。
可选的,所述光准直器面板由多根光准直纤维压合而成,每根光准直纤维被压合之后成为一个所述光准直单元。
可选的,所述光准直器面板与所述自发光显示面板之间具有可分离透光层。
可选的,所述可分离透光层是柔性材质。
可选的,所述可分离透光层是有机材质,所述可分离透光层的厚度≤0.2mm。
可选的,所述可分离透光层是超薄玻璃,所述可分离透光层的厚度≤0.2mm。
可选的,所述可分离透光层以层压的方式置于在自发光显示面板下方。
可选的,所述可分离透光层与所述光准直器面板之间具有光学胶,所述光学胶将所述可分离透光层与所述光准直器面板粘贴在一起。
可选的,所述光准直器面板与所述光学指纹传感器之间具有光学胶,所述光学胶将所述光准直器面板与所述光学指纹传感器粘贴在一 起。
可选的,所述自发光显示面板为OLED显示面板。
可选的,所述自发光显示面板包括第一透光基板、第二透光基板和自发光电路层,所述自发光电路层位于所述第一透光基板和所述第二透光基板之间;所述自发光电路层包括多个显示像素单元;每个所述显示像素单元包括至少一个非透光区和至少一个透光区。
可选的,所述光学指纹传感器模组还包括保护层,所述保护层位于所述自发光显示面板上方。
与现有技术相比,本发明的技术方案具有以下优点:
本发明的技术方案中,一方面可以通过自发光显示面板进行显示,另一方面,可以使得穿过自发光显示面板的指纹反射光线被光学指纹传感器接收,从而实现指纹识别。因此,光学指纹传感器模组同时具备显示功能和指纹识别功能。更加重要的是,由于具有位于光学指纹传感器和自发光显示面板之间的光准直器面板,光准直器面板能够使透过自发光显示面板的光线更加准直。穿过光准直器面板的光线具有较小的角度范围,这个角度范围之外的光大部分都被吸收掉。比如:穿过光准直器面板的光线与光准直器面板上下表面之间的夹角均较接近90度(具体可以为80度至90度),而其他角度范围的光都被光准直器面板吸收掉。上述这个作用有助于提高光学指纹传感器的指纹识别性能。
进一步,平行的上下两个表面,所述光准直器面板包含与其上下表面垂直或呈第一夹角的多个光准直单元,所述第一夹角用α表示,40°≤α<90°;每个所述光准直单元具有芯层和皮层,所述芯层相互之间呈均匀间隔分布,所述皮层包围所述芯层。这样的光准直器面板能够更加有利于实现对光线的准直作用,并且能够采用相应的光纤形成工艺制作光准直单元,或者其它工艺制作光准直单元,因此,降低了工艺难度。
进一步,在自发光显示面板与光准直器面板之间设置可分离透光层,并且,可分离透光层与自发光显示面板之间通过层压方式,结合在一起。一方面,可分离透光层与自发光显示面板之间可以基本排除空气的存在,并且具有一定的固定强度。即在使用过程中,这两者仍然能够保持相对固定,通常情况下,不会发生相对位置移动。另一方面,可分离透光层与自发光显示面板之间通过层压压合在一起时,又不像通过胶层粘贴那样难以分离。相反,可分离透光层与自发光显示面板之间是较容易分离的。因此,一旦发现自发光显示面板以下的任何结构有问题时,可以通过将可分离透光层与自发光显示面板进行分离,从而保护住成本较高的自发光显示面板,进而降低相应的工艺成本。
附图说明
图1本发明实施例提供的一种光学指纹传感器模组示意图;
图2为图1中光准直器面板的部分俯视结构示意图;
图3为图2所示结构对应剖面示意图;
图4为其中一个光准直单元的俯视结构示意图;
图5为图4所示结构对应剖面示意图;
图6本发明另一实施例提供的一种光学指纹传感器模组示意图;
图7为图6所示光学指纹传感器模组中局部结构的放大示意图。
具体实施方式
现有光学指纹传感器模组功能单一,应用受到一定的限制。
为此,本发明提供一种新的光学指纹传感器模组,光学指纹传感器模组包括光学指纹传感器、自发光显示面板和光准直器面板。自发光显示面板位于所述光学指纹传感器上方,光线能够从上到下透过所 述自发光显示面板。光准直器面板位于所述光学指纹传感器和所述自发光显示面板之间。所述光学指纹传感器模组性能得到改进,从而更好地实现指纹识别功能和显示功能。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
本说明书图1和图6中的上下关系,是以将光学指纹传感器模组放置在用户眼睛下方进行定义的。当光学指纹传感器模组放置在用户眼睛下方,且自发光显示面板的显示面朝上时,如果说一个结构位于另一个结构的上方,则说明这个结构比另一个结构更加靠近用户眼睛,在此一并说明。
本发明实施例提供一种光学指纹传感器模组,如图1所示。光学指纹传感器模组包括光学指纹传感器110和自发光显示面板120,自发光显示面板120位于光学指纹传感器110上方。其中,光线能够从上到下透过自发光显示面板120。光学指纹传感器模组还包括位于光学指纹传感器110和自发光显示面板120之间的光准直器面板130。
前面提到,光线能够从上到下透过自发光显示面板120,其中,“从上到下”的具体方式可以是竖直向下、斜向下或者曲折向下。总之,光线能够从自发光显示面板120上方向下透过自发光显示面板120,并继续向下传播。同时,自发光显示面板120在其它方向(如前后方向和左右方向)则不要求透光,并且这些方向上不透光更好。
为使光线能够从上到下透过自发光显示面板120,自发光显示面板120的一种具体结构可以如图1所示。自发光显示面板120包括第一透光基板121、第二透光基板122和自发光电路层123。自发光电路层123位于第一透光基板121和第二透光基板122之间。光学指纹传感器110位于第二透光基板122下方。
自发光显示面板120中,自发光电路层123包括多个显示像素单元1231。图1中用虚线框示意出其中的几个显示像素单元1231所在 区域,及各个显示像素单元1231相邻关系。需要注意,虽然虚线框包括了部分第一透光基板121和第二透光基板122,但这只是为了便于显示,显示像素单元1231并不包括第一透光基板121和第二透光基板122。也就是说,图1中仅是显示像素单元1231的示意显示。其它实施例采用相同的虚线框显示方式,在此一并说明。
每个显示像素单元1231包括至少一个非透光区和至少一个透光区。由于每个显示像素单元1231具有相应的透光区和非透光区,本实施例中,在宏观上,自发光显示面板120能够均匀透过光线。本说明书后续进一步说明非透光区和透光区的内容。需要说明的是,显示像素单元1231更具体的结构会因自发光显示面板120的具体类型的不同而不同。
本实施例中,自发光显示面板120可以为OLED显示面板,此时自发光电路层123的显示像素单元1231可以包括阳极层、空穴注入层(HIL)、发光层(EML)、电子注入层(EIL)和阴极层等结构,还可以具有空穴传输层(HTL)和电子传输层(ETL),还可以包括驱动OLED的TFT、驱动金属线和存储电容等结构。OLED显示面板的发光原理为:在一定电压驱动下,电子和空穴分别从阴极层和阳极层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,发光分子经过辐射弛豫而发出可见光(或其它光线)。
上述发光层等结构可以位于显示像素单元1231相应的非透光区中。而在非透光区周边,显示像素单元1231具有相应的透光区。需要说明的是,其它实施例中,一个显示像素单元1231的透光区还可以与另一个显示像素单元1231的透光区连接在一起,形成一个范围更大的透光区,此时,这两个显示像素单元1231通常是相邻的,并且,两个显示像素单元1231相邻之间的区域也是一个透光区,从而能够使得三个透光区连接为一个大的透光区。
显示像素单元1231的发光层和驱动OLED的TFT、驱动金属线和存储电容等结构需要有金属层,因此,构成了相应非透光区。而他 们之间的间隙均可以设置为透光区,即在保证相应结构和功能的基础上,显示像素单元1231的其它结构都可以尽量采用透光结构制作,从而使得更多的光线能够穿过OLED显示面板(此穿过通常指从显示像素单元1231的高度穿过,高度通常也可称为厚度)。
显示像素单元1231的非透光区中,并不是整个区从上到下都是非透光的。而是,这些区的底部具有非透光结构(图1中以各显示像素单元1231中的斜底纹部分示意)。即在非透光区发光层等结构上方的结构仍然是透光的,例如,发光层上方的结构透光,因此,发光层发出的光线才能够向上到达用户眼睛,从而保证OLED显示面板进行显示。
本实施例透光区的高度等于自发光电路层123的高度,从而保证光线能够从透光区穿过自发光电路层123(需要说明的是,自发光电路层123的各位置高度可能略有差别,但是至少部分位置的自发光电路层123的高度与透光区的高度相等)。而光线能够从透光区穿过自发光电路层123,保证了光线能够从下到下透过自发光显示面板120,进而保证光学指纹传感器模组能够进行指纹图像采集。由上述内容可知,光线在(斜)向下穿过所述自发光显示面板120时,包含穿过第一透光基板121、透光区和第二透光基板122。
自发光显示面板120还包括密封结构(未标注)。密封结构也位于第一透光基板121和第二透光基板122之间。密封结构与第一透光基板121和第二透光基板122一起,将自发光电路层123密封在第一透光基板121和第二透光基板122之间。
第一透光基板121和第二透光基板122的材料可以为透光材料,具体材料可以为无机玻璃或者有机玻璃,也可以是有机玻璃以外的其它塑料制品。
光学指纹传感器110可以包括指纹感测电路层(未区分标注)和衬底基板(未区分标注)。所述指纹感测电路层包括多个感光像素单元(未区别标注)。每个所述感光像素单元包括感光二极管或其他光 敏器件,相应的指纹反射光线能够被感光元件接收。在一种情况下,所述指纹感测电路层位于第二透光基板122和所述衬底基板之间,如图1所示。此时,光学指纹传感器110可以为基于玻璃或塑料基板的以TFT(Thin Film Transistor,薄膜晶体管)工艺制作的图像传感器,即衬底基板可以为玻璃或塑料,光学指纹传感器110也可以是基于硅衬底且采用CMOS工艺制作的光学传感器,即衬底基板为硅衬底;在另一种情况下,所述衬底基板位于所述第二透光基板122和所述指纹感测电层之间(例如将图1中的光学指纹传感器110上下面对换翻转过来),此时,所述衬底基板为透光材质,例如玻璃或塑料基板,此时,光学指纹传感器110可以为基于玻璃或塑料基板、TFT工艺的背照式图像传感器。
自发光显示面板120、光准直器面板130和光学指纹传感器110三者可以是直接层叠,“直接层叠”指自发光显示面板120和光准直器面板130之间至少有部分接触,光准直器面板130和光学指纹传感器110之间至少有部分接触。三者都总体呈上下平坦的扁平结构时,三者可以恰好是如图1中所示层叠形态。
自发光显示面板120、光准直器面板130和光学指纹传感器110三者也可以通过光学胶层进行贴合。光学胶层能够防止不同基板与空气界面的多次反射和散射,从而避免指纹图像清晰度降低的情况发生。所述光学胶层的材料可以是压敏光学胶、热敏光学胶和光敏光学胶。
当自发光显示面板120位于光学指纹传感器110上方,光线又能够从上到下透过自发光显示面板120时,光学指纹传感器模组一方面可以通过自发光显示面板120进行显示,另一方面,可以使得穿过自发光显示面板120的指纹反射光线被光学指纹传感器110接收,从而实现指纹识别。因此,光学指纹传感器模组同时具备显示功能和指纹识别功能。
具体在实现指纹识别功能的过程,本实施例首先利用自发光显示 面板120发出的一些光线用于指纹识别,图1中用斜向上的箭头(未标注)表示出其中的一些光线。这些光线到达自发光显示面板120的上表面之后,与手指指纹表面发生折射和反射等光学现象,产生相应的反射光线。反射光线斜向下返回自发光显示面板120,并进一步(斜)向下穿过自发光显示面板120,再经过光准直器面板130,之后到达光学指纹传感器110,被光学指纹传感器110中的感光像素接收,进而利用光学指纹传感器110实现指纹的识别。
更加重要的是,本实施例中,由于具有位于光学指纹传感器110和自发光显示面板120之间的光准直器面板130,光准直器面板130能够使透过自发光显示面板120的光线更加准直。穿过光准直器面板130的光线具有较小的角度范围,这个角度范围之外的光大部分都被吸收掉。比如:穿过光准直器面板130的光线与光准直器面板130上下表面之间的夹角均较接近90度(穿过光准直器面板130的光线,具体从光准直器面板130中的芯层穿过,芯层后续将进行说明;当芯层的长度方向垂直于光准直器面板130上下表面时,则穿过的光线与光准直器面板130上下表面的夹角具体可以为80度至90度),而其他角度范围的光大部分都被光准直器面板130吸收掉(具体被光准直器面板130中的皮层吸收掉,皮层后续将进行说明)。上述这个作用有助于提高光学指纹传感器的指纹识别性能。
并且,本实施例中所采用的光准直器面板130是一种特殊的结构,下面进一步进行说明。
图2为图1中光准直器面板130的部分俯视结构示意图,图3为图2所示结构对应剖面示意图。
从图2和图3可知,光准直器面板130包括平行的上下两个表面(未标注),所述光准直器面板130包括相对于上下表面垂直的多个光准直单元131,图2和图3中均用虚线框框选出其中一个光准直单元131进行区分显示,其中图2和图3都体现了光准直单元131垂直于光准直器面板130上下表面。
从图2中显示的俯视结构中,可以看到各个光准直单元131整体俯视形状是呈矩形的,并且在俯视平面上是呈整齐的行列排布的。但是,其它实施例中,光准直单元131整体俯视形状可以是六边形(正六边形)或者其它形状。光准直单元131在俯视平面上的排布方式也可以是其它方式。
本实施例中,每个光准直单元131具有芯层1311和皮层1312(参考图4和图5),其中,在俯视方向上,不同芯层1311之间呈均匀间隔分布,并且芯层1311是被皮层1312所间隔,即皮层1312包围芯层1311。芯层1311相互之间呈均匀间隔分布,这与上述光准直单元131呈整齐的行列排布是对应的。如前所述,当光准直单元131垂直光准直器面板130上下表面时,芯层1311也垂直于光准直器面板130上下表面,具体是芯层1311长度方向垂直于光准直器面板130上下表面。
为了更好的显示相应的芯层1311和皮层1312,图4为其中一个光准直单元131的俯视结构示意图,相当于是放大了图2中的一个光准直单元131的俯视结构。图5为图4所示结构对应剖面示意图。
本实施例中,光准直器面板130主要利用光准直单元131的芯层1311来穿过光线,而皮层1312则用于吸收光线,芯层1311和皮层1312配合,从而达到上述光准直作用。
由芯层1311的作用可知,芯层1311对可见光和红外光的吸收率越低越好。为保证穿过的光线强度足够,选择令芯层1311对可见光和红外光的吸收率<10%。由皮层1312的作用可知,皮层1312对可见光和红外光的吸收率越高越好,或者说,皮层1312对可见光和红外光的吸收率则宜较高,以便对特定角度之外的光线进行吸收。为保证对相应光线进行有效吸收,选择令皮层1312对可见光和红外光的吸收率>50%。这种情况下,相应的光线(可见光和红外光)进入光准直器面板130后通常只分成两种情况:第一种情况,被皮层1312吸收;第二种情况,沿着芯层1311穿过光准直器面板130。
同时,为了保证足够的光能够透过芯层1311,选择令皮层1312截面面积小于整个光准直单元131截面面积的50%。
为制作出符合上述要求的光准直器面板130,本实施例中,光准直器面板130可以由多根光准直纤维压合而成,每根光准直纤维被压合之后成为一个光准直单元131。其中,每个单根的光准直纤维的制作工艺可以采用现有光纤的制作工艺来制作。
上述采用现有光纤的制作工艺来制作光准直纤维(然后通过多根光准直纤维压合,形成光准直器面板130),是为了利用现有成熟的光纤工艺来更好地形成光准直纤维。然而,本实施例中,用来制作光准直单元131的光准直纤维与光纤是不同的。同时,也可以采用其它方法形成光准直器面板130,本发明对此不作限定。
需要特别说明的是,用来制作光准直单元131的光准直纤维与光纤的不同之处,具体在于,制作所述光准直纤维并不需要具备光纤的“光全反射性质”。也就是说,光纤中,一定要求光纤皮是相对的光疏介质,光纤芯是相对的光密介质。光纤中,光纤芯与光纤皮的相对折射率差一定是正值。然而,光准直纤维并不一定要求这样。
在相对折射率差上,本实施例中,芯层1311和皮层1312的相对折射率差在-10%~10%。甚至于与光纤完全反过来,芯层1311和皮层1312的相对折射率差在-10%~0,这种情况下更有助于光准直器面板130达到更好的光准直效果。因为,需要注意到,本实施例中,首先主要考虑的是上述皮层1312和芯层1311对可见光和红外光的吸收率的选择。
其中,本实施例中,相对折射率差的为芯层的折射率n1与皮层的折射率n2的差异程度的参数。相对折射率差的值用△来表示,相应的计算公式为:
Figure PCTCN2017094453-appb-000001
进一步分析光准直纤维与光纤,可以得到以下几个重要的区别:光准直纤维的芯层1311和皮层1312可见光以及近红外光的折射率优选是相等或接近,光准直纤维中,优选是使得大部分光线(>80%)不发生反射,而光纤是必定需要具备全反射性质;光准直纤维的皮层1312具有吸收可见光以及近红外光的特性,光纤没有这种特性。
综合可知,所以斜入射的光在光准直纤维的芯层1311和皮层1312界面不会发生明显反射,更不会发生全反射,而是会从芯层1311入射进入皮层1312中,被皮层1312所吸收。因此,与光准直器面板130上下表面夹角较小的光线,会在经过一次或者多次皮层1312时,被皮层1312吸收;而与光准直器面板130上下表面夹角较大的光线,则可以从一个芯层1311中完全穿过,用于实现指纹识别功能。
由于本实施例所提供的光准直器面板130结构具有以上特点,因此,光准直器面板130能够更加有利于实现对光线的准直作用,并且能够采用相应的光纤形成工艺制作光准直单元131,或者其它工艺制作光准直单元131,因此,降低了工艺难度。
本发明另一实施例提供另一种光学指纹传感器模组,如图6所示。
光学指纹传感器模组包括光学指纹传感器210和自发光显示面板220,自发光显示面板220位于光学指纹传感器210上方。其中,光线能够从上到下透过自发光显示面板220。光学指纹传感器模组还包括位于光学指纹传感器210和自发光显示面板220之间的光准直器面板230。
本实施例中,自发光显示面板220的一种具体结构可以如图6所示。自发光显示面板220包括第一透光基板221、第二透光基板222和自发光电路层223。自发光电路层223位于第一透光基板221和第二透光基板222之间。光学指纹传感器210位于第二透光基板222下方。
自发光显示面板220中,自发光电路层223包括多个显示像素单元2231。每个显示像素单元2231包括至少一个非透光区和至少一个透光区。本实施例中,自发光显示面板220可以为OLED显示面板。自发光显示面板220还包括密封结构(未标注)。
本实施例的光学指纹传感器模组还包括保护层250,保护层250位于自发光显示面板220上方。保护层250可以是扁平基板,或者是具有扁平部分的其它形状。保护层250的材料可以为透明材料,具体材料可以为无机玻璃或者有机玻璃,也可以是有机玻璃以外的其它塑料制品。
本实施例的光学指纹传感器模组同样同时具备显示功能和指纹识别功能。
具体在实现指纹识别功能的过程,本实施例首先利用自发光显示面板220发出的一些光线用于指纹识别,图6中用斜向上的箭头(未标注)表示出其中的一些光线。这些光线到达保护层250的上表面(保护层250与手指接触的界面)发生折射和反射等光学现象,产生相应的反射光线。反射光线斜向下返回保护层250,并进一步(斜)向下穿过自发光显示面板220,再经过光准直器面板230,之后到达光学指纹传感器210,被光学指纹传感器210中的感光像素接收,进而利用光学指纹传感器210实现指纹的识别。由于具有位于光学指纹传感器210和自发光显示面板220之间的光准直器面板230,光准直器面板230能够使透过自发光显示面板220的光线更加准直,提高光学指纹传感器210的指纹识别性能。
图1对应实施例中提到,自发光显示面板、光准直器面板和光学指纹传感器三者可以是直接层叠,也可以通过光学胶层进行贴合。其中,三者通过光学胶层进行贴合的效果,好于三者直接层叠。这至少包括两个方面的原因:第一,如前所述,如果不采用光学胶,各个结构之间很可能会存在空气层,造成信号严重损失的情况;第二,如果不采用光学胶粘接固定,后续使用过程中,三者可能发生相对位置移 动的情况,造成指纹图像的采集效果受到不良影响。因此,将三者进行排除空气的固定,是所希望的。然而,当用光学胶固定三者时,虽然效果好,但是却带来成本高的问题。这是因为,光学胶固化后,三者很难再分离。因此,一旦有其中一个步骤没有粘贴好,或者有一个结构本身有问题,就可能导致两个结构或者三个结构全部报废。例如等到贴合完成之后,才发现光准直器面板或者光学指纹传感器存在损坏和故障,就很可能导致自发光显示面板一起报废。而自发光显示面板成本较高,可见,这样的固定结构会造成工艺成本的增加。
因此,本实施例中,提出用另一种结构和对应的固定方式,如图6所示。
具体的,本实施例中,光准直器面板230与自发光显示面板220之间具有可分离透光层240。通过可分离透光层240,提高组装良率。
具体的,本实施例是将可分离透光层240层压在自发光显示面板220下表面(即第二透光基板222下表面)。而可分离透光层240与光准直器面板230之间具有光学胶,光学胶将可分离透光层240与光准直器面板230粘贴在一起。光准直器面板230与光学指纹传感器之间具有光学胶,光学胶将光准直器面板230与光学指纹传感器粘贴在一起。也就是说,只有可分离透光层240与自发光显示面板220之间是通过层压压合在一起,可分离透光层240与光准直器面板230之间通过光学胶粘接,光准直器面板230与光学指纹传感器之间通过光学胶粘接。
可分离透光层240与自发光显示面板220之间通过层压方式,结合在一起时,可分离透光层240与自发光显示面板220之间可以基本排除空气的存在,并且具有一定的固定强度。即在使用过程中,这两者仍然能够保持相对固定,通常情况下,不会发生相对位置移动。但是,可分离透光层240与自发光显示面板220之间通过层压压合在一起时,又不像通过胶层粘贴那样难以分离。相反,可分离透光层240与自发光显示面板220之间是较容易分离的。因此,一旦发现自发光 显示面板220以下的任何结构有问题时,可以通过将可分离透光层240与自发光显示面板220进行分离,从而保护住成本较高的自发光显示面板220,进而降低相应的工艺成本。
也就是说,如果发现光学指纹传感器或光准直器面板230粘合不好,或者发现光学指纹传感器或光准直器面板230损坏,可以通过将可分离透光层240从自发光显示面板220下表面分离下来的方式,使自发光显示面板220能够被重复利用,降低工艺成本。
本实施例中,可分离透光层240是柔性材质。这种柔性材质具有相应较好的表面性质(例如静电吸附作用,或者表面张力作用)等。
本实施例中,在一种情况下,可分离透光层240可以是有机材质,可分离透光层240的厚度≤0.2mm;在另一种情况下,可分离透光层240可以是超薄玻璃,可分离透光层240的厚度≤0.2mm。无论是有机材质还是超薄玻璃,都能够具备本实施例所需的柔性,并且能够具备本实施例中所需的静电吸附等性质,保证自发光显示面板220与可分离透光层240较好地压合在一起。当然,当可分离透光层240为有机材质时,相应的压合效果更好,此时,根据上述的厚度范围(≤0.2mm)可知,有机材质为有机薄膜,此时,可分离透光层240能够更好地以层压的方式,设置于在自发光显示面板220下方(类似于手机贴膜)。
需要说明的是,如果自发光显示面板220和光准直器面板230直接层压,则两者之间较容易存在空气层。而一旦空气层存在,将大幅减小指纹图像的光信号。
与图1和图3中不同的,本实施例中,虽然光准直器面板230仍然包括平行的上下两个表面(未标注),但是,光准直器面板230中的光准直单元231并不与所述上下表面垂直,而是具有小于90°的第一夹角,用α表示,如图7所示。
需要说明的是,第一夹角α为光准直单元231与光准直器面板230上下表面的夹角,也是光准直单元231中所述芯层(未标注,可 参考前述实施例相应内容)与光准直器面板230上下表面的夹角,具体是芯层的长度方向与光准直器面板230上下表面的夹角。
本实施例中,第一夹角α的范围为:40°≤α<90°。在此角度范围内,如图7所示(图7显示了部分光准直器面板230的放大示意图,其中的黑色箭头表示相应的反射光线),由于较多的反射光线本身就是与光准直器面板230上下表面有一定夹角,因此,当设置光准直单元231与光准直器面板230上下表面具有第一夹角α时,能够有较多的反射光线穿过光准直器面板230,并且穿过后的反射光线之间角度差异自然较小)。因此,这样的设置有助于进一步提高模组的指纹识别性能。
需要说明,当一个具体的第一夹角α确定后,能够穿过光准直器面板230的光线角度范围,通常是一个包含第一夹角α的范围。例如当第一夹角α为70°,则能够穿过光准直器面板230的光线角度范围可能为65°~75°。
更多本实施例所提供的光学指纹传感器模组的结构和优点可以参考前述实施例相应内容。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (17)

  1. 一种光学指纹传感器模组,包括:
    光学指纹传感器;
    其特征在于,还包括:
    位于所述光学指纹传感器上方的自发光显示面板,光线能够从上到下透过所述自发光显示面板;
    位于所述光学指纹传感器和所述自发光显示面板之间的光准直器面板。
  2. 如权利要求1所述的光学指纹传感器模组,其特征在于,所述光准直器面板包括平行的上下两个表面,所述光准直器面板包含与其上下表面垂直或呈第一夹角的多个光准直单元,所述第一夹角用α表示,40°≤α<90°;每个所述光准直单元具有芯层和皮层,所述芯层相互之间呈均匀间隔分布,所述皮层包围所述芯层。
  3. 如权利要求2所述的光学指纹传感器模组,其特征在于,所述芯层和所述皮层的相对折射率差在-10%~10%。
  4. 如权利要求2所述的光学指纹传感器模组,其特征在于,所述芯层和所述皮层的相对折射率差在-10%~0。
  5. 如权利要求1至4任意一项所述的光学指纹传感器模组,其特征在于,所述芯层对可见光和红外光的吸收率<10%,所述皮层对可见光和红外光的吸收率>50%。
  6. 如权利要求1至4任意一项所述的光学指纹传感器模组,其特征在于,所述皮层截面面积小于所述光准直单元截面面积的50%。
  7. 如权利要求2所述的光学指纹传感器模组,其特征在于,所述光准直器面板由多根光准直纤维压合而成,每根光准直纤维被压合之后成为一个所述光准直单元。
  8. 如权利要求1所述的光学指纹传感器模组,其特征在于,所述光准直器面板与所述自发光显示面板之间具有可分离透光层。
  9. 如权利要求8所述的光学指纹传感器模组,其特征在于,所述可分离透光层是柔性材质。
  10. 如权利要求8或9所述的光学指纹传感器模组,其特征在于,所述可分离透光层是有机材质,所述可分离透光层的厚度≤0.2mm。
  11. 如权利要求8所述的光学指纹传感器模组,其特征在于,所述可分离透光层是超薄玻璃,所述可分离透光层的厚度≤0.2mm。
  12. 如权利要求8所述的光学指纹传感器模组,其特征在于,所述可分离透光层以层压的方式置于在自发光显示面板下方。
  13. 如权利要求8所述的光学指纹传感器模组,其特征在于,所述可分离透光层与所述光准直器面板之间具有光学胶,所述光学胶将所述可分离透光层与所述光准直器面板粘贴在一起。
  14. 如权利要求8或13所述的光学指纹传感器模组,其特征在于,所述光准直器面板与所述光学指纹传感器之间具有光学胶,所述光学胶将所述光准直器面板与所述光学指纹传感器粘贴在一起。
  15. 如权利要求1所述的光学指纹传感器模组,其特征在于,所述自发光显示面板为OLED显示面板。
  16. 如权利要求15所述的光学指纹传感器模组,其特征在于,所述自发光显示面板包括第一透光基板、第二透光基板和自发光电路层,所述自发光电路层位于所述第一透光基板和所述第二透光基板之间;所述自发光电路层包括多个显示像素单元;每个所述显示像素单元包括至少一个非透光区和至少一个透光区。
  17. 如权利要求1所述的光学指纹传感器模组,其特征在于,还包括保护层,所述保护层位于所述自发光显示面板上方。
PCT/CN2017/094453 2017-07-26 2017-07-26 光学指纹传感器模组 WO2019019045A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/094453 WO2019019045A1 (zh) 2017-07-26 2017-07-26 光学指纹传感器模组
US16/632,515 US20200210671A1 (en) 2017-07-26 2017-07-26 Optical Fingerprint Module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/094453 WO2019019045A1 (zh) 2017-07-26 2017-07-26 光学指纹传感器模组

Publications (1)

Publication Number Publication Date
WO2019019045A1 true WO2019019045A1 (zh) 2019-01-31

Family

ID=65040937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094453 WO2019019045A1 (zh) 2017-07-26 2017-07-26 光学指纹传感器模组

Country Status (2)

Country Link
US (1) US20200210671A1 (zh)
WO (1) WO2019019045A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110046610A (zh) * 2019-04-28 2019-07-23 云谷(固安)科技有限公司 一种指纹识别显示装置及其制备方法、显示设备
CN110290242A (zh) * 2019-06-24 2019-09-27 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108681703B (zh) * 2018-05-14 2022-05-31 京东方科技集团股份有限公司 用于指纹识别的装置、模组、设备及系统
CN111325055B (zh) * 2018-12-14 2024-03-19 上海耕岩智能科技有限公司 指纹识别方法及装置、存储介质和终端
CN111860452B (zh) * 2019-02-02 2022-03-04 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN110807390A (zh) * 2019-10-25 2020-02-18 京东方科技集团股份有限公司 导光部件及其制作方法、指纹识别装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101036076A (zh) * 2004-10-06 2007-09-12 康宁股份有限公司 横向闭环谐振器
CN106295611A (zh) * 2016-08-22 2017-01-04 上海箩箕技术有限公司 显示面板
CN106462765A (zh) * 2014-11-12 2017-02-22 深圳市汇顶科技股份有限公司 具有像素内光学传感器的指纹传感器
WO2017095896A1 (en) * 2015-12-03 2017-06-08 Synaptics Incorporated Optical sensor for integration over a display backplane
CN106886767A (zh) * 2017-02-23 2017-06-23 京东方科技集团股份有限公司 一种光学指纹识别装置和显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101036076A (zh) * 2004-10-06 2007-09-12 康宁股份有限公司 横向闭环谐振器
CN106462765A (zh) * 2014-11-12 2017-02-22 深圳市汇顶科技股份有限公司 具有像素内光学传感器的指纹传感器
WO2017095896A1 (en) * 2015-12-03 2017-06-08 Synaptics Incorporated Optical sensor for integration over a display backplane
CN106295611A (zh) * 2016-08-22 2017-01-04 上海箩箕技术有限公司 显示面板
CN106886767A (zh) * 2017-02-23 2017-06-23 京东方科技集团股份有限公司 一种光学指纹识别装置和显示面板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110046610A (zh) * 2019-04-28 2019-07-23 云谷(固安)科技有限公司 一种指纹识别显示装置及其制备方法、显示设备
CN110046610B (zh) * 2019-04-28 2021-05-28 云谷(固安)科技有限公司 一种指纹识别显示装置及其制备方法、显示设备
CN110290242A (zh) * 2019-06-24 2019-09-27 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法
CN110290242B (zh) * 2019-06-24 2021-04-30 Oppo广东移动通信有限公司 显示装置、电子设备及图像获取方法

Also Published As

Publication number Publication date
US20200210671A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
WO2019019045A1 (zh) 光学指纹传感器模组
WO2017166581A1 (zh) 光学指纹传感器模组
US10437366B1 (en) Display module and using method therof
KR102040651B1 (ko) 광학식 이미지 인식 센서 내장형 평판 표시장치
US10644083B2 (en) Input sensing unit and display device having the same
CN109829452B (zh) 光学指纹传感器模组及其形成方法
WO2017166580A1 (zh) 光学指纹传感器模组
WO2018103195A1 (zh) 显示模组及其使用方法
CN113130602A (zh) 显示装置
WO2017124737A1 (zh) 光学指纹传感器模组
KR102646158B1 (ko) 광학식 이미지 인식 센서 내장형 평판 표시장치
WO2018103193A1 (zh) 显示模组及其使用方法
CN107561754A (zh) 嵌入有光学图像传感器的平板显示器
CN109308431A (zh) 光学指纹传感器模组
CN108399392B (zh) 指纹识别结构和显示装置
US10929640B2 (en) Flat panel display with optical image sensor embedded therein
KR20170008371A (ko) 표시 장치
KR102242652B1 (ko) 포토 센싱 화소를 갖는 표시 장치
US11301088B2 (en) Fingerprint module includes identification components in an identification area and a chip disposed in a nonidentification area and display device
WO2018103196A1 (zh) 显示模组及其使用方法
CN208903279U (zh) 光学指纹传感器模组
WO2018205121A1 (zh) 显示模组
CN110569686B (zh) 显示模组
US10769988B2 (en) Display device configured to measure light and adjust display brightness and a method of driving the same
CN109977785A (zh) 指纹输入装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919577

Country of ref document: EP

Kind code of ref document: A1