WO2018103193A1 - 显示模组及其使用方法 - Google Patents

显示模组及其使用方法 Download PDF

Info

Publication number
WO2018103193A1
WO2018103193A1 PCT/CN2017/073609 CN2017073609W WO2018103193A1 WO 2018103193 A1 WO2018103193 A1 WO 2018103193A1 CN 2017073609 W CN2017073609 W CN 2017073609W WO 2018103193 A1 WO2018103193 A1 WO 2018103193A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
layer
self
backlight
Prior art date
Application number
PCT/CN2017/073609
Other languages
English (en)
French (fr)
Inventor
凌严
朱虹
Original Assignee
上海箩箕技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海箩箕技术有限公司 filed Critical 上海箩箕技术有限公司
Publication of WO2018103193A1 publication Critical patent/WO2018103193A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the present invention relates to the field of optical fingerprint recognition, and in particular, to a display module and a method for using the same.
  • the fingerprint imaging recognition technology is a technique of acquiring a fingerprint image of a human body through a fingerprint sensor and then comparing it with existing fingerprint imaging information in the system to determine whether it is correct or not, thereby realizing the identity recognition technology. Due to its ease of use and the uniqueness of human fingerprints, fingerprint recognition technology has been widely used in various fields. For example, the public security bureau, customs and other security inspection areas, building access control systems, and consumer goods such as personal computers and mobile phones.
  • Fingerprint imaging recognition technology can be realized by various techniques such as optical imaging, capacitive imaging, and ultrasonic imaging. Relatively speaking, optical fingerprint imaging technology has relatively good imaging effect and relatively low equipment cost.
  • OLED display module is one of the hot spots in the field of flat panel display.
  • OLED display modules have the advantages of low power consumption, wide color gamut, self-illumination, wide viewing angle and fast response. They are currently used in electronic products such as mobile phones, computers and digital cameras.
  • capacitive fingerprint imaging technology is often used to integrate with a display module of an organic light emitting diode.
  • capacitive fingerprint imaging technology is often used to integrate with a display module of an organic light emitting diode.
  • a display module of an organic light emitting diode For more information about the integrated fingerprint recognition function in the display module, refer to the Chinese invention patent application with the publication number CN106024833A.
  • the existing display module structure with integrated fingerprint recognition function needs to be improved, and the performance needs to be improved. high.
  • the problem to be solved by the present invention is to provide a display module for integrating the optical fingerprint recognition function into the display module, so that the display module has a good fingerprint recognition function.
  • the present invention provides a display module, including: a self-luminous display panel, the self-luminous display panel includes a first substrate, a second substrate, and a self-luminous circuit layer, wherein the self-luminous circuit layer is located at Between the first substrate and the second substrate, the self-illuminating circuit layer includes a plurality of display pixel units; each of the display pixel units includes at least one non-transmissive region and at least one light transmissive region; a transparent medium layer; an optical fingerprint sensor, the optical fingerprint sensor is located under the transparent medium layer; a dot backlight, the point backlight is located under the second substrate, and the point backlight is located at the transparent a side of the optical medium layer, the light emitted by the point-like backlight enters the transparent medium layer from a side of the transparent medium layer at an obliquely upward angle, and obliquely enters from the transparent medium layer The second substrate.
  • the display module further includes a protective layer, the protective layer being located above the first substrate.
  • the area of the lower surface of the second substrate near the point backlight further includes a light shielding layer.
  • a light-transmitting glue is disposed between the dot-shaped backlight and a side surface of the transparent dielectric layer, and light emitted by the dot-shaped backlight enters the light-transmitting surface from a light-emitting surface of the dot-shaped backlight.
  • the glue then enters the side of the light transmissive medium layer from the light transmissive glue.
  • the light transmissive glue bonds the side surface of the transparent medium layer and the lower surface of the light shielding layer.
  • the light-emitting surface of the dot-shaped backlight has a collecting lens on the front side, and the collecting lens can convert the light of the point-shaped backlight into parallel light or near-parallel light, and the point backlight The light enters the collecting lens first and then enters the side of the transparent medium layer surface.
  • an optical glue is disposed between the self-luminous display panel and the optical fingerprint sensor.
  • an optical glue is disposed between the self-luminous display panel and the protective layer.
  • the point backlight is an LED light, and the light of the LED light is near ultraviolet light, purple light, blue light, green light, yellow light, red light, near infrared light or white light; or
  • the dot backlight is two or more LED lamps, and the two or more LED lamps are evenly distributed under the second substrate, and the light of the LED lamp is near ultraviolet light, purple light, blue light, green light. , yellow, red, near-infrared or white.
  • the present invention further provides a method for using a display module, the display module comprising: a self-luminous display panel, the self-luminous display panel comprising a first substrate, a second substrate, and a self-illuminating circuit layer
  • the self-luminous circuit layer is located between the first substrate and the second substrate, the self-luminous circuit layer includes a plurality of display pixel units, each of the display pixel units including at least one non-transparent area and At least one light transmissive region; a light transmissive medium layer; an optical fingerprint sensor, the optical fingerprint sensor is located below the light transmissive medium layer; a dot backlight, the dot backlight is located under the second substrate, the dot shape a backlight is located at a side of the transparent medium layer, and the light emitted by the point backlight enters the transparent medium layer from a side of the transparent medium layer at an obliquely upward angle, and The optical medium layer enters the second substrate obliquely upward; the method of using the method includes:
  • the using method further includes: when the optical fingerprint sensor performs a fingerprint image collecting operation, controlling the second display area to display information associated with the fingerprint image collecting work.
  • the optical fingerprint sensor and the dot backlight are disposed under the second substrate of the self-luminous display panel, and are disposed on the side of the transparent dielectric layer, and then the optical fingerprint sensor is disposed in the transparent layer.
  • the self-luminous display panel is provided with a light-transmitting area, so that the light emitted by the point-shaped backlight can pass through the self-illuminating display panel after passing through the transparent medium layer from the side, so that the display module can be used to realize the finger
  • the fingerprint image is collected, and the captured fingerprint image is clear, so that the display module integrates a good fingerprint recognition function.
  • the first display area corresponding to the optical fingerprint sensor is controlled to stop working when the optical fingerprint sensor performs the fingerprint image collecting operation, and the second display area display and the fingerprint image collection are controlled. Work-related information, so that the display function and fingerprint recognition function work together to achieve a better user experience.
  • FIG. 1 is a schematic cross-sectional view of a display module according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a display module according to another embodiment of the present invention.
  • the prior art mostly uses capacitive fingerprint imaging technology to integrate with a display module of an organic light emitting diode.
  • the present invention provides a display module in which an optical fingerprint sensor and a self-luminous display panel are integrated, so that a fingerprint recognition function can be realized while realizing display, and a display module is enabled by a corresponding structural design.
  • the group can collect clear fingerprint images, and enables the display function and the fingerprint recognition function to cooperate with each other, so that the user has a better use experience for the display module.
  • the embodiment of the invention provides a display module. Please refer to FIG. 1 .
  • the display module includes a self-luminous display panel (not labeled), a transparent dielectric layer 120, an optical fingerprint sensor 130, and a dot backlight 140.
  • the self-luminous display panel includes a first substrate 111, a second substrate 112, and a self-luminous circuit layer 113.
  • the self-luminous circuit layer 113 is located between the first substrate 111 and the second substrate 112.
  • the self-luminous display panel also includes a sealing structure 114.
  • the sealing structure 114 is also located between the first substrate 111 and the second substrate 112. The sealing structure 114, together with the first substrate 111 and the second substrate 112, seals the self-luminous circuit layer 113 between the first substrate 111 and the second substrate 112.
  • the material of the first substrate 111 and the second substrate 112 may be a light transmissive material, wherein the first substrate 111 may be a transparent material.
  • the materials thereof may be inorganic glass or organic glass, or may be other resin materials than organic glass.
  • the self-luminous circuit layer 113 includes a plurality of display pixel units 1131 (the display pixel unit 1131 is illustrated by a broken line in FIG. 1 and the adjacent display pixel units 1131 are adjacent to each other. Note that although the dotted frame is A portion of the first substrate 111 and the second substrate 112 are included, but this is only for convenience of display, and the display pixel unit 1131 does not include the first substrate 111 and the second substrate 112).
  • Each display pixel unit 1131 includes at least one non-transmissive region and at least one light transmissive region 11311, and a light transmissive region 11311 is illustrated in FIG. 1 (ie, one of the light transmissive regions 11311 is surrounded by a minimum dotted line frame as shown in FIG. The range shown).
  • the self-luminous display panel is an OLED display panel
  • the display pixel unit 1131 of the self-luminous circuit layer 113 may include an anode layer, a hole injection layer (HIL), an emission layer (EML), and an electron injection layer (EIL).
  • a cathode layer or the like which may further have a hole transport layer (HTL) and an electron transport layer (ETL), and may further include a TFT that drives the OLED, a driving metal line, a storage capacitor, and the like.
  • the luminescence principle of the OLED display panel is: under a certain voltage driving, electrons and holes migrate from the cathode layer and the anode layer to the luminescent layer, respectively, and meet in the luminescent layer to form excitons and excite the luminescent molecules, and the luminescent molecules undergo radiation. Relaxation Emit visible light (or other light).
  • the structure of the above-mentioned light-emitting layer or the like is located in the corresponding non-light-transmitting region.
  • the display pixel unit 1131 of the present embodiment has a corresponding light transmissive area 11311 around the non-transparent area.
  • the self-luminous circuit layer 113 is formed on the second substrate 112, and the self-luminous circuit layer 113 and the first substrate 111 have a gap layer therebetween. And the void layer is filled with an inert gas such as nitrogen or argon to protect the self-luminous circuit layer 113 from being crushed by the first substrate 111.
  • an inert gas such as nitrogen or argon
  • the height of the light-transmitting region 11311 is set to be equal to the height of the self-light-emitting circuit layer 113, as shown in FIG. 1, so as to ensure that light can pass through the self-light-emitting circuit layer 113 from the light-transmitting region (it is required to explain that the self-light-emitting circuit layer
  • the heights of the respective positions of 113 may be slightly different, but the height of the self-illuminating circuit layer 113 at least a portion of the position is equal to the height of the light-transmitting region 11311).
  • the light can pass through the self-illuminating circuit layer 113 from the light transmitting area, thereby ensuring that the display module can perform fingerprint image collection. It can be seen from the above content of the void layer that the light passes through the self-luminous display panel, and generally includes the second substrate 112, the light transmitting region 11311, the void layer and the first substrate 111.
  • a non-transmissive region of one display pixel unit 1131 has a corresponding semiconductor layer structure such as a light-emitting layer (the semiconductor layer structure needs to be protected from light, and thus is formed in a non-transparent region), and other positions can be set.
  • the semiconductor layer structure needs to be protected from light, and thus is formed in a non-transparent region
  • other structures of the display pixel unit 1131 can be fabricated by using a light-transmitting structure as much as possible.
  • the structure between the adjacent display pixel units 1131 can also be fabricated by using a light-transmitting structure as much as possible.
  • a corresponding light transmitting area may be disposed, so that more light can pass through the OLED.
  • a display panel this pass generally refers to passing through the height of the display pixel unit 1131, and the height is also generally referred to as thickness).
  • the optical fingerprint sensor is located below the transparent medium layer 120 . That is, the transparent medium layer 120 is disposed between the self-luminous display panel and the optical fingerprint sensor 130.
  • the optical fingerprint sensor includes a fingerprint sensing circuit layer (not differentiated display) and a base substrate (not differentiated display).
  • the fingerprint sensing circuit layer is between the transparent dielectric layer 120 and the substrate.
  • the base substrate is between the transparent dielectric layer 120 and the fingerprint sensing circuit layer.
  • the fingerprint sensing circuit layer of the optical fingerprint sensor 130 includes a plurality of photosensitive pixel units (not shown).
  • each of the photosensitive pixel units may include a light transmitting region and a non-light transmitting region (distinguish from the light transmitting region and the non-light transmitting region in the display pixel unit 1131).
  • the photosensitive element of the photosensitive pixel unit (the photosensitive element may be a structure such as a photodiode) is located in the non-transparent area.
  • the photosensitive pixel unit may not need a transparent region at all, but only a non-transmissive region, but it is required to ensure light.
  • the light-sensitive medium layer 120 is obliquely downwardly entered into the corresponding photosensitive member.
  • the optical fingerprint sensor may be an image sensor fabricated by a CMOS (Complementary Metal Oxide Semiconductor) process based on a silicon wafer, or may be a TFT based on a glass substrate (Thin Film Transistor). , thin film transistor) process image sensor.
  • CMOS Complementary Metal Oxide Semiconductor
  • TFT Thin Film Transistor
  • thin film transistor thin film transistor
  • the dot backlight 140 is located under the second substrate 112. Meanwhile, the dot backlight 140 is also located at the side of the transparent dielectric layer 120. The light emitted by the dot backlight 140 is obliquely upward. The side surface of the transparent dielectric layer 120 enters the transparent dielectric layer 120 and enters the second substrate 112 obliquely upward from the transparent dielectric layer 120.
  • the point backlight 140 is disposed on the side of the optical fingerprint sensor, so that the light for the fingerprint image collection by the point backlight 140 must enter the transparent medium layer at an oblique incident angle.
  • These rays will continue to enter the second substrate 112 at an obliquely incident angle and pass through the self-illuminating circuit layer 113, thereby obliquely incident into the first substrate 111.
  • the light causes an optical phenomenon such as reflection and refraction at the interface formed by the finger fingerprint and the upper surface of the first substrate 111 to generate corresponding reflected light. It is known from the principle of optical propagation that these reflected rays will generally return obliquely downward to the first substrate 111 at an obliquely incident angle.
  • the self-luminous circuit layer 113 passes through the second substrate 112 obliquely.
  • the angle of oblique incidence continues to pass obliquely downward through the transparent dielectric layer 120, and then to the optical fingerprint sensor (ie, obliquely downward into the optical fingerprint sensor) and received by the photosensitive pixel unit in the optical fingerprint sensor.
  • the arrangement of the dot backlight 140 enables the light to be substantially shifted in the same direction (while the light of the light guide plate is disordered in various directions, and the offset direction is different).
  • the mutual interference and mutual influence between the light rays are avoided (the light of the light guide plate interferes with each other and influences), and the light offsets close to the position of the point backlight 140 are similar, so that a clear fingerprint image can be obtained. Improve the fingerprint recognition performance of the module.
  • the dot backlight 140 can be an LED lamp.
  • the light of the LED lamp may be near ultraviolet light, purple light, blue light, green light, yellow light, red light, near infrared light or white light.
  • the area of the lower surface of the second substrate 112 near the point backlight 140 further includes a light shielding layer 160.
  • the light shielding layer 160 is configured to prevent the light emitted by the point backlight 140 from entering the second substrate 112 directly from the lower surface of the second substrate 112, thereby ensuring that all the light entering the second substrate 112 comes from the transparent medium layer 120.
  • the light shielding layer 160 may be a solid structure that is not transparent to itself, such as a metal layer. At this time, the thickness of the light shielding layer 160 can be set as needed, and generally, the greater the thickness, the better the light shielding effect.
  • the light shielding layer may be formed by using an ink coating (for example, directly coating an ink coating layer on the lower surface of the second substrate as a light shielding layer), or may be formed by other suitable materials and methods.
  • a light-transmitting adhesive 150 is disposed between the dot-shaped backlight 140 and the side surface of the transparent dielectric layer 120.
  • the light emitted by the dot-shaped backlight 140 enters the transparent adhesive 150 from the light-emitting surface of the dot-shaped backlight 140.
  • the light transmissive glue 150 enters the side of the transparent medium layer 120.
  • the light-transmitting glue 150 is disposed such that the light emitted by the dot-shaped backlight 140 is more incident on the side of the transparent medium layer 120, reducing the interface reflection, and the refractive index of the transparent adhesive 150 is greater than 1, and is reduced to enter the second.
  • the light-transmitting adhesive 150 bonds the side surface of the transparent dielectric layer 120 and the lower surface of the light shielding layer 160. This arrangement enables the light-transmitting adhesive 150 itself to be better fixed in the corresponding position, and is less likely to fall off and peel off.
  • the material of the light-transmitting adhesive 150 can be selected from materials having good light-transmitting properties.
  • all the light emitted by the point backlight 150 passes through the transparent adhesive 140 and then enters the side of the transparent dielectric layer 120, thereby avoiding other propagation paths of the light.
  • the dot backlight 140 there may be no space between the dot backlight 140 and the optical fingerprint sensor, that is, the dot backlight 140 is in direct contact with the side of the optical fingerprint sensor.
  • the self-luminous display panel and the transparent medium layer 120 may have an optical glue.
  • the material of the optical adhesive layer may specifically be a thermosensitive optical adhesive layer, a photosensitive optical adhesive layer or an optical double-sided adhesive tape.
  • the presence of the optical glue minimizes the presence of air between the self-luminous display panel and the transparent medium layer 120, further improving the optical performance of the module.
  • an optical glue may be disposed between the transparent medium layer 120 and the optical fingerprint sensor 130.
  • the presence of the optical glue minimizes the presence of air between the transparent dielectric layer 120 and the optical fingerprint sensor 130, further improving the optical performance of the module.
  • the self-luminous display panel, the transparent dielectric layer, and the optical fingerprint sensor may be directly stacked between two, and “direct lamination” means that at least partial contact between the surfaces of the two structures is performed.
  • direct lamination means that at least partial contact between the surfaces of the two structures is performed.
  • the photosensitive pixel unit of the optical fingerprint sensor is disposed to The distance of the upper surface of the first substrate 111 is small to ensure that the quality of the fingerprint image obtained by fingerprint acquisition satisfies the required requirements.
  • the area of the display pixel unit 1131 in the OLED display panel is less than or equal to the area of the photosensitive pixel unit in the optical fingerprint sensor.
  • one of the optical fingerprint sensors and the upper and lower positions of one display pixel unit 1131 of the OLED display panel can be associated, thereby better ensuring subsequent fingerprint images. collection.
  • one photosensitive pixel unit may face a display pixel unit 1131, and the area of the photosensitive pixel unit is equal to the area of the display pixel unit 1131 (in fact, since the light always propagates obliquely, therefore, is it positive? It does not have much influence on this embodiment).
  • the light transmitting region 11311 of the display pixel unit 1131 corresponds at least to the photosensitive element of the photosensitive pixel unit.
  • the two areas are equal in area, the two can also be aligned one by one, and there can be some misalignment between them. From a macroscopic point of view, the alignment relationship of each of the photosensitive pixel units and the display pixel unit 1131 is uniform, so that it is ensured that the received emission (reflection) light signals of the respective photosensitive pixel units are uniform.
  • a plurality of display pixel units 1131 may correspond to one of the photosensitive pixel units. That is to say, one of the photosensitive pixel units may correspond to two or more display pixel units 1131 (ie, the area of the photosensitive pixel unit is smaller than the area of the display pixel unit 1131). From a macroscopic point of view, the alignment relationship of each photosensitive pixel unit and two or more display pixel units 1131 is uniform, so that the received transmitted (reflected) optical signals of the respective photosensitive pixel units can be ensured to be uniform.
  • the principle of the fingerprint module provided by the present embodiment is that the light emitted by the dot backlight 140 passes through the transparent adhesive 150, enters from the side (side) of the transparent dielectric layer 120, and then passes through.
  • the transparent dielectric layer 120 then enters the second substrate 112 obliquely upward, and enters the transparent region 11311 of the self-luminous circuit layer 113 from the second substrate 112, and then enters the self-luminous circuit layer 113 obliquely upward from the transparent region 11311.
  • the first substrate 111 in this embodiment, the first substrate 111 is directly used for contact or pressing of a finger fingerprint, and therefore, the light Various optical phenomena such as refraction, reflection, and absorption may occur at the interface between the upper surface of the first substrate 111 and the fingerprint, and a part of the reflected light is generated correspondingly; the reflected light returns to the first substrate 111, and then obliquely from the first substrate.
  • the light-transmissive region 11311 enters the self-illuminating circuit layer 113 and passes through the self-illuminating circuit layer 113 obliquely downward from the light-transmitting region 11311 to enter the second substrate 112, and then enters the transparent dielectric layer 120 from the second substrate 112.
  • the fingerprint sensing circuit layer of the optical fingerprint sensor 130 is re-entered from the transparent medium layer 120, and is received by each photosensitive pixel unit in the fingerprint sensing circuit (specifically absorbed by the photosensitive element of the photosensitive pixel unit), and is processed by signal processing. The collection of the corresponding fingerprint image.
  • the dot backlight 140 since the dot backlight 140 is located on the side of the transparent medium layer 120, it is easy to know that the corresponding light enters from the side of the transparent medium layer 120, and then the incident angle on the lower surface of the second substrate 112 is an acute angle. After the light is finally reflected back, the incident angle of the reflected light on the upper surface of the optical fingerprint sensor 130 is also an acute angle. Therefore, at this time, the light emitted by the dot backlight 140 can generate a corresponding fingerprint image according to the corresponding offset, and the entire optical fingerprint sensor module can realize the identification of the fingerprint image without using a structure such as a light guide plate and a collecting lens. And, the formed fingerprint image is more clear than the light source using the light guide plate structure.
  • the light emitted by the point backlight 140 can be controlled to propagate obliquely upward, and the light can be directly transmitted to the optical fingerprint after entering the transparent medium layer 120. Sensor 130. Because once the light is transmitted, it will cause interference to the fingerprint image acquisition.
  • the lower surface of the transparent medium layer 120 may not be laminated with the optical fingerprint sensor 130. In the region, all of the light shielding layer is covered (while the lower surface of the transparent dielectric layer 120 and the laminated region of the optical fingerprint sensor 130 need to maintain good light transmission).
  • the optical fingerprint sensor and the dot backlight 140 are both located under the second substrate 112 in the self-luminous display panel, and the dot backlight 140 is located on the side of the transparent medium layer 120.
  • the self-luminous display panel has a light-transmissive area, so that the light emitted by the dot-shaped backlight 140 can be passed back and forth through the self-luminous display surface.
  • the board can realize the collection of the finger fingerprint image, and the collected fingerprint image is clear, so that the display module integrates a good fingerprint recognition function.
  • the refractive index of the transparent dielectric layer 120 is always greater than the refractive index of the air, and in the embodiment, the light emitted by the dot backlight 140 enters the transparent medium from the side surface of the transparent dielectric layer 120.
  • Layer 120 By increasing the light transmissive dielectric layer 120 having a refractive index greater than that of air, more light can be applied to fingerprint image acquisition, and the sharpness of the image is improved.
  • an optical fingerprint sensor is placed under the self-luminous display panel (OLED display panel), and the fingerprint image is collected in the display area of the display module by using the corresponding use method.
  • the utility model can reduce the appearance size of the electronic product to which the display panel is applied, improve the screen ratio of the electronic product, and improve the appearance and appearance of the electronic product (for example, the screen ratio of the mobile phone product can be improved, and the appearance and appearance of the mobile phone product can be improved).
  • the embodiment of the present invention further provides a method for using a display module.
  • the display module is provided by the foregoing embodiment. Therefore, reference may be made to FIG. 1 .
  • the display module includes a self-luminous display panel, a transparent medium layer 120, an optical fingerprint sensor 130, and a dot backlight 140.
  • the self-luminous display panel includes a first substrate 111, a second substrate 112, and a self-luminous circuit layer 113.
  • the self-luminous circuit layer 113 is located between the first substrate 111 and the second substrate 112.
  • the self-lighting circuit layer 113 includes a plurality of display pixel units 1131, each of the display pixel units 1131 including at least one non-transmissive region and at least one transparent region.
  • the height of the light transmitting region is equal to the height of the self-illuminating circuit layer.
  • the optical fingerprint sensor 130 is located below the transparent medium layer 120.
  • the dot backlight 140 is located below the second substrate 112, and the dot backlight 140 is located at a side of the transparent dielectric layer 120.
  • the light emitted by the dot backlight 140 enters the transparent medium layer 120 from the side of the transparent medium layer 120 at an obliquely upward angle, and enters the second substrate 112 obliquely upward from the transparent medium layer 120.
  • the usage method provided in this embodiment includes: defining a display area in the self-luminous display panel opposite to the optical fingerprint sensor as a first display area, and displaying portions of other parts. It is defined as a second display area; when the optical fingerprint sensor performs fingerprint image acquisition work, the first display area is controlled to stop displaying work.
  • the first display area is disposed to prevent the light from the self-luminous display panel from interfering with the light emitted by the point backlight 140.
  • the embodiment can make the fingerprint image acquisition not affected by the self-luminous display panel.
  • the method for using the embodiment further includes: when the optical fingerprint sensor performs the fingerprint image collection operation, controlling the second display area to display information associated with the fingerprint image collection work. For example, in the second display area, "Please enter a fingerprint in the non-display area" is displayed. During the fingerprint entry process, information such as “enter correct” or “please re-enter” is displayed. When the correct fingerprint is collected, “valid” can be displayed. “Fingerprint” and other information, or according to the fingerprint operation, display “operational success” and other messages. This method of use enables the display function and the fingerprint recognition function to work together to achieve a better user experience.
  • the usage method may further develop an application scenario of the fingerprint recognition function. For example, before the optical fingerprint sensor is not working, the first display area is displayed with a corresponding display icon, and the user is instructed to put a finger into the icon. After the user puts the finger into the area where the icon is displayed, the existing display panel itself or the external touch function can be used to sense that the user has placed the finger in the first display area, thereby controlling the optical fingerprint sensor to enter the working state. At this time, the fingerprint image of the pressed fingerprint is collected by the optical fingerprint sensor below the first display area, and the fingerprint image collecting function is completed, and can be further applied to identify the existing fingerprint image stored internally, and further used for encryption/ Unlock and other functions.
  • Another embodiment of the present invention provides another display module. Please refer to FIG. 2 .
  • the display module includes a protective layer 210, a self-luminous display panel (not labeled), a transparent dielectric layer 230, an optical fingerprint sensor 240, and a dot backlight 250.
  • the self-luminous display panel includes a first substrate 221, a second substrate 222, and a self-luminous circuit layer 223.
  • the self-luminous circuit layer 223 is located on the first substrate 221 and Between the two substrates 222.
  • the self-luminous display panel also includes a sealing structure 224.
  • the sealing structure 224 is also located between the first substrate 221 and the second substrate 222. The sealing structure 224, together with the first substrate 221 and the second substrate 222, seals the self-luminous circuit layer 223 between the first substrate 221 and the second substrate 222.
  • the protection layer 210 is located above the first substrate 221 .
  • the protective layer 210 is used as a finger contact structure, and the protective layer 210 can simultaneously protect the self-luminous display panel and the optical fingerprint sensor 240. And the structure of the dot backlight 250 and the like.
  • the protective layer 210 is a single layer structure, that is, the protective layer 210 may be a substrate, as shown in FIG. 2 . In other embodiments, the protective layer may also be a multilayer structure.
  • the materials of the first substrate 221 and the second substrate 222 may be transparent materials.
  • the self-luminous circuit layer 223 includes a plurality of display pixel units 2231 (the adjacent relationship of the display pixel units 2231 is illustrated by a broken line in FIG. 2).
  • Each display pixel unit 2231 includes at least one non-transmissive region and at least one light transmissive region 22311, and a light transmissive region 22311 is illustrated in FIG. 2 (ie, one of the light transmissive regions 22311 is surrounded by the smallest dotted frame in FIG. 2 The range shown).
  • the self-luminous display panel is an OLED display panel, and the corresponding content of the corresponding embodiment of FIG. 1 can be referred to.
  • the height of the light-transmitting region 22311 is set to be equal to the height of the self-light-emitting circuit layer 223, as shown in FIG. 2, thereby ensuring that light can pass through the self-light-emitting circuit layer 223 from the light-transmitting region.
  • the light can pass through the self-illuminating circuit layer 223 from the light transmitting area, thereby ensuring that the display module can perform fingerprint image collection.
  • the optical fingerprint sensor 240 is located below the transparent medium layer 230. That is, the transparent medium layer 230 is located on the self-luminous display panel and optical fingerprint sensing Between the 240.
  • the optical fingerprint sensor 240 includes a fingerprint sensing circuit layer (not shown) and a substrate (not shown).
  • the fingerprint sensing circuit layer of the optical fingerprint sensor 240 includes a plurality of photosensitive pixel units (not shown). For more structures, refer to the corresponding content of the corresponding embodiment of FIG. 1.
  • the dot-shaped backlight 250 is located below the second substrate 222, and the dot-shaped backlight 250 is located at the side of the transparent medium layer 230.
  • the light emitted by the dot-shaped backlight 250 is obliquely upward.
  • the side of the optical medium layer 230 enters the transparent medium layer 230 and enters the second substrate 222 obliquely upward from the transparent medium layer 230.
  • the dot backlight 250 is disposed under the second substrate 222 and disposed on the side of the transparent medium layer 230, so that the reflected light for collecting the fingerprint image can be ensured, and the optical fingerprint must be entered at an oblique incident angle.
  • the sensor 240 is incident on the optical fingerprint sensor 240 obliquely downward (for details, refer to the corresponding content of the corresponding embodiment of FIG. 1).
  • the point backlight 250 is disposed such that the light is substantially shifted in the same direction (while the light of the light guide plate is disordered in various directions, and the offset direction is different).
  • the mutual interference and mutual influence between the light rays are avoided (the light of the light guide plate interferes with each other and affects each other), and the light offsets close to the position of the dot-shaped backlight 250 are similar, so that a clear fingerprint image can be obtained. Improve the fingerprint recognition performance of the module.
  • the dot backlight 250 can be an LED lamp.
  • the light of the LED lamp may be near ultraviolet light, purple light, blue light, green light, yellow light, red light, near infrared light or white light.
  • the dot backlight may be two or more LED lamps, and two or more LED lamps are evenly distributed under the second substrate, and the LED lamps are near ultraviolet light, purple light, and blue light. , green, yellow, red, near-infrared or white.
  • the point backlight may be four LED lights, and the four LED lights are evenly distributed under the second substrate and located on different sides of the transparent medium layer 230. The sides, or four lamps, are evenly distributed at the same time at the four corners of the transparent medium layer 230. At this time, although the light emitted by the four LED lamps may each be non-parallel light, the image distortion of the non-parallel light can be corrected by using the four LED lamps at the same time.
  • the four LED lights can adopt the method of taking the pictures in turn (the four pictures of the rotating pictures refer to the time series respectively), and then through the image processing, to correct the distortion, improve the quality of the fingerprint image, and improve the accuracy of fingerprint recognition.
  • the point backlight is a plurality of LED lights
  • the light of any one of the LED lights can be selected as the imaging light of the fingerprint image.
  • the embodiment corresponds to the embodiment of FIG. The imaging effect is similar.
  • a light-transmitting adhesive 260 is disposed on the lower surface of the dot-shaped backlight 250 and the second substrate 222 and the side of the transparent dielectric layer 230, and the light emitted by the dot-shaped backlight 250 is from the point.
  • the light-emitting surface of the backlight 250 enters the transparent adhesive 260, and then enters the side of the transparent dielectric layer 230 from the transparent adhesive 260.
  • the light-transmitting glue 260 is disposed such that the light emitted by the dot-shaped backlight 250 is more incident on the side of the transparent medium layer 230, reducing the interface reflection, and the refractive index of the transparent adhesive 260 is greater than 1, reducing the penetration into the light.
  • the extent of the refraction of the light of the dielectric layer 230 If the light-transmitting glue is not provided, the light emitted by the point-like backlight needs to pass through the vacuum or the air, and then enters the transparent medium layer, and the light is easily reflected at the interface formed by the vacuum or the side of the air and the transparent medium layer. And the air can also cause some light to scatter and other adverse effects.
  • the display module there is a space (not labeled) between the dot backlight 250 and the optical fingerprint sensor 240.
  • the corresponding content of the corresponding embodiment of FIG. 1 can be referred to.
  • the self-luminous display panel and the transparent medium layer 230 may have optical glue, and the corresponding content of the corresponding embodiment of FIG. 1 may be referred to.
  • the self-luminous display panel and the protective layer 210 may have an optical glue, and the presence of the optical glue avoids the self-luminous display. There is a possibility of air between the panel and the protective layer 210, so that the optical performance of the display module is better.
  • the distance between the photosensitive pixel unit of the optical fingerprint sensor 240 and the upper surface of the first substrate 221 is smaller. To ensure that the quality of the fingerprint image obtained by fingerprint acquisition meets the required requirements.
  • the photosensitive pixel unit in the optical fingerprint sensor 240 and the upper and lower positions of the display pixel unit 2231 in the OLED display panel may be associated to better ensure subsequent fingerprint image collection.
  • One photosensitive pixel unit may be corresponding to the four display pixel units 2231, and the area of the photosensitive pixel unit is equal to the area of the four display pixel units 2231.
  • the principle of the display module provided in this embodiment is the same as that of the corresponding embodiment of FIG. 1 except that the light in the embodiment does not reach the finger fingerprint.
  • a substrate 221 is obliquely propagated upward to the protective layer 210, and an optical phenomenon such as refraction and reflection occurs at an interface formed by the upper surface of the protective layer 210 and the finger fingerprint, and then the reflected light which is obliquely returned to the protective layer 210 is generated.
  • a light shielding layer 270 and a light shielding layer 270 are disposed between the light transmissive adhesive 260 and the lower surface of the second substrate 222.
  • the light-emitting surface of the dot-shaped backlight may have a collecting lens in front of the light-collecting lens, and the collecting lens can convert the light of the point-like backlight into parallel light or near-parallel light (the near-parallel light finger).
  • the difference in angle between the lights is less than 10 degrees), and the light of the point backlight enters the collecting lens first and then enters the transparent medium layer.
  • the setting of the concentrating lens can further avoid the problem that the fingerprint image is distorted.
  • the display module includes a protective layer 210, a self-luminous display panel, a transparent dielectric layer 230, an optical fingerprint sensor 240, and a dot backlight 250.
  • the self-luminous display panel includes A substrate 221, a second substrate 222, and a self-luminous circuit layer 223.
  • the self-lighting circuit layer 223 is located between the first substrate 221 and the second substrate 222.
  • the self-lighting circuit layer 223 includes a plurality of display pixel units 2231, each of the display pixel units 2231 including at least one non-transmissive region and at least one transparent region.
  • the height of the light transmitting region is equal to the height of the self-illuminating circuit layer.
  • the optical fingerprint sensor 240 is located below the transparent medium layer 230.
  • the dot backlight 250 is located below the second substrate 222, and the dot backlight 140 is located at a side of the transparent dielectric layer 120. The light emitted by the dot backlight 250 enters the transparent medium layer 230 from the side of the transparent medium layer 230 at an obliquely upward angle, and enters the second substrate 222 obliquely upward from the transparent medium layer 230.
  • the usage method provided in this embodiment includes: defining a display area of the self-luminous display panel opposite to the optical fingerprint sensor 240 as a first display area, and displaying a display area of other parts as a second display area; when the optical fingerprint sensor 240 performs When the fingerprint image is collected, the first display area is controlled to stop displaying work.
  • the embodiment can make the fingerprint image acquisition not affected by the self-luminous display panel.
  • the usage method provided by this embodiment further includes: when the optical fingerprint sensor 240 performs a fingerprint image collection operation, controlling the second display area to display information associated with the fingerprint image collection work. For example, in the second display area, "Please enter a fingerprint in the non-display area" is displayed. During the fingerprint entry process, information such as “enter correct” or “please re-enter” is displayed. When the correct fingerprint is collected, “valid” can be displayed. “Fingerprint” and other information, or according to the fingerprint operation, display “operational success” and other messages. This method of use enables the display function and the fingerprint recognition function to work together to achieve a better user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种显示模组及其使用方法。显示模组包括自发光显示面板,自发光显示面板包括第一基板(111)、第二基板(112)和自发光电路层(113),自发光电路层(113)位于第一基板(111)和第二基板(112)之间,自发光电路层(113)包括多个显示像素单元(1131);每个显示像素单元(1131)包括至少一个非透光区和至少一个透光区(11311);还包括:透光介质层(120);光学指纹传感器(130),光学指纹传感器(130)位于透光介质层(120)下方;点状背光源(140),点状背光源(140)位于第二基板(112)下方,点状背光源(140)位于透光介质层(120)的侧边,点状背光源(140)发出的光线以斜向上的角度,从透光介质层(120)的侧面进入透光介质层(120),并从透光介质层(120)斜向上进入第二基板(112)。显示模组能够很好的集成光学指纹识别功能。

Description

显示模组及其使用方法
本申请要求于2016年12月09日提交中国专利局、申请号为201611131218.6、发明名称为“显示模组及其使用方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光学指纹识别领域,尤其涉及一种显示模组及其使用方法。
背景技术
指纹成像识别技术,是通过指纹传感器采集到人体的指纹图像,然后与系统里的已有指纹成像信息进行比对,来判断正确与否,进而实现身份识别的技术。由于其使用的方便性,以及人体指纹的唯一性,指纹识别技术已经大量应用于各个领域。比如公安局、海关等安检领域,楼宇的门禁系统,以及个人电脑和手机等消费品领域等等。
指纹成像识别技术的实现方式有光学成像、电容成像、超声成像等多种技术。相对来说,光学指纹成像技术,其成像效果相对较好,设备成本相对较低。
有机发光二极管(Organic Light Emitting Diode,OLED)显示模组是平板显示领域的热点之一。OLED显示模组具有低能耗、宽色域、自发光、宽视角和快速响应等优点,目前已运用于在手机、电脑和数码相机等电子产品。
现有技术中,多采用电容式指纹成像技术与有机发光二极管的显示模组进行集成。更多有关显示模组中集成指纹识别功能的内容可参考公开号为CN106024833A的中国发明专利申请。
现有集成指纹识别功能的显示模组结构有待改进,性能有待提 高。
发明内容
本发明解决的问题是提供一种显示模组,以实现将光学指纹识别功能集成在显示模组中,使显示模组具有良好的指纹识别功能。
为解决上述问题,本发明提供了一种显示模组,包括:自发光显示面板,所述自发光显示面板包括第一基板、第二基板和自发光电路层,所述自发光电路层位于所述第一基板和所述第二基板之间,所述自发光电路层包括多个显示像素单元;每个所述显示像素单元包括至少一个非透光区和至少一个透光区;还包括:透光介质层;光学指纹传感器,所述光学指纹传感器位于所述透光介质层下方;点状背光源,所述点状背光源位于第二基板下方,所述点状背光源位于所述透光介质层的侧边,所述点状背光源发出的光线以斜向上的角度,从所述透光介质层的侧面进入所述透光介质层,并从所述透光介质层斜向上进入所述第二基板。
可选的,所述显示模组还包括保护层,所述保护层位于所述第一基板上方。
可选的,所述第二基板下表面靠近所述点状背光源的区域还包括遮光层。
可选的,所述点状背光源与所述透光介质层的侧面之间具有透光胶,所述点状背光源发出的光线从所述点状背光源的出光面进入所述透光胶,再从所述透光胶进入所述透光介质层的侧面。
可选的,所述透光胶粘接所述透光介质层的侧面和所述遮光层下表面。
可选的,所述点状背光源的出光面前面具有聚光透镜,所述聚光透镜能够使所述点状背光源的光线转换为平行光或近平行光,所述点状背光源的光线先进入所述聚光透镜,再进入所述透光介质层的侧 面。
可选的,所述自发光显示面板与所述光学指纹传感器之间具有光学胶。
可选的,所述自发光显示面板与所述保护层之间具有光学胶。
可选的,所述点状背光源为一个LED灯,所述LED灯的光为近紫外光、紫色光、蓝色光、绿色光、黄色光、红色光、近红外光或白色光;或者,所述点状背光源为两个以上LED灯,所述两个以上LED灯均匀分布在所述第二基板的下方,所述LED灯的光为近紫外光、紫色光、蓝色光、绿色光、黄色光、红色光、近红外光或白色光。
为解决上述问题,本发明还提供了一种显示模组的使用方法,所述显示模组包括:自发光显示面板,所述自发光显示面板包括第一基板、第二基板和自发光电路层,所述自发光电路层位于所述第一基板和所述第二基板之间,所述自发光电路层包括多个显示像素单元,每个所述显示像素单元包括至少一个非透光区和至少一个透光区;透光介质层;光学指纹传感器,所述光学指纹传感器位于所述透光介质层下方;点状背光源,所述点状背光源位于第二基板下方,所述点状背光源位于所述透光介质层的侧边,所述点状背光源发出的光线以斜向上的角度,从所述透光介质层的侧面进入所述透光介质层,并从所述透光介质层斜向上进入所述第二基板;所述使用方法包括:将所述自发光显示面板中与所述光学指纹传感器相对的显示区域定义为第一显示区域,其它部分的显示区域定义为第二显示区域;当所述光学指纹传感器进行指纹图像采集工作时,控制所述第一显示区域停止进行显示工作。
可选的,所述使用方法还包括:当所述光学指纹传感器进行指纹图像采集工作时,控制所述第二显示区域显示与指纹图像采集工作相关联的信息。
与现有技术相比,本发明的技术方案具有以下优点:
本发明的技术方案中,将所述光学指纹传感器和点状背光源均设置于自发光显示面板的第二基板下方,并且设置于透光介质层的侧边,然后将光学指纹传感器设置于透光介质层下方。自发光显示面板设置有透光区,因此,可以使得点状背光源发出的光线在从侧面穿过透光介质层之后,能来回穿过自发光显示面板,从而能够利用显示模组实现对手指指纹图像的采集,并且,采集到的指纹图像清晰,使显示模组集成有良好的指纹识别功能。
本发明的技术方案中,在使用显示模组时,控制与光学指纹传感器对应的第一显示区域在光学指纹传感器进行指纹图像采集工作时,停止工作,并且控制第二显示区域显示与指纹图像采集工作相关联的信息,从而使得显示功能和指纹识别功能相互配合起来,实现更好的用户使用体验。
附图说明
图1是本发明实施例所提供的显示模组剖面结构示意图;
图2是本发明另一实施例所提供的显示模组剖面结构示意图。
具体实施方式
正如背景技术所述,现有技术多采用电容式指纹成像技术与有机发光二极管的显示模组进行集成。
为此,本发明提供一种显示模组中,将光学指纹传感器与自发光显示面板集成在一起,从而在实现显示的同时,能够实现指纹识别功能,并且,通过相应的结构设计,使得显示模组能够采集到清晰的指纹图像,并且使得显示功能和指纹识别功能能够相互配合,使得用户对显示模组具有更好的使用体验。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
本发明实施例提供一种显示模组,请参考图1。
所述显示模组包括自发光显示面板(未标注)、透光介质层120、光学指纹传感器130和点状背光源140。
所述显示模组中,自发光显示面板包括第一基板111、第二基板112和自发光电路层113。自发光电路层113位于第一基板111和第二基板112之间。自发光显示面板还包括密封结构114。密封结构114也位于第一基板111和第二基板112之间。密封结构114与第一基板111和第二基板112一起,将自发光电路层113密封在第一基板111和第二基板112之间。
本实施例中,第一基板111和第二基板112的材料可以为透光材料,其中,第一基板111可以为透明材料。具体的,它们的材料均可以为无机玻璃或者有机玻璃,也可以是有机玻璃以外的其它树脂材料。
所述自发光显示面板中,自发光电路层113包括多个显示像素单元1131(图1中用虚线框示意出显示像素单元1131,及各个显示像素单元1131相邻关系。需要注意,虽然虚线框包括了部分第一基板111和第二基板112,但这只是为了便于显示,显示像素单元1131并不包括第一基板111和第二基板112)。每个显示像素单元1131包括至少一个非透光区和至少一个透光区11311,图1中示意出一个透光区11311(即其中一个透光区11311所在范围如图1中最小的虚线框包围的范围所示)。
本实施例中,所述自发光显示面板为OLED显示面板,自发光电路层113的显示像素单元1131可以包括阳极层、空穴注入层(HIL)、发光层(EML)、电子注入层(EIL)和阴极层等,还可以具有空穴传输层(HTL)和电子传输层(ETL),还可以包括驱动OLED的TFT、驱动金属线和存储电容等。OLED显示面板的发光原理为:在一定电压驱动下,电子和空穴分别从阴极层和阳极层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,发光分子经过辐射弛豫而 发出可见光(或其它光线)。其中,上述发光层等结构位于相应的非透光区中。而在非透光区周边,本实施例的显示像素单元1131具有相应的透光区11311。
本实施例中自发光电路层113制作在第二基板112上,所述自发光电路层113与所述第一基板111之间具有空隙层。并且在所述空隙层填充氮气或氩气等惰性气体,以便保护所述自发光电路层113不会被第一基板111压坏。
本实施例设置透光区11311的高度等于自发光电路层113的高度,如图1所示,从而保证光线能够从透光区穿过自发光电路层113(需要说明的是,自发光电路层113的各位置高度可能略有差别,但是至少部分位置的自发光电路层113的高度与透光区11311的高度相等)。而光线能够从透光区穿过自发光电路层113,保证了显示模组能够进行指纹图像采集。由上述的空隙层内容可知,光线在穿过所述自发光显示面板,通常包含穿过第二基板112、透光区11311、空隙层和第一基板111。
具体的,一个显示像素单元1131的非透光区中具有相应的发光层等半导体层结构(这些半导体层结构是需要避光的,因此,制作在非透光区),而其它位置均可以设置为透光区,即在保证相应结构和功能的实现的基础上,显示像素单元1131的其它结构都可以尽量采用透光结构制作。并且,相邻显示像素单元1131之间的结构,也可以尽量采用透光结构制作。同时,在这些显示像素单元1131所在的显示区域以外,例如在在驱动电路和绑定引脚等结构的制作位置,也可以设置成相应的透光区,从而使得更多的光线能够穿过OLED显示面板(此穿过通常指从显示像素单元1131的高度穿过,高度通常也可称为厚度)。
如图1所示,所述光学指纹传感器位于透光介质层120下方。也就是说,透光介质层120设置于所述自发光显示面板和光学指纹传感器130之间。
需要说明的是,所述光学指纹传感器包括指纹感测电路层(未区别显示)和衬底基板(未区别显示)。在其中一种情况下,指纹感测电路层位于透光介质层120和衬底基板之间。在另一种情况下,衬底基板位于透光介质层120和指纹感测电路层之间。
光学指纹传感器130的指纹感测电路层包括多个感光像素单元(未示出)。在其中一种情况下,每个所述感光像素单元可以包括透光区域和非透光区域(与显示像素单元1131中的透光区和非透光区相区分)。所述感光像素单元的感光元件(所述感光元件可以为感光二极管等结构)位于所述非透光区域。在另一种情况下,当指纹感测电路层位于透光介质层120和衬底基板之间,感光像素单元也可以完全不需要透光区域,而只有非透光区域,但需要保证光线能够从透光介质层120斜向下进入相应的感光元件。
本实施例中,所述光学指纹传感器可以为基于硅晶圆的以CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)工艺制作的图像传感器,也可以是基于玻璃基板的以TFT(Thin Film Transistor,薄膜晶体管)工艺制作的图像传感器。
本实施例中,点状背光源140位于第二基板112下方,同时,点状背光源140还位于透光介质层120的侧边,点状背光源140发出的光线以斜向上的角度,从透光介质层120的侧面进入透光介质层120,并从透光介质层120斜向上进入第二基板112。
本实施例将点状背光源140设置于所述光学指纹传感器的侧边,从而使点状背光源140发出的、用于指纹图像采集的光线,一定是以斜入射的角度进入透光介质层120的侧面。这些光线会继续以斜入射的角度进入第二基板112,并穿过自发光电路层113,从而斜入射进入第一基板111。并且,光线会在手指指纹与第一基板111上表面所形成的界面处发生反射和折射等光学现象,产生相应的反射光线。由光学传播的原理可知,这些反射光线通常将同样以斜入射的角度斜向下返回第一基板111。这些反射光线会继续以斜入射的角度斜向下穿 过自发光电路层113,从而斜入射进入第二基板112。然后继续斜入射的角度斜向下穿过透光介质层120,再到达所述光学指纹传感器(即斜向下入射进入所述光学指纹传感器),并被光学指纹传感器中的感光像素单元接收。相比于采用导光板的面光源而言,这种点状背光源140的设置能够使得光线基本沿同一个方向偏移(而导光板的光线是各个方向杂乱的,偏移方向不一),避免了光线之间的相互干扰和相互影响(而导光板的光线之间会相互干扰和影响),并且,距离点状背光源140位置相近的光线偏移量相近,从而能够得到清晰的指纹图像,提高模组的指纹识别性能。
本实施例中,点状背光源140可以为一个LED灯。所述LED灯的光可以为近紫外光、紫色光、蓝色光、绿色光、黄色光、红色光、近红外光或白色光。
本实施例中,第二基板112下表面靠近点状背光源140的区域还包括遮光层160。遮光层160用于防止点状背光源140发出的光线直接从第二基板112下表面进入第二基板112,从而保证进入第二基板112的光线全部来自透光介质层120。
遮光层160可以是一个自身非透光的固体结构,例如为金属层。此时遮光层160的厚度可以根据需要设定,通常厚度越大遮光效果越好。
其它实施例中,遮光层可以采用油墨涂层形成(例如直接在第二基板下表面相应区域涂覆油墨涂层作为遮光层),也可以采用其它合适的材料和方式形成。
本实施例中,点状背光源140与透光介质层120的侧面之间具有透光胶150,点状背光源140发出的光线从点状背光源140的出光面进入透光胶150,再从透光胶150进入透光介质层120的侧面。透光胶150的设置可以使点状背光源140发出的光线更多更好地入射至透光介质层120的侧面,减少界面反射,透光胶150的折射率大于1,减小进入第二基板112的光线的折射幅度。而如果不设置透光胶,点 状背光源发出的光线需要经过真空或者空气后,再进入透光介质层120的侧面,而光线容易在这个过程中发生反射和散射等不利情况(光线容易在真空或空气与透光介质层120侧面所形成的界面处发生反射等不利情况,并且空气还会使得一些光线发生散射等不利情况)。
本实施例中,透光胶150粘接透光介质层120的侧面和遮光层160下表面。这种设置能够使得透光胶150自身更好地固定在相应的位置中,不易发生脱落和剥离等现象。透光胶150的材料可以选择透光性能好的材料。并且,可以通过控制透光胶150的体积,使得点状背光源150发出的光线全部经过透光胶140再进入透光介质层120的侧面,避免光线的其它传播途径。
其它实施例中,点状背光源140与所述光学指纹传感器之间也可以没有间隔,即点状背光源140与所述光学指纹传感器的侧面直接接触。
本实施例中,图1中虽未显示,但所述显示模组中,所述自发光显示面板与透光介质层120之间可以具有光学胶。所述光学胶层的材料具体可以是热敏光学胶层、光敏光学胶层或光学双面胶带。所述光学胶的存在使所述自发光显示面板与透光介质层120之间尽量避免存在空气,进一步提高了模组的光学性能。
本实施例中,图1中虽未显示,但所述显示模组中,透光介质层120与光学指纹传感器130之间可以具有光学胶。所述光学胶的存在使透光介质层120与光学指纹传感器130之间尽量避免存在空气,进一步提高了模组的光学性能。
其它实施例中,所述自发光显示面板、所述透光介质层和所述光学指纹传感器可以是两两之间直接层叠,“直接层叠”指两个结构之间的表面至少有部分接触,当三者均总体呈扁平结构时,可以恰好是如图1中所示层叠形态。
需要说明的是,本实施例设置光学指纹传感器的感光像素单元到 第一基板111上表面的距离较小,以确保使得指纹采集得到的指纹图像质量满足所需要求。
本实施例中,OLED显示面板中的显示像素单元1131的面积小于或等于光学指纹传感器中的感光像素单元的面积。
在上述面积对比基础上,第一种情况下,可以将光学指纹传感器中的一个感光像素单元和OLED显示面板中的一个显示像素单元1131的上下位置对应起来,从而更好地保证后续的指纹图像采集。具体的,可以将一个感光像素单元正对一个显示像素单元1131,并令感光像素单元的面积与显示像素单元1131的面积相等(事实上,由于光线总是在斜向传播,因此,是不是正对均对本实施例没有太大影响)。显示像素单元1131的透光区11311至少对应于感光像素单元的感光元件。由于两者面积相等,所以两者也可以不用一一正对齐,相互间也可以有一定的错位。从宏观上来看,各个所述感光像素单元和显示像素单元1131的对齐关系是一致的,所以可以保证各个感光像素单元的接收到的发射(反射)光信号是均匀的。
在上述面积对比基础上,第二种情况下,也可以是多个显示像素单元1131对应一个所述感光像素单元。也就是说,可以是一个所述感光像素单元可以对应两个或者两个以上显示像素单元1131(即感光像素单元的面积小于显示像素单元1131的面积)。从宏观上来看,各个感光像素单元和两个或者两个以上显示像素单元1131的对齐关系是一致的,所以可以保证各个感光像素单元的接收到的发射(反射)光信号是均匀的。
本实施例所提供的显示模组在进行指纹采集时的原理为:点状背光源140发出的光线通过透光胶150后,从透光介质层120的侧边(侧面)进入,然后穿过透光介质层120,然后斜向上进入第二基板112,并从第二基板112进入自发光电路层113的透光区11311,再从透光区11311斜向上穿过自发光电路层113而进入第一基板111;而本实施例中,第一基板111直接用于手指指纹的接触或按压,因此,光线 会在第一基板111上表面和指纹形成的界面处发生折射、反射和吸收等各种光学现象,相应会有部分反射光线产生;反射光线返回第一基板111中,再从第一基板斜向下进入自发光电路层113的透光区11311,并从透光区11311斜向下穿过自发光电路层113,从而进入第二基板112,再从第二基板112进入透光介质层120,最后从透光介质层120再进入光学指纹传感器130的指纹感测电路层,被指纹感测电路中的各个感光像素单元所接收(具体被感光像素单元的感光元件吸收),经过信号处理,实现相应指纹图像的采集。
上述过程中,由于点状背光源140位于透光介质层120侧边,易知,相应的光线从透光介质层120的侧边进入,然后在第二基板112下表面的入射角为锐角,光线最终反射回来后,反射光线在光学指纹传感器130上表面的入射角也为锐角。因此,此时,点状背光源140发出的光线能够按相应的偏移量产生相应的指纹图像,整个光学指纹传感器模组不需要导光板和聚光透镜等结构,就能够实现指纹图像的识别,并且,形成的指纹图像比采用导光板结构的光源更加清晰。
需要说明的是,在由上述原理可知,本实施例可以控制点状背光源140发出的光线都是斜向上传播的,防止有光线直接在进入透光介质层120后,向下传播至光学指纹传感器130。因为一旦光线发生这种传播方式,就会造成对指纹图像采集的干扰。
需要说明的是,图中虽未显示,为了更好的提高显示模组的指纹识别功能,在如图1所示的结构中,可以在透光介质层120下表面未与光学指纹传感器130层叠的区域中,全部覆盖遮光层(而透光介质层120下表面和光学指纹传感器130层叠区域则需要保持良好的透光作用)。
本实施例所提供的显示模组中,所述光学指纹传感器和点状背光源140均位于自发光显示面板中第二基板112下方,点状背光源140又位于所述透光介质层120侧边,同时自发光显示面板具有透光区,因此,可以使得点状背光源140发出的光线来回穿过自发光显示面 板,从而能够实现对手指指纹图像的采集,并且,采集到的指纹图像清晰,使显示模组集成有良好的指纹识别功能。
本实施例中,透光介质层120的折射率总是大于空气的折射率的,并且,本实施例中,点状背光源140发出的光线从透光介质层120的侧表面进入透光介质层120。通过增加折射率大于空气的透光介质层120,有更多的光线可以运用于指纹图像采集,此时图像的清晰度就会得到提高。
本发明实施例所提供的显示模组中,在自发光显示面板(OLED显示面板)下放置光学指纹传感器,并通过相应的使用方法,能够实现在显示模组的显示区域内采集指纹图像,从而能够减小应用这种显示面板的电子产品外观尺寸,提高电子产品的屏占比,提高电子产品的外观美观度(例如可以提高手机产品的屏占比,提高手机产品的外观美观度)。
本发明实施例还提供一种显示模组的使用方法,所述显示模组为前述实施例所提供,因此,可以参考图1。由前述实施例可知,所述显示模组包括自发光显示面板、透光介质层120、光学指纹传感器130和点状背光源140。所述自发光显示面板包括第一基板111、第二基板112和自发光电路层113。自发光电路层113位于第一基板111和第二基板112之间,自发光电路层113包括多个显示像素单元1131,每个显示像素单元1131包括至少一个非透光区和至少一个透光区,所述透光区的高度等于所述自发光电路层的高度。光学指纹传感器130位于透光介质层120下方。点状背光源140位于第二基板112下方,并且点状背光源140位于透光介质层120的侧边。点状背光源140发出的光线以斜向上的角度,从透光介质层120的侧面进入透光介质层120,并从透光介质层120斜向上进入第二基板112。更多有关所述显示模组的结构及性质可参考前述实施例相应内容。
本实施例所提供的使用方法包括:将自发光显示面板中与光学指纹传感器相对的显示区域定义为第一显示区域,其它部分的显示区域 定义为第二显示区域;当光学指纹传感器进行指纹图像采集工作时,控制第一显示区域停止显示工作。
本实施例中,设置第一显示区域,是为了防止自发光显示面板的光线与点状背光源140发出的光线相互干扰。通过控制第一显示区域停止显示工作,本实施例可以使得进行指纹图像采集时,不受自发光显示面板的影响。
本实施例所提供的使用方法还包括:当光学指纹传感器进行指纹图像采集工作时,控制第二显示区域显示与指纹图像采集工作相关联的信息。例如,在第二显示区域显示“请在非显示区域录入指纹”,在指纹录入过程中,显示“录入正确”或者“请再次录入”等信息,在采集到正确的指纹时,可以显示“有效指纹”等信息,或者根据指纹操作显示“操作成功”等消息。这种使用方法能够使得显示功能和指纹识别功能相互配合起来,实现更好的用户使用体验。
所述使用方法还可以进一步开拓指纹识别功能的应用场景,例如,在光学指纹传感器未进行工作之前,令所述第一显示区域显示相应的显示图标,指示用户将手指放入图标内。当用户将手指放入显示图标的区域后,可利用现有的显示面板自身或外带的触控功能,感知用户已经将手指放入了第一显示区域,从而可以控制光学指纹传感器进入工作状态,此时,按压指纹的指纹图像会被第一显示区域下方的光学指纹传感器采集,完成指纹图像采集功能,并且,可以进一步运用于与内部储存的已有指纹图像进行识别,进一步运用进行加密/解锁等功能。
本发明另一实施例提供另一种显示模组,请参考图2。
所述显示模组包括保护层210、自发光显示面板(未标注)、透光介质层230、光学指纹传感器240和点状背光源250。
所述显示模组中,自发光显示面板包括第一基板221、第二基板222和自发光电路层223。自发光电路层223位于第一基板221和第 二基板222之间。自发光显示面板还包括密封结构224。密封结构224也位于第一基板221和第二基板222之间。密封结构224与第一基板221和第二基板222一起,将自发光电路层223密封在第一基板221和第二基板222之间。
所述显示模组中,保护层210位于所述第一基板221上方。与图1中直接采用第一基板111作为手指接触的结构不同,本实施例中,采用保护层210作为手指接触的结构,并且保护层210可以同时起到保护自发光显示面板、光学指纹传感器240和点状背光源250等结构的作用。
本实施例中,保护层210为单层结构,即保护层210可以为一个基板,如图2所示。其它实施例中,保护层也可以为多层结构。
本实施例中,第一基板221和第二基板222的材料可以为透明材料。
所述自发光显示面板中,自发光电路层223包括多个显示像素单元2231(图2中用虚线框示意出显示像素单元2231的相邻关系)。每个显示像素单元2231包括至少一个非透光区和至少一个透光区22311,图2中示意出一个透光区22311(即其中一个透光区22311所在范围如图2中最小的虚线框包围的范围所示)。
本实施例中,所述自发光显示面板为OLED显示面板,可参考图1对应实施例相应内容。
本实施例设置透光区22311的高度等于自发光电路层223的高度,如图2所示,从而保证光线能够从透光区穿过自发光电路层223。而光线能够从透光区穿过自发光电路层223,保证了显示模组能够进行指纹图像采集。
显示像素单元2231的具体结构可参考图1对应实施例相应内容。
如图2所示,光学指纹传感器240位于透光介质层230的下方。也就是说,透光介质层230位于所述自发光显示面板和光学指纹传感 器240之间。
如图2所示,光学指纹传感器240包括指纹感测电路层(未示出)和衬底基板(未示出)。
光学指纹传感器240的所述指纹感测电路层包括多个感光像素单元(未示出),更多结构可参考图1对应实施例相应内容。
本实施例中,点状背光源250位于第二基板222下方,并且,点状背光源250位于透光介质层230的侧边,点状背光源250发出的光线以斜向上的角度,从透光介质层230的侧面进入透光介质层230,并从透光介质层230斜向上进入所述第二基板222。
本实施例将点状背光源250设置于第二基板222下方,并且设置于透光介质层230的侧边,能够保证用于采集指纹图像的反射光线,一定是以斜入射的角度进入光学指纹传感器240的(即斜向下入射进入光学指纹传感器240,详细过程可参考图1对应实施例相应内容)。相比于采用导光板的面光源而言,这种点状背光源250的设置能够使得光线基本沿同一个方向偏移(而导光板的光线是各个方向杂乱的,偏移方向不一),避免了光线之间的相互干扰和相互影响(而导光板的光线之间会相互干扰和影响),并且,距离点状背光源250位置相近的光线偏移量相近,从而能够得到清晰的指纹图像,提高模组的指纹识别性能。
本实施例中,点状背光源250可以为一个LED灯。所述LED灯的光可以为近紫外光、紫色光、蓝色光、绿色光、黄色光、红色光、近红外光或白色光。
需要说明的是,其它实施例中,点状背光源可以为两个以上LED灯,两个以上LED灯均匀分布在第二基板的下方,LED灯的光为近紫外光、紫色光、蓝色光、绿色光、黄色光、红色光、近红外光或白色光。例如,所述点状背光源可以为四个LED灯,四个LED灯均匀分布在第二基板的下方,并且位于透光介质层230的各个不同的侧 边,或者四个灯同时均匀分布在透光介质层230的四个角。此时,四个LED灯发出的光线虽然各自都可能是非平行光,但是同时利用这四个LED灯,可以实现对非平行光时的图像畸变的矫正。具体的,四个LED灯可以采取轮流采图(轮流采图指四个灯按时序先后分别进行采图)的方式,然后通过图像处理,做畸变校正,提高指纹图像质量,提高指纹识别准确性。当然,当点状背光源为多个LED灯的情况下,在进行指纹图像采集时,可以选择任意一个LED灯的光线作为指纹图像的成像光线,此时本实施例与图1对应实施例的成像效果类似。
如图2所示,所述显示模组中,在点状背光源250与第二基板222下表面和透光介质层230的侧面具有透光胶260,点状背光源250发出的光线从点状背光源250的出光面进入透光胶260,再从透光胶260进入透光介质层230的侧面。透光胶260的设置可以使点状背光源250发出的光线更多更好地入射至透光介质层230的侧面,减少界面反射,透光胶260的折射率大于1,减小进入透光介质层230的光线的折射幅度。而如果不设置透光胶,点状背光源发出的光线需要经过真空或者空气后,再进入透光介质层,而光线在真空或空气与透光介质层侧面形成的界面较易发生反射的情况,并且空气还会使得一些光线发生散射等不利影响。
所述显示模组中,点状背光源250与光学指纹传感器240之间具有间隔(未标注),可以参考图1对应实施例相应内容。
本实施例中,图2中虽未显示,但所述显示模组中,所述自发光显示面板与透光介质层230之间可以具有光学胶,可以参考图1对应实施例相应内容。
本实施例中,图2中虽未显示,但所述显示模组中,所述自发光显示面板与保护层210之间可以具有光学胶,所述光学胶的存在避免了所述自发光显示面板与保护层210之间存在空气的可能,从而使得显示模组的光学性能更好。
需要说明的是,在OLED显示面板与光学指纹传感器240直接层叠或者与光学胶粘合的情况下,本实施例设置光学指纹传感器240的感光像素单元到第一基板221上表面的距离较小,以确保使得指纹采集得到的指纹图像质量满足所需要求。
本实施例中,图中虽未显示,但可以将光学指纹传感器240中的感光像素单元和OLED显示面板中的显示像素单元2231的上下位置对应起来,从而更好地保证后续的指纹图像采集。可以将一个感光像素单元对应四个显示像素单元2231,并令感光像素单元的面积等于四个显示像素单元2231的面积。
本实施例所提供的显示模组在进行指纹采集时,其原理大部分与图1对应实施例的原理相同,不同之处在于,本实施例中光线在未到达手指指纹之前,会继续从第一基板221斜向上传播至保护层210,并在保护层210上表面与手指指纹形成的界面发生折射和反射等光学现象,然后再产生斜向下返回保护层210的反射光线。
本实施例中,在透光胶260和第二基板222下表面之间具有遮光层270,遮光层270,可参考图1对应实施例相应内容。
需要说明的是,其它实施例中,点状背光源的出光面前面可以具有聚光透镜,聚光透镜能够使点状背光源的光线转换为平行光或近平行光(所述近平行光指光线之间的角度差异小于10度),点状背光源的光线先进入聚光透镜,再进入透光介质层。聚光透镜的设置可以进一步避免指纹图像发生畸变的问题。
更多本实施例所提供的显示模组的结构和优点可以参考图1对应实施例相应内容。
本发明另一实施例还提供另一种显示模组的使用方法,所述显示模组为前一实施例所提供,因此,可以参考图2。由前一实施例可知,所述显示模组包括保护层210、自发光显示面板、透光介质层230、光学指纹传感器240和点状背光源250。所述自发光显示面板包括第 一基板221、第二基板222和自发光电路层223。自发光电路层223位于第一基板221和第二基板222之间,自发光电路层223包括多个显示像素单元2231,每个显示像素单元2231包括至少一个非透光区和至少一个透光区,所述透光区的高度等于所述自发光电路层的高度。光学指纹传感器240位于透光介质层230下方。点状背光源250位于第二基板222下方,并且点状背光源140位于透光介质层120的侧边。点状背光源250发出的光线以斜向上的角度,从透光介质层230的侧面进入透光介质层230,并从透光介质层230斜向上进入第二基板222。
更多有关所述显示模组的结构及性质可参考前一实施例相应内容。
本实施例所提供的使用方法包括:将自发光显示面板中与光学指纹传感器240相对的显示区域定义为第一显示区域,其它部分的显示区域定义为第二显示区域;当光学指纹传感器240进行指纹图像采集工作时,控制第一显示区域停止显示工作。
通过控制第一显示区域停止显示工作,本实施例可以使得进行指纹图像采集时,不受自发光显示面板的影响。
本实施例所提供的使用方法还包括:当光学指纹传感器240进行指纹图像采集工作时,控制第二显示区域显示与指纹图像采集工作相关联的信息。例如,在第二显示区域显示“请在非显示区域录入指纹”,在指纹录入过程中,显示“录入正确”或者“请再次录入”等信息,在采集到正确的指纹时,可以显示“有效指纹”等信息,或者根据指纹操作显示“操作成功”等消息。这种使用方法能够使得显示功能和指纹识别功能相互配合起来,实现更好的用户使用体验。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (10)

  1. 一种显示模组,包括:
    自发光显示面板,所述自发光显示面板包括第一基板、第二基板和自发光电路层,所述自发光电路层位于所述第一基板和所述第二基板之间,所述自发光电路层包括多个显示像素单元;
    其特征在于,
    每个所述显示像素单元包括至少一个非透光区和至少一个透光区;
    还包括:
    透光介质层;
    光学指纹传感器,所述光学指纹传感器位于所述透光介质层下方;
    点状背光源,所述点状背光源位于第二基板下方,所述点状背光源位于所述透光介质层的侧边,所述点状背光源发出的光线以斜向上的角度,从所述透光介质层的侧面进入所述透光介质层,并从所述透光介质层斜向上进入所述第二基板。
  2. 如权利要求1所述的显示模组,其特征在于,还包括保护层,所述保护层位于所述第一基板上方。
  3. 如权利要求1或2所述的显示模组,其特征在于,所述第二基板下表面靠近所述点状背光源的区域还包括遮光层。
  4. 如权利要求3所述的显示模组,其特征在于,所述点状背光源与所述透光介质层的侧面之间具有透光胶,所述点状背光源发出的光线从所述点状背光源的出光面进入所述透光胶,再从所述透光胶进入所述透光介质层的侧面。
  5. 如权利要求4所述的显示模组,其特征在于,所述透光胶粘接所述透光介质层的侧面和所述遮光层下表面。
  6. 如权利要求1或2所述的显示模组,其特征在于,所述点状背光源的出光面前面具有聚光透镜,所述聚光透镜能够使所述点状背光源的光线转换为平行光或近平行光,所述点状背光源的光线先进入所述聚光透镜,再进入所述透光介质层的侧面。
  7. 如权利要求2所述的显示模组,其特征在于,所述自发光显示面板与所述光学指纹传感器之间具有光学胶;所述自发光显示面板与所述保护层之间具有光学胶。
  8. 如权利要求1或2所述的显示模组,其特征在于,所述点状背光源为一个LED灯,所述LED灯的光为近紫外光、紫色光、蓝色光、绿色光、黄色光、红色光、近红外光或白色光;或者,所述点状背光源为两个以上LED灯,所述两个以上LED灯均匀分布在所述第二基板的下方,所述LED灯的光为近紫外光、紫色光、蓝色光、绿色光、黄色光、红色光、近红外光或白色光。
  9. 一种显示模组的使用方法,其特征在于,
    所述显示模组包括:
    自发光显示面板,所述自发光显示面板包括第一基板、第二基板和自发光电路层,所述自发光电路层位于所述第一基板和所述第二基板之间,所述自发光电路层包括多个显示像素单元,每个所述显示像素单元包括至少一个非透光区和至少一个透光区;透光介质层;光学指纹传感器,所述光学指纹传感器位于所述透光介质层下方;点状背光源,所述点状背光源位于第二基板下方,所述点状背光源位于所述透光介质层的侧边,所述点状背光源发出的光线以斜向上的角度,从所述透光介质层的侧面进入所述透光介质层,并从所述透光介质层斜向上进入所述第二基板;
    所述使用方法包括:
    将所述自发光显示面板中与所述光学指纹传感器相对的显示区域定义为第一显示区域,其它部分的显示区域定义为第二显示区域;
    当所述光学指纹传感器进行指纹图像采集工作时,控制所述第一显示区域停止进行显示工作。
  10. 如权利要求9所述的使用方法,其特征在于,还包括:当所述光学指纹传感器进行指纹图像采集工作时,控制所述第二显示区域显示与指纹图像采集工作相关联的信息。
PCT/CN2017/073609 2016-12-09 2017-02-15 显示模组及其使用方法 WO2018103193A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611131218.6 2016-12-09
CN201611131218.6A CN108614982A (zh) 2016-12-09 2016-12-09 显示模组及其使用方法

Publications (1)

Publication Number Publication Date
WO2018103193A1 true WO2018103193A1 (zh) 2018-06-14

Family

ID=62491765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073609 WO2018103193A1 (zh) 2016-12-09 2017-02-15 显示模组及其使用方法

Country Status (2)

Country Link
CN (1) CN108614982A (zh)
WO (1) WO2018103193A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110427919A (zh) * 2019-08-16 2019-11-08 深圳阜时科技有限公司 光学检测装置
CN110795962A (zh) * 2018-08-01 2020-02-14 上海箩箕技术有限公司 光学指纹传感器模组及其形成方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020077505A1 (zh) * 2018-10-15 2020-04-23 深圳市汇顶科技股份有限公司 屏下指纹识别装置和电子设备
CN109582177B (zh) 2018-11-30 2020-08-11 武汉华星光电技术有限公司 触控显示装置
CN109584714B (zh) * 2018-11-30 2021-04-16 Oppo广东移动通信有限公司 显示屏与电子设备
CN109376714A (zh) * 2018-12-13 2019-02-22 固安翌光科技有限公司 一种指纹识别模组及其制备方法
CN110320973B (zh) * 2019-06-20 2021-07-16 维沃移动通信有限公司 终端设备
CN110945527B (zh) * 2019-10-25 2023-09-12 深圳市汇顶科技股份有限公司 指纹识别装置和电子设备
CN111582028A (zh) * 2020-04-02 2020-08-25 江苏传艺科技股份有限公司 一种发光指纹按键

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014198259A1 (de) * 2013-06-12 2014-12-18 Dan Hossu Verfahren zur optischen erfassung eines fingerabdrucks oder eines gegenstandes und vorrichtung mit mindestens einem bildschirm
CN104318199A (zh) * 2014-06-23 2015-01-28 上海箩箕技术有限公司 复合式光学传感器及其制作方法和使用方法
CN105184282A (zh) * 2015-10-14 2015-12-23 京东方科技集团股份有限公司 光学指纹检测装置及显示设备
CN105844233A (zh) * 2016-03-21 2016-08-10 京东方科技集团股份有限公司 一种指纹识别模组、指纹识别装置及显示装置
CN106022325A (zh) * 2016-08-05 2016-10-12 上海箩箕技术有限公司 光学指纹传感器模组
CN106203408A (zh) * 2016-08-31 2016-12-07 上海箩箕技术有限公司 光学指纹传感器模组

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898314B (zh) * 2014-03-07 2018-01-05 敦泰电子有限公司 显示装置及其驱动电路和驱动方法、电子设备
KR102323762B1 (ko) * 2014-11-10 2021-11-10 엘지디스플레이 주식회사 포토 센서를 갖는 어레이 기판 및 이를 이용한 표시 장치
CN104360775B (zh) * 2014-12-01 2018-09-04 京东方科技集团股份有限公司 触控显示装置的驱动方法和触控显示装置
US20160266695A1 (en) * 2015-03-10 2016-09-15 Crucialtec Co., Ltd. Display apparatus having image scanning function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014198259A1 (de) * 2013-06-12 2014-12-18 Dan Hossu Verfahren zur optischen erfassung eines fingerabdrucks oder eines gegenstandes und vorrichtung mit mindestens einem bildschirm
CN104318199A (zh) * 2014-06-23 2015-01-28 上海箩箕技术有限公司 复合式光学传感器及其制作方法和使用方法
CN105184282A (zh) * 2015-10-14 2015-12-23 京东方科技集团股份有限公司 光学指纹检测装置及显示设备
CN105844233A (zh) * 2016-03-21 2016-08-10 京东方科技集团股份有限公司 一种指纹识别模组、指纹识别装置及显示装置
CN106022325A (zh) * 2016-08-05 2016-10-12 上海箩箕技术有限公司 光学指纹传感器模组
CN106203408A (zh) * 2016-08-31 2016-12-07 上海箩箕技术有限公司 光学指纹传感器模组

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110795962A (zh) * 2018-08-01 2020-02-14 上海箩箕技术有限公司 光学指纹传感器模组及其形成方法
CN110795962B (zh) * 2018-08-01 2023-08-15 上海箩箕技术有限公司 光学指纹传感器模组及其形成方法
CN110427919A (zh) * 2019-08-16 2019-11-08 深圳阜时科技有限公司 光学检测装置

Also Published As

Publication number Publication date
CN108614982A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
WO2018103194A1 (zh) 显示模组及其使用方法
WO2018103195A1 (zh) 显示模组及其使用方法
WO2018103193A1 (zh) 显示模组及其使用方法
WO2017166581A1 (zh) 光学指纹传感器模组
US10579854B2 (en) Electroluminescent display device integrated with fingerprint sensor
US11216635B2 (en) Display panel
WO2017166580A1 (zh) 光学指纹传感器模组
KR102592857B1 (ko) 표시패널 및 이를 포함하는 표시장치
US10763315B2 (en) Display apparatus including light receiving pixel area
WO2018023722A1 (zh) 显示模组
TWI470508B (zh) 觸控面板以及具有此觸控面板之觸控式顯示裝置
WO2018120655A1 (zh) 自发光显示面板、显示模组和显示模组的使用方法
CN107145868A (zh) 显示模组
KR102646158B1 (ko) 광학식 이미지 인식 센서 내장형 평판 표시장치
US10929640B2 (en) Flat panel display with optical image sensor embedded therein
CN106874866A (zh) 显示装置及其控制方法
WO2021136140A1 (zh) 显示模组及电子设备
WO2019019045A1 (zh) 光学指纹传感器模组
WO2018103196A1 (zh) 显示模组及其使用方法
KR20210022229A (ko) 전자 패널 및 이를 포함하는 전자 장치
KR102242652B1 (ko) 포토 센싱 화소를 갖는 표시 장치
WO2018029442A1 (en) Touch screen display
WO2018205121A1 (zh) 显示模组
TWI764608B (zh) 一種顯示裝置及其影像感測方法
WO2018205124A1 (zh) 显示模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/09/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17879273

Country of ref document: EP

Kind code of ref document: A1